xref: /linux/mm/gup.c (revision bbaf1ff06af49e856501024abbe161d96c1f0d66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in page_try_share_anon_rmap().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 	}
714 	if (likely(!pmd_trans_huge(pmdval)))
715 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716 
717 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
718 		return no_page_table(vma, flags);
719 
720 	ptl = pmd_lock(mm, pmd);
721 	if (unlikely(!pmd_present(*pmd))) {
722 		spin_unlock(ptl);
723 		return no_page_table(vma, flags);
724 	}
725 	if (unlikely(!pmd_trans_huge(*pmd))) {
726 		spin_unlock(ptl);
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 	}
729 	if (flags & FOLL_SPLIT_PMD) {
730 		spin_unlock(ptl);
731 		split_huge_pmd(vma, pmd, address);
732 		/* If pmd was left empty, stuff a page table in there quickly */
733 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735 	}
736 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 	spin_unlock(ptl);
738 	ctx->page_mask = HPAGE_PMD_NR - 1;
739 	return page;
740 }
741 
742 static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 				    unsigned long address, p4d_t *p4dp,
744 				    unsigned int flags,
745 				    struct follow_page_context *ctx)
746 {
747 	pud_t *pud;
748 	spinlock_t *ptl;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	pud = pud_offset(p4dp, address);
753 	if (pud_none(*pud))
754 		return no_page_table(vma, flags);
755 	if (pud_devmap(*pud)) {
756 		ptl = pud_lock(mm, pud);
757 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 		spin_unlock(ptl);
759 		if (page)
760 			return page;
761 	}
762 	if (unlikely(pud_bad(*pud)))
763 		return no_page_table(vma, flags);
764 
765 	return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767 
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 				    unsigned long address, pgd_t *pgdp,
770 				    unsigned int flags,
771 				    struct follow_page_context *ctx)
772 {
773 	p4d_t *p4d;
774 
775 	p4d = p4d_offset(pgdp, address);
776 	if (p4d_none(*p4d))
777 		return no_page_table(vma, flags);
778 	BUILD_BUG_ON(p4d_huge(*p4d));
779 	if (unlikely(p4d_bad(*p4d)))
780 		return no_page_table(vma, flags);
781 
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct page *page;
815 	struct mm_struct *mm = vma->vm_mm;
816 
817 	ctx->page_mask = 0;
818 
819 	/*
820 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
821 	 * special hugetlb page table walking code.  This eliminates the
822 	 * need to check for hugetlb entries in the general walking code.
823 	 *
824 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
825 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
826 	 */
827 	if (is_vm_hugetlb_page(vma)) {
828 		page = hugetlb_follow_page_mask(vma, address, flags);
829 		if (!page)
830 			page = no_page_table(vma, flags);
831 		return page;
832 	}
833 
834 	pgd = pgd_offset(mm, address);
835 
836 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
837 		return no_page_table(vma, flags);
838 
839 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
840 }
841 
842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
843 			 unsigned int foll_flags)
844 {
845 	struct follow_page_context ctx = { NULL };
846 	struct page *page;
847 
848 	if (vma_is_secretmem(vma))
849 		return NULL;
850 
851 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
852 		return NULL;
853 
854 	page = follow_page_mask(vma, address, foll_flags, &ctx);
855 	if (ctx.pgmap)
856 		put_dev_pagemap(ctx.pgmap);
857 	return page;
858 }
859 
860 static int get_gate_page(struct mm_struct *mm, unsigned long address,
861 		unsigned int gup_flags, struct vm_area_struct **vma,
862 		struct page **page)
863 {
864 	pgd_t *pgd;
865 	p4d_t *p4d;
866 	pud_t *pud;
867 	pmd_t *pmd;
868 	pte_t *pte;
869 	pte_t entry;
870 	int ret = -EFAULT;
871 
872 	/* user gate pages are read-only */
873 	if (gup_flags & FOLL_WRITE)
874 		return -EFAULT;
875 	if (address > TASK_SIZE)
876 		pgd = pgd_offset_k(address);
877 	else
878 		pgd = pgd_offset_gate(mm, address);
879 	if (pgd_none(*pgd))
880 		return -EFAULT;
881 	p4d = p4d_offset(pgd, address);
882 	if (p4d_none(*p4d))
883 		return -EFAULT;
884 	pud = pud_offset(p4d, address);
885 	if (pud_none(*pud))
886 		return -EFAULT;
887 	pmd = pmd_offset(pud, address);
888 	if (!pmd_present(*pmd))
889 		return -EFAULT;
890 	pte = pte_offset_map(pmd, address);
891 	if (!pte)
892 		return -EFAULT;
893 	entry = ptep_get(pte);
894 	if (pte_none(entry))
895 		goto unmap;
896 	*vma = get_gate_vma(mm);
897 	if (!page)
898 		goto out;
899 	*page = vm_normal_page(*vma, address, entry);
900 	if (!*page) {
901 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
902 			goto unmap;
903 		*page = pte_page(entry);
904 	}
905 	ret = try_grab_page(*page, gup_flags);
906 	if (unlikely(ret))
907 		goto unmap;
908 out:
909 	ret = 0;
910 unmap:
911 	pte_unmap(pte);
912 	return ret;
913 }
914 
915 /*
916  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
917  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
918  * to 0 and -EBUSY returned.
919  */
920 static int faultin_page(struct vm_area_struct *vma,
921 		unsigned long address, unsigned int *flags, bool unshare,
922 		int *locked)
923 {
924 	unsigned int fault_flags = 0;
925 	vm_fault_t ret;
926 
927 	if (*flags & FOLL_NOFAULT)
928 		return -EFAULT;
929 	if (*flags & FOLL_WRITE)
930 		fault_flags |= FAULT_FLAG_WRITE;
931 	if (*flags & FOLL_REMOTE)
932 		fault_flags |= FAULT_FLAG_REMOTE;
933 	if (*flags & FOLL_UNLOCKABLE) {
934 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
935 		/*
936 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
937 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
938 		 * That's because some callers may not be prepared to
939 		 * handle early exits caused by non-fatal signals.
940 		 */
941 		if (*flags & FOLL_INTERRUPTIBLE)
942 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
943 	}
944 	if (*flags & FOLL_NOWAIT)
945 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
946 	if (*flags & FOLL_TRIED) {
947 		/*
948 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
949 		 * can co-exist
950 		 */
951 		fault_flags |= FAULT_FLAG_TRIED;
952 	}
953 	if (unshare) {
954 		fault_flags |= FAULT_FLAG_UNSHARE;
955 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
956 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
957 	}
958 
959 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
960 
961 	if (ret & VM_FAULT_COMPLETED) {
962 		/*
963 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
964 		 * mmap lock in the page fault handler. Sanity check this.
965 		 */
966 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
967 		*locked = 0;
968 
969 		/*
970 		 * We should do the same as VM_FAULT_RETRY, but let's not
971 		 * return -EBUSY since that's not reflecting the reality of
972 		 * what has happened - we've just fully completed a page
973 		 * fault, with the mmap lock released.  Use -EAGAIN to show
974 		 * that we want to take the mmap lock _again_.
975 		 */
976 		return -EAGAIN;
977 	}
978 
979 	if (ret & VM_FAULT_ERROR) {
980 		int err = vm_fault_to_errno(ret, *flags);
981 
982 		if (err)
983 			return err;
984 		BUG();
985 	}
986 
987 	if (ret & VM_FAULT_RETRY) {
988 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
989 			*locked = 0;
990 		return -EBUSY;
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * Writing to file-backed mappings which require folio dirty tracking using GUP
998  * is a fundamentally broken operation, as kernel write access to GUP mappings
999  * do not adhere to the semantics expected by a file system.
1000  *
1001  * Consider the following scenario:-
1002  *
1003  * 1. A folio is written to via GUP which write-faults the memory, notifying
1004  *    the file system and dirtying the folio.
1005  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1006  *    the PTE being marked read-only.
1007  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1008  *    direct mapping.
1009  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1010  *    (though it does not have to).
1011  *
1012  * This results in both data being written to a folio without writenotify, and
1013  * the folio being dirtied unexpectedly (if the caller decides to do so).
1014  */
1015 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1016 					  unsigned long gup_flags)
1017 {
1018 	/*
1019 	 * If we aren't pinning then no problematic write can occur. A long term
1020 	 * pin is the most egregious case so this is the case we disallow.
1021 	 */
1022 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1023 	    (FOLL_PIN | FOLL_LONGTERM))
1024 		return true;
1025 
1026 	/*
1027 	 * If the VMA does not require dirty tracking then no problematic write
1028 	 * can occur either.
1029 	 */
1030 	return !vma_needs_dirty_tracking(vma);
1031 }
1032 
1033 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1034 {
1035 	vm_flags_t vm_flags = vma->vm_flags;
1036 	int write = (gup_flags & FOLL_WRITE);
1037 	int foreign = (gup_flags & FOLL_REMOTE);
1038 	bool vma_anon = vma_is_anonymous(vma);
1039 
1040 	if (vm_flags & (VM_IO | VM_PFNMAP))
1041 		return -EFAULT;
1042 
1043 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1044 		return -EFAULT;
1045 
1046 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047 		return -EOPNOTSUPP;
1048 
1049 	if (vma_is_secretmem(vma))
1050 		return -EFAULT;
1051 
1052 	if (write) {
1053 		if (!vma_anon &&
1054 		    !writable_file_mapping_allowed(vma, gup_flags))
1055 			return -EFAULT;
1056 
1057 		if (!(vm_flags & VM_WRITE)) {
1058 			if (!(gup_flags & FOLL_FORCE))
1059 				return -EFAULT;
1060 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1061 			if (is_vm_hugetlb_page(vma))
1062 				return -EFAULT;
1063 			/*
1064 			 * We used to let the write,force case do COW in a
1065 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1066 			 * set a breakpoint in a read-only mapping of an
1067 			 * executable, without corrupting the file (yet only
1068 			 * when that file had been opened for writing!).
1069 			 * Anon pages in shared mappings are surprising: now
1070 			 * just reject it.
1071 			 */
1072 			if (!is_cow_mapping(vm_flags))
1073 				return -EFAULT;
1074 		}
1075 	} else if (!(vm_flags & VM_READ)) {
1076 		if (!(gup_flags & FOLL_FORCE))
1077 			return -EFAULT;
1078 		/*
1079 		 * Is there actually any vma we can reach here which does not
1080 		 * have VM_MAYREAD set?
1081 		 */
1082 		if (!(vm_flags & VM_MAYREAD))
1083 			return -EFAULT;
1084 	}
1085 	/*
1086 	 * gups are always data accesses, not instruction
1087 	 * fetches, so execute=false here
1088 	 */
1089 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1090 		return -EFAULT;
1091 	return 0;
1092 }
1093 
1094 /**
1095  * __get_user_pages() - pin user pages in memory
1096  * @mm:		mm_struct of target mm
1097  * @start:	starting user address
1098  * @nr_pages:	number of pages from start to pin
1099  * @gup_flags:	flags modifying pin behaviour
1100  * @pages:	array that receives pointers to the pages pinned.
1101  *		Should be at least nr_pages long. Or NULL, if caller
1102  *		only intends to ensure the pages are faulted in.
1103  * @locked:     whether we're still with the mmap_lock held
1104  *
1105  * Returns either number of pages pinned (which may be less than the
1106  * number requested), or an error. Details about the return value:
1107  *
1108  * -- If nr_pages is 0, returns 0.
1109  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1110  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1111  *    pages pinned. Again, this may be less than nr_pages.
1112  * -- 0 return value is possible when the fault would need to be retried.
1113  *
1114  * The caller is responsible for releasing returned @pages, via put_page().
1115  *
1116  * Must be called with mmap_lock held.  It may be released.  See below.
1117  *
1118  * __get_user_pages walks a process's page tables and takes a reference to
1119  * each struct page that each user address corresponds to at a given
1120  * instant. That is, it takes the page that would be accessed if a user
1121  * thread accesses the given user virtual address at that instant.
1122  *
1123  * This does not guarantee that the page exists in the user mappings when
1124  * __get_user_pages returns, and there may even be a completely different
1125  * page there in some cases (eg. if mmapped pagecache has been invalidated
1126  * and subsequently re-faulted). However it does guarantee that the page
1127  * won't be freed completely. And mostly callers simply care that the page
1128  * contains data that was valid *at some point in time*. Typically, an IO
1129  * or similar operation cannot guarantee anything stronger anyway because
1130  * locks can't be held over the syscall boundary.
1131  *
1132  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1133  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1134  * appropriate) must be called after the page is finished with, and
1135  * before put_page is called.
1136  *
1137  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1138  * be released. If this happens *@locked will be set to 0 on return.
1139  *
1140  * A caller using such a combination of @gup_flags must therefore hold the
1141  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1142  * it must be held for either reading or writing and will not be released.
1143  *
1144  * In most cases, get_user_pages or get_user_pages_fast should be used
1145  * instead of __get_user_pages. __get_user_pages should be used only if
1146  * you need some special @gup_flags.
1147  */
1148 static long __get_user_pages(struct mm_struct *mm,
1149 		unsigned long start, unsigned long nr_pages,
1150 		unsigned int gup_flags, struct page **pages,
1151 		int *locked)
1152 {
1153 	long ret = 0, i = 0;
1154 	struct vm_area_struct *vma = NULL;
1155 	struct follow_page_context ctx = { NULL };
1156 
1157 	if (!nr_pages)
1158 		return 0;
1159 
1160 	start = untagged_addr_remote(mm, start);
1161 
1162 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1163 
1164 	do {
1165 		struct page *page;
1166 		unsigned int foll_flags = gup_flags;
1167 		unsigned int page_increm;
1168 
1169 		/* first iteration or cross vma bound */
1170 		if (!vma || start >= vma->vm_end) {
1171 			vma = find_extend_vma(mm, start);
1172 			if (!vma && in_gate_area(mm, start)) {
1173 				ret = get_gate_page(mm, start & PAGE_MASK,
1174 						gup_flags, &vma,
1175 						pages ? &pages[i] : NULL);
1176 				if (ret)
1177 					goto out;
1178 				ctx.page_mask = 0;
1179 				goto next_page;
1180 			}
1181 
1182 			if (!vma) {
1183 				ret = -EFAULT;
1184 				goto out;
1185 			}
1186 			ret = check_vma_flags(vma, gup_flags);
1187 			if (ret)
1188 				goto out;
1189 
1190 			if (is_vm_hugetlb_page(vma)) {
1191 				i = follow_hugetlb_page(mm, vma, pages,
1192 							&start, &nr_pages, i,
1193 							gup_flags, locked);
1194 				if (!*locked) {
1195 					/*
1196 					 * We've got a VM_FAULT_RETRY
1197 					 * and we've lost mmap_lock.
1198 					 * We must stop here.
1199 					 */
1200 					BUG_ON(gup_flags & FOLL_NOWAIT);
1201 					goto out;
1202 				}
1203 				continue;
1204 			}
1205 		}
1206 retry:
1207 		/*
1208 		 * If we have a pending SIGKILL, don't keep faulting pages and
1209 		 * potentially allocating memory.
1210 		 */
1211 		if (fatal_signal_pending(current)) {
1212 			ret = -EINTR;
1213 			goto out;
1214 		}
1215 		cond_resched();
1216 
1217 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1218 		if (!page || PTR_ERR(page) == -EMLINK) {
1219 			ret = faultin_page(vma, start, &foll_flags,
1220 					   PTR_ERR(page) == -EMLINK, locked);
1221 			switch (ret) {
1222 			case 0:
1223 				goto retry;
1224 			case -EBUSY:
1225 			case -EAGAIN:
1226 				ret = 0;
1227 				fallthrough;
1228 			case -EFAULT:
1229 			case -ENOMEM:
1230 			case -EHWPOISON:
1231 				goto out;
1232 			}
1233 			BUG();
1234 		} else if (PTR_ERR(page) == -EEXIST) {
1235 			/*
1236 			 * Proper page table entry exists, but no corresponding
1237 			 * struct page. If the caller expects **pages to be
1238 			 * filled in, bail out now, because that can't be done
1239 			 * for this page.
1240 			 */
1241 			if (pages) {
1242 				ret = PTR_ERR(page);
1243 				goto out;
1244 			}
1245 
1246 			goto next_page;
1247 		} else if (IS_ERR(page)) {
1248 			ret = PTR_ERR(page);
1249 			goto out;
1250 		}
1251 		if (pages) {
1252 			pages[i] = page;
1253 			flush_anon_page(vma, page, start);
1254 			flush_dcache_page(page);
1255 			ctx.page_mask = 0;
1256 		}
1257 next_page:
1258 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1259 		if (page_increm > nr_pages)
1260 			page_increm = nr_pages;
1261 		i += page_increm;
1262 		start += page_increm * PAGE_SIZE;
1263 		nr_pages -= page_increm;
1264 	} while (nr_pages);
1265 out:
1266 	if (ctx.pgmap)
1267 		put_dev_pagemap(ctx.pgmap);
1268 	return i ? i : ret;
1269 }
1270 
1271 static bool vma_permits_fault(struct vm_area_struct *vma,
1272 			      unsigned int fault_flags)
1273 {
1274 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1275 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1276 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1277 
1278 	if (!(vm_flags & vma->vm_flags))
1279 		return false;
1280 
1281 	/*
1282 	 * The architecture might have a hardware protection
1283 	 * mechanism other than read/write that can deny access.
1284 	 *
1285 	 * gup always represents data access, not instruction
1286 	 * fetches, so execute=false here:
1287 	 */
1288 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1289 		return false;
1290 
1291 	return true;
1292 }
1293 
1294 /**
1295  * fixup_user_fault() - manually resolve a user page fault
1296  * @mm:		mm_struct of target mm
1297  * @address:	user address
1298  * @fault_flags:flags to pass down to handle_mm_fault()
1299  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1300  *		does not allow retry. If NULL, the caller must guarantee
1301  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1302  *
1303  * This is meant to be called in the specific scenario where for locking reasons
1304  * we try to access user memory in atomic context (within a pagefault_disable()
1305  * section), this returns -EFAULT, and we want to resolve the user fault before
1306  * trying again.
1307  *
1308  * Typically this is meant to be used by the futex code.
1309  *
1310  * The main difference with get_user_pages() is that this function will
1311  * unconditionally call handle_mm_fault() which will in turn perform all the
1312  * necessary SW fixup of the dirty and young bits in the PTE, while
1313  * get_user_pages() only guarantees to update these in the struct page.
1314  *
1315  * This is important for some architectures where those bits also gate the
1316  * access permission to the page because they are maintained in software.  On
1317  * such architectures, gup() will not be enough to make a subsequent access
1318  * succeed.
1319  *
1320  * This function will not return with an unlocked mmap_lock. So it has not the
1321  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1322  */
1323 int fixup_user_fault(struct mm_struct *mm,
1324 		     unsigned long address, unsigned int fault_flags,
1325 		     bool *unlocked)
1326 {
1327 	struct vm_area_struct *vma;
1328 	vm_fault_t ret;
1329 
1330 	address = untagged_addr_remote(mm, address);
1331 
1332 	if (unlocked)
1333 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1334 
1335 retry:
1336 	vma = find_extend_vma(mm, address);
1337 	if (!vma || address < vma->vm_start)
1338 		return -EFAULT;
1339 
1340 	if (!vma_permits_fault(vma, fault_flags))
1341 		return -EFAULT;
1342 
1343 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1344 	    fatal_signal_pending(current))
1345 		return -EINTR;
1346 
1347 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1348 
1349 	if (ret & VM_FAULT_COMPLETED) {
1350 		/*
1351 		 * NOTE: it's a pity that we need to retake the lock here
1352 		 * to pair with the unlock() in the callers. Ideally we
1353 		 * could tell the callers so they do not need to unlock.
1354 		 */
1355 		mmap_read_lock(mm);
1356 		*unlocked = true;
1357 		return 0;
1358 	}
1359 
1360 	if (ret & VM_FAULT_ERROR) {
1361 		int err = vm_fault_to_errno(ret, 0);
1362 
1363 		if (err)
1364 			return err;
1365 		BUG();
1366 	}
1367 
1368 	if (ret & VM_FAULT_RETRY) {
1369 		mmap_read_lock(mm);
1370 		*unlocked = true;
1371 		fault_flags |= FAULT_FLAG_TRIED;
1372 		goto retry;
1373 	}
1374 
1375 	return 0;
1376 }
1377 EXPORT_SYMBOL_GPL(fixup_user_fault);
1378 
1379 /*
1380  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1381  * specified, it'll also respond to generic signals.  The caller of GUP
1382  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1383  */
1384 static bool gup_signal_pending(unsigned int flags)
1385 {
1386 	if (fatal_signal_pending(current))
1387 		return true;
1388 
1389 	if (!(flags & FOLL_INTERRUPTIBLE))
1390 		return false;
1391 
1392 	return signal_pending(current);
1393 }
1394 
1395 /*
1396  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1397  * the caller. This function may drop the mmap_lock. If it does so, then it will
1398  * set (*locked = 0).
1399  *
1400  * (*locked == 0) means that the caller expects this function to acquire and
1401  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1402  * the function returns, even though it may have changed temporarily during
1403  * function execution.
1404  *
1405  * Please note that this function, unlike __get_user_pages(), will not return 0
1406  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1407  */
1408 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1409 						unsigned long start,
1410 						unsigned long nr_pages,
1411 						struct page **pages,
1412 						int *locked,
1413 						unsigned int flags)
1414 {
1415 	long ret, pages_done;
1416 	bool must_unlock = false;
1417 
1418 	/*
1419 	 * The internal caller expects GUP to manage the lock internally and the
1420 	 * lock must be released when this returns.
1421 	 */
1422 	if (!*locked) {
1423 		if (mmap_read_lock_killable(mm))
1424 			return -EAGAIN;
1425 		must_unlock = true;
1426 		*locked = 1;
1427 	}
1428 	else
1429 		mmap_assert_locked(mm);
1430 
1431 	if (flags & FOLL_PIN)
1432 		mm_set_has_pinned_flag(&mm->flags);
1433 
1434 	/*
1435 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1436 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1437 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1438 	 * for FOLL_GET, not for the newer FOLL_PIN.
1439 	 *
1440 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1441 	 * that here, as any failures will be obvious enough.
1442 	 */
1443 	if (pages && !(flags & FOLL_PIN))
1444 		flags |= FOLL_GET;
1445 
1446 	pages_done = 0;
1447 	for (;;) {
1448 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1449 				       locked);
1450 		if (!(flags & FOLL_UNLOCKABLE)) {
1451 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1452 			pages_done = ret;
1453 			break;
1454 		}
1455 
1456 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1457 		if (!*locked) {
1458 			BUG_ON(ret < 0);
1459 			BUG_ON(ret >= nr_pages);
1460 		}
1461 
1462 		if (ret > 0) {
1463 			nr_pages -= ret;
1464 			pages_done += ret;
1465 			if (!nr_pages)
1466 				break;
1467 		}
1468 		if (*locked) {
1469 			/*
1470 			 * VM_FAULT_RETRY didn't trigger or it was a
1471 			 * FOLL_NOWAIT.
1472 			 */
1473 			if (!pages_done)
1474 				pages_done = ret;
1475 			break;
1476 		}
1477 		/*
1478 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1479 		 * For the prefault case (!pages) we only update counts.
1480 		 */
1481 		if (likely(pages))
1482 			pages += ret;
1483 		start += ret << PAGE_SHIFT;
1484 
1485 		/* The lock was temporarily dropped, so we must unlock later */
1486 		must_unlock = true;
1487 
1488 retry:
1489 		/*
1490 		 * Repeat on the address that fired VM_FAULT_RETRY
1491 		 * with both FAULT_FLAG_ALLOW_RETRY and
1492 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1493 		 * by fatal signals of even common signals, depending on
1494 		 * the caller's request. So we need to check it before we
1495 		 * start trying again otherwise it can loop forever.
1496 		 */
1497 		if (gup_signal_pending(flags)) {
1498 			if (!pages_done)
1499 				pages_done = -EINTR;
1500 			break;
1501 		}
1502 
1503 		ret = mmap_read_lock_killable(mm);
1504 		if (ret) {
1505 			BUG_ON(ret > 0);
1506 			if (!pages_done)
1507 				pages_done = ret;
1508 			break;
1509 		}
1510 
1511 		*locked = 1;
1512 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1513 				       pages, locked);
1514 		if (!*locked) {
1515 			/* Continue to retry until we succeeded */
1516 			BUG_ON(ret != 0);
1517 			goto retry;
1518 		}
1519 		if (ret != 1) {
1520 			BUG_ON(ret > 1);
1521 			if (!pages_done)
1522 				pages_done = ret;
1523 			break;
1524 		}
1525 		nr_pages--;
1526 		pages_done++;
1527 		if (!nr_pages)
1528 			break;
1529 		if (likely(pages))
1530 			pages++;
1531 		start += PAGE_SIZE;
1532 	}
1533 	if (must_unlock && *locked) {
1534 		/*
1535 		 * We either temporarily dropped the lock, or the caller
1536 		 * requested that we both acquire and drop the lock. Either way,
1537 		 * we must now unlock, and notify the caller of that state.
1538 		 */
1539 		mmap_read_unlock(mm);
1540 		*locked = 0;
1541 	}
1542 	return pages_done;
1543 }
1544 
1545 /**
1546  * populate_vma_page_range() -  populate a range of pages in the vma.
1547  * @vma:   target vma
1548  * @start: start address
1549  * @end:   end address
1550  * @locked: whether the mmap_lock is still held
1551  *
1552  * This takes care of mlocking the pages too if VM_LOCKED is set.
1553  *
1554  * Return either number of pages pinned in the vma, or a negative error
1555  * code on error.
1556  *
1557  * vma->vm_mm->mmap_lock must be held.
1558  *
1559  * If @locked is NULL, it may be held for read or write and will
1560  * be unperturbed.
1561  *
1562  * If @locked is non-NULL, it must held for read only and may be
1563  * released.  If it's released, *@locked will be set to 0.
1564  */
1565 long populate_vma_page_range(struct vm_area_struct *vma,
1566 		unsigned long start, unsigned long end, int *locked)
1567 {
1568 	struct mm_struct *mm = vma->vm_mm;
1569 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1570 	int local_locked = 1;
1571 	int gup_flags;
1572 	long ret;
1573 
1574 	VM_BUG_ON(!PAGE_ALIGNED(start));
1575 	VM_BUG_ON(!PAGE_ALIGNED(end));
1576 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1577 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1578 	mmap_assert_locked(mm);
1579 
1580 	/*
1581 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1582 	 * faultin_page() to break COW, so it has no work to do here.
1583 	 */
1584 	if (vma->vm_flags & VM_LOCKONFAULT)
1585 		return nr_pages;
1586 
1587 	gup_flags = FOLL_TOUCH;
1588 	/*
1589 	 * We want to touch writable mappings with a write fault in order
1590 	 * to break COW, except for shared mappings because these don't COW
1591 	 * and we would not want to dirty them for nothing.
1592 	 */
1593 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1594 		gup_flags |= FOLL_WRITE;
1595 
1596 	/*
1597 	 * We want mlock to succeed for regions that have any permissions
1598 	 * other than PROT_NONE.
1599 	 */
1600 	if (vma_is_accessible(vma))
1601 		gup_flags |= FOLL_FORCE;
1602 
1603 	if (locked)
1604 		gup_flags |= FOLL_UNLOCKABLE;
1605 
1606 	/*
1607 	 * We made sure addr is within a VMA, so the following will
1608 	 * not result in a stack expansion that recurses back here.
1609 	 */
1610 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1611 			       NULL, locked ? locked : &local_locked);
1612 	lru_add_drain();
1613 	return ret;
1614 }
1615 
1616 /*
1617  * faultin_vma_page_range() - populate (prefault) page tables inside the
1618  *			      given VMA range readable/writable
1619  *
1620  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1621  *
1622  * @vma: target vma
1623  * @start: start address
1624  * @end: end address
1625  * @write: whether to prefault readable or writable
1626  * @locked: whether the mmap_lock is still held
1627  *
1628  * Returns either number of processed pages in the vma, or a negative error
1629  * code on error (see __get_user_pages()).
1630  *
1631  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1632  * covered by the VMA. If it's released, *@locked will be set to 0.
1633  */
1634 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1635 			    unsigned long end, bool write, int *locked)
1636 {
1637 	struct mm_struct *mm = vma->vm_mm;
1638 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1639 	int gup_flags;
1640 	long ret;
1641 
1642 	VM_BUG_ON(!PAGE_ALIGNED(start));
1643 	VM_BUG_ON(!PAGE_ALIGNED(end));
1644 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1645 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1646 	mmap_assert_locked(mm);
1647 
1648 	/*
1649 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1650 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1651 	 *	       difference with !FOLL_FORCE, because the page is writable
1652 	 *	       in the page table.
1653 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1654 	 *		  a poisoned page.
1655 	 * !FOLL_FORCE: Require proper access permissions.
1656 	 */
1657 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1658 	if (write)
1659 		gup_flags |= FOLL_WRITE;
1660 
1661 	/*
1662 	 * We want to report -EINVAL instead of -EFAULT for any permission
1663 	 * problems or incompatible mappings.
1664 	 */
1665 	if (check_vma_flags(vma, gup_flags))
1666 		return -EINVAL;
1667 
1668 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1669 			       NULL, locked);
1670 	lru_add_drain();
1671 	return ret;
1672 }
1673 
1674 /*
1675  * __mm_populate - populate and/or mlock pages within a range of address space.
1676  *
1677  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1678  * flags. VMAs must be already marked with the desired vm_flags, and
1679  * mmap_lock must not be held.
1680  */
1681 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1682 {
1683 	struct mm_struct *mm = current->mm;
1684 	unsigned long end, nstart, nend;
1685 	struct vm_area_struct *vma = NULL;
1686 	int locked = 0;
1687 	long ret = 0;
1688 
1689 	end = start + len;
1690 
1691 	for (nstart = start; nstart < end; nstart = nend) {
1692 		/*
1693 		 * We want to fault in pages for [nstart; end) address range.
1694 		 * Find first corresponding VMA.
1695 		 */
1696 		if (!locked) {
1697 			locked = 1;
1698 			mmap_read_lock(mm);
1699 			vma = find_vma_intersection(mm, nstart, end);
1700 		} else if (nstart >= vma->vm_end)
1701 			vma = find_vma_intersection(mm, vma->vm_end, end);
1702 
1703 		if (!vma)
1704 			break;
1705 		/*
1706 		 * Set [nstart; nend) to intersection of desired address
1707 		 * range with the first VMA. Also, skip undesirable VMA types.
1708 		 */
1709 		nend = min(end, vma->vm_end);
1710 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1711 			continue;
1712 		if (nstart < vma->vm_start)
1713 			nstart = vma->vm_start;
1714 		/*
1715 		 * Now fault in a range of pages. populate_vma_page_range()
1716 		 * double checks the vma flags, so that it won't mlock pages
1717 		 * if the vma was already munlocked.
1718 		 */
1719 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1720 		if (ret < 0) {
1721 			if (ignore_errors) {
1722 				ret = 0;
1723 				continue;	/* continue at next VMA */
1724 			}
1725 			break;
1726 		}
1727 		nend = nstart + ret * PAGE_SIZE;
1728 		ret = 0;
1729 	}
1730 	if (locked)
1731 		mmap_read_unlock(mm);
1732 	return ret;	/* 0 or negative error code */
1733 }
1734 #else /* CONFIG_MMU */
1735 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1736 		unsigned long nr_pages, struct page **pages,
1737 		int *locked, unsigned int foll_flags)
1738 {
1739 	struct vm_area_struct *vma;
1740 	bool must_unlock = false;
1741 	unsigned long vm_flags;
1742 	long i;
1743 
1744 	if (!nr_pages)
1745 		return 0;
1746 
1747 	/*
1748 	 * The internal caller expects GUP to manage the lock internally and the
1749 	 * lock must be released when this returns.
1750 	 */
1751 	if (!*locked) {
1752 		if (mmap_read_lock_killable(mm))
1753 			return -EAGAIN;
1754 		must_unlock = true;
1755 		*locked = 1;
1756 	}
1757 
1758 	/* calculate required read or write permissions.
1759 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1760 	 */
1761 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1762 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1763 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1764 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1765 
1766 	for (i = 0; i < nr_pages; i++) {
1767 		vma = find_vma(mm, start);
1768 		if (!vma)
1769 			break;
1770 
1771 		/* protect what we can, including chardevs */
1772 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1773 		    !(vm_flags & vma->vm_flags))
1774 			break;
1775 
1776 		if (pages) {
1777 			pages[i] = virt_to_page((void *)start);
1778 			if (pages[i])
1779 				get_page(pages[i]);
1780 		}
1781 
1782 		start = (start + PAGE_SIZE) & PAGE_MASK;
1783 	}
1784 
1785 	if (must_unlock && *locked) {
1786 		mmap_read_unlock(mm);
1787 		*locked = 0;
1788 	}
1789 
1790 	return i ? : -EFAULT;
1791 }
1792 #endif /* !CONFIG_MMU */
1793 
1794 /**
1795  * fault_in_writeable - fault in userspace address range for writing
1796  * @uaddr: start of address range
1797  * @size: size of address range
1798  *
1799  * Returns the number of bytes not faulted in (like copy_to_user() and
1800  * copy_from_user()).
1801  */
1802 size_t fault_in_writeable(char __user *uaddr, size_t size)
1803 {
1804 	char __user *start = uaddr, *end;
1805 
1806 	if (unlikely(size == 0))
1807 		return 0;
1808 	if (!user_write_access_begin(uaddr, size))
1809 		return size;
1810 	if (!PAGE_ALIGNED(uaddr)) {
1811 		unsafe_put_user(0, uaddr, out);
1812 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1813 	}
1814 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1815 	if (unlikely(end < start))
1816 		end = NULL;
1817 	while (uaddr != end) {
1818 		unsafe_put_user(0, uaddr, out);
1819 		uaddr += PAGE_SIZE;
1820 	}
1821 
1822 out:
1823 	user_write_access_end();
1824 	if (size > uaddr - start)
1825 		return size - (uaddr - start);
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(fault_in_writeable);
1829 
1830 /**
1831  * fault_in_subpage_writeable - fault in an address range for writing
1832  * @uaddr: start of address range
1833  * @size: size of address range
1834  *
1835  * Fault in a user address range for writing while checking for permissions at
1836  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1837  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1838  *
1839  * Returns the number of bytes not faulted in (like copy_to_user() and
1840  * copy_from_user()).
1841  */
1842 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1843 {
1844 	size_t faulted_in;
1845 
1846 	/*
1847 	 * Attempt faulting in at page granularity first for page table
1848 	 * permission checking. The arch-specific probe_subpage_writeable()
1849 	 * functions may not check for this.
1850 	 */
1851 	faulted_in = size - fault_in_writeable(uaddr, size);
1852 	if (faulted_in)
1853 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1854 
1855 	return size - faulted_in;
1856 }
1857 EXPORT_SYMBOL(fault_in_subpage_writeable);
1858 
1859 /*
1860  * fault_in_safe_writeable - fault in an address range for writing
1861  * @uaddr: start of address range
1862  * @size: length of address range
1863  *
1864  * Faults in an address range for writing.  This is primarily useful when we
1865  * already know that some or all of the pages in the address range aren't in
1866  * memory.
1867  *
1868  * Unlike fault_in_writeable(), this function is non-destructive.
1869  *
1870  * Note that we don't pin or otherwise hold the pages referenced that we fault
1871  * in.  There's no guarantee that they'll stay in memory for any duration of
1872  * time.
1873  *
1874  * Returns the number of bytes not faulted in, like copy_to_user() and
1875  * copy_from_user().
1876  */
1877 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1878 {
1879 	unsigned long start = (unsigned long)uaddr, end;
1880 	struct mm_struct *mm = current->mm;
1881 	bool unlocked = false;
1882 
1883 	if (unlikely(size == 0))
1884 		return 0;
1885 	end = PAGE_ALIGN(start + size);
1886 	if (end < start)
1887 		end = 0;
1888 
1889 	mmap_read_lock(mm);
1890 	do {
1891 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1892 			break;
1893 		start = (start + PAGE_SIZE) & PAGE_MASK;
1894 	} while (start != end);
1895 	mmap_read_unlock(mm);
1896 
1897 	if (size > (unsigned long)uaddr - start)
1898 		return size - ((unsigned long)uaddr - start);
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL(fault_in_safe_writeable);
1902 
1903 /**
1904  * fault_in_readable - fault in userspace address range for reading
1905  * @uaddr: start of user address range
1906  * @size: size of user address range
1907  *
1908  * Returns the number of bytes not faulted in (like copy_to_user() and
1909  * copy_from_user()).
1910  */
1911 size_t fault_in_readable(const char __user *uaddr, size_t size)
1912 {
1913 	const char __user *start = uaddr, *end;
1914 	volatile char c;
1915 
1916 	if (unlikely(size == 0))
1917 		return 0;
1918 	if (!user_read_access_begin(uaddr, size))
1919 		return size;
1920 	if (!PAGE_ALIGNED(uaddr)) {
1921 		unsafe_get_user(c, uaddr, out);
1922 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1923 	}
1924 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1925 	if (unlikely(end < start))
1926 		end = NULL;
1927 	while (uaddr != end) {
1928 		unsafe_get_user(c, uaddr, out);
1929 		uaddr += PAGE_SIZE;
1930 	}
1931 
1932 out:
1933 	user_read_access_end();
1934 	(void)c;
1935 	if (size > uaddr - start)
1936 		return size - (uaddr - start);
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL(fault_in_readable);
1940 
1941 /**
1942  * get_dump_page() - pin user page in memory while writing it to core dump
1943  * @addr: user address
1944  *
1945  * Returns struct page pointer of user page pinned for dump,
1946  * to be freed afterwards by put_page().
1947  *
1948  * Returns NULL on any kind of failure - a hole must then be inserted into
1949  * the corefile, to preserve alignment with its headers; and also returns
1950  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1951  * allowing a hole to be left in the corefile to save disk space.
1952  *
1953  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1954  */
1955 #ifdef CONFIG_ELF_CORE
1956 struct page *get_dump_page(unsigned long addr)
1957 {
1958 	struct page *page;
1959 	int locked = 0;
1960 	int ret;
1961 
1962 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
1963 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1964 	return (ret == 1) ? page : NULL;
1965 }
1966 #endif /* CONFIG_ELF_CORE */
1967 
1968 #ifdef CONFIG_MIGRATION
1969 /*
1970  * Returns the number of collected pages. Return value is always >= 0.
1971  */
1972 static unsigned long collect_longterm_unpinnable_pages(
1973 					struct list_head *movable_page_list,
1974 					unsigned long nr_pages,
1975 					struct page **pages)
1976 {
1977 	unsigned long i, collected = 0;
1978 	struct folio *prev_folio = NULL;
1979 	bool drain_allow = true;
1980 
1981 	for (i = 0; i < nr_pages; i++) {
1982 		struct folio *folio = page_folio(pages[i]);
1983 
1984 		if (folio == prev_folio)
1985 			continue;
1986 		prev_folio = folio;
1987 
1988 		if (folio_is_longterm_pinnable(folio))
1989 			continue;
1990 
1991 		collected++;
1992 
1993 		if (folio_is_device_coherent(folio))
1994 			continue;
1995 
1996 		if (folio_test_hugetlb(folio)) {
1997 			isolate_hugetlb(folio, movable_page_list);
1998 			continue;
1999 		}
2000 
2001 		if (!folio_test_lru(folio) && drain_allow) {
2002 			lru_add_drain_all();
2003 			drain_allow = false;
2004 		}
2005 
2006 		if (!folio_isolate_lru(folio))
2007 			continue;
2008 
2009 		list_add_tail(&folio->lru, movable_page_list);
2010 		node_stat_mod_folio(folio,
2011 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2012 				    folio_nr_pages(folio));
2013 	}
2014 
2015 	return collected;
2016 }
2017 
2018 /*
2019  * Unpins all pages and migrates device coherent pages and movable_page_list.
2020  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2021  * (or partial success).
2022  */
2023 static int migrate_longterm_unpinnable_pages(
2024 					struct list_head *movable_page_list,
2025 					unsigned long nr_pages,
2026 					struct page **pages)
2027 {
2028 	int ret;
2029 	unsigned long i;
2030 
2031 	for (i = 0; i < nr_pages; i++) {
2032 		struct folio *folio = page_folio(pages[i]);
2033 
2034 		if (folio_is_device_coherent(folio)) {
2035 			/*
2036 			 * Migration will fail if the page is pinned, so convert
2037 			 * the pin on the source page to a normal reference.
2038 			 */
2039 			pages[i] = NULL;
2040 			folio_get(folio);
2041 			gup_put_folio(folio, 1, FOLL_PIN);
2042 
2043 			if (migrate_device_coherent_page(&folio->page)) {
2044 				ret = -EBUSY;
2045 				goto err;
2046 			}
2047 
2048 			continue;
2049 		}
2050 
2051 		/*
2052 		 * We can't migrate pages with unexpected references, so drop
2053 		 * the reference obtained by __get_user_pages_locked().
2054 		 * Migrating pages have been added to movable_page_list after
2055 		 * calling folio_isolate_lru() which takes a reference so the
2056 		 * page won't be freed if it's migrating.
2057 		 */
2058 		unpin_user_page(pages[i]);
2059 		pages[i] = NULL;
2060 	}
2061 
2062 	if (!list_empty(movable_page_list)) {
2063 		struct migration_target_control mtc = {
2064 			.nid = NUMA_NO_NODE,
2065 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2066 		};
2067 
2068 		if (migrate_pages(movable_page_list, alloc_migration_target,
2069 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2070 				  MR_LONGTERM_PIN, NULL)) {
2071 			ret = -ENOMEM;
2072 			goto err;
2073 		}
2074 	}
2075 
2076 	putback_movable_pages(movable_page_list);
2077 
2078 	return -EAGAIN;
2079 
2080 err:
2081 	for (i = 0; i < nr_pages; i++)
2082 		if (pages[i])
2083 			unpin_user_page(pages[i]);
2084 	putback_movable_pages(movable_page_list);
2085 
2086 	return ret;
2087 }
2088 
2089 /*
2090  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2091  * pages in the range are required to be pinned via FOLL_PIN, before calling
2092  * this routine.
2093  *
2094  * If any pages in the range are not allowed to be pinned, then this routine
2095  * will migrate those pages away, unpin all the pages in the range and return
2096  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2097  * call this routine again.
2098  *
2099  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2100  * The caller should give up, and propagate the error back up the call stack.
2101  *
2102  * If everything is OK and all pages in the range are allowed to be pinned, then
2103  * this routine leaves all pages pinned and returns zero for success.
2104  */
2105 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2106 					    struct page **pages)
2107 {
2108 	unsigned long collected;
2109 	LIST_HEAD(movable_page_list);
2110 
2111 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2112 						nr_pages, pages);
2113 	if (!collected)
2114 		return 0;
2115 
2116 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2117 						pages);
2118 }
2119 #else
2120 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2121 					    struct page **pages)
2122 {
2123 	return 0;
2124 }
2125 #endif /* CONFIG_MIGRATION */
2126 
2127 /*
2128  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2129  * allows us to process the FOLL_LONGTERM flag.
2130  */
2131 static long __gup_longterm_locked(struct mm_struct *mm,
2132 				  unsigned long start,
2133 				  unsigned long nr_pages,
2134 				  struct page **pages,
2135 				  int *locked,
2136 				  unsigned int gup_flags)
2137 {
2138 	unsigned int flags;
2139 	long rc, nr_pinned_pages;
2140 
2141 	if (!(gup_flags & FOLL_LONGTERM))
2142 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2143 					       locked, gup_flags);
2144 
2145 	flags = memalloc_pin_save();
2146 	do {
2147 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2148 							  pages, locked,
2149 							  gup_flags);
2150 		if (nr_pinned_pages <= 0) {
2151 			rc = nr_pinned_pages;
2152 			break;
2153 		}
2154 
2155 		/* FOLL_LONGTERM implies FOLL_PIN */
2156 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2157 	} while (rc == -EAGAIN);
2158 	memalloc_pin_restore(flags);
2159 	return rc ? rc : nr_pinned_pages;
2160 }
2161 
2162 /*
2163  * Check that the given flags are valid for the exported gup/pup interface, and
2164  * update them with the required flags that the caller must have set.
2165  */
2166 static bool is_valid_gup_args(struct page **pages, int *locked,
2167 			      unsigned int *gup_flags_p, unsigned int to_set)
2168 {
2169 	unsigned int gup_flags = *gup_flags_p;
2170 
2171 	/*
2172 	 * These flags not allowed to be specified externally to the gup
2173 	 * interfaces:
2174 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2175 	 * - FOLL_REMOTE is internal only and used on follow_page()
2176 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2177 	 */
2178 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2179 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2180 		return false;
2181 
2182 	gup_flags |= to_set;
2183 	if (locked) {
2184 		/* At the external interface locked must be set */
2185 		if (WARN_ON_ONCE(*locked != 1))
2186 			return false;
2187 
2188 		gup_flags |= FOLL_UNLOCKABLE;
2189 	}
2190 
2191 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2192 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2193 			 (FOLL_PIN | FOLL_GET)))
2194 		return false;
2195 
2196 	/* LONGTERM can only be specified when pinning */
2197 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2198 		return false;
2199 
2200 	/* Pages input must be given if using GET/PIN */
2201 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2202 		return false;
2203 
2204 	/* We want to allow the pgmap to be hot-unplugged at all times */
2205 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2206 			 (gup_flags & FOLL_PCI_P2PDMA)))
2207 		return false;
2208 
2209 	*gup_flags_p = gup_flags;
2210 	return true;
2211 }
2212 
2213 #ifdef CONFIG_MMU
2214 /**
2215  * get_user_pages_remote() - pin user pages in memory
2216  * @mm:		mm_struct of target mm
2217  * @start:	starting user address
2218  * @nr_pages:	number of pages from start to pin
2219  * @gup_flags:	flags modifying lookup behaviour
2220  * @pages:	array that receives pointers to the pages pinned.
2221  *		Should be at least nr_pages long. Or NULL, if caller
2222  *		only intends to ensure the pages are faulted in.
2223  * @locked:	pointer to lock flag indicating whether lock is held and
2224  *		subsequently whether VM_FAULT_RETRY functionality can be
2225  *		utilised. Lock must initially be held.
2226  *
2227  * Returns either number of pages pinned (which may be less than the
2228  * number requested), or an error. Details about the return value:
2229  *
2230  * -- If nr_pages is 0, returns 0.
2231  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2232  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2233  *    pages pinned. Again, this may be less than nr_pages.
2234  *
2235  * The caller is responsible for releasing returned @pages, via put_page().
2236  *
2237  * Must be called with mmap_lock held for read or write.
2238  *
2239  * get_user_pages_remote walks a process's page tables and takes a reference
2240  * to each struct page that each user address corresponds to at a given
2241  * instant. That is, it takes the page that would be accessed if a user
2242  * thread accesses the given user virtual address at that instant.
2243  *
2244  * This does not guarantee that the page exists in the user mappings when
2245  * get_user_pages_remote returns, and there may even be a completely different
2246  * page there in some cases (eg. if mmapped pagecache has been invalidated
2247  * and subsequently re-faulted). However it does guarantee that the page
2248  * won't be freed completely. And mostly callers simply care that the page
2249  * contains data that was valid *at some point in time*. Typically, an IO
2250  * or similar operation cannot guarantee anything stronger anyway because
2251  * locks can't be held over the syscall boundary.
2252  *
2253  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2254  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2255  * be called after the page is finished with, and before put_page is called.
2256  *
2257  * get_user_pages_remote is typically used for fewer-copy IO operations,
2258  * to get a handle on the memory by some means other than accesses
2259  * via the user virtual addresses. The pages may be submitted for
2260  * DMA to devices or accessed via their kernel linear mapping (via the
2261  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2262  *
2263  * See also get_user_pages_fast, for performance critical applications.
2264  *
2265  * get_user_pages_remote should be phased out in favor of
2266  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2267  * should use get_user_pages_remote because it cannot pass
2268  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2269  */
2270 long get_user_pages_remote(struct mm_struct *mm,
2271 		unsigned long start, unsigned long nr_pages,
2272 		unsigned int gup_flags, struct page **pages,
2273 		int *locked)
2274 {
2275 	int local_locked = 1;
2276 
2277 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2278 			       FOLL_TOUCH | FOLL_REMOTE))
2279 		return -EINVAL;
2280 
2281 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2282 				       locked ? locked : &local_locked,
2283 				       gup_flags);
2284 }
2285 EXPORT_SYMBOL(get_user_pages_remote);
2286 
2287 #else /* CONFIG_MMU */
2288 long get_user_pages_remote(struct mm_struct *mm,
2289 			   unsigned long start, unsigned long nr_pages,
2290 			   unsigned int gup_flags, struct page **pages,
2291 			   int *locked)
2292 {
2293 	return 0;
2294 }
2295 #endif /* !CONFIG_MMU */
2296 
2297 /**
2298  * get_user_pages() - pin user pages in memory
2299  * @start:      starting user address
2300  * @nr_pages:   number of pages from start to pin
2301  * @gup_flags:  flags modifying lookup behaviour
2302  * @pages:      array that receives pointers to the pages pinned.
2303  *              Should be at least nr_pages long. Or NULL, if caller
2304  *              only intends to ensure the pages are faulted in.
2305  *
2306  * This is the same as get_user_pages_remote(), just with a less-flexible
2307  * calling convention where we assume that the mm being operated on belongs to
2308  * the current task, and doesn't allow passing of a locked parameter.  We also
2309  * obviously don't pass FOLL_REMOTE in here.
2310  */
2311 long get_user_pages(unsigned long start, unsigned long nr_pages,
2312 		    unsigned int gup_flags, struct page **pages)
2313 {
2314 	int locked = 1;
2315 
2316 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2317 		return -EINVAL;
2318 
2319 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2320 				       &locked, gup_flags);
2321 }
2322 EXPORT_SYMBOL(get_user_pages);
2323 
2324 /*
2325  * get_user_pages_unlocked() is suitable to replace the form:
2326  *
2327  *      mmap_read_lock(mm);
2328  *      get_user_pages(mm, ..., pages, NULL);
2329  *      mmap_read_unlock(mm);
2330  *
2331  *  with:
2332  *
2333  *      get_user_pages_unlocked(mm, ..., pages);
2334  *
2335  * It is functionally equivalent to get_user_pages_fast so
2336  * get_user_pages_fast should be used instead if specific gup_flags
2337  * (e.g. FOLL_FORCE) are not required.
2338  */
2339 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2340 			     struct page **pages, unsigned int gup_flags)
2341 {
2342 	int locked = 0;
2343 
2344 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2345 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2346 		return -EINVAL;
2347 
2348 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2349 				       &locked, gup_flags);
2350 }
2351 EXPORT_SYMBOL(get_user_pages_unlocked);
2352 
2353 /*
2354  * Fast GUP
2355  *
2356  * get_user_pages_fast attempts to pin user pages by walking the page
2357  * tables directly and avoids taking locks. Thus the walker needs to be
2358  * protected from page table pages being freed from under it, and should
2359  * block any THP splits.
2360  *
2361  * One way to achieve this is to have the walker disable interrupts, and
2362  * rely on IPIs from the TLB flushing code blocking before the page table
2363  * pages are freed. This is unsuitable for architectures that do not need
2364  * to broadcast an IPI when invalidating TLBs.
2365  *
2366  * Another way to achieve this is to batch up page table containing pages
2367  * belonging to more than one mm_user, then rcu_sched a callback to free those
2368  * pages. Disabling interrupts will allow the fast_gup walker to both block
2369  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2370  * (which is a relatively rare event). The code below adopts this strategy.
2371  *
2372  * Before activating this code, please be aware that the following assumptions
2373  * are currently made:
2374  *
2375  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2376  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2377  *
2378  *  *) ptes can be read atomically by the architecture.
2379  *
2380  *  *) access_ok is sufficient to validate userspace address ranges.
2381  *
2382  * The last two assumptions can be relaxed by the addition of helper functions.
2383  *
2384  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2385  */
2386 #ifdef CONFIG_HAVE_FAST_GUP
2387 
2388 /*
2389  * Used in the GUP-fast path to determine whether a pin is permitted for a
2390  * specific folio.
2391  *
2392  * This call assumes the caller has pinned the folio, that the lowest page table
2393  * level still points to this folio, and that interrupts have been disabled.
2394  *
2395  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2396  * (see comment describing the writable_file_mapping_allowed() function). We
2397  * therefore try to avoid the most egregious case of a long-term mapping doing
2398  * so.
2399  *
2400  * This function cannot be as thorough as that one as the VMA is not available
2401  * in the fast path, so instead we whitelist known good cases and if in doubt,
2402  * fall back to the slow path.
2403  */
2404 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2405 {
2406 	struct address_space *mapping;
2407 	unsigned long mapping_flags;
2408 
2409 	/*
2410 	 * If we aren't pinning then no problematic write can occur. A long term
2411 	 * pin is the most egregious case so this is the one we disallow.
2412 	 */
2413 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2414 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2415 		return true;
2416 
2417 	/* The folio is pinned, so we can safely access folio fields. */
2418 
2419 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2420 		return false;
2421 
2422 	/* hugetlb mappings do not require dirty-tracking. */
2423 	if (folio_test_hugetlb(folio))
2424 		return true;
2425 
2426 	/*
2427 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2428 	 * cannot proceed, which means no actions performed under RCU can
2429 	 * proceed either.
2430 	 *
2431 	 * inodes and thus their mappings are freed under RCU, which means the
2432 	 * mapping cannot be freed beneath us and thus we can safely dereference
2433 	 * it.
2434 	 */
2435 	lockdep_assert_irqs_disabled();
2436 
2437 	/*
2438 	 * However, there may be operations which _alter_ the mapping, so ensure
2439 	 * we read it once and only once.
2440 	 */
2441 	mapping = READ_ONCE(folio->mapping);
2442 
2443 	/*
2444 	 * The mapping may have been truncated, in any case we cannot determine
2445 	 * if this mapping is safe - fall back to slow path to determine how to
2446 	 * proceed.
2447 	 */
2448 	if (!mapping)
2449 		return false;
2450 
2451 	/* Anonymous folios pose no problem. */
2452 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2453 	if (mapping_flags)
2454 		return mapping_flags & PAGE_MAPPING_ANON;
2455 
2456 	/*
2457 	 * At this point, we know the mapping is non-null and points to an
2458 	 * address_space object. The only remaining whitelisted file system is
2459 	 * shmem.
2460 	 */
2461 	return shmem_mapping(mapping);
2462 }
2463 
2464 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2465 					    unsigned int flags,
2466 					    struct page **pages)
2467 {
2468 	while ((*nr) - nr_start) {
2469 		struct page *page = pages[--(*nr)];
2470 
2471 		ClearPageReferenced(page);
2472 		if (flags & FOLL_PIN)
2473 			unpin_user_page(page);
2474 		else
2475 			put_page(page);
2476 	}
2477 }
2478 
2479 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2480 /*
2481  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2482  * operations.
2483  *
2484  * To pin the page, fast-gup needs to do below in order:
2485  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2486  *
2487  * For the rest of pgtable operations where pgtable updates can be racy
2488  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2489  * is pinned.
2490  *
2491  * Above will work for all pte-level operations, including THP split.
2492  *
2493  * For THP collapse, it's a bit more complicated because fast-gup may be
2494  * walking a pgtable page that is being freed (pte is still valid but pmd
2495  * can be cleared already).  To avoid race in such condition, we need to
2496  * also check pmd here to make sure pmd doesn't change (corresponds to
2497  * pmdp_collapse_flush() in the THP collapse code path).
2498  */
2499 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2500 			 unsigned long end, unsigned int flags,
2501 			 struct page **pages, int *nr)
2502 {
2503 	struct dev_pagemap *pgmap = NULL;
2504 	int nr_start = *nr, ret = 0;
2505 	pte_t *ptep, *ptem;
2506 
2507 	ptem = ptep = pte_offset_map(&pmd, addr);
2508 	if (!ptep)
2509 		return 0;
2510 	do {
2511 		pte_t pte = ptep_get_lockless(ptep);
2512 		struct page *page;
2513 		struct folio *folio;
2514 
2515 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2516 			goto pte_unmap;
2517 
2518 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2519 			goto pte_unmap;
2520 
2521 		if (pte_devmap(pte)) {
2522 			if (unlikely(flags & FOLL_LONGTERM))
2523 				goto pte_unmap;
2524 
2525 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2526 			if (unlikely(!pgmap)) {
2527 				undo_dev_pagemap(nr, nr_start, flags, pages);
2528 				goto pte_unmap;
2529 			}
2530 		} else if (pte_special(pte))
2531 			goto pte_unmap;
2532 
2533 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2534 		page = pte_page(pte);
2535 
2536 		folio = try_grab_folio(page, 1, flags);
2537 		if (!folio)
2538 			goto pte_unmap;
2539 
2540 		if (unlikely(page_is_secretmem(page))) {
2541 			gup_put_folio(folio, 1, flags);
2542 			goto pte_unmap;
2543 		}
2544 
2545 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2546 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2547 			gup_put_folio(folio, 1, flags);
2548 			goto pte_unmap;
2549 		}
2550 
2551 		if (!folio_fast_pin_allowed(folio, flags)) {
2552 			gup_put_folio(folio, 1, flags);
2553 			goto pte_unmap;
2554 		}
2555 
2556 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2557 			gup_put_folio(folio, 1, flags);
2558 			goto pte_unmap;
2559 		}
2560 
2561 		/*
2562 		 * We need to make the page accessible if and only if we are
2563 		 * going to access its content (the FOLL_PIN case).  Please
2564 		 * see Documentation/core-api/pin_user_pages.rst for
2565 		 * details.
2566 		 */
2567 		if (flags & FOLL_PIN) {
2568 			ret = arch_make_page_accessible(page);
2569 			if (ret) {
2570 				gup_put_folio(folio, 1, flags);
2571 				goto pte_unmap;
2572 			}
2573 		}
2574 		folio_set_referenced(folio);
2575 		pages[*nr] = page;
2576 		(*nr)++;
2577 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2578 
2579 	ret = 1;
2580 
2581 pte_unmap:
2582 	if (pgmap)
2583 		put_dev_pagemap(pgmap);
2584 	pte_unmap(ptem);
2585 	return ret;
2586 }
2587 #else
2588 
2589 /*
2590  * If we can't determine whether or not a pte is special, then fail immediately
2591  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2592  * to be special.
2593  *
2594  * For a futex to be placed on a THP tail page, get_futex_key requires a
2595  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2596  * useful to have gup_huge_pmd even if we can't operate on ptes.
2597  */
2598 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2599 			 unsigned long end, unsigned int flags,
2600 			 struct page **pages, int *nr)
2601 {
2602 	return 0;
2603 }
2604 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2605 
2606 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2607 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2608 			     unsigned long end, unsigned int flags,
2609 			     struct page **pages, int *nr)
2610 {
2611 	int nr_start = *nr;
2612 	struct dev_pagemap *pgmap = NULL;
2613 
2614 	do {
2615 		struct page *page = pfn_to_page(pfn);
2616 
2617 		pgmap = get_dev_pagemap(pfn, pgmap);
2618 		if (unlikely(!pgmap)) {
2619 			undo_dev_pagemap(nr, nr_start, flags, pages);
2620 			break;
2621 		}
2622 
2623 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2624 			undo_dev_pagemap(nr, nr_start, flags, pages);
2625 			break;
2626 		}
2627 
2628 		SetPageReferenced(page);
2629 		pages[*nr] = page;
2630 		if (unlikely(try_grab_page(page, flags))) {
2631 			undo_dev_pagemap(nr, nr_start, flags, pages);
2632 			break;
2633 		}
2634 		(*nr)++;
2635 		pfn++;
2636 	} while (addr += PAGE_SIZE, addr != end);
2637 
2638 	put_dev_pagemap(pgmap);
2639 	return addr == end;
2640 }
2641 
2642 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2643 				 unsigned long end, unsigned int flags,
2644 				 struct page **pages, int *nr)
2645 {
2646 	unsigned long fault_pfn;
2647 	int nr_start = *nr;
2648 
2649 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2650 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2651 		return 0;
2652 
2653 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2654 		undo_dev_pagemap(nr, nr_start, flags, pages);
2655 		return 0;
2656 	}
2657 	return 1;
2658 }
2659 
2660 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2661 				 unsigned long end, unsigned int flags,
2662 				 struct page **pages, int *nr)
2663 {
2664 	unsigned long fault_pfn;
2665 	int nr_start = *nr;
2666 
2667 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2668 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2669 		return 0;
2670 
2671 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2672 		undo_dev_pagemap(nr, nr_start, flags, pages);
2673 		return 0;
2674 	}
2675 	return 1;
2676 }
2677 #else
2678 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2679 				 unsigned long end, unsigned int flags,
2680 				 struct page **pages, int *nr)
2681 {
2682 	BUILD_BUG();
2683 	return 0;
2684 }
2685 
2686 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2687 				 unsigned long end, unsigned int flags,
2688 				 struct page **pages, int *nr)
2689 {
2690 	BUILD_BUG();
2691 	return 0;
2692 }
2693 #endif
2694 
2695 static int record_subpages(struct page *page, unsigned long addr,
2696 			   unsigned long end, struct page **pages)
2697 {
2698 	int nr;
2699 
2700 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2701 		pages[nr] = nth_page(page, nr);
2702 
2703 	return nr;
2704 }
2705 
2706 #ifdef CONFIG_ARCH_HAS_HUGEPD
2707 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2708 				      unsigned long sz)
2709 {
2710 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2711 	return (__boundary - 1 < end - 1) ? __boundary : end;
2712 }
2713 
2714 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2715 		       unsigned long end, unsigned int flags,
2716 		       struct page **pages, int *nr)
2717 {
2718 	unsigned long pte_end;
2719 	struct page *page;
2720 	struct folio *folio;
2721 	pte_t pte;
2722 	int refs;
2723 
2724 	pte_end = (addr + sz) & ~(sz-1);
2725 	if (pte_end < end)
2726 		end = pte_end;
2727 
2728 	pte = huge_ptep_get(ptep);
2729 
2730 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2731 		return 0;
2732 
2733 	/* hugepages are never "special" */
2734 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2735 
2736 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2737 	refs = record_subpages(page, addr, end, pages + *nr);
2738 
2739 	folio = try_grab_folio(page, refs, flags);
2740 	if (!folio)
2741 		return 0;
2742 
2743 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2744 		gup_put_folio(folio, refs, flags);
2745 		return 0;
2746 	}
2747 
2748 	if (!folio_fast_pin_allowed(folio, flags)) {
2749 		gup_put_folio(folio, refs, flags);
2750 		return 0;
2751 	}
2752 
2753 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2754 		gup_put_folio(folio, refs, flags);
2755 		return 0;
2756 	}
2757 
2758 	*nr += refs;
2759 	folio_set_referenced(folio);
2760 	return 1;
2761 }
2762 
2763 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2764 		unsigned int pdshift, unsigned long end, unsigned int flags,
2765 		struct page **pages, int *nr)
2766 {
2767 	pte_t *ptep;
2768 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2769 	unsigned long next;
2770 
2771 	ptep = hugepte_offset(hugepd, addr, pdshift);
2772 	do {
2773 		next = hugepte_addr_end(addr, end, sz);
2774 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2775 			return 0;
2776 	} while (ptep++, addr = next, addr != end);
2777 
2778 	return 1;
2779 }
2780 #else
2781 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2782 		unsigned int pdshift, unsigned long end, unsigned int flags,
2783 		struct page **pages, int *nr)
2784 {
2785 	return 0;
2786 }
2787 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2788 
2789 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2790 			unsigned long end, unsigned int flags,
2791 			struct page **pages, int *nr)
2792 {
2793 	struct page *page;
2794 	struct folio *folio;
2795 	int refs;
2796 
2797 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2798 		return 0;
2799 
2800 	if (pmd_devmap(orig)) {
2801 		if (unlikely(flags & FOLL_LONGTERM))
2802 			return 0;
2803 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2804 					     pages, nr);
2805 	}
2806 
2807 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2808 	refs = record_subpages(page, addr, end, pages + *nr);
2809 
2810 	folio = try_grab_folio(page, refs, flags);
2811 	if (!folio)
2812 		return 0;
2813 
2814 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2815 		gup_put_folio(folio, refs, flags);
2816 		return 0;
2817 	}
2818 
2819 	if (!folio_fast_pin_allowed(folio, flags)) {
2820 		gup_put_folio(folio, refs, flags);
2821 		return 0;
2822 	}
2823 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2824 		gup_put_folio(folio, refs, flags);
2825 		return 0;
2826 	}
2827 
2828 	*nr += refs;
2829 	folio_set_referenced(folio);
2830 	return 1;
2831 }
2832 
2833 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2834 			unsigned long end, unsigned int flags,
2835 			struct page **pages, int *nr)
2836 {
2837 	struct page *page;
2838 	struct folio *folio;
2839 	int refs;
2840 
2841 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2842 		return 0;
2843 
2844 	if (pud_devmap(orig)) {
2845 		if (unlikely(flags & FOLL_LONGTERM))
2846 			return 0;
2847 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2848 					     pages, nr);
2849 	}
2850 
2851 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2852 	refs = record_subpages(page, addr, end, pages + *nr);
2853 
2854 	folio = try_grab_folio(page, refs, flags);
2855 	if (!folio)
2856 		return 0;
2857 
2858 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2859 		gup_put_folio(folio, refs, flags);
2860 		return 0;
2861 	}
2862 
2863 	if (!folio_fast_pin_allowed(folio, flags)) {
2864 		gup_put_folio(folio, refs, flags);
2865 		return 0;
2866 	}
2867 
2868 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2869 		gup_put_folio(folio, refs, flags);
2870 		return 0;
2871 	}
2872 
2873 	*nr += refs;
2874 	folio_set_referenced(folio);
2875 	return 1;
2876 }
2877 
2878 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2879 			unsigned long end, unsigned int flags,
2880 			struct page **pages, int *nr)
2881 {
2882 	int refs;
2883 	struct page *page;
2884 	struct folio *folio;
2885 
2886 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2887 		return 0;
2888 
2889 	BUILD_BUG_ON(pgd_devmap(orig));
2890 
2891 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2892 	refs = record_subpages(page, addr, end, pages + *nr);
2893 
2894 	folio = try_grab_folio(page, refs, flags);
2895 	if (!folio)
2896 		return 0;
2897 
2898 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2899 		gup_put_folio(folio, refs, flags);
2900 		return 0;
2901 	}
2902 
2903 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2904 		gup_put_folio(folio, refs, flags);
2905 		return 0;
2906 	}
2907 
2908 	if (!folio_fast_pin_allowed(folio, flags)) {
2909 		gup_put_folio(folio, refs, flags);
2910 		return 0;
2911 	}
2912 
2913 	*nr += refs;
2914 	folio_set_referenced(folio);
2915 	return 1;
2916 }
2917 
2918 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2919 		unsigned int flags, struct page **pages, int *nr)
2920 {
2921 	unsigned long next;
2922 	pmd_t *pmdp;
2923 
2924 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2925 	do {
2926 		pmd_t pmd = pmdp_get_lockless(pmdp);
2927 
2928 		next = pmd_addr_end(addr, end);
2929 		if (!pmd_present(pmd))
2930 			return 0;
2931 
2932 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2933 			     pmd_devmap(pmd))) {
2934 			if (pmd_protnone(pmd) &&
2935 			    !gup_can_follow_protnone(flags))
2936 				return 0;
2937 
2938 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2939 				pages, nr))
2940 				return 0;
2941 
2942 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2943 			/*
2944 			 * architecture have different format for hugetlbfs
2945 			 * pmd format and THP pmd format
2946 			 */
2947 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2948 					 PMD_SHIFT, next, flags, pages, nr))
2949 				return 0;
2950 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2951 			return 0;
2952 	} while (pmdp++, addr = next, addr != end);
2953 
2954 	return 1;
2955 }
2956 
2957 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2958 			 unsigned int flags, struct page **pages, int *nr)
2959 {
2960 	unsigned long next;
2961 	pud_t *pudp;
2962 
2963 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2964 	do {
2965 		pud_t pud = READ_ONCE(*pudp);
2966 
2967 		next = pud_addr_end(addr, end);
2968 		if (unlikely(!pud_present(pud)))
2969 			return 0;
2970 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2971 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2972 					  pages, nr))
2973 				return 0;
2974 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2975 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2976 					 PUD_SHIFT, next, flags, pages, nr))
2977 				return 0;
2978 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2979 			return 0;
2980 	} while (pudp++, addr = next, addr != end);
2981 
2982 	return 1;
2983 }
2984 
2985 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2986 			 unsigned int flags, struct page **pages, int *nr)
2987 {
2988 	unsigned long next;
2989 	p4d_t *p4dp;
2990 
2991 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2992 	do {
2993 		p4d_t p4d = READ_ONCE(*p4dp);
2994 
2995 		next = p4d_addr_end(addr, end);
2996 		if (p4d_none(p4d))
2997 			return 0;
2998 		BUILD_BUG_ON(p4d_huge(p4d));
2999 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3000 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3001 					 P4D_SHIFT, next, flags, pages, nr))
3002 				return 0;
3003 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3004 			return 0;
3005 	} while (p4dp++, addr = next, addr != end);
3006 
3007 	return 1;
3008 }
3009 
3010 static void gup_pgd_range(unsigned long addr, unsigned long end,
3011 		unsigned int flags, struct page **pages, int *nr)
3012 {
3013 	unsigned long next;
3014 	pgd_t *pgdp;
3015 
3016 	pgdp = pgd_offset(current->mm, addr);
3017 	do {
3018 		pgd_t pgd = READ_ONCE(*pgdp);
3019 
3020 		next = pgd_addr_end(addr, end);
3021 		if (pgd_none(pgd))
3022 			return;
3023 		if (unlikely(pgd_huge(pgd))) {
3024 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3025 					  pages, nr))
3026 				return;
3027 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3028 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3029 					 PGDIR_SHIFT, next, flags, pages, nr))
3030 				return;
3031 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3032 			return;
3033 	} while (pgdp++, addr = next, addr != end);
3034 }
3035 #else
3036 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3037 		unsigned int flags, struct page **pages, int *nr)
3038 {
3039 }
3040 #endif /* CONFIG_HAVE_FAST_GUP */
3041 
3042 #ifndef gup_fast_permitted
3043 /*
3044  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3045  * we need to fall back to the slow version:
3046  */
3047 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3048 {
3049 	return true;
3050 }
3051 #endif
3052 
3053 static unsigned long lockless_pages_from_mm(unsigned long start,
3054 					    unsigned long end,
3055 					    unsigned int gup_flags,
3056 					    struct page **pages)
3057 {
3058 	unsigned long flags;
3059 	int nr_pinned = 0;
3060 	unsigned seq;
3061 
3062 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3063 	    !gup_fast_permitted(start, end))
3064 		return 0;
3065 
3066 	if (gup_flags & FOLL_PIN) {
3067 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3068 		if (seq & 1)
3069 			return 0;
3070 	}
3071 
3072 	/*
3073 	 * Disable interrupts. The nested form is used, in order to allow full,
3074 	 * general purpose use of this routine.
3075 	 *
3076 	 * With interrupts disabled, we block page table pages from being freed
3077 	 * from under us. See struct mmu_table_batch comments in
3078 	 * include/asm-generic/tlb.h for more details.
3079 	 *
3080 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3081 	 * that come from THPs splitting.
3082 	 */
3083 	local_irq_save(flags);
3084 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3085 	local_irq_restore(flags);
3086 
3087 	/*
3088 	 * When pinning pages for DMA there could be a concurrent write protect
3089 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3090 	 */
3091 	if (gup_flags & FOLL_PIN) {
3092 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3093 			unpin_user_pages_lockless(pages, nr_pinned);
3094 			return 0;
3095 		} else {
3096 			sanity_check_pinned_pages(pages, nr_pinned);
3097 		}
3098 	}
3099 	return nr_pinned;
3100 }
3101 
3102 static int internal_get_user_pages_fast(unsigned long start,
3103 					unsigned long nr_pages,
3104 					unsigned int gup_flags,
3105 					struct page **pages)
3106 {
3107 	unsigned long len, end;
3108 	unsigned long nr_pinned;
3109 	int locked = 0;
3110 	int ret;
3111 
3112 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3113 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3114 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3115 				       FOLL_PCI_P2PDMA)))
3116 		return -EINVAL;
3117 
3118 	if (gup_flags & FOLL_PIN)
3119 		mm_set_has_pinned_flag(&current->mm->flags);
3120 
3121 	if (!(gup_flags & FOLL_FAST_ONLY))
3122 		might_lock_read(&current->mm->mmap_lock);
3123 
3124 	start = untagged_addr(start) & PAGE_MASK;
3125 	len = nr_pages << PAGE_SHIFT;
3126 	if (check_add_overflow(start, len, &end))
3127 		return -EOVERFLOW;
3128 	if (end > TASK_SIZE_MAX)
3129 		return -EFAULT;
3130 	if (unlikely(!access_ok((void __user *)start, len)))
3131 		return -EFAULT;
3132 
3133 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3134 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3135 		return nr_pinned;
3136 
3137 	/* Slow path: try to get the remaining pages with get_user_pages */
3138 	start += nr_pinned << PAGE_SHIFT;
3139 	pages += nr_pinned;
3140 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3141 				    pages, &locked,
3142 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3143 	if (ret < 0) {
3144 		/*
3145 		 * The caller has to unpin the pages we already pinned so
3146 		 * returning -errno is not an option
3147 		 */
3148 		if (nr_pinned)
3149 			return nr_pinned;
3150 		return ret;
3151 	}
3152 	return ret + nr_pinned;
3153 }
3154 
3155 /**
3156  * get_user_pages_fast_only() - pin user pages in memory
3157  * @start:      starting user address
3158  * @nr_pages:   number of pages from start to pin
3159  * @gup_flags:  flags modifying pin behaviour
3160  * @pages:      array that receives pointers to the pages pinned.
3161  *              Should be at least nr_pages long.
3162  *
3163  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3164  * the regular GUP.
3165  *
3166  * If the architecture does not support this function, simply return with no
3167  * pages pinned.
3168  *
3169  * Careful, careful! COW breaking can go either way, so a non-write
3170  * access can get ambiguous page results. If you call this function without
3171  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3172  */
3173 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3174 			     unsigned int gup_flags, struct page **pages)
3175 {
3176 	/*
3177 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3178 	 * because gup fast is always a "pin with a +1 page refcount" request.
3179 	 *
3180 	 * FOLL_FAST_ONLY is required in order to match the API description of
3181 	 * this routine: no fall back to regular ("slow") GUP.
3182 	 */
3183 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3184 			       FOLL_GET | FOLL_FAST_ONLY))
3185 		return -EINVAL;
3186 
3187 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3188 }
3189 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3190 
3191 /**
3192  * get_user_pages_fast() - pin user pages in memory
3193  * @start:      starting user address
3194  * @nr_pages:   number of pages from start to pin
3195  * @gup_flags:  flags modifying pin behaviour
3196  * @pages:      array that receives pointers to the pages pinned.
3197  *              Should be at least nr_pages long.
3198  *
3199  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3200  * If not successful, it will fall back to taking the lock and
3201  * calling get_user_pages().
3202  *
3203  * Returns number of pages pinned. This may be fewer than the number requested.
3204  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3205  * -errno.
3206  */
3207 int get_user_pages_fast(unsigned long start, int nr_pages,
3208 			unsigned int gup_flags, struct page **pages)
3209 {
3210 	/*
3211 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3212 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3213 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3214 	 * request.
3215 	 */
3216 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3217 		return -EINVAL;
3218 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3219 }
3220 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3221 
3222 /**
3223  * pin_user_pages_fast() - pin user pages in memory without taking locks
3224  *
3225  * @start:      starting user address
3226  * @nr_pages:   number of pages from start to pin
3227  * @gup_flags:  flags modifying pin behaviour
3228  * @pages:      array that receives pointers to the pages pinned.
3229  *              Should be at least nr_pages long.
3230  *
3231  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3232  * get_user_pages_fast() for documentation on the function arguments, because
3233  * the arguments here are identical.
3234  *
3235  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3236  * see Documentation/core-api/pin_user_pages.rst for further details.
3237  *
3238  * Note that if a zero_page is amongst the returned pages, it will not have
3239  * pins in it and unpin_user_page() will not remove pins from it.
3240  */
3241 int pin_user_pages_fast(unsigned long start, int nr_pages,
3242 			unsigned int gup_flags, struct page **pages)
3243 {
3244 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3245 		return -EINVAL;
3246 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3247 }
3248 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3249 
3250 /**
3251  * pin_user_pages_remote() - pin pages of a remote process
3252  *
3253  * @mm:		mm_struct of target mm
3254  * @start:	starting user address
3255  * @nr_pages:	number of pages from start to pin
3256  * @gup_flags:	flags modifying lookup behaviour
3257  * @pages:	array that receives pointers to the pages pinned.
3258  *		Should be at least nr_pages long.
3259  * @locked:	pointer to lock flag indicating whether lock is held and
3260  *		subsequently whether VM_FAULT_RETRY functionality can be
3261  *		utilised. Lock must initially be held.
3262  *
3263  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3264  * get_user_pages_remote() for documentation on the function arguments, because
3265  * the arguments here are identical.
3266  *
3267  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3268  * see Documentation/core-api/pin_user_pages.rst for details.
3269  *
3270  * Note that if a zero_page is amongst the returned pages, it will not have
3271  * pins in it and unpin_user_page*() will not remove pins from it.
3272  */
3273 long pin_user_pages_remote(struct mm_struct *mm,
3274 			   unsigned long start, unsigned long nr_pages,
3275 			   unsigned int gup_flags, struct page **pages,
3276 			   int *locked)
3277 {
3278 	int local_locked = 1;
3279 
3280 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3281 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3282 		return 0;
3283 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3284 				     locked ? locked : &local_locked,
3285 				     gup_flags);
3286 }
3287 EXPORT_SYMBOL(pin_user_pages_remote);
3288 
3289 /**
3290  * pin_user_pages() - pin user pages in memory for use by other devices
3291  *
3292  * @start:	starting user address
3293  * @nr_pages:	number of pages from start to pin
3294  * @gup_flags:	flags modifying lookup behaviour
3295  * @pages:	array that receives pointers to the pages pinned.
3296  *		Should be at least nr_pages long.
3297  *
3298  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3299  * FOLL_PIN is set.
3300  *
3301  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3302  * see Documentation/core-api/pin_user_pages.rst for details.
3303  *
3304  * Note that if a zero_page is amongst the returned pages, it will not have
3305  * pins in it and unpin_user_page*() will not remove pins from it.
3306  */
3307 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3308 		    unsigned int gup_flags, struct page **pages)
3309 {
3310 	int locked = 1;
3311 
3312 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3313 		return 0;
3314 	return __gup_longterm_locked(current->mm, start, nr_pages,
3315 				     pages, &locked, gup_flags);
3316 }
3317 EXPORT_SYMBOL(pin_user_pages);
3318 
3319 /*
3320  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3321  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3322  * FOLL_PIN and rejects FOLL_GET.
3323  *
3324  * Note that if a zero_page is amongst the returned pages, it will not have
3325  * pins in it and unpin_user_page*() will not remove pins from it.
3326  */
3327 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3328 			     struct page **pages, unsigned int gup_flags)
3329 {
3330 	int locked = 0;
3331 
3332 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3333 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3334 		return 0;
3335 
3336 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3337 				     &locked, gup_flags);
3338 }
3339 EXPORT_SYMBOL(pin_user_pages_unlocked);
3340