1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in page_try_share_anon_rmap(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 } 714 if (likely(!pmd_trans_huge(pmdval))) 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 716 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 718 return no_page_table(vma, flags); 719 720 ptl = pmd_lock(mm, pmd); 721 if (unlikely(!pmd_present(*pmd))) { 722 spin_unlock(ptl); 723 return no_page_table(vma, flags); 724 } 725 if (unlikely(!pmd_trans_huge(*pmd))) { 726 spin_unlock(ptl); 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 } 729 if (flags & FOLL_SPLIT_PMD) { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 /* If pmd was left empty, stuff a page table in there quickly */ 733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 735 } 736 page = follow_trans_huge_pmd(vma, address, pmd, flags); 737 spin_unlock(ptl); 738 ctx->page_mask = HPAGE_PMD_NR - 1; 739 return page; 740 } 741 742 static struct page *follow_pud_mask(struct vm_area_struct *vma, 743 unsigned long address, p4d_t *p4dp, 744 unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pud_t *pud; 748 spinlock_t *ptl; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 pud = pud_offset(p4dp, address); 753 if (pud_none(*pud)) 754 return no_page_table(vma, flags); 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct page *page; 815 struct mm_struct *mm = vma->vm_mm; 816 817 ctx->page_mask = 0; 818 819 /* 820 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 821 * special hugetlb page table walking code. This eliminates the 822 * need to check for hugetlb entries in the general walking code. 823 * 824 * hugetlb_follow_page_mask is only for follow_page() handling here. 825 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 826 */ 827 if (is_vm_hugetlb_page(vma)) { 828 page = hugetlb_follow_page_mask(vma, address, flags); 829 if (!page) 830 page = no_page_table(vma, flags); 831 return page; 832 } 833 834 pgd = pgd_offset(mm, address); 835 836 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 837 return no_page_table(vma, flags); 838 839 return follow_p4d_mask(vma, address, pgd, flags, ctx); 840 } 841 842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 843 unsigned int foll_flags) 844 { 845 struct follow_page_context ctx = { NULL }; 846 struct page *page; 847 848 if (vma_is_secretmem(vma)) 849 return NULL; 850 851 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 852 return NULL; 853 854 page = follow_page_mask(vma, address, foll_flags, &ctx); 855 if (ctx.pgmap) 856 put_dev_pagemap(ctx.pgmap); 857 return page; 858 } 859 860 static int get_gate_page(struct mm_struct *mm, unsigned long address, 861 unsigned int gup_flags, struct vm_area_struct **vma, 862 struct page **page) 863 { 864 pgd_t *pgd; 865 p4d_t *p4d; 866 pud_t *pud; 867 pmd_t *pmd; 868 pte_t *pte; 869 pte_t entry; 870 int ret = -EFAULT; 871 872 /* user gate pages are read-only */ 873 if (gup_flags & FOLL_WRITE) 874 return -EFAULT; 875 if (address > TASK_SIZE) 876 pgd = pgd_offset_k(address); 877 else 878 pgd = pgd_offset_gate(mm, address); 879 if (pgd_none(*pgd)) 880 return -EFAULT; 881 p4d = p4d_offset(pgd, address); 882 if (p4d_none(*p4d)) 883 return -EFAULT; 884 pud = pud_offset(p4d, address); 885 if (pud_none(*pud)) 886 return -EFAULT; 887 pmd = pmd_offset(pud, address); 888 if (!pmd_present(*pmd)) 889 return -EFAULT; 890 pte = pte_offset_map(pmd, address); 891 if (!pte) 892 return -EFAULT; 893 entry = ptep_get(pte); 894 if (pte_none(entry)) 895 goto unmap; 896 *vma = get_gate_vma(mm); 897 if (!page) 898 goto out; 899 *page = vm_normal_page(*vma, address, entry); 900 if (!*page) { 901 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 902 goto unmap; 903 *page = pte_page(entry); 904 } 905 ret = try_grab_page(*page, gup_flags); 906 if (unlikely(ret)) 907 goto unmap; 908 out: 909 ret = 0; 910 unmap: 911 pte_unmap(pte); 912 return ret; 913 } 914 915 /* 916 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 917 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 918 * to 0 and -EBUSY returned. 919 */ 920 static int faultin_page(struct vm_area_struct *vma, 921 unsigned long address, unsigned int *flags, bool unshare, 922 int *locked) 923 { 924 unsigned int fault_flags = 0; 925 vm_fault_t ret; 926 927 if (*flags & FOLL_NOFAULT) 928 return -EFAULT; 929 if (*flags & FOLL_WRITE) 930 fault_flags |= FAULT_FLAG_WRITE; 931 if (*flags & FOLL_REMOTE) 932 fault_flags |= FAULT_FLAG_REMOTE; 933 if (*flags & FOLL_UNLOCKABLE) { 934 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 935 /* 936 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 937 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 938 * That's because some callers may not be prepared to 939 * handle early exits caused by non-fatal signals. 940 */ 941 if (*flags & FOLL_INTERRUPTIBLE) 942 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 943 } 944 if (*flags & FOLL_NOWAIT) 945 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 946 if (*flags & FOLL_TRIED) { 947 /* 948 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 949 * can co-exist 950 */ 951 fault_flags |= FAULT_FLAG_TRIED; 952 } 953 if (unshare) { 954 fault_flags |= FAULT_FLAG_UNSHARE; 955 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 956 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 957 } 958 959 ret = handle_mm_fault(vma, address, fault_flags, NULL); 960 961 if (ret & VM_FAULT_COMPLETED) { 962 /* 963 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 964 * mmap lock in the page fault handler. Sanity check this. 965 */ 966 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 967 *locked = 0; 968 969 /* 970 * We should do the same as VM_FAULT_RETRY, but let's not 971 * return -EBUSY since that's not reflecting the reality of 972 * what has happened - we've just fully completed a page 973 * fault, with the mmap lock released. Use -EAGAIN to show 974 * that we want to take the mmap lock _again_. 975 */ 976 return -EAGAIN; 977 } 978 979 if (ret & VM_FAULT_ERROR) { 980 int err = vm_fault_to_errno(ret, *flags); 981 982 if (err) 983 return err; 984 BUG(); 985 } 986 987 if (ret & VM_FAULT_RETRY) { 988 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 989 *locked = 0; 990 return -EBUSY; 991 } 992 993 return 0; 994 } 995 996 /* 997 * Writing to file-backed mappings which require folio dirty tracking using GUP 998 * is a fundamentally broken operation, as kernel write access to GUP mappings 999 * do not adhere to the semantics expected by a file system. 1000 * 1001 * Consider the following scenario:- 1002 * 1003 * 1. A folio is written to via GUP which write-faults the memory, notifying 1004 * the file system and dirtying the folio. 1005 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1006 * the PTE being marked read-only. 1007 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1008 * direct mapping. 1009 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1010 * (though it does not have to). 1011 * 1012 * This results in both data being written to a folio without writenotify, and 1013 * the folio being dirtied unexpectedly (if the caller decides to do so). 1014 */ 1015 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1016 unsigned long gup_flags) 1017 { 1018 /* 1019 * If we aren't pinning then no problematic write can occur. A long term 1020 * pin is the most egregious case so this is the case we disallow. 1021 */ 1022 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1023 (FOLL_PIN | FOLL_LONGTERM)) 1024 return true; 1025 1026 /* 1027 * If the VMA does not require dirty tracking then no problematic write 1028 * can occur either. 1029 */ 1030 return !vma_needs_dirty_tracking(vma); 1031 } 1032 1033 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1034 { 1035 vm_flags_t vm_flags = vma->vm_flags; 1036 int write = (gup_flags & FOLL_WRITE); 1037 int foreign = (gup_flags & FOLL_REMOTE); 1038 bool vma_anon = vma_is_anonymous(vma); 1039 1040 if (vm_flags & (VM_IO | VM_PFNMAP)) 1041 return -EFAULT; 1042 1043 if ((gup_flags & FOLL_ANON) && !vma_anon) 1044 return -EFAULT; 1045 1046 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1047 return -EOPNOTSUPP; 1048 1049 if (vma_is_secretmem(vma)) 1050 return -EFAULT; 1051 1052 if (write) { 1053 if (!vma_anon && 1054 !writable_file_mapping_allowed(vma, gup_flags)) 1055 return -EFAULT; 1056 1057 if (!(vm_flags & VM_WRITE)) { 1058 if (!(gup_flags & FOLL_FORCE)) 1059 return -EFAULT; 1060 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1061 if (is_vm_hugetlb_page(vma)) 1062 return -EFAULT; 1063 /* 1064 * We used to let the write,force case do COW in a 1065 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1066 * set a breakpoint in a read-only mapping of an 1067 * executable, without corrupting the file (yet only 1068 * when that file had been opened for writing!). 1069 * Anon pages in shared mappings are surprising: now 1070 * just reject it. 1071 */ 1072 if (!is_cow_mapping(vm_flags)) 1073 return -EFAULT; 1074 } 1075 } else if (!(vm_flags & VM_READ)) { 1076 if (!(gup_flags & FOLL_FORCE)) 1077 return -EFAULT; 1078 /* 1079 * Is there actually any vma we can reach here which does not 1080 * have VM_MAYREAD set? 1081 */ 1082 if (!(vm_flags & VM_MAYREAD)) 1083 return -EFAULT; 1084 } 1085 /* 1086 * gups are always data accesses, not instruction 1087 * fetches, so execute=false here 1088 */ 1089 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1090 return -EFAULT; 1091 return 0; 1092 } 1093 1094 /** 1095 * __get_user_pages() - pin user pages in memory 1096 * @mm: mm_struct of target mm 1097 * @start: starting user address 1098 * @nr_pages: number of pages from start to pin 1099 * @gup_flags: flags modifying pin behaviour 1100 * @pages: array that receives pointers to the pages pinned. 1101 * Should be at least nr_pages long. Or NULL, if caller 1102 * only intends to ensure the pages are faulted in. 1103 * @locked: whether we're still with the mmap_lock held 1104 * 1105 * Returns either number of pages pinned (which may be less than the 1106 * number requested), or an error. Details about the return value: 1107 * 1108 * -- If nr_pages is 0, returns 0. 1109 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1110 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1111 * pages pinned. Again, this may be less than nr_pages. 1112 * -- 0 return value is possible when the fault would need to be retried. 1113 * 1114 * The caller is responsible for releasing returned @pages, via put_page(). 1115 * 1116 * Must be called with mmap_lock held. It may be released. See below. 1117 * 1118 * __get_user_pages walks a process's page tables and takes a reference to 1119 * each struct page that each user address corresponds to at a given 1120 * instant. That is, it takes the page that would be accessed if a user 1121 * thread accesses the given user virtual address at that instant. 1122 * 1123 * This does not guarantee that the page exists in the user mappings when 1124 * __get_user_pages returns, and there may even be a completely different 1125 * page there in some cases (eg. if mmapped pagecache has been invalidated 1126 * and subsequently re-faulted). However it does guarantee that the page 1127 * won't be freed completely. And mostly callers simply care that the page 1128 * contains data that was valid *at some point in time*. Typically, an IO 1129 * or similar operation cannot guarantee anything stronger anyway because 1130 * locks can't be held over the syscall boundary. 1131 * 1132 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1133 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1134 * appropriate) must be called after the page is finished with, and 1135 * before put_page is called. 1136 * 1137 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1138 * be released. If this happens *@locked will be set to 0 on return. 1139 * 1140 * A caller using such a combination of @gup_flags must therefore hold the 1141 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1142 * it must be held for either reading or writing and will not be released. 1143 * 1144 * In most cases, get_user_pages or get_user_pages_fast should be used 1145 * instead of __get_user_pages. __get_user_pages should be used only if 1146 * you need some special @gup_flags. 1147 */ 1148 static long __get_user_pages(struct mm_struct *mm, 1149 unsigned long start, unsigned long nr_pages, 1150 unsigned int gup_flags, struct page **pages, 1151 int *locked) 1152 { 1153 long ret = 0, i = 0; 1154 struct vm_area_struct *vma = NULL; 1155 struct follow_page_context ctx = { NULL }; 1156 1157 if (!nr_pages) 1158 return 0; 1159 1160 start = untagged_addr_remote(mm, start); 1161 1162 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1163 1164 do { 1165 struct page *page; 1166 unsigned int foll_flags = gup_flags; 1167 unsigned int page_increm; 1168 1169 /* first iteration or cross vma bound */ 1170 if (!vma || start >= vma->vm_end) { 1171 vma = find_extend_vma(mm, start); 1172 if (!vma && in_gate_area(mm, start)) { 1173 ret = get_gate_page(mm, start & PAGE_MASK, 1174 gup_flags, &vma, 1175 pages ? &pages[i] : NULL); 1176 if (ret) 1177 goto out; 1178 ctx.page_mask = 0; 1179 goto next_page; 1180 } 1181 1182 if (!vma) { 1183 ret = -EFAULT; 1184 goto out; 1185 } 1186 ret = check_vma_flags(vma, gup_flags); 1187 if (ret) 1188 goto out; 1189 1190 if (is_vm_hugetlb_page(vma)) { 1191 i = follow_hugetlb_page(mm, vma, pages, 1192 &start, &nr_pages, i, 1193 gup_flags, locked); 1194 if (!*locked) { 1195 /* 1196 * We've got a VM_FAULT_RETRY 1197 * and we've lost mmap_lock. 1198 * We must stop here. 1199 */ 1200 BUG_ON(gup_flags & FOLL_NOWAIT); 1201 goto out; 1202 } 1203 continue; 1204 } 1205 } 1206 retry: 1207 /* 1208 * If we have a pending SIGKILL, don't keep faulting pages and 1209 * potentially allocating memory. 1210 */ 1211 if (fatal_signal_pending(current)) { 1212 ret = -EINTR; 1213 goto out; 1214 } 1215 cond_resched(); 1216 1217 page = follow_page_mask(vma, start, foll_flags, &ctx); 1218 if (!page || PTR_ERR(page) == -EMLINK) { 1219 ret = faultin_page(vma, start, &foll_flags, 1220 PTR_ERR(page) == -EMLINK, locked); 1221 switch (ret) { 1222 case 0: 1223 goto retry; 1224 case -EBUSY: 1225 case -EAGAIN: 1226 ret = 0; 1227 fallthrough; 1228 case -EFAULT: 1229 case -ENOMEM: 1230 case -EHWPOISON: 1231 goto out; 1232 } 1233 BUG(); 1234 } else if (PTR_ERR(page) == -EEXIST) { 1235 /* 1236 * Proper page table entry exists, but no corresponding 1237 * struct page. If the caller expects **pages to be 1238 * filled in, bail out now, because that can't be done 1239 * for this page. 1240 */ 1241 if (pages) { 1242 ret = PTR_ERR(page); 1243 goto out; 1244 } 1245 1246 goto next_page; 1247 } else if (IS_ERR(page)) { 1248 ret = PTR_ERR(page); 1249 goto out; 1250 } 1251 if (pages) { 1252 pages[i] = page; 1253 flush_anon_page(vma, page, start); 1254 flush_dcache_page(page); 1255 ctx.page_mask = 0; 1256 } 1257 next_page: 1258 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1259 if (page_increm > nr_pages) 1260 page_increm = nr_pages; 1261 i += page_increm; 1262 start += page_increm * PAGE_SIZE; 1263 nr_pages -= page_increm; 1264 } while (nr_pages); 1265 out: 1266 if (ctx.pgmap) 1267 put_dev_pagemap(ctx.pgmap); 1268 return i ? i : ret; 1269 } 1270 1271 static bool vma_permits_fault(struct vm_area_struct *vma, 1272 unsigned int fault_flags) 1273 { 1274 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1275 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1276 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1277 1278 if (!(vm_flags & vma->vm_flags)) 1279 return false; 1280 1281 /* 1282 * The architecture might have a hardware protection 1283 * mechanism other than read/write that can deny access. 1284 * 1285 * gup always represents data access, not instruction 1286 * fetches, so execute=false here: 1287 */ 1288 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1289 return false; 1290 1291 return true; 1292 } 1293 1294 /** 1295 * fixup_user_fault() - manually resolve a user page fault 1296 * @mm: mm_struct of target mm 1297 * @address: user address 1298 * @fault_flags:flags to pass down to handle_mm_fault() 1299 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1300 * does not allow retry. If NULL, the caller must guarantee 1301 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1302 * 1303 * This is meant to be called in the specific scenario where for locking reasons 1304 * we try to access user memory in atomic context (within a pagefault_disable() 1305 * section), this returns -EFAULT, and we want to resolve the user fault before 1306 * trying again. 1307 * 1308 * Typically this is meant to be used by the futex code. 1309 * 1310 * The main difference with get_user_pages() is that this function will 1311 * unconditionally call handle_mm_fault() which will in turn perform all the 1312 * necessary SW fixup of the dirty and young bits in the PTE, while 1313 * get_user_pages() only guarantees to update these in the struct page. 1314 * 1315 * This is important for some architectures where those bits also gate the 1316 * access permission to the page because they are maintained in software. On 1317 * such architectures, gup() will not be enough to make a subsequent access 1318 * succeed. 1319 * 1320 * This function will not return with an unlocked mmap_lock. So it has not the 1321 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1322 */ 1323 int fixup_user_fault(struct mm_struct *mm, 1324 unsigned long address, unsigned int fault_flags, 1325 bool *unlocked) 1326 { 1327 struct vm_area_struct *vma; 1328 vm_fault_t ret; 1329 1330 address = untagged_addr_remote(mm, address); 1331 1332 if (unlocked) 1333 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1334 1335 retry: 1336 vma = find_extend_vma(mm, address); 1337 if (!vma || address < vma->vm_start) 1338 return -EFAULT; 1339 1340 if (!vma_permits_fault(vma, fault_flags)) 1341 return -EFAULT; 1342 1343 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1344 fatal_signal_pending(current)) 1345 return -EINTR; 1346 1347 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1348 1349 if (ret & VM_FAULT_COMPLETED) { 1350 /* 1351 * NOTE: it's a pity that we need to retake the lock here 1352 * to pair with the unlock() in the callers. Ideally we 1353 * could tell the callers so they do not need to unlock. 1354 */ 1355 mmap_read_lock(mm); 1356 *unlocked = true; 1357 return 0; 1358 } 1359 1360 if (ret & VM_FAULT_ERROR) { 1361 int err = vm_fault_to_errno(ret, 0); 1362 1363 if (err) 1364 return err; 1365 BUG(); 1366 } 1367 1368 if (ret & VM_FAULT_RETRY) { 1369 mmap_read_lock(mm); 1370 *unlocked = true; 1371 fault_flags |= FAULT_FLAG_TRIED; 1372 goto retry; 1373 } 1374 1375 return 0; 1376 } 1377 EXPORT_SYMBOL_GPL(fixup_user_fault); 1378 1379 /* 1380 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1381 * specified, it'll also respond to generic signals. The caller of GUP 1382 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1383 */ 1384 static bool gup_signal_pending(unsigned int flags) 1385 { 1386 if (fatal_signal_pending(current)) 1387 return true; 1388 1389 if (!(flags & FOLL_INTERRUPTIBLE)) 1390 return false; 1391 1392 return signal_pending(current); 1393 } 1394 1395 /* 1396 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1397 * the caller. This function may drop the mmap_lock. If it does so, then it will 1398 * set (*locked = 0). 1399 * 1400 * (*locked == 0) means that the caller expects this function to acquire and 1401 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1402 * the function returns, even though it may have changed temporarily during 1403 * function execution. 1404 * 1405 * Please note that this function, unlike __get_user_pages(), will not return 0 1406 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1407 */ 1408 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1409 unsigned long start, 1410 unsigned long nr_pages, 1411 struct page **pages, 1412 int *locked, 1413 unsigned int flags) 1414 { 1415 long ret, pages_done; 1416 bool must_unlock = false; 1417 1418 /* 1419 * The internal caller expects GUP to manage the lock internally and the 1420 * lock must be released when this returns. 1421 */ 1422 if (!*locked) { 1423 if (mmap_read_lock_killable(mm)) 1424 return -EAGAIN; 1425 must_unlock = true; 1426 *locked = 1; 1427 } 1428 else 1429 mmap_assert_locked(mm); 1430 1431 if (flags & FOLL_PIN) 1432 mm_set_has_pinned_flag(&mm->flags); 1433 1434 /* 1435 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1436 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1437 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1438 * for FOLL_GET, not for the newer FOLL_PIN. 1439 * 1440 * FOLL_PIN always expects pages to be non-null, but no need to assert 1441 * that here, as any failures will be obvious enough. 1442 */ 1443 if (pages && !(flags & FOLL_PIN)) 1444 flags |= FOLL_GET; 1445 1446 pages_done = 0; 1447 for (;;) { 1448 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1449 locked); 1450 if (!(flags & FOLL_UNLOCKABLE)) { 1451 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1452 pages_done = ret; 1453 break; 1454 } 1455 1456 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1457 if (!*locked) { 1458 BUG_ON(ret < 0); 1459 BUG_ON(ret >= nr_pages); 1460 } 1461 1462 if (ret > 0) { 1463 nr_pages -= ret; 1464 pages_done += ret; 1465 if (!nr_pages) 1466 break; 1467 } 1468 if (*locked) { 1469 /* 1470 * VM_FAULT_RETRY didn't trigger or it was a 1471 * FOLL_NOWAIT. 1472 */ 1473 if (!pages_done) 1474 pages_done = ret; 1475 break; 1476 } 1477 /* 1478 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1479 * For the prefault case (!pages) we only update counts. 1480 */ 1481 if (likely(pages)) 1482 pages += ret; 1483 start += ret << PAGE_SHIFT; 1484 1485 /* The lock was temporarily dropped, so we must unlock later */ 1486 must_unlock = true; 1487 1488 retry: 1489 /* 1490 * Repeat on the address that fired VM_FAULT_RETRY 1491 * with both FAULT_FLAG_ALLOW_RETRY and 1492 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1493 * by fatal signals of even common signals, depending on 1494 * the caller's request. So we need to check it before we 1495 * start trying again otherwise it can loop forever. 1496 */ 1497 if (gup_signal_pending(flags)) { 1498 if (!pages_done) 1499 pages_done = -EINTR; 1500 break; 1501 } 1502 1503 ret = mmap_read_lock_killable(mm); 1504 if (ret) { 1505 BUG_ON(ret > 0); 1506 if (!pages_done) 1507 pages_done = ret; 1508 break; 1509 } 1510 1511 *locked = 1; 1512 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1513 pages, locked); 1514 if (!*locked) { 1515 /* Continue to retry until we succeeded */ 1516 BUG_ON(ret != 0); 1517 goto retry; 1518 } 1519 if (ret != 1) { 1520 BUG_ON(ret > 1); 1521 if (!pages_done) 1522 pages_done = ret; 1523 break; 1524 } 1525 nr_pages--; 1526 pages_done++; 1527 if (!nr_pages) 1528 break; 1529 if (likely(pages)) 1530 pages++; 1531 start += PAGE_SIZE; 1532 } 1533 if (must_unlock && *locked) { 1534 /* 1535 * We either temporarily dropped the lock, or the caller 1536 * requested that we both acquire and drop the lock. Either way, 1537 * we must now unlock, and notify the caller of that state. 1538 */ 1539 mmap_read_unlock(mm); 1540 *locked = 0; 1541 } 1542 return pages_done; 1543 } 1544 1545 /** 1546 * populate_vma_page_range() - populate a range of pages in the vma. 1547 * @vma: target vma 1548 * @start: start address 1549 * @end: end address 1550 * @locked: whether the mmap_lock is still held 1551 * 1552 * This takes care of mlocking the pages too if VM_LOCKED is set. 1553 * 1554 * Return either number of pages pinned in the vma, or a negative error 1555 * code on error. 1556 * 1557 * vma->vm_mm->mmap_lock must be held. 1558 * 1559 * If @locked is NULL, it may be held for read or write and will 1560 * be unperturbed. 1561 * 1562 * If @locked is non-NULL, it must held for read only and may be 1563 * released. If it's released, *@locked will be set to 0. 1564 */ 1565 long populate_vma_page_range(struct vm_area_struct *vma, 1566 unsigned long start, unsigned long end, int *locked) 1567 { 1568 struct mm_struct *mm = vma->vm_mm; 1569 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1570 int local_locked = 1; 1571 int gup_flags; 1572 long ret; 1573 1574 VM_BUG_ON(!PAGE_ALIGNED(start)); 1575 VM_BUG_ON(!PAGE_ALIGNED(end)); 1576 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1577 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1578 mmap_assert_locked(mm); 1579 1580 /* 1581 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1582 * faultin_page() to break COW, so it has no work to do here. 1583 */ 1584 if (vma->vm_flags & VM_LOCKONFAULT) 1585 return nr_pages; 1586 1587 gup_flags = FOLL_TOUCH; 1588 /* 1589 * We want to touch writable mappings with a write fault in order 1590 * to break COW, except for shared mappings because these don't COW 1591 * and we would not want to dirty them for nothing. 1592 */ 1593 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1594 gup_flags |= FOLL_WRITE; 1595 1596 /* 1597 * We want mlock to succeed for regions that have any permissions 1598 * other than PROT_NONE. 1599 */ 1600 if (vma_is_accessible(vma)) 1601 gup_flags |= FOLL_FORCE; 1602 1603 if (locked) 1604 gup_flags |= FOLL_UNLOCKABLE; 1605 1606 /* 1607 * We made sure addr is within a VMA, so the following will 1608 * not result in a stack expansion that recurses back here. 1609 */ 1610 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1611 NULL, locked ? locked : &local_locked); 1612 lru_add_drain(); 1613 return ret; 1614 } 1615 1616 /* 1617 * faultin_vma_page_range() - populate (prefault) page tables inside the 1618 * given VMA range readable/writable 1619 * 1620 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1621 * 1622 * @vma: target vma 1623 * @start: start address 1624 * @end: end address 1625 * @write: whether to prefault readable or writable 1626 * @locked: whether the mmap_lock is still held 1627 * 1628 * Returns either number of processed pages in the vma, or a negative error 1629 * code on error (see __get_user_pages()). 1630 * 1631 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1632 * covered by the VMA. If it's released, *@locked will be set to 0. 1633 */ 1634 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1635 unsigned long end, bool write, int *locked) 1636 { 1637 struct mm_struct *mm = vma->vm_mm; 1638 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1639 int gup_flags; 1640 long ret; 1641 1642 VM_BUG_ON(!PAGE_ALIGNED(start)); 1643 VM_BUG_ON(!PAGE_ALIGNED(end)); 1644 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1645 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1646 mmap_assert_locked(mm); 1647 1648 /* 1649 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1650 * the page dirty with FOLL_WRITE -- which doesn't make a 1651 * difference with !FOLL_FORCE, because the page is writable 1652 * in the page table. 1653 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1654 * a poisoned page. 1655 * !FOLL_FORCE: Require proper access permissions. 1656 */ 1657 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1658 if (write) 1659 gup_flags |= FOLL_WRITE; 1660 1661 /* 1662 * We want to report -EINVAL instead of -EFAULT for any permission 1663 * problems or incompatible mappings. 1664 */ 1665 if (check_vma_flags(vma, gup_flags)) 1666 return -EINVAL; 1667 1668 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1669 NULL, locked); 1670 lru_add_drain(); 1671 return ret; 1672 } 1673 1674 /* 1675 * __mm_populate - populate and/or mlock pages within a range of address space. 1676 * 1677 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1678 * flags. VMAs must be already marked with the desired vm_flags, and 1679 * mmap_lock must not be held. 1680 */ 1681 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1682 { 1683 struct mm_struct *mm = current->mm; 1684 unsigned long end, nstart, nend; 1685 struct vm_area_struct *vma = NULL; 1686 int locked = 0; 1687 long ret = 0; 1688 1689 end = start + len; 1690 1691 for (nstart = start; nstart < end; nstart = nend) { 1692 /* 1693 * We want to fault in pages for [nstart; end) address range. 1694 * Find first corresponding VMA. 1695 */ 1696 if (!locked) { 1697 locked = 1; 1698 mmap_read_lock(mm); 1699 vma = find_vma_intersection(mm, nstart, end); 1700 } else if (nstart >= vma->vm_end) 1701 vma = find_vma_intersection(mm, vma->vm_end, end); 1702 1703 if (!vma) 1704 break; 1705 /* 1706 * Set [nstart; nend) to intersection of desired address 1707 * range with the first VMA. Also, skip undesirable VMA types. 1708 */ 1709 nend = min(end, vma->vm_end); 1710 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1711 continue; 1712 if (nstart < vma->vm_start) 1713 nstart = vma->vm_start; 1714 /* 1715 * Now fault in a range of pages. populate_vma_page_range() 1716 * double checks the vma flags, so that it won't mlock pages 1717 * if the vma was already munlocked. 1718 */ 1719 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1720 if (ret < 0) { 1721 if (ignore_errors) { 1722 ret = 0; 1723 continue; /* continue at next VMA */ 1724 } 1725 break; 1726 } 1727 nend = nstart + ret * PAGE_SIZE; 1728 ret = 0; 1729 } 1730 if (locked) 1731 mmap_read_unlock(mm); 1732 return ret; /* 0 or negative error code */ 1733 } 1734 #else /* CONFIG_MMU */ 1735 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1736 unsigned long nr_pages, struct page **pages, 1737 int *locked, unsigned int foll_flags) 1738 { 1739 struct vm_area_struct *vma; 1740 bool must_unlock = false; 1741 unsigned long vm_flags; 1742 long i; 1743 1744 if (!nr_pages) 1745 return 0; 1746 1747 /* 1748 * The internal caller expects GUP to manage the lock internally and the 1749 * lock must be released when this returns. 1750 */ 1751 if (!*locked) { 1752 if (mmap_read_lock_killable(mm)) 1753 return -EAGAIN; 1754 must_unlock = true; 1755 *locked = 1; 1756 } 1757 1758 /* calculate required read or write permissions. 1759 * If FOLL_FORCE is set, we only require the "MAY" flags. 1760 */ 1761 vm_flags = (foll_flags & FOLL_WRITE) ? 1762 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1763 vm_flags &= (foll_flags & FOLL_FORCE) ? 1764 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1765 1766 for (i = 0; i < nr_pages; i++) { 1767 vma = find_vma(mm, start); 1768 if (!vma) 1769 break; 1770 1771 /* protect what we can, including chardevs */ 1772 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1773 !(vm_flags & vma->vm_flags)) 1774 break; 1775 1776 if (pages) { 1777 pages[i] = virt_to_page((void *)start); 1778 if (pages[i]) 1779 get_page(pages[i]); 1780 } 1781 1782 start = (start + PAGE_SIZE) & PAGE_MASK; 1783 } 1784 1785 if (must_unlock && *locked) { 1786 mmap_read_unlock(mm); 1787 *locked = 0; 1788 } 1789 1790 return i ? : -EFAULT; 1791 } 1792 #endif /* !CONFIG_MMU */ 1793 1794 /** 1795 * fault_in_writeable - fault in userspace address range for writing 1796 * @uaddr: start of address range 1797 * @size: size of address range 1798 * 1799 * Returns the number of bytes not faulted in (like copy_to_user() and 1800 * copy_from_user()). 1801 */ 1802 size_t fault_in_writeable(char __user *uaddr, size_t size) 1803 { 1804 char __user *start = uaddr, *end; 1805 1806 if (unlikely(size == 0)) 1807 return 0; 1808 if (!user_write_access_begin(uaddr, size)) 1809 return size; 1810 if (!PAGE_ALIGNED(uaddr)) { 1811 unsafe_put_user(0, uaddr, out); 1812 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1813 } 1814 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1815 if (unlikely(end < start)) 1816 end = NULL; 1817 while (uaddr != end) { 1818 unsafe_put_user(0, uaddr, out); 1819 uaddr += PAGE_SIZE; 1820 } 1821 1822 out: 1823 user_write_access_end(); 1824 if (size > uaddr - start) 1825 return size - (uaddr - start); 1826 return 0; 1827 } 1828 EXPORT_SYMBOL(fault_in_writeable); 1829 1830 /** 1831 * fault_in_subpage_writeable - fault in an address range for writing 1832 * @uaddr: start of address range 1833 * @size: size of address range 1834 * 1835 * Fault in a user address range for writing while checking for permissions at 1836 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1837 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1838 * 1839 * Returns the number of bytes not faulted in (like copy_to_user() and 1840 * copy_from_user()). 1841 */ 1842 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1843 { 1844 size_t faulted_in; 1845 1846 /* 1847 * Attempt faulting in at page granularity first for page table 1848 * permission checking. The arch-specific probe_subpage_writeable() 1849 * functions may not check for this. 1850 */ 1851 faulted_in = size - fault_in_writeable(uaddr, size); 1852 if (faulted_in) 1853 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1854 1855 return size - faulted_in; 1856 } 1857 EXPORT_SYMBOL(fault_in_subpage_writeable); 1858 1859 /* 1860 * fault_in_safe_writeable - fault in an address range for writing 1861 * @uaddr: start of address range 1862 * @size: length of address range 1863 * 1864 * Faults in an address range for writing. This is primarily useful when we 1865 * already know that some or all of the pages in the address range aren't in 1866 * memory. 1867 * 1868 * Unlike fault_in_writeable(), this function is non-destructive. 1869 * 1870 * Note that we don't pin or otherwise hold the pages referenced that we fault 1871 * in. There's no guarantee that they'll stay in memory for any duration of 1872 * time. 1873 * 1874 * Returns the number of bytes not faulted in, like copy_to_user() and 1875 * copy_from_user(). 1876 */ 1877 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1878 { 1879 unsigned long start = (unsigned long)uaddr, end; 1880 struct mm_struct *mm = current->mm; 1881 bool unlocked = false; 1882 1883 if (unlikely(size == 0)) 1884 return 0; 1885 end = PAGE_ALIGN(start + size); 1886 if (end < start) 1887 end = 0; 1888 1889 mmap_read_lock(mm); 1890 do { 1891 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1892 break; 1893 start = (start + PAGE_SIZE) & PAGE_MASK; 1894 } while (start != end); 1895 mmap_read_unlock(mm); 1896 1897 if (size > (unsigned long)uaddr - start) 1898 return size - ((unsigned long)uaddr - start); 1899 return 0; 1900 } 1901 EXPORT_SYMBOL(fault_in_safe_writeable); 1902 1903 /** 1904 * fault_in_readable - fault in userspace address range for reading 1905 * @uaddr: start of user address range 1906 * @size: size of user address range 1907 * 1908 * Returns the number of bytes not faulted in (like copy_to_user() and 1909 * copy_from_user()). 1910 */ 1911 size_t fault_in_readable(const char __user *uaddr, size_t size) 1912 { 1913 const char __user *start = uaddr, *end; 1914 volatile char c; 1915 1916 if (unlikely(size == 0)) 1917 return 0; 1918 if (!user_read_access_begin(uaddr, size)) 1919 return size; 1920 if (!PAGE_ALIGNED(uaddr)) { 1921 unsafe_get_user(c, uaddr, out); 1922 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1923 } 1924 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1925 if (unlikely(end < start)) 1926 end = NULL; 1927 while (uaddr != end) { 1928 unsafe_get_user(c, uaddr, out); 1929 uaddr += PAGE_SIZE; 1930 } 1931 1932 out: 1933 user_read_access_end(); 1934 (void)c; 1935 if (size > uaddr - start) 1936 return size - (uaddr - start); 1937 return 0; 1938 } 1939 EXPORT_SYMBOL(fault_in_readable); 1940 1941 /** 1942 * get_dump_page() - pin user page in memory while writing it to core dump 1943 * @addr: user address 1944 * 1945 * Returns struct page pointer of user page pinned for dump, 1946 * to be freed afterwards by put_page(). 1947 * 1948 * Returns NULL on any kind of failure - a hole must then be inserted into 1949 * the corefile, to preserve alignment with its headers; and also returns 1950 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1951 * allowing a hole to be left in the corefile to save disk space. 1952 * 1953 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1954 */ 1955 #ifdef CONFIG_ELF_CORE 1956 struct page *get_dump_page(unsigned long addr) 1957 { 1958 struct page *page; 1959 int locked = 0; 1960 int ret; 1961 1962 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 1963 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1964 return (ret == 1) ? page : NULL; 1965 } 1966 #endif /* CONFIG_ELF_CORE */ 1967 1968 #ifdef CONFIG_MIGRATION 1969 /* 1970 * Returns the number of collected pages. Return value is always >= 0. 1971 */ 1972 static unsigned long collect_longterm_unpinnable_pages( 1973 struct list_head *movable_page_list, 1974 unsigned long nr_pages, 1975 struct page **pages) 1976 { 1977 unsigned long i, collected = 0; 1978 struct folio *prev_folio = NULL; 1979 bool drain_allow = true; 1980 1981 for (i = 0; i < nr_pages; i++) { 1982 struct folio *folio = page_folio(pages[i]); 1983 1984 if (folio == prev_folio) 1985 continue; 1986 prev_folio = folio; 1987 1988 if (folio_is_longterm_pinnable(folio)) 1989 continue; 1990 1991 collected++; 1992 1993 if (folio_is_device_coherent(folio)) 1994 continue; 1995 1996 if (folio_test_hugetlb(folio)) { 1997 isolate_hugetlb(folio, movable_page_list); 1998 continue; 1999 } 2000 2001 if (!folio_test_lru(folio) && drain_allow) { 2002 lru_add_drain_all(); 2003 drain_allow = false; 2004 } 2005 2006 if (!folio_isolate_lru(folio)) 2007 continue; 2008 2009 list_add_tail(&folio->lru, movable_page_list); 2010 node_stat_mod_folio(folio, 2011 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2012 folio_nr_pages(folio)); 2013 } 2014 2015 return collected; 2016 } 2017 2018 /* 2019 * Unpins all pages and migrates device coherent pages and movable_page_list. 2020 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2021 * (or partial success). 2022 */ 2023 static int migrate_longterm_unpinnable_pages( 2024 struct list_head *movable_page_list, 2025 unsigned long nr_pages, 2026 struct page **pages) 2027 { 2028 int ret; 2029 unsigned long i; 2030 2031 for (i = 0; i < nr_pages; i++) { 2032 struct folio *folio = page_folio(pages[i]); 2033 2034 if (folio_is_device_coherent(folio)) { 2035 /* 2036 * Migration will fail if the page is pinned, so convert 2037 * the pin on the source page to a normal reference. 2038 */ 2039 pages[i] = NULL; 2040 folio_get(folio); 2041 gup_put_folio(folio, 1, FOLL_PIN); 2042 2043 if (migrate_device_coherent_page(&folio->page)) { 2044 ret = -EBUSY; 2045 goto err; 2046 } 2047 2048 continue; 2049 } 2050 2051 /* 2052 * We can't migrate pages with unexpected references, so drop 2053 * the reference obtained by __get_user_pages_locked(). 2054 * Migrating pages have been added to movable_page_list after 2055 * calling folio_isolate_lru() which takes a reference so the 2056 * page won't be freed if it's migrating. 2057 */ 2058 unpin_user_page(pages[i]); 2059 pages[i] = NULL; 2060 } 2061 2062 if (!list_empty(movable_page_list)) { 2063 struct migration_target_control mtc = { 2064 .nid = NUMA_NO_NODE, 2065 .gfp_mask = GFP_USER | __GFP_NOWARN, 2066 }; 2067 2068 if (migrate_pages(movable_page_list, alloc_migration_target, 2069 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2070 MR_LONGTERM_PIN, NULL)) { 2071 ret = -ENOMEM; 2072 goto err; 2073 } 2074 } 2075 2076 putback_movable_pages(movable_page_list); 2077 2078 return -EAGAIN; 2079 2080 err: 2081 for (i = 0; i < nr_pages; i++) 2082 if (pages[i]) 2083 unpin_user_page(pages[i]); 2084 putback_movable_pages(movable_page_list); 2085 2086 return ret; 2087 } 2088 2089 /* 2090 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2091 * pages in the range are required to be pinned via FOLL_PIN, before calling 2092 * this routine. 2093 * 2094 * If any pages in the range are not allowed to be pinned, then this routine 2095 * will migrate those pages away, unpin all the pages in the range and return 2096 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2097 * call this routine again. 2098 * 2099 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2100 * The caller should give up, and propagate the error back up the call stack. 2101 * 2102 * If everything is OK and all pages in the range are allowed to be pinned, then 2103 * this routine leaves all pages pinned and returns zero for success. 2104 */ 2105 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2106 struct page **pages) 2107 { 2108 unsigned long collected; 2109 LIST_HEAD(movable_page_list); 2110 2111 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2112 nr_pages, pages); 2113 if (!collected) 2114 return 0; 2115 2116 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2117 pages); 2118 } 2119 #else 2120 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2121 struct page **pages) 2122 { 2123 return 0; 2124 } 2125 #endif /* CONFIG_MIGRATION */ 2126 2127 /* 2128 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2129 * allows us to process the FOLL_LONGTERM flag. 2130 */ 2131 static long __gup_longterm_locked(struct mm_struct *mm, 2132 unsigned long start, 2133 unsigned long nr_pages, 2134 struct page **pages, 2135 int *locked, 2136 unsigned int gup_flags) 2137 { 2138 unsigned int flags; 2139 long rc, nr_pinned_pages; 2140 2141 if (!(gup_flags & FOLL_LONGTERM)) 2142 return __get_user_pages_locked(mm, start, nr_pages, pages, 2143 locked, gup_flags); 2144 2145 flags = memalloc_pin_save(); 2146 do { 2147 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2148 pages, locked, 2149 gup_flags); 2150 if (nr_pinned_pages <= 0) { 2151 rc = nr_pinned_pages; 2152 break; 2153 } 2154 2155 /* FOLL_LONGTERM implies FOLL_PIN */ 2156 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2157 } while (rc == -EAGAIN); 2158 memalloc_pin_restore(flags); 2159 return rc ? rc : nr_pinned_pages; 2160 } 2161 2162 /* 2163 * Check that the given flags are valid for the exported gup/pup interface, and 2164 * update them with the required flags that the caller must have set. 2165 */ 2166 static bool is_valid_gup_args(struct page **pages, int *locked, 2167 unsigned int *gup_flags_p, unsigned int to_set) 2168 { 2169 unsigned int gup_flags = *gup_flags_p; 2170 2171 /* 2172 * These flags not allowed to be specified externally to the gup 2173 * interfaces: 2174 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2175 * - FOLL_REMOTE is internal only and used on follow_page() 2176 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2177 */ 2178 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2179 FOLL_REMOTE | FOLL_FAST_ONLY))) 2180 return false; 2181 2182 gup_flags |= to_set; 2183 if (locked) { 2184 /* At the external interface locked must be set */ 2185 if (WARN_ON_ONCE(*locked != 1)) 2186 return false; 2187 2188 gup_flags |= FOLL_UNLOCKABLE; 2189 } 2190 2191 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2192 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2193 (FOLL_PIN | FOLL_GET))) 2194 return false; 2195 2196 /* LONGTERM can only be specified when pinning */ 2197 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2198 return false; 2199 2200 /* Pages input must be given if using GET/PIN */ 2201 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2202 return false; 2203 2204 /* We want to allow the pgmap to be hot-unplugged at all times */ 2205 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2206 (gup_flags & FOLL_PCI_P2PDMA))) 2207 return false; 2208 2209 *gup_flags_p = gup_flags; 2210 return true; 2211 } 2212 2213 #ifdef CONFIG_MMU 2214 /** 2215 * get_user_pages_remote() - pin user pages in memory 2216 * @mm: mm_struct of target mm 2217 * @start: starting user address 2218 * @nr_pages: number of pages from start to pin 2219 * @gup_flags: flags modifying lookup behaviour 2220 * @pages: array that receives pointers to the pages pinned. 2221 * Should be at least nr_pages long. Or NULL, if caller 2222 * only intends to ensure the pages are faulted in. 2223 * @locked: pointer to lock flag indicating whether lock is held and 2224 * subsequently whether VM_FAULT_RETRY functionality can be 2225 * utilised. Lock must initially be held. 2226 * 2227 * Returns either number of pages pinned (which may be less than the 2228 * number requested), or an error. Details about the return value: 2229 * 2230 * -- If nr_pages is 0, returns 0. 2231 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2232 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2233 * pages pinned. Again, this may be less than nr_pages. 2234 * 2235 * The caller is responsible for releasing returned @pages, via put_page(). 2236 * 2237 * Must be called with mmap_lock held for read or write. 2238 * 2239 * get_user_pages_remote walks a process's page tables and takes a reference 2240 * to each struct page that each user address corresponds to at a given 2241 * instant. That is, it takes the page that would be accessed if a user 2242 * thread accesses the given user virtual address at that instant. 2243 * 2244 * This does not guarantee that the page exists in the user mappings when 2245 * get_user_pages_remote returns, and there may even be a completely different 2246 * page there in some cases (eg. if mmapped pagecache has been invalidated 2247 * and subsequently re-faulted). However it does guarantee that the page 2248 * won't be freed completely. And mostly callers simply care that the page 2249 * contains data that was valid *at some point in time*. Typically, an IO 2250 * or similar operation cannot guarantee anything stronger anyway because 2251 * locks can't be held over the syscall boundary. 2252 * 2253 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2254 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2255 * be called after the page is finished with, and before put_page is called. 2256 * 2257 * get_user_pages_remote is typically used for fewer-copy IO operations, 2258 * to get a handle on the memory by some means other than accesses 2259 * via the user virtual addresses. The pages may be submitted for 2260 * DMA to devices or accessed via their kernel linear mapping (via the 2261 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2262 * 2263 * See also get_user_pages_fast, for performance critical applications. 2264 * 2265 * get_user_pages_remote should be phased out in favor of 2266 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2267 * should use get_user_pages_remote because it cannot pass 2268 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2269 */ 2270 long get_user_pages_remote(struct mm_struct *mm, 2271 unsigned long start, unsigned long nr_pages, 2272 unsigned int gup_flags, struct page **pages, 2273 int *locked) 2274 { 2275 int local_locked = 1; 2276 2277 if (!is_valid_gup_args(pages, locked, &gup_flags, 2278 FOLL_TOUCH | FOLL_REMOTE)) 2279 return -EINVAL; 2280 2281 return __get_user_pages_locked(mm, start, nr_pages, pages, 2282 locked ? locked : &local_locked, 2283 gup_flags); 2284 } 2285 EXPORT_SYMBOL(get_user_pages_remote); 2286 2287 #else /* CONFIG_MMU */ 2288 long get_user_pages_remote(struct mm_struct *mm, 2289 unsigned long start, unsigned long nr_pages, 2290 unsigned int gup_flags, struct page **pages, 2291 int *locked) 2292 { 2293 return 0; 2294 } 2295 #endif /* !CONFIG_MMU */ 2296 2297 /** 2298 * get_user_pages() - pin user pages in memory 2299 * @start: starting user address 2300 * @nr_pages: number of pages from start to pin 2301 * @gup_flags: flags modifying lookup behaviour 2302 * @pages: array that receives pointers to the pages pinned. 2303 * Should be at least nr_pages long. Or NULL, if caller 2304 * only intends to ensure the pages are faulted in. 2305 * 2306 * This is the same as get_user_pages_remote(), just with a less-flexible 2307 * calling convention where we assume that the mm being operated on belongs to 2308 * the current task, and doesn't allow passing of a locked parameter. We also 2309 * obviously don't pass FOLL_REMOTE in here. 2310 */ 2311 long get_user_pages(unsigned long start, unsigned long nr_pages, 2312 unsigned int gup_flags, struct page **pages) 2313 { 2314 int locked = 1; 2315 2316 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2317 return -EINVAL; 2318 2319 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2320 &locked, gup_flags); 2321 } 2322 EXPORT_SYMBOL(get_user_pages); 2323 2324 /* 2325 * get_user_pages_unlocked() is suitable to replace the form: 2326 * 2327 * mmap_read_lock(mm); 2328 * get_user_pages(mm, ..., pages, NULL); 2329 * mmap_read_unlock(mm); 2330 * 2331 * with: 2332 * 2333 * get_user_pages_unlocked(mm, ..., pages); 2334 * 2335 * It is functionally equivalent to get_user_pages_fast so 2336 * get_user_pages_fast should be used instead if specific gup_flags 2337 * (e.g. FOLL_FORCE) are not required. 2338 */ 2339 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2340 struct page **pages, unsigned int gup_flags) 2341 { 2342 int locked = 0; 2343 2344 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2345 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2346 return -EINVAL; 2347 2348 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2349 &locked, gup_flags); 2350 } 2351 EXPORT_SYMBOL(get_user_pages_unlocked); 2352 2353 /* 2354 * Fast GUP 2355 * 2356 * get_user_pages_fast attempts to pin user pages by walking the page 2357 * tables directly and avoids taking locks. Thus the walker needs to be 2358 * protected from page table pages being freed from under it, and should 2359 * block any THP splits. 2360 * 2361 * One way to achieve this is to have the walker disable interrupts, and 2362 * rely on IPIs from the TLB flushing code blocking before the page table 2363 * pages are freed. This is unsuitable for architectures that do not need 2364 * to broadcast an IPI when invalidating TLBs. 2365 * 2366 * Another way to achieve this is to batch up page table containing pages 2367 * belonging to more than one mm_user, then rcu_sched a callback to free those 2368 * pages. Disabling interrupts will allow the fast_gup walker to both block 2369 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2370 * (which is a relatively rare event). The code below adopts this strategy. 2371 * 2372 * Before activating this code, please be aware that the following assumptions 2373 * are currently made: 2374 * 2375 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2376 * free pages containing page tables or TLB flushing requires IPI broadcast. 2377 * 2378 * *) ptes can be read atomically by the architecture. 2379 * 2380 * *) access_ok is sufficient to validate userspace address ranges. 2381 * 2382 * The last two assumptions can be relaxed by the addition of helper functions. 2383 * 2384 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2385 */ 2386 #ifdef CONFIG_HAVE_FAST_GUP 2387 2388 /* 2389 * Used in the GUP-fast path to determine whether a pin is permitted for a 2390 * specific folio. 2391 * 2392 * This call assumes the caller has pinned the folio, that the lowest page table 2393 * level still points to this folio, and that interrupts have been disabled. 2394 * 2395 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2396 * (see comment describing the writable_file_mapping_allowed() function). We 2397 * therefore try to avoid the most egregious case of a long-term mapping doing 2398 * so. 2399 * 2400 * This function cannot be as thorough as that one as the VMA is not available 2401 * in the fast path, so instead we whitelist known good cases and if in doubt, 2402 * fall back to the slow path. 2403 */ 2404 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2405 { 2406 struct address_space *mapping; 2407 unsigned long mapping_flags; 2408 2409 /* 2410 * If we aren't pinning then no problematic write can occur. A long term 2411 * pin is the most egregious case so this is the one we disallow. 2412 */ 2413 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2414 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2415 return true; 2416 2417 /* The folio is pinned, so we can safely access folio fields. */ 2418 2419 if (WARN_ON_ONCE(folio_test_slab(folio))) 2420 return false; 2421 2422 /* hugetlb mappings do not require dirty-tracking. */ 2423 if (folio_test_hugetlb(folio)) 2424 return true; 2425 2426 /* 2427 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2428 * cannot proceed, which means no actions performed under RCU can 2429 * proceed either. 2430 * 2431 * inodes and thus their mappings are freed under RCU, which means the 2432 * mapping cannot be freed beneath us and thus we can safely dereference 2433 * it. 2434 */ 2435 lockdep_assert_irqs_disabled(); 2436 2437 /* 2438 * However, there may be operations which _alter_ the mapping, so ensure 2439 * we read it once and only once. 2440 */ 2441 mapping = READ_ONCE(folio->mapping); 2442 2443 /* 2444 * The mapping may have been truncated, in any case we cannot determine 2445 * if this mapping is safe - fall back to slow path to determine how to 2446 * proceed. 2447 */ 2448 if (!mapping) 2449 return false; 2450 2451 /* Anonymous folios pose no problem. */ 2452 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2453 if (mapping_flags) 2454 return mapping_flags & PAGE_MAPPING_ANON; 2455 2456 /* 2457 * At this point, we know the mapping is non-null and points to an 2458 * address_space object. The only remaining whitelisted file system is 2459 * shmem. 2460 */ 2461 return shmem_mapping(mapping); 2462 } 2463 2464 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2465 unsigned int flags, 2466 struct page **pages) 2467 { 2468 while ((*nr) - nr_start) { 2469 struct page *page = pages[--(*nr)]; 2470 2471 ClearPageReferenced(page); 2472 if (flags & FOLL_PIN) 2473 unpin_user_page(page); 2474 else 2475 put_page(page); 2476 } 2477 } 2478 2479 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2480 /* 2481 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2482 * operations. 2483 * 2484 * To pin the page, fast-gup needs to do below in order: 2485 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2486 * 2487 * For the rest of pgtable operations where pgtable updates can be racy 2488 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2489 * is pinned. 2490 * 2491 * Above will work for all pte-level operations, including THP split. 2492 * 2493 * For THP collapse, it's a bit more complicated because fast-gup may be 2494 * walking a pgtable page that is being freed (pte is still valid but pmd 2495 * can be cleared already). To avoid race in such condition, we need to 2496 * also check pmd here to make sure pmd doesn't change (corresponds to 2497 * pmdp_collapse_flush() in the THP collapse code path). 2498 */ 2499 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2500 unsigned long end, unsigned int flags, 2501 struct page **pages, int *nr) 2502 { 2503 struct dev_pagemap *pgmap = NULL; 2504 int nr_start = *nr, ret = 0; 2505 pte_t *ptep, *ptem; 2506 2507 ptem = ptep = pte_offset_map(&pmd, addr); 2508 if (!ptep) 2509 return 0; 2510 do { 2511 pte_t pte = ptep_get_lockless(ptep); 2512 struct page *page; 2513 struct folio *folio; 2514 2515 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2516 goto pte_unmap; 2517 2518 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2519 goto pte_unmap; 2520 2521 if (pte_devmap(pte)) { 2522 if (unlikely(flags & FOLL_LONGTERM)) 2523 goto pte_unmap; 2524 2525 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2526 if (unlikely(!pgmap)) { 2527 undo_dev_pagemap(nr, nr_start, flags, pages); 2528 goto pte_unmap; 2529 } 2530 } else if (pte_special(pte)) 2531 goto pte_unmap; 2532 2533 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2534 page = pte_page(pte); 2535 2536 folio = try_grab_folio(page, 1, flags); 2537 if (!folio) 2538 goto pte_unmap; 2539 2540 if (unlikely(page_is_secretmem(page))) { 2541 gup_put_folio(folio, 1, flags); 2542 goto pte_unmap; 2543 } 2544 2545 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2546 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2547 gup_put_folio(folio, 1, flags); 2548 goto pte_unmap; 2549 } 2550 2551 if (!folio_fast_pin_allowed(folio, flags)) { 2552 gup_put_folio(folio, 1, flags); 2553 goto pte_unmap; 2554 } 2555 2556 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2557 gup_put_folio(folio, 1, flags); 2558 goto pte_unmap; 2559 } 2560 2561 /* 2562 * We need to make the page accessible if and only if we are 2563 * going to access its content (the FOLL_PIN case). Please 2564 * see Documentation/core-api/pin_user_pages.rst for 2565 * details. 2566 */ 2567 if (flags & FOLL_PIN) { 2568 ret = arch_make_page_accessible(page); 2569 if (ret) { 2570 gup_put_folio(folio, 1, flags); 2571 goto pte_unmap; 2572 } 2573 } 2574 folio_set_referenced(folio); 2575 pages[*nr] = page; 2576 (*nr)++; 2577 } while (ptep++, addr += PAGE_SIZE, addr != end); 2578 2579 ret = 1; 2580 2581 pte_unmap: 2582 if (pgmap) 2583 put_dev_pagemap(pgmap); 2584 pte_unmap(ptem); 2585 return ret; 2586 } 2587 #else 2588 2589 /* 2590 * If we can't determine whether or not a pte is special, then fail immediately 2591 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2592 * to be special. 2593 * 2594 * For a futex to be placed on a THP tail page, get_futex_key requires a 2595 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2596 * useful to have gup_huge_pmd even if we can't operate on ptes. 2597 */ 2598 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2599 unsigned long end, unsigned int flags, 2600 struct page **pages, int *nr) 2601 { 2602 return 0; 2603 } 2604 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2605 2606 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2607 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2608 unsigned long end, unsigned int flags, 2609 struct page **pages, int *nr) 2610 { 2611 int nr_start = *nr; 2612 struct dev_pagemap *pgmap = NULL; 2613 2614 do { 2615 struct page *page = pfn_to_page(pfn); 2616 2617 pgmap = get_dev_pagemap(pfn, pgmap); 2618 if (unlikely(!pgmap)) { 2619 undo_dev_pagemap(nr, nr_start, flags, pages); 2620 break; 2621 } 2622 2623 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2624 undo_dev_pagemap(nr, nr_start, flags, pages); 2625 break; 2626 } 2627 2628 SetPageReferenced(page); 2629 pages[*nr] = page; 2630 if (unlikely(try_grab_page(page, flags))) { 2631 undo_dev_pagemap(nr, nr_start, flags, pages); 2632 break; 2633 } 2634 (*nr)++; 2635 pfn++; 2636 } while (addr += PAGE_SIZE, addr != end); 2637 2638 put_dev_pagemap(pgmap); 2639 return addr == end; 2640 } 2641 2642 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2643 unsigned long end, unsigned int flags, 2644 struct page **pages, int *nr) 2645 { 2646 unsigned long fault_pfn; 2647 int nr_start = *nr; 2648 2649 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2650 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2651 return 0; 2652 2653 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2654 undo_dev_pagemap(nr, nr_start, flags, pages); 2655 return 0; 2656 } 2657 return 1; 2658 } 2659 2660 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2661 unsigned long end, unsigned int flags, 2662 struct page **pages, int *nr) 2663 { 2664 unsigned long fault_pfn; 2665 int nr_start = *nr; 2666 2667 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2668 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2669 return 0; 2670 2671 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2672 undo_dev_pagemap(nr, nr_start, flags, pages); 2673 return 0; 2674 } 2675 return 1; 2676 } 2677 #else 2678 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2679 unsigned long end, unsigned int flags, 2680 struct page **pages, int *nr) 2681 { 2682 BUILD_BUG(); 2683 return 0; 2684 } 2685 2686 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2687 unsigned long end, unsigned int flags, 2688 struct page **pages, int *nr) 2689 { 2690 BUILD_BUG(); 2691 return 0; 2692 } 2693 #endif 2694 2695 static int record_subpages(struct page *page, unsigned long addr, 2696 unsigned long end, struct page **pages) 2697 { 2698 int nr; 2699 2700 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2701 pages[nr] = nth_page(page, nr); 2702 2703 return nr; 2704 } 2705 2706 #ifdef CONFIG_ARCH_HAS_HUGEPD 2707 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2708 unsigned long sz) 2709 { 2710 unsigned long __boundary = (addr + sz) & ~(sz-1); 2711 return (__boundary - 1 < end - 1) ? __boundary : end; 2712 } 2713 2714 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2715 unsigned long end, unsigned int flags, 2716 struct page **pages, int *nr) 2717 { 2718 unsigned long pte_end; 2719 struct page *page; 2720 struct folio *folio; 2721 pte_t pte; 2722 int refs; 2723 2724 pte_end = (addr + sz) & ~(sz-1); 2725 if (pte_end < end) 2726 end = pte_end; 2727 2728 pte = huge_ptep_get(ptep); 2729 2730 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2731 return 0; 2732 2733 /* hugepages are never "special" */ 2734 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2735 2736 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2737 refs = record_subpages(page, addr, end, pages + *nr); 2738 2739 folio = try_grab_folio(page, refs, flags); 2740 if (!folio) 2741 return 0; 2742 2743 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2744 gup_put_folio(folio, refs, flags); 2745 return 0; 2746 } 2747 2748 if (!folio_fast_pin_allowed(folio, flags)) { 2749 gup_put_folio(folio, refs, flags); 2750 return 0; 2751 } 2752 2753 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2754 gup_put_folio(folio, refs, flags); 2755 return 0; 2756 } 2757 2758 *nr += refs; 2759 folio_set_referenced(folio); 2760 return 1; 2761 } 2762 2763 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2764 unsigned int pdshift, unsigned long end, unsigned int flags, 2765 struct page **pages, int *nr) 2766 { 2767 pte_t *ptep; 2768 unsigned long sz = 1UL << hugepd_shift(hugepd); 2769 unsigned long next; 2770 2771 ptep = hugepte_offset(hugepd, addr, pdshift); 2772 do { 2773 next = hugepte_addr_end(addr, end, sz); 2774 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2775 return 0; 2776 } while (ptep++, addr = next, addr != end); 2777 2778 return 1; 2779 } 2780 #else 2781 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2782 unsigned int pdshift, unsigned long end, unsigned int flags, 2783 struct page **pages, int *nr) 2784 { 2785 return 0; 2786 } 2787 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2788 2789 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2790 unsigned long end, unsigned int flags, 2791 struct page **pages, int *nr) 2792 { 2793 struct page *page; 2794 struct folio *folio; 2795 int refs; 2796 2797 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2798 return 0; 2799 2800 if (pmd_devmap(orig)) { 2801 if (unlikely(flags & FOLL_LONGTERM)) 2802 return 0; 2803 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2804 pages, nr); 2805 } 2806 2807 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2808 refs = record_subpages(page, addr, end, pages + *nr); 2809 2810 folio = try_grab_folio(page, refs, flags); 2811 if (!folio) 2812 return 0; 2813 2814 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2815 gup_put_folio(folio, refs, flags); 2816 return 0; 2817 } 2818 2819 if (!folio_fast_pin_allowed(folio, flags)) { 2820 gup_put_folio(folio, refs, flags); 2821 return 0; 2822 } 2823 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2824 gup_put_folio(folio, refs, flags); 2825 return 0; 2826 } 2827 2828 *nr += refs; 2829 folio_set_referenced(folio); 2830 return 1; 2831 } 2832 2833 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2834 unsigned long end, unsigned int flags, 2835 struct page **pages, int *nr) 2836 { 2837 struct page *page; 2838 struct folio *folio; 2839 int refs; 2840 2841 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2842 return 0; 2843 2844 if (pud_devmap(orig)) { 2845 if (unlikely(flags & FOLL_LONGTERM)) 2846 return 0; 2847 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2848 pages, nr); 2849 } 2850 2851 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2852 refs = record_subpages(page, addr, end, pages + *nr); 2853 2854 folio = try_grab_folio(page, refs, flags); 2855 if (!folio) 2856 return 0; 2857 2858 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2859 gup_put_folio(folio, refs, flags); 2860 return 0; 2861 } 2862 2863 if (!folio_fast_pin_allowed(folio, flags)) { 2864 gup_put_folio(folio, refs, flags); 2865 return 0; 2866 } 2867 2868 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2869 gup_put_folio(folio, refs, flags); 2870 return 0; 2871 } 2872 2873 *nr += refs; 2874 folio_set_referenced(folio); 2875 return 1; 2876 } 2877 2878 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2879 unsigned long end, unsigned int flags, 2880 struct page **pages, int *nr) 2881 { 2882 int refs; 2883 struct page *page; 2884 struct folio *folio; 2885 2886 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2887 return 0; 2888 2889 BUILD_BUG_ON(pgd_devmap(orig)); 2890 2891 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2892 refs = record_subpages(page, addr, end, pages + *nr); 2893 2894 folio = try_grab_folio(page, refs, flags); 2895 if (!folio) 2896 return 0; 2897 2898 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2899 gup_put_folio(folio, refs, flags); 2900 return 0; 2901 } 2902 2903 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2904 gup_put_folio(folio, refs, flags); 2905 return 0; 2906 } 2907 2908 if (!folio_fast_pin_allowed(folio, flags)) { 2909 gup_put_folio(folio, refs, flags); 2910 return 0; 2911 } 2912 2913 *nr += refs; 2914 folio_set_referenced(folio); 2915 return 1; 2916 } 2917 2918 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2919 unsigned int flags, struct page **pages, int *nr) 2920 { 2921 unsigned long next; 2922 pmd_t *pmdp; 2923 2924 pmdp = pmd_offset_lockless(pudp, pud, addr); 2925 do { 2926 pmd_t pmd = pmdp_get_lockless(pmdp); 2927 2928 next = pmd_addr_end(addr, end); 2929 if (!pmd_present(pmd)) 2930 return 0; 2931 2932 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2933 pmd_devmap(pmd))) { 2934 if (pmd_protnone(pmd) && 2935 !gup_can_follow_protnone(flags)) 2936 return 0; 2937 2938 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2939 pages, nr)) 2940 return 0; 2941 2942 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2943 /* 2944 * architecture have different format for hugetlbfs 2945 * pmd format and THP pmd format 2946 */ 2947 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2948 PMD_SHIFT, next, flags, pages, nr)) 2949 return 0; 2950 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2951 return 0; 2952 } while (pmdp++, addr = next, addr != end); 2953 2954 return 1; 2955 } 2956 2957 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2958 unsigned int flags, struct page **pages, int *nr) 2959 { 2960 unsigned long next; 2961 pud_t *pudp; 2962 2963 pudp = pud_offset_lockless(p4dp, p4d, addr); 2964 do { 2965 pud_t pud = READ_ONCE(*pudp); 2966 2967 next = pud_addr_end(addr, end); 2968 if (unlikely(!pud_present(pud))) 2969 return 0; 2970 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2971 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2972 pages, nr)) 2973 return 0; 2974 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2975 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2976 PUD_SHIFT, next, flags, pages, nr)) 2977 return 0; 2978 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2979 return 0; 2980 } while (pudp++, addr = next, addr != end); 2981 2982 return 1; 2983 } 2984 2985 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2986 unsigned int flags, struct page **pages, int *nr) 2987 { 2988 unsigned long next; 2989 p4d_t *p4dp; 2990 2991 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2992 do { 2993 p4d_t p4d = READ_ONCE(*p4dp); 2994 2995 next = p4d_addr_end(addr, end); 2996 if (p4d_none(p4d)) 2997 return 0; 2998 BUILD_BUG_ON(p4d_huge(p4d)); 2999 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3000 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3001 P4D_SHIFT, next, flags, pages, nr)) 3002 return 0; 3003 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3004 return 0; 3005 } while (p4dp++, addr = next, addr != end); 3006 3007 return 1; 3008 } 3009 3010 static void gup_pgd_range(unsigned long addr, unsigned long end, 3011 unsigned int flags, struct page **pages, int *nr) 3012 { 3013 unsigned long next; 3014 pgd_t *pgdp; 3015 3016 pgdp = pgd_offset(current->mm, addr); 3017 do { 3018 pgd_t pgd = READ_ONCE(*pgdp); 3019 3020 next = pgd_addr_end(addr, end); 3021 if (pgd_none(pgd)) 3022 return; 3023 if (unlikely(pgd_huge(pgd))) { 3024 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3025 pages, nr)) 3026 return; 3027 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3028 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3029 PGDIR_SHIFT, next, flags, pages, nr)) 3030 return; 3031 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3032 return; 3033 } while (pgdp++, addr = next, addr != end); 3034 } 3035 #else 3036 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3037 unsigned int flags, struct page **pages, int *nr) 3038 { 3039 } 3040 #endif /* CONFIG_HAVE_FAST_GUP */ 3041 3042 #ifndef gup_fast_permitted 3043 /* 3044 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3045 * we need to fall back to the slow version: 3046 */ 3047 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3048 { 3049 return true; 3050 } 3051 #endif 3052 3053 static unsigned long lockless_pages_from_mm(unsigned long start, 3054 unsigned long end, 3055 unsigned int gup_flags, 3056 struct page **pages) 3057 { 3058 unsigned long flags; 3059 int nr_pinned = 0; 3060 unsigned seq; 3061 3062 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3063 !gup_fast_permitted(start, end)) 3064 return 0; 3065 3066 if (gup_flags & FOLL_PIN) { 3067 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3068 if (seq & 1) 3069 return 0; 3070 } 3071 3072 /* 3073 * Disable interrupts. The nested form is used, in order to allow full, 3074 * general purpose use of this routine. 3075 * 3076 * With interrupts disabled, we block page table pages from being freed 3077 * from under us. See struct mmu_table_batch comments in 3078 * include/asm-generic/tlb.h for more details. 3079 * 3080 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3081 * that come from THPs splitting. 3082 */ 3083 local_irq_save(flags); 3084 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3085 local_irq_restore(flags); 3086 3087 /* 3088 * When pinning pages for DMA there could be a concurrent write protect 3089 * from fork() via copy_page_range(), in this case always fail fast GUP. 3090 */ 3091 if (gup_flags & FOLL_PIN) { 3092 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3093 unpin_user_pages_lockless(pages, nr_pinned); 3094 return 0; 3095 } else { 3096 sanity_check_pinned_pages(pages, nr_pinned); 3097 } 3098 } 3099 return nr_pinned; 3100 } 3101 3102 static int internal_get_user_pages_fast(unsigned long start, 3103 unsigned long nr_pages, 3104 unsigned int gup_flags, 3105 struct page **pages) 3106 { 3107 unsigned long len, end; 3108 unsigned long nr_pinned; 3109 int locked = 0; 3110 int ret; 3111 3112 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3113 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3114 FOLL_FAST_ONLY | FOLL_NOFAULT | 3115 FOLL_PCI_P2PDMA))) 3116 return -EINVAL; 3117 3118 if (gup_flags & FOLL_PIN) 3119 mm_set_has_pinned_flag(¤t->mm->flags); 3120 3121 if (!(gup_flags & FOLL_FAST_ONLY)) 3122 might_lock_read(¤t->mm->mmap_lock); 3123 3124 start = untagged_addr(start) & PAGE_MASK; 3125 len = nr_pages << PAGE_SHIFT; 3126 if (check_add_overflow(start, len, &end)) 3127 return -EOVERFLOW; 3128 if (end > TASK_SIZE_MAX) 3129 return -EFAULT; 3130 if (unlikely(!access_ok((void __user *)start, len))) 3131 return -EFAULT; 3132 3133 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3134 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3135 return nr_pinned; 3136 3137 /* Slow path: try to get the remaining pages with get_user_pages */ 3138 start += nr_pinned << PAGE_SHIFT; 3139 pages += nr_pinned; 3140 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3141 pages, &locked, 3142 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3143 if (ret < 0) { 3144 /* 3145 * The caller has to unpin the pages we already pinned so 3146 * returning -errno is not an option 3147 */ 3148 if (nr_pinned) 3149 return nr_pinned; 3150 return ret; 3151 } 3152 return ret + nr_pinned; 3153 } 3154 3155 /** 3156 * get_user_pages_fast_only() - pin user pages in memory 3157 * @start: starting user address 3158 * @nr_pages: number of pages from start to pin 3159 * @gup_flags: flags modifying pin behaviour 3160 * @pages: array that receives pointers to the pages pinned. 3161 * Should be at least nr_pages long. 3162 * 3163 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3164 * the regular GUP. 3165 * 3166 * If the architecture does not support this function, simply return with no 3167 * pages pinned. 3168 * 3169 * Careful, careful! COW breaking can go either way, so a non-write 3170 * access can get ambiguous page results. If you call this function without 3171 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3172 */ 3173 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3174 unsigned int gup_flags, struct page **pages) 3175 { 3176 /* 3177 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3178 * because gup fast is always a "pin with a +1 page refcount" request. 3179 * 3180 * FOLL_FAST_ONLY is required in order to match the API description of 3181 * this routine: no fall back to regular ("slow") GUP. 3182 */ 3183 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3184 FOLL_GET | FOLL_FAST_ONLY)) 3185 return -EINVAL; 3186 3187 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3188 } 3189 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3190 3191 /** 3192 * get_user_pages_fast() - pin user pages in memory 3193 * @start: starting user address 3194 * @nr_pages: number of pages from start to pin 3195 * @gup_flags: flags modifying pin behaviour 3196 * @pages: array that receives pointers to the pages pinned. 3197 * Should be at least nr_pages long. 3198 * 3199 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3200 * If not successful, it will fall back to taking the lock and 3201 * calling get_user_pages(). 3202 * 3203 * Returns number of pages pinned. This may be fewer than the number requested. 3204 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3205 * -errno. 3206 */ 3207 int get_user_pages_fast(unsigned long start, int nr_pages, 3208 unsigned int gup_flags, struct page **pages) 3209 { 3210 /* 3211 * The caller may or may not have explicitly set FOLL_GET; either way is 3212 * OK. However, internally (within mm/gup.c), gup fast variants must set 3213 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3214 * request. 3215 */ 3216 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3217 return -EINVAL; 3218 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3219 } 3220 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3221 3222 /** 3223 * pin_user_pages_fast() - pin user pages in memory without taking locks 3224 * 3225 * @start: starting user address 3226 * @nr_pages: number of pages from start to pin 3227 * @gup_flags: flags modifying pin behaviour 3228 * @pages: array that receives pointers to the pages pinned. 3229 * Should be at least nr_pages long. 3230 * 3231 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3232 * get_user_pages_fast() for documentation on the function arguments, because 3233 * the arguments here are identical. 3234 * 3235 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3236 * see Documentation/core-api/pin_user_pages.rst for further details. 3237 * 3238 * Note that if a zero_page is amongst the returned pages, it will not have 3239 * pins in it and unpin_user_page() will not remove pins from it. 3240 */ 3241 int pin_user_pages_fast(unsigned long start, int nr_pages, 3242 unsigned int gup_flags, struct page **pages) 3243 { 3244 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3245 return -EINVAL; 3246 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3247 } 3248 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3249 3250 /** 3251 * pin_user_pages_remote() - pin pages of a remote process 3252 * 3253 * @mm: mm_struct of target mm 3254 * @start: starting user address 3255 * @nr_pages: number of pages from start to pin 3256 * @gup_flags: flags modifying lookup behaviour 3257 * @pages: array that receives pointers to the pages pinned. 3258 * Should be at least nr_pages long. 3259 * @locked: pointer to lock flag indicating whether lock is held and 3260 * subsequently whether VM_FAULT_RETRY functionality can be 3261 * utilised. Lock must initially be held. 3262 * 3263 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3264 * get_user_pages_remote() for documentation on the function arguments, because 3265 * the arguments here are identical. 3266 * 3267 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3268 * see Documentation/core-api/pin_user_pages.rst for details. 3269 * 3270 * Note that if a zero_page is amongst the returned pages, it will not have 3271 * pins in it and unpin_user_page*() will not remove pins from it. 3272 */ 3273 long pin_user_pages_remote(struct mm_struct *mm, 3274 unsigned long start, unsigned long nr_pages, 3275 unsigned int gup_flags, struct page **pages, 3276 int *locked) 3277 { 3278 int local_locked = 1; 3279 3280 if (!is_valid_gup_args(pages, locked, &gup_flags, 3281 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3282 return 0; 3283 return __gup_longterm_locked(mm, start, nr_pages, pages, 3284 locked ? locked : &local_locked, 3285 gup_flags); 3286 } 3287 EXPORT_SYMBOL(pin_user_pages_remote); 3288 3289 /** 3290 * pin_user_pages() - pin user pages in memory for use by other devices 3291 * 3292 * @start: starting user address 3293 * @nr_pages: number of pages from start to pin 3294 * @gup_flags: flags modifying lookup behaviour 3295 * @pages: array that receives pointers to the pages pinned. 3296 * Should be at least nr_pages long. 3297 * 3298 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3299 * FOLL_PIN is set. 3300 * 3301 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3302 * see Documentation/core-api/pin_user_pages.rst for details. 3303 * 3304 * Note that if a zero_page is amongst the returned pages, it will not have 3305 * pins in it and unpin_user_page*() will not remove pins from it. 3306 */ 3307 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3308 unsigned int gup_flags, struct page **pages) 3309 { 3310 int locked = 1; 3311 3312 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3313 return 0; 3314 return __gup_longterm_locked(current->mm, start, nr_pages, 3315 pages, &locked, gup_flags); 3316 } 3317 EXPORT_SYMBOL(pin_user_pages); 3318 3319 /* 3320 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3321 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3322 * FOLL_PIN and rejects FOLL_GET. 3323 * 3324 * Note that if a zero_page is amongst the returned pages, it will not have 3325 * pins in it and unpin_user_page*() will not remove pins from it. 3326 */ 3327 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3328 struct page **pages, unsigned int gup_flags) 3329 { 3330 int locked = 0; 3331 3332 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3333 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3334 return 0; 3335 3336 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3337 &locked, gup_flags); 3338 } 3339 EXPORT_SYMBOL(pin_user_pages_unlocked); 3340