1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 /* 33 * Return the folio with ref appropriately incremented, 34 * or NULL if that failed. 35 */ 36 static inline struct folio *try_get_folio(struct page *page, int refs) 37 { 38 struct folio *folio; 39 40 retry: 41 folio = page_folio(page); 42 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 43 return NULL; 44 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 45 return NULL; 46 47 /* 48 * At this point we have a stable reference to the folio; but it 49 * could be that between calling page_folio() and the refcount 50 * increment, the folio was split, in which case we'd end up 51 * holding a reference on a folio that has nothing to do with the page 52 * we were given anymore. 53 * So now that the folio is stable, recheck that the page still 54 * belongs to this folio. 55 */ 56 if (unlikely(page_folio(page) != folio)) { 57 folio_put_refs(folio, refs); 58 goto retry; 59 } 60 61 return folio; 62 } 63 64 /** 65 * try_grab_folio() - Attempt to get or pin a folio. 66 * @page: pointer to page to be grabbed 67 * @refs: the value to (effectively) add to the folio's refcount 68 * @flags: gup flags: these are the FOLL_* flag values. 69 * 70 * "grab" names in this file mean, "look at flags to decide whether to use 71 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 72 * 73 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 74 * same time. (That's true throughout the get_user_pages*() and 75 * pin_user_pages*() APIs.) Cases: 76 * 77 * FOLL_GET: folio's refcount will be incremented by @refs. 78 * 79 * FOLL_PIN on large folios: folio's refcount will be incremented by 80 * @refs, and its compound_pincount will be incremented by @refs. 81 * 82 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 83 * @refs * GUP_PIN_COUNTING_BIAS. 84 * 85 * Return: The folio containing @page (with refcount appropriately 86 * incremented) for success, or NULL upon failure. If neither FOLL_GET 87 * nor FOLL_PIN was set, that's considered failure, and furthermore, 88 * a likely bug in the caller, so a warning is also emitted. 89 */ 90 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 91 { 92 if (flags & FOLL_GET) 93 return try_get_folio(page, refs); 94 else if (flags & FOLL_PIN) { 95 struct folio *folio; 96 97 /* 98 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 99 * right zone, so fail and let the caller fall back to the slow 100 * path. 101 */ 102 if (unlikely((flags & FOLL_LONGTERM) && 103 !is_pinnable_page(page))) 104 return NULL; 105 106 /* 107 * CAUTION: Don't use compound_head() on the page before this 108 * point, the result won't be stable. 109 */ 110 folio = try_get_folio(page, refs); 111 if (!folio) 112 return NULL; 113 114 /* 115 * When pinning a large folio, use an exact count to track it. 116 * 117 * However, be sure to *also* increment the normal folio 118 * refcount field at least once, so that the folio really 119 * is pinned. That's why the refcount from the earlier 120 * try_get_folio() is left intact. 121 */ 122 if (folio_test_large(folio)) 123 atomic_add(refs, folio_pincount_ptr(folio)); 124 else 125 folio_ref_add(folio, 126 refs * (GUP_PIN_COUNTING_BIAS - 1)); 127 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 128 129 return folio; 130 } 131 132 WARN_ON_ONCE(1); 133 return NULL; 134 } 135 136 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 137 { 138 if (flags & FOLL_PIN) { 139 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 140 if (folio_test_large(folio)) 141 atomic_sub(refs, folio_pincount_ptr(folio)); 142 else 143 refs *= GUP_PIN_COUNTING_BIAS; 144 } 145 146 folio_put_refs(folio, refs); 147 } 148 149 /** 150 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 151 * @page: pointer to page to be grabbed 152 * @flags: gup flags: these are the FOLL_* flag values. 153 * 154 * This might not do anything at all, depending on the flags argument. 155 * 156 * "grab" names in this file mean, "look at flags to decide whether to use 157 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 158 * 159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 160 * time. Cases: please see the try_grab_folio() documentation, with 161 * "refs=1". 162 * 163 * Return: true for success, or if no action was required (if neither FOLL_PIN 164 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 165 * FOLL_PIN was set, but the page could not be grabbed. 166 */ 167 bool __must_check try_grab_page(struct page *page, unsigned int flags) 168 { 169 struct folio *folio = page_folio(page); 170 171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 172 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 173 return false; 174 175 if (flags & FOLL_GET) 176 folio_ref_inc(folio); 177 else if (flags & FOLL_PIN) { 178 /* 179 * Similar to try_grab_folio(): be sure to *also* 180 * increment the normal page refcount field at least once, 181 * so that the page really is pinned. 182 */ 183 if (folio_test_large(folio)) { 184 folio_ref_add(folio, 1); 185 atomic_add(1, folio_pincount_ptr(folio)); 186 } else { 187 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 188 } 189 190 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 191 } 192 193 return true; 194 } 195 196 /** 197 * unpin_user_page() - release a dma-pinned page 198 * @page: pointer to page to be released 199 * 200 * Pages that were pinned via pin_user_pages*() must be released via either 201 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 202 * that such pages can be separately tracked and uniquely handled. In 203 * particular, interactions with RDMA and filesystems need special handling. 204 */ 205 void unpin_user_page(struct page *page) 206 { 207 gup_put_folio(page_folio(page), 1, FOLL_PIN); 208 } 209 EXPORT_SYMBOL(unpin_user_page); 210 211 static inline struct folio *gup_folio_range_next(struct page *start, 212 unsigned long npages, unsigned long i, unsigned int *ntails) 213 { 214 struct page *next = nth_page(start, i); 215 struct folio *folio = page_folio(next); 216 unsigned int nr = 1; 217 218 if (folio_test_large(folio)) 219 nr = min_t(unsigned int, npages - i, 220 folio_nr_pages(folio) - folio_page_idx(folio, next)); 221 222 *ntails = nr; 223 return folio; 224 } 225 226 static inline struct folio *gup_folio_next(struct page **list, 227 unsigned long npages, unsigned long i, unsigned int *ntails) 228 { 229 struct folio *folio = page_folio(list[i]); 230 unsigned int nr; 231 232 for (nr = i + 1; nr < npages; nr++) { 233 if (page_folio(list[nr]) != folio) 234 break; 235 } 236 237 *ntails = nr - i; 238 return folio; 239 } 240 241 /** 242 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 243 * @pages: array of pages to be maybe marked dirty, and definitely released. 244 * @npages: number of pages in the @pages array. 245 * @make_dirty: whether to mark the pages dirty 246 * 247 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 248 * variants called on that page. 249 * 250 * For each page in the @pages array, make that page (or its head page, if a 251 * compound page) dirty, if @make_dirty is true, and if the page was previously 252 * listed as clean. In any case, releases all pages using unpin_user_page(), 253 * possibly via unpin_user_pages(), for the non-dirty case. 254 * 255 * Please see the unpin_user_page() documentation for details. 256 * 257 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 258 * required, then the caller should a) verify that this is really correct, 259 * because _lock() is usually required, and b) hand code it: 260 * set_page_dirty_lock(), unpin_user_page(). 261 * 262 */ 263 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 264 bool make_dirty) 265 { 266 unsigned long i; 267 struct folio *folio; 268 unsigned int nr; 269 270 if (!make_dirty) { 271 unpin_user_pages(pages, npages); 272 return; 273 } 274 275 for (i = 0; i < npages; i += nr) { 276 folio = gup_folio_next(pages, npages, i, &nr); 277 /* 278 * Checking PageDirty at this point may race with 279 * clear_page_dirty_for_io(), but that's OK. Two key 280 * cases: 281 * 282 * 1) This code sees the page as already dirty, so it 283 * skips the call to set_page_dirty(). That could happen 284 * because clear_page_dirty_for_io() called 285 * page_mkclean(), followed by set_page_dirty(). 286 * However, now the page is going to get written back, 287 * which meets the original intention of setting it 288 * dirty, so all is well: clear_page_dirty_for_io() goes 289 * on to call TestClearPageDirty(), and write the page 290 * back. 291 * 292 * 2) This code sees the page as clean, so it calls 293 * set_page_dirty(). The page stays dirty, despite being 294 * written back, so it gets written back again in the 295 * next writeback cycle. This is harmless. 296 */ 297 if (!folio_test_dirty(folio)) { 298 folio_lock(folio); 299 folio_mark_dirty(folio); 300 folio_unlock(folio); 301 } 302 gup_put_folio(folio, nr, FOLL_PIN); 303 } 304 } 305 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 306 307 /** 308 * unpin_user_page_range_dirty_lock() - release and optionally dirty 309 * gup-pinned page range 310 * 311 * @page: the starting page of a range maybe marked dirty, and definitely released. 312 * @npages: number of consecutive pages to release. 313 * @make_dirty: whether to mark the pages dirty 314 * 315 * "gup-pinned page range" refers to a range of pages that has had one of the 316 * pin_user_pages() variants called on that page. 317 * 318 * For the page ranges defined by [page .. page+npages], make that range (or 319 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 320 * page range was previously listed as clean. 321 * 322 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 323 * required, then the caller should a) verify that this is really correct, 324 * because _lock() is usually required, and b) hand code it: 325 * set_page_dirty_lock(), unpin_user_page(). 326 * 327 */ 328 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 329 bool make_dirty) 330 { 331 unsigned long i; 332 struct folio *folio; 333 unsigned int nr; 334 335 for (i = 0; i < npages; i += nr) { 336 folio = gup_folio_range_next(page, npages, i, &nr); 337 if (make_dirty && !folio_test_dirty(folio)) { 338 folio_lock(folio); 339 folio_mark_dirty(folio); 340 folio_unlock(folio); 341 } 342 gup_put_folio(folio, nr, FOLL_PIN); 343 } 344 } 345 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 346 347 /** 348 * unpin_user_pages() - release an array of gup-pinned pages. 349 * @pages: array of pages to be marked dirty and released. 350 * @npages: number of pages in the @pages array. 351 * 352 * For each page in the @pages array, release the page using unpin_user_page(). 353 * 354 * Please see the unpin_user_page() documentation for details. 355 */ 356 void unpin_user_pages(struct page **pages, unsigned long npages) 357 { 358 unsigned long i; 359 struct folio *folio; 360 unsigned int nr; 361 362 /* 363 * If this WARN_ON() fires, then the system *might* be leaking pages (by 364 * leaving them pinned), but probably not. More likely, gup/pup returned 365 * a hard -ERRNO error to the caller, who erroneously passed it here. 366 */ 367 if (WARN_ON(IS_ERR_VALUE(npages))) 368 return; 369 370 for (i = 0; i < npages; i += nr) { 371 folio = gup_folio_next(pages, npages, i, &nr); 372 gup_put_folio(folio, nr, FOLL_PIN); 373 } 374 } 375 EXPORT_SYMBOL(unpin_user_pages); 376 377 /* 378 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 379 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 380 * cache bouncing on large SMP machines for concurrent pinned gups. 381 */ 382 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 383 { 384 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 385 set_bit(MMF_HAS_PINNED, mm_flags); 386 } 387 388 #ifdef CONFIG_MMU 389 static struct page *no_page_table(struct vm_area_struct *vma, 390 unsigned int flags) 391 { 392 /* 393 * When core dumping an enormous anonymous area that nobody 394 * has touched so far, we don't want to allocate unnecessary pages or 395 * page tables. Return error instead of NULL to skip handle_mm_fault, 396 * then get_dump_page() will return NULL to leave a hole in the dump. 397 * But we can only make this optimization where a hole would surely 398 * be zero-filled if handle_mm_fault() actually did handle it. 399 */ 400 if ((flags & FOLL_DUMP) && 401 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 402 return ERR_PTR(-EFAULT); 403 return NULL; 404 } 405 406 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 407 pte_t *pte, unsigned int flags) 408 { 409 if (flags & FOLL_TOUCH) { 410 pte_t entry = *pte; 411 412 if (flags & FOLL_WRITE) 413 entry = pte_mkdirty(entry); 414 entry = pte_mkyoung(entry); 415 416 if (!pte_same(*pte, entry)) { 417 set_pte_at(vma->vm_mm, address, pte, entry); 418 update_mmu_cache(vma, address, pte); 419 } 420 } 421 422 /* Proper page table entry exists, but no corresponding struct page */ 423 return -EEXIST; 424 } 425 426 /* 427 * FOLL_FORCE can write to even unwritable pte's, but only 428 * after we've gone through a COW cycle and they are dirty. 429 */ 430 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 431 { 432 return pte_write(pte) || 433 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 434 } 435 436 static struct page *follow_page_pte(struct vm_area_struct *vma, 437 unsigned long address, pmd_t *pmd, unsigned int flags, 438 struct dev_pagemap **pgmap) 439 { 440 struct mm_struct *mm = vma->vm_mm; 441 struct page *page; 442 spinlock_t *ptl; 443 pte_t *ptep, pte; 444 int ret; 445 446 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 447 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 448 (FOLL_PIN | FOLL_GET))) 449 return ERR_PTR(-EINVAL); 450 retry: 451 if (unlikely(pmd_bad(*pmd))) 452 return no_page_table(vma, flags); 453 454 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 455 pte = *ptep; 456 if (!pte_present(pte)) { 457 swp_entry_t entry; 458 /* 459 * KSM's break_ksm() relies upon recognizing a ksm page 460 * even while it is being migrated, so for that case we 461 * need migration_entry_wait(). 462 */ 463 if (likely(!(flags & FOLL_MIGRATION))) 464 goto no_page; 465 if (pte_none(pte)) 466 goto no_page; 467 entry = pte_to_swp_entry(pte); 468 if (!is_migration_entry(entry)) 469 goto no_page; 470 pte_unmap_unlock(ptep, ptl); 471 migration_entry_wait(mm, pmd, address); 472 goto retry; 473 } 474 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 475 goto no_page; 476 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 477 pte_unmap_unlock(ptep, ptl); 478 return NULL; 479 } 480 481 page = vm_normal_page(vma, address, pte); 482 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 483 /* 484 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 485 * case since they are only valid while holding the pgmap 486 * reference. 487 */ 488 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 489 if (*pgmap) 490 page = pte_page(pte); 491 else 492 goto no_page; 493 } else if (unlikely(!page)) { 494 if (flags & FOLL_DUMP) { 495 /* Avoid special (like zero) pages in core dumps */ 496 page = ERR_PTR(-EFAULT); 497 goto out; 498 } 499 500 if (is_zero_pfn(pte_pfn(pte))) { 501 page = pte_page(pte); 502 } else { 503 ret = follow_pfn_pte(vma, address, ptep, flags); 504 page = ERR_PTR(ret); 505 goto out; 506 } 507 } 508 509 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 510 if (unlikely(!try_grab_page(page, flags))) { 511 page = ERR_PTR(-ENOMEM); 512 goto out; 513 } 514 /* 515 * We need to make the page accessible if and only if we are going 516 * to access its content (the FOLL_PIN case). Please see 517 * Documentation/core-api/pin_user_pages.rst for details. 518 */ 519 if (flags & FOLL_PIN) { 520 ret = arch_make_page_accessible(page); 521 if (ret) { 522 unpin_user_page(page); 523 page = ERR_PTR(ret); 524 goto out; 525 } 526 } 527 if (flags & FOLL_TOUCH) { 528 if ((flags & FOLL_WRITE) && 529 !pte_dirty(pte) && !PageDirty(page)) 530 set_page_dirty(page); 531 /* 532 * pte_mkyoung() would be more correct here, but atomic care 533 * is needed to avoid losing the dirty bit: it is easier to use 534 * mark_page_accessed(). 535 */ 536 mark_page_accessed(page); 537 } 538 out: 539 pte_unmap_unlock(ptep, ptl); 540 return page; 541 no_page: 542 pte_unmap_unlock(ptep, ptl); 543 if (!pte_none(pte)) 544 return NULL; 545 return no_page_table(vma, flags); 546 } 547 548 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 549 unsigned long address, pud_t *pudp, 550 unsigned int flags, 551 struct follow_page_context *ctx) 552 { 553 pmd_t *pmd, pmdval; 554 spinlock_t *ptl; 555 struct page *page; 556 struct mm_struct *mm = vma->vm_mm; 557 558 pmd = pmd_offset(pudp, address); 559 /* 560 * The READ_ONCE() will stabilize the pmdval in a register or 561 * on the stack so that it will stop changing under the code. 562 */ 563 pmdval = READ_ONCE(*pmd); 564 if (pmd_none(pmdval)) 565 return no_page_table(vma, flags); 566 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 567 page = follow_huge_pmd(mm, address, pmd, flags); 568 if (page) 569 return page; 570 return no_page_table(vma, flags); 571 } 572 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 573 page = follow_huge_pd(vma, address, 574 __hugepd(pmd_val(pmdval)), flags, 575 PMD_SHIFT); 576 if (page) 577 return page; 578 return no_page_table(vma, flags); 579 } 580 retry: 581 if (!pmd_present(pmdval)) { 582 /* 583 * Should never reach here, if thp migration is not supported; 584 * Otherwise, it must be a thp migration entry. 585 */ 586 VM_BUG_ON(!thp_migration_supported() || 587 !is_pmd_migration_entry(pmdval)); 588 589 if (likely(!(flags & FOLL_MIGRATION))) 590 return no_page_table(vma, flags); 591 592 pmd_migration_entry_wait(mm, pmd); 593 pmdval = READ_ONCE(*pmd); 594 /* 595 * MADV_DONTNEED may convert the pmd to null because 596 * mmap_lock is held in read mode 597 */ 598 if (pmd_none(pmdval)) 599 return no_page_table(vma, flags); 600 goto retry; 601 } 602 if (pmd_devmap(pmdval)) { 603 ptl = pmd_lock(mm, pmd); 604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 605 spin_unlock(ptl); 606 if (page) 607 return page; 608 } 609 if (likely(!pmd_trans_huge(pmdval))) 610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 611 612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 613 return no_page_table(vma, flags); 614 615 retry_locked: 616 ptl = pmd_lock(mm, pmd); 617 if (unlikely(pmd_none(*pmd))) { 618 spin_unlock(ptl); 619 return no_page_table(vma, flags); 620 } 621 if (unlikely(!pmd_present(*pmd))) { 622 spin_unlock(ptl); 623 if (likely(!(flags & FOLL_MIGRATION))) 624 return no_page_table(vma, flags); 625 pmd_migration_entry_wait(mm, pmd); 626 goto retry_locked; 627 } 628 if (unlikely(!pmd_trans_huge(*pmd))) { 629 spin_unlock(ptl); 630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 631 } 632 if (flags & FOLL_SPLIT_PMD) { 633 int ret; 634 page = pmd_page(*pmd); 635 if (is_huge_zero_page(page)) { 636 spin_unlock(ptl); 637 ret = 0; 638 split_huge_pmd(vma, pmd, address); 639 if (pmd_trans_unstable(pmd)) 640 ret = -EBUSY; 641 } else { 642 spin_unlock(ptl); 643 split_huge_pmd(vma, pmd, address); 644 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 645 } 646 647 return ret ? ERR_PTR(ret) : 648 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 649 } 650 page = follow_trans_huge_pmd(vma, address, pmd, flags); 651 spin_unlock(ptl); 652 ctx->page_mask = HPAGE_PMD_NR - 1; 653 return page; 654 } 655 656 static struct page *follow_pud_mask(struct vm_area_struct *vma, 657 unsigned long address, p4d_t *p4dp, 658 unsigned int flags, 659 struct follow_page_context *ctx) 660 { 661 pud_t *pud; 662 spinlock_t *ptl; 663 struct page *page; 664 struct mm_struct *mm = vma->vm_mm; 665 666 pud = pud_offset(p4dp, address); 667 if (pud_none(*pud)) 668 return no_page_table(vma, flags); 669 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 670 page = follow_huge_pud(mm, address, pud, flags); 671 if (page) 672 return page; 673 return no_page_table(vma, flags); 674 } 675 if (is_hugepd(__hugepd(pud_val(*pud)))) { 676 page = follow_huge_pd(vma, address, 677 __hugepd(pud_val(*pud)), flags, 678 PUD_SHIFT); 679 if (page) 680 return page; 681 return no_page_table(vma, flags); 682 } 683 if (pud_devmap(*pud)) { 684 ptl = pud_lock(mm, pud); 685 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 686 spin_unlock(ptl); 687 if (page) 688 return page; 689 } 690 if (unlikely(pud_bad(*pud))) 691 return no_page_table(vma, flags); 692 693 return follow_pmd_mask(vma, address, pud, flags, ctx); 694 } 695 696 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 697 unsigned long address, pgd_t *pgdp, 698 unsigned int flags, 699 struct follow_page_context *ctx) 700 { 701 p4d_t *p4d; 702 struct page *page; 703 704 p4d = p4d_offset(pgdp, address); 705 if (p4d_none(*p4d)) 706 return no_page_table(vma, flags); 707 BUILD_BUG_ON(p4d_huge(*p4d)); 708 if (unlikely(p4d_bad(*p4d))) 709 return no_page_table(vma, flags); 710 711 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 712 page = follow_huge_pd(vma, address, 713 __hugepd(p4d_val(*p4d)), flags, 714 P4D_SHIFT); 715 if (page) 716 return page; 717 return no_page_table(vma, flags); 718 } 719 return follow_pud_mask(vma, address, p4d, flags, ctx); 720 } 721 722 /** 723 * follow_page_mask - look up a page descriptor from a user-virtual address 724 * @vma: vm_area_struct mapping @address 725 * @address: virtual address to look up 726 * @flags: flags modifying lookup behaviour 727 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 728 * pointer to output page_mask 729 * 730 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 731 * 732 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 733 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 734 * 735 * On output, the @ctx->page_mask is set according to the size of the page. 736 * 737 * Return: the mapped (struct page *), %NULL if no mapping exists, or 738 * an error pointer if there is a mapping to something not represented 739 * by a page descriptor (see also vm_normal_page()). 740 */ 741 static struct page *follow_page_mask(struct vm_area_struct *vma, 742 unsigned long address, unsigned int flags, 743 struct follow_page_context *ctx) 744 { 745 pgd_t *pgd; 746 struct page *page; 747 struct mm_struct *mm = vma->vm_mm; 748 749 ctx->page_mask = 0; 750 751 /* make this handle hugepd */ 752 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 753 if (!IS_ERR(page)) { 754 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 755 return page; 756 } 757 758 pgd = pgd_offset(mm, address); 759 760 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 761 return no_page_table(vma, flags); 762 763 if (pgd_huge(*pgd)) { 764 page = follow_huge_pgd(mm, address, pgd, flags); 765 if (page) 766 return page; 767 return no_page_table(vma, flags); 768 } 769 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 770 page = follow_huge_pd(vma, address, 771 __hugepd(pgd_val(*pgd)), flags, 772 PGDIR_SHIFT); 773 if (page) 774 return page; 775 return no_page_table(vma, flags); 776 } 777 778 return follow_p4d_mask(vma, address, pgd, flags, ctx); 779 } 780 781 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 782 unsigned int foll_flags) 783 { 784 struct follow_page_context ctx = { NULL }; 785 struct page *page; 786 787 if (vma_is_secretmem(vma)) 788 return NULL; 789 790 page = follow_page_mask(vma, address, foll_flags, &ctx); 791 if (ctx.pgmap) 792 put_dev_pagemap(ctx.pgmap); 793 return page; 794 } 795 796 static int get_gate_page(struct mm_struct *mm, unsigned long address, 797 unsigned int gup_flags, struct vm_area_struct **vma, 798 struct page **page) 799 { 800 pgd_t *pgd; 801 p4d_t *p4d; 802 pud_t *pud; 803 pmd_t *pmd; 804 pte_t *pte; 805 int ret = -EFAULT; 806 807 /* user gate pages are read-only */ 808 if (gup_flags & FOLL_WRITE) 809 return -EFAULT; 810 if (address > TASK_SIZE) 811 pgd = pgd_offset_k(address); 812 else 813 pgd = pgd_offset_gate(mm, address); 814 if (pgd_none(*pgd)) 815 return -EFAULT; 816 p4d = p4d_offset(pgd, address); 817 if (p4d_none(*p4d)) 818 return -EFAULT; 819 pud = pud_offset(p4d, address); 820 if (pud_none(*pud)) 821 return -EFAULT; 822 pmd = pmd_offset(pud, address); 823 if (!pmd_present(*pmd)) 824 return -EFAULT; 825 VM_BUG_ON(pmd_trans_huge(*pmd)); 826 pte = pte_offset_map(pmd, address); 827 if (pte_none(*pte)) 828 goto unmap; 829 *vma = get_gate_vma(mm); 830 if (!page) 831 goto out; 832 *page = vm_normal_page(*vma, address, *pte); 833 if (!*page) { 834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 835 goto unmap; 836 *page = pte_page(*pte); 837 } 838 if (unlikely(!try_grab_page(*page, gup_flags))) { 839 ret = -ENOMEM; 840 goto unmap; 841 } 842 out: 843 ret = 0; 844 unmap: 845 pte_unmap(pte); 846 return ret; 847 } 848 849 /* 850 * mmap_lock must be held on entry. If @locked != NULL and *@flags 851 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 852 * is, *@locked will be set to 0 and -EBUSY returned. 853 */ 854 static int faultin_page(struct vm_area_struct *vma, 855 unsigned long address, unsigned int *flags, int *locked) 856 { 857 unsigned int fault_flags = 0; 858 vm_fault_t ret; 859 860 if (*flags & FOLL_NOFAULT) 861 return -EFAULT; 862 if (*flags & FOLL_WRITE) 863 fault_flags |= FAULT_FLAG_WRITE; 864 if (*flags & FOLL_REMOTE) 865 fault_flags |= FAULT_FLAG_REMOTE; 866 if (locked) 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 868 if (*flags & FOLL_NOWAIT) 869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 870 if (*flags & FOLL_TRIED) { 871 /* 872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 873 * can co-exist 874 */ 875 fault_flags |= FAULT_FLAG_TRIED; 876 } 877 878 ret = handle_mm_fault(vma, address, fault_flags, NULL); 879 if (ret & VM_FAULT_ERROR) { 880 int err = vm_fault_to_errno(ret, *flags); 881 882 if (err) 883 return err; 884 BUG(); 885 } 886 887 if (ret & VM_FAULT_RETRY) { 888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 889 *locked = 0; 890 return -EBUSY; 891 } 892 893 /* 894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 895 * necessary, even if maybe_mkwrite decided not to set pte_write. We 896 * can thus safely do subsequent page lookups as if they were reads. 897 * But only do so when looping for pte_write is futile: in some cases 898 * userspace may also be wanting to write to the gotten user page, 899 * which a read fault here might prevent (a readonly page might get 900 * reCOWed by userspace write). 901 */ 902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 903 *flags |= FOLL_COW; 904 return 0; 905 } 906 907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 908 { 909 vm_flags_t vm_flags = vma->vm_flags; 910 int write = (gup_flags & FOLL_WRITE); 911 int foreign = (gup_flags & FOLL_REMOTE); 912 913 if (vm_flags & (VM_IO | VM_PFNMAP)) 914 return -EFAULT; 915 916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 917 return -EFAULT; 918 919 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 920 return -EOPNOTSUPP; 921 922 if (vma_is_secretmem(vma)) 923 return -EFAULT; 924 925 if (write) { 926 if (!(vm_flags & VM_WRITE)) { 927 if (!(gup_flags & FOLL_FORCE)) 928 return -EFAULT; 929 /* 930 * We used to let the write,force case do COW in a 931 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 932 * set a breakpoint in a read-only mapping of an 933 * executable, without corrupting the file (yet only 934 * when that file had been opened for writing!). 935 * Anon pages in shared mappings are surprising: now 936 * just reject it. 937 */ 938 if (!is_cow_mapping(vm_flags)) 939 return -EFAULT; 940 } 941 } else if (!(vm_flags & VM_READ)) { 942 if (!(gup_flags & FOLL_FORCE)) 943 return -EFAULT; 944 /* 945 * Is there actually any vma we can reach here which does not 946 * have VM_MAYREAD set? 947 */ 948 if (!(vm_flags & VM_MAYREAD)) 949 return -EFAULT; 950 } 951 /* 952 * gups are always data accesses, not instruction 953 * fetches, so execute=false here 954 */ 955 if (!arch_vma_access_permitted(vma, write, false, foreign)) 956 return -EFAULT; 957 return 0; 958 } 959 960 /** 961 * __get_user_pages() - pin user pages in memory 962 * @mm: mm_struct of target mm 963 * @start: starting user address 964 * @nr_pages: number of pages from start to pin 965 * @gup_flags: flags modifying pin behaviour 966 * @pages: array that receives pointers to the pages pinned. 967 * Should be at least nr_pages long. Or NULL, if caller 968 * only intends to ensure the pages are faulted in. 969 * @vmas: array of pointers to vmas corresponding to each page. 970 * Or NULL if the caller does not require them. 971 * @locked: whether we're still with the mmap_lock held 972 * 973 * Returns either number of pages pinned (which may be less than the 974 * number requested), or an error. Details about the return value: 975 * 976 * -- If nr_pages is 0, returns 0. 977 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 978 * -- If nr_pages is >0, and some pages were pinned, returns the number of 979 * pages pinned. Again, this may be less than nr_pages. 980 * -- 0 return value is possible when the fault would need to be retried. 981 * 982 * The caller is responsible for releasing returned @pages, via put_page(). 983 * 984 * @vmas are valid only as long as mmap_lock is held. 985 * 986 * Must be called with mmap_lock held. It may be released. See below. 987 * 988 * __get_user_pages walks a process's page tables and takes a reference to 989 * each struct page that each user address corresponds to at a given 990 * instant. That is, it takes the page that would be accessed if a user 991 * thread accesses the given user virtual address at that instant. 992 * 993 * This does not guarantee that the page exists in the user mappings when 994 * __get_user_pages returns, and there may even be a completely different 995 * page there in some cases (eg. if mmapped pagecache has been invalidated 996 * and subsequently re faulted). However it does guarantee that the page 997 * won't be freed completely. And mostly callers simply care that the page 998 * contains data that was valid *at some point in time*. Typically, an IO 999 * or similar operation cannot guarantee anything stronger anyway because 1000 * locks can't be held over the syscall boundary. 1001 * 1002 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1003 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1004 * appropriate) must be called after the page is finished with, and 1005 * before put_page is called. 1006 * 1007 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1008 * released by an up_read(). That can happen if @gup_flags does not 1009 * have FOLL_NOWAIT. 1010 * 1011 * A caller using such a combination of @locked and @gup_flags 1012 * must therefore hold the mmap_lock for reading only, and recognize 1013 * when it's been released. Otherwise, it must be held for either 1014 * reading or writing and will not be released. 1015 * 1016 * In most cases, get_user_pages or get_user_pages_fast should be used 1017 * instead of __get_user_pages. __get_user_pages should be used only if 1018 * you need some special @gup_flags. 1019 */ 1020 static long __get_user_pages(struct mm_struct *mm, 1021 unsigned long start, unsigned long nr_pages, 1022 unsigned int gup_flags, struct page **pages, 1023 struct vm_area_struct **vmas, int *locked) 1024 { 1025 long ret = 0, i = 0; 1026 struct vm_area_struct *vma = NULL; 1027 struct follow_page_context ctx = { NULL }; 1028 1029 if (!nr_pages) 1030 return 0; 1031 1032 start = untagged_addr(start); 1033 1034 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1035 1036 /* 1037 * If FOLL_FORCE is set then do not force a full fault as the hinting 1038 * fault information is unrelated to the reference behaviour of a task 1039 * using the address space 1040 */ 1041 if (!(gup_flags & FOLL_FORCE)) 1042 gup_flags |= FOLL_NUMA; 1043 1044 do { 1045 struct page *page; 1046 unsigned int foll_flags = gup_flags; 1047 unsigned int page_increm; 1048 1049 /* first iteration or cross vma bound */ 1050 if (!vma || start >= vma->vm_end) { 1051 vma = find_extend_vma(mm, start); 1052 if (!vma && in_gate_area(mm, start)) { 1053 ret = get_gate_page(mm, start & PAGE_MASK, 1054 gup_flags, &vma, 1055 pages ? &pages[i] : NULL); 1056 if (ret) 1057 goto out; 1058 ctx.page_mask = 0; 1059 goto next_page; 1060 } 1061 1062 if (!vma) { 1063 ret = -EFAULT; 1064 goto out; 1065 } 1066 ret = check_vma_flags(vma, gup_flags); 1067 if (ret) 1068 goto out; 1069 1070 if (is_vm_hugetlb_page(vma)) { 1071 i = follow_hugetlb_page(mm, vma, pages, vmas, 1072 &start, &nr_pages, i, 1073 gup_flags, locked); 1074 if (locked && *locked == 0) { 1075 /* 1076 * We've got a VM_FAULT_RETRY 1077 * and we've lost mmap_lock. 1078 * We must stop here. 1079 */ 1080 BUG_ON(gup_flags & FOLL_NOWAIT); 1081 goto out; 1082 } 1083 continue; 1084 } 1085 } 1086 retry: 1087 /* 1088 * If we have a pending SIGKILL, don't keep faulting pages and 1089 * potentially allocating memory. 1090 */ 1091 if (fatal_signal_pending(current)) { 1092 ret = -EINTR; 1093 goto out; 1094 } 1095 cond_resched(); 1096 1097 page = follow_page_mask(vma, start, foll_flags, &ctx); 1098 if (!page) { 1099 ret = faultin_page(vma, start, &foll_flags, locked); 1100 switch (ret) { 1101 case 0: 1102 goto retry; 1103 case -EBUSY: 1104 ret = 0; 1105 fallthrough; 1106 case -EFAULT: 1107 case -ENOMEM: 1108 case -EHWPOISON: 1109 goto out; 1110 } 1111 BUG(); 1112 } else if (PTR_ERR(page) == -EEXIST) { 1113 /* 1114 * Proper page table entry exists, but no corresponding 1115 * struct page. If the caller expects **pages to be 1116 * filled in, bail out now, because that can't be done 1117 * for this page. 1118 */ 1119 if (pages) { 1120 ret = PTR_ERR(page); 1121 goto out; 1122 } 1123 1124 goto next_page; 1125 } else if (IS_ERR(page)) { 1126 ret = PTR_ERR(page); 1127 goto out; 1128 } 1129 if (pages) { 1130 pages[i] = page; 1131 flush_anon_page(vma, page, start); 1132 flush_dcache_page(page); 1133 ctx.page_mask = 0; 1134 } 1135 next_page: 1136 if (vmas) { 1137 vmas[i] = vma; 1138 ctx.page_mask = 0; 1139 } 1140 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1141 if (page_increm > nr_pages) 1142 page_increm = nr_pages; 1143 i += page_increm; 1144 start += page_increm * PAGE_SIZE; 1145 nr_pages -= page_increm; 1146 } while (nr_pages); 1147 out: 1148 if (ctx.pgmap) 1149 put_dev_pagemap(ctx.pgmap); 1150 return i ? i : ret; 1151 } 1152 1153 static bool vma_permits_fault(struct vm_area_struct *vma, 1154 unsigned int fault_flags) 1155 { 1156 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1157 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1158 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1159 1160 if (!(vm_flags & vma->vm_flags)) 1161 return false; 1162 1163 /* 1164 * The architecture might have a hardware protection 1165 * mechanism other than read/write that can deny access. 1166 * 1167 * gup always represents data access, not instruction 1168 * fetches, so execute=false here: 1169 */ 1170 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1171 return false; 1172 1173 return true; 1174 } 1175 1176 /** 1177 * fixup_user_fault() - manually resolve a user page fault 1178 * @mm: mm_struct of target mm 1179 * @address: user address 1180 * @fault_flags:flags to pass down to handle_mm_fault() 1181 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1182 * does not allow retry. If NULL, the caller must guarantee 1183 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1184 * 1185 * This is meant to be called in the specific scenario where for locking reasons 1186 * we try to access user memory in atomic context (within a pagefault_disable() 1187 * section), this returns -EFAULT, and we want to resolve the user fault before 1188 * trying again. 1189 * 1190 * Typically this is meant to be used by the futex code. 1191 * 1192 * The main difference with get_user_pages() is that this function will 1193 * unconditionally call handle_mm_fault() which will in turn perform all the 1194 * necessary SW fixup of the dirty and young bits in the PTE, while 1195 * get_user_pages() only guarantees to update these in the struct page. 1196 * 1197 * This is important for some architectures where those bits also gate the 1198 * access permission to the page because they are maintained in software. On 1199 * such architectures, gup() will not be enough to make a subsequent access 1200 * succeed. 1201 * 1202 * This function will not return with an unlocked mmap_lock. So it has not the 1203 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1204 */ 1205 int fixup_user_fault(struct mm_struct *mm, 1206 unsigned long address, unsigned int fault_flags, 1207 bool *unlocked) 1208 { 1209 struct vm_area_struct *vma; 1210 vm_fault_t ret; 1211 1212 address = untagged_addr(address); 1213 1214 if (unlocked) 1215 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1216 1217 retry: 1218 vma = find_extend_vma(mm, address); 1219 if (!vma || address < vma->vm_start) 1220 return -EFAULT; 1221 1222 if (!vma_permits_fault(vma, fault_flags)) 1223 return -EFAULT; 1224 1225 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1226 fatal_signal_pending(current)) 1227 return -EINTR; 1228 1229 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1230 if (ret & VM_FAULT_ERROR) { 1231 int err = vm_fault_to_errno(ret, 0); 1232 1233 if (err) 1234 return err; 1235 BUG(); 1236 } 1237 1238 if (ret & VM_FAULT_RETRY) { 1239 mmap_read_lock(mm); 1240 *unlocked = true; 1241 fault_flags |= FAULT_FLAG_TRIED; 1242 goto retry; 1243 } 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(fixup_user_fault); 1248 1249 /* 1250 * Please note that this function, unlike __get_user_pages will not 1251 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1252 */ 1253 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1254 unsigned long start, 1255 unsigned long nr_pages, 1256 struct page **pages, 1257 struct vm_area_struct **vmas, 1258 int *locked, 1259 unsigned int flags) 1260 { 1261 long ret, pages_done; 1262 bool lock_dropped; 1263 1264 if (locked) { 1265 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1266 BUG_ON(vmas); 1267 /* check caller initialized locked */ 1268 BUG_ON(*locked != 1); 1269 } 1270 1271 if (flags & FOLL_PIN) 1272 mm_set_has_pinned_flag(&mm->flags); 1273 1274 /* 1275 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1276 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1277 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1278 * for FOLL_GET, not for the newer FOLL_PIN. 1279 * 1280 * FOLL_PIN always expects pages to be non-null, but no need to assert 1281 * that here, as any failures will be obvious enough. 1282 */ 1283 if (pages && !(flags & FOLL_PIN)) 1284 flags |= FOLL_GET; 1285 1286 pages_done = 0; 1287 lock_dropped = false; 1288 for (;;) { 1289 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1290 vmas, locked); 1291 if (!locked) 1292 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1293 return ret; 1294 1295 /* VM_FAULT_RETRY cannot return errors */ 1296 if (!*locked) { 1297 BUG_ON(ret < 0); 1298 BUG_ON(ret >= nr_pages); 1299 } 1300 1301 if (ret > 0) { 1302 nr_pages -= ret; 1303 pages_done += ret; 1304 if (!nr_pages) 1305 break; 1306 } 1307 if (*locked) { 1308 /* 1309 * VM_FAULT_RETRY didn't trigger or it was a 1310 * FOLL_NOWAIT. 1311 */ 1312 if (!pages_done) 1313 pages_done = ret; 1314 break; 1315 } 1316 /* 1317 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1318 * For the prefault case (!pages) we only update counts. 1319 */ 1320 if (likely(pages)) 1321 pages += ret; 1322 start += ret << PAGE_SHIFT; 1323 lock_dropped = true; 1324 1325 retry: 1326 /* 1327 * Repeat on the address that fired VM_FAULT_RETRY 1328 * with both FAULT_FLAG_ALLOW_RETRY and 1329 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1330 * by fatal signals, so we need to check it before we 1331 * start trying again otherwise it can loop forever. 1332 */ 1333 1334 if (fatal_signal_pending(current)) { 1335 if (!pages_done) 1336 pages_done = -EINTR; 1337 break; 1338 } 1339 1340 ret = mmap_read_lock_killable(mm); 1341 if (ret) { 1342 BUG_ON(ret > 0); 1343 if (!pages_done) 1344 pages_done = ret; 1345 break; 1346 } 1347 1348 *locked = 1; 1349 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1350 pages, NULL, locked); 1351 if (!*locked) { 1352 /* Continue to retry until we succeeded */ 1353 BUG_ON(ret != 0); 1354 goto retry; 1355 } 1356 if (ret != 1) { 1357 BUG_ON(ret > 1); 1358 if (!pages_done) 1359 pages_done = ret; 1360 break; 1361 } 1362 nr_pages--; 1363 pages_done++; 1364 if (!nr_pages) 1365 break; 1366 if (likely(pages)) 1367 pages++; 1368 start += PAGE_SIZE; 1369 } 1370 if (lock_dropped && *locked) { 1371 /* 1372 * We must let the caller know we temporarily dropped the lock 1373 * and so the critical section protected by it was lost. 1374 */ 1375 mmap_read_unlock(mm); 1376 *locked = 0; 1377 } 1378 return pages_done; 1379 } 1380 1381 /** 1382 * populate_vma_page_range() - populate a range of pages in the vma. 1383 * @vma: target vma 1384 * @start: start address 1385 * @end: end address 1386 * @locked: whether the mmap_lock is still held 1387 * 1388 * This takes care of mlocking the pages too if VM_LOCKED is set. 1389 * 1390 * Return either number of pages pinned in the vma, or a negative error 1391 * code on error. 1392 * 1393 * vma->vm_mm->mmap_lock must be held. 1394 * 1395 * If @locked is NULL, it may be held for read or write and will 1396 * be unperturbed. 1397 * 1398 * If @locked is non-NULL, it must held for read only and may be 1399 * released. If it's released, *@locked will be set to 0. 1400 */ 1401 long populate_vma_page_range(struct vm_area_struct *vma, 1402 unsigned long start, unsigned long end, int *locked) 1403 { 1404 struct mm_struct *mm = vma->vm_mm; 1405 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1406 int gup_flags; 1407 1408 VM_BUG_ON(!PAGE_ALIGNED(start)); 1409 VM_BUG_ON(!PAGE_ALIGNED(end)); 1410 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1411 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1412 mmap_assert_locked(mm); 1413 1414 /* 1415 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1416 * faultin_page() to break COW, so it has no work to do here. 1417 */ 1418 if (vma->vm_flags & VM_LOCKONFAULT) 1419 return nr_pages; 1420 1421 gup_flags = FOLL_TOUCH; 1422 /* 1423 * We want to touch writable mappings with a write fault in order 1424 * to break COW, except for shared mappings because these don't COW 1425 * and we would not want to dirty them for nothing. 1426 */ 1427 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1428 gup_flags |= FOLL_WRITE; 1429 1430 /* 1431 * We want mlock to succeed for regions that have any permissions 1432 * other than PROT_NONE. 1433 */ 1434 if (vma_is_accessible(vma)) 1435 gup_flags |= FOLL_FORCE; 1436 1437 /* 1438 * We made sure addr is within a VMA, so the following will 1439 * not result in a stack expansion that recurses back here. 1440 */ 1441 return __get_user_pages(mm, start, nr_pages, gup_flags, 1442 NULL, NULL, locked); 1443 } 1444 1445 /* 1446 * faultin_vma_page_range() - populate (prefault) page tables inside the 1447 * given VMA range readable/writable 1448 * 1449 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1450 * 1451 * @vma: target vma 1452 * @start: start address 1453 * @end: end address 1454 * @write: whether to prefault readable or writable 1455 * @locked: whether the mmap_lock is still held 1456 * 1457 * Returns either number of processed pages in the vma, or a negative error 1458 * code on error (see __get_user_pages()). 1459 * 1460 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1461 * covered by the VMA. 1462 * 1463 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1464 * 1465 * If @locked is non-NULL, it must held for read only and may be released. If 1466 * it's released, *@locked will be set to 0. 1467 */ 1468 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1469 unsigned long end, bool write, int *locked) 1470 { 1471 struct mm_struct *mm = vma->vm_mm; 1472 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1473 int gup_flags; 1474 1475 VM_BUG_ON(!PAGE_ALIGNED(start)); 1476 VM_BUG_ON(!PAGE_ALIGNED(end)); 1477 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1478 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1479 mmap_assert_locked(mm); 1480 1481 /* 1482 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1483 * the page dirty with FOLL_WRITE -- which doesn't make a 1484 * difference with !FOLL_FORCE, because the page is writable 1485 * in the page table. 1486 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1487 * a poisoned page. 1488 * !FOLL_FORCE: Require proper access permissions. 1489 */ 1490 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1491 if (write) 1492 gup_flags |= FOLL_WRITE; 1493 1494 /* 1495 * We want to report -EINVAL instead of -EFAULT for any permission 1496 * problems or incompatible mappings. 1497 */ 1498 if (check_vma_flags(vma, gup_flags)) 1499 return -EINVAL; 1500 1501 return __get_user_pages(mm, start, nr_pages, gup_flags, 1502 NULL, NULL, locked); 1503 } 1504 1505 /* 1506 * __mm_populate - populate and/or mlock pages within a range of address space. 1507 * 1508 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1509 * flags. VMAs must be already marked with the desired vm_flags, and 1510 * mmap_lock must not be held. 1511 */ 1512 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1513 { 1514 struct mm_struct *mm = current->mm; 1515 unsigned long end, nstart, nend; 1516 struct vm_area_struct *vma = NULL; 1517 int locked = 0; 1518 long ret = 0; 1519 1520 end = start + len; 1521 1522 for (nstart = start; nstart < end; nstart = nend) { 1523 /* 1524 * We want to fault in pages for [nstart; end) address range. 1525 * Find first corresponding VMA. 1526 */ 1527 if (!locked) { 1528 locked = 1; 1529 mmap_read_lock(mm); 1530 vma = find_vma(mm, nstart); 1531 } else if (nstart >= vma->vm_end) 1532 vma = vma->vm_next; 1533 if (!vma || vma->vm_start >= end) 1534 break; 1535 /* 1536 * Set [nstart; nend) to intersection of desired address 1537 * range with the first VMA. Also, skip undesirable VMA types. 1538 */ 1539 nend = min(end, vma->vm_end); 1540 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1541 continue; 1542 if (nstart < vma->vm_start) 1543 nstart = vma->vm_start; 1544 /* 1545 * Now fault in a range of pages. populate_vma_page_range() 1546 * double checks the vma flags, so that it won't mlock pages 1547 * if the vma was already munlocked. 1548 */ 1549 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1550 if (ret < 0) { 1551 if (ignore_errors) { 1552 ret = 0; 1553 continue; /* continue at next VMA */ 1554 } 1555 break; 1556 } 1557 nend = nstart + ret * PAGE_SIZE; 1558 ret = 0; 1559 } 1560 if (locked) 1561 mmap_read_unlock(mm); 1562 return ret; /* 0 or negative error code */ 1563 } 1564 #else /* CONFIG_MMU */ 1565 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1566 unsigned long nr_pages, struct page **pages, 1567 struct vm_area_struct **vmas, int *locked, 1568 unsigned int foll_flags) 1569 { 1570 struct vm_area_struct *vma; 1571 unsigned long vm_flags; 1572 long i; 1573 1574 /* calculate required read or write permissions. 1575 * If FOLL_FORCE is set, we only require the "MAY" flags. 1576 */ 1577 vm_flags = (foll_flags & FOLL_WRITE) ? 1578 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1579 vm_flags &= (foll_flags & FOLL_FORCE) ? 1580 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1581 1582 for (i = 0; i < nr_pages; i++) { 1583 vma = find_vma(mm, start); 1584 if (!vma) 1585 goto finish_or_fault; 1586 1587 /* protect what we can, including chardevs */ 1588 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1589 !(vm_flags & vma->vm_flags)) 1590 goto finish_or_fault; 1591 1592 if (pages) { 1593 pages[i] = virt_to_page(start); 1594 if (pages[i]) 1595 get_page(pages[i]); 1596 } 1597 if (vmas) 1598 vmas[i] = vma; 1599 start = (start + PAGE_SIZE) & PAGE_MASK; 1600 } 1601 1602 return i; 1603 1604 finish_or_fault: 1605 return i ? : -EFAULT; 1606 } 1607 #endif /* !CONFIG_MMU */ 1608 1609 /** 1610 * fault_in_writeable - fault in userspace address range for writing 1611 * @uaddr: start of address range 1612 * @size: size of address range 1613 * 1614 * Returns the number of bytes not faulted in (like copy_to_user() and 1615 * copy_from_user()). 1616 */ 1617 size_t fault_in_writeable(char __user *uaddr, size_t size) 1618 { 1619 char __user *start = uaddr, *end; 1620 1621 if (unlikely(size == 0)) 1622 return 0; 1623 if (!user_write_access_begin(uaddr, size)) 1624 return size; 1625 if (!PAGE_ALIGNED(uaddr)) { 1626 unsafe_put_user(0, uaddr, out); 1627 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1628 } 1629 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1630 if (unlikely(end < start)) 1631 end = NULL; 1632 while (uaddr != end) { 1633 unsafe_put_user(0, uaddr, out); 1634 uaddr += PAGE_SIZE; 1635 } 1636 1637 out: 1638 user_write_access_end(); 1639 if (size > uaddr - start) 1640 return size - (uaddr - start); 1641 return 0; 1642 } 1643 EXPORT_SYMBOL(fault_in_writeable); 1644 1645 /* 1646 * fault_in_safe_writeable - fault in an address range for writing 1647 * @uaddr: start of address range 1648 * @size: length of address range 1649 * 1650 * Faults in an address range for writing. This is primarily useful when we 1651 * already know that some or all of the pages in the address range aren't in 1652 * memory. 1653 * 1654 * Unlike fault_in_writeable(), this function is non-destructive. 1655 * 1656 * Note that we don't pin or otherwise hold the pages referenced that we fault 1657 * in. There's no guarantee that they'll stay in memory for any duration of 1658 * time. 1659 * 1660 * Returns the number of bytes not faulted in, like copy_to_user() and 1661 * copy_from_user(). 1662 */ 1663 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1664 { 1665 unsigned long start = (unsigned long)uaddr, end; 1666 struct mm_struct *mm = current->mm; 1667 bool unlocked = false; 1668 1669 if (unlikely(size == 0)) 1670 return 0; 1671 end = PAGE_ALIGN(start + size); 1672 if (end < start) 1673 end = 0; 1674 1675 mmap_read_lock(mm); 1676 do { 1677 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1678 break; 1679 start = (start + PAGE_SIZE) & PAGE_MASK; 1680 } while (start != end); 1681 mmap_read_unlock(mm); 1682 1683 if (size > (unsigned long)uaddr - start) 1684 return size - ((unsigned long)uaddr - start); 1685 return 0; 1686 } 1687 EXPORT_SYMBOL(fault_in_safe_writeable); 1688 1689 /** 1690 * fault_in_readable - fault in userspace address range for reading 1691 * @uaddr: start of user address range 1692 * @size: size of user address range 1693 * 1694 * Returns the number of bytes not faulted in (like copy_to_user() and 1695 * copy_from_user()). 1696 */ 1697 size_t fault_in_readable(const char __user *uaddr, size_t size) 1698 { 1699 const char __user *start = uaddr, *end; 1700 volatile char c; 1701 1702 if (unlikely(size == 0)) 1703 return 0; 1704 if (!user_read_access_begin(uaddr, size)) 1705 return size; 1706 if (!PAGE_ALIGNED(uaddr)) { 1707 unsafe_get_user(c, uaddr, out); 1708 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1709 } 1710 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1711 if (unlikely(end < start)) 1712 end = NULL; 1713 while (uaddr != end) { 1714 unsafe_get_user(c, uaddr, out); 1715 uaddr += PAGE_SIZE; 1716 } 1717 1718 out: 1719 user_read_access_end(); 1720 (void)c; 1721 if (size > uaddr - start) 1722 return size - (uaddr - start); 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(fault_in_readable); 1726 1727 /** 1728 * get_dump_page() - pin user page in memory while writing it to core dump 1729 * @addr: user address 1730 * 1731 * Returns struct page pointer of user page pinned for dump, 1732 * to be freed afterwards by put_page(). 1733 * 1734 * Returns NULL on any kind of failure - a hole must then be inserted into 1735 * the corefile, to preserve alignment with its headers; and also returns 1736 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1737 * allowing a hole to be left in the corefile to save disk space. 1738 * 1739 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1740 */ 1741 #ifdef CONFIG_ELF_CORE 1742 struct page *get_dump_page(unsigned long addr) 1743 { 1744 struct mm_struct *mm = current->mm; 1745 struct page *page; 1746 int locked = 1; 1747 int ret; 1748 1749 if (mmap_read_lock_killable(mm)) 1750 return NULL; 1751 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1752 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1753 if (locked) 1754 mmap_read_unlock(mm); 1755 return (ret == 1) ? page : NULL; 1756 } 1757 #endif /* CONFIG_ELF_CORE */ 1758 1759 #ifdef CONFIG_MIGRATION 1760 /* 1761 * Check whether all pages are pinnable, if so return number of pages. If some 1762 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1763 * pages were migrated, or if some pages were not successfully isolated. 1764 * Return negative error if migration fails. 1765 */ 1766 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1767 struct page **pages, 1768 unsigned int gup_flags) 1769 { 1770 unsigned long isolation_error_count = 0, i; 1771 struct folio *prev_folio = NULL; 1772 LIST_HEAD(movable_page_list); 1773 bool drain_allow = true; 1774 int ret = 0; 1775 1776 for (i = 0; i < nr_pages; i++) { 1777 struct folio *folio = page_folio(pages[i]); 1778 1779 if (folio == prev_folio) 1780 continue; 1781 prev_folio = folio; 1782 1783 if (folio_is_pinnable(folio)) 1784 continue; 1785 1786 /* 1787 * Try to move out any movable page before pinning the range. 1788 */ 1789 if (folio_test_hugetlb(folio)) { 1790 if (!isolate_huge_page(&folio->page, 1791 &movable_page_list)) 1792 isolation_error_count++; 1793 continue; 1794 } 1795 1796 if (!folio_test_lru(folio) && drain_allow) { 1797 lru_add_drain_all(); 1798 drain_allow = false; 1799 } 1800 1801 if (folio_isolate_lru(folio)) { 1802 isolation_error_count++; 1803 continue; 1804 } 1805 list_add_tail(&folio->lru, &movable_page_list); 1806 node_stat_mod_folio(folio, 1807 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1808 folio_nr_pages(folio)); 1809 } 1810 1811 if (!list_empty(&movable_page_list) || isolation_error_count) 1812 goto unpin_pages; 1813 1814 /* 1815 * If list is empty, and no isolation errors, means that all pages are 1816 * in the correct zone. 1817 */ 1818 return nr_pages; 1819 1820 unpin_pages: 1821 if (gup_flags & FOLL_PIN) { 1822 unpin_user_pages(pages, nr_pages); 1823 } else { 1824 for (i = 0; i < nr_pages; i++) 1825 put_page(pages[i]); 1826 } 1827 1828 if (!list_empty(&movable_page_list)) { 1829 struct migration_target_control mtc = { 1830 .nid = NUMA_NO_NODE, 1831 .gfp_mask = GFP_USER | __GFP_NOWARN, 1832 }; 1833 1834 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1835 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1836 MR_LONGTERM_PIN, NULL); 1837 if (ret > 0) /* number of pages not migrated */ 1838 ret = -ENOMEM; 1839 } 1840 1841 if (ret && !list_empty(&movable_page_list)) 1842 putback_movable_pages(&movable_page_list); 1843 return ret; 1844 } 1845 #else 1846 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1847 struct page **pages, 1848 unsigned int gup_flags) 1849 { 1850 return nr_pages; 1851 } 1852 #endif /* CONFIG_MIGRATION */ 1853 1854 /* 1855 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1856 * allows us to process the FOLL_LONGTERM flag. 1857 */ 1858 static long __gup_longterm_locked(struct mm_struct *mm, 1859 unsigned long start, 1860 unsigned long nr_pages, 1861 struct page **pages, 1862 struct vm_area_struct **vmas, 1863 unsigned int gup_flags) 1864 { 1865 unsigned int flags; 1866 long rc; 1867 1868 if (!(gup_flags & FOLL_LONGTERM)) 1869 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1870 NULL, gup_flags); 1871 flags = memalloc_pin_save(); 1872 do { 1873 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1874 NULL, gup_flags); 1875 if (rc <= 0) 1876 break; 1877 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1878 } while (!rc); 1879 memalloc_pin_restore(flags); 1880 1881 return rc; 1882 } 1883 1884 static bool is_valid_gup_flags(unsigned int gup_flags) 1885 { 1886 /* 1887 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1888 * never directly by the caller, so enforce that with an assertion: 1889 */ 1890 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1891 return false; 1892 /* 1893 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1894 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1895 * FOLL_PIN. 1896 */ 1897 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1898 return false; 1899 1900 return true; 1901 } 1902 1903 #ifdef CONFIG_MMU 1904 static long __get_user_pages_remote(struct mm_struct *mm, 1905 unsigned long start, unsigned long nr_pages, 1906 unsigned int gup_flags, struct page **pages, 1907 struct vm_area_struct **vmas, int *locked) 1908 { 1909 /* 1910 * Parts of FOLL_LONGTERM behavior are incompatible with 1911 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1912 * vmas. However, this only comes up if locked is set, and there are 1913 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1914 * allow what we can. 1915 */ 1916 if (gup_flags & FOLL_LONGTERM) { 1917 if (WARN_ON_ONCE(locked)) 1918 return -EINVAL; 1919 /* 1920 * This will check the vmas (even if our vmas arg is NULL) 1921 * and return -ENOTSUPP if DAX isn't allowed in this case: 1922 */ 1923 return __gup_longterm_locked(mm, start, nr_pages, pages, 1924 vmas, gup_flags | FOLL_TOUCH | 1925 FOLL_REMOTE); 1926 } 1927 1928 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1929 locked, 1930 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1931 } 1932 1933 /** 1934 * get_user_pages_remote() - pin user pages in memory 1935 * @mm: mm_struct of target mm 1936 * @start: starting user address 1937 * @nr_pages: number of pages from start to pin 1938 * @gup_flags: flags modifying lookup behaviour 1939 * @pages: array that receives pointers to the pages pinned. 1940 * Should be at least nr_pages long. Or NULL, if caller 1941 * only intends to ensure the pages are faulted in. 1942 * @vmas: array of pointers to vmas corresponding to each page. 1943 * Or NULL if the caller does not require them. 1944 * @locked: pointer to lock flag indicating whether lock is held and 1945 * subsequently whether VM_FAULT_RETRY functionality can be 1946 * utilised. Lock must initially be held. 1947 * 1948 * Returns either number of pages pinned (which may be less than the 1949 * number requested), or an error. Details about the return value: 1950 * 1951 * -- If nr_pages is 0, returns 0. 1952 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1953 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1954 * pages pinned. Again, this may be less than nr_pages. 1955 * 1956 * The caller is responsible for releasing returned @pages, via put_page(). 1957 * 1958 * @vmas are valid only as long as mmap_lock is held. 1959 * 1960 * Must be called with mmap_lock held for read or write. 1961 * 1962 * get_user_pages_remote walks a process's page tables and takes a reference 1963 * to each struct page that each user address corresponds to at a given 1964 * instant. That is, it takes the page that would be accessed if a user 1965 * thread accesses the given user virtual address at that instant. 1966 * 1967 * This does not guarantee that the page exists in the user mappings when 1968 * get_user_pages_remote returns, and there may even be a completely different 1969 * page there in some cases (eg. if mmapped pagecache has been invalidated 1970 * and subsequently re faulted). However it does guarantee that the page 1971 * won't be freed completely. And mostly callers simply care that the page 1972 * contains data that was valid *at some point in time*. Typically, an IO 1973 * or similar operation cannot guarantee anything stronger anyway because 1974 * locks can't be held over the syscall boundary. 1975 * 1976 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1977 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1978 * be called after the page is finished with, and before put_page is called. 1979 * 1980 * get_user_pages_remote is typically used for fewer-copy IO operations, 1981 * to get a handle on the memory by some means other than accesses 1982 * via the user virtual addresses. The pages may be submitted for 1983 * DMA to devices or accessed via their kernel linear mapping (via the 1984 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1985 * 1986 * See also get_user_pages_fast, for performance critical applications. 1987 * 1988 * get_user_pages_remote should be phased out in favor of 1989 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1990 * should use get_user_pages_remote because it cannot pass 1991 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1992 */ 1993 long get_user_pages_remote(struct mm_struct *mm, 1994 unsigned long start, unsigned long nr_pages, 1995 unsigned int gup_flags, struct page **pages, 1996 struct vm_area_struct **vmas, int *locked) 1997 { 1998 if (!is_valid_gup_flags(gup_flags)) 1999 return -EINVAL; 2000 2001 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2002 pages, vmas, locked); 2003 } 2004 EXPORT_SYMBOL(get_user_pages_remote); 2005 2006 #else /* CONFIG_MMU */ 2007 long get_user_pages_remote(struct mm_struct *mm, 2008 unsigned long start, unsigned long nr_pages, 2009 unsigned int gup_flags, struct page **pages, 2010 struct vm_area_struct **vmas, int *locked) 2011 { 2012 return 0; 2013 } 2014 2015 static long __get_user_pages_remote(struct mm_struct *mm, 2016 unsigned long start, unsigned long nr_pages, 2017 unsigned int gup_flags, struct page **pages, 2018 struct vm_area_struct **vmas, int *locked) 2019 { 2020 return 0; 2021 } 2022 #endif /* !CONFIG_MMU */ 2023 2024 /** 2025 * get_user_pages() - pin user pages in memory 2026 * @start: starting user address 2027 * @nr_pages: number of pages from start to pin 2028 * @gup_flags: flags modifying lookup behaviour 2029 * @pages: array that receives pointers to the pages pinned. 2030 * Should be at least nr_pages long. Or NULL, if caller 2031 * only intends to ensure the pages are faulted in. 2032 * @vmas: array of pointers to vmas corresponding to each page. 2033 * Or NULL if the caller does not require them. 2034 * 2035 * This is the same as get_user_pages_remote(), just with a less-flexible 2036 * calling convention where we assume that the mm being operated on belongs to 2037 * the current task, and doesn't allow passing of a locked parameter. We also 2038 * obviously don't pass FOLL_REMOTE in here. 2039 */ 2040 long get_user_pages(unsigned long start, unsigned long nr_pages, 2041 unsigned int gup_flags, struct page **pages, 2042 struct vm_area_struct **vmas) 2043 { 2044 if (!is_valid_gup_flags(gup_flags)) 2045 return -EINVAL; 2046 2047 return __gup_longterm_locked(current->mm, start, nr_pages, 2048 pages, vmas, gup_flags | FOLL_TOUCH); 2049 } 2050 EXPORT_SYMBOL(get_user_pages); 2051 2052 /* 2053 * get_user_pages_unlocked() is suitable to replace the form: 2054 * 2055 * mmap_read_lock(mm); 2056 * get_user_pages(mm, ..., pages, NULL); 2057 * mmap_read_unlock(mm); 2058 * 2059 * with: 2060 * 2061 * get_user_pages_unlocked(mm, ..., pages); 2062 * 2063 * It is functionally equivalent to get_user_pages_fast so 2064 * get_user_pages_fast should be used instead if specific gup_flags 2065 * (e.g. FOLL_FORCE) are not required. 2066 */ 2067 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2068 struct page **pages, unsigned int gup_flags) 2069 { 2070 struct mm_struct *mm = current->mm; 2071 int locked = 1; 2072 long ret; 2073 2074 /* 2075 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2076 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2077 * vmas. As there are no users of this flag in this call we simply 2078 * disallow this option for now. 2079 */ 2080 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2081 return -EINVAL; 2082 2083 mmap_read_lock(mm); 2084 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2085 &locked, gup_flags | FOLL_TOUCH); 2086 if (locked) 2087 mmap_read_unlock(mm); 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(get_user_pages_unlocked); 2091 2092 /* 2093 * Fast GUP 2094 * 2095 * get_user_pages_fast attempts to pin user pages by walking the page 2096 * tables directly and avoids taking locks. Thus the walker needs to be 2097 * protected from page table pages being freed from under it, and should 2098 * block any THP splits. 2099 * 2100 * One way to achieve this is to have the walker disable interrupts, and 2101 * rely on IPIs from the TLB flushing code blocking before the page table 2102 * pages are freed. This is unsuitable for architectures that do not need 2103 * to broadcast an IPI when invalidating TLBs. 2104 * 2105 * Another way to achieve this is to batch up page table containing pages 2106 * belonging to more than one mm_user, then rcu_sched a callback to free those 2107 * pages. Disabling interrupts will allow the fast_gup walker to both block 2108 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2109 * (which is a relatively rare event). The code below adopts this strategy. 2110 * 2111 * Before activating this code, please be aware that the following assumptions 2112 * are currently made: 2113 * 2114 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2115 * free pages containing page tables or TLB flushing requires IPI broadcast. 2116 * 2117 * *) ptes can be read atomically by the architecture. 2118 * 2119 * *) access_ok is sufficient to validate userspace address ranges. 2120 * 2121 * The last two assumptions can be relaxed by the addition of helper functions. 2122 * 2123 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2124 */ 2125 #ifdef CONFIG_HAVE_FAST_GUP 2126 2127 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2128 unsigned int flags, 2129 struct page **pages) 2130 { 2131 while ((*nr) - nr_start) { 2132 struct page *page = pages[--(*nr)]; 2133 2134 ClearPageReferenced(page); 2135 if (flags & FOLL_PIN) 2136 unpin_user_page(page); 2137 else 2138 put_page(page); 2139 } 2140 } 2141 2142 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2143 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2144 unsigned int flags, struct page **pages, int *nr) 2145 { 2146 struct dev_pagemap *pgmap = NULL; 2147 int nr_start = *nr, ret = 0; 2148 pte_t *ptep, *ptem; 2149 2150 ptem = ptep = pte_offset_map(&pmd, addr); 2151 do { 2152 pte_t pte = ptep_get_lockless(ptep); 2153 struct page *page; 2154 struct folio *folio; 2155 2156 /* 2157 * Similar to the PMD case below, NUMA hinting must take slow 2158 * path using the pte_protnone check. 2159 */ 2160 if (pte_protnone(pte)) 2161 goto pte_unmap; 2162 2163 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2164 goto pte_unmap; 2165 2166 if (pte_devmap(pte)) { 2167 if (unlikely(flags & FOLL_LONGTERM)) 2168 goto pte_unmap; 2169 2170 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2171 if (unlikely(!pgmap)) { 2172 undo_dev_pagemap(nr, nr_start, flags, pages); 2173 goto pte_unmap; 2174 } 2175 } else if (pte_special(pte)) 2176 goto pte_unmap; 2177 2178 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2179 page = pte_page(pte); 2180 2181 folio = try_grab_folio(page, 1, flags); 2182 if (!folio) 2183 goto pte_unmap; 2184 2185 if (unlikely(page_is_secretmem(page))) { 2186 gup_put_folio(folio, 1, flags); 2187 goto pte_unmap; 2188 } 2189 2190 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2191 gup_put_folio(folio, 1, flags); 2192 goto pte_unmap; 2193 } 2194 2195 /* 2196 * We need to make the page accessible if and only if we are 2197 * going to access its content (the FOLL_PIN case). Please 2198 * see Documentation/core-api/pin_user_pages.rst for 2199 * details. 2200 */ 2201 if (flags & FOLL_PIN) { 2202 ret = arch_make_page_accessible(page); 2203 if (ret) { 2204 gup_put_folio(folio, 1, flags); 2205 goto pte_unmap; 2206 } 2207 } 2208 folio_set_referenced(folio); 2209 pages[*nr] = page; 2210 (*nr)++; 2211 } while (ptep++, addr += PAGE_SIZE, addr != end); 2212 2213 ret = 1; 2214 2215 pte_unmap: 2216 if (pgmap) 2217 put_dev_pagemap(pgmap); 2218 pte_unmap(ptem); 2219 return ret; 2220 } 2221 #else 2222 2223 /* 2224 * If we can't determine whether or not a pte is special, then fail immediately 2225 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2226 * to be special. 2227 * 2228 * For a futex to be placed on a THP tail page, get_futex_key requires a 2229 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2230 * useful to have gup_huge_pmd even if we can't operate on ptes. 2231 */ 2232 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2233 unsigned int flags, struct page **pages, int *nr) 2234 { 2235 return 0; 2236 } 2237 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2238 2239 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2240 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2241 unsigned long end, unsigned int flags, 2242 struct page **pages, int *nr) 2243 { 2244 int nr_start = *nr; 2245 struct dev_pagemap *pgmap = NULL; 2246 2247 do { 2248 struct page *page = pfn_to_page(pfn); 2249 2250 pgmap = get_dev_pagemap(pfn, pgmap); 2251 if (unlikely(!pgmap)) { 2252 undo_dev_pagemap(nr, nr_start, flags, pages); 2253 break; 2254 } 2255 SetPageReferenced(page); 2256 pages[*nr] = page; 2257 if (unlikely(!try_grab_page(page, flags))) { 2258 undo_dev_pagemap(nr, nr_start, flags, pages); 2259 break; 2260 } 2261 (*nr)++; 2262 pfn++; 2263 } while (addr += PAGE_SIZE, addr != end); 2264 2265 put_dev_pagemap(pgmap); 2266 return addr == end; 2267 } 2268 2269 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2270 unsigned long end, unsigned int flags, 2271 struct page **pages, int *nr) 2272 { 2273 unsigned long fault_pfn; 2274 int nr_start = *nr; 2275 2276 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2277 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2278 return 0; 2279 2280 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2281 undo_dev_pagemap(nr, nr_start, flags, pages); 2282 return 0; 2283 } 2284 return 1; 2285 } 2286 2287 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2288 unsigned long end, unsigned int flags, 2289 struct page **pages, int *nr) 2290 { 2291 unsigned long fault_pfn; 2292 int nr_start = *nr; 2293 2294 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2295 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2296 return 0; 2297 2298 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2299 undo_dev_pagemap(nr, nr_start, flags, pages); 2300 return 0; 2301 } 2302 return 1; 2303 } 2304 #else 2305 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2306 unsigned long end, unsigned int flags, 2307 struct page **pages, int *nr) 2308 { 2309 BUILD_BUG(); 2310 return 0; 2311 } 2312 2313 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2314 unsigned long end, unsigned int flags, 2315 struct page **pages, int *nr) 2316 { 2317 BUILD_BUG(); 2318 return 0; 2319 } 2320 #endif 2321 2322 static int record_subpages(struct page *page, unsigned long addr, 2323 unsigned long end, struct page **pages) 2324 { 2325 int nr; 2326 2327 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2328 pages[nr] = nth_page(page, nr); 2329 2330 return nr; 2331 } 2332 2333 #ifdef CONFIG_ARCH_HAS_HUGEPD 2334 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2335 unsigned long sz) 2336 { 2337 unsigned long __boundary = (addr + sz) & ~(sz-1); 2338 return (__boundary - 1 < end - 1) ? __boundary : end; 2339 } 2340 2341 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2342 unsigned long end, unsigned int flags, 2343 struct page **pages, int *nr) 2344 { 2345 unsigned long pte_end; 2346 struct page *page; 2347 struct folio *folio; 2348 pte_t pte; 2349 int refs; 2350 2351 pte_end = (addr + sz) & ~(sz-1); 2352 if (pte_end < end) 2353 end = pte_end; 2354 2355 pte = huge_ptep_get(ptep); 2356 2357 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2358 return 0; 2359 2360 /* hugepages are never "special" */ 2361 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2362 2363 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2364 refs = record_subpages(page, addr, end, pages + *nr); 2365 2366 folio = try_grab_folio(page, refs, flags); 2367 if (!folio) 2368 return 0; 2369 2370 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2371 gup_put_folio(folio, refs, flags); 2372 return 0; 2373 } 2374 2375 *nr += refs; 2376 folio_set_referenced(folio); 2377 return 1; 2378 } 2379 2380 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2381 unsigned int pdshift, unsigned long end, unsigned int flags, 2382 struct page **pages, int *nr) 2383 { 2384 pte_t *ptep; 2385 unsigned long sz = 1UL << hugepd_shift(hugepd); 2386 unsigned long next; 2387 2388 ptep = hugepte_offset(hugepd, addr, pdshift); 2389 do { 2390 next = hugepte_addr_end(addr, end, sz); 2391 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2392 return 0; 2393 } while (ptep++, addr = next, addr != end); 2394 2395 return 1; 2396 } 2397 #else 2398 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2399 unsigned int pdshift, unsigned long end, unsigned int flags, 2400 struct page **pages, int *nr) 2401 { 2402 return 0; 2403 } 2404 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2405 2406 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2407 unsigned long end, unsigned int flags, 2408 struct page **pages, int *nr) 2409 { 2410 struct page *page; 2411 struct folio *folio; 2412 int refs; 2413 2414 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2415 return 0; 2416 2417 if (pmd_devmap(orig)) { 2418 if (unlikely(flags & FOLL_LONGTERM)) 2419 return 0; 2420 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2421 pages, nr); 2422 } 2423 2424 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2425 refs = record_subpages(page, addr, end, pages + *nr); 2426 2427 folio = try_grab_folio(page, refs, flags); 2428 if (!folio) 2429 return 0; 2430 2431 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2432 gup_put_folio(folio, refs, flags); 2433 return 0; 2434 } 2435 2436 *nr += refs; 2437 folio_set_referenced(folio); 2438 return 1; 2439 } 2440 2441 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2442 unsigned long end, unsigned int flags, 2443 struct page **pages, int *nr) 2444 { 2445 struct page *page; 2446 struct folio *folio; 2447 int refs; 2448 2449 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2450 return 0; 2451 2452 if (pud_devmap(orig)) { 2453 if (unlikely(flags & FOLL_LONGTERM)) 2454 return 0; 2455 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2456 pages, nr); 2457 } 2458 2459 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2460 refs = record_subpages(page, addr, end, pages + *nr); 2461 2462 folio = try_grab_folio(page, refs, flags); 2463 if (!folio) 2464 return 0; 2465 2466 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2467 gup_put_folio(folio, refs, flags); 2468 return 0; 2469 } 2470 2471 *nr += refs; 2472 folio_set_referenced(folio); 2473 return 1; 2474 } 2475 2476 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2477 unsigned long end, unsigned int flags, 2478 struct page **pages, int *nr) 2479 { 2480 int refs; 2481 struct page *page; 2482 struct folio *folio; 2483 2484 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2485 return 0; 2486 2487 BUILD_BUG_ON(pgd_devmap(orig)); 2488 2489 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2490 refs = record_subpages(page, addr, end, pages + *nr); 2491 2492 folio = try_grab_folio(page, refs, flags); 2493 if (!folio) 2494 return 0; 2495 2496 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2497 gup_put_folio(folio, refs, flags); 2498 return 0; 2499 } 2500 2501 *nr += refs; 2502 folio_set_referenced(folio); 2503 return 1; 2504 } 2505 2506 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2507 unsigned int flags, struct page **pages, int *nr) 2508 { 2509 unsigned long next; 2510 pmd_t *pmdp; 2511 2512 pmdp = pmd_offset_lockless(pudp, pud, addr); 2513 do { 2514 pmd_t pmd = READ_ONCE(*pmdp); 2515 2516 next = pmd_addr_end(addr, end); 2517 if (!pmd_present(pmd)) 2518 return 0; 2519 2520 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2521 pmd_devmap(pmd))) { 2522 /* 2523 * NUMA hinting faults need to be handled in the GUP 2524 * slowpath for accounting purposes and so that they 2525 * can be serialised against THP migration. 2526 */ 2527 if (pmd_protnone(pmd)) 2528 return 0; 2529 2530 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2531 pages, nr)) 2532 return 0; 2533 2534 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2535 /* 2536 * architecture have different format for hugetlbfs 2537 * pmd format and THP pmd format 2538 */ 2539 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2540 PMD_SHIFT, next, flags, pages, nr)) 2541 return 0; 2542 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2543 return 0; 2544 } while (pmdp++, addr = next, addr != end); 2545 2546 return 1; 2547 } 2548 2549 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2550 unsigned int flags, struct page **pages, int *nr) 2551 { 2552 unsigned long next; 2553 pud_t *pudp; 2554 2555 pudp = pud_offset_lockless(p4dp, p4d, addr); 2556 do { 2557 pud_t pud = READ_ONCE(*pudp); 2558 2559 next = pud_addr_end(addr, end); 2560 if (unlikely(!pud_present(pud))) 2561 return 0; 2562 if (unlikely(pud_huge(pud))) { 2563 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2564 pages, nr)) 2565 return 0; 2566 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2567 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2568 PUD_SHIFT, next, flags, pages, nr)) 2569 return 0; 2570 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2571 return 0; 2572 } while (pudp++, addr = next, addr != end); 2573 2574 return 1; 2575 } 2576 2577 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2578 unsigned int flags, struct page **pages, int *nr) 2579 { 2580 unsigned long next; 2581 p4d_t *p4dp; 2582 2583 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2584 do { 2585 p4d_t p4d = READ_ONCE(*p4dp); 2586 2587 next = p4d_addr_end(addr, end); 2588 if (p4d_none(p4d)) 2589 return 0; 2590 BUILD_BUG_ON(p4d_huge(p4d)); 2591 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2592 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2593 P4D_SHIFT, next, flags, pages, nr)) 2594 return 0; 2595 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2596 return 0; 2597 } while (p4dp++, addr = next, addr != end); 2598 2599 return 1; 2600 } 2601 2602 static void gup_pgd_range(unsigned long addr, unsigned long end, 2603 unsigned int flags, struct page **pages, int *nr) 2604 { 2605 unsigned long next; 2606 pgd_t *pgdp; 2607 2608 pgdp = pgd_offset(current->mm, addr); 2609 do { 2610 pgd_t pgd = READ_ONCE(*pgdp); 2611 2612 next = pgd_addr_end(addr, end); 2613 if (pgd_none(pgd)) 2614 return; 2615 if (unlikely(pgd_huge(pgd))) { 2616 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2617 pages, nr)) 2618 return; 2619 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2620 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2621 PGDIR_SHIFT, next, flags, pages, nr)) 2622 return; 2623 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2624 return; 2625 } while (pgdp++, addr = next, addr != end); 2626 } 2627 #else 2628 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2629 unsigned int flags, struct page **pages, int *nr) 2630 { 2631 } 2632 #endif /* CONFIG_HAVE_FAST_GUP */ 2633 2634 #ifndef gup_fast_permitted 2635 /* 2636 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2637 * we need to fall back to the slow version: 2638 */ 2639 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2640 { 2641 return true; 2642 } 2643 #endif 2644 2645 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2646 unsigned int gup_flags, struct page **pages) 2647 { 2648 int ret; 2649 2650 /* 2651 * FIXME: FOLL_LONGTERM does not work with 2652 * get_user_pages_unlocked() (see comments in that function) 2653 */ 2654 if (gup_flags & FOLL_LONGTERM) { 2655 mmap_read_lock(current->mm); 2656 ret = __gup_longterm_locked(current->mm, 2657 start, nr_pages, 2658 pages, NULL, gup_flags); 2659 mmap_read_unlock(current->mm); 2660 } else { 2661 ret = get_user_pages_unlocked(start, nr_pages, 2662 pages, gup_flags); 2663 } 2664 2665 return ret; 2666 } 2667 2668 static unsigned long lockless_pages_from_mm(unsigned long start, 2669 unsigned long end, 2670 unsigned int gup_flags, 2671 struct page **pages) 2672 { 2673 unsigned long flags; 2674 int nr_pinned = 0; 2675 unsigned seq; 2676 2677 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2678 !gup_fast_permitted(start, end)) 2679 return 0; 2680 2681 if (gup_flags & FOLL_PIN) { 2682 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2683 if (seq & 1) 2684 return 0; 2685 } 2686 2687 /* 2688 * Disable interrupts. The nested form is used, in order to allow full, 2689 * general purpose use of this routine. 2690 * 2691 * With interrupts disabled, we block page table pages from being freed 2692 * from under us. See struct mmu_table_batch comments in 2693 * include/asm-generic/tlb.h for more details. 2694 * 2695 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2696 * that come from THPs splitting. 2697 */ 2698 local_irq_save(flags); 2699 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2700 local_irq_restore(flags); 2701 2702 /* 2703 * When pinning pages for DMA there could be a concurrent write protect 2704 * from fork() via copy_page_range(), in this case always fail fast GUP. 2705 */ 2706 if (gup_flags & FOLL_PIN) { 2707 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2708 unpin_user_pages(pages, nr_pinned); 2709 return 0; 2710 } 2711 } 2712 return nr_pinned; 2713 } 2714 2715 static int internal_get_user_pages_fast(unsigned long start, 2716 unsigned long nr_pages, 2717 unsigned int gup_flags, 2718 struct page **pages) 2719 { 2720 unsigned long len, end; 2721 unsigned long nr_pinned; 2722 int ret; 2723 2724 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2725 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2726 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2727 return -EINVAL; 2728 2729 if (gup_flags & FOLL_PIN) 2730 mm_set_has_pinned_flag(¤t->mm->flags); 2731 2732 if (!(gup_flags & FOLL_FAST_ONLY)) 2733 might_lock_read(¤t->mm->mmap_lock); 2734 2735 start = untagged_addr(start) & PAGE_MASK; 2736 len = nr_pages << PAGE_SHIFT; 2737 if (check_add_overflow(start, len, &end)) 2738 return 0; 2739 if (unlikely(!access_ok((void __user *)start, len))) 2740 return -EFAULT; 2741 2742 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2743 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2744 return nr_pinned; 2745 2746 /* Slow path: try to get the remaining pages with get_user_pages */ 2747 start += nr_pinned << PAGE_SHIFT; 2748 pages += nr_pinned; 2749 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2750 pages); 2751 if (ret < 0) { 2752 /* 2753 * The caller has to unpin the pages we already pinned so 2754 * returning -errno is not an option 2755 */ 2756 if (nr_pinned) 2757 return nr_pinned; 2758 return ret; 2759 } 2760 return ret + nr_pinned; 2761 } 2762 2763 /** 2764 * get_user_pages_fast_only() - pin user pages in memory 2765 * @start: starting user address 2766 * @nr_pages: number of pages from start to pin 2767 * @gup_flags: flags modifying pin behaviour 2768 * @pages: array that receives pointers to the pages pinned. 2769 * Should be at least nr_pages long. 2770 * 2771 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2772 * the regular GUP. 2773 * Note a difference with get_user_pages_fast: this always returns the 2774 * number of pages pinned, 0 if no pages were pinned. 2775 * 2776 * If the architecture does not support this function, simply return with no 2777 * pages pinned. 2778 * 2779 * Careful, careful! COW breaking can go either way, so a non-write 2780 * access can get ambiguous page results. If you call this function without 2781 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2782 */ 2783 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2784 unsigned int gup_flags, struct page **pages) 2785 { 2786 int nr_pinned; 2787 /* 2788 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2789 * because gup fast is always a "pin with a +1 page refcount" request. 2790 * 2791 * FOLL_FAST_ONLY is required in order to match the API description of 2792 * this routine: no fall back to regular ("slow") GUP. 2793 */ 2794 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2795 2796 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2797 pages); 2798 2799 /* 2800 * As specified in the API description above, this routine is not 2801 * allowed to return negative values. However, the common core 2802 * routine internal_get_user_pages_fast() *can* return -errno. 2803 * Therefore, correct for that here: 2804 */ 2805 if (nr_pinned < 0) 2806 nr_pinned = 0; 2807 2808 return nr_pinned; 2809 } 2810 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2811 2812 /** 2813 * get_user_pages_fast() - pin user pages in memory 2814 * @start: starting user address 2815 * @nr_pages: number of pages from start to pin 2816 * @gup_flags: flags modifying pin behaviour 2817 * @pages: array that receives pointers to the pages pinned. 2818 * Should be at least nr_pages long. 2819 * 2820 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2821 * If not successful, it will fall back to taking the lock and 2822 * calling get_user_pages(). 2823 * 2824 * Returns number of pages pinned. This may be fewer than the number requested. 2825 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2826 * -errno. 2827 */ 2828 int get_user_pages_fast(unsigned long start, int nr_pages, 2829 unsigned int gup_flags, struct page **pages) 2830 { 2831 if (!is_valid_gup_flags(gup_flags)) 2832 return -EINVAL; 2833 2834 /* 2835 * The caller may or may not have explicitly set FOLL_GET; either way is 2836 * OK. However, internally (within mm/gup.c), gup fast variants must set 2837 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2838 * request. 2839 */ 2840 gup_flags |= FOLL_GET; 2841 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2842 } 2843 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2844 2845 /** 2846 * pin_user_pages_fast() - pin user pages in memory without taking locks 2847 * 2848 * @start: starting user address 2849 * @nr_pages: number of pages from start to pin 2850 * @gup_flags: flags modifying pin behaviour 2851 * @pages: array that receives pointers to the pages pinned. 2852 * Should be at least nr_pages long. 2853 * 2854 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2855 * get_user_pages_fast() for documentation on the function arguments, because 2856 * the arguments here are identical. 2857 * 2858 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2859 * see Documentation/core-api/pin_user_pages.rst for further details. 2860 */ 2861 int pin_user_pages_fast(unsigned long start, int nr_pages, 2862 unsigned int gup_flags, struct page **pages) 2863 { 2864 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2865 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2866 return -EINVAL; 2867 2868 gup_flags |= FOLL_PIN; 2869 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2870 } 2871 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2872 2873 /* 2874 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2875 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2876 * 2877 * The API rules are the same, too: no negative values may be returned. 2878 */ 2879 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2880 unsigned int gup_flags, struct page **pages) 2881 { 2882 int nr_pinned; 2883 2884 /* 2885 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2886 * rules require returning 0, rather than -errno: 2887 */ 2888 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2889 return 0; 2890 /* 2891 * FOLL_FAST_ONLY is required in order to match the API description of 2892 * this routine: no fall back to regular ("slow") GUP. 2893 */ 2894 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2895 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2896 pages); 2897 /* 2898 * This routine is not allowed to return negative values. However, 2899 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2900 * correct for that here: 2901 */ 2902 if (nr_pinned < 0) 2903 nr_pinned = 0; 2904 2905 return nr_pinned; 2906 } 2907 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2908 2909 /** 2910 * pin_user_pages_remote() - pin pages of a remote process 2911 * 2912 * @mm: mm_struct of target mm 2913 * @start: starting user address 2914 * @nr_pages: number of pages from start to pin 2915 * @gup_flags: flags modifying lookup behaviour 2916 * @pages: array that receives pointers to the pages pinned. 2917 * Should be at least nr_pages long. Or NULL, if caller 2918 * only intends to ensure the pages are faulted in. 2919 * @vmas: array of pointers to vmas corresponding to each page. 2920 * Or NULL if the caller does not require them. 2921 * @locked: pointer to lock flag indicating whether lock is held and 2922 * subsequently whether VM_FAULT_RETRY functionality can be 2923 * utilised. Lock must initially be held. 2924 * 2925 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2926 * get_user_pages_remote() for documentation on the function arguments, because 2927 * the arguments here are identical. 2928 * 2929 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2930 * see Documentation/core-api/pin_user_pages.rst for details. 2931 */ 2932 long pin_user_pages_remote(struct mm_struct *mm, 2933 unsigned long start, unsigned long nr_pages, 2934 unsigned int gup_flags, struct page **pages, 2935 struct vm_area_struct **vmas, int *locked) 2936 { 2937 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2938 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2939 return -EINVAL; 2940 2941 gup_flags |= FOLL_PIN; 2942 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2943 pages, vmas, locked); 2944 } 2945 EXPORT_SYMBOL(pin_user_pages_remote); 2946 2947 /** 2948 * pin_user_pages() - pin user pages in memory for use by other devices 2949 * 2950 * @start: starting user address 2951 * @nr_pages: number of pages from start to pin 2952 * @gup_flags: flags modifying lookup behaviour 2953 * @pages: array that receives pointers to the pages pinned. 2954 * Should be at least nr_pages long. Or NULL, if caller 2955 * only intends to ensure the pages are faulted in. 2956 * @vmas: array of pointers to vmas corresponding to each page. 2957 * Or NULL if the caller does not require them. 2958 * 2959 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2960 * FOLL_PIN is set. 2961 * 2962 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2963 * see Documentation/core-api/pin_user_pages.rst for details. 2964 */ 2965 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2966 unsigned int gup_flags, struct page **pages, 2967 struct vm_area_struct **vmas) 2968 { 2969 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2970 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2971 return -EINVAL; 2972 2973 gup_flags |= FOLL_PIN; 2974 return __gup_longterm_locked(current->mm, start, nr_pages, 2975 pages, vmas, gup_flags); 2976 } 2977 EXPORT_SYMBOL(pin_user_pages); 2978 2979 /* 2980 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2981 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2982 * FOLL_PIN and rejects FOLL_GET. 2983 */ 2984 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2985 struct page **pages, unsigned int gup_flags) 2986 { 2987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2988 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2989 return -EINVAL; 2990 2991 gup_flags |= FOLL_PIN; 2992 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2993 } 2994 EXPORT_SYMBOL(pin_user_pages_unlocked); 2995