xref: /linux/mm/gup.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /*
49  * Return the compound head page with ref appropriately incremented,
50  * or NULL if that failed.
51  */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 	struct page *head = compound_head(page);
55 
56 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 		return NULL;
58 	if (unlikely(!page_cache_add_speculative(head, refs)))
59 		return NULL;
60 	return head;
61 }
62 
63 /*
64  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65  * flags-dependent amount.
66  *
67  * "grab" names in this file mean, "look at flags to decide whether to use
68  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69  *
70  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71  * same time. (That's true throughout the get_user_pages*() and
72  * pin_user_pages*() APIs.) Cases:
73  *
74  *    FOLL_GET: page's refcount will be incremented by 1.
75  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76  *
77  * Return: head page (with refcount appropriately incremented) for success, or
78  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79  * considered failure, and furthermore, a likely bug in the caller, so a warning
80  * is also emitted.
81  */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 							  int refs,
84 							  unsigned int flags)
85 {
86 	if (flags & FOLL_GET)
87 		return try_get_compound_head(page, refs);
88 	else if (flags & FOLL_PIN) {
89 		int orig_refs = refs;
90 
91 		/*
92 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 		 * path, so fail and let the caller fall back to the slow path.
94 		 */
95 		if (unlikely(flags & FOLL_LONGTERM) &&
96 				is_migrate_cma_page(page))
97 			return NULL;
98 
99 		/*
100 		 * When pinning a compound page of order > 1 (which is what
101 		 * hpage_pincount_available() checks for), use an exact count to
102 		 * track it, via hpage_pincount_add/_sub().
103 		 *
104 		 * However, be sure to *also* increment the normal page refcount
105 		 * field at least once, so that the page really is pinned.
106 		 */
107 		if (!hpage_pincount_available(page))
108 			refs *= GUP_PIN_COUNTING_BIAS;
109 
110 		page = try_get_compound_head(page, refs);
111 		if (!page)
112 			return NULL;
113 
114 		if (hpage_pincount_available(page))
115 			hpage_pincount_add(page, refs);
116 
117 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 				    orig_refs);
119 
120 		return page;
121 	}
122 
123 	WARN_ON_ONCE(1);
124 	return NULL;
125 }
126 
127 /**
128  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129  *
130  * This might not do anything at all, depending on the flags argument.
131  *
132  * "grab" names in this file mean, "look at flags to decide whether to use
133  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134  *
135  * @page:    pointer to page to be grabbed
136  * @flags:   gup flags: these are the FOLL_* flag values.
137  *
138  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139  * time. Cases:
140  *
141  *    FOLL_GET: page's refcount will be incremented by 1.
142  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143  *
144  * Return: true for success, or if no action was required (if neither FOLL_PIN
145  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146  * FOLL_PIN was set, but the page could not be grabbed.
147  */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151 
152 	if (flags & FOLL_GET)
153 		return try_get_page(page);
154 	else if (flags & FOLL_PIN) {
155 		int refs = 1;
156 
157 		page = compound_head(page);
158 
159 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 			return false;
161 
162 		if (hpage_pincount_available(page))
163 			hpage_pincount_add(page, 1);
164 		else
165 			refs = GUP_PIN_COUNTING_BIAS;
166 
167 		/*
168 		 * Similar to try_grab_compound_head(): even if using the
169 		 * hpage_pincount_add/_sub() routines, be sure to
170 		 * *also* increment the normal page refcount field at least
171 		 * once, so that the page really is pinned.
172 		 */
173 		page_ref_add(page, refs);
174 
175 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 	}
177 
178 	return true;
179 }
180 
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 	int count, refs = 1;
185 
186 	if (!page_is_devmap_managed(page))
187 		return false;
188 
189 	if (hpage_pincount_available(page))
190 		hpage_pincount_sub(page, 1);
191 	else
192 		refs = GUP_PIN_COUNTING_BIAS;
193 
194 	count = page_ref_sub_return(page, refs);
195 
196 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 	/*
198 	 * devmap page refcounts are 1-based, rather than 0-based: if
199 	 * refcount is 1, then the page is free and the refcount is
200 	 * stable because nobody holds a reference on the page.
201 	 */
202 	if (count == 1)
203 		free_devmap_managed_page(page);
204 	else if (!count)
205 		__put_page(page);
206 
207 	return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 	return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215 
216 /**
217  * unpin_user_page() - release a dma-pinned page
218  * @page:            pointer to page to be released
219  *
220  * Pages that were pinned via pin_user_pages*() must be released via either
221  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222  * that such pages can be separately tracked and uniquely handled. In
223  * particular, interactions with RDMA and filesystems need special handling.
224  */
225 void unpin_user_page(struct page *page)
226 {
227 	int refs = 1;
228 
229 	page = compound_head(page);
230 
231 	/*
232 	 * For devmap managed pages we need to catch refcount transition from
233 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 	 * page is free and we need to inform the device driver through
235 	 * callback. See include/linux/memremap.h and HMM for details.
236 	 */
237 	if (__unpin_devmap_managed_user_page(page))
238 		return;
239 
240 	if (hpage_pincount_available(page))
241 		hpage_pincount_sub(page, 1);
242 	else
243 		refs = GUP_PIN_COUNTING_BIAS;
244 
245 	if (page_ref_sub_and_test(page, refs))
246 		__put_page(page);
247 
248 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251 
252 /**
253  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254  * @pages:  array of pages to be maybe marked dirty, and definitely released.
255  * @npages: number of pages in the @pages array.
256  * @make_dirty: whether to mark the pages dirty
257  *
258  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259  * variants called on that page.
260  *
261  * For each page in the @pages array, make that page (or its head page, if a
262  * compound page) dirty, if @make_dirty is true, and if the page was previously
263  * listed as clean. In any case, releases all pages using unpin_user_page(),
264  * possibly via unpin_user_pages(), for the non-dirty case.
265  *
266  * Please see the unpin_user_page() documentation for details.
267  *
268  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269  * required, then the caller should a) verify that this is really correct,
270  * because _lock() is usually required, and b) hand code it:
271  * set_page_dirty_lock(), unpin_user_page().
272  *
273  */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 				 bool make_dirty)
276 {
277 	unsigned long index;
278 
279 	/*
280 	 * TODO: this can be optimized for huge pages: if a series of pages is
281 	 * physically contiguous and part of the same compound page, then a
282 	 * single operation to the head page should suffice.
283 	 */
284 
285 	if (!make_dirty) {
286 		unpin_user_pages(pages, npages);
287 		return;
288 	}
289 
290 	for (index = 0; index < npages; index++) {
291 		struct page *page = compound_head(pages[index]);
292 		/*
293 		 * Checking PageDirty at this point may race with
294 		 * clear_page_dirty_for_io(), but that's OK. Two key
295 		 * cases:
296 		 *
297 		 * 1) This code sees the page as already dirty, so it
298 		 * skips the call to set_page_dirty(). That could happen
299 		 * because clear_page_dirty_for_io() called
300 		 * page_mkclean(), followed by set_page_dirty().
301 		 * However, now the page is going to get written back,
302 		 * which meets the original intention of setting it
303 		 * dirty, so all is well: clear_page_dirty_for_io() goes
304 		 * on to call TestClearPageDirty(), and write the page
305 		 * back.
306 		 *
307 		 * 2) This code sees the page as clean, so it calls
308 		 * set_page_dirty(). The page stays dirty, despite being
309 		 * written back, so it gets written back again in the
310 		 * next writeback cycle. This is harmless.
311 		 */
312 		if (!PageDirty(page))
313 			set_page_dirty_lock(page);
314 		unpin_user_page(page);
315 	}
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318 
319 /**
320  * unpin_user_pages() - release an array of gup-pinned pages.
321  * @pages:  array of pages to be marked dirty and released.
322  * @npages: number of pages in the @pages array.
323  *
324  * For each page in the @pages array, release the page using unpin_user_page().
325  *
326  * Please see the unpin_user_page() documentation for details.
327  */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 	unsigned long index;
331 
332 	/*
333 	 * TODO: this can be optimized for huge pages: if a series of pages is
334 	 * physically contiguous and part of the same compound page, then a
335 	 * single operation to the head page should suffice.
336 	 */
337 	for (index = 0; index < npages; index++)
338 		unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341 
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 		unsigned int flags)
345 {
346 	/*
347 	 * When core dumping an enormous anonymous area that nobody
348 	 * has touched so far, we don't want to allocate unnecessary pages or
349 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
350 	 * then get_dump_page() will return NULL to leave a hole in the dump.
351 	 * But we can only make this optimization where a hole would surely
352 	 * be zero-filled if handle_mm_fault() actually did handle it.
353 	 */
354 	if ((flags & FOLL_DUMP) &&
355 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 		return ERR_PTR(-EFAULT);
357 	return NULL;
358 }
359 
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 		pte_t *pte, unsigned int flags)
362 {
363 	/* No page to get reference */
364 	if (flags & FOLL_GET)
365 		return -EFAULT;
366 
367 	if (flags & FOLL_TOUCH) {
368 		pte_t entry = *pte;
369 
370 		if (flags & FOLL_WRITE)
371 			entry = pte_mkdirty(entry);
372 		entry = pte_mkyoung(entry);
373 
374 		if (!pte_same(*pte, entry)) {
375 			set_pte_at(vma->vm_mm, address, pte, entry);
376 			update_mmu_cache(vma, address, pte);
377 		}
378 	}
379 
380 	/* Proper page table entry exists, but no corresponding struct page */
381 	return -EEXIST;
382 }
383 
384 /*
385  * FOLL_FORCE can write to even unwritable pte's, but only
386  * after we've gone through a COW cycle and they are dirty.
387  */
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 {
390 	return pte_write(pte) ||
391 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
392 }
393 
394 static struct page *follow_page_pte(struct vm_area_struct *vma,
395 		unsigned long address, pmd_t *pmd, unsigned int flags,
396 		struct dev_pagemap **pgmap)
397 {
398 	struct mm_struct *mm = vma->vm_mm;
399 	struct page *page;
400 	spinlock_t *ptl;
401 	pte_t *ptep, pte;
402 	int ret;
403 
404 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
405 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
406 			 (FOLL_PIN | FOLL_GET)))
407 		return ERR_PTR(-EINVAL);
408 retry:
409 	if (unlikely(pmd_bad(*pmd)))
410 		return no_page_table(vma, flags);
411 
412 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
413 	pte = *ptep;
414 	if (!pte_present(pte)) {
415 		swp_entry_t entry;
416 		/*
417 		 * KSM's break_ksm() relies upon recognizing a ksm page
418 		 * even while it is being migrated, so for that case we
419 		 * need migration_entry_wait().
420 		 */
421 		if (likely(!(flags & FOLL_MIGRATION)))
422 			goto no_page;
423 		if (pte_none(pte))
424 			goto no_page;
425 		entry = pte_to_swp_entry(pte);
426 		if (!is_migration_entry(entry))
427 			goto no_page;
428 		pte_unmap_unlock(ptep, ptl);
429 		migration_entry_wait(mm, pmd, address);
430 		goto retry;
431 	}
432 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
433 		goto no_page;
434 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
435 		pte_unmap_unlock(ptep, ptl);
436 		return NULL;
437 	}
438 
439 	page = vm_normal_page(vma, address, pte);
440 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
441 		/*
442 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
443 		 * case since they are only valid while holding the pgmap
444 		 * reference.
445 		 */
446 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
447 		if (*pgmap)
448 			page = pte_page(pte);
449 		else
450 			goto no_page;
451 	} else if (unlikely(!page)) {
452 		if (flags & FOLL_DUMP) {
453 			/* Avoid special (like zero) pages in core dumps */
454 			page = ERR_PTR(-EFAULT);
455 			goto out;
456 		}
457 
458 		if (is_zero_pfn(pte_pfn(pte))) {
459 			page = pte_page(pte);
460 		} else {
461 			ret = follow_pfn_pte(vma, address, ptep, flags);
462 			page = ERR_PTR(ret);
463 			goto out;
464 		}
465 	}
466 
467 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
468 		get_page(page);
469 		pte_unmap_unlock(ptep, ptl);
470 		lock_page(page);
471 		ret = split_huge_page(page);
472 		unlock_page(page);
473 		put_page(page);
474 		if (ret)
475 			return ERR_PTR(ret);
476 		goto retry;
477 	}
478 
479 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
480 	if (unlikely(!try_grab_page(page, flags))) {
481 		page = ERR_PTR(-ENOMEM);
482 		goto out;
483 	}
484 	/*
485 	 * We need to make the page accessible if and only if we are going
486 	 * to access its content (the FOLL_PIN case).  Please see
487 	 * Documentation/core-api/pin_user_pages.rst for details.
488 	 */
489 	if (flags & FOLL_PIN) {
490 		ret = arch_make_page_accessible(page);
491 		if (ret) {
492 			unpin_user_page(page);
493 			page = ERR_PTR(ret);
494 			goto out;
495 		}
496 	}
497 	if (flags & FOLL_TOUCH) {
498 		if ((flags & FOLL_WRITE) &&
499 		    !pte_dirty(pte) && !PageDirty(page))
500 			set_page_dirty(page);
501 		/*
502 		 * pte_mkyoung() would be more correct here, but atomic care
503 		 * is needed to avoid losing the dirty bit: it is easier to use
504 		 * mark_page_accessed().
505 		 */
506 		mark_page_accessed(page);
507 	}
508 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
509 		/* Do not mlock pte-mapped THP */
510 		if (PageTransCompound(page))
511 			goto out;
512 
513 		/*
514 		 * The preliminary mapping check is mainly to avoid the
515 		 * pointless overhead of lock_page on the ZERO_PAGE
516 		 * which might bounce very badly if there is contention.
517 		 *
518 		 * If the page is already locked, we don't need to
519 		 * handle it now - vmscan will handle it later if and
520 		 * when it attempts to reclaim the page.
521 		 */
522 		if (page->mapping && trylock_page(page)) {
523 			lru_add_drain();  /* push cached pages to LRU */
524 			/*
525 			 * Because we lock page here, and migration is
526 			 * blocked by the pte's page reference, and we
527 			 * know the page is still mapped, we don't even
528 			 * need to check for file-cache page truncation.
529 			 */
530 			mlock_vma_page(page);
531 			unlock_page(page);
532 		}
533 	}
534 out:
535 	pte_unmap_unlock(ptep, ptl);
536 	return page;
537 no_page:
538 	pte_unmap_unlock(ptep, ptl);
539 	if (!pte_none(pte))
540 		return NULL;
541 	return no_page_table(vma, flags);
542 }
543 
544 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
545 				    unsigned long address, pud_t *pudp,
546 				    unsigned int flags,
547 				    struct follow_page_context *ctx)
548 {
549 	pmd_t *pmd, pmdval;
550 	spinlock_t *ptl;
551 	struct page *page;
552 	struct mm_struct *mm = vma->vm_mm;
553 
554 	pmd = pmd_offset(pudp, address);
555 	/*
556 	 * The READ_ONCE() will stabilize the pmdval in a register or
557 	 * on the stack so that it will stop changing under the code.
558 	 */
559 	pmdval = READ_ONCE(*pmd);
560 	if (pmd_none(pmdval))
561 		return no_page_table(vma, flags);
562 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
563 		page = follow_huge_pmd(mm, address, pmd, flags);
564 		if (page)
565 			return page;
566 		return no_page_table(vma, flags);
567 	}
568 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
569 		page = follow_huge_pd(vma, address,
570 				      __hugepd(pmd_val(pmdval)), flags,
571 				      PMD_SHIFT);
572 		if (page)
573 			return page;
574 		return no_page_table(vma, flags);
575 	}
576 retry:
577 	if (!pmd_present(pmdval)) {
578 		if (likely(!(flags & FOLL_MIGRATION)))
579 			return no_page_table(vma, flags);
580 		VM_BUG_ON(thp_migration_supported() &&
581 				  !is_pmd_migration_entry(pmdval));
582 		if (is_pmd_migration_entry(pmdval))
583 			pmd_migration_entry_wait(mm, pmd);
584 		pmdval = READ_ONCE(*pmd);
585 		/*
586 		 * MADV_DONTNEED may convert the pmd to null because
587 		 * mmap_sem is held in read mode
588 		 */
589 		if (pmd_none(pmdval))
590 			return no_page_table(vma, flags);
591 		goto retry;
592 	}
593 	if (pmd_devmap(pmdval)) {
594 		ptl = pmd_lock(mm, pmd);
595 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
596 		spin_unlock(ptl);
597 		if (page)
598 			return page;
599 	}
600 	if (likely(!pmd_trans_huge(pmdval)))
601 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
602 
603 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
604 		return no_page_table(vma, flags);
605 
606 retry_locked:
607 	ptl = pmd_lock(mm, pmd);
608 	if (unlikely(pmd_none(*pmd))) {
609 		spin_unlock(ptl);
610 		return no_page_table(vma, flags);
611 	}
612 	if (unlikely(!pmd_present(*pmd))) {
613 		spin_unlock(ptl);
614 		if (likely(!(flags & FOLL_MIGRATION)))
615 			return no_page_table(vma, flags);
616 		pmd_migration_entry_wait(mm, pmd);
617 		goto retry_locked;
618 	}
619 	if (unlikely(!pmd_trans_huge(*pmd))) {
620 		spin_unlock(ptl);
621 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
622 	}
623 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
624 		int ret;
625 		page = pmd_page(*pmd);
626 		if (is_huge_zero_page(page)) {
627 			spin_unlock(ptl);
628 			ret = 0;
629 			split_huge_pmd(vma, pmd, address);
630 			if (pmd_trans_unstable(pmd))
631 				ret = -EBUSY;
632 		} else if (flags & FOLL_SPLIT) {
633 			if (unlikely(!try_get_page(page))) {
634 				spin_unlock(ptl);
635 				return ERR_PTR(-ENOMEM);
636 			}
637 			spin_unlock(ptl);
638 			lock_page(page);
639 			ret = split_huge_page(page);
640 			unlock_page(page);
641 			put_page(page);
642 			if (pmd_none(*pmd))
643 				return no_page_table(vma, flags);
644 		} else {  /* flags & FOLL_SPLIT_PMD */
645 			spin_unlock(ptl);
646 			split_huge_pmd(vma, pmd, address);
647 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
648 		}
649 
650 		return ret ? ERR_PTR(ret) :
651 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
652 	}
653 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
654 	spin_unlock(ptl);
655 	ctx->page_mask = HPAGE_PMD_NR - 1;
656 	return page;
657 }
658 
659 static struct page *follow_pud_mask(struct vm_area_struct *vma,
660 				    unsigned long address, p4d_t *p4dp,
661 				    unsigned int flags,
662 				    struct follow_page_context *ctx)
663 {
664 	pud_t *pud;
665 	spinlock_t *ptl;
666 	struct page *page;
667 	struct mm_struct *mm = vma->vm_mm;
668 
669 	pud = pud_offset(p4dp, address);
670 	if (pud_none(*pud))
671 		return no_page_table(vma, flags);
672 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
673 		page = follow_huge_pud(mm, address, pud, flags);
674 		if (page)
675 			return page;
676 		return no_page_table(vma, flags);
677 	}
678 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
679 		page = follow_huge_pd(vma, address,
680 				      __hugepd(pud_val(*pud)), flags,
681 				      PUD_SHIFT);
682 		if (page)
683 			return page;
684 		return no_page_table(vma, flags);
685 	}
686 	if (pud_devmap(*pud)) {
687 		ptl = pud_lock(mm, pud);
688 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
689 		spin_unlock(ptl);
690 		if (page)
691 			return page;
692 	}
693 	if (unlikely(pud_bad(*pud)))
694 		return no_page_table(vma, flags);
695 
696 	return follow_pmd_mask(vma, address, pud, flags, ctx);
697 }
698 
699 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
700 				    unsigned long address, pgd_t *pgdp,
701 				    unsigned int flags,
702 				    struct follow_page_context *ctx)
703 {
704 	p4d_t *p4d;
705 	struct page *page;
706 
707 	p4d = p4d_offset(pgdp, address);
708 	if (p4d_none(*p4d))
709 		return no_page_table(vma, flags);
710 	BUILD_BUG_ON(p4d_huge(*p4d));
711 	if (unlikely(p4d_bad(*p4d)))
712 		return no_page_table(vma, flags);
713 
714 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
715 		page = follow_huge_pd(vma, address,
716 				      __hugepd(p4d_val(*p4d)), flags,
717 				      P4D_SHIFT);
718 		if (page)
719 			return page;
720 		return no_page_table(vma, flags);
721 	}
722 	return follow_pud_mask(vma, address, p4d, flags, ctx);
723 }
724 
725 /**
726  * follow_page_mask - look up a page descriptor from a user-virtual address
727  * @vma: vm_area_struct mapping @address
728  * @address: virtual address to look up
729  * @flags: flags modifying lookup behaviour
730  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
731  *       pointer to output page_mask
732  *
733  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
734  *
735  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
736  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
737  *
738  * On output, the @ctx->page_mask is set according to the size of the page.
739  *
740  * Return: the mapped (struct page *), %NULL if no mapping exists, or
741  * an error pointer if there is a mapping to something not represented
742  * by a page descriptor (see also vm_normal_page()).
743  */
744 static struct page *follow_page_mask(struct vm_area_struct *vma,
745 			      unsigned long address, unsigned int flags,
746 			      struct follow_page_context *ctx)
747 {
748 	pgd_t *pgd;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	ctx->page_mask = 0;
753 
754 	/* make this handle hugepd */
755 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
756 	if (!IS_ERR(page)) {
757 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
758 		return page;
759 	}
760 
761 	pgd = pgd_offset(mm, address);
762 
763 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
764 		return no_page_table(vma, flags);
765 
766 	if (pgd_huge(*pgd)) {
767 		page = follow_huge_pgd(mm, address, pgd, flags);
768 		if (page)
769 			return page;
770 		return no_page_table(vma, flags);
771 	}
772 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
773 		page = follow_huge_pd(vma, address,
774 				      __hugepd(pgd_val(*pgd)), flags,
775 				      PGDIR_SHIFT);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 
781 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
782 }
783 
784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
785 			 unsigned int foll_flags)
786 {
787 	struct follow_page_context ctx = { NULL };
788 	struct page *page;
789 
790 	page = follow_page_mask(vma, address, foll_flags, &ctx);
791 	if (ctx.pgmap)
792 		put_dev_pagemap(ctx.pgmap);
793 	return page;
794 }
795 
796 static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 		unsigned int gup_flags, struct vm_area_struct **vma,
798 		struct page **page)
799 {
800 	pgd_t *pgd;
801 	p4d_t *p4d;
802 	pud_t *pud;
803 	pmd_t *pmd;
804 	pte_t *pte;
805 	int ret = -EFAULT;
806 
807 	/* user gate pages are read-only */
808 	if (gup_flags & FOLL_WRITE)
809 		return -EFAULT;
810 	if (address > TASK_SIZE)
811 		pgd = pgd_offset_k(address);
812 	else
813 		pgd = pgd_offset_gate(mm, address);
814 	if (pgd_none(*pgd))
815 		return -EFAULT;
816 	p4d = p4d_offset(pgd, address);
817 	if (p4d_none(*p4d))
818 		return -EFAULT;
819 	pud = pud_offset(p4d, address);
820 	if (pud_none(*pud))
821 		return -EFAULT;
822 	pmd = pmd_offset(pud, address);
823 	if (!pmd_present(*pmd))
824 		return -EFAULT;
825 	VM_BUG_ON(pmd_trans_huge(*pmd));
826 	pte = pte_offset_map(pmd, address);
827 	if (pte_none(*pte))
828 		goto unmap;
829 	*vma = get_gate_vma(mm);
830 	if (!page)
831 		goto out;
832 	*page = vm_normal_page(*vma, address, *pte);
833 	if (!*page) {
834 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 			goto unmap;
836 		*page = pte_page(*pte);
837 	}
838 	if (unlikely(!try_get_page(*page))) {
839 		ret = -ENOMEM;
840 		goto unmap;
841 	}
842 out:
843 	ret = 0;
844 unmap:
845 	pte_unmap(pte);
846 	return ret;
847 }
848 
849 /*
850  * mmap_sem must be held on entry.  If @locked != NULL and *@flags
851  * does not include FOLL_NOWAIT, the mmap_sem may be released.  If it
852  * is, *@locked will be set to 0 and -EBUSY returned.
853  */
854 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
855 		unsigned long address, unsigned int *flags, int *locked)
856 {
857 	unsigned int fault_flags = 0;
858 	vm_fault_t ret;
859 
860 	/* mlock all present pages, but do not fault in new pages */
861 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
862 		return -ENOENT;
863 	if (*flags & FOLL_WRITE)
864 		fault_flags |= FAULT_FLAG_WRITE;
865 	if (*flags & FOLL_REMOTE)
866 		fault_flags |= FAULT_FLAG_REMOTE;
867 	if (locked)
868 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
869 	if (*flags & FOLL_NOWAIT)
870 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
871 	if (*flags & FOLL_TRIED) {
872 		/*
873 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
874 		 * can co-exist
875 		 */
876 		fault_flags |= FAULT_FLAG_TRIED;
877 	}
878 
879 	ret = handle_mm_fault(vma, address, fault_flags);
880 	if (ret & VM_FAULT_ERROR) {
881 		int err = vm_fault_to_errno(ret, *flags);
882 
883 		if (err)
884 			return err;
885 		BUG();
886 	}
887 
888 	if (tsk) {
889 		if (ret & VM_FAULT_MAJOR)
890 			tsk->maj_flt++;
891 		else
892 			tsk->min_flt++;
893 	}
894 
895 	if (ret & VM_FAULT_RETRY) {
896 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
897 			*locked = 0;
898 		return -EBUSY;
899 	}
900 
901 	/*
902 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
903 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
904 	 * can thus safely do subsequent page lookups as if they were reads.
905 	 * But only do so when looping for pte_write is futile: in some cases
906 	 * userspace may also be wanting to write to the gotten user page,
907 	 * which a read fault here might prevent (a readonly page might get
908 	 * reCOWed by userspace write).
909 	 */
910 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
911 		*flags |= FOLL_COW;
912 	return 0;
913 }
914 
915 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
916 {
917 	vm_flags_t vm_flags = vma->vm_flags;
918 	int write = (gup_flags & FOLL_WRITE);
919 	int foreign = (gup_flags & FOLL_REMOTE);
920 
921 	if (vm_flags & (VM_IO | VM_PFNMAP))
922 		return -EFAULT;
923 
924 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
925 		return -EFAULT;
926 
927 	if (write) {
928 		if (!(vm_flags & VM_WRITE)) {
929 			if (!(gup_flags & FOLL_FORCE))
930 				return -EFAULT;
931 			/*
932 			 * We used to let the write,force case do COW in a
933 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
934 			 * set a breakpoint in a read-only mapping of an
935 			 * executable, without corrupting the file (yet only
936 			 * when that file had been opened for writing!).
937 			 * Anon pages in shared mappings are surprising: now
938 			 * just reject it.
939 			 */
940 			if (!is_cow_mapping(vm_flags))
941 				return -EFAULT;
942 		}
943 	} else if (!(vm_flags & VM_READ)) {
944 		if (!(gup_flags & FOLL_FORCE))
945 			return -EFAULT;
946 		/*
947 		 * Is there actually any vma we can reach here which does not
948 		 * have VM_MAYREAD set?
949 		 */
950 		if (!(vm_flags & VM_MAYREAD))
951 			return -EFAULT;
952 	}
953 	/*
954 	 * gups are always data accesses, not instruction
955 	 * fetches, so execute=false here
956 	 */
957 	if (!arch_vma_access_permitted(vma, write, false, foreign))
958 		return -EFAULT;
959 	return 0;
960 }
961 
962 /**
963  * __get_user_pages() - pin user pages in memory
964  * @tsk:	task_struct of target task
965  * @mm:		mm_struct of target mm
966  * @start:	starting user address
967  * @nr_pages:	number of pages from start to pin
968  * @gup_flags:	flags modifying pin behaviour
969  * @pages:	array that receives pointers to the pages pinned.
970  *		Should be at least nr_pages long. Or NULL, if caller
971  *		only intends to ensure the pages are faulted in.
972  * @vmas:	array of pointers to vmas corresponding to each page.
973  *		Or NULL if the caller does not require them.
974  * @locked:     whether we're still with the mmap_sem held
975  *
976  * Returns either number of pages pinned (which may be less than the
977  * number requested), or an error. Details about the return value:
978  *
979  * -- If nr_pages is 0, returns 0.
980  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
981  * -- If nr_pages is >0, and some pages were pinned, returns the number of
982  *    pages pinned. Again, this may be less than nr_pages.
983  *
984  * The caller is responsible for releasing returned @pages, via put_page().
985  *
986  * @vmas are valid only as long as mmap_sem is held.
987  *
988  * Must be called with mmap_sem held.  It may be released.  See below.
989  *
990  * __get_user_pages walks a process's page tables and takes a reference to
991  * each struct page that each user address corresponds to at a given
992  * instant. That is, it takes the page that would be accessed if a user
993  * thread accesses the given user virtual address at that instant.
994  *
995  * This does not guarantee that the page exists in the user mappings when
996  * __get_user_pages returns, and there may even be a completely different
997  * page there in some cases (eg. if mmapped pagecache has been invalidated
998  * and subsequently re faulted). However it does guarantee that the page
999  * won't be freed completely. And mostly callers simply care that the page
1000  * contains data that was valid *at some point in time*. Typically, an IO
1001  * or similar operation cannot guarantee anything stronger anyway because
1002  * locks can't be held over the syscall boundary.
1003  *
1004  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1005  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1006  * appropriate) must be called after the page is finished with, and
1007  * before put_page is called.
1008  *
1009  * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1010  * released by an up_read().  That can happen if @gup_flags does not
1011  * have FOLL_NOWAIT.
1012  *
1013  * A caller using such a combination of @locked and @gup_flags
1014  * must therefore hold the mmap_sem for reading only, and recognize
1015  * when it's been released.  Otherwise, it must be held for either
1016  * reading or writing and will not be released.
1017  *
1018  * In most cases, get_user_pages or get_user_pages_fast should be used
1019  * instead of __get_user_pages. __get_user_pages should be used only if
1020  * you need some special @gup_flags.
1021  */
1022 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1023 		unsigned long start, unsigned long nr_pages,
1024 		unsigned int gup_flags, struct page **pages,
1025 		struct vm_area_struct **vmas, int *locked)
1026 {
1027 	long ret = 0, i = 0;
1028 	struct vm_area_struct *vma = NULL;
1029 	struct follow_page_context ctx = { NULL };
1030 
1031 	if (!nr_pages)
1032 		return 0;
1033 
1034 	start = untagged_addr(start);
1035 
1036 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1037 
1038 	/*
1039 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1040 	 * fault information is unrelated to the reference behaviour of a task
1041 	 * using the address space
1042 	 */
1043 	if (!(gup_flags & FOLL_FORCE))
1044 		gup_flags |= FOLL_NUMA;
1045 
1046 	do {
1047 		struct page *page;
1048 		unsigned int foll_flags = gup_flags;
1049 		unsigned int page_increm;
1050 
1051 		/* first iteration or cross vma bound */
1052 		if (!vma || start >= vma->vm_end) {
1053 			vma = find_extend_vma(mm, start);
1054 			if (!vma && in_gate_area(mm, start)) {
1055 				ret = get_gate_page(mm, start & PAGE_MASK,
1056 						gup_flags, &vma,
1057 						pages ? &pages[i] : NULL);
1058 				if (ret)
1059 					goto out;
1060 				ctx.page_mask = 0;
1061 				goto next_page;
1062 			}
1063 
1064 			if (!vma || check_vma_flags(vma, gup_flags)) {
1065 				ret = -EFAULT;
1066 				goto out;
1067 			}
1068 			if (is_vm_hugetlb_page(vma)) {
1069 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1070 						&start, &nr_pages, i,
1071 						gup_flags, locked);
1072 				if (locked && *locked == 0) {
1073 					/*
1074 					 * We've got a VM_FAULT_RETRY
1075 					 * and we've lost mmap_sem.
1076 					 * We must stop here.
1077 					 */
1078 					BUG_ON(gup_flags & FOLL_NOWAIT);
1079 					BUG_ON(ret != 0);
1080 					goto out;
1081 				}
1082 				continue;
1083 			}
1084 		}
1085 retry:
1086 		/*
1087 		 * If we have a pending SIGKILL, don't keep faulting pages and
1088 		 * potentially allocating memory.
1089 		 */
1090 		if (fatal_signal_pending(current)) {
1091 			ret = -ERESTARTSYS;
1092 			goto out;
1093 		}
1094 		cond_resched();
1095 
1096 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1097 		if (!page) {
1098 			ret = faultin_page(tsk, vma, start, &foll_flags,
1099 					   locked);
1100 			switch (ret) {
1101 			case 0:
1102 				goto retry;
1103 			case -EBUSY:
1104 				ret = 0;
1105 				fallthrough;
1106 			case -EFAULT:
1107 			case -ENOMEM:
1108 			case -EHWPOISON:
1109 				goto out;
1110 			case -ENOENT:
1111 				goto next_page;
1112 			}
1113 			BUG();
1114 		} else if (PTR_ERR(page) == -EEXIST) {
1115 			/*
1116 			 * Proper page table entry exists, but no corresponding
1117 			 * struct page.
1118 			 */
1119 			goto next_page;
1120 		} else if (IS_ERR(page)) {
1121 			ret = PTR_ERR(page);
1122 			goto out;
1123 		}
1124 		if (pages) {
1125 			pages[i] = page;
1126 			flush_anon_page(vma, page, start);
1127 			flush_dcache_page(page);
1128 			ctx.page_mask = 0;
1129 		}
1130 next_page:
1131 		if (vmas) {
1132 			vmas[i] = vma;
1133 			ctx.page_mask = 0;
1134 		}
1135 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1136 		if (page_increm > nr_pages)
1137 			page_increm = nr_pages;
1138 		i += page_increm;
1139 		start += page_increm * PAGE_SIZE;
1140 		nr_pages -= page_increm;
1141 	} while (nr_pages);
1142 out:
1143 	if (ctx.pgmap)
1144 		put_dev_pagemap(ctx.pgmap);
1145 	return i ? i : ret;
1146 }
1147 
1148 static bool vma_permits_fault(struct vm_area_struct *vma,
1149 			      unsigned int fault_flags)
1150 {
1151 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1152 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1153 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1154 
1155 	if (!(vm_flags & vma->vm_flags))
1156 		return false;
1157 
1158 	/*
1159 	 * The architecture might have a hardware protection
1160 	 * mechanism other than read/write that can deny access.
1161 	 *
1162 	 * gup always represents data access, not instruction
1163 	 * fetches, so execute=false here:
1164 	 */
1165 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1166 		return false;
1167 
1168 	return true;
1169 }
1170 
1171 /*
1172  * fixup_user_fault() - manually resolve a user page fault
1173  * @tsk:	the task_struct to use for page fault accounting, or
1174  *		NULL if faults are not to be recorded.
1175  * @mm:		mm_struct of target mm
1176  * @address:	user address
1177  * @fault_flags:flags to pass down to handle_mm_fault()
1178  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
1179  *		does not allow retry
1180  *
1181  * This is meant to be called in the specific scenario where for locking reasons
1182  * we try to access user memory in atomic context (within a pagefault_disable()
1183  * section), this returns -EFAULT, and we want to resolve the user fault before
1184  * trying again.
1185  *
1186  * Typically this is meant to be used by the futex code.
1187  *
1188  * The main difference with get_user_pages() is that this function will
1189  * unconditionally call handle_mm_fault() which will in turn perform all the
1190  * necessary SW fixup of the dirty and young bits in the PTE, while
1191  * get_user_pages() only guarantees to update these in the struct page.
1192  *
1193  * This is important for some architectures where those bits also gate the
1194  * access permission to the page because they are maintained in software.  On
1195  * such architectures, gup() will not be enough to make a subsequent access
1196  * succeed.
1197  *
1198  * This function will not return with an unlocked mmap_sem. So it has not the
1199  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1200  */
1201 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1202 		     unsigned long address, unsigned int fault_flags,
1203 		     bool *unlocked)
1204 {
1205 	struct vm_area_struct *vma;
1206 	vm_fault_t ret, major = 0;
1207 
1208 	address = untagged_addr(address);
1209 
1210 	if (unlocked)
1211 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1212 
1213 retry:
1214 	vma = find_extend_vma(mm, address);
1215 	if (!vma || address < vma->vm_start)
1216 		return -EFAULT;
1217 
1218 	if (!vma_permits_fault(vma, fault_flags))
1219 		return -EFAULT;
1220 
1221 	ret = handle_mm_fault(vma, address, fault_flags);
1222 	major |= ret & VM_FAULT_MAJOR;
1223 	if (ret & VM_FAULT_ERROR) {
1224 		int err = vm_fault_to_errno(ret, 0);
1225 
1226 		if (err)
1227 			return err;
1228 		BUG();
1229 	}
1230 
1231 	if (ret & VM_FAULT_RETRY) {
1232 		down_read(&mm->mmap_sem);
1233 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
1234 			*unlocked = true;
1235 			fault_flags |= FAULT_FLAG_TRIED;
1236 			goto retry;
1237 		}
1238 	}
1239 
1240 	if (tsk) {
1241 		if (major)
1242 			tsk->maj_flt++;
1243 		else
1244 			tsk->min_flt++;
1245 	}
1246 	return 0;
1247 }
1248 EXPORT_SYMBOL_GPL(fixup_user_fault);
1249 
1250 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1251 						struct mm_struct *mm,
1252 						unsigned long start,
1253 						unsigned long nr_pages,
1254 						struct page **pages,
1255 						struct vm_area_struct **vmas,
1256 						int *locked,
1257 						unsigned int flags)
1258 {
1259 	long ret, pages_done;
1260 	bool lock_dropped;
1261 
1262 	if (locked) {
1263 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1264 		BUG_ON(vmas);
1265 		/* check caller initialized locked */
1266 		BUG_ON(*locked != 1);
1267 	}
1268 
1269 	/*
1270 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1271 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1272 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1273 	 * for FOLL_GET, not for the newer FOLL_PIN.
1274 	 *
1275 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1276 	 * that here, as any failures will be obvious enough.
1277 	 */
1278 	if (pages && !(flags & FOLL_PIN))
1279 		flags |= FOLL_GET;
1280 
1281 	pages_done = 0;
1282 	lock_dropped = false;
1283 	for (;;) {
1284 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1285 				       vmas, locked);
1286 		if (!locked)
1287 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1288 			return ret;
1289 
1290 		/* VM_FAULT_RETRY cannot return errors */
1291 		if (!*locked) {
1292 			BUG_ON(ret < 0);
1293 			BUG_ON(ret >= nr_pages);
1294 		}
1295 
1296 		if (ret > 0) {
1297 			nr_pages -= ret;
1298 			pages_done += ret;
1299 			if (!nr_pages)
1300 				break;
1301 		}
1302 		if (*locked) {
1303 			/*
1304 			 * VM_FAULT_RETRY didn't trigger or it was a
1305 			 * FOLL_NOWAIT.
1306 			 */
1307 			if (!pages_done)
1308 				pages_done = ret;
1309 			break;
1310 		}
1311 		/*
1312 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1313 		 * For the prefault case (!pages) we only update counts.
1314 		 */
1315 		if (likely(pages))
1316 			pages += ret;
1317 		start += ret << PAGE_SHIFT;
1318 		lock_dropped = true;
1319 
1320 retry:
1321 		/*
1322 		 * Repeat on the address that fired VM_FAULT_RETRY
1323 		 * with both FAULT_FLAG_ALLOW_RETRY and
1324 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1325 		 * by fatal signals, so we need to check it before we
1326 		 * start trying again otherwise it can loop forever.
1327 		 */
1328 
1329 		if (fatal_signal_pending(current)) {
1330 			if (!pages_done)
1331 				pages_done = -EINTR;
1332 			break;
1333 		}
1334 
1335 		ret = down_read_killable(&mm->mmap_sem);
1336 		if (ret) {
1337 			BUG_ON(ret > 0);
1338 			if (!pages_done)
1339 				pages_done = ret;
1340 			break;
1341 		}
1342 
1343 		*locked = 1;
1344 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1345 				       pages, NULL, locked);
1346 		if (!*locked) {
1347 			/* Continue to retry until we succeeded */
1348 			BUG_ON(ret != 0);
1349 			goto retry;
1350 		}
1351 		if (ret != 1) {
1352 			BUG_ON(ret > 1);
1353 			if (!pages_done)
1354 				pages_done = ret;
1355 			break;
1356 		}
1357 		nr_pages--;
1358 		pages_done++;
1359 		if (!nr_pages)
1360 			break;
1361 		if (likely(pages))
1362 			pages++;
1363 		start += PAGE_SIZE;
1364 	}
1365 	if (lock_dropped && *locked) {
1366 		/*
1367 		 * We must let the caller know we temporarily dropped the lock
1368 		 * and so the critical section protected by it was lost.
1369 		 */
1370 		up_read(&mm->mmap_sem);
1371 		*locked = 0;
1372 	}
1373 	return pages_done;
1374 }
1375 
1376 /**
1377  * populate_vma_page_range() -  populate a range of pages in the vma.
1378  * @vma:   target vma
1379  * @start: start address
1380  * @end:   end address
1381  * @locked: whether the mmap_sem is still held
1382  *
1383  * This takes care of mlocking the pages too if VM_LOCKED is set.
1384  *
1385  * return 0 on success, negative error code on error.
1386  *
1387  * vma->vm_mm->mmap_sem must be held.
1388  *
1389  * If @locked is NULL, it may be held for read or write and will
1390  * be unperturbed.
1391  *
1392  * If @locked is non-NULL, it must held for read only and may be
1393  * released.  If it's released, *@locked will be set to 0.
1394  */
1395 long populate_vma_page_range(struct vm_area_struct *vma,
1396 		unsigned long start, unsigned long end, int *locked)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1400 	int gup_flags;
1401 
1402 	VM_BUG_ON(start & ~PAGE_MASK);
1403 	VM_BUG_ON(end   & ~PAGE_MASK);
1404 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1405 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1406 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1407 
1408 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1409 	if (vma->vm_flags & VM_LOCKONFAULT)
1410 		gup_flags &= ~FOLL_POPULATE;
1411 	/*
1412 	 * We want to touch writable mappings with a write fault in order
1413 	 * to break COW, except for shared mappings because these don't COW
1414 	 * and we would not want to dirty them for nothing.
1415 	 */
1416 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1417 		gup_flags |= FOLL_WRITE;
1418 
1419 	/*
1420 	 * We want mlock to succeed for regions that have any permissions
1421 	 * other than PROT_NONE.
1422 	 */
1423 	if (vma_is_accessible(vma))
1424 		gup_flags |= FOLL_FORCE;
1425 
1426 	/*
1427 	 * We made sure addr is within a VMA, so the following will
1428 	 * not result in a stack expansion that recurses back here.
1429 	 */
1430 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1431 				NULL, NULL, locked);
1432 }
1433 
1434 /*
1435  * __mm_populate - populate and/or mlock pages within a range of address space.
1436  *
1437  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1438  * flags. VMAs must be already marked with the desired vm_flags, and
1439  * mmap_sem must not be held.
1440  */
1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1442 {
1443 	struct mm_struct *mm = current->mm;
1444 	unsigned long end, nstart, nend;
1445 	struct vm_area_struct *vma = NULL;
1446 	int locked = 0;
1447 	long ret = 0;
1448 
1449 	end = start + len;
1450 
1451 	for (nstart = start; nstart < end; nstart = nend) {
1452 		/*
1453 		 * We want to fault in pages for [nstart; end) address range.
1454 		 * Find first corresponding VMA.
1455 		 */
1456 		if (!locked) {
1457 			locked = 1;
1458 			down_read(&mm->mmap_sem);
1459 			vma = find_vma(mm, nstart);
1460 		} else if (nstart >= vma->vm_end)
1461 			vma = vma->vm_next;
1462 		if (!vma || vma->vm_start >= end)
1463 			break;
1464 		/*
1465 		 * Set [nstart; nend) to intersection of desired address
1466 		 * range with the first VMA. Also, skip undesirable VMA types.
1467 		 */
1468 		nend = min(end, vma->vm_end);
1469 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1470 			continue;
1471 		if (nstart < vma->vm_start)
1472 			nstart = vma->vm_start;
1473 		/*
1474 		 * Now fault in a range of pages. populate_vma_page_range()
1475 		 * double checks the vma flags, so that it won't mlock pages
1476 		 * if the vma was already munlocked.
1477 		 */
1478 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1479 		if (ret < 0) {
1480 			if (ignore_errors) {
1481 				ret = 0;
1482 				continue;	/* continue at next VMA */
1483 			}
1484 			break;
1485 		}
1486 		nend = nstart + ret * PAGE_SIZE;
1487 		ret = 0;
1488 	}
1489 	if (locked)
1490 		up_read(&mm->mmap_sem);
1491 	return ret;	/* 0 or negative error code */
1492 }
1493 
1494 /**
1495  * get_dump_page() - pin user page in memory while writing it to core dump
1496  * @addr: user address
1497  *
1498  * Returns struct page pointer of user page pinned for dump,
1499  * to be freed afterwards by put_page().
1500  *
1501  * Returns NULL on any kind of failure - a hole must then be inserted into
1502  * the corefile, to preserve alignment with its headers; and also returns
1503  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1504  * allowing a hole to be left in the corefile to save diskspace.
1505  *
1506  * Called without mmap_sem, but after all other threads have been killed.
1507  */
1508 #ifdef CONFIG_ELF_CORE
1509 struct page *get_dump_page(unsigned long addr)
1510 {
1511 	struct vm_area_struct *vma;
1512 	struct page *page;
1513 
1514 	if (__get_user_pages(current, current->mm, addr, 1,
1515 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1516 			     NULL) < 1)
1517 		return NULL;
1518 	flush_cache_page(vma, addr, page_to_pfn(page));
1519 	return page;
1520 }
1521 #endif /* CONFIG_ELF_CORE */
1522 #else /* CONFIG_MMU */
1523 static long __get_user_pages_locked(struct task_struct *tsk,
1524 		struct mm_struct *mm, unsigned long start,
1525 		unsigned long nr_pages, struct page **pages,
1526 		struct vm_area_struct **vmas, int *locked,
1527 		unsigned int foll_flags)
1528 {
1529 	struct vm_area_struct *vma;
1530 	unsigned long vm_flags;
1531 	int i;
1532 
1533 	/* calculate required read or write permissions.
1534 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1535 	 */
1536 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1537 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1538 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1539 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1540 
1541 	for (i = 0; i < nr_pages; i++) {
1542 		vma = find_vma(mm, start);
1543 		if (!vma)
1544 			goto finish_or_fault;
1545 
1546 		/* protect what we can, including chardevs */
1547 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1548 		    !(vm_flags & vma->vm_flags))
1549 			goto finish_or_fault;
1550 
1551 		if (pages) {
1552 			pages[i] = virt_to_page(start);
1553 			if (pages[i])
1554 				get_page(pages[i]);
1555 		}
1556 		if (vmas)
1557 			vmas[i] = vma;
1558 		start = (start + PAGE_SIZE) & PAGE_MASK;
1559 	}
1560 
1561 	return i;
1562 
1563 finish_or_fault:
1564 	return i ? : -EFAULT;
1565 }
1566 #endif /* !CONFIG_MMU */
1567 
1568 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1569 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1570 {
1571 	long i;
1572 	struct vm_area_struct *vma_prev = NULL;
1573 
1574 	for (i = 0; i < nr_pages; i++) {
1575 		struct vm_area_struct *vma = vmas[i];
1576 
1577 		if (vma == vma_prev)
1578 			continue;
1579 
1580 		vma_prev = vma;
1581 
1582 		if (vma_is_fsdax(vma))
1583 			return true;
1584 	}
1585 	return false;
1586 }
1587 
1588 #ifdef CONFIG_CMA
1589 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1590 {
1591 	/*
1592 	 * We want to make sure we allocate the new page from the same node
1593 	 * as the source page.
1594 	 */
1595 	int nid = page_to_nid(page);
1596 	/*
1597 	 * Trying to allocate a page for migration. Ignore allocation
1598 	 * failure warnings. We don't force __GFP_THISNODE here because
1599 	 * this node here is the node where we have CMA reservation and
1600 	 * in some case these nodes will have really less non movable
1601 	 * allocation memory.
1602 	 */
1603 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1604 
1605 	if (PageHighMem(page))
1606 		gfp_mask |= __GFP_HIGHMEM;
1607 
1608 #ifdef CONFIG_HUGETLB_PAGE
1609 	if (PageHuge(page)) {
1610 		struct hstate *h = page_hstate(page);
1611 		/*
1612 		 * We don't want to dequeue from the pool because pool pages will
1613 		 * mostly be from the CMA region.
1614 		 */
1615 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1616 	}
1617 #endif
1618 	if (PageTransHuge(page)) {
1619 		struct page *thp;
1620 		/*
1621 		 * ignore allocation failure warnings
1622 		 */
1623 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1624 
1625 		/*
1626 		 * Remove the movable mask so that we don't allocate from
1627 		 * CMA area again.
1628 		 */
1629 		thp_gfpmask &= ~__GFP_MOVABLE;
1630 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1631 		if (!thp)
1632 			return NULL;
1633 		prep_transhuge_page(thp);
1634 		return thp;
1635 	}
1636 
1637 	return __alloc_pages_node(nid, gfp_mask, 0);
1638 }
1639 
1640 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1641 					struct mm_struct *mm,
1642 					unsigned long start,
1643 					unsigned long nr_pages,
1644 					struct page **pages,
1645 					struct vm_area_struct **vmas,
1646 					unsigned int gup_flags)
1647 {
1648 	unsigned long i;
1649 	unsigned long step;
1650 	bool drain_allow = true;
1651 	bool migrate_allow = true;
1652 	LIST_HEAD(cma_page_list);
1653 	long ret = nr_pages;
1654 
1655 check_again:
1656 	for (i = 0; i < nr_pages;) {
1657 
1658 		struct page *head = compound_head(pages[i]);
1659 
1660 		/*
1661 		 * gup may start from a tail page. Advance step by the left
1662 		 * part.
1663 		 */
1664 		step = compound_nr(head) - (pages[i] - head);
1665 		/*
1666 		 * If we get a page from the CMA zone, since we are going to
1667 		 * be pinning these entries, we might as well move them out
1668 		 * of the CMA zone if possible.
1669 		 */
1670 		if (is_migrate_cma_page(head)) {
1671 			if (PageHuge(head))
1672 				isolate_huge_page(head, &cma_page_list);
1673 			else {
1674 				if (!PageLRU(head) && drain_allow) {
1675 					lru_add_drain_all();
1676 					drain_allow = false;
1677 				}
1678 
1679 				if (!isolate_lru_page(head)) {
1680 					list_add_tail(&head->lru, &cma_page_list);
1681 					mod_node_page_state(page_pgdat(head),
1682 							    NR_ISOLATED_ANON +
1683 							    page_is_file_lru(head),
1684 							    hpage_nr_pages(head));
1685 				}
1686 			}
1687 		}
1688 
1689 		i += step;
1690 	}
1691 
1692 	if (!list_empty(&cma_page_list)) {
1693 		/*
1694 		 * drop the above get_user_pages reference.
1695 		 */
1696 		for (i = 0; i < nr_pages; i++)
1697 			put_page(pages[i]);
1698 
1699 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1700 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1701 			/*
1702 			 * some of the pages failed migration. Do get_user_pages
1703 			 * without migration.
1704 			 */
1705 			migrate_allow = false;
1706 
1707 			if (!list_empty(&cma_page_list))
1708 				putback_movable_pages(&cma_page_list);
1709 		}
1710 		/*
1711 		 * We did migrate all the pages, Try to get the page references
1712 		 * again migrating any new CMA pages which we failed to isolate
1713 		 * earlier.
1714 		 */
1715 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1716 						   pages, vmas, NULL,
1717 						   gup_flags);
1718 
1719 		if ((ret > 0) && migrate_allow) {
1720 			nr_pages = ret;
1721 			drain_allow = true;
1722 			goto check_again;
1723 		}
1724 	}
1725 
1726 	return ret;
1727 }
1728 #else
1729 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1730 					struct mm_struct *mm,
1731 					unsigned long start,
1732 					unsigned long nr_pages,
1733 					struct page **pages,
1734 					struct vm_area_struct **vmas,
1735 					unsigned int gup_flags)
1736 {
1737 	return nr_pages;
1738 }
1739 #endif /* CONFIG_CMA */
1740 
1741 /*
1742  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1743  * allows us to process the FOLL_LONGTERM flag.
1744  */
1745 static long __gup_longterm_locked(struct task_struct *tsk,
1746 				  struct mm_struct *mm,
1747 				  unsigned long start,
1748 				  unsigned long nr_pages,
1749 				  struct page **pages,
1750 				  struct vm_area_struct **vmas,
1751 				  unsigned int gup_flags)
1752 {
1753 	struct vm_area_struct **vmas_tmp = vmas;
1754 	unsigned long flags = 0;
1755 	long rc, i;
1756 
1757 	if (gup_flags & FOLL_LONGTERM) {
1758 		if (!pages)
1759 			return -EINVAL;
1760 
1761 		if (!vmas_tmp) {
1762 			vmas_tmp = kcalloc(nr_pages,
1763 					   sizeof(struct vm_area_struct *),
1764 					   GFP_KERNEL);
1765 			if (!vmas_tmp)
1766 				return -ENOMEM;
1767 		}
1768 		flags = memalloc_nocma_save();
1769 	}
1770 
1771 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1772 				     vmas_tmp, NULL, gup_flags);
1773 
1774 	if (gup_flags & FOLL_LONGTERM) {
1775 		memalloc_nocma_restore(flags);
1776 		if (rc < 0)
1777 			goto out;
1778 
1779 		if (check_dax_vmas(vmas_tmp, rc)) {
1780 			for (i = 0; i < rc; i++)
1781 				put_page(pages[i]);
1782 			rc = -EOPNOTSUPP;
1783 			goto out;
1784 		}
1785 
1786 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1787 						 vmas_tmp, gup_flags);
1788 	}
1789 
1790 out:
1791 	if (vmas_tmp != vmas)
1792 		kfree(vmas_tmp);
1793 	return rc;
1794 }
1795 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1796 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1797 						  struct mm_struct *mm,
1798 						  unsigned long start,
1799 						  unsigned long nr_pages,
1800 						  struct page **pages,
1801 						  struct vm_area_struct **vmas,
1802 						  unsigned int flags)
1803 {
1804 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1805 				       NULL, flags);
1806 }
1807 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1808 
1809 #ifdef CONFIG_MMU
1810 static long __get_user_pages_remote(struct task_struct *tsk,
1811 				    struct mm_struct *mm,
1812 				    unsigned long start, unsigned long nr_pages,
1813 				    unsigned int gup_flags, struct page **pages,
1814 				    struct vm_area_struct **vmas, int *locked)
1815 {
1816 	/*
1817 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1818 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1819 	 * vmas. However, this only comes up if locked is set, and there are
1820 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1821 	 * allow what we can.
1822 	 */
1823 	if (gup_flags & FOLL_LONGTERM) {
1824 		if (WARN_ON_ONCE(locked))
1825 			return -EINVAL;
1826 		/*
1827 		 * This will check the vmas (even if our vmas arg is NULL)
1828 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1829 		 */
1830 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1831 					     vmas, gup_flags | FOLL_TOUCH |
1832 					     FOLL_REMOTE);
1833 	}
1834 
1835 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1836 				       locked,
1837 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1838 }
1839 
1840 /*
1841  * get_user_pages_remote() - pin user pages in memory
1842  * @tsk:	the task_struct to use for page fault accounting, or
1843  *		NULL if faults are not to be recorded.
1844  * @mm:		mm_struct of target mm
1845  * @start:	starting user address
1846  * @nr_pages:	number of pages from start to pin
1847  * @gup_flags:	flags modifying lookup behaviour
1848  * @pages:	array that receives pointers to the pages pinned.
1849  *		Should be at least nr_pages long. Or NULL, if caller
1850  *		only intends to ensure the pages are faulted in.
1851  * @vmas:	array of pointers to vmas corresponding to each page.
1852  *		Or NULL if the caller does not require them.
1853  * @locked:	pointer to lock flag indicating whether lock is held and
1854  *		subsequently whether VM_FAULT_RETRY functionality can be
1855  *		utilised. Lock must initially be held.
1856  *
1857  * Returns either number of pages pinned (which may be less than the
1858  * number requested), or an error. Details about the return value:
1859  *
1860  * -- If nr_pages is 0, returns 0.
1861  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1862  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1863  *    pages pinned. Again, this may be less than nr_pages.
1864  *
1865  * The caller is responsible for releasing returned @pages, via put_page().
1866  *
1867  * @vmas are valid only as long as mmap_sem is held.
1868  *
1869  * Must be called with mmap_sem held for read or write.
1870  *
1871  * get_user_pages walks a process's page tables and takes a reference to
1872  * each struct page that each user address corresponds to at a given
1873  * instant. That is, it takes the page that would be accessed if a user
1874  * thread accesses the given user virtual address at that instant.
1875  *
1876  * This does not guarantee that the page exists in the user mappings when
1877  * get_user_pages returns, and there may even be a completely different
1878  * page there in some cases (eg. if mmapped pagecache has been invalidated
1879  * and subsequently re faulted). However it does guarantee that the page
1880  * won't be freed completely. And mostly callers simply care that the page
1881  * contains data that was valid *at some point in time*. Typically, an IO
1882  * or similar operation cannot guarantee anything stronger anyway because
1883  * locks can't be held over the syscall boundary.
1884  *
1885  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1886  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1887  * be called after the page is finished with, and before put_page is called.
1888  *
1889  * get_user_pages is typically used for fewer-copy IO operations, to get a
1890  * handle on the memory by some means other than accesses via the user virtual
1891  * addresses. The pages may be submitted for DMA to devices or accessed via
1892  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1893  * use the correct cache flushing APIs.
1894  *
1895  * See also get_user_pages_fast, for performance critical applications.
1896  *
1897  * get_user_pages should be phased out in favor of
1898  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1899  * should use get_user_pages because it cannot pass
1900  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1901  */
1902 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1903 		unsigned long start, unsigned long nr_pages,
1904 		unsigned int gup_flags, struct page **pages,
1905 		struct vm_area_struct **vmas, int *locked)
1906 {
1907 	/*
1908 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1909 	 * never directly by the caller, so enforce that with an assertion:
1910 	 */
1911 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1912 		return -EINVAL;
1913 
1914 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1915 				       pages, vmas, locked);
1916 }
1917 EXPORT_SYMBOL(get_user_pages_remote);
1918 
1919 #else /* CONFIG_MMU */
1920 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1921 			   unsigned long start, unsigned long nr_pages,
1922 			   unsigned int gup_flags, struct page **pages,
1923 			   struct vm_area_struct **vmas, int *locked)
1924 {
1925 	return 0;
1926 }
1927 
1928 static long __get_user_pages_remote(struct task_struct *tsk,
1929 				    struct mm_struct *mm,
1930 				    unsigned long start, unsigned long nr_pages,
1931 				    unsigned int gup_flags, struct page **pages,
1932 				    struct vm_area_struct **vmas, int *locked)
1933 {
1934 	return 0;
1935 }
1936 #endif /* !CONFIG_MMU */
1937 
1938 /*
1939  * This is the same as get_user_pages_remote(), just with a
1940  * less-flexible calling convention where we assume that the task
1941  * and mm being operated on are the current task's and don't allow
1942  * passing of a locked parameter.  We also obviously don't pass
1943  * FOLL_REMOTE in here.
1944  */
1945 long get_user_pages(unsigned long start, unsigned long nr_pages,
1946 		unsigned int gup_flags, struct page **pages,
1947 		struct vm_area_struct **vmas)
1948 {
1949 	/*
1950 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1951 	 * never directly by the caller, so enforce that with an assertion:
1952 	 */
1953 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1954 		return -EINVAL;
1955 
1956 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1957 				     pages, vmas, gup_flags | FOLL_TOUCH);
1958 }
1959 EXPORT_SYMBOL(get_user_pages);
1960 
1961 /*
1962  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1963  * paths better by using either get_user_pages_locked() or
1964  * get_user_pages_unlocked().
1965  *
1966  * get_user_pages_locked() is suitable to replace the form:
1967  *
1968  *      down_read(&mm->mmap_sem);
1969  *      do_something()
1970  *      get_user_pages(tsk, mm, ..., pages, NULL);
1971  *      up_read(&mm->mmap_sem);
1972  *
1973  *  to:
1974  *
1975  *      int locked = 1;
1976  *      down_read(&mm->mmap_sem);
1977  *      do_something()
1978  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1979  *      if (locked)
1980  *          up_read(&mm->mmap_sem);
1981  */
1982 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1983 			   unsigned int gup_flags, struct page **pages,
1984 			   int *locked)
1985 {
1986 	/*
1987 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989 	 * vmas.  As there are no users of this flag in this call we simply
1990 	 * disallow this option for now.
1991 	 */
1992 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993 		return -EINVAL;
1994 
1995 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1996 				       pages, NULL, locked,
1997 				       gup_flags | FOLL_TOUCH);
1998 }
1999 EXPORT_SYMBOL(get_user_pages_locked);
2000 
2001 /*
2002  * get_user_pages_unlocked() is suitable to replace the form:
2003  *
2004  *      down_read(&mm->mmap_sem);
2005  *      get_user_pages(tsk, mm, ..., pages, NULL);
2006  *      up_read(&mm->mmap_sem);
2007  *
2008  *  with:
2009  *
2010  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2011  *
2012  * It is functionally equivalent to get_user_pages_fast so
2013  * get_user_pages_fast should be used instead if specific gup_flags
2014  * (e.g. FOLL_FORCE) are not required.
2015  */
2016 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2017 			     struct page **pages, unsigned int gup_flags)
2018 {
2019 	struct mm_struct *mm = current->mm;
2020 	int locked = 1;
2021 	long ret;
2022 
2023 	/*
2024 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2025 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2026 	 * vmas.  As there are no users of this flag in this call we simply
2027 	 * disallow this option for now.
2028 	 */
2029 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2030 		return -EINVAL;
2031 
2032 	down_read(&mm->mmap_sem);
2033 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2034 				      &locked, gup_flags | FOLL_TOUCH);
2035 	if (locked)
2036 		up_read(&mm->mmap_sem);
2037 	return ret;
2038 }
2039 EXPORT_SYMBOL(get_user_pages_unlocked);
2040 
2041 /*
2042  * Fast GUP
2043  *
2044  * get_user_pages_fast attempts to pin user pages by walking the page
2045  * tables directly and avoids taking locks. Thus the walker needs to be
2046  * protected from page table pages being freed from under it, and should
2047  * block any THP splits.
2048  *
2049  * One way to achieve this is to have the walker disable interrupts, and
2050  * rely on IPIs from the TLB flushing code blocking before the page table
2051  * pages are freed. This is unsuitable for architectures that do not need
2052  * to broadcast an IPI when invalidating TLBs.
2053  *
2054  * Another way to achieve this is to batch up page table containing pages
2055  * belonging to more than one mm_user, then rcu_sched a callback to free those
2056  * pages. Disabling interrupts will allow the fast_gup walker to both block
2057  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2058  * (which is a relatively rare event). The code below adopts this strategy.
2059  *
2060  * Before activating this code, please be aware that the following assumptions
2061  * are currently made:
2062  *
2063  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2064  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2065  *
2066  *  *) ptes can be read atomically by the architecture.
2067  *
2068  *  *) access_ok is sufficient to validate userspace address ranges.
2069  *
2070  * The last two assumptions can be relaxed by the addition of helper functions.
2071  *
2072  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2073  */
2074 #ifdef CONFIG_HAVE_FAST_GUP
2075 
2076 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2077 {
2078 	if (flags & FOLL_PIN) {
2079 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2080 				    refs);
2081 
2082 		if (hpage_pincount_available(page))
2083 			hpage_pincount_sub(page, refs);
2084 		else
2085 			refs *= GUP_PIN_COUNTING_BIAS;
2086 	}
2087 
2088 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2089 	/*
2090 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2091 	 * ref needs a put_page().
2092 	 */
2093 	if (refs > 1)
2094 		page_ref_sub(page, refs - 1);
2095 	put_page(page);
2096 }
2097 
2098 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2099 
2100 /*
2101  * WARNING: only to be used in the get_user_pages_fast() implementation.
2102  *
2103  * With get_user_pages_fast(), we walk down the pagetables without taking any
2104  * locks.  For this we would like to load the pointers atomically, but sometimes
2105  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2106  * we do have is the guarantee that a PTE will only either go from not present
2107  * to present, or present to not present or both -- it will not switch to a
2108  * completely different present page without a TLB flush in between; something
2109  * that we are blocking by holding interrupts off.
2110  *
2111  * Setting ptes from not present to present goes:
2112  *
2113  *   ptep->pte_high = h;
2114  *   smp_wmb();
2115  *   ptep->pte_low = l;
2116  *
2117  * And present to not present goes:
2118  *
2119  *   ptep->pte_low = 0;
2120  *   smp_wmb();
2121  *   ptep->pte_high = 0;
2122  *
2123  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2124  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2125  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2126  * picked up a changed pte high. We might have gotten rubbish values from
2127  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2128  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2129  * operates on present ptes we're safe.
2130  */
2131 static inline pte_t gup_get_pte(pte_t *ptep)
2132 {
2133 	pte_t pte;
2134 
2135 	do {
2136 		pte.pte_low = ptep->pte_low;
2137 		smp_rmb();
2138 		pte.pte_high = ptep->pte_high;
2139 		smp_rmb();
2140 	} while (unlikely(pte.pte_low != ptep->pte_low));
2141 
2142 	return pte;
2143 }
2144 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2145 /*
2146  * We require that the PTE can be read atomically.
2147  */
2148 static inline pte_t gup_get_pte(pte_t *ptep)
2149 {
2150 	return READ_ONCE(*ptep);
2151 }
2152 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2153 
2154 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2155 					    unsigned int flags,
2156 					    struct page **pages)
2157 {
2158 	while ((*nr) - nr_start) {
2159 		struct page *page = pages[--(*nr)];
2160 
2161 		ClearPageReferenced(page);
2162 		if (flags & FOLL_PIN)
2163 			unpin_user_page(page);
2164 		else
2165 			put_page(page);
2166 	}
2167 }
2168 
2169 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2170 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2171 			 unsigned int flags, struct page **pages, int *nr)
2172 {
2173 	struct dev_pagemap *pgmap = NULL;
2174 	int nr_start = *nr, ret = 0;
2175 	pte_t *ptep, *ptem;
2176 
2177 	ptem = ptep = pte_offset_map(&pmd, addr);
2178 	do {
2179 		pte_t pte = gup_get_pte(ptep);
2180 		struct page *head, *page;
2181 
2182 		/*
2183 		 * Similar to the PMD case below, NUMA hinting must take slow
2184 		 * path using the pte_protnone check.
2185 		 */
2186 		if (pte_protnone(pte))
2187 			goto pte_unmap;
2188 
2189 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2190 			goto pte_unmap;
2191 
2192 		if (pte_devmap(pte)) {
2193 			if (unlikely(flags & FOLL_LONGTERM))
2194 				goto pte_unmap;
2195 
2196 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2197 			if (unlikely(!pgmap)) {
2198 				undo_dev_pagemap(nr, nr_start, flags, pages);
2199 				goto pte_unmap;
2200 			}
2201 		} else if (pte_special(pte))
2202 			goto pte_unmap;
2203 
2204 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2205 		page = pte_page(pte);
2206 
2207 		head = try_grab_compound_head(page, 1, flags);
2208 		if (!head)
2209 			goto pte_unmap;
2210 
2211 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2212 			put_compound_head(head, 1, flags);
2213 			goto pte_unmap;
2214 		}
2215 
2216 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2217 
2218 		/*
2219 		 * We need to make the page accessible if and only if we are
2220 		 * going to access its content (the FOLL_PIN case).  Please
2221 		 * see Documentation/core-api/pin_user_pages.rst for
2222 		 * details.
2223 		 */
2224 		if (flags & FOLL_PIN) {
2225 			ret = arch_make_page_accessible(page);
2226 			if (ret) {
2227 				unpin_user_page(page);
2228 				goto pte_unmap;
2229 			}
2230 		}
2231 		SetPageReferenced(page);
2232 		pages[*nr] = page;
2233 		(*nr)++;
2234 
2235 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2236 
2237 	ret = 1;
2238 
2239 pte_unmap:
2240 	if (pgmap)
2241 		put_dev_pagemap(pgmap);
2242 	pte_unmap(ptem);
2243 	return ret;
2244 }
2245 #else
2246 
2247 /*
2248  * If we can't determine whether or not a pte is special, then fail immediately
2249  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2250  * to be special.
2251  *
2252  * For a futex to be placed on a THP tail page, get_futex_key requires a
2253  * __get_user_pages_fast implementation that can pin pages. Thus it's still
2254  * useful to have gup_huge_pmd even if we can't operate on ptes.
2255  */
2256 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2257 			 unsigned int flags, struct page **pages, int *nr)
2258 {
2259 	return 0;
2260 }
2261 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2262 
2263 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2264 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2265 			     unsigned long end, unsigned int flags,
2266 			     struct page **pages, int *nr)
2267 {
2268 	int nr_start = *nr;
2269 	struct dev_pagemap *pgmap = NULL;
2270 
2271 	do {
2272 		struct page *page = pfn_to_page(pfn);
2273 
2274 		pgmap = get_dev_pagemap(pfn, pgmap);
2275 		if (unlikely(!pgmap)) {
2276 			undo_dev_pagemap(nr, nr_start, flags, pages);
2277 			return 0;
2278 		}
2279 		SetPageReferenced(page);
2280 		pages[*nr] = page;
2281 		if (unlikely(!try_grab_page(page, flags))) {
2282 			undo_dev_pagemap(nr, nr_start, flags, pages);
2283 			return 0;
2284 		}
2285 		(*nr)++;
2286 		pfn++;
2287 	} while (addr += PAGE_SIZE, addr != end);
2288 
2289 	if (pgmap)
2290 		put_dev_pagemap(pgmap);
2291 	return 1;
2292 }
2293 
2294 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2295 				 unsigned long end, unsigned int flags,
2296 				 struct page **pages, int *nr)
2297 {
2298 	unsigned long fault_pfn;
2299 	int nr_start = *nr;
2300 
2301 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2302 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2303 		return 0;
2304 
2305 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2306 		undo_dev_pagemap(nr, nr_start, flags, pages);
2307 		return 0;
2308 	}
2309 	return 1;
2310 }
2311 
2312 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2313 				 unsigned long end, unsigned int flags,
2314 				 struct page **pages, int *nr)
2315 {
2316 	unsigned long fault_pfn;
2317 	int nr_start = *nr;
2318 
2319 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2320 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2321 		return 0;
2322 
2323 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2324 		undo_dev_pagemap(nr, nr_start, flags, pages);
2325 		return 0;
2326 	}
2327 	return 1;
2328 }
2329 #else
2330 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2331 				 unsigned long end, unsigned int flags,
2332 				 struct page **pages, int *nr)
2333 {
2334 	BUILD_BUG();
2335 	return 0;
2336 }
2337 
2338 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2339 				 unsigned long end, unsigned int flags,
2340 				 struct page **pages, int *nr)
2341 {
2342 	BUILD_BUG();
2343 	return 0;
2344 }
2345 #endif
2346 
2347 static int record_subpages(struct page *page, unsigned long addr,
2348 			   unsigned long end, struct page **pages)
2349 {
2350 	int nr;
2351 
2352 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2353 		pages[nr++] = page++;
2354 
2355 	return nr;
2356 }
2357 
2358 #ifdef CONFIG_ARCH_HAS_HUGEPD
2359 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2360 				      unsigned long sz)
2361 {
2362 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2363 	return (__boundary - 1 < end - 1) ? __boundary : end;
2364 }
2365 
2366 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2367 		       unsigned long end, unsigned int flags,
2368 		       struct page **pages, int *nr)
2369 {
2370 	unsigned long pte_end;
2371 	struct page *head, *page;
2372 	pte_t pte;
2373 	int refs;
2374 
2375 	pte_end = (addr + sz) & ~(sz-1);
2376 	if (pte_end < end)
2377 		end = pte_end;
2378 
2379 	pte = READ_ONCE(*ptep);
2380 
2381 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2382 		return 0;
2383 
2384 	/* hugepages are never "special" */
2385 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2386 
2387 	head = pte_page(pte);
2388 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2389 	refs = record_subpages(page, addr, end, pages + *nr);
2390 
2391 	head = try_grab_compound_head(head, refs, flags);
2392 	if (!head)
2393 		return 0;
2394 
2395 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2396 		put_compound_head(head, refs, flags);
2397 		return 0;
2398 	}
2399 
2400 	*nr += refs;
2401 	SetPageReferenced(head);
2402 	return 1;
2403 }
2404 
2405 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2406 		unsigned int pdshift, unsigned long end, unsigned int flags,
2407 		struct page **pages, int *nr)
2408 {
2409 	pte_t *ptep;
2410 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2411 	unsigned long next;
2412 
2413 	ptep = hugepte_offset(hugepd, addr, pdshift);
2414 	do {
2415 		next = hugepte_addr_end(addr, end, sz);
2416 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2417 			return 0;
2418 	} while (ptep++, addr = next, addr != end);
2419 
2420 	return 1;
2421 }
2422 #else
2423 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2424 		unsigned int pdshift, unsigned long end, unsigned int flags,
2425 		struct page **pages, int *nr)
2426 {
2427 	return 0;
2428 }
2429 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2430 
2431 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2432 			unsigned long end, unsigned int flags,
2433 			struct page **pages, int *nr)
2434 {
2435 	struct page *head, *page;
2436 	int refs;
2437 
2438 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2439 		return 0;
2440 
2441 	if (pmd_devmap(orig)) {
2442 		if (unlikely(flags & FOLL_LONGTERM))
2443 			return 0;
2444 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2445 					     pages, nr);
2446 	}
2447 
2448 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2449 	refs = record_subpages(page, addr, end, pages + *nr);
2450 
2451 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2452 	if (!head)
2453 		return 0;
2454 
2455 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2456 		put_compound_head(head, refs, flags);
2457 		return 0;
2458 	}
2459 
2460 	*nr += refs;
2461 	SetPageReferenced(head);
2462 	return 1;
2463 }
2464 
2465 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2466 			unsigned long end, unsigned int flags,
2467 			struct page **pages, int *nr)
2468 {
2469 	struct page *head, *page;
2470 	int refs;
2471 
2472 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2473 		return 0;
2474 
2475 	if (pud_devmap(orig)) {
2476 		if (unlikely(flags & FOLL_LONGTERM))
2477 			return 0;
2478 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2479 					     pages, nr);
2480 	}
2481 
2482 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2483 	refs = record_subpages(page, addr, end, pages + *nr);
2484 
2485 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2486 	if (!head)
2487 		return 0;
2488 
2489 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2490 		put_compound_head(head, refs, flags);
2491 		return 0;
2492 	}
2493 
2494 	*nr += refs;
2495 	SetPageReferenced(head);
2496 	return 1;
2497 }
2498 
2499 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2500 			unsigned long end, unsigned int flags,
2501 			struct page **pages, int *nr)
2502 {
2503 	int refs;
2504 	struct page *head, *page;
2505 
2506 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2507 		return 0;
2508 
2509 	BUILD_BUG_ON(pgd_devmap(orig));
2510 
2511 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2512 	refs = record_subpages(page, addr, end, pages + *nr);
2513 
2514 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2515 	if (!head)
2516 		return 0;
2517 
2518 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2519 		put_compound_head(head, refs, flags);
2520 		return 0;
2521 	}
2522 
2523 	*nr += refs;
2524 	SetPageReferenced(head);
2525 	return 1;
2526 }
2527 
2528 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2529 		unsigned int flags, struct page **pages, int *nr)
2530 {
2531 	unsigned long next;
2532 	pmd_t *pmdp;
2533 
2534 	pmdp = pmd_offset(&pud, addr);
2535 	do {
2536 		pmd_t pmd = READ_ONCE(*pmdp);
2537 
2538 		next = pmd_addr_end(addr, end);
2539 		if (!pmd_present(pmd))
2540 			return 0;
2541 
2542 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2543 			     pmd_devmap(pmd))) {
2544 			/*
2545 			 * NUMA hinting faults need to be handled in the GUP
2546 			 * slowpath for accounting purposes and so that they
2547 			 * can be serialised against THP migration.
2548 			 */
2549 			if (pmd_protnone(pmd))
2550 				return 0;
2551 
2552 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2553 				pages, nr))
2554 				return 0;
2555 
2556 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2557 			/*
2558 			 * architecture have different format for hugetlbfs
2559 			 * pmd format and THP pmd format
2560 			 */
2561 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2562 					 PMD_SHIFT, next, flags, pages, nr))
2563 				return 0;
2564 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2565 			return 0;
2566 	} while (pmdp++, addr = next, addr != end);
2567 
2568 	return 1;
2569 }
2570 
2571 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2572 			 unsigned int flags, struct page **pages, int *nr)
2573 {
2574 	unsigned long next;
2575 	pud_t *pudp;
2576 
2577 	pudp = pud_offset(&p4d, addr);
2578 	do {
2579 		pud_t pud = READ_ONCE(*pudp);
2580 
2581 		next = pud_addr_end(addr, end);
2582 		if (unlikely(!pud_present(pud)))
2583 			return 0;
2584 		if (unlikely(pud_huge(pud))) {
2585 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2586 					  pages, nr))
2587 				return 0;
2588 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2589 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2590 					 PUD_SHIFT, next, flags, pages, nr))
2591 				return 0;
2592 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2593 			return 0;
2594 	} while (pudp++, addr = next, addr != end);
2595 
2596 	return 1;
2597 }
2598 
2599 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2600 			 unsigned int flags, struct page **pages, int *nr)
2601 {
2602 	unsigned long next;
2603 	p4d_t *p4dp;
2604 
2605 	p4dp = p4d_offset(&pgd, addr);
2606 	do {
2607 		p4d_t p4d = READ_ONCE(*p4dp);
2608 
2609 		next = p4d_addr_end(addr, end);
2610 		if (p4d_none(p4d))
2611 			return 0;
2612 		BUILD_BUG_ON(p4d_huge(p4d));
2613 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2614 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2615 					 P4D_SHIFT, next, flags, pages, nr))
2616 				return 0;
2617 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2618 			return 0;
2619 	} while (p4dp++, addr = next, addr != end);
2620 
2621 	return 1;
2622 }
2623 
2624 static void gup_pgd_range(unsigned long addr, unsigned long end,
2625 		unsigned int flags, struct page **pages, int *nr)
2626 {
2627 	unsigned long next;
2628 	pgd_t *pgdp;
2629 
2630 	pgdp = pgd_offset(current->mm, addr);
2631 	do {
2632 		pgd_t pgd = READ_ONCE(*pgdp);
2633 
2634 		next = pgd_addr_end(addr, end);
2635 		if (pgd_none(pgd))
2636 			return;
2637 		if (unlikely(pgd_huge(pgd))) {
2638 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2639 					  pages, nr))
2640 				return;
2641 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2642 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2643 					 PGDIR_SHIFT, next, flags, pages, nr))
2644 				return;
2645 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2646 			return;
2647 	} while (pgdp++, addr = next, addr != end);
2648 }
2649 #else
2650 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2651 		unsigned int flags, struct page **pages, int *nr)
2652 {
2653 }
2654 #endif /* CONFIG_HAVE_FAST_GUP */
2655 
2656 #ifndef gup_fast_permitted
2657 /*
2658  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2659  * we need to fall back to the slow version:
2660  */
2661 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2662 {
2663 	return true;
2664 }
2665 #endif
2666 
2667 /*
2668  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2669  * the regular GUP.
2670  * Note a difference with get_user_pages_fast: this always returns the
2671  * number of pages pinned, 0 if no pages were pinned.
2672  *
2673  * If the architecture does not support this function, simply return with no
2674  * pages pinned.
2675  */
2676 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2677 			  struct page **pages)
2678 {
2679 	unsigned long len, end;
2680 	unsigned long flags;
2681 	int nr_pinned = 0;
2682 	/*
2683 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2684 	 * because gup fast is always a "pin with a +1 page refcount" request.
2685 	 */
2686 	unsigned int gup_flags = FOLL_GET;
2687 
2688 	if (write)
2689 		gup_flags |= FOLL_WRITE;
2690 
2691 	start = untagged_addr(start) & PAGE_MASK;
2692 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2693 	end = start + len;
2694 
2695 	if (end <= start)
2696 		return 0;
2697 	if (unlikely(!access_ok((void __user *)start, len)))
2698 		return 0;
2699 
2700 	/*
2701 	 * Disable interrupts.  We use the nested form as we can already have
2702 	 * interrupts disabled by get_futex_key.
2703 	 *
2704 	 * With interrupts disabled, we block page table pages from being
2705 	 * freed from under us. See struct mmu_table_batch comments in
2706 	 * include/asm-generic/tlb.h for more details.
2707 	 *
2708 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2709 	 * block IPIs that come from THPs splitting.
2710 	 */
2711 
2712 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2713 	    gup_fast_permitted(start, end)) {
2714 		local_irq_save(flags);
2715 		gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2716 		local_irq_restore(flags);
2717 	}
2718 
2719 	return nr_pinned;
2720 }
2721 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2722 
2723 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2724 				   unsigned int gup_flags, struct page **pages)
2725 {
2726 	int ret;
2727 
2728 	/*
2729 	 * FIXME: FOLL_LONGTERM does not work with
2730 	 * get_user_pages_unlocked() (see comments in that function)
2731 	 */
2732 	if (gup_flags & FOLL_LONGTERM) {
2733 		down_read(&current->mm->mmap_sem);
2734 		ret = __gup_longterm_locked(current, current->mm,
2735 					    start, nr_pages,
2736 					    pages, NULL, gup_flags);
2737 		up_read(&current->mm->mmap_sem);
2738 	} else {
2739 		ret = get_user_pages_unlocked(start, nr_pages,
2740 					      pages, gup_flags);
2741 	}
2742 
2743 	return ret;
2744 }
2745 
2746 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2747 					unsigned int gup_flags,
2748 					struct page **pages)
2749 {
2750 	unsigned long addr, len, end;
2751 	int nr_pinned = 0, ret = 0;
2752 
2753 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2754 				       FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2755 		return -EINVAL;
2756 
2757 	start = untagged_addr(start) & PAGE_MASK;
2758 	addr = start;
2759 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2760 	end = start + len;
2761 
2762 	if (end <= start)
2763 		return 0;
2764 	if (unlikely(!access_ok((void __user *)start, len)))
2765 		return -EFAULT;
2766 
2767 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2768 	    gup_fast_permitted(start, end)) {
2769 		local_irq_disable();
2770 		gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
2771 		local_irq_enable();
2772 		ret = nr_pinned;
2773 	}
2774 
2775 	if (nr_pinned < nr_pages) {
2776 		/* Try to get the remaining pages with get_user_pages */
2777 		start += nr_pinned << PAGE_SHIFT;
2778 		pages += nr_pinned;
2779 
2780 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2781 					      gup_flags, pages);
2782 
2783 		/* Have to be a bit careful with return values */
2784 		if (nr_pinned > 0) {
2785 			if (ret < 0)
2786 				ret = nr_pinned;
2787 			else
2788 				ret += nr_pinned;
2789 		}
2790 	}
2791 
2792 	return ret;
2793 }
2794 
2795 /**
2796  * get_user_pages_fast() - pin user pages in memory
2797  * @start:      starting user address
2798  * @nr_pages:   number of pages from start to pin
2799  * @gup_flags:  flags modifying pin behaviour
2800  * @pages:      array that receives pointers to the pages pinned.
2801  *              Should be at least nr_pages long.
2802  *
2803  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2804  * If not successful, it will fall back to taking the lock and
2805  * calling get_user_pages().
2806  *
2807  * Returns number of pages pinned. This may be fewer than the number requested.
2808  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2809  * -errno.
2810  */
2811 int get_user_pages_fast(unsigned long start, int nr_pages,
2812 			unsigned int gup_flags, struct page **pages)
2813 {
2814 	/*
2815 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2816 	 * never directly by the caller, so enforce that:
2817 	 */
2818 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2819 		return -EINVAL;
2820 
2821 	/*
2822 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2823 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2824 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2825 	 * request.
2826 	 */
2827 	gup_flags |= FOLL_GET;
2828 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2829 }
2830 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2831 
2832 /**
2833  * pin_user_pages_fast() - pin user pages in memory without taking locks
2834  *
2835  * @start:      starting user address
2836  * @nr_pages:   number of pages from start to pin
2837  * @gup_flags:  flags modifying pin behaviour
2838  * @pages:      array that receives pointers to the pages pinned.
2839  *              Should be at least nr_pages long.
2840  *
2841  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2842  * get_user_pages_fast() for documentation on the function arguments, because
2843  * the arguments here are identical.
2844  *
2845  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2846  * see Documentation/vm/pin_user_pages.rst for further details.
2847  *
2848  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2849  * is NOT intended for Case 2 (RDMA: long-term pins).
2850  */
2851 int pin_user_pages_fast(unsigned long start, int nr_pages,
2852 			unsigned int gup_flags, struct page **pages)
2853 {
2854 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2855 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2856 		return -EINVAL;
2857 
2858 	gup_flags |= FOLL_PIN;
2859 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2860 }
2861 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2862 
2863 /**
2864  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2865  *
2866  * @tsk:	the task_struct to use for page fault accounting, or
2867  *		NULL if faults are not to be recorded.
2868  * @mm:		mm_struct of target mm
2869  * @start:	starting user address
2870  * @nr_pages:	number of pages from start to pin
2871  * @gup_flags:	flags modifying lookup behaviour
2872  * @pages:	array that receives pointers to the pages pinned.
2873  *		Should be at least nr_pages long. Or NULL, if caller
2874  *		only intends to ensure the pages are faulted in.
2875  * @vmas:	array of pointers to vmas corresponding to each page.
2876  *		Or NULL if the caller does not require them.
2877  * @locked:	pointer to lock flag indicating whether lock is held and
2878  *		subsequently whether VM_FAULT_RETRY functionality can be
2879  *		utilised. Lock must initially be held.
2880  *
2881  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2882  * get_user_pages_remote() for documentation on the function arguments, because
2883  * the arguments here are identical.
2884  *
2885  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2886  * see Documentation/vm/pin_user_pages.rst for details.
2887  *
2888  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2889  * is NOT intended for Case 2 (RDMA: long-term pins).
2890  */
2891 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2892 			   unsigned long start, unsigned long nr_pages,
2893 			   unsigned int gup_flags, struct page **pages,
2894 			   struct vm_area_struct **vmas, int *locked)
2895 {
2896 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2897 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2898 		return -EINVAL;
2899 
2900 	gup_flags |= FOLL_PIN;
2901 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2902 				       pages, vmas, locked);
2903 }
2904 EXPORT_SYMBOL(pin_user_pages_remote);
2905 
2906 /**
2907  * pin_user_pages() - pin user pages in memory for use by other devices
2908  *
2909  * @start:	starting user address
2910  * @nr_pages:	number of pages from start to pin
2911  * @gup_flags:	flags modifying lookup behaviour
2912  * @pages:	array that receives pointers to the pages pinned.
2913  *		Should be at least nr_pages long. Or NULL, if caller
2914  *		only intends to ensure the pages are faulted in.
2915  * @vmas:	array of pointers to vmas corresponding to each page.
2916  *		Or NULL if the caller does not require them.
2917  *
2918  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2919  * FOLL_PIN is set.
2920  *
2921  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2922  * see Documentation/vm/pin_user_pages.rst for details.
2923  *
2924  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2925  * is NOT intended for Case 2 (RDMA: long-term pins).
2926  */
2927 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928 		    unsigned int gup_flags, struct page **pages,
2929 		    struct vm_area_struct **vmas)
2930 {
2931 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933 		return -EINVAL;
2934 
2935 	gup_flags |= FOLL_PIN;
2936 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
2937 				     pages, vmas, gup_flags);
2938 }
2939 EXPORT_SYMBOL(pin_user_pages);
2940