xref: /linux/mm/gup.c (revision c65c3f3a2cbf21ed429d9b9c725bdb5dc6abf4cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_longterm_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
162 
163 		return folio;
164 	}
165 
166 	WARN_ON_ONCE(1);
167 	return NULL;
168 }
169 
170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 {
172 	if (flags & FOLL_PIN) {
173 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 		if (folio_test_large(folio))
175 			atomic_sub(refs, folio_pincount_ptr(folio));
176 		else
177 			refs *= GUP_PIN_COUNTING_BIAS;
178 	}
179 
180 	if (!put_devmap_managed_page_refs(&folio->page, refs))
181 		folio_put_refs(folio, refs);
182 }
183 
184 /**
185  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186  * @page:    pointer to page to be grabbed
187  * @flags:   gup flags: these are the FOLL_* flag values.
188  *
189  * This might not do anything at all, depending on the flags argument.
190  *
191  * "grab" names in this file mean, "look at flags to decide whether to use
192  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
193  *
194  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195  * time. Cases: please see the try_grab_folio() documentation, with
196  * "refs=1".
197  *
198  * Return: true for success, or if no action was required (if neither FOLL_PIN
199  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200  * FOLL_PIN was set, but the page could not be grabbed.
201  */
202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
203 {
204 	struct folio *folio = page_folio(page);
205 
206 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 		return false;
209 
210 	if (flags & FOLL_GET)
211 		folio_ref_inc(folio);
212 	else if (flags & FOLL_PIN) {
213 		/*
214 		 * Similar to try_grab_folio(): be sure to *also*
215 		 * increment the normal page refcount field at least once,
216 		 * so that the page really is pinned.
217 		 */
218 		if (folio_test_large(folio)) {
219 			folio_ref_add(folio, 1);
220 			atomic_add(1, folio_pincount_ptr(folio));
221 		} else {
222 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223 		}
224 
225 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
226 	}
227 
228 	return true;
229 }
230 
231 /**
232  * unpin_user_page() - release a dma-pinned page
233  * @page:            pointer to page to be released
234  *
235  * Pages that were pinned via pin_user_pages*() must be released via either
236  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237  * that such pages can be separately tracked and uniquely handled. In
238  * particular, interactions with RDMA and filesystems need special handling.
239  */
240 void unpin_user_page(struct page *page)
241 {
242 	sanity_check_pinned_pages(&page, 1);
243 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
244 }
245 EXPORT_SYMBOL(unpin_user_page);
246 
247 static inline struct folio *gup_folio_range_next(struct page *start,
248 		unsigned long npages, unsigned long i, unsigned int *ntails)
249 {
250 	struct page *next = nth_page(start, i);
251 	struct folio *folio = page_folio(next);
252 	unsigned int nr = 1;
253 
254 	if (folio_test_large(folio))
255 		nr = min_t(unsigned int, npages - i,
256 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
257 
258 	*ntails = nr;
259 	return folio;
260 }
261 
262 static inline struct folio *gup_folio_next(struct page **list,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct folio *folio = page_folio(list[i]);
266 	unsigned int nr;
267 
268 	for (nr = i + 1; nr < npages; nr++) {
269 		if (page_folio(list[nr]) != folio)
270 			break;
271 	}
272 
273 	*ntails = nr - i;
274 	return folio;
275 }
276 
277 /**
278  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279  * @pages:  array of pages to be maybe marked dirty, and definitely released.
280  * @npages: number of pages in the @pages array.
281  * @make_dirty: whether to mark the pages dirty
282  *
283  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284  * variants called on that page.
285  *
286  * For each page in the @pages array, make that page (or its head page, if a
287  * compound page) dirty, if @make_dirty is true, and if the page was previously
288  * listed as clean. In any case, releases all pages using unpin_user_page(),
289  * possibly via unpin_user_pages(), for the non-dirty case.
290  *
291  * Please see the unpin_user_page() documentation for details.
292  *
293  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294  * required, then the caller should a) verify that this is really correct,
295  * because _lock() is usually required, and b) hand code it:
296  * set_page_dirty_lock(), unpin_user_page().
297  *
298  */
299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
300 				 bool make_dirty)
301 {
302 	unsigned long i;
303 	struct folio *folio;
304 	unsigned int nr;
305 
306 	if (!make_dirty) {
307 		unpin_user_pages(pages, npages);
308 		return;
309 	}
310 
311 	sanity_check_pinned_pages(pages, npages);
312 	for (i = 0; i < npages; i += nr) {
313 		folio = gup_folio_next(pages, npages, i, &nr);
314 		/*
315 		 * Checking PageDirty at this point may race with
316 		 * clear_page_dirty_for_io(), but that's OK. Two key
317 		 * cases:
318 		 *
319 		 * 1) This code sees the page as already dirty, so it
320 		 * skips the call to set_page_dirty(). That could happen
321 		 * because clear_page_dirty_for_io() called
322 		 * page_mkclean(), followed by set_page_dirty().
323 		 * However, now the page is going to get written back,
324 		 * which meets the original intention of setting it
325 		 * dirty, so all is well: clear_page_dirty_for_io() goes
326 		 * on to call TestClearPageDirty(), and write the page
327 		 * back.
328 		 *
329 		 * 2) This code sees the page as clean, so it calls
330 		 * set_page_dirty(). The page stays dirty, despite being
331 		 * written back, so it gets written back again in the
332 		 * next writeback cycle. This is harmless.
333 		 */
334 		if (!folio_test_dirty(folio)) {
335 			folio_lock(folio);
336 			folio_mark_dirty(folio);
337 			folio_unlock(folio);
338 		}
339 		gup_put_folio(folio, nr, FOLL_PIN);
340 	}
341 }
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343 
344 /**
345  * unpin_user_page_range_dirty_lock() - release and optionally dirty
346  * gup-pinned page range
347  *
348  * @page:  the starting page of a range maybe marked dirty, and definitely released.
349  * @npages: number of consecutive pages to release.
350  * @make_dirty: whether to mark the pages dirty
351  *
352  * "gup-pinned page range" refers to a range of pages that has had one of the
353  * pin_user_pages() variants called on that page.
354  *
355  * For the page ranges defined by [page .. page+npages], make that range (or
356  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357  * page range was previously listed as clean.
358  *
359  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360  * required, then the caller should a) verify that this is really correct,
361  * because _lock() is usually required, and b) hand code it:
362  * set_page_dirty_lock(), unpin_user_page().
363  *
364  */
365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
366 				      bool make_dirty)
367 {
368 	unsigned long i;
369 	struct folio *folio;
370 	unsigned int nr;
371 
372 	for (i = 0; i < npages; i += nr) {
373 		folio = gup_folio_range_next(page, npages, i, &nr);
374 		if (make_dirty && !folio_test_dirty(folio)) {
375 			folio_lock(folio);
376 			folio_mark_dirty(folio);
377 			folio_unlock(folio);
378 		}
379 		gup_put_folio(folio, nr, FOLL_PIN);
380 	}
381 }
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
383 
384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
385 {
386 	unsigned long i;
387 	struct folio *folio;
388 	unsigned int nr;
389 
390 	/*
391 	 * Don't perform any sanity checks because we might have raced with
392 	 * fork() and some anonymous pages might now actually be shared --
393 	 * which is why we're unpinning after all.
394 	 */
395 	for (i = 0; i < npages; i += nr) {
396 		folio = gup_folio_next(pages, npages, i, &nr);
397 		gup_put_folio(folio, nr, FOLL_PIN);
398 	}
399 }
400 
401 /**
402  * unpin_user_pages() - release an array of gup-pinned pages.
403  * @pages:  array of pages to be marked dirty and released.
404  * @npages: number of pages in the @pages array.
405  *
406  * For each page in the @pages array, release the page using unpin_user_page().
407  *
408  * Please see the unpin_user_page() documentation for details.
409  */
410 void unpin_user_pages(struct page **pages, unsigned long npages)
411 {
412 	unsigned long i;
413 	struct folio *folio;
414 	unsigned int nr;
415 
416 	/*
417 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 	 * leaving them pinned), but probably not. More likely, gup/pup returned
419 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
420 	 */
421 	if (WARN_ON(IS_ERR_VALUE(npages)))
422 		return;
423 
424 	sanity_check_pinned_pages(pages, npages);
425 	for (i = 0; i < npages; i += nr) {
426 		folio = gup_folio_next(pages, npages, i, &nr);
427 		gup_put_folio(folio, nr, FOLL_PIN);
428 	}
429 }
430 EXPORT_SYMBOL(unpin_user_pages);
431 
432 /*
433  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
435  * cache bouncing on large SMP machines for concurrent pinned gups.
436  */
437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
438 {
439 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 		set_bit(MMF_HAS_PINNED, mm_flags);
441 }
442 
443 #ifdef CONFIG_MMU
444 static struct page *no_page_table(struct vm_area_struct *vma,
445 		unsigned int flags)
446 {
447 	/*
448 	 * When core dumping an enormous anonymous area that nobody
449 	 * has touched so far, we don't want to allocate unnecessary pages or
450 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
451 	 * then get_dump_page() will return NULL to leave a hole in the dump.
452 	 * But we can only make this optimization where a hole would surely
453 	 * be zero-filled if handle_mm_fault() actually did handle it.
454 	 */
455 	if ((flags & FOLL_DUMP) &&
456 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 		return ERR_PTR(-EFAULT);
458 	return NULL;
459 }
460 
461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 		pte_t *pte, unsigned int flags)
463 {
464 	if (flags & FOLL_TOUCH) {
465 		pte_t entry = *pte;
466 
467 		if (flags & FOLL_WRITE)
468 			entry = pte_mkdirty(entry);
469 		entry = pte_mkyoung(entry);
470 
471 		if (!pte_same(*pte, entry)) {
472 			set_pte_at(vma->vm_mm, address, pte, entry);
473 			update_mmu_cache(vma, address, pte);
474 		}
475 	}
476 
477 	/* Proper page table entry exists, but no corresponding struct page */
478 	return -EEXIST;
479 }
480 
481 /*
482  * FOLL_FORCE can write to even unwritable pte's, but only
483  * after we've gone through a COW cycle and they are dirty.
484  */
485 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
486 {
487 	return pte_write(pte) ||
488 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
489 }
490 
491 static struct page *follow_page_pte(struct vm_area_struct *vma,
492 		unsigned long address, pmd_t *pmd, unsigned int flags,
493 		struct dev_pagemap **pgmap)
494 {
495 	struct mm_struct *mm = vma->vm_mm;
496 	struct page *page;
497 	spinlock_t *ptl;
498 	pte_t *ptep, pte;
499 	int ret;
500 
501 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
502 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
503 			 (FOLL_PIN | FOLL_GET)))
504 		return ERR_PTR(-EINVAL);
505 retry:
506 	if (unlikely(pmd_bad(*pmd)))
507 		return no_page_table(vma, flags);
508 
509 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
510 	pte = *ptep;
511 	if (!pte_present(pte)) {
512 		swp_entry_t entry;
513 		/*
514 		 * KSM's break_ksm() relies upon recognizing a ksm page
515 		 * even while it is being migrated, so for that case we
516 		 * need migration_entry_wait().
517 		 */
518 		if (likely(!(flags & FOLL_MIGRATION)))
519 			goto no_page;
520 		if (pte_none(pte))
521 			goto no_page;
522 		entry = pte_to_swp_entry(pte);
523 		if (!is_migration_entry(entry))
524 			goto no_page;
525 		pte_unmap_unlock(ptep, ptl);
526 		migration_entry_wait(mm, pmd, address);
527 		goto retry;
528 	}
529 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
530 		goto no_page;
531 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
532 		pte_unmap_unlock(ptep, ptl);
533 		return NULL;
534 	}
535 
536 	page = vm_normal_page(vma, address, pte);
537 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
538 		/*
539 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
540 		 * case since they are only valid while holding the pgmap
541 		 * reference.
542 		 */
543 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
544 		if (*pgmap)
545 			page = pte_page(pte);
546 		else
547 			goto no_page;
548 	} else if (unlikely(!page)) {
549 		if (flags & FOLL_DUMP) {
550 			/* Avoid special (like zero) pages in core dumps */
551 			page = ERR_PTR(-EFAULT);
552 			goto out;
553 		}
554 
555 		if (is_zero_pfn(pte_pfn(pte))) {
556 			page = pte_page(pte);
557 		} else {
558 			ret = follow_pfn_pte(vma, address, ptep, flags);
559 			page = ERR_PTR(ret);
560 			goto out;
561 		}
562 	}
563 
564 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
565 		page = ERR_PTR(-EMLINK);
566 		goto out;
567 	}
568 
569 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
570 		       !PageAnonExclusive(page), page);
571 
572 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
573 	if (unlikely(!try_grab_page(page, flags))) {
574 		page = ERR_PTR(-ENOMEM);
575 		goto out;
576 	}
577 	/*
578 	 * We need to make the page accessible if and only if we are going
579 	 * to access its content (the FOLL_PIN case).  Please see
580 	 * Documentation/core-api/pin_user_pages.rst for details.
581 	 */
582 	if (flags & FOLL_PIN) {
583 		ret = arch_make_page_accessible(page);
584 		if (ret) {
585 			unpin_user_page(page);
586 			page = ERR_PTR(ret);
587 			goto out;
588 		}
589 	}
590 	if (flags & FOLL_TOUCH) {
591 		if ((flags & FOLL_WRITE) &&
592 		    !pte_dirty(pte) && !PageDirty(page))
593 			set_page_dirty(page);
594 		/*
595 		 * pte_mkyoung() would be more correct here, but atomic care
596 		 * is needed to avoid losing the dirty bit: it is easier to use
597 		 * mark_page_accessed().
598 		 */
599 		mark_page_accessed(page);
600 	}
601 out:
602 	pte_unmap_unlock(ptep, ptl);
603 	return page;
604 no_page:
605 	pte_unmap_unlock(ptep, ptl);
606 	if (!pte_none(pte))
607 		return NULL;
608 	return no_page_table(vma, flags);
609 }
610 
611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 				    unsigned long address, pud_t *pudp,
613 				    unsigned int flags,
614 				    struct follow_page_context *ctx)
615 {
616 	pmd_t *pmd, pmdval;
617 	spinlock_t *ptl;
618 	struct page *page;
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	pmd = pmd_offset(pudp, address);
622 	/*
623 	 * The READ_ONCE() will stabilize the pmdval in a register or
624 	 * on the stack so that it will stop changing under the code.
625 	 */
626 	pmdval = READ_ONCE(*pmd);
627 	if (pmd_none(pmdval))
628 		return no_page_table(vma, flags);
629 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 		page = follow_huge_pmd(mm, address, pmd, flags);
631 		if (page)
632 			return page;
633 		return no_page_table(vma, flags);
634 	}
635 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 		page = follow_huge_pd(vma, address,
637 				      __hugepd(pmd_val(pmdval)), flags,
638 				      PMD_SHIFT);
639 		if (page)
640 			return page;
641 		return no_page_table(vma, flags);
642 	}
643 retry:
644 	if (!pmd_present(pmdval)) {
645 		/*
646 		 * Should never reach here, if thp migration is not supported;
647 		 * Otherwise, it must be a thp migration entry.
648 		 */
649 		VM_BUG_ON(!thp_migration_supported() ||
650 				  !is_pmd_migration_entry(pmdval));
651 
652 		if (likely(!(flags & FOLL_MIGRATION)))
653 			return no_page_table(vma, flags);
654 
655 		pmd_migration_entry_wait(mm, pmd);
656 		pmdval = READ_ONCE(*pmd);
657 		/*
658 		 * MADV_DONTNEED may convert the pmd to null because
659 		 * mmap_lock is held in read mode
660 		 */
661 		if (pmd_none(pmdval))
662 			return no_page_table(vma, flags);
663 		goto retry;
664 	}
665 	if (pmd_devmap(pmdval)) {
666 		ptl = pmd_lock(mm, pmd);
667 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
668 		spin_unlock(ptl);
669 		if (page)
670 			return page;
671 	}
672 	if (likely(!pmd_trans_huge(pmdval)))
673 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
674 
675 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
676 		return no_page_table(vma, flags);
677 
678 retry_locked:
679 	ptl = pmd_lock(mm, pmd);
680 	if (unlikely(pmd_none(*pmd))) {
681 		spin_unlock(ptl);
682 		return no_page_table(vma, flags);
683 	}
684 	if (unlikely(!pmd_present(*pmd))) {
685 		spin_unlock(ptl);
686 		if (likely(!(flags & FOLL_MIGRATION)))
687 			return no_page_table(vma, flags);
688 		pmd_migration_entry_wait(mm, pmd);
689 		goto retry_locked;
690 	}
691 	if (unlikely(!pmd_trans_huge(*pmd))) {
692 		spin_unlock(ptl);
693 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
694 	}
695 	if (flags & FOLL_SPLIT_PMD) {
696 		int ret;
697 		page = pmd_page(*pmd);
698 		if (is_huge_zero_page(page)) {
699 			spin_unlock(ptl);
700 			ret = 0;
701 			split_huge_pmd(vma, pmd, address);
702 			if (pmd_trans_unstable(pmd))
703 				ret = -EBUSY;
704 		} else {
705 			spin_unlock(ptl);
706 			split_huge_pmd(vma, pmd, address);
707 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
708 		}
709 
710 		return ret ? ERR_PTR(ret) :
711 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
712 	}
713 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
714 	spin_unlock(ptl);
715 	ctx->page_mask = HPAGE_PMD_NR - 1;
716 	return page;
717 }
718 
719 static struct page *follow_pud_mask(struct vm_area_struct *vma,
720 				    unsigned long address, p4d_t *p4dp,
721 				    unsigned int flags,
722 				    struct follow_page_context *ctx)
723 {
724 	pud_t *pud;
725 	spinlock_t *ptl;
726 	struct page *page;
727 	struct mm_struct *mm = vma->vm_mm;
728 
729 	pud = pud_offset(p4dp, address);
730 	if (pud_none(*pud))
731 		return no_page_table(vma, flags);
732 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
733 		page = follow_huge_pud(mm, address, pud, flags);
734 		if (page)
735 			return page;
736 		return no_page_table(vma, flags);
737 	}
738 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
739 		page = follow_huge_pd(vma, address,
740 				      __hugepd(pud_val(*pud)), flags,
741 				      PUD_SHIFT);
742 		if (page)
743 			return page;
744 		return no_page_table(vma, flags);
745 	}
746 	if (pud_devmap(*pud)) {
747 		ptl = pud_lock(mm, pud);
748 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
749 		spin_unlock(ptl);
750 		if (page)
751 			return page;
752 	}
753 	if (unlikely(pud_bad(*pud)))
754 		return no_page_table(vma, flags);
755 
756 	return follow_pmd_mask(vma, address, pud, flags, ctx);
757 }
758 
759 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
760 				    unsigned long address, pgd_t *pgdp,
761 				    unsigned int flags,
762 				    struct follow_page_context *ctx)
763 {
764 	p4d_t *p4d;
765 	struct page *page;
766 
767 	p4d = p4d_offset(pgdp, address);
768 	if (p4d_none(*p4d))
769 		return no_page_table(vma, flags);
770 	BUILD_BUG_ON(p4d_huge(*p4d));
771 	if (unlikely(p4d_bad(*p4d)))
772 		return no_page_table(vma, flags);
773 
774 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
775 		page = follow_huge_pd(vma, address,
776 				      __hugepd(p4d_val(*p4d)), flags,
777 				      P4D_SHIFT);
778 		if (page)
779 			return page;
780 		return no_page_table(vma, flags);
781 	}
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct page *page;
815 	struct mm_struct *mm = vma->vm_mm;
816 
817 	ctx->page_mask = 0;
818 
819 	/* make this handle hugepd */
820 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
821 	if (!IS_ERR(page)) {
822 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
823 		return page;
824 	}
825 
826 	pgd = pgd_offset(mm, address);
827 
828 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
829 		return no_page_table(vma, flags);
830 
831 	if (pgd_huge(*pgd)) {
832 		page = follow_huge_pgd(mm, address, pgd, flags);
833 		if (page)
834 			return page;
835 		return no_page_table(vma, flags);
836 	}
837 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
838 		page = follow_huge_pd(vma, address,
839 				      __hugepd(pgd_val(*pgd)), flags,
840 				      PGDIR_SHIFT);
841 		if (page)
842 			return page;
843 		return no_page_table(vma, flags);
844 	}
845 
846 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
847 }
848 
849 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
850 			 unsigned int foll_flags)
851 {
852 	struct follow_page_context ctx = { NULL };
853 	struct page *page;
854 
855 	if (vma_is_secretmem(vma))
856 		return NULL;
857 
858 	if (foll_flags & FOLL_PIN)
859 		return NULL;
860 
861 	page = follow_page_mask(vma, address, foll_flags, &ctx);
862 	if (ctx.pgmap)
863 		put_dev_pagemap(ctx.pgmap);
864 	return page;
865 }
866 
867 static int get_gate_page(struct mm_struct *mm, unsigned long address,
868 		unsigned int gup_flags, struct vm_area_struct **vma,
869 		struct page **page)
870 {
871 	pgd_t *pgd;
872 	p4d_t *p4d;
873 	pud_t *pud;
874 	pmd_t *pmd;
875 	pte_t *pte;
876 	int ret = -EFAULT;
877 
878 	/* user gate pages are read-only */
879 	if (gup_flags & FOLL_WRITE)
880 		return -EFAULT;
881 	if (address > TASK_SIZE)
882 		pgd = pgd_offset_k(address);
883 	else
884 		pgd = pgd_offset_gate(mm, address);
885 	if (pgd_none(*pgd))
886 		return -EFAULT;
887 	p4d = p4d_offset(pgd, address);
888 	if (p4d_none(*p4d))
889 		return -EFAULT;
890 	pud = pud_offset(p4d, address);
891 	if (pud_none(*pud))
892 		return -EFAULT;
893 	pmd = pmd_offset(pud, address);
894 	if (!pmd_present(*pmd))
895 		return -EFAULT;
896 	VM_BUG_ON(pmd_trans_huge(*pmd));
897 	pte = pte_offset_map(pmd, address);
898 	if (pte_none(*pte))
899 		goto unmap;
900 	*vma = get_gate_vma(mm);
901 	if (!page)
902 		goto out;
903 	*page = vm_normal_page(*vma, address, *pte);
904 	if (!*page) {
905 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
906 			goto unmap;
907 		*page = pte_page(*pte);
908 	}
909 	if (unlikely(!try_grab_page(*page, gup_flags))) {
910 		ret = -ENOMEM;
911 		goto unmap;
912 	}
913 out:
914 	ret = 0;
915 unmap:
916 	pte_unmap(pte);
917 	return ret;
918 }
919 
920 /*
921  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
922  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
923  * is, *@locked will be set to 0 and -EBUSY returned.
924  */
925 static int faultin_page(struct vm_area_struct *vma,
926 		unsigned long address, unsigned int *flags, bool unshare,
927 		int *locked)
928 {
929 	unsigned int fault_flags = 0;
930 	vm_fault_t ret;
931 
932 	if (*flags & FOLL_NOFAULT)
933 		return -EFAULT;
934 	if (*flags & FOLL_WRITE)
935 		fault_flags |= FAULT_FLAG_WRITE;
936 	if (*flags & FOLL_REMOTE)
937 		fault_flags |= FAULT_FLAG_REMOTE;
938 	if (locked)
939 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
940 	if (*flags & FOLL_NOWAIT)
941 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
942 	if (*flags & FOLL_TRIED) {
943 		/*
944 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 		 * can co-exist
946 		 */
947 		fault_flags |= FAULT_FLAG_TRIED;
948 	}
949 	if (unshare) {
950 		fault_flags |= FAULT_FLAG_UNSHARE;
951 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
952 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 	}
954 
955 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
956 
957 	if (ret & VM_FAULT_COMPLETED) {
958 		/*
959 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
960 		 * mmap lock in the page fault handler. Sanity check this.
961 		 */
962 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
963 		if (locked)
964 			*locked = 0;
965 		/*
966 		 * We should do the same as VM_FAULT_RETRY, but let's not
967 		 * return -EBUSY since that's not reflecting the reality of
968 		 * what has happened - we've just fully completed a page
969 		 * fault, with the mmap lock released.  Use -EAGAIN to show
970 		 * that we want to take the mmap lock _again_.
971 		 */
972 		return -EAGAIN;
973 	}
974 
975 	if (ret & VM_FAULT_ERROR) {
976 		int err = vm_fault_to_errno(ret, *flags);
977 
978 		if (err)
979 			return err;
980 		BUG();
981 	}
982 
983 	if (ret & VM_FAULT_RETRY) {
984 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
985 			*locked = 0;
986 		return -EBUSY;
987 	}
988 
989 	/*
990 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
991 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
992 	 * can thus safely do subsequent page lookups as if they were reads.
993 	 * But only do so when looping for pte_write is futile: in some cases
994 	 * userspace may also be wanting to write to the gotten user page,
995 	 * which a read fault here might prevent (a readonly page might get
996 	 * reCOWed by userspace write).
997 	 */
998 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
999 		*flags |= FOLL_COW;
1000 	return 0;
1001 }
1002 
1003 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1004 {
1005 	vm_flags_t vm_flags = vma->vm_flags;
1006 	int write = (gup_flags & FOLL_WRITE);
1007 	int foreign = (gup_flags & FOLL_REMOTE);
1008 
1009 	if (vm_flags & (VM_IO | VM_PFNMAP))
1010 		return -EFAULT;
1011 
1012 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1013 		return -EFAULT;
1014 
1015 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1016 		return -EOPNOTSUPP;
1017 
1018 	if (vma_is_secretmem(vma))
1019 		return -EFAULT;
1020 
1021 	if (write) {
1022 		if (!(vm_flags & VM_WRITE)) {
1023 			if (!(gup_flags & FOLL_FORCE))
1024 				return -EFAULT;
1025 			/*
1026 			 * We used to let the write,force case do COW in a
1027 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1028 			 * set a breakpoint in a read-only mapping of an
1029 			 * executable, without corrupting the file (yet only
1030 			 * when that file had been opened for writing!).
1031 			 * Anon pages in shared mappings are surprising: now
1032 			 * just reject it.
1033 			 */
1034 			if (!is_cow_mapping(vm_flags))
1035 				return -EFAULT;
1036 		}
1037 	} else if (!(vm_flags & VM_READ)) {
1038 		if (!(gup_flags & FOLL_FORCE))
1039 			return -EFAULT;
1040 		/*
1041 		 * Is there actually any vma we can reach here which does not
1042 		 * have VM_MAYREAD set?
1043 		 */
1044 		if (!(vm_flags & VM_MAYREAD))
1045 			return -EFAULT;
1046 	}
1047 	/*
1048 	 * gups are always data accesses, not instruction
1049 	 * fetches, so execute=false here
1050 	 */
1051 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1052 		return -EFAULT;
1053 	return 0;
1054 }
1055 
1056 /**
1057  * __get_user_pages() - pin user pages in memory
1058  * @mm:		mm_struct of target mm
1059  * @start:	starting user address
1060  * @nr_pages:	number of pages from start to pin
1061  * @gup_flags:	flags modifying pin behaviour
1062  * @pages:	array that receives pointers to the pages pinned.
1063  *		Should be at least nr_pages long. Or NULL, if caller
1064  *		only intends to ensure the pages are faulted in.
1065  * @vmas:	array of pointers to vmas corresponding to each page.
1066  *		Or NULL if the caller does not require them.
1067  * @locked:     whether we're still with the mmap_lock held
1068  *
1069  * Returns either number of pages pinned (which may be less than the
1070  * number requested), or an error. Details about the return value:
1071  *
1072  * -- If nr_pages is 0, returns 0.
1073  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1074  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1075  *    pages pinned. Again, this may be less than nr_pages.
1076  * -- 0 return value is possible when the fault would need to be retried.
1077  *
1078  * The caller is responsible for releasing returned @pages, via put_page().
1079  *
1080  * @vmas are valid only as long as mmap_lock is held.
1081  *
1082  * Must be called with mmap_lock held.  It may be released.  See below.
1083  *
1084  * __get_user_pages walks a process's page tables and takes a reference to
1085  * each struct page that each user address corresponds to at a given
1086  * instant. That is, it takes the page that would be accessed if a user
1087  * thread accesses the given user virtual address at that instant.
1088  *
1089  * This does not guarantee that the page exists in the user mappings when
1090  * __get_user_pages returns, and there may even be a completely different
1091  * page there in some cases (eg. if mmapped pagecache has been invalidated
1092  * and subsequently re faulted). However it does guarantee that the page
1093  * won't be freed completely. And mostly callers simply care that the page
1094  * contains data that was valid *at some point in time*. Typically, an IO
1095  * or similar operation cannot guarantee anything stronger anyway because
1096  * locks can't be held over the syscall boundary.
1097  *
1098  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1099  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1100  * appropriate) must be called after the page is finished with, and
1101  * before put_page is called.
1102  *
1103  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1104  * released by an up_read().  That can happen if @gup_flags does not
1105  * have FOLL_NOWAIT.
1106  *
1107  * A caller using such a combination of @locked and @gup_flags
1108  * must therefore hold the mmap_lock for reading only, and recognize
1109  * when it's been released.  Otherwise, it must be held for either
1110  * reading or writing and will not be released.
1111  *
1112  * In most cases, get_user_pages or get_user_pages_fast should be used
1113  * instead of __get_user_pages. __get_user_pages should be used only if
1114  * you need some special @gup_flags.
1115  */
1116 static long __get_user_pages(struct mm_struct *mm,
1117 		unsigned long start, unsigned long nr_pages,
1118 		unsigned int gup_flags, struct page **pages,
1119 		struct vm_area_struct **vmas, int *locked)
1120 {
1121 	long ret = 0, i = 0;
1122 	struct vm_area_struct *vma = NULL;
1123 	struct follow_page_context ctx = { NULL };
1124 
1125 	if (!nr_pages)
1126 		return 0;
1127 
1128 	start = untagged_addr(start);
1129 
1130 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1131 
1132 	/*
1133 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1134 	 * fault information is unrelated to the reference behaviour of a task
1135 	 * using the address space
1136 	 */
1137 	if (!(gup_flags & FOLL_FORCE))
1138 		gup_flags |= FOLL_NUMA;
1139 
1140 	do {
1141 		struct page *page;
1142 		unsigned int foll_flags = gup_flags;
1143 		unsigned int page_increm;
1144 
1145 		/* first iteration or cross vma bound */
1146 		if (!vma || start >= vma->vm_end) {
1147 			vma = find_extend_vma(mm, start);
1148 			if (!vma && in_gate_area(mm, start)) {
1149 				ret = get_gate_page(mm, start & PAGE_MASK,
1150 						gup_flags, &vma,
1151 						pages ? &pages[i] : NULL);
1152 				if (ret)
1153 					goto out;
1154 				ctx.page_mask = 0;
1155 				goto next_page;
1156 			}
1157 
1158 			if (!vma) {
1159 				ret = -EFAULT;
1160 				goto out;
1161 			}
1162 			ret = check_vma_flags(vma, gup_flags);
1163 			if (ret)
1164 				goto out;
1165 
1166 			if (is_vm_hugetlb_page(vma)) {
1167 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1168 						&start, &nr_pages, i,
1169 						gup_flags, locked);
1170 				if (locked && *locked == 0) {
1171 					/*
1172 					 * We've got a VM_FAULT_RETRY
1173 					 * and we've lost mmap_lock.
1174 					 * We must stop here.
1175 					 */
1176 					BUG_ON(gup_flags & FOLL_NOWAIT);
1177 					goto out;
1178 				}
1179 				continue;
1180 			}
1181 		}
1182 retry:
1183 		/*
1184 		 * If we have a pending SIGKILL, don't keep faulting pages and
1185 		 * potentially allocating memory.
1186 		 */
1187 		if (fatal_signal_pending(current)) {
1188 			ret = -EINTR;
1189 			goto out;
1190 		}
1191 		cond_resched();
1192 
1193 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1194 		if (!page || PTR_ERR(page) == -EMLINK) {
1195 			ret = faultin_page(vma, start, &foll_flags,
1196 					   PTR_ERR(page) == -EMLINK, locked);
1197 			switch (ret) {
1198 			case 0:
1199 				goto retry;
1200 			case -EBUSY:
1201 			case -EAGAIN:
1202 				ret = 0;
1203 				fallthrough;
1204 			case -EFAULT:
1205 			case -ENOMEM:
1206 			case -EHWPOISON:
1207 				goto out;
1208 			}
1209 			BUG();
1210 		} else if (PTR_ERR(page) == -EEXIST) {
1211 			/*
1212 			 * Proper page table entry exists, but no corresponding
1213 			 * struct page. If the caller expects **pages to be
1214 			 * filled in, bail out now, because that can't be done
1215 			 * for this page.
1216 			 */
1217 			if (pages) {
1218 				ret = PTR_ERR(page);
1219 				goto out;
1220 			}
1221 
1222 			goto next_page;
1223 		} else if (IS_ERR(page)) {
1224 			ret = PTR_ERR(page);
1225 			goto out;
1226 		}
1227 		if (pages) {
1228 			pages[i] = page;
1229 			flush_anon_page(vma, page, start);
1230 			flush_dcache_page(page);
1231 			ctx.page_mask = 0;
1232 		}
1233 next_page:
1234 		if (vmas) {
1235 			vmas[i] = vma;
1236 			ctx.page_mask = 0;
1237 		}
1238 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1239 		if (page_increm > nr_pages)
1240 			page_increm = nr_pages;
1241 		i += page_increm;
1242 		start += page_increm * PAGE_SIZE;
1243 		nr_pages -= page_increm;
1244 	} while (nr_pages);
1245 out:
1246 	if (ctx.pgmap)
1247 		put_dev_pagemap(ctx.pgmap);
1248 	return i ? i : ret;
1249 }
1250 
1251 static bool vma_permits_fault(struct vm_area_struct *vma,
1252 			      unsigned int fault_flags)
1253 {
1254 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1255 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1256 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1257 
1258 	if (!(vm_flags & vma->vm_flags))
1259 		return false;
1260 
1261 	/*
1262 	 * The architecture might have a hardware protection
1263 	 * mechanism other than read/write that can deny access.
1264 	 *
1265 	 * gup always represents data access, not instruction
1266 	 * fetches, so execute=false here:
1267 	 */
1268 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1269 		return false;
1270 
1271 	return true;
1272 }
1273 
1274 /**
1275  * fixup_user_fault() - manually resolve a user page fault
1276  * @mm:		mm_struct of target mm
1277  * @address:	user address
1278  * @fault_flags:flags to pass down to handle_mm_fault()
1279  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1280  *		does not allow retry. If NULL, the caller must guarantee
1281  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1282  *
1283  * This is meant to be called in the specific scenario where for locking reasons
1284  * we try to access user memory in atomic context (within a pagefault_disable()
1285  * section), this returns -EFAULT, and we want to resolve the user fault before
1286  * trying again.
1287  *
1288  * Typically this is meant to be used by the futex code.
1289  *
1290  * The main difference with get_user_pages() is that this function will
1291  * unconditionally call handle_mm_fault() which will in turn perform all the
1292  * necessary SW fixup of the dirty and young bits in the PTE, while
1293  * get_user_pages() only guarantees to update these in the struct page.
1294  *
1295  * This is important for some architectures where those bits also gate the
1296  * access permission to the page because they are maintained in software.  On
1297  * such architectures, gup() will not be enough to make a subsequent access
1298  * succeed.
1299  *
1300  * This function will not return with an unlocked mmap_lock. So it has not the
1301  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1302  */
1303 int fixup_user_fault(struct mm_struct *mm,
1304 		     unsigned long address, unsigned int fault_flags,
1305 		     bool *unlocked)
1306 {
1307 	struct vm_area_struct *vma;
1308 	vm_fault_t ret;
1309 
1310 	address = untagged_addr(address);
1311 
1312 	if (unlocked)
1313 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1314 
1315 retry:
1316 	vma = find_extend_vma(mm, address);
1317 	if (!vma || address < vma->vm_start)
1318 		return -EFAULT;
1319 
1320 	if (!vma_permits_fault(vma, fault_flags))
1321 		return -EFAULT;
1322 
1323 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1324 	    fatal_signal_pending(current))
1325 		return -EINTR;
1326 
1327 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1328 
1329 	if (ret & VM_FAULT_COMPLETED) {
1330 		/*
1331 		 * NOTE: it's a pity that we need to retake the lock here
1332 		 * to pair with the unlock() in the callers. Ideally we
1333 		 * could tell the callers so they do not need to unlock.
1334 		 */
1335 		mmap_read_lock(mm);
1336 		*unlocked = true;
1337 		return 0;
1338 	}
1339 
1340 	if (ret & VM_FAULT_ERROR) {
1341 		int err = vm_fault_to_errno(ret, 0);
1342 
1343 		if (err)
1344 			return err;
1345 		BUG();
1346 	}
1347 
1348 	if (ret & VM_FAULT_RETRY) {
1349 		mmap_read_lock(mm);
1350 		*unlocked = true;
1351 		fault_flags |= FAULT_FLAG_TRIED;
1352 		goto retry;
1353 	}
1354 
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(fixup_user_fault);
1358 
1359 /*
1360  * Please note that this function, unlike __get_user_pages will not
1361  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1362  */
1363 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1364 						unsigned long start,
1365 						unsigned long nr_pages,
1366 						struct page **pages,
1367 						struct vm_area_struct **vmas,
1368 						int *locked,
1369 						unsigned int flags)
1370 {
1371 	long ret, pages_done;
1372 	bool lock_dropped;
1373 
1374 	if (locked) {
1375 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1376 		BUG_ON(vmas);
1377 		/* check caller initialized locked */
1378 		BUG_ON(*locked != 1);
1379 	}
1380 
1381 	if (flags & FOLL_PIN)
1382 		mm_set_has_pinned_flag(&mm->flags);
1383 
1384 	/*
1385 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1386 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1387 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1388 	 * for FOLL_GET, not for the newer FOLL_PIN.
1389 	 *
1390 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1391 	 * that here, as any failures will be obvious enough.
1392 	 */
1393 	if (pages && !(flags & FOLL_PIN))
1394 		flags |= FOLL_GET;
1395 
1396 	pages_done = 0;
1397 	lock_dropped = false;
1398 	for (;;) {
1399 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1400 				       vmas, locked);
1401 		if (!locked)
1402 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1403 			return ret;
1404 
1405 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1406 		if (!*locked) {
1407 			BUG_ON(ret < 0);
1408 			BUG_ON(ret >= nr_pages);
1409 		}
1410 
1411 		if (ret > 0) {
1412 			nr_pages -= ret;
1413 			pages_done += ret;
1414 			if (!nr_pages)
1415 				break;
1416 		}
1417 		if (*locked) {
1418 			/*
1419 			 * VM_FAULT_RETRY didn't trigger or it was a
1420 			 * FOLL_NOWAIT.
1421 			 */
1422 			if (!pages_done)
1423 				pages_done = ret;
1424 			break;
1425 		}
1426 		/*
1427 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1428 		 * For the prefault case (!pages) we only update counts.
1429 		 */
1430 		if (likely(pages))
1431 			pages += ret;
1432 		start += ret << PAGE_SHIFT;
1433 		lock_dropped = true;
1434 
1435 retry:
1436 		/*
1437 		 * Repeat on the address that fired VM_FAULT_RETRY
1438 		 * with both FAULT_FLAG_ALLOW_RETRY and
1439 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1440 		 * by fatal signals, so we need to check it before we
1441 		 * start trying again otherwise it can loop forever.
1442 		 */
1443 
1444 		if (fatal_signal_pending(current)) {
1445 			if (!pages_done)
1446 				pages_done = -EINTR;
1447 			break;
1448 		}
1449 
1450 		ret = mmap_read_lock_killable(mm);
1451 		if (ret) {
1452 			BUG_ON(ret > 0);
1453 			if (!pages_done)
1454 				pages_done = ret;
1455 			break;
1456 		}
1457 
1458 		*locked = 1;
1459 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1460 				       pages, NULL, locked);
1461 		if (!*locked) {
1462 			/* Continue to retry until we succeeded */
1463 			BUG_ON(ret != 0);
1464 			goto retry;
1465 		}
1466 		if (ret != 1) {
1467 			BUG_ON(ret > 1);
1468 			if (!pages_done)
1469 				pages_done = ret;
1470 			break;
1471 		}
1472 		nr_pages--;
1473 		pages_done++;
1474 		if (!nr_pages)
1475 			break;
1476 		if (likely(pages))
1477 			pages++;
1478 		start += PAGE_SIZE;
1479 	}
1480 	if (lock_dropped && *locked) {
1481 		/*
1482 		 * We must let the caller know we temporarily dropped the lock
1483 		 * and so the critical section protected by it was lost.
1484 		 */
1485 		mmap_read_unlock(mm);
1486 		*locked = 0;
1487 	}
1488 	return pages_done;
1489 }
1490 
1491 /**
1492  * populate_vma_page_range() -  populate a range of pages in the vma.
1493  * @vma:   target vma
1494  * @start: start address
1495  * @end:   end address
1496  * @locked: whether the mmap_lock is still held
1497  *
1498  * This takes care of mlocking the pages too if VM_LOCKED is set.
1499  *
1500  * Return either number of pages pinned in the vma, or a negative error
1501  * code on error.
1502  *
1503  * vma->vm_mm->mmap_lock must be held.
1504  *
1505  * If @locked is NULL, it may be held for read or write and will
1506  * be unperturbed.
1507  *
1508  * If @locked is non-NULL, it must held for read only and may be
1509  * released.  If it's released, *@locked will be set to 0.
1510  */
1511 long populate_vma_page_range(struct vm_area_struct *vma,
1512 		unsigned long start, unsigned long end, int *locked)
1513 {
1514 	struct mm_struct *mm = vma->vm_mm;
1515 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1516 	int gup_flags;
1517 	long ret;
1518 
1519 	VM_BUG_ON(!PAGE_ALIGNED(start));
1520 	VM_BUG_ON(!PAGE_ALIGNED(end));
1521 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1522 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1523 	mmap_assert_locked(mm);
1524 
1525 	/*
1526 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1527 	 * faultin_page() to break COW, so it has no work to do here.
1528 	 */
1529 	if (vma->vm_flags & VM_LOCKONFAULT)
1530 		return nr_pages;
1531 
1532 	gup_flags = FOLL_TOUCH;
1533 	/*
1534 	 * We want to touch writable mappings with a write fault in order
1535 	 * to break COW, except for shared mappings because these don't COW
1536 	 * and we would not want to dirty them for nothing.
1537 	 */
1538 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1539 		gup_flags |= FOLL_WRITE;
1540 
1541 	/*
1542 	 * We want mlock to succeed for regions that have any permissions
1543 	 * other than PROT_NONE.
1544 	 */
1545 	if (vma_is_accessible(vma))
1546 		gup_flags |= FOLL_FORCE;
1547 
1548 	/*
1549 	 * We made sure addr is within a VMA, so the following will
1550 	 * not result in a stack expansion that recurses back here.
1551 	 */
1552 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1553 				NULL, NULL, locked);
1554 	lru_add_drain();
1555 	return ret;
1556 }
1557 
1558 /*
1559  * faultin_vma_page_range() - populate (prefault) page tables inside the
1560  *			      given VMA range readable/writable
1561  *
1562  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1563  *
1564  * @vma: target vma
1565  * @start: start address
1566  * @end: end address
1567  * @write: whether to prefault readable or writable
1568  * @locked: whether the mmap_lock is still held
1569  *
1570  * Returns either number of processed pages in the vma, or a negative error
1571  * code on error (see __get_user_pages()).
1572  *
1573  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1574  * covered by the VMA.
1575  *
1576  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1577  *
1578  * If @locked is non-NULL, it must held for read only and may be released.  If
1579  * it's released, *@locked will be set to 0.
1580  */
1581 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1582 			    unsigned long end, bool write, int *locked)
1583 {
1584 	struct mm_struct *mm = vma->vm_mm;
1585 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1586 	int gup_flags;
1587 	long ret;
1588 
1589 	VM_BUG_ON(!PAGE_ALIGNED(start));
1590 	VM_BUG_ON(!PAGE_ALIGNED(end));
1591 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1592 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1593 	mmap_assert_locked(mm);
1594 
1595 	/*
1596 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1597 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1598 	 *	       difference with !FOLL_FORCE, because the page is writable
1599 	 *	       in the page table.
1600 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1601 	 *		  a poisoned page.
1602 	 * !FOLL_FORCE: Require proper access permissions.
1603 	 */
1604 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1605 	if (write)
1606 		gup_flags |= FOLL_WRITE;
1607 
1608 	/*
1609 	 * We want to report -EINVAL instead of -EFAULT for any permission
1610 	 * problems or incompatible mappings.
1611 	 */
1612 	if (check_vma_flags(vma, gup_flags))
1613 		return -EINVAL;
1614 
1615 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1616 				NULL, NULL, locked);
1617 	lru_add_drain();
1618 	return ret;
1619 }
1620 
1621 /*
1622  * __mm_populate - populate and/or mlock pages within a range of address space.
1623  *
1624  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1625  * flags. VMAs must be already marked with the desired vm_flags, and
1626  * mmap_lock must not be held.
1627  */
1628 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1629 {
1630 	struct mm_struct *mm = current->mm;
1631 	unsigned long end, nstart, nend;
1632 	struct vm_area_struct *vma = NULL;
1633 	int locked = 0;
1634 	long ret = 0;
1635 
1636 	end = start + len;
1637 
1638 	for (nstart = start; nstart < end; nstart = nend) {
1639 		/*
1640 		 * We want to fault in pages for [nstart; end) address range.
1641 		 * Find first corresponding VMA.
1642 		 */
1643 		if (!locked) {
1644 			locked = 1;
1645 			mmap_read_lock(mm);
1646 			vma = find_vma(mm, nstart);
1647 		} else if (nstart >= vma->vm_end)
1648 			vma = vma->vm_next;
1649 		if (!vma || vma->vm_start >= end)
1650 			break;
1651 		/*
1652 		 * Set [nstart; nend) to intersection of desired address
1653 		 * range with the first VMA. Also, skip undesirable VMA types.
1654 		 */
1655 		nend = min(end, vma->vm_end);
1656 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1657 			continue;
1658 		if (nstart < vma->vm_start)
1659 			nstart = vma->vm_start;
1660 		/*
1661 		 * Now fault in a range of pages. populate_vma_page_range()
1662 		 * double checks the vma flags, so that it won't mlock pages
1663 		 * if the vma was already munlocked.
1664 		 */
1665 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1666 		if (ret < 0) {
1667 			if (ignore_errors) {
1668 				ret = 0;
1669 				continue;	/* continue at next VMA */
1670 			}
1671 			break;
1672 		}
1673 		nend = nstart + ret * PAGE_SIZE;
1674 		ret = 0;
1675 	}
1676 	if (locked)
1677 		mmap_read_unlock(mm);
1678 	return ret;	/* 0 or negative error code */
1679 }
1680 #else /* CONFIG_MMU */
1681 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1682 		unsigned long nr_pages, struct page **pages,
1683 		struct vm_area_struct **vmas, int *locked,
1684 		unsigned int foll_flags)
1685 {
1686 	struct vm_area_struct *vma;
1687 	unsigned long vm_flags;
1688 	long i;
1689 
1690 	/* calculate required read or write permissions.
1691 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1692 	 */
1693 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1694 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1695 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1696 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1697 
1698 	for (i = 0; i < nr_pages; i++) {
1699 		vma = find_vma(mm, start);
1700 		if (!vma)
1701 			goto finish_or_fault;
1702 
1703 		/* protect what we can, including chardevs */
1704 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1705 		    !(vm_flags & vma->vm_flags))
1706 			goto finish_or_fault;
1707 
1708 		if (pages) {
1709 			pages[i] = virt_to_page((void *)start);
1710 			if (pages[i])
1711 				get_page(pages[i]);
1712 		}
1713 		if (vmas)
1714 			vmas[i] = vma;
1715 		start = (start + PAGE_SIZE) & PAGE_MASK;
1716 	}
1717 
1718 	return i;
1719 
1720 finish_or_fault:
1721 	return i ? : -EFAULT;
1722 }
1723 #endif /* !CONFIG_MMU */
1724 
1725 /**
1726  * fault_in_writeable - fault in userspace address range for writing
1727  * @uaddr: start of address range
1728  * @size: size of address range
1729  *
1730  * Returns the number of bytes not faulted in (like copy_to_user() and
1731  * copy_from_user()).
1732  */
1733 size_t fault_in_writeable(char __user *uaddr, size_t size)
1734 {
1735 	char __user *start = uaddr, *end;
1736 
1737 	if (unlikely(size == 0))
1738 		return 0;
1739 	if (!user_write_access_begin(uaddr, size))
1740 		return size;
1741 	if (!PAGE_ALIGNED(uaddr)) {
1742 		unsafe_put_user(0, uaddr, out);
1743 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1744 	}
1745 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1746 	if (unlikely(end < start))
1747 		end = NULL;
1748 	while (uaddr != end) {
1749 		unsafe_put_user(0, uaddr, out);
1750 		uaddr += PAGE_SIZE;
1751 	}
1752 
1753 out:
1754 	user_write_access_end();
1755 	if (size > uaddr - start)
1756 		return size - (uaddr - start);
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(fault_in_writeable);
1760 
1761 /**
1762  * fault_in_subpage_writeable - fault in an address range for writing
1763  * @uaddr: start of address range
1764  * @size: size of address range
1765  *
1766  * Fault in a user address range for writing while checking for permissions at
1767  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1768  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1769  *
1770  * Returns the number of bytes not faulted in (like copy_to_user() and
1771  * copy_from_user()).
1772  */
1773 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1774 {
1775 	size_t faulted_in;
1776 
1777 	/*
1778 	 * Attempt faulting in at page granularity first for page table
1779 	 * permission checking. The arch-specific probe_subpage_writeable()
1780 	 * functions may not check for this.
1781 	 */
1782 	faulted_in = size - fault_in_writeable(uaddr, size);
1783 	if (faulted_in)
1784 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1785 
1786 	return size - faulted_in;
1787 }
1788 EXPORT_SYMBOL(fault_in_subpage_writeable);
1789 
1790 /*
1791  * fault_in_safe_writeable - fault in an address range for writing
1792  * @uaddr: start of address range
1793  * @size: length of address range
1794  *
1795  * Faults in an address range for writing.  This is primarily useful when we
1796  * already know that some or all of the pages in the address range aren't in
1797  * memory.
1798  *
1799  * Unlike fault_in_writeable(), this function is non-destructive.
1800  *
1801  * Note that we don't pin or otherwise hold the pages referenced that we fault
1802  * in.  There's no guarantee that they'll stay in memory for any duration of
1803  * time.
1804  *
1805  * Returns the number of bytes not faulted in, like copy_to_user() and
1806  * copy_from_user().
1807  */
1808 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1809 {
1810 	unsigned long start = (unsigned long)uaddr, end;
1811 	struct mm_struct *mm = current->mm;
1812 	bool unlocked = false;
1813 
1814 	if (unlikely(size == 0))
1815 		return 0;
1816 	end = PAGE_ALIGN(start + size);
1817 	if (end < start)
1818 		end = 0;
1819 
1820 	mmap_read_lock(mm);
1821 	do {
1822 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1823 			break;
1824 		start = (start + PAGE_SIZE) & PAGE_MASK;
1825 	} while (start != end);
1826 	mmap_read_unlock(mm);
1827 
1828 	if (size > (unsigned long)uaddr - start)
1829 		return size - ((unsigned long)uaddr - start);
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL(fault_in_safe_writeable);
1833 
1834 /**
1835  * fault_in_readable - fault in userspace address range for reading
1836  * @uaddr: start of user address range
1837  * @size: size of user address range
1838  *
1839  * Returns the number of bytes not faulted in (like copy_to_user() and
1840  * copy_from_user()).
1841  */
1842 size_t fault_in_readable(const char __user *uaddr, size_t size)
1843 {
1844 	const char __user *start = uaddr, *end;
1845 	volatile char c;
1846 
1847 	if (unlikely(size == 0))
1848 		return 0;
1849 	if (!user_read_access_begin(uaddr, size))
1850 		return size;
1851 	if (!PAGE_ALIGNED(uaddr)) {
1852 		unsafe_get_user(c, uaddr, out);
1853 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1854 	}
1855 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1856 	if (unlikely(end < start))
1857 		end = NULL;
1858 	while (uaddr != end) {
1859 		unsafe_get_user(c, uaddr, out);
1860 		uaddr += PAGE_SIZE;
1861 	}
1862 
1863 out:
1864 	user_read_access_end();
1865 	(void)c;
1866 	if (size > uaddr - start)
1867 		return size - (uaddr - start);
1868 	return 0;
1869 }
1870 EXPORT_SYMBOL(fault_in_readable);
1871 
1872 /**
1873  * get_dump_page() - pin user page in memory while writing it to core dump
1874  * @addr: user address
1875  *
1876  * Returns struct page pointer of user page pinned for dump,
1877  * to be freed afterwards by put_page().
1878  *
1879  * Returns NULL on any kind of failure - a hole must then be inserted into
1880  * the corefile, to preserve alignment with its headers; and also returns
1881  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1882  * allowing a hole to be left in the corefile to save disk space.
1883  *
1884  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1885  */
1886 #ifdef CONFIG_ELF_CORE
1887 struct page *get_dump_page(unsigned long addr)
1888 {
1889 	struct mm_struct *mm = current->mm;
1890 	struct page *page;
1891 	int locked = 1;
1892 	int ret;
1893 
1894 	if (mmap_read_lock_killable(mm))
1895 		return NULL;
1896 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1897 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1898 	if (locked)
1899 		mmap_read_unlock(mm);
1900 	return (ret == 1) ? page : NULL;
1901 }
1902 #endif /* CONFIG_ELF_CORE */
1903 
1904 #ifdef CONFIG_MIGRATION
1905 /*
1906  * Check whether all pages are pinnable, if so return number of pages.  If some
1907  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1908  * pages were migrated, or if some pages were not successfully isolated.
1909  * Return negative error if migration fails.
1910  */
1911 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1912 					    struct page **pages,
1913 					    unsigned int gup_flags)
1914 {
1915 	unsigned long isolation_error_count = 0, i;
1916 	struct folio *prev_folio = NULL;
1917 	LIST_HEAD(movable_page_list);
1918 	bool drain_allow = true, coherent_pages = false;
1919 	int ret = 0;
1920 
1921 	for (i = 0; i < nr_pages; i++) {
1922 		struct folio *folio = page_folio(pages[i]);
1923 
1924 		if (folio == prev_folio)
1925 			continue;
1926 		prev_folio = folio;
1927 
1928 		/*
1929 		 * Device coherent pages are managed by a driver and should not
1930 		 * be pinned indefinitely as it prevents the driver moving the
1931 		 * page. So when trying to pin with FOLL_LONGTERM instead try
1932 		 * to migrate the page out of device memory.
1933 		 */
1934 		if (folio_is_device_coherent(folio)) {
1935 			/*
1936 			 * We always want a new GUP lookup with device coherent
1937 			 * pages.
1938 			 */
1939 			pages[i] = 0;
1940 			coherent_pages = true;
1941 
1942 			/*
1943 			 * Migration will fail if the page is pinned, so convert
1944 			 * the pin on the source page to a normal reference.
1945 			 */
1946 			if (gup_flags & FOLL_PIN) {
1947 				get_page(&folio->page);
1948 				unpin_user_page(&folio->page);
1949 			}
1950 
1951 			ret = migrate_device_coherent_page(&folio->page);
1952 			if (ret)
1953 				goto unpin_pages;
1954 
1955 			continue;
1956 		}
1957 
1958 		if (folio_is_longterm_pinnable(folio))
1959 			continue;
1960 		/*
1961 		 * Try to move out any movable page before pinning the range.
1962 		 */
1963 		if (folio_test_hugetlb(folio)) {
1964 			if (isolate_hugetlb(&folio->page,
1965 						&movable_page_list))
1966 				isolation_error_count++;
1967 			continue;
1968 		}
1969 
1970 		if (!folio_test_lru(folio) && drain_allow) {
1971 			lru_add_drain_all();
1972 			drain_allow = false;
1973 		}
1974 
1975 		if (folio_isolate_lru(folio)) {
1976 			isolation_error_count++;
1977 			continue;
1978 		}
1979 		list_add_tail(&folio->lru, &movable_page_list);
1980 		node_stat_mod_folio(folio,
1981 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1982 				    folio_nr_pages(folio));
1983 	}
1984 
1985 	if (!list_empty(&movable_page_list) || isolation_error_count ||
1986 	    coherent_pages)
1987 		goto unpin_pages;
1988 
1989 	/*
1990 	 * If list is empty, and no isolation errors, means that all pages are
1991 	 * in the correct zone.
1992 	 */
1993 	return nr_pages;
1994 
1995 unpin_pages:
1996 	/*
1997 	 * pages[i] might be NULL if any device coherent pages were found.
1998 	 */
1999 	for (i = 0; i < nr_pages; i++) {
2000 		if (!pages[i])
2001 			continue;
2002 
2003 		if (gup_flags & FOLL_PIN)
2004 			unpin_user_page(pages[i]);
2005 		else
2006 			put_page(pages[i]);
2007 	}
2008 
2009 	if (!list_empty(&movable_page_list)) {
2010 		struct migration_target_control mtc = {
2011 			.nid = NUMA_NO_NODE,
2012 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2013 		};
2014 
2015 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
2016 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2017 				    MR_LONGTERM_PIN, NULL);
2018 		if (ret > 0) /* number of pages not migrated */
2019 			ret = -ENOMEM;
2020 	}
2021 
2022 	if (ret && !list_empty(&movable_page_list))
2023 		putback_movable_pages(&movable_page_list);
2024 	return ret;
2025 }
2026 #else
2027 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2028 					    struct page **pages,
2029 					    unsigned int gup_flags)
2030 {
2031 	return nr_pages;
2032 }
2033 #endif /* CONFIG_MIGRATION */
2034 
2035 /*
2036  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2037  * allows us to process the FOLL_LONGTERM flag.
2038  */
2039 static long __gup_longterm_locked(struct mm_struct *mm,
2040 				  unsigned long start,
2041 				  unsigned long nr_pages,
2042 				  struct page **pages,
2043 				  struct vm_area_struct **vmas,
2044 				  unsigned int gup_flags)
2045 {
2046 	unsigned int flags;
2047 	long rc;
2048 
2049 	if (!(gup_flags & FOLL_LONGTERM))
2050 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2051 					       NULL, gup_flags);
2052 	flags = memalloc_pin_save();
2053 	do {
2054 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2055 					     NULL, gup_flags);
2056 		if (rc <= 0)
2057 			break;
2058 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2059 	} while (!rc);
2060 	memalloc_pin_restore(flags);
2061 
2062 	return rc;
2063 }
2064 
2065 static bool is_valid_gup_flags(unsigned int gup_flags)
2066 {
2067 	/*
2068 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2069 	 * never directly by the caller, so enforce that with an assertion:
2070 	 */
2071 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2072 		return false;
2073 	/*
2074 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2075 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2076 	 * FOLL_PIN.
2077 	 */
2078 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2079 		return false;
2080 
2081 	return true;
2082 }
2083 
2084 #ifdef CONFIG_MMU
2085 static long __get_user_pages_remote(struct mm_struct *mm,
2086 				    unsigned long start, unsigned long nr_pages,
2087 				    unsigned int gup_flags, struct page **pages,
2088 				    struct vm_area_struct **vmas, int *locked)
2089 {
2090 	/*
2091 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2092 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2093 	 * vmas. However, this only comes up if locked is set, and there are
2094 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2095 	 * allow what we can.
2096 	 */
2097 	if (gup_flags & FOLL_LONGTERM) {
2098 		if (WARN_ON_ONCE(locked))
2099 			return -EINVAL;
2100 		/*
2101 		 * This will check the vmas (even if our vmas arg is NULL)
2102 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2103 		 */
2104 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2105 					     vmas, gup_flags | FOLL_TOUCH |
2106 					     FOLL_REMOTE);
2107 	}
2108 
2109 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2110 				       locked,
2111 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2112 }
2113 
2114 /**
2115  * get_user_pages_remote() - pin user pages in memory
2116  * @mm:		mm_struct of target mm
2117  * @start:	starting user address
2118  * @nr_pages:	number of pages from start to pin
2119  * @gup_flags:	flags modifying lookup behaviour
2120  * @pages:	array that receives pointers to the pages pinned.
2121  *		Should be at least nr_pages long. Or NULL, if caller
2122  *		only intends to ensure the pages are faulted in.
2123  * @vmas:	array of pointers to vmas corresponding to each page.
2124  *		Or NULL if the caller does not require them.
2125  * @locked:	pointer to lock flag indicating whether lock is held and
2126  *		subsequently whether VM_FAULT_RETRY functionality can be
2127  *		utilised. Lock must initially be held.
2128  *
2129  * Returns either number of pages pinned (which may be less than the
2130  * number requested), or an error. Details about the return value:
2131  *
2132  * -- If nr_pages is 0, returns 0.
2133  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2134  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2135  *    pages pinned. Again, this may be less than nr_pages.
2136  *
2137  * The caller is responsible for releasing returned @pages, via put_page().
2138  *
2139  * @vmas are valid only as long as mmap_lock is held.
2140  *
2141  * Must be called with mmap_lock held for read or write.
2142  *
2143  * get_user_pages_remote walks a process's page tables and takes a reference
2144  * to each struct page that each user address corresponds to at a given
2145  * instant. That is, it takes the page that would be accessed if a user
2146  * thread accesses the given user virtual address at that instant.
2147  *
2148  * This does not guarantee that the page exists in the user mappings when
2149  * get_user_pages_remote returns, and there may even be a completely different
2150  * page there in some cases (eg. if mmapped pagecache has been invalidated
2151  * and subsequently re faulted). However it does guarantee that the page
2152  * won't be freed completely. And mostly callers simply care that the page
2153  * contains data that was valid *at some point in time*. Typically, an IO
2154  * or similar operation cannot guarantee anything stronger anyway because
2155  * locks can't be held over the syscall boundary.
2156  *
2157  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2158  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2159  * be called after the page is finished with, and before put_page is called.
2160  *
2161  * get_user_pages_remote is typically used for fewer-copy IO operations,
2162  * to get a handle on the memory by some means other than accesses
2163  * via the user virtual addresses. The pages may be submitted for
2164  * DMA to devices or accessed via their kernel linear mapping (via the
2165  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2166  *
2167  * See also get_user_pages_fast, for performance critical applications.
2168  *
2169  * get_user_pages_remote should be phased out in favor of
2170  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2171  * should use get_user_pages_remote because it cannot pass
2172  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2173  */
2174 long get_user_pages_remote(struct mm_struct *mm,
2175 		unsigned long start, unsigned long nr_pages,
2176 		unsigned int gup_flags, struct page **pages,
2177 		struct vm_area_struct **vmas, int *locked)
2178 {
2179 	if (!is_valid_gup_flags(gup_flags))
2180 		return -EINVAL;
2181 
2182 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2183 				       pages, vmas, locked);
2184 }
2185 EXPORT_SYMBOL(get_user_pages_remote);
2186 
2187 #else /* CONFIG_MMU */
2188 long get_user_pages_remote(struct mm_struct *mm,
2189 			   unsigned long start, unsigned long nr_pages,
2190 			   unsigned int gup_flags, struct page **pages,
2191 			   struct vm_area_struct **vmas, int *locked)
2192 {
2193 	return 0;
2194 }
2195 
2196 static long __get_user_pages_remote(struct mm_struct *mm,
2197 				    unsigned long start, unsigned long nr_pages,
2198 				    unsigned int gup_flags, struct page **pages,
2199 				    struct vm_area_struct **vmas, int *locked)
2200 {
2201 	return 0;
2202 }
2203 #endif /* !CONFIG_MMU */
2204 
2205 /**
2206  * get_user_pages() - pin user pages in memory
2207  * @start:      starting user address
2208  * @nr_pages:   number of pages from start to pin
2209  * @gup_flags:  flags modifying lookup behaviour
2210  * @pages:      array that receives pointers to the pages pinned.
2211  *              Should be at least nr_pages long. Or NULL, if caller
2212  *              only intends to ensure the pages are faulted in.
2213  * @vmas:       array of pointers to vmas corresponding to each page.
2214  *              Or NULL if the caller does not require them.
2215  *
2216  * This is the same as get_user_pages_remote(), just with a less-flexible
2217  * calling convention where we assume that the mm being operated on belongs to
2218  * the current task, and doesn't allow passing of a locked parameter.  We also
2219  * obviously don't pass FOLL_REMOTE in here.
2220  */
2221 long get_user_pages(unsigned long start, unsigned long nr_pages,
2222 		unsigned int gup_flags, struct page **pages,
2223 		struct vm_area_struct **vmas)
2224 {
2225 	if (!is_valid_gup_flags(gup_flags))
2226 		return -EINVAL;
2227 
2228 	return __gup_longterm_locked(current->mm, start, nr_pages,
2229 				     pages, vmas, gup_flags | FOLL_TOUCH);
2230 }
2231 EXPORT_SYMBOL(get_user_pages);
2232 
2233 /*
2234  * get_user_pages_unlocked() is suitable to replace the form:
2235  *
2236  *      mmap_read_lock(mm);
2237  *      get_user_pages(mm, ..., pages, NULL);
2238  *      mmap_read_unlock(mm);
2239  *
2240  *  with:
2241  *
2242  *      get_user_pages_unlocked(mm, ..., pages);
2243  *
2244  * It is functionally equivalent to get_user_pages_fast so
2245  * get_user_pages_fast should be used instead if specific gup_flags
2246  * (e.g. FOLL_FORCE) are not required.
2247  */
2248 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2249 			     struct page **pages, unsigned int gup_flags)
2250 {
2251 	struct mm_struct *mm = current->mm;
2252 	int locked = 1;
2253 	long ret;
2254 
2255 	/*
2256 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2257 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2258 	 * vmas.  As there are no users of this flag in this call we simply
2259 	 * disallow this option for now.
2260 	 */
2261 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2262 		return -EINVAL;
2263 
2264 	mmap_read_lock(mm);
2265 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2266 				      &locked, gup_flags | FOLL_TOUCH);
2267 	if (locked)
2268 		mmap_read_unlock(mm);
2269 	return ret;
2270 }
2271 EXPORT_SYMBOL(get_user_pages_unlocked);
2272 
2273 /*
2274  * Fast GUP
2275  *
2276  * get_user_pages_fast attempts to pin user pages by walking the page
2277  * tables directly and avoids taking locks. Thus the walker needs to be
2278  * protected from page table pages being freed from under it, and should
2279  * block any THP splits.
2280  *
2281  * One way to achieve this is to have the walker disable interrupts, and
2282  * rely on IPIs from the TLB flushing code blocking before the page table
2283  * pages are freed. This is unsuitable for architectures that do not need
2284  * to broadcast an IPI when invalidating TLBs.
2285  *
2286  * Another way to achieve this is to batch up page table containing pages
2287  * belonging to more than one mm_user, then rcu_sched a callback to free those
2288  * pages. Disabling interrupts will allow the fast_gup walker to both block
2289  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2290  * (which is a relatively rare event). The code below adopts this strategy.
2291  *
2292  * Before activating this code, please be aware that the following assumptions
2293  * are currently made:
2294  *
2295  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2296  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2297  *
2298  *  *) ptes can be read atomically by the architecture.
2299  *
2300  *  *) access_ok is sufficient to validate userspace address ranges.
2301  *
2302  * The last two assumptions can be relaxed by the addition of helper functions.
2303  *
2304  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2305  */
2306 #ifdef CONFIG_HAVE_FAST_GUP
2307 
2308 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2309 					    unsigned int flags,
2310 					    struct page **pages)
2311 {
2312 	while ((*nr) - nr_start) {
2313 		struct page *page = pages[--(*nr)];
2314 
2315 		ClearPageReferenced(page);
2316 		if (flags & FOLL_PIN)
2317 			unpin_user_page(page);
2318 		else
2319 			put_page(page);
2320 	}
2321 }
2322 
2323 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2324 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2325 			 unsigned int flags, struct page **pages, int *nr)
2326 {
2327 	struct dev_pagemap *pgmap = NULL;
2328 	int nr_start = *nr, ret = 0;
2329 	pte_t *ptep, *ptem;
2330 
2331 	ptem = ptep = pte_offset_map(&pmd, addr);
2332 	do {
2333 		pte_t pte = ptep_get_lockless(ptep);
2334 		struct page *page;
2335 		struct folio *folio;
2336 
2337 		/*
2338 		 * Similar to the PMD case below, NUMA hinting must take slow
2339 		 * path using the pte_protnone check.
2340 		 */
2341 		if (pte_protnone(pte))
2342 			goto pte_unmap;
2343 
2344 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345 			goto pte_unmap;
2346 
2347 		if (pte_devmap(pte)) {
2348 			if (unlikely(flags & FOLL_LONGTERM))
2349 				goto pte_unmap;
2350 
2351 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2352 			if (unlikely(!pgmap)) {
2353 				undo_dev_pagemap(nr, nr_start, flags, pages);
2354 				goto pte_unmap;
2355 			}
2356 		} else if (pte_special(pte))
2357 			goto pte_unmap;
2358 
2359 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2360 		page = pte_page(pte);
2361 
2362 		folio = try_grab_folio(page, 1, flags);
2363 		if (!folio)
2364 			goto pte_unmap;
2365 
2366 		if (unlikely(page_is_secretmem(page))) {
2367 			gup_put_folio(folio, 1, flags);
2368 			goto pte_unmap;
2369 		}
2370 
2371 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2372 			gup_put_folio(folio, 1, flags);
2373 			goto pte_unmap;
2374 		}
2375 
2376 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2377 			gup_put_folio(folio, 1, flags);
2378 			goto pte_unmap;
2379 		}
2380 
2381 		/*
2382 		 * We need to make the page accessible if and only if we are
2383 		 * going to access its content (the FOLL_PIN case).  Please
2384 		 * see Documentation/core-api/pin_user_pages.rst for
2385 		 * details.
2386 		 */
2387 		if (flags & FOLL_PIN) {
2388 			ret = arch_make_page_accessible(page);
2389 			if (ret) {
2390 				gup_put_folio(folio, 1, flags);
2391 				goto pte_unmap;
2392 			}
2393 		}
2394 		folio_set_referenced(folio);
2395 		pages[*nr] = page;
2396 		(*nr)++;
2397 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2398 
2399 	ret = 1;
2400 
2401 pte_unmap:
2402 	if (pgmap)
2403 		put_dev_pagemap(pgmap);
2404 	pte_unmap(ptem);
2405 	return ret;
2406 }
2407 #else
2408 
2409 /*
2410  * If we can't determine whether or not a pte is special, then fail immediately
2411  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2412  * to be special.
2413  *
2414  * For a futex to be placed on a THP tail page, get_futex_key requires a
2415  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2416  * useful to have gup_huge_pmd even if we can't operate on ptes.
2417  */
2418 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2419 			 unsigned int flags, struct page **pages, int *nr)
2420 {
2421 	return 0;
2422 }
2423 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2424 
2425 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2426 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2427 			     unsigned long end, unsigned int flags,
2428 			     struct page **pages, int *nr)
2429 {
2430 	int nr_start = *nr;
2431 	struct dev_pagemap *pgmap = NULL;
2432 
2433 	do {
2434 		struct page *page = pfn_to_page(pfn);
2435 
2436 		pgmap = get_dev_pagemap(pfn, pgmap);
2437 		if (unlikely(!pgmap)) {
2438 			undo_dev_pagemap(nr, nr_start, flags, pages);
2439 			break;
2440 		}
2441 		SetPageReferenced(page);
2442 		pages[*nr] = page;
2443 		if (unlikely(!try_grab_page(page, flags))) {
2444 			undo_dev_pagemap(nr, nr_start, flags, pages);
2445 			break;
2446 		}
2447 		(*nr)++;
2448 		pfn++;
2449 	} while (addr += PAGE_SIZE, addr != end);
2450 
2451 	put_dev_pagemap(pgmap);
2452 	return addr == end;
2453 }
2454 
2455 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2456 				 unsigned long end, unsigned int flags,
2457 				 struct page **pages, int *nr)
2458 {
2459 	unsigned long fault_pfn;
2460 	int nr_start = *nr;
2461 
2462 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2463 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2464 		return 0;
2465 
2466 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2467 		undo_dev_pagemap(nr, nr_start, flags, pages);
2468 		return 0;
2469 	}
2470 	return 1;
2471 }
2472 
2473 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2474 				 unsigned long end, unsigned int flags,
2475 				 struct page **pages, int *nr)
2476 {
2477 	unsigned long fault_pfn;
2478 	int nr_start = *nr;
2479 
2480 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2481 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2482 		return 0;
2483 
2484 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2485 		undo_dev_pagemap(nr, nr_start, flags, pages);
2486 		return 0;
2487 	}
2488 	return 1;
2489 }
2490 #else
2491 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2492 				 unsigned long end, unsigned int flags,
2493 				 struct page **pages, int *nr)
2494 {
2495 	BUILD_BUG();
2496 	return 0;
2497 }
2498 
2499 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2500 				 unsigned long end, unsigned int flags,
2501 				 struct page **pages, int *nr)
2502 {
2503 	BUILD_BUG();
2504 	return 0;
2505 }
2506 #endif
2507 
2508 static int record_subpages(struct page *page, unsigned long addr,
2509 			   unsigned long end, struct page **pages)
2510 {
2511 	int nr;
2512 
2513 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2514 		pages[nr] = nth_page(page, nr);
2515 
2516 	return nr;
2517 }
2518 
2519 #ifdef CONFIG_ARCH_HAS_HUGEPD
2520 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2521 				      unsigned long sz)
2522 {
2523 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2524 	return (__boundary - 1 < end - 1) ? __boundary : end;
2525 }
2526 
2527 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2528 		       unsigned long end, unsigned int flags,
2529 		       struct page **pages, int *nr)
2530 {
2531 	unsigned long pte_end;
2532 	struct page *page;
2533 	struct folio *folio;
2534 	pte_t pte;
2535 	int refs;
2536 
2537 	pte_end = (addr + sz) & ~(sz-1);
2538 	if (pte_end < end)
2539 		end = pte_end;
2540 
2541 	pte = huge_ptep_get(ptep);
2542 
2543 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2544 		return 0;
2545 
2546 	/* hugepages are never "special" */
2547 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2548 
2549 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2550 	refs = record_subpages(page, addr, end, pages + *nr);
2551 
2552 	folio = try_grab_folio(page, refs, flags);
2553 	if (!folio)
2554 		return 0;
2555 
2556 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2557 		gup_put_folio(folio, refs, flags);
2558 		return 0;
2559 	}
2560 
2561 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2562 		gup_put_folio(folio, refs, flags);
2563 		return 0;
2564 	}
2565 
2566 	*nr += refs;
2567 	folio_set_referenced(folio);
2568 	return 1;
2569 }
2570 
2571 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2572 		unsigned int pdshift, unsigned long end, unsigned int flags,
2573 		struct page **pages, int *nr)
2574 {
2575 	pte_t *ptep;
2576 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2577 	unsigned long next;
2578 
2579 	ptep = hugepte_offset(hugepd, addr, pdshift);
2580 	do {
2581 		next = hugepte_addr_end(addr, end, sz);
2582 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2583 			return 0;
2584 	} while (ptep++, addr = next, addr != end);
2585 
2586 	return 1;
2587 }
2588 #else
2589 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2590 		unsigned int pdshift, unsigned long end, unsigned int flags,
2591 		struct page **pages, int *nr)
2592 {
2593 	return 0;
2594 }
2595 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2596 
2597 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2598 			unsigned long end, unsigned int flags,
2599 			struct page **pages, int *nr)
2600 {
2601 	struct page *page;
2602 	struct folio *folio;
2603 	int refs;
2604 
2605 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2606 		return 0;
2607 
2608 	if (pmd_devmap(orig)) {
2609 		if (unlikely(flags & FOLL_LONGTERM))
2610 			return 0;
2611 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2612 					     pages, nr);
2613 	}
2614 
2615 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2616 	refs = record_subpages(page, addr, end, pages + *nr);
2617 
2618 	folio = try_grab_folio(page, refs, flags);
2619 	if (!folio)
2620 		return 0;
2621 
2622 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2623 		gup_put_folio(folio, refs, flags);
2624 		return 0;
2625 	}
2626 
2627 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2628 		gup_put_folio(folio, refs, flags);
2629 		return 0;
2630 	}
2631 
2632 	*nr += refs;
2633 	folio_set_referenced(folio);
2634 	return 1;
2635 }
2636 
2637 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2638 			unsigned long end, unsigned int flags,
2639 			struct page **pages, int *nr)
2640 {
2641 	struct page *page;
2642 	struct folio *folio;
2643 	int refs;
2644 
2645 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2646 		return 0;
2647 
2648 	if (pud_devmap(orig)) {
2649 		if (unlikely(flags & FOLL_LONGTERM))
2650 			return 0;
2651 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2652 					     pages, nr);
2653 	}
2654 
2655 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2656 	refs = record_subpages(page, addr, end, pages + *nr);
2657 
2658 	folio = try_grab_folio(page, refs, flags);
2659 	if (!folio)
2660 		return 0;
2661 
2662 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2663 		gup_put_folio(folio, refs, flags);
2664 		return 0;
2665 	}
2666 
2667 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2668 		gup_put_folio(folio, refs, flags);
2669 		return 0;
2670 	}
2671 
2672 	*nr += refs;
2673 	folio_set_referenced(folio);
2674 	return 1;
2675 }
2676 
2677 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2678 			unsigned long end, unsigned int flags,
2679 			struct page **pages, int *nr)
2680 {
2681 	int refs;
2682 	struct page *page;
2683 	struct folio *folio;
2684 
2685 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2686 		return 0;
2687 
2688 	BUILD_BUG_ON(pgd_devmap(orig));
2689 
2690 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2691 	refs = record_subpages(page, addr, end, pages + *nr);
2692 
2693 	folio = try_grab_folio(page, refs, flags);
2694 	if (!folio)
2695 		return 0;
2696 
2697 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2698 		gup_put_folio(folio, refs, flags);
2699 		return 0;
2700 	}
2701 
2702 	*nr += refs;
2703 	folio_set_referenced(folio);
2704 	return 1;
2705 }
2706 
2707 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2708 		unsigned int flags, struct page **pages, int *nr)
2709 {
2710 	unsigned long next;
2711 	pmd_t *pmdp;
2712 
2713 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2714 	do {
2715 		pmd_t pmd = READ_ONCE(*pmdp);
2716 
2717 		next = pmd_addr_end(addr, end);
2718 		if (!pmd_present(pmd))
2719 			return 0;
2720 
2721 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2722 			     pmd_devmap(pmd))) {
2723 			/*
2724 			 * NUMA hinting faults need to be handled in the GUP
2725 			 * slowpath for accounting purposes and so that they
2726 			 * can be serialised against THP migration.
2727 			 */
2728 			if (pmd_protnone(pmd))
2729 				return 0;
2730 
2731 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2732 				pages, nr))
2733 				return 0;
2734 
2735 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2736 			/*
2737 			 * architecture have different format for hugetlbfs
2738 			 * pmd format and THP pmd format
2739 			 */
2740 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2741 					 PMD_SHIFT, next, flags, pages, nr))
2742 				return 0;
2743 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2744 			return 0;
2745 	} while (pmdp++, addr = next, addr != end);
2746 
2747 	return 1;
2748 }
2749 
2750 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2751 			 unsigned int flags, struct page **pages, int *nr)
2752 {
2753 	unsigned long next;
2754 	pud_t *pudp;
2755 
2756 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2757 	do {
2758 		pud_t pud = READ_ONCE(*pudp);
2759 
2760 		next = pud_addr_end(addr, end);
2761 		if (unlikely(!pud_present(pud)))
2762 			return 0;
2763 		if (unlikely(pud_huge(pud))) {
2764 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2765 					  pages, nr))
2766 				return 0;
2767 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2768 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2769 					 PUD_SHIFT, next, flags, pages, nr))
2770 				return 0;
2771 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2772 			return 0;
2773 	} while (pudp++, addr = next, addr != end);
2774 
2775 	return 1;
2776 }
2777 
2778 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2779 			 unsigned int flags, struct page **pages, int *nr)
2780 {
2781 	unsigned long next;
2782 	p4d_t *p4dp;
2783 
2784 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2785 	do {
2786 		p4d_t p4d = READ_ONCE(*p4dp);
2787 
2788 		next = p4d_addr_end(addr, end);
2789 		if (p4d_none(p4d))
2790 			return 0;
2791 		BUILD_BUG_ON(p4d_huge(p4d));
2792 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2793 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2794 					 P4D_SHIFT, next, flags, pages, nr))
2795 				return 0;
2796 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2797 			return 0;
2798 	} while (p4dp++, addr = next, addr != end);
2799 
2800 	return 1;
2801 }
2802 
2803 static void gup_pgd_range(unsigned long addr, unsigned long end,
2804 		unsigned int flags, struct page **pages, int *nr)
2805 {
2806 	unsigned long next;
2807 	pgd_t *pgdp;
2808 
2809 	pgdp = pgd_offset(current->mm, addr);
2810 	do {
2811 		pgd_t pgd = READ_ONCE(*pgdp);
2812 
2813 		next = pgd_addr_end(addr, end);
2814 		if (pgd_none(pgd))
2815 			return;
2816 		if (unlikely(pgd_huge(pgd))) {
2817 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2818 					  pages, nr))
2819 				return;
2820 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2821 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2822 					 PGDIR_SHIFT, next, flags, pages, nr))
2823 				return;
2824 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2825 			return;
2826 	} while (pgdp++, addr = next, addr != end);
2827 }
2828 #else
2829 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2830 		unsigned int flags, struct page **pages, int *nr)
2831 {
2832 }
2833 #endif /* CONFIG_HAVE_FAST_GUP */
2834 
2835 #ifndef gup_fast_permitted
2836 /*
2837  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2838  * we need to fall back to the slow version:
2839  */
2840 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2841 {
2842 	return true;
2843 }
2844 #endif
2845 
2846 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2847 				   unsigned int gup_flags, struct page **pages)
2848 {
2849 	int ret;
2850 
2851 	/*
2852 	 * FIXME: FOLL_LONGTERM does not work with
2853 	 * get_user_pages_unlocked() (see comments in that function)
2854 	 */
2855 	if (gup_flags & FOLL_LONGTERM) {
2856 		mmap_read_lock(current->mm);
2857 		ret = __gup_longterm_locked(current->mm,
2858 					    start, nr_pages,
2859 					    pages, NULL, gup_flags);
2860 		mmap_read_unlock(current->mm);
2861 	} else {
2862 		ret = get_user_pages_unlocked(start, nr_pages,
2863 					      pages, gup_flags);
2864 	}
2865 
2866 	return ret;
2867 }
2868 
2869 static unsigned long lockless_pages_from_mm(unsigned long start,
2870 					    unsigned long end,
2871 					    unsigned int gup_flags,
2872 					    struct page **pages)
2873 {
2874 	unsigned long flags;
2875 	int nr_pinned = 0;
2876 	unsigned seq;
2877 
2878 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2879 	    !gup_fast_permitted(start, end))
2880 		return 0;
2881 
2882 	if (gup_flags & FOLL_PIN) {
2883 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2884 		if (seq & 1)
2885 			return 0;
2886 	}
2887 
2888 	/*
2889 	 * Disable interrupts. The nested form is used, in order to allow full,
2890 	 * general purpose use of this routine.
2891 	 *
2892 	 * With interrupts disabled, we block page table pages from being freed
2893 	 * from under us. See struct mmu_table_batch comments in
2894 	 * include/asm-generic/tlb.h for more details.
2895 	 *
2896 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2897 	 * that come from THPs splitting.
2898 	 */
2899 	local_irq_save(flags);
2900 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2901 	local_irq_restore(flags);
2902 
2903 	/*
2904 	 * When pinning pages for DMA there could be a concurrent write protect
2905 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2906 	 */
2907 	if (gup_flags & FOLL_PIN) {
2908 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2909 			unpin_user_pages_lockless(pages, nr_pinned);
2910 			return 0;
2911 		} else {
2912 			sanity_check_pinned_pages(pages, nr_pinned);
2913 		}
2914 	}
2915 	return nr_pinned;
2916 }
2917 
2918 static int internal_get_user_pages_fast(unsigned long start,
2919 					unsigned long nr_pages,
2920 					unsigned int gup_flags,
2921 					struct page **pages)
2922 {
2923 	unsigned long len, end;
2924 	unsigned long nr_pinned;
2925 	int ret;
2926 
2927 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2928 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2929 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2930 		return -EINVAL;
2931 
2932 	if (gup_flags & FOLL_PIN)
2933 		mm_set_has_pinned_flag(&current->mm->flags);
2934 
2935 	if (!(gup_flags & FOLL_FAST_ONLY))
2936 		might_lock_read(&current->mm->mmap_lock);
2937 
2938 	start = untagged_addr(start) & PAGE_MASK;
2939 	len = nr_pages << PAGE_SHIFT;
2940 	if (check_add_overflow(start, len, &end))
2941 		return 0;
2942 	if (unlikely(!access_ok((void __user *)start, len)))
2943 		return -EFAULT;
2944 
2945 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2946 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2947 		return nr_pinned;
2948 
2949 	/* Slow path: try to get the remaining pages with get_user_pages */
2950 	start += nr_pinned << PAGE_SHIFT;
2951 	pages += nr_pinned;
2952 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2953 				      pages);
2954 	if (ret < 0) {
2955 		/*
2956 		 * The caller has to unpin the pages we already pinned so
2957 		 * returning -errno is not an option
2958 		 */
2959 		if (nr_pinned)
2960 			return nr_pinned;
2961 		return ret;
2962 	}
2963 	return ret + nr_pinned;
2964 }
2965 
2966 /**
2967  * get_user_pages_fast_only() - pin user pages in memory
2968  * @start:      starting user address
2969  * @nr_pages:   number of pages from start to pin
2970  * @gup_flags:  flags modifying pin behaviour
2971  * @pages:      array that receives pointers to the pages pinned.
2972  *              Should be at least nr_pages long.
2973  *
2974  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2975  * the regular GUP.
2976  * Note a difference with get_user_pages_fast: this always returns the
2977  * number of pages pinned, 0 if no pages were pinned.
2978  *
2979  * If the architecture does not support this function, simply return with no
2980  * pages pinned.
2981  *
2982  * Careful, careful! COW breaking can go either way, so a non-write
2983  * access can get ambiguous page results. If you call this function without
2984  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2985  */
2986 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2987 			     unsigned int gup_flags, struct page **pages)
2988 {
2989 	int nr_pinned;
2990 	/*
2991 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2992 	 * because gup fast is always a "pin with a +1 page refcount" request.
2993 	 *
2994 	 * FOLL_FAST_ONLY is required in order to match the API description of
2995 	 * this routine: no fall back to regular ("slow") GUP.
2996 	 */
2997 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2998 
2999 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3000 						 pages);
3001 
3002 	/*
3003 	 * As specified in the API description above, this routine is not
3004 	 * allowed to return negative values. However, the common core
3005 	 * routine internal_get_user_pages_fast() *can* return -errno.
3006 	 * Therefore, correct for that here:
3007 	 */
3008 	if (nr_pinned < 0)
3009 		nr_pinned = 0;
3010 
3011 	return nr_pinned;
3012 }
3013 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3014 
3015 /**
3016  * get_user_pages_fast() - pin user pages in memory
3017  * @start:      starting user address
3018  * @nr_pages:   number of pages from start to pin
3019  * @gup_flags:  flags modifying pin behaviour
3020  * @pages:      array that receives pointers to the pages pinned.
3021  *              Should be at least nr_pages long.
3022  *
3023  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3024  * If not successful, it will fall back to taking the lock and
3025  * calling get_user_pages().
3026  *
3027  * Returns number of pages pinned. This may be fewer than the number requested.
3028  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3029  * -errno.
3030  */
3031 int get_user_pages_fast(unsigned long start, int nr_pages,
3032 			unsigned int gup_flags, struct page **pages)
3033 {
3034 	if (!is_valid_gup_flags(gup_flags))
3035 		return -EINVAL;
3036 
3037 	/*
3038 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3039 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3040 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3041 	 * request.
3042 	 */
3043 	gup_flags |= FOLL_GET;
3044 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3045 }
3046 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3047 
3048 /**
3049  * pin_user_pages_fast() - pin user pages in memory without taking locks
3050  *
3051  * @start:      starting user address
3052  * @nr_pages:   number of pages from start to pin
3053  * @gup_flags:  flags modifying pin behaviour
3054  * @pages:      array that receives pointers to the pages pinned.
3055  *              Should be at least nr_pages long.
3056  *
3057  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3058  * get_user_pages_fast() for documentation on the function arguments, because
3059  * the arguments here are identical.
3060  *
3061  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3062  * see Documentation/core-api/pin_user_pages.rst for further details.
3063  */
3064 int pin_user_pages_fast(unsigned long start, int nr_pages,
3065 			unsigned int gup_flags, struct page **pages)
3066 {
3067 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3068 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3069 		return -EINVAL;
3070 
3071 	if (WARN_ON_ONCE(!pages))
3072 		return -EINVAL;
3073 
3074 	gup_flags |= FOLL_PIN;
3075 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3076 }
3077 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3078 
3079 /*
3080  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3081  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3082  *
3083  * The API rules are the same, too: no negative values may be returned.
3084  */
3085 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3086 			     unsigned int gup_flags, struct page **pages)
3087 {
3088 	int nr_pinned;
3089 
3090 	/*
3091 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3092 	 * rules require returning 0, rather than -errno:
3093 	 */
3094 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3095 		return 0;
3096 
3097 	if (WARN_ON_ONCE(!pages))
3098 		return 0;
3099 	/*
3100 	 * FOLL_FAST_ONLY is required in order to match the API description of
3101 	 * this routine: no fall back to regular ("slow") GUP.
3102 	 */
3103 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3104 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3105 						 pages);
3106 	/*
3107 	 * This routine is not allowed to return negative values. However,
3108 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3109 	 * correct for that here:
3110 	 */
3111 	if (nr_pinned < 0)
3112 		nr_pinned = 0;
3113 
3114 	return nr_pinned;
3115 }
3116 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3117 
3118 /**
3119  * pin_user_pages_remote() - pin pages of a remote process
3120  *
3121  * @mm:		mm_struct of target mm
3122  * @start:	starting user address
3123  * @nr_pages:	number of pages from start to pin
3124  * @gup_flags:	flags modifying lookup behaviour
3125  * @pages:	array that receives pointers to the pages pinned.
3126  *		Should be at least nr_pages long.
3127  * @vmas:	array of pointers to vmas corresponding to each page.
3128  *		Or NULL if the caller does not require them.
3129  * @locked:	pointer to lock flag indicating whether lock is held and
3130  *		subsequently whether VM_FAULT_RETRY functionality can be
3131  *		utilised. Lock must initially be held.
3132  *
3133  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3134  * get_user_pages_remote() for documentation on the function arguments, because
3135  * the arguments here are identical.
3136  *
3137  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3138  * see Documentation/core-api/pin_user_pages.rst for details.
3139  */
3140 long pin_user_pages_remote(struct mm_struct *mm,
3141 			   unsigned long start, unsigned long nr_pages,
3142 			   unsigned int gup_flags, struct page **pages,
3143 			   struct vm_area_struct **vmas, int *locked)
3144 {
3145 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3146 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3147 		return -EINVAL;
3148 
3149 	if (WARN_ON_ONCE(!pages))
3150 		return -EINVAL;
3151 
3152 	gup_flags |= FOLL_PIN;
3153 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3154 				       pages, vmas, locked);
3155 }
3156 EXPORT_SYMBOL(pin_user_pages_remote);
3157 
3158 /**
3159  * pin_user_pages() - pin user pages in memory for use by other devices
3160  *
3161  * @start:	starting user address
3162  * @nr_pages:	number of pages from start to pin
3163  * @gup_flags:	flags modifying lookup behaviour
3164  * @pages:	array that receives pointers to the pages pinned.
3165  *		Should be at least nr_pages long.
3166  * @vmas:	array of pointers to vmas corresponding to each page.
3167  *		Or NULL if the caller does not require them.
3168  *
3169  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3170  * FOLL_PIN is set.
3171  *
3172  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3173  * see Documentation/core-api/pin_user_pages.rst for details.
3174  */
3175 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3176 		    unsigned int gup_flags, struct page **pages,
3177 		    struct vm_area_struct **vmas)
3178 {
3179 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3180 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3181 		return -EINVAL;
3182 
3183 	if (WARN_ON_ONCE(!pages))
3184 		return -EINVAL;
3185 
3186 	gup_flags |= FOLL_PIN;
3187 	return __gup_longterm_locked(current->mm, start, nr_pages,
3188 				     pages, vmas, gup_flags);
3189 }
3190 EXPORT_SYMBOL(pin_user_pages);
3191 
3192 /*
3193  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3194  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3195  * FOLL_PIN and rejects FOLL_GET.
3196  */
3197 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3198 			     struct page **pages, unsigned int gup_flags)
3199 {
3200 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3201 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3202 		return -EINVAL;
3203 
3204 	if (WARN_ON_ONCE(!pages))
3205 		return -EINVAL;
3206 
3207 	gup_flags |= FOLL_PIN;
3208 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3209 }
3210 EXPORT_SYMBOL(pin_user_pages_unlocked);
3211