xref: /linux/mm/gup.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 							  int refs,
83 							  unsigned int flags)
84 {
85 	if (flags & FOLL_GET)
86 		return try_get_compound_head(page, refs);
87 	else if (flags & FOLL_PIN) {
88 		int orig_refs = refs;
89 
90 		/*
91 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 		 * path, so fail and let the caller fall back to the slow path.
93 		 */
94 		if (unlikely(flags & FOLL_LONGTERM) &&
95 				is_migrate_cma_page(page))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 /**
127  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133  *
134  * @page:    pointer to page to be grabbed
135  * @flags:   gup flags: these are the FOLL_* flag values.
136  *
137  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138  * time. Cases:
139  *
140  *    FOLL_GET: page's refcount will be incremented by 1.
141  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142  *
143  * Return: true for success, or if no action was required (if neither FOLL_PIN
144  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145  * FOLL_PIN was set, but the page could not be grabbed.
146  */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150 
151 	if (flags & FOLL_GET)
152 		return try_get_page(page);
153 	else if (flags & FOLL_PIN) {
154 		int refs = 1;
155 
156 		page = compound_head(page);
157 
158 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 			return false;
160 
161 		if (hpage_pincount_available(page))
162 			hpage_pincount_add(page, 1);
163 		else
164 			refs = GUP_PIN_COUNTING_BIAS;
165 
166 		/*
167 		 * Similar to try_grab_compound_head(): even if using the
168 		 * hpage_pincount_add/_sub() routines, be sure to
169 		 * *also* increment the normal page refcount field at least
170 		 * once, so that the page really is pinned.
171 		 */
172 		page_ref_add(page, refs);
173 
174 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 	}
176 
177 	return true;
178 }
179 
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 	int count, refs = 1;
184 
185 	if (!page_is_devmap_managed(page))
186 		return false;
187 
188 	if (hpage_pincount_available(page))
189 		hpage_pincount_sub(page, 1);
190 	else
191 		refs = GUP_PIN_COUNTING_BIAS;
192 
193 	count = page_ref_sub_return(page, refs);
194 
195 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 	/*
197 	 * devmap page refcounts are 1-based, rather than 0-based: if
198 	 * refcount is 1, then the page is free and the refcount is
199 	 * stable because nobody holds a reference on the page.
200 	 */
201 	if (count == 1)
202 		free_devmap_managed_page(page);
203 	else if (!count)
204 		__put_page(page);
205 
206 	return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 	return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214 
215 /**
216  * unpin_user_page() - release a dma-pinned page
217  * @page:            pointer to page to be released
218  *
219  * Pages that were pinned via pin_user_pages*() must be released via either
220  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221  * that such pages can be separately tracked and uniquely handled. In
222  * particular, interactions with RDMA and filesystems need special handling.
223  */
224 void unpin_user_page(struct page *page)
225 {
226 	int refs = 1;
227 
228 	page = compound_head(page);
229 
230 	/*
231 	 * For devmap managed pages we need to catch refcount transition from
232 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 	 * page is free and we need to inform the device driver through
234 	 * callback. See include/linux/memremap.h and HMM for details.
235 	 */
236 	if (__unpin_devmap_managed_user_page(page))
237 		return;
238 
239 	if (hpage_pincount_available(page))
240 		hpage_pincount_sub(page, 1);
241 	else
242 		refs = GUP_PIN_COUNTING_BIAS;
243 
244 	if (page_ref_sub_and_test(page, refs))
245 		__put_page(page);
246 
247 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250 
251 /**
252  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253  * @pages:  array of pages to be maybe marked dirty, and definitely released.
254  * @npages: number of pages in the @pages array.
255  * @make_dirty: whether to mark the pages dirty
256  *
257  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258  * variants called on that page.
259  *
260  * For each page in the @pages array, make that page (or its head page, if a
261  * compound page) dirty, if @make_dirty is true, and if the page was previously
262  * listed as clean. In any case, releases all pages using unpin_user_page(),
263  * possibly via unpin_user_pages(), for the non-dirty case.
264  *
265  * Please see the unpin_user_page() documentation for details.
266  *
267  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268  * required, then the caller should a) verify that this is really correct,
269  * because _lock() is usually required, and b) hand code it:
270  * set_page_dirty_lock(), unpin_user_page().
271  *
272  */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 				 bool make_dirty)
275 {
276 	unsigned long index;
277 
278 	/*
279 	 * TODO: this can be optimized for huge pages: if a series of pages is
280 	 * physically contiguous and part of the same compound page, then a
281 	 * single operation to the head page should suffice.
282 	 */
283 
284 	if (!make_dirty) {
285 		unpin_user_pages(pages, npages);
286 		return;
287 	}
288 
289 	for (index = 0; index < npages; index++) {
290 		struct page *page = compound_head(pages[index]);
291 		/*
292 		 * Checking PageDirty at this point may race with
293 		 * clear_page_dirty_for_io(), but that's OK. Two key
294 		 * cases:
295 		 *
296 		 * 1) This code sees the page as already dirty, so it
297 		 * skips the call to set_page_dirty(). That could happen
298 		 * because clear_page_dirty_for_io() called
299 		 * page_mkclean(), followed by set_page_dirty().
300 		 * However, now the page is going to get written back,
301 		 * which meets the original intention of setting it
302 		 * dirty, so all is well: clear_page_dirty_for_io() goes
303 		 * on to call TestClearPageDirty(), and write the page
304 		 * back.
305 		 *
306 		 * 2) This code sees the page as clean, so it calls
307 		 * set_page_dirty(). The page stays dirty, despite being
308 		 * written back, so it gets written back again in the
309 		 * next writeback cycle. This is harmless.
310 		 */
311 		if (!PageDirty(page))
312 			set_page_dirty_lock(page);
313 		unpin_user_page(page);
314 	}
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 
318 /**
319  * unpin_user_pages() - release an array of gup-pinned pages.
320  * @pages:  array of pages to be marked dirty and released.
321  * @npages: number of pages in the @pages array.
322  *
323  * For each page in the @pages array, release the page using unpin_user_page().
324  *
325  * Please see the unpin_user_page() documentation for details.
326  */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 	unsigned long index;
330 
331 	/*
332 	 * TODO: this can be optimized for huge pages: if a series of pages is
333 	 * physically contiguous and part of the same compound page, then a
334 	 * single operation to the head page should suffice.
335 	 */
336 	for (index = 0; index < npages; index++)
337 		unpin_user_page(pages[index]);
338 }
339 EXPORT_SYMBOL(unpin_user_pages);
340 
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 		unsigned int flags)
344 {
345 	/*
346 	 * When core dumping an enormous anonymous area that nobody
347 	 * has touched so far, we don't want to allocate unnecessary pages or
348 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
349 	 * then get_dump_page() will return NULL to leave a hole in the dump.
350 	 * But we can only make this optimization where a hole would surely
351 	 * be zero-filled if handle_mm_fault() actually did handle it.
352 	 */
353 	if ((flags & FOLL_DUMP) &&
354 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 		return ERR_PTR(-EFAULT);
356 	return NULL;
357 }
358 
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 		pte_t *pte, unsigned int flags)
361 {
362 	/* No page to get reference */
363 	if (flags & FOLL_GET)
364 		return -EFAULT;
365 
366 	if (flags & FOLL_TOUCH) {
367 		pte_t entry = *pte;
368 
369 		if (flags & FOLL_WRITE)
370 			entry = pte_mkdirty(entry);
371 		entry = pte_mkyoung(entry);
372 
373 		if (!pte_same(*pte, entry)) {
374 			set_pte_at(vma->vm_mm, address, pte, entry);
375 			update_mmu_cache(vma, address, pte);
376 		}
377 	}
378 
379 	/* Proper page table entry exists, but no corresponding struct page */
380 	return -EEXIST;
381 }
382 
383 /*
384  * FOLL_FORCE can write to even unwritable pte's, but only
385  * after we've gone through a COW cycle and they are dirty.
386  */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 	return pte_write(pte) ||
390 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
391 }
392 
393 static struct page *follow_page_pte(struct vm_area_struct *vma,
394 		unsigned long address, pmd_t *pmd, unsigned int flags,
395 		struct dev_pagemap **pgmap)
396 {
397 	struct mm_struct *mm = vma->vm_mm;
398 	struct page *page;
399 	spinlock_t *ptl;
400 	pte_t *ptep, pte;
401 	int ret;
402 
403 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
404 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
405 			 (FOLL_PIN | FOLL_GET)))
406 		return ERR_PTR(-EINVAL);
407 retry:
408 	if (unlikely(pmd_bad(*pmd)))
409 		return no_page_table(vma, flags);
410 
411 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
412 	pte = *ptep;
413 	if (!pte_present(pte)) {
414 		swp_entry_t entry;
415 		/*
416 		 * KSM's break_ksm() relies upon recognizing a ksm page
417 		 * even while it is being migrated, so for that case we
418 		 * need migration_entry_wait().
419 		 */
420 		if (likely(!(flags & FOLL_MIGRATION)))
421 			goto no_page;
422 		if (pte_none(pte))
423 			goto no_page;
424 		entry = pte_to_swp_entry(pte);
425 		if (!is_migration_entry(entry))
426 			goto no_page;
427 		pte_unmap_unlock(ptep, ptl);
428 		migration_entry_wait(mm, pmd, address);
429 		goto retry;
430 	}
431 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
432 		goto no_page;
433 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
434 		pte_unmap_unlock(ptep, ptl);
435 		return NULL;
436 	}
437 
438 	page = vm_normal_page(vma, address, pte);
439 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
440 		/*
441 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
442 		 * case since they are only valid while holding the pgmap
443 		 * reference.
444 		 */
445 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
446 		if (*pgmap)
447 			page = pte_page(pte);
448 		else
449 			goto no_page;
450 	} else if (unlikely(!page)) {
451 		if (flags & FOLL_DUMP) {
452 			/* Avoid special (like zero) pages in core dumps */
453 			page = ERR_PTR(-EFAULT);
454 			goto out;
455 		}
456 
457 		if (is_zero_pfn(pte_pfn(pte))) {
458 			page = pte_page(pte);
459 		} else {
460 			ret = follow_pfn_pte(vma, address, ptep, flags);
461 			page = ERR_PTR(ret);
462 			goto out;
463 		}
464 	}
465 
466 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
467 		get_page(page);
468 		pte_unmap_unlock(ptep, ptl);
469 		lock_page(page);
470 		ret = split_huge_page(page);
471 		unlock_page(page);
472 		put_page(page);
473 		if (ret)
474 			return ERR_PTR(ret);
475 		goto retry;
476 	}
477 
478 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
479 	if (unlikely(!try_grab_page(page, flags))) {
480 		page = ERR_PTR(-ENOMEM);
481 		goto out;
482 	}
483 	/*
484 	 * We need to make the page accessible if and only if we are going
485 	 * to access its content (the FOLL_PIN case).  Please see
486 	 * Documentation/core-api/pin_user_pages.rst for details.
487 	 */
488 	if (flags & FOLL_PIN) {
489 		ret = arch_make_page_accessible(page);
490 		if (ret) {
491 			unpin_user_page(page);
492 			page = ERR_PTR(ret);
493 			goto out;
494 		}
495 	}
496 	if (flags & FOLL_TOUCH) {
497 		if ((flags & FOLL_WRITE) &&
498 		    !pte_dirty(pte) && !PageDirty(page))
499 			set_page_dirty(page);
500 		/*
501 		 * pte_mkyoung() would be more correct here, but atomic care
502 		 * is needed to avoid losing the dirty bit: it is easier to use
503 		 * mark_page_accessed().
504 		 */
505 		mark_page_accessed(page);
506 	}
507 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
508 		/* Do not mlock pte-mapped THP */
509 		if (PageTransCompound(page))
510 			goto out;
511 
512 		/*
513 		 * The preliminary mapping check is mainly to avoid the
514 		 * pointless overhead of lock_page on the ZERO_PAGE
515 		 * which might bounce very badly if there is contention.
516 		 *
517 		 * If the page is already locked, we don't need to
518 		 * handle it now - vmscan will handle it later if and
519 		 * when it attempts to reclaim the page.
520 		 */
521 		if (page->mapping && trylock_page(page)) {
522 			lru_add_drain();  /* push cached pages to LRU */
523 			/*
524 			 * Because we lock page here, and migration is
525 			 * blocked by the pte's page reference, and we
526 			 * know the page is still mapped, we don't even
527 			 * need to check for file-cache page truncation.
528 			 */
529 			mlock_vma_page(page);
530 			unlock_page(page);
531 		}
532 	}
533 out:
534 	pte_unmap_unlock(ptep, ptl);
535 	return page;
536 no_page:
537 	pte_unmap_unlock(ptep, ptl);
538 	if (!pte_none(pte))
539 		return NULL;
540 	return no_page_table(vma, flags);
541 }
542 
543 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
544 				    unsigned long address, pud_t *pudp,
545 				    unsigned int flags,
546 				    struct follow_page_context *ctx)
547 {
548 	pmd_t *pmd, pmdval;
549 	spinlock_t *ptl;
550 	struct page *page;
551 	struct mm_struct *mm = vma->vm_mm;
552 
553 	pmd = pmd_offset(pudp, address);
554 	/*
555 	 * The READ_ONCE() will stabilize the pmdval in a register or
556 	 * on the stack so that it will stop changing under the code.
557 	 */
558 	pmdval = READ_ONCE(*pmd);
559 	if (pmd_none(pmdval))
560 		return no_page_table(vma, flags);
561 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
562 		page = follow_huge_pmd(mm, address, pmd, flags);
563 		if (page)
564 			return page;
565 		return no_page_table(vma, flags);
566 	}
567 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
568 		page = follow_huge_pd(vma, address,
569 				      __hugepd(pmd_val(pmdval)), flags,
570 				      PMD_SHIFT);
571 		if (page)
572 			return page;
573 		return no_page_table(vma, flags);
574 	}
575 retry:
576 	if (!pmd_present(pmdval)) {
577 		if (likely(!(flags & FOLL_MIGRATION)))
578 			return no_page_table(vma, flags);
579 		VM_BUG_ON(thp_migration_supported() &&
580 				  !is_pmd_migration_entry(pmdval));
581 		if (is_pmd_migration_entry(pmdval))
582 			pmd_migration_entry_wait(mm, pmd);
583 		pmdval = READ_ONCE(*pmd);
584 		/*
585 		 * MADV_DONTNEED may convert the pmd to null because
586 		 * mmap_lock is held in read mode
587 		 */
588 		if (pmd_none(pmdval))
589 			return no_page_table(vma, flags);
590 		goto retry;
591 	}
592 	if (pmd_devmap(pmdval)) {
593 		ptl = pmd_lock(mm, pmd);
594 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
595 		spin_unlock(ptl);
596 		if (page)
597 			return page;
598 	}
599 	if (likely(!pmd_trans_huge(pmdval)))
600 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
601 
602 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
603 		return no_page_table(vma, flags);
604 
605 retry_locked:
606 	ptl = pmd_lock(mm, pmd);
607 	if (unlikely(pmd_none(*pmd))) {
608 		spin_unlock(ptl);
609 		return no_page_table(vma, flags);
610 	}
611 	if (unlikely(!pmd_present(*pmd))) {
612 		spin_unlock(ptl);
613 		if (likely(!(flags & FOLL_MIGRATION)))
614 			return no_page_table(vma, flags);
615 		pmd_migration_entry_wait(mm, pmd);
616 		goto retry_locked;
617 	}
618 	if (unlikely(!pmd_trans_huge(*pmd))) {
619 		spin_unlock(ptl);
620 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
621 	}
622 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
623 		int ret;
624 		page = pmd_page(*pmd);
625 		if (is_huge_zero_page(page)) {
626 			spin_unlock(ptl);
627 			ret = 0;
628 			split_huge_pmd(vma, pmd, address);
629 			if (pmd_trans_unstable(pmd))
630 				ret = -EBUSY;
631 		} else if (flags & FOLL_SPLIT) {
632 			if (unlikely(!try_get_page(page))) {
633 				spin_unlock(ptl);
634 				return ERR_PTR(-ENOMEM);
635 			}
636 			spin_unlock(ptl);
637 			lock_page(page);
638 			ret = split_huge_page(page);
639 			unlock_page(page);
640 			put_page(page);
641 			if (pmd_none(*pmd))
642 				return no_page_table(vma, flags);
643 		} else {  /* flags & FOLL_SPLIT_PMD */
644 			spin_unlock(ptl);
645 			split_huge_pmd(vma, pmd, address);
646 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
647 		}
648 
649 		return ret ? ERR_PTR(ret) :
650 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
651 	}
652 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
653 	spin_unlock(ptl);
654 	ctx->page_mask = HPAGE_PMD_NR - 1;
655 	return page;
656 }
657 
658 static struct page *follow_pud_mask(struct vm_area_struct *vma,
659 				    unsigned long address, p4d_t *p4dp,
660 				    unsigned int flags,
661 				    struct follow_page_context *ctx)
662 {
663 	pud_t *pud;
664 	spinlock_t *ptl;
665 	struct page *page;
666 	struct mm_struct *mm = vma->vm_mm;
667 
668 	pud = pud_offset(p4dp, address);
669 	if (pud_none(*pud))
670 		return no_page_table(vma, flags);
671 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
672 		page = follow_huge_pud(mm, address, pud, flags);
673 		if (page)
674 			return page;
675 		return no_page_table(vma, flags);
676 	}
677 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
678 		page = follow_huge_pd(vma, address,
679 				      __hugepd(pud_val(*pud)), flags,
680 				      PUD_SHIFT);
681 		if (page)
682 			return page;
683 		return no_page_table(vma, flags);
684 	}
685 	if (pud_devmap(*pud)) {
686 		ptl = pud_lock(mm, pud);
687 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
688 		spin_unlock(ptl);
689 		if (page)
690 			return page;
691 	}
692 	if (unlikely(pud_bad(*pud)))
693 		return no_page_table(vma, flags);
694 
695 	return follow_pmd_mask(vma, address, pud, flags, ctx);
696 }
697 
698 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
699 				    unsigned long address, pgd_t *pgdp,
700 				    unsigned int flags,
701 				    struct follow_page_context *ctx)
702 {
703 	p4d_t *p4d;
704 	struct page *page;
705 
706 	p4d = p4d_offset(pgdp, address);
707 	if (p4d_none(*p4d))
708 		return no_page_table(vma, flags);
709 	BUILD_BUG_ON(p4d_huge(*p4d));
710 	if (unlikely(p4d_bad(*p4d)))
711 		return no_page_table(vma, flags);
712 
713 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
714 		page = follow_huge_pd(vma, address,
715 				      __hugepd(p4d_val(*p4d)), flags,
716 				      P4D_SHIFT);
717 		if (page)
718 			return page;
719 		return no_page_table(vma, flags);
720 	}
721 	return follow_pud_mask(vma, address, p4d, flags, ctx);
722 }
723 
724 /**
725  * follow_page_mask - look up a page descriptor from a user-virtual address
726  * @vma: vm_area_struct mapping @address
727  * @address: virtual address to look up
728  * @flags: flags modifying lookup behaviour
729  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
730  *       pointer to output page_mask
731  *
732  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
733  *
734  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
735  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
736  *
737  * On output, the @ctx->page_mask is set according to the size of the page.
738  *
739  * Return: the mapped (struct page *), %NULL if no mapping exists, or
740  * an error pointer if there is a mapping to something not represented
741  * by a page descriptor (see also vm_normal_page()).
742  */
743 static struct page *follow_page_mask(struct vm_area_struct *vma,
744 			      unsigned long address, unsigned int flags,
745 			      struct follow_page_context *ctx)
746 {
747 	pgd_t *pgd;
748 	struct page *page;
749 	struct mm_struct *mm = vma->vm_mm;
750 
751 	ctx->page_mask = 0;
752 
753 	/* make this handle hugepd */
754 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
755 	if (!IS_ERR(page)) {
756 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
757 		return page;
758 	}
759 
760 	pgd = pgd_offset(mm, address);
761 
762 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
763 		return no_page_table(vma, flags);
764 
765 	if (pgd_huge(*pgd)) {
766 		page = follow_huge_pgd(mm, address, pgd, flags);
767 		if (page)
768 			return page;
769 		return no_page_table(vma, flags);
770 	}
771 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
772 		page = follow_huge_pd(vma, address,
773 				      __hugepd(pgd_val(*pgd)), flags,
774 				      PGDIR_SHIFT);
775 		if (page)
776 			return page;
777 		return no_page_table(vma, flags);
778 	}
779 
780 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
781 }
782 
783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
784 			 unsigned int foll_flags)
785 {
786 	struct follow_page_context ctx = { NULL };
787 	struct page *page;
788 
789 	page = follow_page_mask(vma, address, foll_flags, &ctx);
790 	if (ctx.pgmap)
791 		put_dev_pagemap(ctx.pgmap);
792 	return page;
793 }
794 
795 static int get_gate_page(struct mm_struct *mm, unsigned long address,
796 		unsigned int gup_flags, struct vm_area_struct **vma,
797 		struct page **page)
798 {
799 	pgd_t *pgd;
800 	p4d_t *p4d;
801 	pud_t *pud;
802 	pmd_t *pmd;
803 	pte_t *pte;
804 	int ret = -EFAULT;
805 
806 	/* user gate pages are read-only */
807 	if (gup_flags & FOLL_WRITE)
808 		return -EFAULT;
809 	if (address > TASK_SIZE)
810 		pgd = pgd_offset_k(address);
811 	else
812 		pgd = pgd_offset_gate(mm, address);
813 	if (pgd_none(*pgd))
814 		return -EFAULT;
815 	p4d = p4d_offset(pgd, address);
816 	if (p4d_none(*p4d))
817 		return -EFAULT;
818 	pud = pud_offset(p4d, address);
819 	if (pud_none(*pud))
820 		return -EFAULT;
821 	pmd = pmd_offset(pud, address);
822 	if (!pmd_present(*pmd))
823 		return -EFAULT;
824 	VM_BUG_ON(pmd_trans_huge(*pmd));
825 	pte = pte_offset_map(pmd, address);
826 	if (pte_none(*pte))
827 		goto unmap;
828 	*vma = get_gate_vma(mm);
829 	if (!page)
830 		goto out;
831 	*page = vm_normal_page(*vma, address, *pte);
832 	if (!*page) {
833 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
834 			goto unmap;
835 		*page = pte_page(*pte);
836 	}
837 	if (unlikely(!try_grab_page(*page, gup_flags))) {
838 		ret = -ENOMEM;
839 		goto unmap;
840 	}
841 out:
842 	ret = 0;
843 unmap:
844 	pte_unmap(pte);
845 	return ret;
846 }
847 
848 /*
849  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
850  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
851  * is, *@locked will be set to 0 and -EBUSY returned.
852  */
853 static int faultin_page(struct vm_area_struct *vma,
854 		unsigned long address, unsigned int *flags, int *locked)
855 {
856 	unsigned int fault_flags = 0;
857 	vm_fault_t ret;
858 
859 	/* mlock all present pages, but do not fault in new pages */
860 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
861 		return -ENOENT;
862 	if (*flags & FOLL_WRITE)
863 		fault_flags |= FAULT_FLAG_WRITE;
864 	if (*flags & FOLL_REMOTE)
865 		fault_flags |= FAULT_FLAG_REMOTE;
866 	if (locked)
867 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 	if (*flags & FOLL_NOWAIT)
869 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870 	if (*flags & FOLL_TRIED) {
871 		/*
872 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 		 * can co-exist
874 		 */
875 		fault_flags |= FAULT_FLAG_TRIED;
876 	}
877 
878 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
879 	if (ret & VM_FAULT_ERROR) {
880 		int err = vm_fault_to_errno(ret, *flags);
881 
882 		if (err)
883 			return err;
884 		BUG();
885 	}
886 
887 	if (ret & VM_FAULT_RETRY) {
888 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
889 			*locked = 0;
890 		return -EBUSY;
891 	}
892 
893 	/*
894 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
895 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
896 	 * can thus safely do subsequent page lookups as if they were reads.
897 	 * But only do so when looping for pte_write is futile: in some cases
898 	 * userspace may also be wanting to write to the gotten user page,
899 	 * which a read fault here might prevent (a readonly page might get
900 	 * reCOWed by userspace write).
901 	 */
902 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
903 		*flags |= FOLL_COW;
904 	return 0;
905 }
906 
907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
908 {
909 	vm_flags_t vm_flags = vma->vm_flags;
910 	int write = (gup_flags & FOLL_WRITE);
911 	int foreign = (gup_flags & FOLL_REMOTE);
912 
913 	if (vm_flags & (VM_IO | VM_PFNMAP))
914 		return -EFAULT;
915 
916 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
917 		return -EFAULT;
918 
919 	if (write) {
920 		if (!(vm_flags & VM_WRITE)) {
921 			if (!(gup_flags & FOLL_FORCE))
922 				return -EFAULT;
923 			/*
924 			 * We used to let the write,force case do COW in a
925 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
926 			 * set a breakpoint in a read-only mapping of an
927 			 * executable, without corrupting the file (yet only
928 			 * when that file had been opened for writing!).
929 			 * Anon pages in shared mappings are surprising: now
930 			 * just reject it.
931 			 */
932 			if (!is_cow_mapping(vm_flags))
933 				return -EFAULT;
934 		}
935 	} else if (!(vm_flags & VM_READ)) {
936 		if (!(gup_flags & FOLL_FORCE))
937 			return -EFAULT;
938 		/*
939 		 * Is there actually any vma we can reach here which does not
940 		 * have VM_MAYREAD set?
941 		 */
942 		if (!(vm_flags & VM_MAYREAD))
943 			return -EFAULT;
944 	}
945 	/*
946 	 * gups are always data accesses, not instruction
947 	 * fetches, so execute=false here
948 	 */
949 	if (!arch_vma_access_permitted(vma, write, false, foreign))
950 		return -EFAULT;
951 	return 0;
952 }
953 
954 /**
955  * __get_user_pages() - pin user pages in memory
956  * @mm:		mm_struct of target mm
957  * @start:	starting user address
958  * @nr_pages:	number of pages from start to pin
959  * @gup_flags:	flags modifying pin behaviour
960  * @pages:	array that receives pointers to the pages pinned.
961  *		Should be at least nr_pages long. Or NULL, if caller
962  *		only intends to ensure the pages are faulted in.
963  * @vmas:	array of pointers to vmas corresponding to each page.
964  *		Or NULL if the caller does not require them.
965  * @locked:     whether we're still with the mmap_lock held
966  *
967  * Returns either number of pages pinned (which may be less than the
968  * number requested), or an error. Details about the return value:
969  *
970  * -- If nr_pages is 0, returns 0.
971  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
972  * -- If nr_pages is >0, and some pages were pinned, returns the number of
973  *    pages pinned. Again, this may be less than nr_pages.
974  * -- 0 return value is possible when the fault would need to be retried.
975  *
976  * The caller is responsible for releasing returned @pages, via put_page().
977  *
978  * @vmas are valid only as long as mmap_lock is held.
979  *
980  * Must be called with mmap_lock held.  It may be released.  See below.
981  *
982  * __get_user_pages walks a process's page tables and takes a reference to
983  * each struct page that each user address corresponds to at a given
984  * instant. That is, it takes the page that would be accessed if a user
985  * thread accesses the given user virtual address at that instant.
986  *
987  * This does not guarantee that the page exists in the user mappings when
988  * __get_user_pages returns, and there may even be a completely different
989  * page there in some cases (eg. if mmapped pagecache has been invalidated
990  * and subsequently re faulted). However it does guarantee that the page
991  * won't be freed completely. And mostly callers simply care that the page
992  * contains data that was valid *at some point in time*. Typically, an IO
993  * or similar operation cannot guarantee anything stronger anyway because
994  * locks can't be held over the syscall boundary.
995  *
996  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
997  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
998  * appropriate) must be called after the page is finished with, and
999  * before put_page is called.
1000  *
1001  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002  * released by an up_read().  That can happen if @gup_flags does not
1003  * have FOLL_NOWAIT.
1004  *
1005  * A caller using such a combination of @locked and @gup_flags
1006  * must therefore hold the mmap_lock for reading only, and recognize
1007  * when it's been released.  Otherwise, it must be held for either
1008  * reading or writing and will not be released.
1009  *
1010  * In most cases, get_user_pages or get_user_pages_fast should be used
1011  * instead of __get_user_pages. __get_user_pages should be used only if
1012  * you need some special @gup_flags.
1013  */
1014 static long __get_user_pages(struct mm_struct *mm,
1015 		unsigned long start, unsigned long nr_pages,
1016 		unsigned int gup_flags, struct page **pages,
1017 		struct vm_area_struct **vmas, int *locked)
1018 {
1019 	long ret = 0, i = 0;
1020 	struct vm_area_struct *vma = NULL;
1021 	struct follow_page_context ctx = { NULL };
1022 
1023 	if (!nr_pages)
1024 		return 0;
1025 
1026 	start = untagged_addr(start);
1027 
1028 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029 
1030 	/*
1031 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032 	 * fault information is unrelated to the reference behaviour of a task
1033 	 * using the address space
1034 	 */
1035 	if (!(gup_flags & FOLL_FORCE))
1036 		gup_flags |= FOLL_NUMA;
1037 
1038 	do {
1039 		struct page *page;
1040 		unsigned int foll_flags = gup_flags;
1041 		unsigned int page_increm;
1042 
1043 		/* first iteration or cross vma bound */
1044 		if (!vma || start >= vma->vm_end) {
1045 			vma = find_extend_vma(mm, start);
1046 			if (!vma && in_gate_area(mm, start)) {
1047 				ret = get_gate_page(mm, start & PAGE_MASK,
1048 						gup_flags, &vma,
1049 						pages ? &pages[i] : NULL);
1050 				if (ret)
1051 					goto out;
1052 				ctx.page_mask = 0;
1053 				goto next_page;
1054 			}
1055 
1056 			if (!vma || check_vma_flags(vma, gup_flags)) {
1057 				ret = -EFAULT;
1058 				goto out;
1059 			}
1060 			if (is_vm_hugetlb_page(vma)) {
1061 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1062 						&start, &nr_pages, i,
1063 						gup_flags, locked);
1064 				if (locked && *locked == 0) {
1065 					/*
1066 					 * We've got a VM_FAULT_RETRY
1067 					 * and we've lost mmap_lock.
1068 					 * We must stop here.
1069 					 */
1070 					BUG_ON(gup_flags & FOLL_NOWAIT);
1071 					BUG_ON(ret != 0);
1072 					goto out;
1073 				}
1074 				continue;
1075 			}
1076 		}
1077 retry:
1078 		/*
1079 		 * If we have a pending SIGKILL, don't keep faulting pages and
1080 		 * potentially allocating memory.
1081 		 */
1082 		if (fatal_signal_pending(current)) {
1083 			ret = -EINTR;
1084 			goto out;
1085 		}
1086 		cond_resched();
1087 
1088 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1089 		if (!page) {
1090 			ret = faultin_page(vma, start, &foll_flags, locked);
1091 			switch (ret) {
1092 			case 0:
1093 				goto retry;
1094 			case -EBUSY:
1095 				ret = 0;
1096 				fallthrough;
1097 			case -EFAULT:
1098 			case -ENOMEM:
1099 			case -EHWPOISON:
1100 				goto out;
1101 			case -ENOENT:
1102 				goto next_page;
1103 			}
1104 			BUG();
1105 		} else if (PTR_ERR(page) == -EEXIST) {
1106 			/*
1107 			 * Proper page table entry exists, but no corresponding
1108 			 * struct page.
1109 			 */
1110 			goto next_page;
1111 		} else if (IS_ERR(page)) {
1112 			ret = PTR_ERR(page);
1113 			goto out;
1114 		}
1115 		if (pages) {
1116 			pages[i] = page;
1117 			flush_anon_page(vma, page, start);
1118 			flush_dcache_page(page);
1119 			ctx.page_mask = 0;
1120 		}
1121 next_page:
1122 		if (vmas) {
1123 			vmas[i] = vma;
1124 			ctx.page_mask = 0;
1125 		}
1126 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127 		if (page_increm > nr_pages)
1128 			page_increm = nr_pages;
1129 		i += page_increm;
1130 		start += page_increm * PAGE_SIZE;
1131 		nr_pages -= page_increm;
1132 	} while (nr_pages);
1133 out:
1134 	if (ctx.pgmap)
1135 		put_dev_pagemap(ctx.pgmap);
1136 	return i ? i : ret;
1137 }
1138 
1139 static bool vma_permits_fault(struct vm_area_struct *vma,
1140 			      unsigned int fault_flags)
1141 {
1142 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1143 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145 
1146 	if (!(vm_flags & vma->vm_flags))
1147 		return false;
1148 
1149 	/*
1150 	 * The architecture might have a hardware protection
1151 	 * mechanism other than read/write that can deny access.
1152 	 *
1153 	 * gup always represents data access, not instruction
1154 	 * fetches, so execute=false here:
1155 	 */
1156 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1157 		return false;
1158 
1159 	return true;
1160 }
1161 
1162 /**
1163  * fixup_user_fault() - manually resolve a user page fault
1164  * @mm:		mm_struct of target mm
1165  * @address:	user address
1166  * @fault_flags:flags to pass down to handle_mm_fault()
1167  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1168  *		does not allow retry. If NULL, the caller must guarantee
1169  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170  *
1171  * This is meant to be called in the specific scenario where for locking reasons
1172  * we try to access user memory in atomic context (within a pagefault_disable()
1173  * section), this returns -EFAULT, and we want to resolve the user fault before
1174  * trying again.
1175  *
1176  * Typically this is meant to be used by the futex code.
1177  *
1178  * The main difference with get_user_pages() is that this function will
1179  * unconditionally call handle_mm_fault() which will in turn perform all the
1180  * necessary SW fixup of the dirty and young bits in the PTE, while
1181  * get_user_pages() only guarantees to update these in the struct page.
1182  *
1183  * This is important for some architectures where those bits also gate the
1184  * access permission to the page because they are maintained in software.  On
1185  * such architectures, gup() will not be enough to make a subsequent access
1186  * succeed.
1187  *
1188  * This function will not return with an unlocked mmap_lock. So it has not the
1189  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190  */
1191 int fixup_user_fault(struct mm_struct *mm,
1192 		     unsigned long address, unsigned int fault_flags,
1193 		     bool *unlocked)
1194 {
1195 	struct vm_area_struct *vma;
1196 	vm_fault_t ret, major = 0;
1197 
1198 	address = untagged_addr(address);
1199 
1200 	if (unlocked)
1201 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202 
1203 retry:
1204 	vma = find_extend_vma(mm, address);
1205 	if (!vma || address < vma->vm_start)
1206 		return -EFAULT;
1207 
1208 	if (!vma_permits_fault(vma, fault_flags))
1209 		return -EFAULT;
1210 
1211 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212 	    fatal_signal_pending(current))
1213 		return -EINTR;
1214 
1215 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216 	major |= ret & VM_FAULT_MAJOR;
1217 	if (ret & VM_FAULT_ERROR) {
1218 		int err = vm_fault_to_errno(ret, 0);
1219 
1220 		if (err)
1221 			return err;
1222 		BUG();
1223 	}
1224 
1225 	if (ret & VM_FAULT_RETRY) {
1226 		mmap_read_lock(mm);
1227 		*unlocked = true;
1228 		fault_flags |= FAULT_FLAG_TRIED;
1229 		goto retry;
1230 	}
1231 
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(fixup_user_fault);
1235 
1236 /*
1237  * Please note that this function, unlike __get_user_pages will not
1238  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239  */
1240 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241 						unsigned long start,
1242 						unsigned long nr_pages,
1243 						struct page **pages,
1244 						struct vm_area_struct **vmas,
1245 						int *locked,
1246 						unsigned int flags)
1247 {
1248 	long ret, pages_done;
1249 	bool lock_dropped;
1250 
1251 	if (locked) {
1252 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253 		BUG_ON(vmas);
1254 		/* check caller initialized locked */
1255 		BUG_ON(*locked != 1);
1256 	}
1257 
1258 	if (flags & FOLL_PIN)
1259 		atomic_set(&mm->has_pinned, 1);
1260 
1261 	/*
1262 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1263 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1264 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1265 	 * for FOLL_GET, not for the newer FOLL_PIN.
1266 	 *
1267 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1268 	 * that here, as any failures will be obvious enough.
1269 	 */
1270 	if (pages && !(flags & FOLL_PIN))
1271 		flags |= FOLL_GET;
1272 
1273 	pages_done = 0;
1274 	lock_dropped = false;
1275 	for (;;) {
1276 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1277 				       vmas, locked);
1278 		if (!locked)
1279 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1280 			return ret;
1281 
1282 		/* VM_FAULT_RETRY cannot return errors */
1283 		if (!*locked) {
1284 			BUG_ON(ret < 0);
1285 			BUG_ON(ret >= nr_pages);
1286 		}
1287 
1288 		if (ret > 0) {
1289 			nr_pages -= ret;
1290 			pages_done += ret;
1291 			if (!nr_pages)
1292 				break;
1293 		}
1294 		if (*locked) {
1295 			/*
1296 			 * VM_FAULT_RETRY didn't trigger or it was a
1297 			 * FOLL_NOWAIT.
1298 			 */
1299 			if (!pages_done)
1300 				pages_done = ret;
1301 			break;
1302 		}
1303 		/*
1304 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1305 		 * For the prefault case (!pages) we only update counts.
1306 		 */
1307 		if (likely(pages))
1308 			pages += ret;
1309 		start += ret << PAGE_SHIFT;
1310 		lock_dropped = true;
1311 
1312 retry:
1313 		/*
1314 		 * Repeat on the address that fired VM_FAULT_RETRY
1315 		 * with both FAULT_FLAG_ALLOW_RETRY and
1316 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1317 		 * by fatal signals, so we need to check it before we
1318 		 * start trying again otherwise it can loop forever.
1319 		 */
1320 
1321 		if (fatal_signal_pending(current)) {
1322 			if (!pages_done)
1323 				pages_done = -EINTR;
1324 			break;
1325 		}
1326 
1327 		ret = mmap_read_lock_killable(mm);
1328 		if (ret) {
1329 			BUG_ON(ret > 0);
1330 			if (!pages_done)
1331 				pages_done = ret;
1332 			break;
1333 		}
1334 
1335 		*locked = 1;
1336 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1337 				       pages, NULL, locked);
1338 		if (!*locked) {
1339 			/* Continue to retry until we succeeded */
1340 			BUG_ON(ret != 0);
1341 			goto retry;
1342 		}
1343 		if (ret != 1) {
1344 			BUG_ON(ret > 1);
1345 			if (!pages_done)
1346 				pages_done = ret;
1347 			break;
1348 		}
1349 		nr_pages--;
1350 		pages_done++;
1351 		if (!nr_pages)
1352 			break;
1353 		if (likely(pages))
1354 			pages++;
1355 		start += PAGE_SIZE;
1356 	}
1357 	if (lock_dropped && *locked) {
1358 		/*
1359 		 * We must let the caller know we temporarily dropped the lock
1360 		 * and so the critical section protected by it was lost.
1361 		 */
1362 		mmap_read_unlock(mm);
1363 		*locked = 0;
1364 	}
1365 	return pages_done;
1366 }
1367 
1368 /**
1369  * populate_vma_page_range() -  populate a range of pages in the vma.
1370  * @vma:   target vma
1371  * @start: start address
1372  * @end:   end address
1373  * @locked: whether the mmap_lock is still held
1374  *
1375  * This takes care of mlocking the pages too if VM_LOCKED is set.
1376  *
1377  * Return either number of pages pinned in the vma, or a negative error
1378  * code on error.
1379  *
1380  * vma->vm_mm->mmap_lock must be held.
1381  *
1382  * If @locked is NULL, it may be held for read or write and will
1383  * be unperturbed.
1384  *
1385  * If @locked is non-NULL, it must held for read only and may be
1386  * released.  If it's released, *@locked will be set to 0.
1387  */
1388 long populate_vma_page_range(struct vm_area_struct *vma,
1389 		unsigned long start, unsigned long end, int *locked)
1390 {
1391 	struct mm_struct *mm = vma->vm_mm;
1392 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1393 	int gup_flags;
1394 
1395 	VM_BUG_ON(start & ~PAGE_MASK);
1396 	VM_BUG_ON(end   & ~PAGE_MASK);
1397 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1398 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1399 	mmap_assert_locked(mm);
1400 
1401 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1402 	if (vma->vm_flags & VM_LOCKONFAULT)
1403 		gup_flags &= ~FOLL_POPULATE;
1404 	/*
1405 	 * We want to touch writable mappings with a write fault in order
1406 	 * to break COW, except for shared mappings because these don't COW
1407 	 * and we would not want to dirty them for nothing.
1408 	 */
1409 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1410 		gup_flags |= FOLL_WRITE;
1411 
1412 	/*
1413 	 * We want mlock to succeed for regions that have any permissions
1414 	 * other than PROT_NONE.
1415 	 */
1416 	if (vma_is_accessible(vma))
1417 		gup_flags |= FOLL_FORCE;
1418 
1419 	/*
1420 	 * We made sure addr is within a VMA, so the following will
1421 	 * not result in a stack expansion that recurses back here.
1422 	 */
1423 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1424 				NULL, NULL, locked);
1425 }
1426 
1427 /*
1428  * __mm_populate - populate and/or mlock pages within a range of address space.
1429  *
1430  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1431  * flags. VMAs must be already marked with the desired vm_flags, and
1432  * mmap_lock must not be held.
1433  */
1434 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1435 {
1436 	struct mm_struct *mm = current->mm;
1437 	unsigned long end, nstart, nend;
1438 	struct vm_area_struct *vma = NULL;
1439 	int locked = 0;
1440 	long ret = 0;
1441 
1442 	end = start + len;
1443 
1444 	for (nstart = start; nstart < end; nstart = nend) {
1445 		/*
1446 		 * We want to fault in pages for [nstart; end) address range.
1447 		 * Find first corresponding VMA.
1448 		 */
1449 		if (!locked) {
1450 			locked = 1;
1451 			mmap_read_lock(mm);
1452 			vma = find_vma(mm, nstart);
1453 		} else if (nstart >= vma->vm_end)
1454 			vma = vma->vm_next;
1455 		if (!vma || vma->vm_start >= end)
1456 			break;
1457 		/*
1458 		 * Set [nstart; nend) to intersection of desired address
1459 		 * range with the first VMA. Also, skip undesirable VMA types.
1460 		 */
1461 		nend = min(end, vma->vm_end);
1462 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1463 			continue;
1464 		if (nstart < vma->vm_start)
1465 			nstart = vma->vm_start;
1466 		/*
1467 		 * Now fault in a range of pages. populate_vma_page_range()
1468 		 * double checks the vma flags, so that it won't mlock pages
1469 		 * if the vma was already munlocked.
1470 		 */
1471 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1472 		if (ret < 0) {
1473 			if (ignore_errors) {
1474 				ret = 0;
1475 				continue;	/* continue at next VMA */
1476 			}
1477 			break;
1478 		}
1479 		nend = nstart + ret * PAGE_SIZE;
1480 		ret = 0;
1481 	}
1482 	if (locked)
1483 		mmap_read_unlock(mm);
1484 	return ret;	/* 0 or negative error code */
1485 }
1486 
1487 /**
1488  * get_dump_page() - pin user page in memory while writing it to core dump
1489  * @addr: user address
1490  *
1491  * Returns struct page pointer of user page pinned for dump,
1492  * to be freed afterwards by put_page().
1493  *
1494  * Returns NULL on any kind of failure - a hole must then be inserted into
1495  * the corefile, to preserve alignment with its headers; and also returns
1496  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1497  * allowing a hole to be left in the corefile to save diskspace.
1498  *
1499  * Called without mmap_lock, but after all other threads have been killed.
1500  */
1501 #ifdef CONFIG_ELF_CORE
1502 struct page *get_dump_page(unsigned long addr)
1503 {
1504 	struct vm_area_struct *vma;
1505 	struct page *page;
1506 
1507 	if (__get_user_pages(current->mm, addr, 1,
1508 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1509 			     NULL) < 1)
1510 		return NULL;
1511 	flush_cache_page(vma, addr, page_to_pfn(page));
1512 	return page;
1513 }
1514 #endif /* CONFIG_ELF_CORE */
1515 #else /* CONFIG_MMU */
1516 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1517 		unsigned long nr_pages, struct page **pages,
1518 		struct vm_area_struct **vmas, int *locked,
1519 		unsigned int foll_flags)
1520 {
1521 	struct vm_area_struct *vma;
1522 	unsigned long vm_flags;
1523 	int i;
1524 
1525 	/* calculate required read or write permissions.
1526 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1527 	 */
1528 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1529 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1530 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1531 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1532 
1533 	for (i = 0; i < nr_pages; i++) {
1534 		vma = find_vma(mm, start);
1535 		if (!vma)
1536 			goto finish_or_fault;
1537 
1538 		/* protect what we can, including chardevs */
1539 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1540 		    !(vm_flags & vma->vm_flags))
1541 			goto finish_or_fault;
1542 
1543 		if (pages) {
1544 			pages[i] = virt_to_page(start);
1545 			if (pages[i])
1546 				get_page(pages[i]);
1547 		}
1548 		if (vmas)
1549 			vmas[i] = vma;
1550 		start = (start + PAGE_SIZE) & PAGE_MASK;
1551 	}
1552 
1553 	return i;
1554 
1555 finish_or_fault:
1556 	return i ? : -EFAULT;
1557 }
1558 #endif /* !CONFIG_MMU */
1559 
1560 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1561 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1562 {
1563 	long i;
1564 	struct vm_area_struct *vma_prev = NULL;
1565 
1566 	for (i = 0; i < nr_pages; i++) {
1567 		struct vm_area_struct *vma = vmas[i];
1568 
1569 		if (vma == vma_prev)
1570 			continue;
1571 
1572 		vma_prev = vma;
1573 
1574 		if (vma_is_fsdax(vma))
1575 			return true;
1576 	}
1577 	return false;
1578 }
1579 
1580 #ifdef CONFIG_CMA
1581 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1582 					unsigned long start,
1583 					unsigned long nr_pages,
1584 					struct page **pages,
1585 					struct vm_area_struct **vmas,
1586 					unsigned int gup_flags)
1587 {
1588 	unsigned long i;
1589 	unsigned long step;
1590 	bool drain_allow = true;
1591 	bool migrate_allow = true;
1592 	LIST_HEAD(cma_page_list);
1593 	long ret = nr_pages;
1594 	struct migration_target_control mtc = {
1595 		.nid = NUMA_NO_NODE,
1596 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1597 	};
1598 
1599 check_again:
1600 	for (i = 0; i < nr_pages;) {
1601 
1602 		struct page *head = compound_head(pages[i]);
1603 
1604 		/*
1605 		 * gup may start from a tail page. Advance step by the left
1606 		 * part.
1607 		 */
1608 		step = compound_nr(head) - (pages[i] - head);
1609 		/*
1610 		 * If we get a page from the CMA zone, since we are going to
1611 		 * be pinning these entries, we might as well move them out
1612 		 * of the CMA zone if possible.
1613 		 */
1614 		if (is_migrate_cma_page(head)) {
1615 			if (PageHuge(head))
1616 				isolate_huge_page(head, &cma_page_list);
1617 			else {
1618 				if (!PageLRU(head) && drain_allow) {
1619 					lru_add_drain_all();
1620 					drain_allow = false;
1621 				}
1622 
1623 				if (!isolate_lru_page(head)) {
1624 					list_add_tail(&head->lru, &cma_page_list);
1625 					mod_node_page_state(page_pgdat(head),
1626 							    NR_ISOLATED_ANON +
1627 							    page_is_file_lru(head),
1628 							    thp_nr_pages(head));
1629 				}
1630 			}
1631 		}
1632 
1633 		i += step;
1634 	}
1635 
1636 	if (!list_empty(&cma_page_list)) {
1637 		/*
1638 		 * drop the above get_user_pages reference.
1639 		 */
1640 		for (i = 0; i < nr_pages; i++)
1641 			put_page(pages[i]);
1642 
1643 		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644 			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1645 			/*
1646 			 * some of the pages failed migration. Do get_user_pages
1647 			 * without migration.
1648 			 */
1649 			migrate_allow = false;
1650 
1651 			if (!list_empty(&cma_page_list))
1652 				putback_movable_pages(&cma_page_list);
1653 		}
1654 		/*
1655 		 * We did migrate all the pages, Try to get the page references
1656 		 * again migrating any new CMA pages which we failed to isolate
1657 		 * earlier.
1658 		 */
1659 		ret = __get_user_pages_locked(mm, start, nr_pages,
1660 						   pages, vmas, NULL,
1661 						   gup_flags);
1662 
1663 		if ((ret > 0) && migrate_allow) {
1664 			nr_pages = ret;
1665 			drain_allow = true;
1666 			goto check_again;
1667 		}
1668 	}
1669 
1670 	return ret;
1671 }
1672 #else
1673 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1674 					unsigned long start,
1675 					unsigned long nr_pages,
1676 					struct page **pages,
1677 					struct vm_area_struct **vmas,
1678 					unsigned int gup_flags)
1679 {
1680 	return nr_pages;
1681 }
1682 #endif /* CONFIG_CMA */
1683 
1684 /*
1685  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686  * allows us to process the FOLL_LONGTERM flag.
1687  */
1688 static long __gup_longterm_locked(struct mm_struct *mm,
1689 				  unsigned long start,
1690 				  unsigned long nr_pages,
1691 				  struct page **pages,
1692 				  struct vm_area_struct **vmas,
1693 				  unsigned int gup_flags)
1694 {
1695 	struct vm_area_struct **vmas_tmp = vmas;
1696 	unsigned long flags = 0;
1697 	long rc, i;
1698 
1699 	if (gup_flags & FOLL_LONGTERM) {
1700 		if (!pages)
1701 			return -EINVAL;
1702 
1703 		if (!vmas_tmp) {
1704 			vmas_tmp = kcalloc(nr_pages,
1705 					   sizeof(struct vm_area_struct *),
1706 					   GFP_KERNEL);
1707 			if (!vmas_tmp)
1708 				return -ENOMEM;
1709 		}
1710 		flags = memalloc_nocma_save();
1711 	}
1712 
1713 	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1714 				     vmas_tmp, NULL, gup_flags);
1715 
1716 	if (gup_flags & FOLL_LONGTERM) {
1717 		if (rc < 0)
1718 			goto out;
1719 
1720 		if (check_dax_vmas(vmas_tmp, rc)) {
1721 			for (i = 0; i < rc; i++)
1722 				put_page(pages[i]);
1723 			rc = -EOPNOTSUPP;
1724 			goto out;
1725 		}
1726 
1727 		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1728 						 vmas_tmp, gup_flags);
1729 out:
1730 		memalloc_nocma_restore(flags);
1731 	}
1732 
1733 	if (vmas_tmp != vmas)
1734 		kfree(vmas_tmp);
1735 	return rc;
1736 }
1737 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1738 static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1739 						  unsigned long start,
1740 						  unsigned long nr_pages,
1741 						  struct page **pages,
1742 						  struct vm_area_struct **vmas,
1743 						  unsigned int flags)
1744 {
1745 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1746 				       NULL, flags);
1747 }
1748 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1749 
1750 #ifdef CONFIG_MMU
1751 static long __get_user_pages_remote(struct mm_struct *mm,
1752 				    unsigned long start, unsigned long nr_pages,
1753 				    unsigned int gup_flags, struct page **pages,
1754 				    struct vm_area_struct **vmas, int *locked)
1755 {
1756 	/*
1757 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1758 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1759 	 * vmas. However, this only comes up if locked is set, and there are
1760 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1761 	 * allow what we can.
1762 	 */
1763 	if (gup_flags & FOLL_LONGTERM) {
1764 		if (WARN_ON_ONCE(locked))
1765 			return -EINVAL;
1766 		/*
1767 		 * This will check the vmas (even if our vmas arg is NULL)
1768 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1769 		 */
1770 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1771 					     vmas, gup_flags | FOLL_TOUCH |
1772 					     FOLL_REMOTE);
1773 	}
1774 
1775 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1776 				       locked,
1777 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1778 }
1779 
1780 /**
1781  * get_user_pages_remote() - pin user pages in memory
1782  * @mm:		mm_struct of target mm
1783  * @start:	starting user address
1784  * @nr_pages:	number of pages from start to pin
1785  * @gup_flags:	flags modifying lookup behaviour
1786  * @pages:	array that receives pointers to the pages pinned.
1787  *		Should be at least nr_pages long. Or NULL, if caller
1788  *		only intends to ensure the pages are faulted in.
1789  * @vmas:	array of pointers to vmas corresponding to each page.
1790  *		Or NULL if the caller does not require them.
1791  * @locked:	pointer to lock flag indicating whether lock is held and
1792  *		subsequently whether VM_FAULT_RETRY functionality can be
1793  *		utilised. Lock must initially be held.
1794  *
1795  * Returns either number of pages pinned (which may be less than the
1796  * number requested), or an error. Details about the return value:
1797  *
1798  * -- If nr_pages is 0, returns 0.
1799  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1800  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1801  *    pages pinned. Again, this may be less than nr_pages.
1802  *
1803  * The caller is responsible for releasing returned @pages, via put_page().
1804  *
1805  * @vmas are valid only as long as mmap_lock is held.
1806  *
1807  * Must be called with mmap_lock held for read or write.
1808  *
1809  * get_user_pages_remote walks a process's page tables and takes a reference
1810  * to each struct page that each user address corresponds to at a given
1811  * instant. That is, it takes the page that would be accessed if a user
1812  * thread accesses the given user virtual address at that instant.
1813  *
1814  * This does not guarantee that the page exists in the user mappings when
1815  * get_user_pages_remote returns, and there may even be a completely different
1816  * page there in some cases (eg. if mmapped pagecache has been invalidated
1817  * and subsequently re faulted). However it does guarantee that the page
1818  * won't be freed completely. And mostly callers simply care that the page
1819  * contains data that was valid *at some point in time*. Typically, an IO
1820  * or similar operation cannot guarantee anything stronger anyway because
1821  * locks can't be held over the syscall boundary.
1822  *
1823  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1824  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1825  * be called after the page is finished with, and before put_page is called.
1826  *
1827  * get_user_pages_remote is typically used for fewer-copy IO operations,
1828  * to get a handle on the memory by some means other than accesses
1829  * via the user virtual addresses. The pages may be submitted for
1830  * DMA to devices or accessed via their kernel linear mapping (via the
1831  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1832  *
1833  * See also get_user_pages_fast, for performance critical applications.
1834  *
1835  * get_user_pages_remote should be phased out in favor of
1836  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1837  * should use get_user_pages_remote because it cannot pass
1838  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1839  */
1840 long get_user_pages_remote(struct mm_struct *mm,
1841 		unsigned long start, unsigned long nr_pages,
1842 		unsigned int gup_flags, struct page **pages,
1843 		struct vm_area_struct **vmas, int *locked)
1844 {
1845 	/*
1846 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1847 	 * never directly by the caller, so enforce that with an assertion:
1848 	 */
1849 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1850 		return -EINVAL;
1851 
1852 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1853 				       pages, vmas, locked);
1854 }
1855 EXPORT_SYMBOL(get_user_pages_remote);
1856 
1857 #else /* CONFIG_MMU */
1858 long get_user_pages_remote(struct mm_struct *mm,
1859 			   unsigned long start, unsigned long nr_pages,
1860 			   unsigned int gup_flags, struct page **pages,
1861 			   struct vm_area_struct **vmas, int *locked)
1862 {
1863 	return 0;
1864 }
1865 
1866 static long __get_user_pages_remote(struct mm_struct *mm,
1867 				    unsigned long start, unsigned long nr_pages,
1868 				    unsigned int gup_flags, struct page **pages,
1869 				    struct vm_area_struct **vmas, int *locked)
1870 {
1871 	return 0;
1872 }
1873 #endif /* !CONFIG_MMU */
1874 
1875 /**
1876  * get_user_pages() - pin user pages in memory
1877  * @start:      starting user address
1878  * @nr_pages:   number of pages from start to pin
1879  * @gup_flags:  flags modifying lookup behaviour
1880  * @pages:      array that receives pointers to the pages pinned.
1881  *              Should be at least nr_pages long. Or NULL, if caller
1882  *              only intends to ensure the pages are faulted in.
1883  * @vmas:       array of pointers to vmas corresponding to each page.
1884  *              Or NULL if the caller does not require them.
1885  *
1886  * This is the same as get_user_pages_remote(), just with a less-flexible
1887  * calling convention where we assume that the mm being operated on belongs to
1888  * the current task, and doesn't allow passing of a locked parameter.  We also
1889  * obviously don't pass FOLL_REMOTE in here.
1890  */
1891 long get_user_pages(unsigned long start, unsigned long nr_pages,
1892 		unsigned int gup_flags, struct page **pages,
1893 		struct vm_area_struct **vmas)
1894 {
1895 	/*
1896 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1897 	 * never directly by the caller, so enforce that with an assertion:
1898 	 */
1899 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1900 		return -EINVAL;
1901 
1902 	return __gup_longterm_locked(current->mm, start, nr_pages,
1903 				     pages, vmas, gup_flags | FOLL_TOUCH);
1904 }
1905 EXPORT_SYMBOL(get_user_pages);
1906 
1907 /**
1908  * get_user_pages_locked() is suitable to replace the form:
1909  *
1910  *      mmap_read_lock(mm);
1911  *      do_something()
1912  *      get_user_pages(mm, ..., pages, NULL);
1913  *      mmap_read_unlock(mm);
1914  *
1915  *  to:
1916  *
1917  *      int locked = 1;
1918  *      mmap_read_lock(mm);
1919  *      do_something()
1920  *      get_user_pages_locked(mm, ..., pages, &locked);
1921  *      if (locked)
1922  *          mmap_read_unlock(mm);
1923  *
1924  * @start:      starting user address
1925  * @nr_pages:   number of pages from start to pin
1926  * @gup_flags:  flags modifying lookup behaviour
1927  * @pages:      array that receives pointers to the pages pinned.
1928  *              Should be at least nr_pages long. Or NULL, if caller
1929  *              only intends to ensure the pages are faulted in.
1930  * @locked:     pointer to lock flag indicating whether lock is held and
1931  *              subsequently whether VM_FAULT_RETRY functionality can be
1932  *              utilised. Lock must initially be held.
1933  *
1934  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1935  * paths better by using either get_user_pages_locked() or
1936  * get_user_pages_unlocked().
1937  *
1938  */
1939 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1940 			   unsigned int gup_flags, struct page **pages,
1941 			   int *locked)
1942 {
1943 	/*
1944 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1945 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1946 	 * vmas.  As there are no users of this flag in this call we simply
1947 	 * disallow this option for now.
1948 	 */
1949 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1950 		return -EINVAL;
1951 	/*
1952 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1953 	 * never directly by the caller, so enforce that:
1954 	 */
1955 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1956 		return -EINVAL;
1957 
1958 	return __get_user_pages_locked(current->mm, start, nr_pages,
1959 				       pages, NULL, locked,
1960 				       gup_flags | FOLL_TOUCH);
1961 }
1962 EXPORT_SYMBOL(get_user_pages_locked);
1963 
1964 /*
1965  * get_user_pages_unlocked() is suitable to replace the form:
1966  *
1967  *      mmap_read_lock(mm);
1968  *      get_user_pages(mm, ..., pages, NULL);
1969  *      mmap_read_unlock(mm);
1970  *
1971  *  with:
1972  *
1973  *      get_user_pages_unlocked(mm, ..., pages);
1974  *
1975  * It is functionally equivalent to get_user_pages_fast so
1976  * get_user_pages_fast should be used instead if specific gup_flags
1977  * (e.g. FOLL_FORCE) are not required.
1978  */
1979 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1980 			     struct page **pages, unsigned int gup_flags)
1981 {
1982 	struct mm_struct *mm = current->mm;
1983 	int locked = 1;
1984 	long ret;
1985 
1986 	/*
1987 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989 	 * vmas.  As there are no users of this flag in this call we simply
1990 	 * disallow this option for now.
1991 	 */
1992 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993 		return -EINVAL;
1994 
1995 	mmap_read_lock(mm);
1996 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1997 				      &locked, gup_flags | FOLL_TOUCH);
1998 	if (locked)
1999 		mmap_read_unlock(mm);
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL(get_user_pages_unlocked);
2003 
2004 /*
2005  * Fast GUP
2006  *
2007  * get_user_pages_fast attempts to pin user pages by walking the page
2008  * tables directly and avoids taking locks. Thus the walker needs to be
2009  * protected from page table pages being freed from under it, and should
2010  * block any THP splits.
2011  *
2012  * One way to achieve this is to have the walker disable interrupts, and
2013  * rely on IPIs from the TLB flushing code blocking before the page table
2014  * pages are freed. This is unsuitable for architectures that do not need
2015  * to broadcast an IPI when invalidating TLBs.
2016  *
2017  * Another way to achieve this is to batch up page table containing pages
2018  * belonging to more than one mm_user, then rcu_sched a callback to free those
2019  * pages. Disabling interrupts will allow the fast_gup walker to both block
2020  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2021  * (which is a relatively rare event). The code below adopts this strategy.
2022  *
2023  * Before activating this code, please be aware that the following assumptions
2024  * are currently made:
2025  *
2026  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2027  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2028  *
2029  *  *) ptes can be read atomically by the architecture.
2030  *
2031  *  *) access_ok is sufficient to validate userspace address ranges.
2032  *
2033  * The last two assumptions can be relaxed by the addition of helper functions.
2034  *
2035  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2036  */
2037 #ifdef CONFIG_HAVE_FAST_GUP
2038 
2039 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2040 {
2041 	if (flags & FOLL_PIN) {
2042 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2043 				    refs);
2044 
2045 		if (hpage_pincount_available(page))
2046 			hpage_pincount_sub(page, refs);
2047 		else
2048 			refs *= GUP_PIN_COUNTING_BIAS;
2049 	}
2050 
2051 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2052 	/*
2053 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2054 	 * ref needs a put_page().
2055 	 */
2056 	if (refs > 1)
2057 		page_ref_sub(page, refs - 1);
2058 	put_page(page);
2059 }
2060 
2061 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2062 
2063 /*
2064  * WARNING: only to be used in the get_user_pages_fast() implementation.
2065  *
2066  * With get_user_pages_fast(), we walk down the pagetables without taking any
2067  * locks.  For this we would like to load the pointers atomically, but sometimes
2068  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2069  * we do have is the guarantee that a PTE will only either go from not present
2070  * to present, or present to not present or both -- it will not switch to a
2071  * completely different present page without a TLB flush in between; something
2072  * that we are blocking by holding interrupts off.
2073  *
2074  * Setting ptes from not present to present goes:
2075  *
2076  *   ptep->pte_high = h;
2077  *   smp_wmb();
2078  *   ptep->pte_low = l;
2079  *
2080  * And present to not present goes:
2081  *
2082  *   ptep->pte_low = 0;
2083  *   smp_wmb();
2084  *   ptep->pte_high = 0;
2085  *
2086  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2087  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2088  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2089  * picked up a changed pte high. We might have gotten rubbish values from
2090  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2091  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2092  * operates on present ptes we're safe.
2093  */
2094 static inline pte_t gup_get_pte(pte_t *ptep)
2095 {
2096 	pte_t pte;
2097 
2098 	do {
2099 		pte.pte_low = ptep->pte_low;
2100 		smp_rmb();
2101 		pte.pte_high = ptep->pte_high;
2102 		smp_rmb();
2103 	} while (unlikely(pte.pte_low != ptep->pte_low));
2104 
2105 	return pte;
2106 }
2107 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2108 /*
2109  * We require that the PTE can be read atomically.
2110  */
2111 static inline pte_t gup_get_pte(pte_t *ptep)
2112 {
2113 	return ptep_get(ptep);
2114 }
2115 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2116 
2117 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2118 					    unsigned int flags,
2119 					    struct page **pages)
2120 {
2121 	while ((*nr) - nr_start) {
2122 		struct page *page = pages[--(*nr)];
2123 
2124 		ClearPageReferenced(page);
2125 		if (flags & FOLL_PIN)
2126 			unpin_user_page(page);
2127 		else
2128 			put_page(page);
2129 	}
2130 }
2131 
2132 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2133 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2134 			 unsigned int flags, struct page **pages, int *nr)
2135 {
2136 	struct dev_pagemap *pgmap = NULL;
2137 	int nr_start = *nr, ret = 0;
2138 	pte_t *ptep, *ptem;
2139 
2140 	ptem = ptep = pte_offset_map(&pmd, addr);
2141 	do {
2142 		pte_t pte = gup_get_pte(ptep);
2143 		struct page *head, *page;
2144 
2145 		/*
2146 		 * Similar to the PMD case below, NUMA hinting must take slow
2147 		 * path using the pte_protnone check.
2148 		 */
2149 		if (pte_protnone(pte))
2150 			goto pte_unmap;
2151 
2152 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2153 			goto pte_unmap;
2154 
2155 		if (pte_devmap(pte)) {
2156 			if (unlikely(flags & FOLL_LONGTERM))
2157 				goto pte_unmap;
2158 
2159 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2160 			if (unlikely(!pgmap)) {
2161 				undo_dev_pagemap(nr, nr_start, flags, pages);
2162 				goto pte_unmap;
2163 			}
2164 		} else if (pte_special(pte))
2165 			goto pte_unmap;
2166 
2167 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2168 		page = pte_page(pte);
2169 
2170 		head = try_grab_compound_head(page, 1, flags);
2171 		if (!head)
2172 			goto pte_unmap;
2173 
2174 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2175 			put_compound_head(head, 1, flags);
2176 			goto pte_unmap;
2177 		}
2178 
2179 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2180 
2181 		/*
2182 		 * We need to make the page accessible if and only if we are
2183 		 * going to access its content (the FOLL_PIN case).  Please
2184 		 * see Documentation/core-api/pin_user_pages.rst for
2185 		 * details.
2186 		 */
2187 		if (flags & FOLL_PIN) {
2188 			ret = arch_make_page_accessible(page);
2189 			if (ret) {
2190 				unpin_user_page(page);
2191 				goto pte_unmap;
2192 			}
2193 		}
2194 		SetPageReferenced(page);
2195 		pages[*nr] = page;
2196 		(*nr)++;
2197 
2198 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2199 
2200 	ret = 1;
2201 
2202 pte_unmap:
2203 	if (pgmap)
2204 		put_dev_pagemap(pgmap);
2205 	pte_unmap(ptem);
2206 	return ret;
2207 }
2208 #else
2209 
2210 /*
2211  * If we can't determine whether or not a pte is special, then fail immediately
2212  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2213  * to be special.
2214  *
2215  * For a futex to be placed on a THP tail page, get_futex_key requires a
2216  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2217  * useful to have gup_huge_pmd even if we can't operate on ptes.
2218  */
2219 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220 			 unsigned int flags, struct page **pages, int *nr)
2221 {
2222 	return 0;
2223 }
2224 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2225 
2226 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2227 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2228 			     unsigned long end, unsigned int flags,
2229 			     struct page **pages, int *nr)
2230 {
2231 	int nr_start = *nr;
2232 	struct dev_pagemap *pgmap = NULL;
2233 
2234 	do {
2235 		struct page *page = pfn_to_page(pfn);
2236 
2237 		pgmap = get_dev_pagemap(pfn, pgmap);
2238 		if (unlikely(!pgmap)) {
2239 			undo_dev_pagemap(nr, nr_start, flags, pages);
2240 			return 0;
2241 		}
2242 		SetPageReferenced(page);
2243 		pages[*nr] = page;
2244 		if (unlikely(!try_grab_page(page, flags))) {
2245 			undo_dev_pagemap(nr, nr_start, flags, pages);
2246 			return 0;
2247 		}
2248 		(*nr)++;
2249 		pfn++;
2250 	} while (addr += PAGE_SIZE, addr != end);
2251 
2252 	if (pgmap)
2253 		put_dev_pagemap(pgmap);
2254 	return 1;
2255 }
2256 
2257 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258 				 unsigned long end, unsigned int flags,
2259 				 struct page **pages, int *nr)
2260 {
2261 	unsigned long fault_pfn;
2262 	int nr_start = *nr;
2263 
2264 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2265 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2266 		return 0;
2267 
2268 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2269 		undo_dev_pagemap(nr, nr_start, flags, pages);
2270 		return 0;
2271 	}
2272 	return 1;
2273 }
2274 
2275 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2276 				 unsigned long end, unsigned int flags,
2277 				 struct page **pages, int *nr)
2278 {
2279 	unsigned long fault_pfn;
2280 	int nr_start = *nr;
2281 
2282 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2283 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284 		return 0;
2285 
2286 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2287 		undo_dev_pagemap(nr, nr_start, flags, pages);
2288 		return 0;
2289 	}
2290 	return 1;
2291 }
2292 #else
2293 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2294 				 unsigned long end, unsigned int flags,
2295 				 struct page **pages, int *nr)
2296 {
2297 	BUILD_BUG();
2298 	return 0;
2299 }
2300 
2301 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2302 				 unsigned long end, unsigned int flags,
2303 				 struct page **pages, int *nr)
2304 {
2305 	BUILD_BUG();
2306 	return 0;
2307 }
2308 #endif
2309 
2310 static int record_subpages(struct page *page, unsigned long addr,
2311 			   unsigned long end, struct page **pages)
2312 {
2313 	int nr;
2314 
2315 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2316 		pages[nr++] = page++;
2317 
2318 	return nr;
2319 }
2320 
2321 #ifdef CONFIG_ARCH_HAS_HUGEPD
2322 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2323 				      unsigned long sz)
2324 {
2325 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2326 	return (__boundary - 1 < end - 1) ? __boundary : end;
2327 }
2328 
2329 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2330 		       unsigned long end, unsigned int flags,
2331 		       struct page **pages, int *nr)
2332 {
2333 	unsigned long pte_end;
2334 	struct page *head, *page;
2335 	pte_t pte;
2336 	int refs;
2337 
2338 	pte_end = (addr + sz) & ~(sz-1);
2339 	if (pte_end < end)
2340 		end = pte_end;
2341 
2342 	pte = huge_ptep_get(ptep);
2343 
2344 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345 		return 0;
2346 
2347 	/* hugepages are never "special" */
2348 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2349 
2350 	head = pte_page(pte);
2351 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2352 	refs = record_subpages(page, addr, end, pages + *nr);
2353 
2354 	head = try_grab_compound_head(head, refs, flags);
2355 	if (!head)
2356 		return 0;
2357 
2358 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2359 		put_compound_head(head, refs, flags);
2360 		return 0;
2361 	}
2362 
2363 	*nr += refs;
2364 	SetPageReferenced(head);
2365 	return 1;
2366 }
2367 
2368 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2369 		unsigned int pdshift, unsigned long end, unsigned int flags,
2370 		struct page **pages, int *nr)
2371 {
2372 	pte_t *ptep;
2373 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2374 	unsigned long next;
2375 
2376 	ptep = hugepte_offset(hugepd, addr, pdshift);
2377 	do {
2378 		next = hugepte_addr_end(addr, end, sz);
2379 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2380 			return 0;
2381 	} while (ptep++, addr = next, addr != end);
2382 
2383 	return 1;
2384 }
2385 #else
2386 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387 		unsigned int pdshift, unsigned long end, unsigned int flags,
2388 		struct page **pages, int *nr)
2389 {
2390 	return 0;
2391 }
2392 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2393 
2394 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2395 			unsigned long end, unsigned int flags,
2396 			struct page **pages, int *nr)
2397 {
2398 	struct page *head, *page;
2399 	int refs;
2400 
2401 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2402 		return 0;
2403 
2404 	if (pmd_devmap(orig)) {
2405 		if (unlikely(flags & FOLL_LONGTERM))
2406 			return 0;
2407 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2408 					     pages, nr);
2409 	}
2410 
2411 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412 	refs = record_subpages(page, addr, end, pages + *nr);
2413 
2414 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2415 	if (!head)
2416 		return 0;
2417 
2418 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2419 		put_compound_head(head, refs, flags);
2420 		return 0;
2421 	}
2422 
2423 	*nr += refs;
2424 	SetPageReferenced(head);
2425 	return 1;
2426 }
2427 
2428 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2429 			unsigned long end, unsigned int flags,
2430 			struct page **pages, int *nr)
2431 {
2432 	struct page *head, *page;
2433 	int refs;
2434 
2435 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2436 		return 0;
2437 
2438 	if (pud_devmap(orig)) {
2439 		if (unlikely(flags & FOLL_LONGTERM))
2440 			return 0;
2441 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2442 					     pages, nr);
2443 	}
2444 
2445 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2446 	refs = record_subpages(page, addr, end, pages + *nr);
2447 
2448 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2449 	if (!head)
2450 		return 0;
2451 
2452 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453 		put_compound_head(head, refs, flags);
2454 		return 0;
2455 	}
2456 
2457 	*nr += refs;
2458 	SetPageReferenced(head);
2459 	return 1;
2460 }
2461 
2462 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2463 			unsigned long end, unsigned int flags,
2464 			struct page **pages, int *nr)
2465 {
2466 	int refs;
2467 	struct page *head, *page;
2468 
2469 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2470 		return 0;
2471 
2472 	BUILD_BUG_ON(pgd_devmap(orig));
2473 
2474 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2475 	refs = record_subpages(page, addr, end, pages + *nr);
2476 
2477 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2478 	if (!head)
2479 		return 0;
2480 
2481 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2482 		put_compound_head(head, refs, flags);
2483 		return 0;
2484 	}
2485 
2486 	*nr += refs;
2487 	SetPageReferenced(head);
2488 	return 1;
2489 }
2490 
2491 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2492 		unsigned int flags, struct page **pages, int *nr)
2493 {
2494 	unsigned long next;
2495 	pmd_t *pmdp;
2496 
2497 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2498 	do {
2499 		pmd_t pmd = READ_ONCE(*pmdp);
2500 
2501 		next = pmd_addr_end(addr, end);
2502 		if (!pmd_present(pmd))
2503 			return 0;
2504 
2505 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2506 			     pmd_devmap(pmd))) {
2507 			/*
2508 			 * NUMA hinting faults need to be handled in the GUP
2509 			 * slowpath for accounting purposes and so that they
2510 			 * can be serialised against THP migration.
2511 			 */
2512 			if (pmd_protnone(pmd))
2513 				return 0;
2514 
2515 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2516 				pages, nr))
2517 				return 0;
2518 
2519 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2520 			/*
2521 			 * architecture have different format for hugetlbfs
2522 			 * pmd format and THP pmd format
2523 			 */
2524 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2525 					 PMD_SHIFT, next, flags, pages, nr))
2526 				return 0;
2527 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2528 			return 0;
2529 	} while (pmdp++, addr = next, addr != end);
2530 
2531 	return 1;
2532 }
2533 
2534 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2535 			 unsigned int flags, struct page **pages, int *nr)
2536 {
2537 	unsigned long next;
2538 	pud_t *pudp;
2539 
2540 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2541 	do {
2542 		pud_t pud = READ_ONCE(*pudp);
2543 
2544 		next = pud_addr_end(addr, end);
2545 		if (unlikely(!pud_present(pud)))
2546 			return 0;
2547 		if (unlikely(pud_huge(pud))) {
2548 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2549 					  pages, nr))
2550 				return 0;
2551 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2552 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2553 					 PUD_SHIFT, next, flags, pages, nr))
2554 				return 0;
2555 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2556 			return 0;
2557 	} while (pudp++, addr = next, addr != end);
2558 
2559 	return 1;
2560 }
2561 
2562 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2563 			 unsigned int flags, struct page **pages, int *nr)
2564 {
2565 	unsigned long next;
2566 	p4d_t *p4dp;
2567 
2568 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2569 	do {
2570 		p4d_t p4d = READ_ONCE(*p4dp);
2571 
2572 		next = p4d_addr_end(addr, end);
2573 		if (p4d_none(p4d))
2574 			return 0;
2575 		BUILD_BUG_ON(p4d_huge(p4d));
2576 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2577 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2578 					 P4D_SHIFT, next, flags, pages, nr))
2579 				return 0;
2580 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2581 			return 0;
2582 	} while (p4dp++, addr = next, addr != end);
2583 
2584 	return 1;
2585 }
2586 
2587 static void gup_pgd_range(unsigned long addr, unsigned long end,
2588 		unsigned int flags, struct page **pages, int *nr)
2589 {
2590 	unsigned long next;
2591 	pgd_t *pgdp;
2592 
2593 	pgdp = pgd_offset(current->mm, addr);
2594 	do {
2595 		pgd_t pgd = READ_ONCE(*pgdp);
2596 
2597 		next = pgd_addr_end(addr, end);
2598 		if (pgd_none(pgd))
2599 			return;
2600 		if (unlikely(pgd_huge(pgd))) {
2601 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2602 					  pages, nr))
2603 				return;
2604 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2605 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2606 					 PGDIR_SHIFT, next, flags, pages, nr))
2607 				return;
2608 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2609 			return;
2610 	} while (pgdp++, addr = next, addr != end);
2611 }
2612 #else
2613 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2614 		unsigned int flags, struct page **pages, int *nr)
2615 {
2616 }
2617 #endif /* CONFIG_HAVE_FAST_GUP */
2618 
2619 #ifndef gup_fast_permitted
2620 /*
2621  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2622  * we need to fall back to the slow version:
2623  */
2624 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2625 {
2626 	return true;
2627 }
2628 #endif
2629 
2630 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2631 				   unsigned int gup_flags, struct page **pages)
2632 {
2633 	int ret;
2634 
2635 	/*
2636 	 * FIXME: FOLL_LONGTERM does not work with
2637 	 * get_user_pages_unlocked() (see comments in that function)
2638 	 */
2639 	if (gup_flags & FOLL_LONGTERM) {
2640 		mmap_read_lock(current->mm);
2641 		ret = __gup_longterm_locked(current->mm,
2642 					    start, nr_pages,
2643 					    pages, NULL, gup_flags);
2644 		mmap_read_unlock(current->mm);
2645 	} else {
2646 		ret = get_user_pages_unlocked(start, nr_pages,
2647 					      pages, gup_flags);
2648 	}
2649 
2650 	return ret;
2651 }
2652 
2653 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2654 					unsigned int gup_flags,
2655 					struct page **pages)
2656 {
2657 	unsigned long addr, len, end;
2658 	unsigned long flags;
2659 	int nr_pinned = 0, ret = 0;
2660 
2661 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2662 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2663 				       FOLL_FAST_ONLY)))
2664 		return -EINVAL;
2665 
2666 	if (gup_flags & FOLL_PIN)
2667 		atomic_set(&current->mm->has_pinned, 1);
2668 
2669 	if (!(gup_flags & FOLL_FAST_ONLY))
2670 		might_lock_read(&current->mm->mmap_lock);
2671 
2672 	start = untagged_addr(start) & PAGE_MASK;
2673 	addr = start;
2674 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2675 	end = start + len;
2676 
2677 	if (end <= start)
2678 		return 0;
2679 	if (unlikely(!access_ok((void __user *)start, len)))
2680 		return -EFAULT;
2681 
2682 	/*
2683 	 * Disable interrupts. The nested form is used, in order to allow
2684 	 * full, general purpose use of this routine.
2685 	 *
2686 	 * With interrupts disabled, we block page table pages from being
2687 	 * freed from under us. See struct mmu_table_batch comments in
2688 	 * include/asm-generic/tlb.h for more details.
2689 	 *
2690 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2691 	 * block IPIs that come from THPs splitting.
2692 	 */
2693 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2694 		unsigned long fast_flags = gup_flags;
2695 
2696 		local_irq_save(flags);
2697 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2698 		local_irq_restore(flags);
2699 		ret = nr_pinned;
2700 	}
2701 
2702 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2703 		/* Try to get the remaining pages with get_user_pages */
2704 		start += nr_pinned << PAGE_SHIFT;
2705 		pages += nr_pinned;
2706 
2707 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2708 					      gup_flags, pages);
2709 
2710 		/* Have to be a bit careful with return values */
2711 		if (nr_pinned > 0) {
2712 			if (ret < 0)
2713 				ret = nr_pinned;
2714 			else
2715 				ret += nr_pinned;
2716 		}
2717 	}
2718 
2719 	return ret;
2720 }
2721 /**
2722  * get_user_pages_fast_only() - pin user pages in memory
2723  * @start:      starting user address
2724  * @nr_pages:   number of pages from start to pin
2725  * @gup_flags:  flags modifying pin behaviour
2726  * @pages:      array that receives pointers to the pages pinned.
2727  *              Should be at least nr_pages long.
2728  *
2729  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2730  * the regular GUP.
2731  * Note a difference with get_user_pages_fast: this always returns the
2732  * number of pages pinned, 0 if no pages were pinned.
2733  *
2734  * If the architecture does not support this function, simply return with no
2735  * pages pinned.
2736  *
2737  * Careful, careful! COW breaking can go either way, so a non-write
2738  * access can get ambiguous page results. If you call this function without
2739  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2740  */
2741 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2742 			     unsigned int gup_flags, struct page **pages)
2743 {
2744 	int nr_pinned;
2745 	/*
2746 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2747 	 * because gup fast is always a "pin with a +1 page refcount" request.
2748 	 *
2749 	 * FOLL_FAST_ONLY is required in order to match the API description of
2750 	 * this routine: no fall back to regular ("slow") GUP.
2751 	 */
2752 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2753 
2754 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2755 						 pages);
2756 
2757 	/*
2758 	 * As specified in the API description above, this routine is not
2759 	 * allowed to return negative values. However, the common core
2760 	 * routine internal_get_user_pages_fast() *can* return -errno.
2761 	 * Therefore, correct for that here:
2762 	 */
2763 	if (nr_pinned < 0)
2764 		nr_pinned = 0;
2765 
2766 	return nr_pinned;
2767 }
2768 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2769 
2770 /**
2771  * get_user_pages_fast() - pin user pages in memory
2772  * @start:      starting user address
2773  * @nr_pages:   number of pages from start to pin
2774  * @gup_flags:  flags modifying pin behaviour
2775  * @pages:      array that receives pointers to the pages pinned.
2776  *              Should be at least nr_pages long.
2777  *
2778  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2779  * If not successful, it will fall back to taking the lock and
2780  * calling get_user_pages().
2781  *
2782  * Returns number of pages pinned. This may be fewer than the number requested.
2783  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2784  * -errno.
2785  */
2786 int get_user_pages_fast(unsigned long start, int nr_pages,
2787 			unsigned int gup_flags, struct page **pages)
2788 {
2789 	/*
2790 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2791 	 * never directly by the caller, so enforce that:
2792 	 */
2793 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2794 		return -EINVAL;
2795 
2796 	/*
2797 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2798 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2799 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2800 	 * request.
2801 	 */
2802 	gup_flags |= FOLL_GET;
2803 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2804 }
2805 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2806 
2807 /**
2808  * pin_user_pages_fast() - pin user pages in memory without taking locks
2809  *
2810  * @start:      starting user address
2811  * @nr_pages:   number of pages from start to pin
2812  * @gup_flags:  flags modifying pin behaviour
2813  * @pages:      array that receives pointers to the pages pinned.
2814  *              Should be at least nr_pages long.
2815  *
2816  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2817  * get_user_pages_fast() for documentation on the function arguments, because
2818  * the arguments here are identical.
2819  *
2820  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2821  * see Documentation/core-api/pin_user_pages.rst for further details.
2822  */
2823 int pin_user_pages_fast(unsigned long start, int nr_pages,
2824 			unsigned int gup_flags, struct page **pages)
2825 {
2826 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2827 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2828 		return -EINVAL;
2829 
2830 	gup_flags |= FOLL_PIN;
2831 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2832 }
2833 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2834 
2835 /*
2836  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2837  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2838  *
2839  * The API rules are the same, too: no negative values may be returned.
2840  */
2841 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2842 			     unsigned int gup_flags, struct page **pages)
2843 {
2844 	int nr_pinned;
2845 
2846 	/*
2847 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2848 	 * rules require returning 0, rather than -errno:
2849 	 */
2850 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851 		return 0;
2852 	/*
2853 	 * FOLL_FAST_ONLY is required in order to match the API description of
2854 	 * this routine: no fall back to regular ("slow") GUP.
2855 	 */
2856 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2857 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2858 						 pages);
2859 	/*
2860 	 * This routine is not allowed to return negative values. However,
2861 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2862 	 * correct for that here:
2863 	 */
2864 	if (nr_pinned < 0)
2865 		nr_pinned = 0;
2866 
2867 	return nr_pinned;
2868 }
2869 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2870 
2871 /**
2872  * pin_user_pages_remote() - pin pages of a remote process
2873  *
2874  * @mm:		mm_struct of target mm
2875  * @start:	starting user address
2876  * @nr_pages:	number of pages from start to pin
2877  * @gup_flags:	flags modifying lookup behaviour
2878  * @pages:	array that receives pointers to the pages pinned.
2879  *		Should be at least nr_pages long. Or NULL, if caller
2880  *		only intends to ensure the pages are faulted in.
2881  * @vmas:	array of pointers to vmas corresponding to each page.
2882  *		Or NULL if the caller does not require them.
2883  * @locked:	pointer to lock flag indicating whether lock is held and
2884  *		subsequently whether VM_FAULT_RETRY functionality can be
2885  *		utilised. Lock must initially be held.
2886  *
2887  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2888  * get_user_pages_remote() for documentation on the function arguments, because
2889  * the arguments here are identical.
2890  *
2891  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2892  * see Documentation/core-api/pin_user_pages.rst for details.
2893  */
2894 long pin_user_pages_remote(struct mm_struct *mm,
2895 			   unsigned long start, unsigned long nr_pages,
2896 			   unsigned int gup_flags, struct page **pages,
2897 			   struct vm_area_struct **vmas, int *locked)
2898 {
2899 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2900 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2901 		return -EINVAL;
2902 
2903 	gup_flags |= FOLL_PIN;
2904 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2905 				       pages, vmas, locked);
2906 }
2907 EXPORT_SYMBOL(pin_user_pages_remote);
2908 
2909 /**
2910  * pin_user_pages() - pin user pages in memory for use by other devices
2911  *
2912  * @start:	starting user address
2913  * @nr_pages:	number of pages from start to pin
2914  * @gup_flags:	flags modifying lookup behaviour
2915  * @pages:	array that receives pointers to the pages pinned.
2916  *		Should be at least nr_pages long. Or NULL, if caller
2917  *		only intends to ensure the pages are faulted in.
2918  * @vmas:	array of pointers to vmas corresponding to each page.
2919  *		Or NULL if the caller does not require them.
2920  *
2921  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2922  * FOLL_PIN is set.
2923  *
2924  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2925  * see Documentation/core-api/pin_user_pages.rst for details.
2926  */
2927 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928 		    unsigned int gup_flags, struct page **pages,
2929 		    struct vm_area_struct **vmas)
2930 {
2931 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933 		return -EINVAL;
2934 
2935 	gup_flags |= FOLL_PIN;
2936 	return __gup_longterm_locked(current->mm, start, nr_pages,
2937 				     pages, vmas, gup_flags);
2938 }
2939 EXPORT_SYMBOL(pin_user_pages);
2940 
2941 /*
2942  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2943  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2944  * FOLL_PIN and rejects FOLL_GET.
2945  */
2946 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2947 			     struct page **pages, unsigned int gup_flags)
2948 {
2949 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2950 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2951 		return -EINVAL;
2952 
2953 	gup_flags |= FOLL_PIN;
2954 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2955 }
2956 EXPORT_SYMBOL(pin_user_pages_unlocked);
2957 
2958 /*
2959  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2960  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2961  * FOLL_GET.
2962  */
2963 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2964 			   unsigned int gup_flags, struct page **pages,
2965 			   int *locked)
2966 {
2967 	/*
2968 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2969 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2970 	 * vmas.  As there are no users of this flag in this call we simply
2971 	 * disallow this option for now.
2972 	 */
2973 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2974 		return -EINVAL;
2975 
2976 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2977 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2978 		return -EINVAL;
2979 
2980 	gup_flags |= FOLL_PIN;
2981 	return __get_user_pages_locked(current->mm, start, nr_pages,
2982 				       pages, NULL, locked,
2983 				       gup_flags | FOLL_TOUCH);
2984 }
2985 EXPORT_SYMBOL(pin_user_pages_locked);
2986