1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (flags & FOLL_GET) 127 return try_get_folio(page, refs); 128 else if (flags & FOLL_PIN) { 129 struct folio *folio; 130 131 /* 132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 133 * right zone, so fail and let the caller fall back to the slow 134 * path. 135 */ 136 if (unlikely((flags & FOLL_LONGTERM) && 137 !is_longterm_pinnable_page(page))) 138 return NULL; 139 140 /* 141 * CAUTION: Don't use compound_head() on the page before this 142 * point, the result won't be stable. 143 */ 144 folio = try_get_folio(page, refs); 145 if (!folio) 146 return NULL; 147 148 /* 149 * When pinning a large folio, use an exact count to track it. 150 * 151 * However, be sure to *also* increment the normal folio 152 * refcount field at least once, so that the folio really 153 * is pinned. That's why the refcount from the earlier 154 * try_get_folio() is left intact. 155 */ 156 if (folio_test_large(folio)) 157 atomic_add(refs, folio_pincount_ptr(folio)); 158 else 159 folio_ref_add(folio, 160 refs * (GUP_PIN_COUNTING_BIAS - 1)); 161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 162 163 return folio; 164 } 165 166 WARN_ON_ONCE(1); 167 return NULL; 168 } 169 170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 171 { 172 if (flags & FOLL_PIN) { 173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 174 if (folio_test_large(folio)) 175 atomic_sub(refs, folio_pincount_ptr(folio)); 176 else 177 refs *= GUP_PIN_COUNTING_BIAS; 178 } 179 180 if (!put_devmap_managed_page_refs(&folio->page, refs)) 181 folio_put_refs(folio, refs); 182 } 183 184 /** 185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 186 * @page: pointer to page to be grabbed 187 * @flags: gup flags: these are the FOLL_* flag values. 188 * 189 * This might not do anything at all, depending on the flags argument. 190 * 191 * "grab" names in this file mean, "look at flags to decide whether to use 192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 193 * 194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 195 * time. Cases: please see the try_grab_folio() documentation, with 196 * "refs=1". 197 * 198 * Return: true for success, or if no action was required (if neither FOLL_PIN 199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 200 * FOLL_PIN was set, but the page could not be grabbed. 201 */ 202 bool __must_check try_grab_page(struct page *page, unsigned int flags) 203 { 204 struct folio *folio = page_folio(page); 205 206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 208 return false; 209 210 if (flags & FOLL_GET) 211 folio_ref_inc(folio); 212 else if (flags & FOLL_PIN) { 213 /* 214 * Similar to try_grab_folio(): be sure to *also* 215 * increment the normal page refcount field at least once, 216 * so that the page really is pinned. 217 */ 218 if (folio_test_large(folio)) { 219 folio_ref_add(folio, 1); 220 atomic_add(1, folio_pincount_ptr(folio)); 221 } else { 222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 223 } 224 225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 226 } 227 228 return true; 229 } 230 231 /** 232 * unpin_user_page() - release a dma-pinned page 233 * @page: pointer to page to be released 234 * 235 * Pages that were pinned via pin_user_pages*() must be released via either 236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 237 * that such pages can be separately tracked and uniquely handled. In 238 * particular, interactions with RDMA and filesystems need special handling. 239 */ 240 void unpin_user_page(struct page *page) 241 { 242 sanity_check_pinned_pages(&page, 1); 243 gup_put_folio(page_folio(page), 1, FOLL_PIN); 244 } 245 EXPORT_SYMBOL(unpin_user_page); 246 247 static inline struct folio *gup_folio_range_next(struct page *start, 248 unsigned long npages, unsigned long i, unsigned int *ntails) 249 { 250 struct page *next = nth_page(start, i); 251 struct folio *folio = page_folio(next); 252 unsigned int nr = 1; 253 254 if (folio_test_large(folio)) 255 nr = min_t(unsigned int, npages - i, 256 folio_nr_pages(folio) - folio_page_idx(folio, next)); 257 258 *ntails = nr; 259 return folio; 260 } 261 262 static inline struct folio *gup_folio_next(struct page **list, 263 unsigned long npages, unsigned long i, unsigned int *ntails) 264 { 265 struct folio *folio = page_folio(list[i]); 266 unsigned int nr; 267 268 for (nr = i + 1; nr < npages; nr++) { 269 if (page_folio(list[nr]) != folio) 270 break; 271 } 272 273 *ntails = nr - i; 274 return folio; 275 } 276 277 /** 278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 279 * @pages: array of pages to be maybe marked dirty, and definitely released. 280 * @npages: number of pages in the @pages array. 281 * @make_dirty: whether to mark the pages dirty 282 * 283 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 284 * variants called on that page. 285 * 286 * For each page in the @pages array, make that page (or its head page, if a 287 * compound page) dirty, if @make_dirty is true, and if the page was previously 288 * listed as clean. In any case, releases all pages using unpin_user_page(), 289 * possibly via unpin_user_pages(), for the non-dirty case. 290 * 291 * Please see the unpin_user_page() documentation for details. 292 * 293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 294 * required, then the caller should a) verify that this is really correct, 295 * because _lock() is usually required, and b) hand code it: 296 * set_page_dirty_lock(), unpin_user_page(). 297 * 298 */ 299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 300 bool make_dirty) 301 { 302 unsigned long i; 303 struct folio *folio; 304 unsigned int nr; 305 306 if (!make_dirty) { 307 unpin_user_pages(pages, npages); 308 return; 309 } 310 311 sanity_check_pinned_pages(pages, npages); 312 for (i = 0; i < npages; i += nr) { 313 folio = gup_folio_next(pages, npages, i, &nr); 314 /* 315 * Checking PageDirty at this point may race with 316 * clear_page_dirty_for_io(), but that's OK. Two key 317 * cases: 318 * 319 * 1) This code sees the page as already dirty, so it 320 * skips the call to set_page_dirty(). That could happen 321 * because clear_page_dirty_for_io() called 322 * page_mkclean(), followed by set_page_dirty(). 323 * However, now the page is going to get written back, 324 * which meets the original intention of setting it 325 * dirty, so all is well: clear_page_dirty_for_io() goes 326 * on to call TestClearPageDirty(), and write the page 327 * back. 328 * 329 * 2) This code sees the page as clean, so it calls 330 * set_page_dirty(). The page stays dirty, despite being 331 * written back, so it gets written back again in the 332 * next writeback cycle. This is harmless. 333 */ 334 if (!folio_test_dirty(folio)) { 335 folio_lock(folio); 336 folio_mark_dirty(folio); 337 folio_unlock(folio); 338 } 339 gup_put_folio(folio, nr, FOLL_PIN); 340 } 341 } 342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 343 344 /** 345 * unpin_user_page_range_dirty_lock() - release and optionally dirty 346 * gup-pinned page range 347 * 348 * @page: the starting page of a range maybe marked dirty, and definitely released. 349 * @npages: number of consecutive pages to release. 350 * @make_dirty: whether to mark the pages dirty 351 * 352 * "gup-pinned page range" refers to a range of pages that has had one of the 353 * pin_user_pages() variants called on that page. 354 * 355 * For the page ranges defined by [page .. page+npages], make that range (or 356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 357 * page range was previously listed as clean. 358 * 359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 360 * required, then the caller should a) verify that this is really correct, 361 * because _lock() is usually required, and b) hand code it: 362 * set_page_dirty_lock(), unpin_user_page(). 363 * 364 */ 365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 366 bool make_dirty) 367 { 368 unsigned long i; 369 struct folio *folio; 370 unsigned int nr; 371 372 for (i = 0; i < npages; i += nr) { 373 folio = gup_folio_range_next(page, npages, i, &nr); 374 if (make_dirty && !folio_test_dirty(folio)) { 375 folio_lock(folio); 376 folio_mark_dirty(folio); 377 folio_unlock(folio); 378 } 379 gup_put_folio(folio, nr, FOLL_PIN); 380 } 381 } 382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 383 384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 385 { 386 unsigned long i; 387 struct folio *folio; 388 unsigned int nr; 389 390 /* 391 * Don't perform any sanity checks because we might have raced with 392 * fork() and some anonymous pages might now actually be shared -- 393 * which is why we're unpinning after all. 394 */ 395 for (i = 0; i < npages; i += nr) { 396 folio = gup_folio_next(pages, npages, i, &nr); 397 gup_put_folio(folio, nr, FOLL_PIN); 398 } 399 } 400 401 /** 402 * unpin_user_pages() - release an array of gup-pinned pages. 403 * @pages: array of pages to be marked dirty and released. 404 * @npages: number of pages in the @pages array. 405 * 406 * For each page in the @pages array, release the page using unpin_user_page(). 407 * 408 * Please see the unpin_user_page() documentation for details. 409 */ 410 void unpin_user_pages(struct page **pages, unsigned long npages) 411 { 412 unsigned long i; 413 struct folio *folio; 414 unsigned int nr; 415 416 /* 417 * If this WARN_ON() fires, then the system *might* be leaking pages (by 418 * leaving them pinned), but probably not. More likely, gup/pup returned 419 * a hard -ERRNO error to the caller, who erroneously passed it here. 420 */ 421 if (WARN_ON(IS_ERR_VALUE(npages))) 422 return; 423 424 sanity_check_pinned_pages(pages, npages); 425 for (i = 0; i < npages; i += nr) { 426 folio = gup_folio_next(pages, npages, i, &nr); 427 gup_put_folio(folio, nr, FOLL_PIN); 428 } 429 } 430 EXPORT_SYMBOL(unpin_user_pages); 431 432 /* 433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 435 * cache bouncing on large SMP machines for concurrent pinned gups. 436 */ 437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 438 { 439 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 440 set_bit(MMF_HAS_PINNED, mm_flags); 441 } 442 443 #ifdef CONFIG_MMU 444 static struct page *no_page_table(struct vm_area_struct *vma, 445 unsigned int flags) 446 { 447 /* 448 * When core dumping an enormous anonymous area that nobody 449 * has touched so far, we don't want to allocate unnecessary pages or 450 * page tables. Return error instead of NULL to skip handle_mm_fault, 451 * then get_dump_page() will return NULL to leave a hole in the dump. 452 * But we can only make this optimization where a hole would surely 453 * be zero-filled if handle_mm_fault() actually did handle it. 454 */ 455 if ((flags & FOLL_DUMP) && 456 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 457 return ERR_PTR(-EFAULT); 458 return NULL; 459 } 460 461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 462 pte_t *pte, unsigned int flags) 463 { 464 if (flags & FOLL_TOUCH) { 465 pte_t entry = *pte; 466 467 if (flags & FOLL_WRITE) 468 entry = pte_mkdirty(entry); 469 entry = pte_mkyoung(entry); 470 471 if (!pte_same(*pte, entry)) { 472 set_pte_at(vma->vm_mm, address, pte, entry); 473 update_mmu_cache(vma, address, pte); 474 } 475 } 476 477 /* Proper page table entry exists, but no corresponding struct page */ 478 return -EEXIST; 479 } 480 481 /* 482 * FOLL_FORCE can write to even unwritable pte's, but only 483 * after we've gone through a COW cycle and they are dirty. 484 */ 485 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 486 { 487 return pte_write(pte) || 488 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 489 } 490 491 static struct page *follow_page_pte(struct vm_area_struct *vma, 492 unsigned long address, pmd_t *pmd, unsigned int flags, 493 struct dev_pagemap **pgmap) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 struct page *page; 497 spinlock_t *ptl; 498 pte_t *ptep, pte; 499 int ret; 500 501 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 502 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 503 (FOLL_PIN | FOLL_GET))) 504 return ERR_PTR(-EINVAL); 505 retry: 506 if (unlikely(pmd_bad(*pmd))) 507 return no_page_table(vma, flags); 508 509 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 510 pte = *ptep; 511 if (!pte_present(pte)) { 512 swp_entry_t entry; 513 /* 514 * KSM's break_ksm() relies upon recognizing a ksm page 515 * even while it is being migrated, so for that case we 516 * need migration_entry_wait(). 517 */ 518 if (likely(!(flags & FOLL_MIGRATION))) 519 goto no_page; 520 if (pte_none(pte)) 521 goto no_page; 522 entry = pte_to_swp_entry(pte); 523 if (!is_migration_entry(entry)) 524 goto no_page; 525 pte_unmap_unlock(ptep, ptl); 526 migration_entry_wait(mm, pmd, address); 527 goto retry; 528 } 529 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 530 goto no_page; 531 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 532 pte_unmap_unlock(ptep, ptl); 533 return NULL; 534 } 535 536 page = vm_normal_page(vma, address, pte); 537 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 538 /* 539 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 540 * case since they are only valid while holding the pgmap 541 * reference. 542 */ 543 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 544 if (*pgmap) 545 page = pte_page(pte); 546 else 547 goto no_page; 548 } else if (unlikely(!page)) { 549 if (flags & FOLL_DUMP) { 550 /* Avoid special (like zero) pages in core dumps */ 551 page = ERR_PTR(-EFAULT); 552 goto out; 553 } 554 555 if (is_zero_pfn(pte_pfn(pte))) { 556 page = pte_page(pte); 557 } else { 558 ret = follow_pfn_pte(vma, address, ptep, flags); 559 page = ERR_PTR(ret); 560 goto out; 561 } 562 } 563 564 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 565 page = ERR_PTR(-EMLINK); 566 goto out; 567 } 568 569 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 570 !PageAnonExclusive(page), page); 571 572 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 573 if (unlikely(!try_grab_page(page, flags))) { 574 page = ERR_PTR(-ENOMEM); 575 goto out; 576 } 577 /* 578 * We need to make the page accessible if and only if we are going 579 * to access its content (the FOLL_PIN case). Please see 580 * Documentation/core-api/pin_user_pages.rst for details. 581 */ 582 if (flags & FOLL_PIN) { 583 ret = arch_make_page_accessible(page); 584 if (ret) { 585 unpin_user_page(page); 586 page = ERR_PTR(ret); 587 goto out; 588 } 589 } 590 if (flags & FOLL_TOUCH) { 591 if ((flags & FOLL_WRITE) && 592 !pte_dirty(pte) && !PageDirty(page)) 593 set_page_dirty(page); 594 /* 595 * pte_mkyoung() would be more correct here, but atomic care 596 * is needed to avoid losing the dirty bit: it is easier to use 597 * mark_page_accessed(). 598 */ 599 mark_page_accessed(page); 600 } 601 out: 602 pte_unmap_unlock(ptep, ptl); 603 return page; 604 no_page: 605 pte_unmap_unlock(ptep, ptl); 606 if (!pte_none(pte)) 607 return NULL; 608 return no_page_table(vma, flags); 609 } 610 611 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 612 unsigned long address, pud_t *pudp, 613 unsigned int flags, 614 struct follow_page_context *ctx) 615 { 616 pmd_t *pmd, pmdval; 617 spinlock_t *ptl; 618 struct page *page; 619 struct mm_struct *mm = vma->vm_mm; 620 621 pmd = pmd_offset(pudp, address); 622 /* 623 * The READ_ONCE() will stabilize the pmdval in a register or 624 * on the stack so that it will stop changing under the code. 625 */ 626 pmdval = READ_ONCE(*pmd); 627 if (pmd_none(pmdval)) 628 return no_page_table(vma, flags); 629 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 630 page = follow_huge_pmd(mm, address, pmd, flags); 631 if (page) 632 return page; 633 return no_page_table(vma, flags); 634 } 635 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 636 page = follow_huge_pd(vma, address, 637 __hugepd(pmd_val(pmdval)), flags, 638 PMD_SHIFT); 639 if (page) 640 return page; 641 return no_page_table(vma, flags); 642 } 643 retry: 644 if (!pmd_present(pmdval)) { 645 /* 646 * Should never reach here, if thp migration is not supported; 647 * Otherwise, it must be a thp migration entry. 648 */ 649 VM_BUG_ON(!thp_migration_supported() || 650 !is_pmd_migration_entry(pmdval)); 651 652 if (likely(!(flags & FOLL_MIGRATION))) 653 return no_page_table(vma, flags); 654 655 pmd_migration_entry_wait(mm, pmd); 656 pmdval = READ_ONCE(*pmd); 657 /* 658 * MADV_DONTNEED may convert the pmd to null because 659 * mmap_lock is held in read mode 660 */ 661 if (pmd_none(pmdval)) 662 return no_page_table(vma, flags); 663 goto retry; 664 } 665 if (pmd_devmap(pmdval)) { 666 ptl = pmd_lock(mm, pmd); 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 668 spin_unlock(ptl); 669 if (page) 670 return page; 671 } 672 if (likely(!pmd_trans_huge(pmdval))) 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 674 675 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 676 return no_page_table(vma, flags); 677 678 retry_locked: 679 ptl = pmd_lock(mm, pmd); 680 if (unlikely(pmd_none(*pmd))) { 681 spin_unlock(ptl); 682 return no_page_table(vma, flags); 683 } 684 if (unlikely(!pmd_present(*pmd))) { 685 spin_unlock(ptl); 686 if (likely(!(flags & FOLL_MIGRATION))) 687 return no_page_table(vma, flags); 688 pmd_migration_entry_wait(mm, pmd); 689 goto retry_locked; 690 } 691 if (unlikely(!pmd_trans_huge(*pmd))) { 692 spin_unlock(ptl); 693 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 694 } 695 if (flags & FOLL_SPLIT_PMD) { 696 int ret; 697 page = pmd_page(*pmd); 698 if (is_huge_zero_page(page)) { 699 spin_unlock(ptl); 700 ret = 0; 701 split_huge_pmd(vma, pmd, address); 702 if (pmd_trans_unstable(pmd)) 703 ret = -EBUSY; 704 } else { 705 spin_unlock(ptl); 706 split_huge_pmd(vma, pmd, address); 707 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 708 } 709 710 return ret ? ERR_PTR(ret) : 711 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 712 } 713 page = follow_trans_huge_pmd(vma, address, pmd, flags); 714 spin_unlock(ptl); 715 ctx->page_mask = HPAGE_PMD_NR - 1; 716 return page; 717 } 718 719 static struct page *follow_pud_mask(struct vm_area_struct *vma, 720 unsigned long address, p4d_t *p4dp, 721 unsigned int flags, 722 struct follow_page_context *ctx) 723 { 724 pud_t *pud; 725 spinlock_t *ptl; 726 struct page *page; 727 struct mm_struct *mm = vma->vm_mm; 728 729 pud = pud_offset(p4dp, address); 730 if (pud_none(*pud)) 731 return no_page_table(vma, flags); 732 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 733 page = follow_huge_pud(mm, address, pud, flags); 734 if (page) 735 return page; 736 return no_page_table(vma, flags); 737 } 738 if (is_hugepd(__hugepd(pud_val(*pud)))) { 739 page = follow_huge_pd(vma, address, 740 __hugepd(pud_val(*pud)), flags, 741 PUD_SHIFT); 742 if (page) 743 return page; 744 return no_page_table(vma, flags); 745 } 746 if (pud_devmap(*pud)) { 747 ptl = pud_lock(mm, pud); 748 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 749 spin_unlock(ptl); 750 if (page) 751 return page; 752 } 753 if (unlikely(pud_bad(*pud))) 754 return no_page_table(vma, flags); 755 756 return follow_pmd_mask(vma, address, pud, flags, ctx); 757 } 758 759 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 760 unsigned long address, pgd_t *pgdp, 761 unsigned int flags, 762 struct follow_page_context *ctx) 763 { 764 p4d_t *p4d; 765 struct page *page; 766 767 p4d = p4d_offset(pgdp, address); 768 if (p4d_none(*p4d)) 769 return no_page_table(vma, flags); 770 BUILD_BUG_ON(p4d_huge(*p4d)); 771 if (unlikely(p4d_bad(*p4d))) 772 return no_page_table(vma, flags); 773 774 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 775 page = follow_huge_pd(vma, address, 776 __hugepd(p4d_val(*p4d)), flags, 777 P4D_SHIFT); 778 if (page) 779 return page; 780 return no_page_table(vma, flags); 781 } 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct page *page; 815 struct mm_struct *mm = vma->vm_mm; 816 817 ctx->page_mask = 0; 818 819 /* make this handle hugepd */ 820 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 821 if (!IS_ERR(page)) { 822 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 823 return page; 824 } 825 826 pgd = pgd_offset(mm, address); 827 828 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 829 return no_page_table(vma, flags); 830 831 if (pgd_huge(*pgd)) { 832 page = follow_huge_pgd(mm, address, pgd, flags); 833 if (page) 834 return page; 835 return no_page_table(vma, flags); 836 } 837 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 838 page = follow_huge_pd(vma, address, 839 __hugepd(pgd_val(*pgd)), flags, 840 PGDIR_SHIFT); 841 if (page) 842 return page; 843 return no_page_table(vma, flags); 844 } 845 846 return follow_p4d_mask(vma, address, pgd, flags, ctx); 847 } 848 849 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 850 unsigned int foll_flags) 851 { 852 struct follow_page_context ctx = { NULL }; 853 struct page *page; 854 855 if (vma_is_secretmem(vma)) 856 return NULL; 857 858 if (foll_flags & FOLL_PIN) 859 return NULL; 860 861 page = follow_page_mask(vma, address, foll_flags, &ctx); 862 if (ctx.pgmap) 863 put_dev_pagemap(ctx.pgmap); 864 return page; 865 } 866 867 static int get_gate_page(struct mm_struct *mm, unsigned long address, 868 unsigned int gup_flags, struct vm_area_struct **vma, 869 struct page **page) 870 { 871 pgd_t *pgd; 872 p4d_t *p4d; 873 pud_t *pud; 874 pmd_t *pmd; 875 pte_t *pte; 876 int ret = -EFAULT; 877 878 /* user gate pages are read-only */ 879 if (gup_flags & FOLL_WRITE) 880 return -EFAULT; 881 if (address > TASK_SIZE) 882 pgd = pgd_offset_k(address); 883 else 884 pgd = pgd_offset_gate(mm, address); 885 if (pgd_none(*pgd)) 886 return -EFAULT; 887 p4d = p4d_offset(pgd, address); 888 if (p4d_none(*p4d)) 889 return -EFAULT; 890 pud = pud_offset(p4d, address); 891 if (pud_none(*pud)) 892 return -EFAULT; 893 pmd = pmd_offset(pud, address); 894 if (!pmd_present(*pmd)) 895 return -EFAULT; 896 VM_BUG_ON(pmd_trans_huge(*pmd)); 897 pte = pte_offset_map(pmd, address); 898 if (pte_none(*pte)) 899 goto unmap; 900 *vma = get_gate_vma(mm); 901 if (!page) 902 goto out; 903 *page = vm_normal_page(*vma, address, *pte); 904 if (!*page) { 905 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 906 goto unmap; 907 *page = pte_page(*pte); 908 } 909 if (unlikely(!try_grab_page(*page, gup_flags))) { 910 ret = -ENOMEM; 911 goto unmap; 912 } 913 out: 914 ret = 0; 915 unmap: 916 pte_unmap(pte); 917 return ret; 918 } 919 920 /* 921 * mmap_lock must be held on entry. If @locked != NULL and *@flags 922 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 923 * is, *@locked will be set to 0 and -EBUSY returned. 924 */ 925 static int faultin_page(struct vm_area_struct *vma, 926 unsigned long address, unsigned int *flags, bool unshare, 927 int *locked) 928 { 929 unsigned int fault_flags = 0; 930 vm_fault_t ret; 931 932 if (*flags & FOLL_NOFAULT) 933 return -EFAULT; 934 if (*flags & FOLL_WRITE) 935 fault_flags |= FAULT_FLAG_WRITE; 936 if (*flags & FOLL_REMOTE) 937 fault_flags |= FAULT_FLAG_REMOTE; 938 if (locked) 939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 940 if (*flags & FOLL_NOWAIT) 941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 942 if (*flags & FOLL_TRIED) { 943 /* 944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 945 * can co-exist 946 */ 947 fault_flags |= FAULT_FLAG_TRIED; 948 } 949 if (unshare) { 950 fault_flags |= FAULT_FLAG_UNSHARE; 951 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 952 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 953 } 954 955 ret = handle_mm_fault(vma, address, fault_flags, NULL); 956 957 if (ret & VM_FAULT_COMPLETED) { 958 /* 959 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 960 * mmap lock in the page fault handler. Sanity check this. 961 */ 962 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 963 if (locked) 964 *locked = 0; 965 /* 966 * We should do the same as VM_FAULT_RETRY, but let's not 967 * return -EBUSY since that's not reflecting the reality of 968 * what has happened - we've just fully completed a page 969 * fault, with the mmap lock released. Use -EAGAIN to show 970 * that we want to take the mmap lock _again_. 971 */ 972 return -EAGAIN; 973 } 974 975 if (ret & VM_FAULT_ERROR) { 976 int err = vm_fault_to_errno(ret, *flags); 977 978 if (err) 979 return err; 980 BUG(); 981 } 982 983 if (ret & VM_FAULT_RETRY) { 984 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 985 *locked = 0; 986 return -EBUSY; 987 } 988 989 /* 990 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 991 * necessary, even if maybe_mkwrite decided not to set pte_write. We 992 * can thus safely do subsequent page lookups as if they were reads. 993 * But only do so when looping for pte_write is futile: in some cases 994 * userspace may also be wanting to write to the gotten user page, 995 * which a read fault here might prevent (a readonly page might get 996 * reCOWed by userspace write). 997 */ 998 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 999 *flags |= FOLL_COW; 1000 return 0; 1001 } 1002 1003 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1004 { 1005 vm_flags_t vm_flags = vma->vm_flags; 1006 int write = (gup_flags & FOLL_WRITE); 1007 int foreign = (gup_flags & FOLL_REMOTE); 1008 1009 if (vm_flags & (VM_IO | VM_PFNMAP)) 1010 return -EFAULT; 1011 1012 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 1013 return -EFAULT; 1014 1015 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1016 return -EOPNOTSUPP; 1017 1018 if (vma_is_secretmem(vma)) 1019 return -EFAULT; 1020 1021 if (write) { 1022 if (!(vm_flags & VM_WRITE)) { 1023 if (!(gup_flags & FOLL_FORCE)) 1024 return -EFAULT; 1025 /* 1026 * We used to let the write,force case do COW in a 1027 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1028 * set a breakpoint in a read-only mapping of an 1029 * executable, without corrupting the file (yet only 1030 * when that file had been opened for writing!). 1031 * Anon pages in shared mappings are surprising: now 1032 * just reject it. 1033 */ 1034 if (!is_cow_mapping(vm_flags)) 1035 return -EFAULT; 1036 } 1037 } else if (!(vm_flags & VM_READ)) { 1038 if (!(gup_flags & FOLL_FORCE)) 1039 return -EFAULT; 1040 /* 1041 * Is there actually any vma we can reach here which does not 1042 * have VM_MAYREAD set? 1043 */ 1044 if (!(vm_flags & VM_MAYREAD)) 1045 return -EFAULT; 1046 } 1047 /* 1048 * gups are always data accesses, not instruction 1049 * fetches, so execute=false here 1050 */ 1051 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1052 return -EFAULT; 1053 return 0; 1054 } 1055 1056 /** 1057 * __get_user_pages() - pin user pages in memory 1058 * @mm: mm_struct of target mm 1059 * @start: starting user address 1060 * @nr_pages: number of pages from start to pin 1061 * @gup_flags: flags modifying pin behaviour 1062 * @pages: array that receives pointers to the pages pinned. 1063 * Should be at least nr_pages long. Or NULL, if caller 1064 * only intends to ensure the pages are faulted in. 1065 * @vmas: array of pointers to vmas corresponding to each page. 1066 * Or NULL if the caller does not require them. 1067 * @locked: whether we're still with the mmap_lock held 1068 * 1069 * Returns either number of pages pinned (which may be less than the 1070 * number requested), or an error. Details about the return value: 1071 * 1072 * -- If nr_pages is 0, returns 0. 1073 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1074 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1075 * pages pinned. Again, this may be less than nr_pages. 1076 * -- 0 return value is possible when the fault would need to be retried. 1077 * 1078 * The caller is responsible for releasing returned @pages, via put_page(). 1079 * 1080 * @vmas are valid only as long as mmap_lock is held. 1081 * 1082 * Must be called with mmap_lock held. It may be released. See below. 1083 * 1084 * __get_user_pages walks a process's page tables and takes a reference to 1085 * each struct page that each user address corresponds to at a given 1086 * instant. That is, it takes the page that would be accessed if a user 1087 * thread accesses the given user virtual address at that instant. 1088 * 1089 * This does not guarantee that the page exists in the user mappings when 1090 * __get_user_pages returns, and there may even be a completely different 1091 * page there in some cases (eg. if mmapped pagecache has been invalidated 1092 * and subsequently re faulted). However it does guarantee that the page 1093 * won't be freed completely. And mostly callers simply care that the page 1094 * contains data that was valid *at some point in time*. Typically, an IO 1095 * or similar operation cannot guarantee anything stronger anyway because 1096 * locks can't be held over the syscall boundary. 1097 * 1098 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1099 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1100 * appropriate) must be called after the page is finished with, and 1101 * before put_page is called. 1102 * 1103 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1104 * released by an up_read(). That can happen if @gup_flags does not 1105 * have FOLL_NOWAIT. 1106 * 1107 * A caller using such a combination of @locked and @gup_flags 1108 * must therefore hold the mmap_lock for reading only, and recognize 1109 * when it's been released. Otherwise, it must be held for either 1110 * reading or writing and will not be released. 1111 * 1112 * In most cases, get_user_pages or get_user_pages_fast should be used 1113 * instead of __get_user_pages. __get_user_pages should be used only if 1114 * you need some special @gup_flags. 1115 */ 1116 static long __get_user_pages(struct mm_struct *mm, 1117 unsigned long start, unsigned long nr_pages, 1118 unsigned int gup_flags, struct page **pages, 1119 struct vm_area_struct **vmas, int *locked) 1120 { 1121 long ret = 0, i = 0; 1122 struct vm_area_struct *vma = NULL; 1123 struct follow_page_context ctx = { NULL }; 1124 1125 if (!nr_pages) 1126 return 0; 1127 1128 start = untagged_addr(start); 1129 1130 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1131 1132 /* 1133 * If FOLL_FORCE is set then do not force a full fault as the hinting 1134 * fault information is unrelated to the reference behaviour of a task 1135 * using the address space 1136 */ 1137 if (!(gup_flags & FOLL_FORCE)) 1138 gup_flags |= FOLL_NUMA; 1139 1140 do { 1141 struct page *page; 1142 unsigned int foll_flags = gup_flags; 1143 unsigned int page_increm; 1144 1145 /* first iteration or cross vma bound */ 1146 if (!vma || start >= vma->vm_end) { 1147 vma = find_extend_vma(mm, start); 1148 if (!vma && in_gate_area(mm, start)) { 1149 ret = get_gate_page(mm, start & PAGE_MASK, 1150 gup_flags, &vma, 1151 pages ? &pages[i] : NULL); 1152 if (ret) 1153 goto out; 1154 ctx.page_mask = 0; 1155 goto next_page; 1156 } 1157 1158 if (!vma) { 1159 ret = -EFAULT; 1160 goto out; 1161 } 1162 ret = check_vma_flags(vma, gup_flags); 1163 if (ret) 1164 goto out; 1165 1166 if (is_vm_hugetlb_page(vma)) { 1167 i = follow_hugetlb_page(mm, vma, pages, vmas, 1168 &start, &nr_pages, i, 1169 gup_flags, locked); 1170 if (locked && *locked == 0) { 1171 /* 1172 * We've got a VM_FAULT_RETRY 1173 * and we've lost mmap_lock. 1174 * We must stop here. 1175 */ 1176 BUG_ON(gup_flags & FOLL_NOWAIT); 1177 goto out; 1178 } 1179 continue; 1180 } 1181 } 1182 retry: 1183 /* 1184 * If we have a pending SIGKILL, don't keep faulting pages and 1185 * potentially allocating memory. 1186 */ 1187 if (fatal_signal_pending(current)) { 1188 ret = -EINTR; 1189 goto out; 1190 } 1191 cond_resched(); 1192 1193 page = follow_page_mask(vma, start, foll_flags, &ctx); 1194 if (!page || PTR_ERR(page) == -EMLINK) { 1195 ret = faultin_page(vma, start, &foll_flags, 1196 PTR_ERR(page) == -EMLINK, locked); 1197 switch (ret) { 1198 case 0: 1199 goto retry; 1200 case -EBUSY: 1201 case -EAGAIN: 1202 ret = 0; 1203 fallthrough; 1204 case -EFAULT: 1205 case -ENOMEM: 1206 case -EHWPOISON: 1207 goto out; 1208 } 1209 BUG(); 1210 } else if (PTR_ERR(page) == -EEXIST) { 1211 /* 1212 * Proper page table entry exists, but no corresponding 1213 * struct page. If the caller expects **pages to be 1214 * filled in, bail out now, because that can't be done 1215 * for this page. 1216 */ 1217 if (pages) { 1218 ret = PTR_ERR(page); 1219 goto out; 1220 } 1221 1222 goto next_page; 1223 } else if (IS_ERR(page)) { 1224 ret = PTR_ERR(page); 1225 goto out; 1226 } 1227 if (pages) { 1228 pages[i] = page; 1229 flush_anon_page(vma, page, start); 1230 flush_dcache_page(page); 1231 ctx.page_mask = 0; 1232 } 1233 next_page: 1234 if (vmas) { 1235 vmas[i] = vma; 1236 ctx.page_mask = 0; 1237 } 1238 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1239 if (page_increm > nr_pages) 1240 page_increm = nr_pages; 1241 i += page_increm; 1242 start += page_increm * PAGE_SIZE; 1243 nr_pages -= page_increm; 1244 } while (nr_pages); 1245 out: 1246 if (ctx.pgmap) 1247 put_dev_pagemap(ctx.pgmap); 1248 return i ? i : ret; 1249 } 1250 1251 static bool vma_permits_fault(struct vm_area_struct *vma, 1252 unsigned int fault_flags) 1253 { 1254 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1255 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1256 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1257 1258 if (!(vm_flags & vma->vm_flags)) 1259 return false; 1260 1261 /* 1262 * The architecture might have a hardware protection 1263 * mechanism other than read/write that can deny access. 1264 * 1265 * gup always represents data access, not instruction 1266 * fetches, so execute=false here: 1267 */ 1268 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1269 return false; 1270 1271 return true; 1272 } 1273 1274 /** 1275 * fixup_user_fault() - manually resolve a user page fault 1276 * @mm: mm_struct of target mm 1277 * @address: user address 1278 * @fault_flags:flags to pass down to handle_mm_fault() 1279 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1280 * does not allow retry. If NULL, the caller must guarantee 1281 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1282 * 1283 * This is meant to be called in the specific scenario where for locking reasons 1284 * we try to access user memory in atomic context (within a pagefault_disable() 1285 * section), this returns -EFAULT, and we want to resolve the user fault before 1286 * trying again. 1287 * 1288 * Typically this is meant to be used by the futex code. 1289 * 1290 * The main difference with get_user_pages() is that this function will 1291 * unconditionally call handle_mm_fault() which will in turn perform all the 1292 * necessary SW fixup of the dirty and young bits in the PTE, while 1293 * get_user_pages() only guarantees to update these in the struct page. 1294 * 1295 * This is important for some architectures where those bits also gate the 1296 * access permission to the page because they are maintained in software. On 1297 * such architectures, gup() will not be enough to make a subsequent access 1298 * succeed. 1299 * 1300 * This function will not return with an unlocked mmap_lock. So it has not the 1301 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1302 */ 1303 int fixup_user_fault(struct mm_struct *mm, 1304 unsigned long address, unsigned int fault_flags, 1305 bool *unlocked) 1306 { 1307 struct vm_area_struct *vma; 1308 vm_fault_t ret; 1309 1310 address = untagged_addr(address); 1311 1312 if (unlocked) 1313 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1314 1315 retry: 1316 vma = find_extend_vma(mm, address); 1317 if (!vma || address < vma->vm_start) 1318 return -EFAULT; 1319 1320 if (!vma_permits_fault(vma, fault_flags)) 1321 return -EFAULT; 1322 1323 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1324 fatal_signal_pending(current)) 1325 return -EINTR; 1326 1327 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1328 1329 if (ret & VM_FAULT_COMPLETED) { 1330 /* 1331 * NOTE: it's a pity that we need to retake the lock here 1332 * to pair with the unlock() in the callers. Ideally we 1333 * could tell the callers so they do not need to unlock. 1334 */ 1335 mmap_read_lock(mm); 1336 *unlocked = true; 1337 return 0; 1338 } 1339 1340 if (ret & VM_FAULT_ERROR) { 1341 int err = vm_fault_to_errno(ret, 0); 1342 1343 if (err) 1344 return err; 1345 BUG(); 1346 } 1347 1348 if (ret & VM_FAULT_RETRY) { 1349 mmap_read_lock(mm); 1350 *unlocked = true; 1351 fault_flags |= FAULT_FLAG_TRIED; 1352 goto retry; 1353 } 1354 1355 return 0; 1356 } 1357 EXPORT_SYMBOL_GPL(fixup_user_fault); 1358 1359 /* 1360 * Please note that this function, unlike __get_user_pages will not 1361 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1362 */ 1363 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1364 unsigned long start, 1365 unsigned long nr_pages, 1366 struct page **pages, 1367 struct vm_area_struct **vmas, 1368 int *locked, 1369 unsigned int flags) 1370 { 1371 long ret, pages_done; 1372 bool lock_dropped; 1373 1374 if (locked) { 1375 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1376 BUG_ON(vmas); 1377 /* check caller initialized locked */ 1378 BUG_ON(*locked != 1); 1379 } 1380 1381 if (flags & FOLL_PIN) 1382 mm_set_has_pinned_flag(&mm->flags); 1383 1384 /* 1385 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1386 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1387 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1388 * for FOLL_GET, not for the newer FOLL_PIN. 1389 * 1390 * FOLL_PIN always expects pages to be non-null, but no need to assert 1391 * that here, as any failures will be obvious enough. 1392 */ 1393 if (pages && !(flags & FOLL_PIN)) 1394 flags |= FOLL_GET; 1395 1396 pages_done = 0; 1397 lock_dropped = false; 1398 for (;;) { 1399 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1400 vmas, locked); 1401 if (!locked) 1402 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1403 return ret; 1404 1405 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1406 if (!*locked) { 1407 BUG_ON(ret < 0); 1408 BUG_ON(ret >= nr_pages); 1409 } 1410 1411 if (ret > 0) { 1412 nr_pages -= ret; 1413 pages_done += ret; 1414 if (!nr_pages) 1415 break; 1416 } 1417 if (*locked) { 1418 /* 1419 * VM_FAULT_RETRY didn't trigger or it was a 1420 * FOLL_NOWAIT. 1421 */ 1422 if (!pages_done) 1423 pages_done = ret; 1424 break; 1425 } 1426 /* 1427 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1428 * For the prefault case (!pages) we only update counts. 1429 */ 1430 if (likely(pages)) 1431 pages += ret; 1432 start += ret << PAGE_SHIFT; 1433 lock_dropped = true; 1434 1435 retry: 1436 /* 1437 * Repeat on the address that fired VM_FAULT_RETRY 1438 * with both FAULT_FLAG_ALLOW_RETRY and 1439 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1440 * by fatal signals, so we need to check it before we 1441 * start trying again otherwise it can loop forever. 1442 */ 1443 1444 if (fatal_signal_pending(current)) { 1445 if (!pages_done) 1446 pages_done = -EINTR; 1447 break; 1448 } 1449 1450 ret = mmap_read_lock_killable(mm); 1451 if (ret) { 1452 BUG_ON(ret > 0); 1453 if (!pages_done) 1454 pages_done = ret; 1455 break; 1456 } 1457 1458 *locked = 1; 1459 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1460 pages, NULL, locked); 1461 if (!*locked) { 1462 /* Continue to retry until we succeeded */ 1463 BUG_ON(ret != 0); 1464 goto retry; 1465 } 1466 if (ret != 1) { 1467 BUG_ON(ret > 1); 1468 if (!pages_done) 1469 pages_done = ret; 1470 break; 1471 } 1472 nr_pages--; 1473 pages_done++; 1474 if (!nr_pages) 1475 break; 1476 if (likely(pages)) 1477 pages++; 1478 start += PAGE_SIZE; 1479 } 1480 if (lock_dropped && *locked) { 1481 /* 1482 * We must let the caller know we temporarily dropped the lock 1483 * and so the critical section protected by it was lost. 1484 */ 1485 mmap_read_unlock(mm); 1486 *locked = 0; 1487 } 1488 return pages_done; 1489 } 1490 1491 /** 1492 * populate_vma_page_range() - populate a range of pages in the vma. 1493 * @vma: target vma 1494 * @start: start address 1495 * @end: end address 1496 * @locked: whether the mmap_lock is still held 1497 * 1498 * This takes care of mlocking the pages too if VM_LOCKED is set. 1499 * 1500 * Return either number of pages pinned in the vma, or a negative error 1501 * code on error. 1502 * 1503 * vma->vm_mm->mmap_lock must be held. 1504 * 1505 * If @locked is NULL, it may be held for read or write and will 1506 * be unperturbed. 1507 * 1508 * If @locked is non-NULL, it must held for read only and may be 1509 * released. If it's released, *@locked will be set to 0. 1510 */ 1511 long populate_vma_page_range(struct vm_area_struct *vma, 1512 unsigned long start, unsigned long end, int *locked) 1513 { 1514 struct mm_struct *mm = vma->vm_mm; 1515 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1516 int gup_flags; 1517 long ret; 1518 1519 VM_BUG_ON(!PAGE_ALIGNED(start)); 1520 VM_BUG_ON(!PAGE_ALIGNED(end)); 1521 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1522 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1523 mmap_assert_locked(mm); 1524 1525 /* 1526 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1527 * faultin_page() to break COW, so it has no work to do here. 1528 */ 1529 if (vma->vm_flags & VM_LOCKONFAULT) 1530 return nr_pages; 1531 1532 gup_flags = FOLL_TOUCH; 1533 /* 1534 * We want to touch writable mappings with a write fault in order 1535 * to break COW, except for shared mappings because these don't COW 1536 * and we would not want to dirty them for nothing. 1537 */ 1538 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1539 gup_flags |= FOLL_WRITE; 1540 1541 /* 1542 * We want mlock to succeed for regions that have any permissions 1543 * other than PROT_NONE. 1544 */ 1545 if (vma_is_accessible(vma)) 1546 gup_flags |= FOLL_FORCE; 1547 1548 /* 1549 * We made sure addr is within a VMA, so the following will 1550 * not result in a stack expansion that recurses back here. 1551 */ 1552 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1553 NULL, NULL, locked); 1554 lru_add_drain(); 1555 return ret; 1556 } 1557 1558 /* 1559 * faultin_vma_page_range() - populate (prefault) page tables inside the 1560 * given VMA range readable/writable 1561 * 1562 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1563 * 1564 * @vma: target vma 1565 * @start: start address 1566 * @end: end address 1567 * @write: whether to prefault readable or writable 1568 * @locked: whether the mmap_lock is still held 1569 * 1570 * Returns either number of processed pages in the vma, or a negative error 1571 * code on error (see __get_user_pages()). 1572 * 1573 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1574 * covered by the VMA. 1575 * 1576 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1577 * 1578 * If @locked is non-NULL, it must held for read only and may be released. If 1579 * it's released, *@locked will be set to 0. 1580 */ 1581 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1582 unsigned long end, bool write, int *locked) 1583 { 1584 struct mm_struct *mm = vma->vm_mm; 1585 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1586 int gup_flags; 1587 long ret; 1588 1589 VM_BUG_ON(!PAGE_ALIGNED(start)); 1590 VM_BUG_ON(!PAGE_ALIGNED(end)); 1591 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1592 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1593 mmap_assert_locked(mm); 1594 1595 /* 1596 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1597 * the page dirty with FOLL_WRITE -- which doesn't make a 1598 * difference with !FOLL_FORCE, because the page is writable 1599 * in the page table. 1600 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1601 * a poisoned page. 1602 * !FOLL_FORCE: Require proper access permissions. 1603 */ 1604 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1605 if (write) 1606 gup_flags |= FOLL_WRITE; 1607 1608 /* 1609 * We want to report -EINVAL instead of -EFAULT for any permission 1610 * problems or incompatible mappings. 1611 */ 1612 if (check_vma_flags(vma, gup_flags)) 1613 return -EINVAL; 1614 1615 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1616 NULL, NULL, locked); 1617 lru_add_drain(); 1618 return ret; 1619 } 1620 1621 /* 1622 * __mm_populate - populate and/or mlock pages within a range of address space. 1623 * 1624 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1625 * flags. VMAs must be already marked with the desired vm_flags, and 1626 * mmap_lock must not be held. 1627 */ 1628 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1629 { 1630 struct mm_struct *mm = current->mm; 1631 unsigned long end, nstart, nend; 1632 struct vm_area_struct *vma = NULL; 1633 int locked = 0; 1634 long ret = 0; 1635 1636 end = start + len; 1637 1638 for (nstart = start; nstart < end; nstart = nend) { 1639 /* 1640 * We want to fault in pages for [nstart; end) address range. 1641 * Find first corresponding VMA. 1642 */ 1643 if (!locked) { 1644 locked = 1; 1645 mmap_read_lock(mm); 1646 vma = find_vma(mm, nstart); 1647 } else if (nstart >= vma->vm_end) 1648 vma = vma->vm_next; 1649 if (!vma || vma->vm_start >= end) 1650 break; 1651 /* 1652 * Set [nstart; nend) to intersection of desired address 1653 * range with the first VMA. Also, skip undesirable VMA types. 1654 */ 1655 nend = min(end, vma->vm_end); 1656 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1657 continue; 1658 if (nstart < vma->vm_start) 1659 nstart = vma->vm_start; 1660 /* 1661 * Now fault in a range of pages. populate_vma_page_range() 1662 * double checks the vma flags, so that it won't mlock pages 1663 * if the vma was already munlocked. 1664 */ 1665 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1666 if (ret < 0) { 1667 if (ignore_errors) { 1668 ret = 0; 1669 continue; /* continue at next VMA */ 1670 } 1671 break; 1672 } 1673 nend = nstart + ret * PAGE_SIZE; 1674 ret = 0; 1675 } 1676 if (locked) 1677 mmap_read_unlock(mm); 1678 return ret; /* 0 or negative error code */ 1679 } 1680 #else /* CONFIG_MMU */ 1681 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1682 unsigned long nr_pages, struct page **pages, 1683 struct vm_area_struct **vmas, int *locked, 1684 unsigned int foll_flags) 1685 { 1686 struct vm_area_struct *vma; 1687 unsigned long vm_flags; 1688 long i; 1689 1690 /* calculate required read or write permissions. 1691 * If FOLL_FORCE is set, we only require the "MAY" flags. 1692 */ 1693 vm_flags = (foll_flags & FOLL_WRITE) ? 1694 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1695 vm_flags &= (foll_flags & FOLL_FORCE) ? 1696 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1697 1698 for (i = 0; i < nr_pages; i++) { 1699 vma = find_vma(mm, start); 1700 if (!vma) 1701 goto finish_or_fault; 1702 1703 /* protect what we can, including chardevs */ 1704 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1705 !(vm_flags & vma->vm_flags)) 1706 goto finish_or_fault; 1707 1708 if (pages) { 1709 pages[i] = virt_to_page((void *)start); 1710 if (pages[i]) 1711 get_page(pages[i]); 1712 } 1713 if (vmas) 1714 vmas[i] = vma; 1715 start = (start + PAGE_SIZE) & PAGE_MASK; 1716 } 1717 1718 return i; 1719 1720 finish_or_fault: 1721 return i ? : -EFAULT; 1722 } 1723 #endif /* !CONFIG_MMU */ 1724 1725 /** 1726 * fault_in_writeable - fault in userspace address range for writing 1727 * @uaddr: start of address range 1728 * @size: size of address range 1729 * 1730 * Returns the number of bytes not faulted in (like copy_to_user() and 1731 * copy_from_user()). 1732 */ 1733 size_t fault_in_writeable(char __user *uaddr, size_t size) 1734 { 1735 char __user *start = uaddr, *end; 1736 1737 if (unlikely(size == 0)) 1738 return 0; 1739 if (!user_write_access_begin(uaddr, size)) 1740 return size; 1741 if (!PAGE_ALIGNED(uaddr)) { 1742 unsafe_put_user(0, uaddr, out); 1743 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1744 } 1745 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1746 if (unlikely(end < start)) 1747 end = NULL; 1748 while (uaddr != end) { 1749 unsafe_put_user(0, uaddr, out); 1750 uaddr += PAGE_SIZE; 1751 } 1752 1753 out: 1754 user_write_access_end(); 1755 if (size > uaddr - start) 1756 return size - (uaddr - start); 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(fault_in_writeable); 1760 1761 /** 1762 * fault_in_subpage_writeable - fault in an address range for writing 1763 * @uaddr: start of address range 1764 * @size: size of address range 1765 * 1766 * Fault in a user address range for writing while checking for permissions at 1767 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1768 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1769 * 1770 * Returns the number of bytes not faulted in (like copy_to_user() and 1771 * copy_from_user()). 1772 */ 1773 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1774 { 1775 size_t faulted_in; 1776 1777 /* 1778 * Attempt faulting in at page granularity first for page table 1779 * permission checking. The arch-specific probe_subpage_writeable() 1780 * functions may not check for this. 1781 */ 1782 faulted_in = size - fault_in_writeable(uaddr, size); 1783 if (faulted_in) 1784 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1785 1786 return size - faulted_in; 1787 } 1788 EXPORT_SYMBOL(fault_in_subpage_writeable); 1789 1790 /* 1791 * fault_in_safe_writeable - fault in an address range for writing 1792 * @uaddr: start of address range 1793 * @size: length of address range 1794 * 1795 * Faults in an address range for writing. This is primarily useful when we 1796 * already know that some or all of the pages in the address range aren't in 1797 * memory. 1798 * 1799 * Unlike fault_in_writeable(), this function is non-destructive. 1800 * 1801 * Note that we don't pin or otherwise hold the pages referenced that we fault 1802 * in. There's no guarantee that they'll stay in memory for any duration of 1803 * time. 1804 * 1805 * Returns the number of bytes not faulted in, like copy_to_user() and 1806 * copy_from_user(). 1807 */ 1808 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1809 { 1810 unsigned long start = (unsigned long)uaddr, end; 1811 struct mm_struct *mm = current->mm; 1812 bool unlocked = false; 1813 1814 if (unlikely(size == 0)) 1815 return 0; 1816 end = PAGE_ALIGN(start + size); 1817 if (end < start) 1818 end = 0; 1819 1820 mmap_read_lock(mm); 1821 do { 1822 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1823 break; 1824 start = (start + PAGE_SIZE) & PAGE_MASK; 1825 } while (start != end); 1826 mmap_read_unlock(mm); 1827 1828 if (size > (unsigned long)uaddr - start) 1829 return size - ((unsigned long)uaddr - start); 1830 return 0; 1831 } 1832 EXPORT_SYMBOL(fault_in_safe_writeable); 1833 1834 /** 1835 * fault_in_readable - fault in userspace address range for reading 1836 * @uaddr: start of user address range 1837 * @size: size of user address range 1838 * 1839 * Returns the number of bytes not faulted in (like copy_to_user() and 1840 * copy_from_user()). 1841 */ 1842 size_t fault_in_readable(const char __user *uaddr, size_t size) 1843 { 1844 const char __user *start = uaddr, *end; 1845 volatile char c; 1846 1847 if (unlikely(size == 0)) 1848 return 0; 1849 if (!user_read_access_begin(uaddr, size)) 1850 return size; 1851 if (!PAGE_ALIGNED(uaddr)) { 1852 unsafe_get_user(c, uaddr, out); 1853 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1854 } 1855 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1856 if (unlikely(end < start)) 1857 end = NULL; 1858 while (uaddr != end) { 1859 unsafe_get_user(c, uaddr, out); 1860 uaddr += PAGE_SIZE; 1861 } 1862 1863 out: 1864 user_read_access_end(); 1865 (void)c; 1866 if (size > uaddr - start) 1867 return size - (uaddr - start); 1868 return 0; 1869 } 1870 EXPORT_SYMBOL(fault_in_readable); 1871 1872 /** 1873 * get_dump_page() - pin user page in memory while writing it to core dump 1874 * @addr: user address 1875 * 1876 * Returns struct page pointer of user page pinned for dump, 1877 * to be freed afterwards by put_page(). 1878 * 1879 * Returns NULL on any kind of failure - a hole must then be inserted into 1880 * the corefile, to preserve alignment with its headers; and also returns 1881 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1882 * allowing a hole to be left in the corefile to save disk space. 1883 * 1884 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1885 */ 1886 #ifdef CONFIG_ELF_CORE 1887 struct page *get_dump_page(unsigned long addr) 1888 { 1889 struct mm_struct *mm = current->mm; 1890 struct page *page; 1891 int locked = 1; 1892 int ret; 1893 1894 if (mmap_read_lock_killable(mm)) 1895 return NULL; 1896 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1897 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1898 if (locked) 1899 mmap_read_unlock(mm); 1900 return (ret == 1) ? page : NULL; 1901 } 1902 #endif /* CONFIG_ELF_CORE */ 1903 1904 #ifdef CONFIG_MIGRATION 1905 /* 1906 * Check whether all pages are pinnable, if so return number of pages. If some 1907 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1908 * pages were migrated, or if some pages were not successfully isolated. 1909 * Return negative error if migration fails. 1910 */ 1911 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1912 struct page **pages, 1913 unsigned int gup_flags) 1914 { 1915 unsigned long isolation_error_count = 0, i; 1916 struct folio *prev_folio = NULL; 1917 LIST_HEAD(movable_page_list); 1918 bool drain_allow = true, coherent_pages = false; 1919 int ret = 0; 1920 1921 for (i = 0; i < nr_pages; i++) { 1922 struct folio *folio = page_folio(pages[i]); 1923 1924 if (folio == prev_folio) 1925 continue; 1926 prev_folio = folio; 1927 1928 /* 1929 * Device coherent pages are managed by a driver and should not 1930 * be pinned indefinitely as it prevents the driver moving the 1931 * page. So when trying to pin with FOLL_LONGTERM instead try 1932 * to migrate the page out of device memory. 1933 */ 1934 if (folio_is_device_coherent(folio)) { 1935 /* 1936 * We always want a new GUP lookup with device coherent 1937 * pages. 1938 */ 1939 pages[i] = 0; 1940 coherent_pages = true; 1941 1942 /* 1943 * Migration will fail if the page is pinned, so convert 1944 * the pin on the source page to a normal reference. 1945 */ 1946 if (gup_flags & FOLL_PIN) { 1947 get_page(&folio->page); 1948 unpin_user_page(&folio->page); 1949 } 1950 1951 ret = migrate_device_coherent_page(&folio->page); 1952 if (ret) 1953 goto unpin_pages; 1954 1955 continue; 1956 } 1957 1958 if (folio_is_longterm_pinnable(folio)) 1959 continue; 1960 /* 1961 * Try to move out any movable page before pinning the range. 1962 */ 1963 if (folio_test_hugetlb(folio)) { 1964 if (isolate_hugetlb(&folio->page, 1965 &movable_page_list)) 1966 isolation_error_count++; 1967 continue; 1968 } 1969 1970 if (!folio_test_lru(folio) && drain_allow) { 1971 lru_add_drain_all(); 1972 drain_allow = false; 1973 } 1974 1975 if (folio_isolate_lru(folio)) { 1976 isolation_error_count++; 1977 continue; 1978 } 1979 list_add_tail(&folio->lru, &movable_page_list); 1980 node_stat_mod_folio(folio, 1981 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1982 folio_nr_pages(folio)); 1983 } 1984 1985 if (!list_empty(&movable_page_list) || isolation_error_count || 1986 coherent_pages) 1987 goto unpin_pages; 1988 1989 /* 1990 * If list is empty, and no isolation errors, means that all pages are 1991 * in the correct zone. 1992 */ 1993 return nr_pages; 1994 1995 unpin_pages: 1996 /* 1997 * pages[i] might be NULL if any device coherent pages were found. 1998 */ 1999 for (i = 0; i < nr_pages; i++) { 2000 if (!pages[i]) 2001 continue; 2002 2003 if (gup_flags & FOLL_PIN) 2004 unpin_user_page(pages[i]); 2005 else 2006 put_page(pages[i]); 2007 } 2008 2009 if (!list_empty(&movable_page_list)) { 2010 struct migration_target_control mtc = { 2011 .nid = NUMA_NO_NODE, 2012 .gfp_mask = GFP_USER | __GFP_NOWARN, 2013 }; 2014 2015 ret = migrate_pages(&movable_page_list, alloc_migration_target, 2016 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2017 MR_LONGTERM_PIN, NULL); 2018 if (ret > 0) /* number of pages not migrated */ 2019 ret = -ENOMEM; 2020 } 2021 2022 if (ret && !list_empty(&movable_page_list)) 2023 putback_movable_pages(&movable_page_list); 2024 return ret; 2025 } 2026 #else 2027 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2028 struct page **pages, 2029 unsigned int gup_flags) 2030 { 2031 return nr_pages; 2032 } 2033 #endif /* CONFIG_MIGRATION */ 2034 2035 /* 2036 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2037 * allows us to process the FOLL_LONGTERM flag. 2038 */ 2039 static long __gup_longterm_locked(struct mm_struct *mm, 2040 unsigned long start, 2041 unsigned long nr_pages, 2042 struct page **pages, 2043 struct vm_area_struct **vmas, 2044 unsigned int gup_flags) 2045 { 2046 unsigned int flags; 2047 long rc; 2048 2049 if (!(gup_flags & FOLL_LONGTERM)) 2050 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2051 NULL, gup_flags); 2052 flags = memalloc_pin_save(); 2053 do { 2054 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2055 NULL, gup_flags); 2056 if (rc <= 0) 2057 break; 2058 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 2059 } while (!rc); 2060 memalloc_pin_restore(flags); 2061 2062 return rc; 2063 } 2064 2065 static bool is_valid_gup_flags(unsigned int gup_flags) 2066 { 2067 /* 2068 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2069 * never directly by the caller, so enforce that with an assertion: 2070 */ 2071 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2072 return false; 2073 /* 2074 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2075 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2076 * FOLL_PIN. 2077 */ 2078 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2079 return false; 2080 2081 return true; 2082 } 2083 2084 #ifdef CONFIG_MMU 2085 static long __get_user_pages_remote(struct mm_struct *mm, 2086 unsigned long start, unsigned long nr_pages, 2087 unsigned int gup_flags, struct page **pages, 2088 struct vm_area_struct **vmas, int *locked) 2089 { 2090 /* 2091 * Parts of FOLL_LONGTERM behavior are incompatible with 2092 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2093 * vmas. However, this only comes up if locked is set, and there are 2094 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2095 * allow what we can. 2096 */ 2097 if (gup_flags & FOLL_LONGTERM) { 2098 if (WARN_ON_ONCE(locked)) 2099 return -EINVAL; 2100 /* 2101 * This will check the vmas (even if our vmas arg is NULL) 2102 * and return -ENOTSUPP if DAX isn't allowed in this case: 2103 */ 2104 return __gup_longterm_locked(mm, start, nr_pages, pages, 2105 vmas, gup_flags | FOLL_TOUCH | 2106 FOLL_REMOTE); 2107 } 2108 2109 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2110 locked, 2111 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2112 } 2113 2114 /** 2115 * get_user_pages_remote() - pin user pages in memory 2116 * @mm: mm_struct of target mm 2117 * @start: starting user address 2118 * @nr_pages: number of pages from start to pin 2119 * @gup_flags: flags modifying lookup behaviour 2120 * @pages: array that receives pointers to the pages pinned. 2121 * Should be at least nr_pages long. Or NULL, if caller 2122 * only intends to ensure the pages are faulted in. 2123 * @vmas: array of pointers to vmas corresponding to each page. 2124 * Or NULL if the caller does not require them. 2125 * @locked: pointer to lock flag indicating whether lock is held and 2126 * subsequently whether VM_FAULT_RETRY functionality can be 2127 * utilised. Lock must initially be held. 2128 * 2129 * Returns either number of pages pinned (which may be less than the 2130 * number requested), or an error. Details about the return value: 2131 * 2132 * -- If nr_pages is 0, returns 0. 2133 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2134 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2135 * pages pinned. Again, this may be less than nr_pages. 2136 * 2137 * The caller is responsible for releasing returned @pages, via put_page(). 2138 * 2139 * @vmas are valid only as long as mmap_lock is held. 2140 * 2141 * Must be called with mmap_lock held for read or write. 2142 * 2143 * get_user_pages_remote walks a process's page tables and takes a reference 2144 * to each struct page that each user address corresponds to at a given 2145 * instant. That is, it takes the page that would be accessed if a user 2146 * thread accesses the given user virtual address at that instant. 2147 * 2148 * This does not guarantee that the page exists in the user mappings when 2149 * get_user_pages_remote returns, and there may even be a completely different 2150 * page there in some cases (eg. if mmapped pagecache has been invalidated 2151 * and subsequently re faulted). However it does guarantee that the page 2152 * won't be freed completely. And mostly callers simply care that the page 2153 * contains data that was valid *at some point in time*. Typically, an IO 2154 * or similar operation cannot guarantee anything stronger anyway because 2155 * locks can't be held over the syscall boundary. 2156 * 2157 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2158 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2159 * be called after the page is finished with, and before put_page is called. 2160 * 2161 * get_user_pages_remote is typically used for fewer-copy IO operations, 2162 * to get a handle on the memory by some means other than accesses 2163 * via the user virtual addresses. The pages may be submitted for 2164 * DMA to devices or accessed via their kernel linear mapping (via the 2165 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2166 * 2167 * See also get_user_pages_fast, for performance critical applications. 2168 * 2169 * get_user_pages_remote should be phased out in favor of 2170 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2171 * should use get_user_pages_remote because it cannot pass 2172 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2173 */ 2174 long get_user_pages_remote(struct mm_struct *mm, 2175 unsigned long start, unsigned long nr_pages, 2176 unsigned int gup_flags, struct page **pages, 2177 struct vm_area_struct **vmas, int *locked) 2178 { 2179 if (!is_valid_gup_flags(gup_flags)) 2180 return -EINVAL; 2181 2182 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2183 pages, vmas, locked); 2184 } 2185 EXPORT_SYMBOL(get_user_pages_remote); 2186 2187 #else /* CONFIG_MMU */ 2188 long get_user_pages_remote(struct mm_struct *mm, 2189 unsigned long start, unsigned long nr_pages, 2190 unsigned int gup_flags, struct page **pages, 2191 struct vm_area_struct **vmas, int *locked) 2192 { 2193 return 0; 2194 } 2195 2196 static long __get_user_pages_remote(struct mm_struct *mm, 2197 unsigned long start, unsigned long nr_pages, 2198 unsigned int gup_flags, struct page **pages, 2199 struct vm_area_struct **vmas, int *locked) 2200 { 2201 return 0; 2202 } 2203 #endif /* !CONFIG_MMU */ 2204 2205 /** 2206 * get_user_pages() - pin user pages in memory 2207 * @start: starting user address 2208 * @nr_pages: number of pages from start to pin 2209 * @gup_flags: flags modifying lookup behaviour 2210 * @pages: array that receives pointers to the pages pinned. 2211 * Should be at least nr_pages long. Or NULL, if caller 2212 * only intends to ensure the pages are faulted in. 2213 * @vmas: array of pointers to vmas corresponding to each page. 2214 * Or NULL if the caller does not require them. 2215 * 2216 * This is the same as get_user_pages_remote(), just with a less-flexible 2217 * calling convention where we assume that the mm being operated on belongs to 2218 * the current task, and doesn't allow passing of a locked parameter. We also 2219 * obviously don't pass FOLL_REMOTE in here. 2220 */ 2221 long get_user_pages(unsigned long start, unsigned long nr_pages, 2222 unsigned int gup_flags, struct page **pages, 2223 struct vm_area_struct **vmas) 2224 { 2225 if (!is_valid_gup_flags(gup_flags)) 2226 return -EINVAL; 2227 2228 return __gup_longterm_locked(current->mm, start, nr_pages, 2229 pages, vmas, gup_flags | FOLL_TOUCH); 2230 } 2231 EXPORT_SYMBOL(get_user_pages); 2232 2233 /* 2234 * get_user_pages_unlocked() is suitable to replace the form: 2235 * 2236 * mmap_read_lock(mm); 2237 * get_user_pages(mm, ..., pages, NULL); 2238 * mmap_read_unlock(mm); 2239 * 2240 * with: 2241 * 2242 * get_user_pages_unlocked(mm, ..., pages); 2243 * 2244 * It is functionally equivalent to get_user_pages_fast so 2245 * get_user_pages_fast should be used instead if specific gup_flags 2246 * (e.g. FOLL_FORCE) are not required. 2247 */ 2248 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2249 struct page **pages, unsigned int gup_flags) 2250 { 2251 struct mm_struct *mm = current->mm; 2252 int locked = 1; 2253 long ret; 2254 2255 /* 2256 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2257 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2258 * vmas. As there are no users of this flag in this call we simply 2259 * disallow this option for now. 2260 */ 2261 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2262 return -EINVAL; 2263 2264 mmap_read_lock(mm); 2265 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2266 &locked, gup_flags | FOLL_TOUCH); 2267 if (locked) 2268 mmap_read_unlock(mm); 2269 return ret; 2270 } 2271 EXPORT_SYMBOL(get_user_pages_unlocked); 2272 2273 /* 2274 * Fast GUP 2275 * 2276 * get_user_pages_fast attempts to pin user pages by walking the page 2277 * tables directly and avoids taking locks. Thus the walker needs to be 2278 * protected from page table pages being freed from under it, and should 2279 * block any THP splits. 2280 * 2281 * One way to achieve this is to have the walker disable interrupts, and 2282 * rely on IPIs from the TLB flushing code blocking before the page table 2283 * pages are freed. This is unsuitable for architectures that do not need 2284 * to broadcast an IPI when invalidating TLBs. 2285 * 2286 * Another way to achieve this is to batch up page table containing pages 2287 * belonging to more than one mm_user, then rcu_sched a callback to free those 2288 * pages. Disabling interrupts will allow the fast_gup walker to both block 2289 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2290 * (which is a relatively rare event). The code below adopts this strategy. 2291 * 2292 * Before activating this code, please be aware that the following assumptions 2293 * are currently made: 2294 * 2295 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2296 * free pages containing page tables or TLB flushing requires IPI broadcast. 2297 * 2298 * *) ptes can be read atomically by the architecture. 2299 * 2300 * *) access_ok is sufficient to validate userspace address ranges. 2301 * 2302 * The last two assumptions can be relaxed by the addition of helper functions. 2303 * 2304 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2305 */ 2306 #ifdef CONFIG_HAVE_FAST_GUP 2307 2308 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2309 unsigned int flags, 2310 struct page **pages) 2311 { 2312 while ((*nr) - nr_start) { 2313 struct page *page = pages[--(*nr)]; 2314 2315 ClearPageReferenced(page); 2316 if (flags & FOLL_PIN) 2317 unpin_user_page(page); 2318 else 2319 put_page(page); 2320 } 2321 } 2322 2323 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2324 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2325 unsigned int flags, struct page **pages, int *nr) 2326 { 2327 struct dev_pagemap *pgmap = NULL; 2328 int nr_start = *nr, ret = 0; 2329 pte_t *ptep, *ptem; 2330 2331 ptem = ptep = pte_offset_map(&pmd, addr); 2332 do { 2333 pte_t pte = ptep_get_lockless(ptep); 2334 struct page *page; 2335 struct folio *folio; 2336 2337 /* 2338 * Similar to the PMD case below, NUMA hinting must take slow 2339 * path using the pte_protnone check. 2340 */ 2341 if (pte_protnone(pte)) 2342 goto pte_unmap; 2343 2344 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2345 goto pte_unmap; 2346 2347 if (pte_devmap(pte)) { 2348 if (unlikely(flags & FOLL_LONGTERM)) 2349 goto pte_unmap; 2350 2351 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2352 if (unlikely(!pgmap)) { 2353 undo_dev_pagemap(nr, nr_start, flags, pages); 2354 goto pte_unmap; 2355 } 2356 } else if (pte_special(pte)) 2357 goto pte_unmap; 2358 2359 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2360 page = pte_page(pte); 2361 2362 folio = try_grab_folio(page, 1, flags); 2363 if (!folio) 2364 goto pte_unmap; 2365 2366 if (unlikely(page_is_secretmem(page))) { 2367 gup_put_folio(folio, 1, flags); 2368 goto pte_unmap; 2369 } 2370 2371 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2372 gup_put_folio(folio, 1, flags); 2373 goto pte_unmap; 2374 } 2375 2376 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2377 gup_put_folio(folio, 1, flags); 2378 goto pte_unmap; 2379 } 2380 2381 /* 2382 * We need to make the page accessible if and only if we are 2383 * going to access its content (the FOLL_PIN case). Please 2384 * see Documentation/core-api/pin_user_pages.rst for 2385 * details. 2386 */ 2387 if (flags & FOLL_PIN) { 2388 ret = arch_make_page_accessible(page); 2389 if (ret) { 2390 gup_put_folio(folio, 1, flags); 2391 goto pte_unmap; 2392 } 2393 } 2394 folio_set_referenced(folio); 2395 pages[*nr] = page; 2396 (*nr)++; 2397 } while (ptep++, addr += PAGE_SIZE, addr != end); 2398 2399 ret = 1; 2400 2401 pte_unmap: 2402 if (pgmap) 2403 put_dev_pagemap(pgmap); 2404 pte_unmap(ptem); 2405 return ret; 2406 } 2407 #else 2408 2409 /* 2410 * If we can't determine whether or not a pte is special, then fail immediately 2411 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2412 * to be special. 2413 * 2414 * For a futex to be placed on a THP tail page, get_futex_key requires a 2415 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2416 * useful to have gup_huge_pmd even if we can't operate on ptes. 2417 */ 2418 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2419 unsigned int flags, struct page **pages, int *nr) 2420 { 2421 return 0; 2422 } 2423 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2424 2425 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2426 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2427 unsigned long end, unsigned int flags, 2428 struct page **pages, int *nr) 2429 { 2430 int nr_start = *nr; 2431 struct dev_pagemap *pgmap = NULL; 2432 2433 do { 2434 struct page *page = pfn_to_page(pfn); 2435 2436 pgmap = get_dev_pagemap(pfn, pgmap); 2437 if (unlikely(!pgmap)) { 2438 undo_dev_pagemap(nr, nr_start, flags, pages); 2439 break; 2440 } 2441 SetPageReferenced(page); 2442 pages[*nr] = page; 2443 if (unlikely(!try_grab_page(page, flags))) { 2444 undo_dev_pagemap(nr, nr_start, flags, pages); 2445 break; 2446 } 2447 (*nr)++; 2448 pfn++; 2449 } while (addr += PAGE_SIZE, addr != end); 2450 2451 put_dev_pagemap(pgmap); 2452 return addr == end; 2453 } 2454 2455 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2456 unsigned long end, unsigned int flags, 2457 struct page **pages, int *nr) 2458 { 2459 unsigned long fault_pfn; 2460 int nr_start = *nr; 2461 2462 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2463 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2464 return 0; 2465 2466 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2467 undo_dev_pagemap(nr, nr_start, flags, pages); 2468 return 0; 2469 } 2470 return 1; 2471 } 2472 2473 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2474 unsigned long end, unsigned int flags, 2475 struct page **pages, int *nr) 2476 { 2477 unsigned long fault_pfn; 2478 int nr_start = *nr; 2479 2480 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2481 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2482 return 0; 2483 2484 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2485 undo_dev_pagemap(nr, nr_start, flags, pages); 2486 return 0; 2487 } 2488 return 1; 2489 } 2490 #else 2491 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2492 unsigned long end, unsigned int flags, 2493 struct page **pages, int *nr) 2494 { 2495 BUILD_BUG(); 2496 return 0; 2497 } 2498 2499 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2500 unsigned long end, unsigned int flags, 2501 struct page **pages, int *nr) 2502 { 2503 BUILD_BUG(); 2504 return 0; 2505 } 2506 #endif 2507 2508 static int record_subpages(struct page *page, unsigned long addr, 2509 unsigned long end, struct page **pages) 2510 { 2511 int nr; 2512 2513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2514 pages[nr] = nth_page(page, nr); 2515 2516 return nr; 2517 } 2518 2519 #ifdef CONFIG_ARCH_HAS_HUGEPD 2520 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2521 unsigned long sz) 2522 { 2523 unsigned long __boundary = (addr + sz) & ~(sz-1); 2524 return (__boundary - 1 < end - 1) ? __boundary : end; 2525 } 2526 2527 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2528 unsigned long end, unsigned int flags, 2529 struct page **pages, int *nr) 2530 { 2531 unsigned long pte_end; 2532 struct page *page; 2533 struct folio *folio; 2534 pte_t pte; 2535 int refs; 2536 2537 pte_end = (addr + sz) & ~(sz-1); 2538 if (pte_end < end) 2539 end = pte_end; 2540 2541 pte = huge_ptep_get(ptep); 2542 2543 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2544 return 0; 2545 2546 /* hugepages are never "special" */ 2547 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2548 2549 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2550 refs = record_subpages(page, addr, end, pages + *nr); 2551 2552 folio = try_grab_folio(page, refs, flags); 2553 if (!folio) 2554 return 0; 2555 2556 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2557 gup_put_folio(folio, refs, flags); 2558 return 0; 2559 } 2560 2561 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2562 gup_put_folio(folio, refs, flags); 2563 return 0; 2564 } 2565 2566 *nr += refs; 2567 folio_set_referenced(folio); 2568 return 1; 2569 } 2570 2571 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2572 unsigned int pdshift, unsigned long end, unsigned int flags, 2573 struct page **pages, int *nr) 2574 { 2575 pte_t *ptep; 2576 unsigned long sz = 1UL << hugepd_shift(hugepd); 2577 unsigned long next; 2578 2579 ptep = hugepte_offset(hugepd, addr, pdshift); 2580 do { 2581 next = hugepte_addr_end(addr, end, sz); 2582 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2583 return 0; 2584 } while (ptep++, addr = next, addr != end); 2585 2586 return 1; 2587 } 2588 #else 2589 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2590 unsigned int pdshift, unsigned long end, unsigned int flags, 2591 struct page **pages, int *nr) 2592 { 2593 return 0; 2594 } 2595 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2596 2597 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2598 unsigned long end, unsigned int flags, 2599 struct page **pages, int *nr) 2600 { 2601 struct page *page; 2602 struct folio *folio; 2603 int refs; 2604 2605 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2606 return 0; 2607 2608 if (pmd_devmap(orig)) { 2609 if (unlikely(flags & FOLL_LONGTERM)) 2610 return 0; 2611 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2612 pages, nr); 2613 } 2614 2615 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2616 refs = record_subpages(page, addr, end, pages + *nr); 2617 2618 folio = try_grab_folio(page, refs, flags); 2619 if (!folio) 2620 return 0; 2621 2622 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2623 gup_put_folio(folio, refs, flags); 2624 return 0; 2625 } 2626 2627 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2628 gup_put_folio(folio, refs, flags); 2629 return 0; 2630 } 2631 2632 *nr += refs; 2633 folio_set_referenced(folio); 2634 return 1; 2635 } 2636 2637 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2638 unsigned long end, unsigned int flags, 2639 struct page **pages, int *nr) 2640 { 2641 struct page *page; 2642 struct folio *folio; 2643 int refs; 2644 2645 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2646 return 0; 2647 2648 if (pud_devmap(orig)) { 2649 if (unlikely(flags & FOLL_LONGTERM)) 2650 return 0; 2651 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2652 pages, nr); 2653 } 2654 2655 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2656 refs = record_subpages(page, addr, end, pages + *nr); 2657 2658 folio = try_grab_folio(page, refs, flags); 2659 if (!folio) 2660 return 0; 2661 2662 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2663 gup_put_folio(folio, refs, flags); 2664 return 0; 2665 } 2666 2667 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2668 gup_put_folio(folio, refs, flags); 2669 return 0; 2670 } 2671 2672 *nr += refs; 2673 folio_set_referenced(folio); 2674 return 1; 2675 } 2676 2677 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2678 unsigned long end, unsigned int flags, 2679 struct page **pages, int *nr) 2680 { 2681 int refs; 2682 struct page *page; 2683 struct folio *folio; 2684 2685 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2686 return 0; 2687 2688 BUILD_BUG_ON(pgd_devmap(orig)); 2689 2690 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2691 refs = record_subpages(page, addr, end, pages + *nr); 2692 2693 folio = try_grab_folio(page, refs, flags); 2694 if (!folio) 2695 return 0; 2696 2697 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2698 gup_put_folio(folio, refs, flags); 2699 return 0; 2700 } 2701 2702 *nr += refs; 2703 folio_set_referenced(folio); 2704 return 1; 2705 } 2706 2707 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2708 unsigned int flags, struct page **pages, int *nr) 2709 { 2710 unsigned long next; 2711 pmd_t *pmdp; 2712 2713 pmdp = pmd_offset_lockless(pudp, pud, addr); 2714 do { 2715 pmd_t pmd = READ_ONCE(*pmdp); 2716 2717 next = pmd_addr_end(addr, end); 2718 if (!pmd_present(pmd)) 2719 return 0; 2720 2721 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2722 pmd_devmap(pmd))) { 2723 /* 2724 * NUMA hinting faults need to be handled in the GUP 2725 * slowpath for accounting purposes and so that they 2726 * can be serialised against THP migration. 2727 */ 2728 if (pmd_protnone(pmd)) 2729 return 0; 2730 2731 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2732 pages, nr)) 2733 return 0; 2734 2735 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2736 /* 2737 * architecture have different format for hugetlbfs 2738 * pmd format and THP pmd format 2739 */ 2740 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2741 PMD_SHIFT, next, flags, pages, nr)) 2742 return 0; 2743 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2744 return 0; 2745 } while (pmdp++, addr = next, addr != end); 2746 2747 return 1; 2748 } 2749 2750 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2751 unsigned int flags, struct page **pages, int *nr) 2752 { 2753 unsigned long next; 2754 pud_t *pudp; 2755 2756 pudp = pud_offset_lockless(p4dp, p4d, addr); 2757 do { 2758 pud_t pud = READ_ONCE(*pudp); 2759 2760 next = pud_addr_end(addr, end); 2761 if (unlikely(!pud_present(pud))) 2762 return 0; 2763 if (unlikely(pud_huge(pud))) { 2764 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2765 pages, nr)) 2766 return 0; 2767 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2768 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2769 PUD_SHIFT, next, flags, pages, nr)) 2770 return 0; 2771 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2772 return 0; 2773 } while (pudp++, addr = next, addr != end); 2774 2775 return 1; 2776 } 2777 2778 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2779 unsigned int flags, struct page **pages, int *nr) 2780 { 2781 unsigned long next; 2782 p4d_t *p4dp; 2783 2784 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2785 do { 2786 p4d_t p4d = READ_ONCE(*p4dp); 2787 2788 next = p4d_addr_end(addr, end); 2789 if (p4d_none(p4d)) 2790 return 0; 2791 BUILD_BUG_ON(p4d_huge(p4d)); 2792 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2793 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2794 P4D_SHIFT, next, flags, pages, nr)) 2795 return 0; 2796 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2797 return 0; 2798 } while (p4dp++, addr = next, addr != end); 2799 2800 return 1; 2801 } 2802 2803 static void gup_pgd_range(unsigned long addr, unsigned long end, 2804 unsigned int flags, struct page **pages, int *nr) 2805 { 2806 unsigned long next; 2807 pgd_t *pgdp; 2808 2809 pgdp = pgd_offset(current->mm, addr); 2810 do { 2811 pgd_t pgd = READ_ONCE(*pgdp); 2812 2813 next = pgd_addr_end(addr, end); 2814 if (pgd_none(pgd)) 2815 return; 2816 if (unlikely(pgd_huge(pgd))) { 2817 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2818 pages, nr)) 2819 return; 2820 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2821 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2822 PGDIR_SHIFT, next, flags, pages, nr)) 2823 return; 2824 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2825 return; 2826 } while (pgdp++, addr = next, addr != end); 2827 } 2828 #else 2829 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2830 unsigned int flags, struct page **pages, int *nr) 2831 { 2832 } 2833 #endif /* CONFIG_HAVE_FAST_GUP */ 2834 2835 #ifndef gup_fast_permitted 2836 /* 2837 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2838 * we need to fall back to the slow version: 2839 */ 2840 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2841 { 2842 return true; 2843 } 2844 #endif 2845 2846 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2847 unsigned int gup_flags, struct page **pages) 2848 { 2849 int ret; 2850 2851 /* 2852 * FIXME: FOLL_LONGTERM does not work with 2853 * get_user_pages_unlocked() (see comments in that function) 2854 */ 2855 if (gup_flags & FOLL_LONGTERM) { 2856 mmap_read_lock(current->mm); 2857 ret = __gup_longterm_locked(current->mm, 2858 start, nr_pages, 2859 pages, NULL, gup_flags); 2860 mmap_read_unlock(current->mm); 2861 } else { 2862 ret = get_user_pages_unlocked(start, nr_pages, 2863 pages, gup_flags); 2864 } 2865 2866 return ret; 2867 } 2868 2869 static unsigned long lockless_pages_from_mm(unsigned long start, 2870 unsigned long end, 2871 unsigned int gup_flags, 2872 struct page **pages) 2873 { 2874 unsigned long flags; 2875 int nr_pinned = 0; 2876 unsigned seq; 2877 2878 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2879 !gup_fast_permitted(start, end)) 2880 return 0; 2881 2882 if (gup_flags & FOLL_PIN) { 2883 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2884 if (seq & 1) 2885 return 0; 2886 } 2887 2888 /* 2889 * Disable interrupts. The nested form is used, in order to allow full, 2890 * general purpose use of this routine. 2891 * 2892 * With interrupts disabled, we block page table pages from being freed 2893 * from under us. See struct mmu_table_batch comments in 2894 * include/asm-generic/tlb.h for more details. 2895 * 2896 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2897 * that come from THPs splitting. 2898 */ 2899 local_irq_save(flags); 2900 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2901 local_irq_restore(flags); 2902 2903 /* 2904 * When pinning pages for DMA there could be a concurrent write protect 2905 * from fork() via copy_page_range(), in this case always fail fast GUP. 2906 */ 2907 if (gup_flags & FOLL_PIN) { 2908 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2909 unpin_user_pages_lockless(pages, nr_pinned); 2910 return 0; 2911 } else { 2912 sanity_check_pinned_pages(pages, nr_pinned); 2913 } 2914 } 2915 return nr_pinned; 2916 } 2917 2918 static int internal_get_user_pages_fast(unsigned long start, 2919 unsigned long nr_pages, 2920 unsigned int gup_flags, 2921 struct page **pages) 2922 { 2923 unsigned long len, end; 2924 unsigned long nr_pinned; 2925 int ret; 2926 2927 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2928 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2929 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2930 return -EINVAL; 2931 2932 if (gup_flags & FOLL_PIN) 2933 mm_set_has_pinned_flag(¤t->mm->flags); 2934 2935 if (!(gup_flags & FOLL_FAST_ONLY)) 2936 might_lock_read(¤t->mm->mmap_lock); 2937 2938 start = untagged_addr(start) & PAGE_MASK; 2939 len = nr_pages << PAGE_SHIFT; 2940 if (check_add_overflow(start, len, &end)) 2941 return 0; 2942 if (unlikely(!access_ok((void __user *)start, len))) 2943 return -EFAULT; 2944 2945 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2946 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2947 return nr_pinned; 2948 2949 /* Slow path: try to get the remaining pages with get_user_pages */ 2950 start += nr_pinned << PAGE_SHIFT; 2951 pages += nr_pinned; 2952 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2953 pages); 2954 if (ret < 0) { 2955 /* 2956 * The caller has to unpin the pages we already pinned so 2957 * returning -errno is not an option 2958 */ 2959 if (nr_pinned) 2960 return nr_pinned; 2961 return ret; 2962 } 2963 return ret + nr_pinned; 2964 } 2965 2966 /** 2967 * get_user_pages_fast_only() - pin user pages in memory 2968 * @start: starting user address 2969 * @nr_pages: number of pages from start to pin 2970 * @gup_flags: flags modifying pin behaviour 2971 * @pages: array that receives pointers to the pages pinned. 2972 * Should be at least nr_pages long. 2973 * 2974 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2975 * the regular GUP. 2976 * Note a difference with get_user_pages_fast: this always returns the 2977 * number of pages pinned, 0 if no pages were pinned. 2978 * 2979 * If the architecture does not support this function, simply return with no 2980 * pages pinned. 2981 * 2982 * Careful, careful! COW breaking can go either way, so a non-write 2983 * access can get ambiguous page results. If you call this function without 2984 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2985 */ 2986 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2987 unsigned int gup_flags, struct page **pages) 2988 { 2989 int nr_pinned; 2990 /* 2991 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2992 * because gup fast is always a "pin with a +1 page refcount" request. 2993 * 2994 * FOLL_FAST_ONLY is required in order to match the API description of 2995 * this routine: no fall back to regular ("slow") GUP. 2996 */ 2997 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2998 2999 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3000 pages); 3001 3002 /* 3003 * As specified in the API description above, this routine is not 3004 * allowed to return negative values. However, the common core 3005 * routine internal_get_user_pages_fast() *can* return -errno. 3006 * Therefore, correct for that here: 3007 */ 3008 if (nr_pinned < 0) 3009 nr_pinned = 0; 3010 3011 return nr_pinned; 3012 } 3013 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3014 3015 /** 3016 * get_user_pages_fast() - pin user pages in memory 3017 * @start: starting user address 3018 * @nr_pages: number of pages from start to pin 3019 * @gup_flags: flags modifying pin behaviour 3020 * @pages: array that receives pointers to the pages pinned. 3021 * Should be at least nr_pages long. 3022 * 3023 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3024 * If not successful, it will fall back to taking the lock and 3025 * calling get_user_pages(). 3026 * 3027 * Returns number of pages pinned. This may be fewer than the number requested. 3028 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3029 * -errno. 3030 */ 3031 int get_user_pages_fast(unsigned long start, int nr_pages, 3032 unsigned int gup_flags, struct page **pages) 3033 { 3034 if (!is_valid_gup_flags(gup_flags)) 3035 return -EINVAL; 3036 3037 /* 3038 * The caller may or may not have explicitly set FOLL_GET; either way is 3039 * OK. However, internally (within mm/gup.c), gup fast variants must set 3040 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3041 * request. 3042 */ 3043 gup_flags |= FOLL_GET; 3044 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3045 } 3046 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3047 3048 /** 3049 * pin_user_pages_fast() - pin user pages in memory without taking locks 3050 * 3051 * @start: starting user address 3052 * @nr_pages: number of pages from start to pin 3053 * @gup_flags: flags modifying pin behaviour 3054 * @pages: array that receives pointers to the pages pinned. 3055 * Should be at least nr_pages long. 3056 * 3057 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3058 * get_user_pages_fast() for documentation on the function arguments, because 3059 * the arguments here are identical. 3060 * 3061 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3062 * see Documentation/core-api/pin_user_pages.rst for further details. 3063 */ 3064 int pin_user_pages_fast(unsigned long start, int nr_pages, 3065 unsigned int gup_flags, struct page **pages) 3066 { 3067 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3068 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3069 return -EINVAL; 3070 3071 if (WARN_ON_ONCE(!pages)) 3072 return -EINVAL; 3073 3074 gup_flags |= FOLL_PIN; 3075 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3076 } 3077 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3078 3079 /* 3080 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3081 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3082 * 3083 * The API rules are the same, too: no negative values may be returned. 3084 */ 3085 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3086 unsigned int gup_flags, struct page **pages) 3087 { 3088 int nr_pinned; 3089 3090 /* 3091 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3092 * rules require returning 0, rather than -errno: 3093 */ 3094 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3095 return 0; 3096 3097 if (WARN_ON_ONCE(!pages)) 3098 return 0; 3099 /* 3100 * FOLL_FAST_ONLY is required in order to match the API description of 3101 * this routine: no fall back to regular ("slow") GUP. 3102 */ 3103 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3104 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3105 pages); 3106 /* 3107 * This routine is not allowed to return negative values. However, 3108 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3109 * correct for that here: 3110 */ 3111 if (nr_pinned < 0) 3112 nr_pinned = 0; 3113 3114 return nr_pinned; 3115 } 3116 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3117 3118 /** 3119 * pin_user_pages_remote() - pin pages of a remote process 3120 * 3121 * @mm: mm_struct of target mm 3122 * @start: starting user address 3123 * @nr_pages: number of pages from start to pin 3124 * @gup_flags: flags modifying lookup behaviour 3125 * @pages: array that receives pointers to the pages pinned. 3126 * Should be at least nr_pages long. 3127 * @vmas: array of pointers to vmas corresponding to each page. 3128 * Or NULL if the caller does not require them. 3129 * @locked: pointer to lock flag indicating whether lock is held and 3130 * subsequently whether VM_FAULT_RETRY functionality can be 3131 * utilised. Lock must initially be held. 3132 * 3133 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3134 * get_user_pages_remote() for documentation on the function arguments, because 3135 * the arguments here are identical. 3136 * 3137 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3138 * see Documentation/core-api/pin_user_pages.rst for details. 3139 */ 3140 long pin_user_pages_remote(struct mm_struct *mm, 3141 unsigned long start, unsigned long nr_pages, 3142 unsigned int gup_flags, struct page **pages, 3143 struct vm_area_struct **vmas, int *locked) 3144 { 3145 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3146 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3147 return -EINVAL; 3148 3149 if (WARN_ON_ONCE(!pages)) 3150 return -EINVAL; 3151 3152 gup_flags |= FOLL_PIN; 3153 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3154 pages, vmas, locked); 3155 } 3156 EXPORT_SYMBOL(pin_user_pages_remote); 3157 3158 /** 3159 * pin_user_pages() - pin user pages in memory for use by other devices 3160 * 3161 * @start: starting user address 3162 * @nr_pages: number of pages from start to pin 3163 * @gup_flags: flags modifying lookup behaviour 3164 * @pages: array that receives pointers to the pages pinned. 3165 * Should be at least nr_pages long. 3166 * @vmas: array of pointers to vmas corresponding to each page. 3167 * Or NULL if the caller does not require them. 3168 * 3169 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3170 * FOLL_PIN is set. 3171 * 3172 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3173 * see Documentation/core-api/pin_user_pages.rst for details. 3174 */ 3175 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3176 unsigned int gup_flags, struct page **pages, 3177 struct vm_area_struct **vmas) 3178 { 3179 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3180 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3181 return -EINVAL; 3182 3183 if (WARN_ON_ONCE(!pages)) 3184 return -EINVAL; 3185 3186 gup_flags |= FOLL_PIN; 3187 return __gup_longterm_locked(current->mm, start, nr_pages, 3188 pages, vmas, gup_flags); 3189 } 3190 EXPORT_SYMBOL(pin_user_pages); 3191 3192 /* 3193 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3194 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3195 * FOLL_PIN and rejects FOLL_GET. 3196 */ 3197 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3198 struct page **pages, unsigned int gup_flags) 3199 { 3200 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3201 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3202 return -EINVAL; 3203 3204 if (WARN_ON_ONCE(!pages)) 3205 return -EINVAL; 3206 3207 gup_flags |= FOLL_PIN; 3208 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3209 } 3210 EXPORT_SYMBOL(pin_user_pages_unlocked); 3211