xref: /linux/mm/gup.c (revision b05f8d7e077952d14acb63e3ccdf5f64404b59a4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio;
56 
57 		if (!page)
58 			continue;
59 
60 		folio = page_folio(page);
61 
62 		if (is_zero_page(page) ||
63 		    !folio_test_anon(folio))
64 			continue;
65 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
66 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
67 		else
68 			/* Either a PTE-mapped or a PMD-mapped THP. */
69 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
70 				       !PageAnonExclusive(page), page);
71 	}
72 }
73 
74 /*
75  * Return the folio with ref appropriately incremented,
76  * or NULL if that failed.
77  */
78 static inline struct folio *try_get_folio(struct page *page, int refs)
79 {
80 	struct folio *folio;
81 
82 retry:
83 	folio = page_folio(page);
84 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
85 		return NULL;
86 	if (unlikely(!folio_ref_try_add(folio, refs)))
87 		return NULL;
88 
89 	/*
90 	 * At this point we have a stable reference to the folio; but it
91 	 * could be that between calling page_folio() and the refcount
92 	 * increment, the folio was split, in which case we'd end up
93 	 * holding a reference on a folio that has nothing to do with the page
94 	 * we were given anymore.
95 	 * So now that the folio is stable, recheck that the page still
96 	 * belongs to this folio.
97 	 */
98 	if (unlikely(page_folio(page) != folio)) {
99 		folio_put_refs(folio, refs);
100 		goto retry;
101 	}
102 
103 	return folio;
104 }
105 
106 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
107 {
108 	if (flags & FOLL_PIN) {
109 		if (is_zero_folio(folio))
110 			return;
111 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
112 		if (folio_has_pincount(folio))
113 			atomic_sub(refs, &folio->_pincount);
114 		else
115 			refs *= GUP_PIN_COUNTING_BIAS;
116 	}
117 
118 	folio_put_refs(folio, refs);
119 }
120 
121 /**
122  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
123  * @folio:    pointer to folio to be grabbed
124  * @refs:     the value to (effectively) add to the folio's refcount
125  * @flags:    gup flags: these are the FOLL_* flag values
126  *
127  * This might not do anything at all, depending on the flags argument.
128  *
129  * "grab" names in this file mean, "look at flags to decide whether to use
130  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
131  *
132  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
133  * time.
134  *
135  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
136  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
137  *
138  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
139  *			be grabbed.
140  *
141  * It is called when we have a stable reference for the folio, typically in
142  * GUP slow path.
143  */
144 int __must_check try_grab_folio(struct folio *folio, int refs,
145 				unsigned int flags)
146 {
147 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
148 		return -ENOMEM;
149 
150 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
151 		return -EREMOTEIO;
152 
153 	if (flags & FOLL_GET)
154 		folio_ref_add(folio, refs);
155 	else if (flags & FOLL_PIN) {
156 		/*
157 		 * Don't take a pin on the zero page - it's not going anywhere
158 		 * and it is used in a *lot* of places.
159 		 */
160 		if (is_zero_folio(folio))
161 			return 0;
162 
163 		/*
164 		 * Increment the normal page refcount field at least once,
165 		 * so that the page really is pinned.
166 		 */
167 		if (folio_has_pincount(folio)) {
168 			folio_ref_add(folio, refs);
169 			atomic_add(refs, &folio->_pincount);
170 		} else {
171 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
172 		}
173 
174 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
175 	}
176 
177 	return 0;
178 }
179 
180 /**
181  * unpin_user_page() - release a dma-pinned page
182  * @page:            pointer to page to be released
183  *
184  * Pages that were pinned via pin_user_pages*() must be released via either
185  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
186  * that such pages can be separately tracked and uniquely handled. In
187  * particular, interactions with RDMA and filesystems need special handling.
188  */
189 void unpin_user_page(struct page *page)
190 {
191 	sanity_check_pinned_pages(&page, 1);
192 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
193 }
194 EXPORT_SYMBOL(unpin_user_page);
195 
196 /**
197  * unpin_folio() - release a dma-pinned folio
198  * @folio:         pointer to folio to be released
199  *
200  * Folios that were pinned via memfd_pin_folios() or other similar routines
201  * must be released either using unpin_folio() or unpin_folios().
202  */
203 void unpin_folio(struct folio *folio)
204 {
205 	gup_put_folio(folio, 1, FOLL_PIN);
206 }
207 EXPORT_SYMBOL_GPL(unpin_folio);
208 
209 /**
210  * folio_add_pin - Try to get an additional pin on a pinned folio
211  * @folio: The folio to be pinned
212  *
213  * Get an additional pin on a folio we already have a pin on.  Makes no change
214  * if the folio is a zero_page.
215  */
216 void folio_add_pin(struct folio *folio)
217 {
218 	if (is_zero_folio(folio))
219 		return;
220 
221 	/*
222 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
223 	 * page refcount field at least once, so that the page really is
224 	 * pinned.
225 	 */
226 	if (folio_has_pincount(folio)) {
227 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
228 		folio_ref_inc(folio);
229 		atomic_inc(&folio->_pincount);
230 	} else {
231 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
232 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
233 	}
234 }
235 
236 static inline struct folio *gup_folio_range_next(struct page *start,
237 		unsigned long npages, unsigned long i, unsigned int *ntails)
238 {
239 	struct page *next = nth_page(start, i);
240 	struct folio *folio = page_folio(next);
241 	unsigned int nr = 1;
242 
243 	if (folio_test_large(folio))
244 		nr = min_t(unsigned int, npages - i,
245 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
246 
247 	*ntails = nr;
248 	return folio;
249 }
250 
251 static inline struct folio *gup_folio_next(struct page **list,
252 		unsigned long npages, unsigned long i, unsigned int *ntails)
253 {
254 	struct folio *folio = page_folio(list[i]);
255 	unsigned int nr;
256 
257 	for (nr = i + 1; nr < npages; nr++) {
258 		if (page_folio(list[nr]) != folio)
259 			break;
260 	}
261 
262 	*ntails = nr - i;
263 	return folio;
264 }
265 
266 /**
267  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
268  * @pages:  array of pages to be maybe marked dirty, and definitely released.
269  * @npages: number of pages in the @pages array.
270  * @make_dirty: whether to mark the pages dirty
271  *
272  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
273  * variants called on that page.
274  *
275  * For each page in the @pages array, make that page (or its head page, if a
276  * compound page) dirty, if @make_dirty is true, and if the page was previously
277  * listed as clean. In any case, releases all pages using unpin_user_page(),
278  * possibly via unpin_user_pages(), for the non-dirty case.
279  *
280  * Please see the unpin_user_page() documentation for details.
281  *
282  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
283  * required, then the caller should a) verify that this is really correct,
284  * because _lock() is usually required, and b) hand code it:
285  * set_page_dirty_lock(), unpin_user_page().
286  *
287  */
288 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
289 				 bool make_dirty)
290 {
291 	unsigned long i;
292 	struct folio *folio;
293 	unsigned int nr;
294 
295 	if (!make_dirty) {
296 		unpin_user_pages(pages, npages);
297 		return;
298 	}
299 
300 	sanity_check_pinned_pages(pages, npages);
301 	for (i = 0; i < npages; i += nr) {
302 		folio = gup_folio_next(pages, npages, i, &nr);
303 		/*
304 		 * Checking PageDirty at this point may race with
305 		 * clear_page_dirty_for_io(), but that's OK. Two key
306 		 * cases:
307 		 *
308 		 * 1) This code sees the page as already dirty, so it
309 		 * skips the call to set_page_dirty(). That could happen
310 		 * because clear_page_dirty_for_io() called
311 		 * folio_mkclean(), followed by set_page_dirty().
312 		 * However, now the page is going to get written back,
313 		 * which meets the original intention of setting it
314 		 * dirty, so all is well: clear_page_dirty_for_io() goes
315 		 * on to call TestClearPageDirty(), and write the page
316 		 * back.
317 		 *
318 		 * 2) This code sees the page as clean, so it calls
319 		 * set_page_dirty(). The page stays dirty, despite being
320 		 * written back, so it gets written back again in the
321 		 * next writeback cycle. This is harmless.
322 		 */
323 		if (!folio_test_dirty(folio)) {
324 			folio_lock(folio);
325 			folio_mark_dirty(folio);
326 			folio_unlock(folio);
327 		}
328 		gup_put_folio(folio, nr, FOLL_PIN);
329 	}
330 }
331 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
332 
333 /**
334  * unpin_user_page_range_dirty_lock() - release and optionally dirty
335  * gup-pinned page range
336  *
337  * @page:  the starting page of a range maybe marked dirty, and definitely released.
338  * @npages: number of consecutive pages to release.
339  * @make_dirty: whether to mark the pages dirty
340  *
341  * "gup-pinned page range" refers to a range of pages that has had one of the
342  * pin_user_pages() variants called on that page.
343  *
344  * For the page ranges defined by [page .. page+npages], make that range (or
345  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
346  * page range was previously listed as clean.
347  *
348  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
349  * required, then the caller should a) verify that this is really correct,
350  * because _lock() is usually required, and b) hand code it:
351  * set_page_dirty_lock(), unpin_user_page().
352  *
353  */
354 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
355 				      bool make_dirty)
356 {
357 	unsigned long i;
358 	struct folio *folio;
359 	unsigned int nr;
360 
361 	for (i = 0; i < npages; i += nr) {
362 		folio = gup_folio_range_next(page, npages, i, &nr);
363 		if (make_dirty && !folio_test_dirty(folio)) {
364 			folio_lock(folio);
365 			folio_mark_dirty(folio);
366 			folio_unlock(folio);
367 		}
368 		gup_put_folio(folio, nr, FOLL_PIN);
369 	}
370 }
371 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
372 
373 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
374 {
375 	unsigned long i;
376 	struct folio *folio;
377 	unsigned int nr;
378 
379 	/*
380 	 * Don't perform any sanity checks because we might have raced with
381 	 * fork() and some anonymous pages might now actually be shared --
382 	 * which is why we're unpinning after all.
383 	 */
384 	for (i = 0; i < npages; i += nr) {
385 		folio = gup_folio_next(pages, npages, i, &nr);
386 		gup_put_folio(folio, nr, FOLL_PIN);
387 	}
388 }
389 
390 /**
391  * unpin_user_pages() - release an array of gup-pinned pages.
392  * @pages:  array of pages to be marked dirty and released.
393  * @npages: number of pages in the @pages array.
394  *
395  * For each page in the @pages array, release the page using unpin_user_page().
396  *
397  * Please see the unpin_user_page() documentation for details.
398  */
399 void unpin_user_pages(struct page **pages, unsigned long npages)
400 {
401 	unsigned long i;
402 	struct folio *folio;
403 	unsigned int nr;
404 
405 	/*
406 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
407 	 * leaving them pinned), but probably not. More likely, gup/pup returned
408 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
409 	 */
410 	if (WARN_ON(IS_ERR_VALUE(npages)))
411 		return;
412 
413 	sanity_check_pinned_pages(pages, npages);
414 	for (i = 0; i < npages; i += nr) {
415 		if (!pages[i]) {
416 			nr = 1;
417 			continue;
418 		}
419 		folio = gup_folio_next(pages, npages, i, &nr);
420 		gup_put_folio(folio, nr, FOLL_PIN);
421 	}
422 }
423 EXPORT_SYMBOL(unpin_user_pages);
424 
425 /**
426  * unpin_user_folio() - release pages of a folio
427  * @folio:  pointer to folio to be released
428  * @npages: number of pages of same folio
429  *
430  * Release npages of the folio
431  */
432 void unpin_user_folio(struct folio *folio, unsigned long npages)
433 {
434 	gup_put_folio(folio, npages, FOLL_PIN);
435 }
436 EXPORT_SYMBOL(unpin_user_folio);
437 
438 /**
439  * unpin_folios() - release an array of gup-pinned folios.
440  * @folios:  array of folios to be marked dirty and released.
441  * @nfolios: number of folios in the @folios array.
442  *
443  * For each folio in the @folios array, release the folio using gup_put_folio.
444  *
445  * Please see the unpin_folio() documentation for details.
446  */
447 void unpin_folios(struct folio **folios, unsigned long nfolios)
448 {
449 	unsigned long i = 0, j;
450 
451 	/*
452 	 * If this WARN_ON() fires, then the system *might* be leaking folios
453 	 * (by leaving them pinned), but probably not. More likely, gup/pup
454 	 * returned a hard -ERRNO error to the caller, who erroneously passed
455 	 * it here.
456 	 */
457 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
458 		return;
459 
460 	while (i < nfolios) {
461 		for (j = i + 1; j < nfolios; j++)
462 			if (folios[i] != folios[j])
463 				break;
464 
465 		if (folios[i])
466 			gup_put_folio(folios[i], j - i, FOLL_PIN);
467 		i = j;
468 	}
469 }
470 EXPORT_SYMBOL_GPL(unpin_folios);
471 
472 /*
473  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
474  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
475  * cache bouncing on large SMP machines for concurrent pinned gups.
476  */
477 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
478 {
479 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
480 		set_bit(MMF_HAS_PINNED, mm_flags);
481 }
482 
483 #ifdef CONFIG_MMU
484 
485 #ifdef CONFIG_HAVE_GUP_FAST
486 static int record_subpages(struct page *page, unsigned long sz,
487 			   unsigned long addr, unsigned long end,
488 			   struct page **pages)
489 {
490 	struct page *start_page;
491 	int nr;
492 
493 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
494 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
495 		pages[nr] = nth_page(start_page, nr);
496 
497 	return nr;
498 }
499 
500 /**
501  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
502  * @page:  pointer to page to be grabbed
503  * @refs:  the value to (effectively) add to the folio's refcount
504  * @flags: gup flags: these are the FOLL_* flag values.
505  *
506  * "grab" names in this file mean, "look at flags to decide whether to use
507  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
508  *
509  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
510  * same time. (That's true throughout the get_user_pages*() and
511  * pin_user_pages*() APIs.) Cases:
512  *
513  *    FOLL_GET: folio's refcount will be incremented by @refs.
514  *
515  *    FOLL_PIN on large folios: folio's refcount will be incremented by
516  *    @refs, and its pincount will be incremented by @refs.
517  *
518  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
519  *    @refs * GUP_PIN_COUNTING_BIAS.
520  *
521  * Return: The folio containing @page (with refcount appropriately
522  * incremented) for success, or NULL upon failure. If neither FOLL_GET
523  * nor FOLL_PIN was set, that's considered failure, and furthermore,
524  * a likely bug in the caller, so a warning is also emitted.
525  *
526  * It uses add ref unless zero to elevate the folio refcount and must be called
527  * in fast path only.
528  */
529 static struct folio *try_grab_folio_fast(struct page *page, int refs,
530 					 unsigned int flags)
531 {
532 	struct folio *folio;
533 
534 	/* Raise warn if it is not called in fast GUP */
535 	VM_WARN_ON_ONCE(!irqs_disabled());
536 
537 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
538 		return NULL;
539 
540 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
541 		return NULL;
542 
543 	if (flags & FOLL_GET)
544 		return try_get_folio(page, refs);
545 
546 	/* FOLL_PIN is set */
547 
548 	/*
549 	 * Don't take a pin on the zero page - it's not going anywhere
550 	 * and it is used in a *lot* of places.
551 	 */
552 	if (is_zero_page(page))
553 		return page_folio(page);
554 
555 	folio = try_get_folio(page, refs);
556 	if (!folio)
557 		return NULL;
558 
559 	/*
560 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
561 	 * right zone, so fail and let the caller fall back to the slow
562 	 * path.
563 	 */
564 	if (unlikely((flags & FOLL_LONGTERM) &&
565 		     !folio_is_longterm_pinnable(folio))) {
566 		folio_put_refs(folio, refs);
567 		return NULL;
568 	}
569 
570 	/*
571 	 * When pinning a large folio, use an exact count to track it.
572 	 *
573 	 * However, be sure to *also* increment the normal folio
574 	 * refcount field at least once, so that the folio really
575 	 * is pinned.  That's why the refcount from the earlier
576 	 * try_get_folio() is left intact.
577 	 */
578 	if (folio_has_pincount(folio))
579 		atomic_add(refs, &folio->_pincount);
580 	else
581 		folio_ref_add(folio,
582 				refs * (GUP_PIN_COUNTING_BIAS - 1));
583 	/*
584 	 * Adjust the pincount before re-checking the PTE for changes.
585 	 * This is essentially a smp_mb() and is paired with a memory
586 	 * barrier in folio_try_share_anon_rmap_*().
587 	 */
588 	smp_mb__after_atomic();
589 
590 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
591 
592 	return folio;
593 }
594 #endif	/* CONFIG_HAVE_GUP_FAST */
595 
596 /* Common code for can_follow_write_* */
597 static inline bool can_follow_write_common(struct page *page,
598 		struct vm_area_struct *vma, unsigned int flags)
599 {
600 	/* Maybe FOLL_FORCE is set to override it? */
601 	if (!(flags & FOLL_FORCE))
602 		return false;
603 
604 	/* But FOLL_FORCE has no effect on shared mappings */
605 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
606 		return false;
607 
608 	/* ... or read-only private ones */
609 	if (!(vma->vm_flags & VM_MAYWRITE))
610 		return false;
611 
612 	/* ... or already writable ones that just need to take a write fault */
613 	if (vma->vm_flags & VM_WRITE)
614 		return false;
615 
616 	/*
617 	 * See can_change_pte_writable(): we broke COW and could map the page
618 	 * writable if we have an exclusive anonymous page ...
619 	 */
620 	return page && PageAnon(page) && PageAnonExclusive(page);
621 }
622 
623 static struct page *no_page_table(struct vm_area_struct *vma,
624 				  unsigned int flags, unsigned long address)
625 {
626 	if (!(flags & FOLL_DUMP))
627 		return NULL;
628 
629 	/*
630 	 * When core dumping, we don't want to allocate unnecessary pages or
631 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
632 	 * then get_dump_page() will return NULL to leave a hole in the dump.
633 	 * But we can only make this optimization where a hole would surely
634 	 * be zero-filled if handle_mm_fault() actually did handle it.
635 	 */
636 	if (is_vm_hugetlb_page(vma)) {
637 		struct hstate *h = hstate_vma(vma);
638 
639 		if (!hugetlbfs_pagecache_present(h, vma, address))
640 			return ERR_PTR(-EFAULT);
641 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
642 		return ERR_PTR(-EFAULT);
643 	}
644 
645 	return NULL;
646 }
647 
648 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
649 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
650 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
651 					struct vm_area_struct *vma,
652 					unsigned int flags)
653 {
654 	/* If the pud is writable, we can write to the page. */
655 	if (pud_write(pud))
656 		return true;
657 
658 	return can_follow_write_common(page, vma, flags);
659 }
660 
661 static struct page *follow_huge_pud(struct vm_area_struct *vma,
662 				    unsigned long addr, pud_t *pudp,
663 				    int flags, struct follow_page_context *ctx)
664 {
665 	struct mm_struct *mm = vma->vm_mm;
666 	struct page *page;
667 	pud_t pud = *pudp;
668 	unsigned long pfn = pud_pfn(pud);
669 	int ret;
670 
671 	assert_spin_locked(pud_lockptr(mm, pudp));
672 
673 	if (!pud_present(pud))
674 		return NULL;
675 
676 	if ((flags & FOLL_WRITE) &&
677 	    !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
678 		return NULL;
679 
680 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
681 
682 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
683 	    pud_devmap(pud)) {
684 		/*
685 		 * device mapped pages can only be returned if the caller
686 		 * will manage the page reference count.
687 		 *
688 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
689 		 * assert that here:
690 		 */
691 		if (!(flags & (FOLL_GET | FOLL_PIN)))
692 			return ERR_PTR(-EEXIST);
693 
694 		if (flags & FOLL_TOUCH)
695 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
696 
697 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
698 		if (!ctx->pgmap)
699 			return ERR_PTR(-EFAULT);
700 	}
701 
702 	page = pfn_to_page(pfn);
703 
704 	if (!pud_devmap(pud) && !pud_write(pud) &&
705 	    gup_must_unshare(vma, flags, page))
706 		return ERR_PTR(-EMLINK);
707 
708 	ret = try_grab_folio(page_folio(page), 1, flags);
709 	if (ret)
710 		page = ERR_PTR(ret);
711 	else
712 		ctx->page_mask = HPAGE_PUD_NR - 1;
713 
714 	return page;
715 }
716 
717 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
718 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
719 					struct vm_area_struct *vma,
720 					unsigned int flags)
721 {
722 	/* If the pmd is writable, we can write to the page. */
723 	if (pmd_write(pmd))
724 		return true;
725 
726 	if (!can_follow_write_common(page, vma, flags))
727 		return false;
728 
729 	/* ... and a write-fault isn't required for other reasons. */
730 	if (pmd_needs_soft_dirty_wp(vma, pmd))
731 		return false;
732 	return !userfaultfd_huge_pmd_wp(vma, pmd);
733 }
734 
735 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
736 				    unsigned long addr, pmd_t *pmd,
737 				    unsigned int flags,
738 				    struct follow_page_context *ctx)
739 {
740 	struct mm_struct *mm = vma->vm_mm;
741 	pmd_t pmdval = *pmd;
742 	struct page *page;
743 	int ret;
744 
745 	assert_spin_locked(pmd_lockptr(mm, pmd));
746 
747 	page = pmd_page(pmdval);
748 	if ((flags & FOLL_WRITE) &&
749 	    !can_follow_write_pmd(pmdval, page, vma, flags))
750 		return NULL;
751 
752 	/* Avoid dumping huge zero page */
753 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
754 		return ERR_PTR(-EFAULT);
755 
756 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
757 		return NULL;
758 
759 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
760 		return ERR_PTR(-EMLINK);
761 
762 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
763 			!PageAnonExclusive(page), page);
764 
765 	ret = try_grab_folio(page_folio(page), 1, flags);
766 	if (ret)
767 		return ERR_PTR(ret);
768 
769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
770 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
771 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
772 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
773 
774 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
775 	ctx->page_mask = HPAGE_PMD_NR - 1;
776 
777 	return page;
778 }
779 
780 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
781 static struct page *follow_huge_pud(struct vm_area_struct *vma,
782 				    unsigned long addr, pud_t *pudp,
783 				    int flags, struct follow_page_context *ctx)
784 {
785 	return NULL;
786 }
787 
788 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
789 				    unsigned long addr, pmd_t *pmd,
790 				    unsigned int flags,
791 				    struct follow_page_context *ctx)
792 {
793 	return NULL;
794 }
795 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
796 
797 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
798 		pte_t *pte, unsigned int flags)
799 {
800 	if (flags & FOLL_TOUCH) {
801 		pte_t orig_entry = ptep_get(pte);
802 		pte_t entry = orig_entry;
803 
804 		if (flags & FOLL_WRITE)
805 			entry = pte_mkdirty(entry);
806 		entry = pte_mkyoung(entry);
807 
808 		if (!pte_same(orig_entry, entry)) {
809 			set_pte_at(vma->vm_mm, address, pte, entry);
810 			update_mmu_cache(vma, address, pte);
811 		}
812 	}
813 
814 	/* Proper page table entry exists, but no corresponding struct page */
815 	return -EEXIST;
816 }
817 
818 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
819 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
820 					struct vm_area_struct *vma,
821 					unsigned int flags)
822 {
823 	/* If the pte is writable, we can write to the page. */
824 	if (pte_write(pte))
825 		return true;
826 
827 	if (!can_follow_write_common(page, vma, flags))
828 		return false;
829 
830 	/* ... and a write-fault isn't required for other reasons. */
831 	if (pte_needs_soft_dirty_wp(vma, pte))
832 		return false;
833 	return !userfaultfd_pte_wp(vma, pte);
834 }
835 
836 static struct page *follow_page_pte(struct vm_area_struct *vma,
837 		unsigned long address, pmd_t *pmd, unsigned int flags,
838 		struct dev_pagemap **pgmap)
839 {
840 	struct mm_struct *mm = vma->vm_mm;
841 	struct folio *folio;
842 	struct page *page;
843 	spinlock_t *ptl;
844 	pte_t *ptep, pte;
845 	int ret;
846 
847 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
848 	if (!ptep)
849 		return no_page_table(vma, flags, address);
850 	pte = ptep_get(ptep);
851 	if (!pte_present(pte))
852 		goto no_page;
853 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
854 		goto no_page;
855 
856 	page = vm_normal_page(vma, address, pte);
857 
858 	/*
859 	 * We only care about anon pages in can_follow_write_pte() and don't
860 	 * have to worry about pte_devmap() because they are never anon.
861 	 */
862 	if ((flags & FOLL_WRITE) &&
863 	    !can_follow_write_pte(pte, page, vma, flags)) {
864 		page = NULL;
865 		goto out;
866 	}
867 
868 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
869 		/*
870 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
871 		 * case since they are only valid while holding the pgmap
872 		 * reference.
873 		 */
874 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
875 		if (*pgmap)
876 			page = pte_page(pte);
877 		else
878 			goto no_page;
879 	} else if (unlikely(!page)) {
880 		if (flags & FOLL_DUMP) {
881 			/* Avoid special (like zero) pages in core dumps */
882 			page = ERR_PTR(-EFAULT);
883 			goto out;
884 		}
885 
886 		if (is_zero_pfn(pte_pfn(pte))) {
887 			page = pte_page(pte);
888 		} else {
889 			ret = follow_pfn_pte(vma, address, ptep, flags);
890 			page = ERR_PTR(ret);
891 			goto out;
892 		}
893 	}
894 	folio = page_folio(page);
895 
896 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
897 		page = ERR_PTR(-EMLINK);
898 		goto out;
899 	}
900 
901 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
902 		       !PageAnonExclusive(page), page);
903 
904 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
905 	ret = try_grab_folio(folio, 1, flags);
906 	if (unlikely(ret)) {
907 		page = ERR_PTR(ret);
908 		goto out;
909 	}
910 
911 	/*
912 	 * We need to make the page accessible if and only if we are going
913 	 * to access its content (the FOLL_PIN case).  Please see
914 	 * Documentation/core-api/pin_user_pages.rst for details.
915 	 */
916 	if (flags & FOLL_PIN) {
917 		ret = arch_make_folio_accessible(folio);
918 		if (ret) {
919 			unpin_user_page(page);
920 			page = ERR_PTR(ret);
921 			goto out;
922 		}
923 	}
924 	if (flags & FOLL_TOUCH) {
925 		if ((flags & FOLL_WRITE) &&
926 		    !pte_dirty(pte) && !folio_test_dirty(folio))
927 			folio_mark_dirty(folio);
928 		/*
929 		 * pte_mkyoung() would be more correct here, but atomic care
930 		 * is needed to avoid losing the dirty bit: it is easier to use
931 		 * folio_mark_accessed().
932 		 */
933 		folio_mark_accessed(folio);
934 	}
935 out:
936 	pte_unmap_unlock(ptep, ptl);
937 	return page;
938 no_page:
939 	pte_unmap_unlock(ptep, ptl);
940 	if (!pte_none(pte))
941 		return NULL;
942 	return no_page_table(vma, flags, address);
943 }
944 
945 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
946 				    unsigned long address, pud_t *pudp,
947 				    unsigned int flags,
948 				    struct follow_page_context *ctx)
949 {
950 	pmd_t *pmd, pmdval;
951 	spinlock_t *ptl;
952 	struct page *page;
953 	struct mm_struct *mm = vma->vm_mm;
954 
955 	pmd = pmd_offset(pudp, address);
956 	pmdval = pmdp_get_lockless(pmd);
957 	if (pmd_none(pmdval))
958 		return no_page_table(vma, flags, address);
959 	if (!pmd_present(pmdval))
960 		return no_page_table(vma, flags, address);
961 	if (pmd_devmap(pmdval)) {
962 		ptl = pmd_lock(mm, pmd);
963 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
964 		spin_unlock(ptl);
965 		if (page)
966 			return page;
967 		return no_page_table(vma, flags, address);
968 	}
969 	if (likely(!pmd_leaf(pmdval)))
970 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
971 
972 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
973 		return no_page_table(vma, flags, address);
974 
975 	ptl = pmd_lock(mm, pmd);
976 	pmdval = *pmd;
977 	if (unlikely(!pmd_present(pmdval))) {
978 		spin_unlock(ptl);
979 		return no_page_table(vma, flags, address);
980 	}
981 	if (unlikely(!pmd_leaf(pmdval))) {
982 		spin_unlock(ptl);
983 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
984 	}
985 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
986 		spin_unlock(ptl);
987 		split_huge_pmd(vma, pmd, address);
988 		/* If pmd was left empty, stuff a page table in there quickly */
989 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
990 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
991 	}
992 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
993 	spin_unlock(ptl);
994 	return page;
995 }
996 
997 static struct page *follow_pud_mask(struct vm_area_struct *vma,
998 				    unsigned long address, p4d_t *p4dp,
999 				    unsigned int flags,
1000 				    struct follow_page_context *ctx)
1001 {
1002 	pud_t *pudp, pud;
1003 	spinlock_t *ptl;
1004 	struct page *page;
1005 	struct mm_struct *mm = vma->vm_mm;
1006 
1007 	pudp = pud_offset(p4dp, address);
1008 	pud = READ_ONCE(*pudp);
1009 	if (!pud_present(pud))
1010 		return no_page_table(vma, flags, address);
1011 	if (pud_leaf(pud)) {
1012 		ptl = pud_lock(mm, pudp);
1013 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1014 		spin_unlock(ptl);
1015 		if (page)
1016 			return page;
1017 		return no_page_table(vma, flags, address);
1018 	}
1019 	if (unlikely(pud_bad(pud)))
1020 		return no_page_table(vma, flags, address);
1021 
1022 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1023 }
1024 
1025 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1026 				    unsigned long address, pgd_t *pgdp,
1027 				    unsigned int flags,
1028 				    struct follow_page_context *ctx)
1029 {
1030 	p4d_t *p4dp, p4d;
1031 
1032 	p4dp = p4d_offset(pgdp, address);
1033 	p4d = READ_ONCE(*p4dp);
1034 	BUILD_BUG_ON(p4d_leaf(p4d));
1035 
1036 	if (!p4d_present(p4d) || p4d_bad(p4d))
1037 		return no_page_table(vma, flags, address);
1038 
1039 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1040 }
1041 
1042 /**
1043  * follow_page_mask - look up a page descriptor from a user-virtual address
1044  * @vma: vm_area_struct mapping @address
1045  * @address: virtual address to look up
1046  * @flags: flags modifying lookup behaviour
1047  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1048  *       pointer to output page_mask
1049  *
1050  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1051  *
1052  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1053  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1054  *
1055  * When getting an anonymous page and the caller has to trigger unsharing
1056  * of a shared anonymous page first, -EMLINK is returned. The caller should
1057  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1058  * relevant with FOLL_PIN and !FOLL_WRITE.
1059  *
1060  * On output, the @ctx->page_mask is set according to the size of the page.
1061  *
1062  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1063  * an error pointer if there is a mapping to something not represented
1064  * by a page descriptor (see also vm_normal_page()).
1065  */
1066 static struct page *follow_page_mask(struct vm_area_struct *vma,
1067 			      unsigned long address, unsigned int flags,
1068 			      struct follow_page_context *ctx)
1069 {
1070 	pgd_t *pgd;
1071 	struct mm_struct *mm = vma->vm_mm;
1072 	struct page *page;
1073 
1074 	vma_pgtable_walk_begin(vma);
1075 
1076 	ctx->page_mask = 0;
1077 	pgd = pgd_offset(mm, address);
1078 
1079 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1080 		page = no_page_table(vma, flags, address);
1081 	else
1082 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1083 
1084 	vma_pgtable_walk_end(vma);
1085 
1086 	return page;
1087 }
1088 
1089 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1090 		unsigned int gup_flags, struct vm_area_struct **vma,
1091 		struct page **page)
1092 {
1093 	pgd_t *pgd;
1094 	p4d_t *p4d;
1095 	pud_t *pud;
1096 	pmd_t *pmd;
1097 	pte_t *pte;
1098 	pte_t entry;
1099 	int ret = -EFAULT;
1100 
1101 	/* user gate pages are read-only */
1102 	if (gup_flags & FOLL_WRITE)
1103 		return -EFAULT;
1104 	if (address > TASK_SIZE)
1105 		pgd = pgd_offset_k(address);
1106 	else
1107 		pgd = pgd_offset_gate(mm, address);
1108 	if (pgd_none(*pgd))
1109 		return -EFAULT;
1110 	p4d = p4d_offset(pgd, address);
1111 	if (p4d_none(*p4d))
1112 		return -EFAULT;
1113 	pud = pud_offset(p4d, address);
1114 	if (pud_none(*pud))
1115 		return -EFAULT;
1116 	pmd = pmd_offset(pud, address);
1117 	if (!pmd_present(*pmd))
1118 		return -EFAULT;
1119 	pte = pte_offset_map(pmd, address);
1120 	if (!pte)
1121 		return -EFAULT;
1122 	entry = ptep_get(pte);
1123 	if (pte_none(entry))
1124 		goto unmap;
1125 	*vma = get_gate_vma(mm);
1126 	if (!page)
1127 		goto out;
1128 	*page = vm_normal_page(*vma, address, entry);
1129 	if (!*page) {
1130 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1131 			goto unmap;
1132 		*page = pte_page(entry);
1133 	}
1134 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1135 	if (unlikely(ret))
1136 		goto unmap;
1137 out:
1138 	ret = 0;
1139 unmap:
1140 	pte_unmap(pte);
1141 	return ret;
1142 }
1143 
1144 /*
1145  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1146  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1147  * to 0 and -EBUSY returned.
1148  */
1149 static int faultin_page(struct vm_area_struct *vma,
1150 		unsigned long address, unsigned int flags, bool unshare,
1151 		int *locked)
1152 {
1153 	unsigned int fault_flags = 0;
1154 	vm_fault_t ret;
1155 
1156 	if (flags & FOLL_NOFAULT)
1157 		return -EFAULT;
1158 	if (flags & FOLL_WRITE)
1159 		fault_flags |= FAULT_FLAG_WRITE;
1160 	if (flags & FOLL_REMOTE)
1161 		fault_flags |= FAULT_FLAG_REMOTE;
1162 	if (flags & FOLL_UNLOCKABLE) {
1163 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1164 		/*
1165 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1166 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1167 		 * That's because some callers may not be prepared to
1168 		 * handle early exits caused by non-fatal signals.
1169 		 */
1170 		if (flags & FOLL_INTERRUPTIBLE)
1171 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1172 	}
1173 	if (flags & FOLL_NOWAIT)
1174 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1175 	if (flags & FOLL_TRIED) {
1176 		/*
1177 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1178 		 * can co-exist
1179 		 */
1180 		fault_flags |= FAULT_FLAG_TRIED;
1181 	}
1182 	if (unshare) {
1183 		fault_flags |= FAULT_FLAG_UNSHARE;
1184 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1185 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1186 	}
1187 
1188 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1189 
1190 	if (ret & VM_FAULT_COMPLETED) {
1191 		/*
1192 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1193 		 * mmap lock in the page fault handler. Sanity check this.
1194 		 */
1195 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1196 		*locked = 0;
1197 
1198 		/*
1199 		 * We should do the same as VM_FAULT_RETRY, but let's not
1200 		 * return -EBUSY since that's not reflecting the reality of
1201 		 * what has happened - we've just fully completed a page
1202 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1203 		 * that we want to take the mmap lock _again_.
1204 		 */
1205 		return -EAGAIN;
1206 	}
1207 
1208 	if (ret & VM_FAULT_ERROR) {
1209 		int err = vm_fault_to_errno(ret, flags);
1210 
1211 		if (err)
1212 			return err;
1213 		BUG();
1214 	}
1215 
1216 	if (ret & VM_FAULT_RETRY) {
1217 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1218 			*locked = 0;
1219 		return -EBUSY;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Writing to file-backed mappings which require folio dirty tracking using GUP
1227  * is a fundamentally broken operation, as kernel write access to GUP mappings
1228  * do not adhere to the semantics expected by a file system.
1229  *
1230  * Consider the following scenario:-
1231  *
1232  * 1. A folio is written to via GUP which write-faults the memory, notifying
1233  *    the file system and dirtying the folio.
1234  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1235  *    the PTE being marked read-only.
1236  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1237  *    direct mapping.
1238  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1239  *    (though it does not have to).
1240  *
1241  * This results in both data being written to a folio without writenotify, and
1242  * the folio being dirtied unexpectedly (if the caller decides to do so).
1243  */
1244 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1245 					  unsigned long gup_flags)
1246 {
1247 	/*
1248 	 * If we aren't pinning then no problematic write can occur. A long term
1249 	 * pin is the most egregious case so this is the case we disallow.
1250 	 */
1251 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1252 	    (FOLL_PIN | FOLL_LONGTERM))
1253 		return true;
1254 
1255 	/*
1256 	 * If the VMA does not require dirty tracking then no problematic write
1257 	 * can occur either.
1258 	 */
1259 	return !vma_needs_dirty_tracking(vma);
1260 }
1261 
1262 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1263 {
1264 	vm_flags_t vm_flags = vma->vm_flags;
1265 	int write = (gup_flags & FOLL_WRITE);
1266 	int foreign = (gup_flags & FOLL_REMOTE);
1267 	bool vma_anon = vma_is_anonymous(vma);
1268 
1269 	if (vm_flags & (VM_IO | VM_PFNMAP))
1270 		return -EFAULT;
1271 
1272 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1273 		return -EFAULT;
1274 
1275 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1276 		return -EOPNOTSUPP;
1277 
1278 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1279 		return -EOPNOTSUPP;
1280 
1281 	if (vma_is_secretmem(vma))
1282 		return -EFAULT;
1283 
1284 	if (write) {
1285 		if (!vma_anon &&
1286 		    !writable_file_mapping_allowed(vma, gup_flags))
1287 			return -EFAULT;
1288 
1289 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1290 			if (!(gup_flags & FOLL_FORCE))
1291 				return -EFAULT;
1292 			/*
1293 			 * We used to let the write,force case do COW in a
1294 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1295 			 * set a breakpoint in a read-only mapping of an
1296 			 * executable, without corrupting the file (yet only
1297 			 * when that file had been opened for writing!).
1298 			 * Anon pages in shared mappings are surprising: now
1299 			 * just reject it.
1300 			 */
1301 			if (!is_cow_mapping(vm_flags))
1302 				return -EFAULT;
1303 		}
1304 	} else if (!(vm_flags & VM_READ)) {
1305 		if (!(gup_flags & FOLL_FORCE))
1306 			return -EFAULT;
1307 		/*
1308 		 * Is there actually any vma we can reach here which does not
1309 		 * have VM_MAYREAD set?
1310 		 */
1311 		if (!(vm_flags & VM_MAYREAD))
1312 			return -EFAULT;
1313 	}
1314 	/*
1315 	 * gups are always data accesses, not instruction
1316 	 * fetches, so execute=false here
1317 	 */
1318 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1319 		return -EFAULT;
1320 	return 0;
1321 }
1322 
1323 /*
1324  * This is "vma_lookup()", but with a warning if we would have
1325  * historically expanded the stack in the GUP code.
1326  */
1327 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1328 	 unsigned long addr)
1329 {
1330 #ifdef CONFIG_STACK_GROWSUP
1331 	return vma_lookup(mm, addr);
1332 #else
1333 	static volatile unsigned long next_warn;
1334 	struct vm_area_struct *vma;
1335 	unsigned long now, next;
1336 
1337 	vma = find_vma(mm, addr);
1338 	if (!vma || (addr >= vma->vm_start))
1339 		return vma;
1340 
1341 	/* Only warn for half-way relevant accesses */
1342 	if (!(vma->vm_flags & VM_GROWSDOWN))
1343 		return NULL;
1344 	if (vma->vm_start - addr > 65536)
1345 		return NULL;
1346 
1347 	/* Let's not warn more than once an hour.. */
1348 	now = jiffies; next = next_warn;
1349 	if (next && time_before(now, next))
1350 		return NULL;
1351 	next_warn = now + 60*60*HZ;
1352 
1353 	/* Let people know things may have changed. */
1354 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1355 		current->comm, task_pid_nr(current),
1356 		vma->vm_start, vma->vm_end, addr);
1357 	dump_stack();
1358 	return NULL;
1359 #endif
1360 }
1361 
1362 /**
1363  * __get_user_pages() - pin user pages in memory
1364  * @mm:		mm_struct of target mm
1365  * @start:	starting user address
1366  * @nr_pages:	number of pages from start to pin
1367  * @gup_flags:	flags modifying pin behaviour
1368  * @pages:	array that receives pointers to the pages pinned.
1369  *		Should be at least nr_pages long. Or NULL, if caller
1370  *		only intends to ensure the pages are faulted in.
1371  * @locked:     whether we're still with the mmap_lock held
1372  *
1373  * Returns either number of pages pinned (which may be less than the
1374  * number requested), or an error. Details about the return value:
1375  *
1376  * -- If nr_pages is 0, returns 0.
1377  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1378  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1379  *    pages pinned. Again, this may be less than nr_pages.
1380  * -- 0 return value is possible when the fault would need to be retried.
1381  *
1382  * The caller is responsible for releasing returned @pages, via put_page().
1383  *
1384  * Must be called with mmap_lock held.  It may be released.  See below.
1385  *
1386  * __get_user_pages walks a process's page tables and takes a reference to
1387  * each struct page that each user address corresponds to at a given
1388  * instant. That is, it takes the page that would be accessed if a user
1389  * thread accesses the given user virtual address at that instant.
1390  *
1391  * This does not guarantee that the page exists in the user mappings when
1392  * __get_user_pages returns, and there may even be a completely different
1393  * page there in some cases (eg. if mmapped pagecache has been invalidated
1394  * and subsequently re-faulted). However it does guarantee that the page
1395  * won't be freed completely. And mostly callers simply care that the page
1396  * contains data that was valid *at some point in time*. Typically, an IO
1397  * or similar operation cannot guarantee anything stronger anyway because
1398  * locks can't be held over the syscall boundary.
1399  *
1400  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1401  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1402  * appropriate) must be called after the page is finished with, and
1403  * before put_page is called.
1404  *
1405  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1406  * be released. If this happens *@locked will be set to 0 on return.
1407  *
1408  * A caller using such a combination of @gup_flags must therefore hold the
1409  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1410  * it must be held for either reading or writing and will not be released.
1411  *
1412  * In most cases, get_user_pages or get_user_pages_fast should be used
1413  * instead of __get_user_pages. __get_user_pages should be used only if
1414  * you need some special @gup_flags.
1415  */
1416 static long __get_user_pages(struct mm_struct *mm,
1417 		unsigned long start, unsigned long nr_pages,
1418 		unsigned int gup_flags, struct page **pages,
1419 		int *locked)
1420 {
1421 	long ret = 0, i = 0;
1422 	struct vm_area_struct *vma = NULL;
1423 	struct follow_page_context ctx = { NULL };
1424 
1425 	if (!nr_pages)
1426 		return 0;
1427 
1428 	start = untagged_addr_remote(mm, start);
1429 
1430 	VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1431 
1432 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1433 	VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1434 			(FOLL_PIN | FOLL_GET));
1435 
1436 	do {
1437 		struct page *page;
1438 		unsigned int page_increm;
1439 
1440 		/* first iteration or cross vma bound */
1441 		if (!vma || start >= vma->vm_end) {
1442 			/*
1443 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1444 			 * lookups+error reporting differently.
1445 			 */
1446 			if (gup_flags & FOLL_MADV_POPULATE) {
1447 				vma = vma_lookup(mm, start);
1448 				if (!vma) {
1449 					ret = -ENOMEM;
1450 					goto out;
1451 				}
1452 				if (check_vma_flags(vma, gup_flags)) {
1453 					ret = -EINVAL;
1454 					goto out;
1455 				}
1456 				goto retry;
1457 			}
1458 			vma = gup_vma_lookup(mm, start);
1459 			if (!vma && in_gate_area(mm, start)) {
1460 				ret = get_gate_page(mm, start & PAGE_MASK,
1461 						gup_flags, &vma,
1462 						pages ? &page : NULL);
1463 				if (ret)
1464 					goto out;
1465 				ctx.page_mask = 0;
1466 				goto next_page;
1467 			}
1468 
1469 			if (!vma) {
1470 				ret = -EFAULT;
1471 				goto out;
1472 			}
1473 			ret = check_vma_flags(vma, gup_flags);
1474 			if (ret)
1475 				goto out;
1476 		}
1477 retry:
1478 		/*
1479 		 * If we have a pending SIGKILL, don't keep faulting pages and
1480 		 * potentially allocating memory.
1481 		 */
1482 		if (fatal_signal_pending(current)) {
1483 			ret = -EINTR;
1484 			goto out;
1485 		}
1486 		cond_resched();
1487 
1488 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1489 		if (!page || PTR_ERR(page) == -EMLINK) {
1490 			ret = faultin_page(vma, start, gup_flags,
1491 					   PTR_ERR(page) == -EMLINK, locked);
1492 			switch (ret) {
1493 			case 0:
1494 				goto retry;
1495 			case -EBUSY:
1496 			case -EAGAIN:
1497 				ret = 0;
1498 				fallthrough;
1499 			case -EFAULT:
1500 			case -ENOMEM:
1501 			case -EHWPOISON:
1502 				goto out;
1503 			}
1504 			BUG();
1505 		} else if (PTR_ERR(page) == -EEXIST) {
1506 			/*
1507 			 * Proper page table entry exists, but no corresponding
1508 			 * struct page. If the caller expects **pages to be
1509 			 * filled in, bail out now, because that can't be done
1510 			 * for this page.
1511 			 */
1512 			if (pages) {
1513 				ret = PTR_ERR(page);
1514 				goto out;
1515 			}
1516 		} else if (IS_ERR(page)) {
1517 			ret = PTR_ERR(page);
1518 			goto out;
1519 		}
1520 next_page:
1521 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1522 		if (page_increm > nr_pages)
1523 			page_increm = nr_pages;
1524 
1525 		if (pages) {
1526 			struct page *subpage;
1527 			unsigned int j;
1528 
1529 			/*
1530 			 * This must be a large folio (and doesn't need to
1531 			 * be the whole folio; it can be part of it), do
1532 			 * the refcount work for all the subpages too.
1533 			 *
1534 			 * NOTE: here the page may not be the head page
1535 			 * e.g. when start addr is not thp-size aligned.
1536 			 * try_grab_folio() should have taken care of tail
1537 			 * pages.
1538 			 */
1539 			if (page_increm > 1) {
1540 				struct folio *folio = page_folio(page);
1541 
1542 				/*
1543 				 * Since we already hold refcount on the
1544 				 * large folio, this should never fail.
1545 				 */
1546 				if (try_grab_folio(folio, page_increm - 1,
1547 						   gup_flags)) {
1548 					/*
1549 					 * Release the 1st page ref if the
1550 					 * folio is problematic, fail hard.
1551 					 */
1552 					gup_put_folio(folio, 1, gup_flags);
1553 					ret = -EFAULT;
1554 					goto out;
1555 				}
1556 			}
1557 
1558 			for (j = 0; j < page_increm; j++) {
1559 				subpage = nth_page(page, j);
1560 				pages[i + j] = subpage;
1561 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1562 				flush_dcache_page(subpage);
1563 			}
1564 		}
1565 
1566 		i += page_increm;
1567 		start += page_increm * PAGE_SIZE;
1568 		nr_pages -= page_increm;
1569 	} while (nr_pages);
1570 out:
1571 	if (ctx.pgmap)
1572 		put_dev_pagemap(ctx.pgmap);
1573 	return i ? i : ret;
1574 }
1575 
1576 static bool vma_permits_fault(struct vm_area_struct *vma,
1577 			      unsigned int fault_flags)
1578 {
1579 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1580 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1581 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1582 
1583 	if (!(vm_flags & vma->vm_flags))
1584 		return false;
1585 
1586 	/*
1587 	 * The architecture might have a hardware protection
1588 	 * mechanism other than read/write that can deny access.
1589 	 *
1590 	 * gup always represents data access, not instruction
1591 	 * fetches, so execute=false here:
1592 	 */
1593 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1594 		return false;
1595 
1596 	return true;
1597 }
1598 
1599 /**
1600  * fixup_user_fault() - manually resolve a user page fault
1601  * @mm:		mm_struct of target mm
1602  * @address:	user address
1603  * @fault_flags:flags to pass down to handle_mm_fault()
1604  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1605  *		does not allow retry. If NULL, the caller must guarantee
1606  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1607  *
1608  * This is meant to be called in the specific scenario where for locking reasons
1609  * we try to access user memory in atomic context (within a pagefault_disable()
1610  * section), this returns -EFAULT, and we want to resolve the user fault before
1611  * trying again.
1612  *
1613  * Typically this is meant to be used by the futex code.
1614  *
1615  * The main difference with get_user_pages() is that this function will
1616  * unconditionally call handle_mm_fault() which will in turn perform all the
1617  * necessary SW fixup of the dirty and young bits in the PTE, while
1618  * get_user_pages() only guarantees to update these in the struct page.
1619  *
1620  * This is important for some architectures where those bits also gate the
1621  * access permission to the page because they are maintained in software.  On
1622  * such architectures, gup() will not be enough to make a subsequent access
1623  * succeed.
1624  *
1625  * This function will not return with an unlocked mmap_lock. So it has not the
1626  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1627  */
1628 int fixup_user_fault(struct mm_struct *mm,
1629 		     unsigned long address, unsigned int fault_flags,
1630 		     bool *unlocked)
1631 {
1632 	struct vm_area_struct *vma;
1633 	vm_fault_t ret;
1634 
1635 	address = untagged_addr_remote(mm, address);
1636 
1637 	if (unlocked)
1638 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1639 
1640 retry:
1641 	vma = gup_vma_lookup(mm, address);
1642 	if (!vma)
1643 		return -EFAULT;
1644 
1645 	if (!vma_permits_fault(vma, fault_flags))
1646 		return -EFAULT;
1647 
1648 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1649 	    fatal_signal_pending(current))
1650 		return -EINTR;
1651 
1652 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1653 
1654 	if (ret & VM_FAULT_COMPLETED) {
1655 		/*
1656 		 * NOTE: it's a pity that we need to retake the lock here
1657 		 * to pair with the unlock() in the callers. Ideally we
1658 		 * could tell the callers so they do not need to unlock.
1659 		 */
1660 		mmap_read_lock(mm);
1661 		*unlocked = true;
1662 		return 0;
1663 	}
1664 
1665 	if (ret & VM_FAULT_ERROR) {
1666 		int err = vm_fault_to_errno(ret, 0);
1667 
1668 		if (err)
1669 			return err;
1670 		BUG();
1671 	}
1672 
1673 	if (ret & VM_FAULT_RETRY) {
1674 		mmap_read_lock(mm);
1675 		*unlocked = true;
1676 		fault_flags |= FAULT_FLAG_TRIED;
1677 		goto retry;
1678 	}
1679 
1680 	return 0;
1681 }
1682 EXPORT_SYMBOL_GPL(fixup_user_fault);
1683 
1684 /*
1685  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1686  * specified, it'll also respond to generic signals.  The caller of GUP
1687  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1688  */
1689 static bool gup_signal_pending(unsigned int flags)
1690 {
1691 	if (fatal_signal_pending(current))
1692 		return true;
1693 
1694 	if (!(flags & FOLL_INTERRUPTIBLE))
1695 		return false;
1696 
1697 	return signal_pending(current);
1698 }
1699 
1700 /*
1701  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1702  * the caller. This function may drop the mmap_lock. If it does so, then it will
1703  * set (*locked = 0).
1704  *
1705  * (*locked == 0) means that the caller expects this function to acquire and
1706  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1707  * the function returns, even though it may have changed temporarily during
1708  * function execution.
1709  *
1710  * Please note that this function, unlike __get_user_pages(), will not return 0
1711  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1712  */
1713 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1714 						unsigned long start,
1715 						unsigned long nr_pages,
1716 						struct page **pages,
1717 						int *locked,
1718 						unsigned int flags)
1719 {
1720 	long ret, pages_done;
1721 	bool must_unlock = false;
1722 
1723 	if (!nr_pages)
1724 		return 0;
1725 
1726 	/*
1727 	 * The internal caller expects GUP to manage the lock internally and the
1728 	 * lock must be released when this returns.
1729 	 */
1730 	if (!*locked) {
1731 		if (mmap_read_lock_killable(mm))
1732 			return -EAGAIN;
1733 		must_unlock = true;
1734 		*locked = 1;
1735 	}
1736 	else
1737 		mmap_assert_locked(mm);
1738 
1739 	if (flags & FOLL_PIN)
1740 		mm_set_has_pinned_flag(&mm->flags);
1741 
1742 	/*
1743 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1744 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1745 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1746 	 * for FOLL_GET, not for the newer FOLL_PIN.
1747 	 *
1748 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1749 	 * that here, as any failures will be obvious enough.
1750 	 */
1751 	if (pages && !(flags & FOLL_PIN))
1752 		flags |= FOLL_GET;
1753 
1754 	pages_done = 0;
1755 	for (;;) {
1756 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1757 				       locked);
1758 		if (!(flags & FOLL_UNLOCKABLE)) {
1759 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1760 			pages_done = ret;
1761 			break;
1762 		}
1763 
1764 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1765 		if (!*locked) {
1766 			BUG_ON(ret < 0);
1767 			BUG_ON(ret >= nr_pages);
1768 		}
1769 
1770 		if (ret > 0) {
1771 			nr_pages -= ret;
1772 			pages_done += ret;
1773 			if (!nr_pages)
1774 				break;
1775 		}
1776 		if (*locked) {
1777 			/*
1778 			 * VM_FAULT_RETRY didn't trigger or it was a
1779 			 * FOLL_NOWAIT.
1780 			 */
1781 			if (!pages_done)
1782 				pages_done = ret;
1783 			break;
1784 		}
1785 		/*
1786 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1787 		 * For the prefault case (!pages) we only update counts.
1788 		 */
1789 		if (likely(pages))
1790 			pages += ret;
1791 		start += ret << PAGE_SHIFT;
1792 
1793 		/* The lock was temporarily dropped, so we must unlock later */
1794 		must_unlock = true;
1795 
1796 retry:
1797 		/*
1798 		 * Repeat on the address that fired VM_FAULT_RETRY
1799 		 * with both FAULT_FLAG_ALLOW_RETRY and
1800 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1801 		 * by fatal signals of even common signals, depending on
1802 		 * the caller's request. So we need to check it before we
1803 		 * start trying again otherwise it can loop forever.
1804 		 */
1805 		if (gup_signal_pending(flags)) {
1806 			if (!pages_done)
1807 				pages_done = -EINTR;
1808 			break;
1809 		}
1810 
1811 		ret = mmap_read_lock_killable(mm);
1812 		if (ret) {
1813 			BUG_ON(ret > 0);
1814 			if (!pages_done)
1815 				pages_done = ret;
1816 			break;
1817 		}
1818 
1819 		*locked = 1;
1820 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1821 				       pages, locked);
1822 		if (!*locked) {
1823 			/* Continue to retry until we succeeded */
1824 			BUG_ON(ret != 0);
1825 			goto retry;
1826 		}
1827 		if (ret != 1) {
1828 			BUG_ON(ret > 1);
1829 			if (!pages_done)
1830 				pages_done = ret;
1831 			break;
1832 		}
1833 		nr_pages--;
1834 		pages_done++;
1835 		if (!nr_pages)
1836 			break;
1837 		if (likely(pages))
1838 			pages++;
1839 		start += PAGE_SIZE;
1840 	}
1841 	if (must_unlock && *locked) {
1842 		/*
1843 		 * We either temporarily dropped the lock, or the caller
1844 		 * requested that we both acquire and drop the lock. Either way,
1845 		 * we must now unlock, and notify the caller of that state.
1846 		 */
1847 		mmap_read_unlock(mm);
1848 		*locked = 0;
1849 	}
1850 
1851 	/*
1852 	 * Failing to pin anything implies something has gone wrong (except when
1853 	 * FOLL_NOWAIT is specified).
1854 	 */
1855 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1856 		return -EFAULT;
1857 
1858 	return pages_done;
1859 }
1860 
1861 /**
1862  * populate_vma_page_range() -  populate a range of pages in the vma.
1863  * @vma:   target vma
1864  * @start: start address
1865  * @end:   end address
1866  * @locked: whether the mmap_lock is still held
1867  *
1868  * This takes care of mlocking the pages too if VM_LOCKED is set.
1869  *
1870  * Return either number of pages pinned in the vma, or a negative error
1871  * code on error.
1872  *
1873  * vma->vm_mm->mmap_lock must be held.
1874  *
1875  * If @locked is NULL, it may be held for read or write and will
1876  * be unperturbed.
1877  *
1878  * If @locked is non-NULL, it must held for read only and may be
1879  * released.  If it's released, *@locked will be set to 0.
1880  */
1881 long populate_vma_page_range(struct vm_area_struct *vma,
1882 		unsigned long start, unsigned long end, int *locked)
1883 {
1884 	struct mm_struct *mm = vma->vm_mm;
1885 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1886 	int local_locked = 1;
1887 	int gup_flags;
1888 	long ret;
1889 
1890 	VM_BUG_ON(!PAGE_ALIGNED(start));
1891 	VM_BUG_ON(!PAGE_ALIGNED(end));
1892 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1893 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1894 	mmap_assert_locked(mm);
1895 
1896 	/*
1897 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1898 	 * faultin_page() to break COW, so it has no work to do here.
1899 	 */
1900 	if (vma->vm_flags & VM_LOCKONFAULT)
1901 		return nr_pages;
1902 
1903 	/* ... similarly, we've never faulted in PROT_NONE pages */
1904 	if (!vma_is_accessible(vma))
1905 		return -EFAULT;
1906 
1907 	gup_flags = FOLL_TOUCH;
1908 	/*
1909 	 * We want to touch writable mappings with a write fault in order
1910 	 * to break COW, except for shared mappings because these don't COW
1911 	 * and we would not want to dirty them for nothing.
1912 	 *
1913 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1914 	 * readable (ie write-only or executable).
1915 	 */
1916 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1917 		gup_flags |= FOLL_WRITE;
1918 	else
1919 		gup_flags |= FOLL_FORCE;
1920 
1921 	if (locked)
1922 		gup_flags |= FOLL_UNLOCKABLE;
1923 
1924 	/*
1925 	 * We made sure addr is within a VMA, so the following will
1926 	 * not result in a stack expansion that recurses back here.
1927 	 */
1928 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1929 			       NULL, locked ? locked : &local_locked);
1930 	lru_add_drain();
1931 	return ret;
1932 }
1933 
1934 /*
1935  * faultin_page_range() - populate (prefault) page tables inside the
1936  *			  given range readable/writable
1937  *
1938  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1939  *
1940  * @mm: the mm to populate page tables in
1941  * @start: start address
1942  * @end: end address
1943  * @write: whether to prefault readable or writable
1944  * @locked: whether the mmap_lock is still held
1945  *
1946  * Returns either number of processed pages in the MM, or a negative error
1947  * code on error (see __get_user_pages()). Note that this function reports
1948  * errors related to VMAs, such as incompatible mappings, as expected by
1949  * MADV_POPULATE_(READ|WRITE).
1950  *
1951  * The range must be page-aligned.
1952  *
1953  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1954  */
1955 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1956 			unsigned long end, bool write, int *locked)
1957 {
1958 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1959 	int gup_flags;
1960 	long ret;
1961 
1962 	VM_BUG_ON(!PAGE_ALIGNED(start));
1963 	VM_BUG_ON(!PAGE_ALIGNED(end));
1964 	mmap_assert_locked(mm);
1965 
1966 	/*
1967 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1968 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1969 	 *	       difference with !FOLL_FORCE, because the page is writable
1970 	 *	       in the page table.
1971 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1972 	 *		  a poisoned page.
1973 	 * !FOLL_FORCE: Require proper access permissions.
1974 	 */
1975 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1976 		    FOLL_MADV_POPULATE;
1977 	if (write)
1978 		gup_flags |= FOLL_WRITE;
1979 
1980 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1981 				      gup_flags);
1982 	lru_add_drain();
1983 	return ret;
1984 }
1985 
1986 /*
1987  * __mm_populate - populate and/or mlock pages within a range of address space.
1988  *
1989  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1990  * flags. VMAs must be already marked with the desired vm_flags, and
1991  * mmap_lock must not be held.
1992  */
1993 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1994 {
1995 	struct mm_struct *mm = current->mm;
1996 	unsigned long end, nstart, nend;
1997 	struct vm_area_struct *vma = NULL;
1998 	int locked = 0;
1999 	long ret = 0;
2000 
2001 	end = start + len;
2002 
2003 	for (nstart = start; nstart < end; nstart = nend) {
2004 		/*
2005 		 * We want to fault in pages for [nstart; end) address range.
2006 		 * Find first corresponding VMA.
2007 		 */
2008 		if (!locked) {
2009 			locked = 1;
2010 			mmap_read_lock(mm);
2011 			vma = find_vma_intersection(mm, nstart, end);
2012 		} else if (nstart >= vma->vm_end)
2013 			vma = find_vma_intersection(mm, vma->vm_end, end);
2014 
2015 		if (!vma)
2016 			break;
2017 		/*
2018 		 * Set [nstart; nend) to intersection of desired address
2019 		 * range with the first VMA. Also, skip undesirable VMA types.
2020 		 */
2021 		nend = min(end, vma->vm_end);
2022 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2023 			continue;
2024 		if (nstart < vma->vm_start)
2025 			nstart = vma->vm_start;
2026 		/*
2027 		 * Now fault in a range of pages. populate_vma_page_range()
2028 		 * double checks the vma flags, so that it won't mlock pages
2029 		 * if the vma was already munlocked.
2030 		 */
2031 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2032 		if (ret < 0) {
2033 			if (ignore_errors) {
2034 				ret = 0;
2035 				continue;	/* continue at next VMA */
2036 			}
2037 			break;
2038 		}
2039 		nend = nstart + ret * PAGE_SIZE;
2040 		ret = 0;
2041 	}
2042 	if (locked)
2043 		mmap_read_unlock(mm);
2044 	return ret;	/* 0 or negative error code */
2045 }
2046 #else /* CONFIG_MMU */
2047 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2048 		unsigned long nr_pages, struct page **pages,
2049 		int *locked, unsigned int foll_flags)
2050 {
2051 	struct vm_area_struct *vma;
2052 	bool must_unlock = false;
2053 	unsigned long vm_flags;
2054 	long i;
2055 
2056 	if (!nr_pages)
2057 		return 0;
2058 
2059 	/*
2060 	 * The internal caller expects GUP to manage the lock internally and the
2061 	 * lock must be released when this returns.
2062 	 */
2063 	if (!*locked) {
2064 		if (mmap_read_lock_killable(mm))
2065 			return -EAGAIN;
2066 		must_unlock = true;
2067 		*locked = 1;
2068 	}
2069 
2070 	/* calculate required read or write permissions.
2071 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2072 	 */
2073 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2074 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2075 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2076 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2077 
2078 	for (i = 0; i < nr_pages; i++) {
2079 		vma = find_vma(mm, start);
2080 		if (!vma)
2081 			break;
2082 
2083 		/* protect what we can, including chardevs */
2084 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2085 		    !(vm_flags & vma->vm_flags))
2086 			break;
2087 
2088 		if (pages) {
2089 			pages[i] = virt_to_page((void *)start);
2090 			if (pages[i])
2091 				get_page(pages[i]);
2092 		}
2093 
2094 		start = (start + PAGE_SIZE) & PAGE_MASK;
2095 	}
2096 
2097 	if (must_unlock && *locked) {
2098 		mmap_read_unlock(mm);
2099 		*locked = 0;
2100 	}
2101 
2102 	return i ? : -EFAULT;
2103 }
2104 #endif /* !CONFIG_MMU */
2105 
2106 /**
2107  * fault_in_writeable - fault in userspace address range for writing
2108  * @uaddr: start of address range
2109  * @size: size of address range
2110  *
2111  * Returns the number of bytes not faulted in (like copy_to_user() and
2112  * copy_from_user()).
2113  */
2114 size_t fault_in_writeable(char __user *uaddr, size_t size)
2115 {
2116 	const unsigned long start = (unsigned long)uaddr;
2117 	const unsigned long end = start + size;
2118 	unsigned long cur;
2119 
2120 	if (unlikely(size == 0))
2121 		return 0;
2122 	if (!user_write_access_begin(uaddr, size))
2123 		return size;
2124 
2125 	/* Stop once we overflow to 0. */
2126 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2127 		unsafe_put_user(0, (char __user *)cur, out);
2128 out:
2129 	user_write_access_end();
2130 	if (size > cur - start)
2131 		return size - (cur - start);
2132 	return 0;
2133 }
2134 EXPORT_SYMBOL(fault_in_writeable);
2135 
2136 /**
2137  * fault_in_subpage_writeable - fault in an address range for writing
2138  * @uaddr: start of address range
2139  * @size: size of address range
2140  *
2141  * Fault in a user address range for writing while checking for permissions at
2142  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2143  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2144  *
2145  * Returns the number of bytes not faulted in (like copy_to_user() and
2146  * copy_from_user()).
2147  */
2148 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2149 {
2150 	size_t faulted_in;
2151 
2152 	/*
2153 	 * Attempt faulting in at page granularity first for page table
2154 	 * permission checking. The arch-specific probe_subpage_writeable()
2155 	 * functions may not check for this.
2156 	 */
2157 	faulted_in = size - fault_in_writeable(uaddr, size);
2158 	if (faulted_in)
2159 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2160 
2161 	return size - faulted_in;
2162 }
2163 EXPORT_SYMBOL(fault_in_subpage_writeable);
2164 
2165 /*
2166  * fault_in_safe_writeable - fault in an address range for writing
2167  * @uaddr: start of address range
2168  * @size: length of address range
2169  *
2170  * Faults in an address range for writing.  This is primarily useful when we
2171  * already know that some or all of the pages in the address range aren't in
2172  * memory.
2173  *
2174  * Unlike fault_in_writeable(), this function is non-destructive.
2175  *
2176  * Note that we don't pin or otherwise hold the pages referenced that we fault
2177  * in.  There's no guarantee that they'll stay in memory for any duration of
2178  * time.
2179  *
2180  * Returns the number of bytes not faulted in, like copy_to_user() and
2181  * copy_from_user().
2182  */
2183 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2184 {
2185 	const unsigned long start = (unsigned long)uaddr;
2186 	const unsigned long end = start + size;
2187 	unsigned long cur;
2188 	struct mm_struct *mm = current->mm;
2189 	bool unlocked = false;
2190 
2191 	if (unlikely(size == 0))
2192 		return 0;
2193 
2194 	mmap_read_lock(mm);
2195 	/* Stop once we overflow to 0. */
2196 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2197 		if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2198 			break;
2199 	mmap_read_unlock(mm);
2200 
2201 	if (size > cur - start)
2202 		return size - (cur - start);
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL(fault_in_safe_writeable);
2206 
2207 /**
2208  * fault_in_readable - fault in userspace address range for reading
2209  * @uaddr: start of user address range
2210  * @size: size of user address range
2211  *
2212  * Returns the number of bytes not faulted in (like copy_to_user() and
2213  * copy_from_user()).
2214  */
2215 size_t fault_in_readable(const char __user *uaddr, size_t size)
2216 {
2217 	const unsigned long start = (unsigned long)uaddr;
2218 	const unsigned long end = start + size;
2219 	unsigned long cur;
2220 	volatile char c;
2221 
2222 	if (unlikely(size == 0))
2223 		return 0;
2224 	if (!user_read_access_begin(uaddr, size))
2225 		return size;
2226 
2227 	/* Stop once we overflow to 0. */
2228 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2229 		unsafe_get_user(c, (const char __user *)cur, out);
2230 out:
2231 	user_read_access_end();
2232 	(void)c;
2233 	if (size > cur - start)
2234 		return size - (cur - start);
2235 	return 0;
2236 }
2237 EXPORT_SYMBOL(fault_in_readable);
2238 
2239 /**
2240  * get_dump_page() - pin user page in memory while writing it to core dump
2241  * @addr: user address
2242  * @locked: a pointer to an int denoting whether the mmap sem is held
2243  *
2244  * Returns struct page pointer of user page pinned for dump,
2245  * to be freed afterwards by put_page().
2246  *
2247  * Returns NULL on any kind of failure - a hole must then be inserted into
2248  * the corefile, to preserve alignment with its headers; and also returns
2249  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2250  * allowing a hole to be left in the corefile to save disk space.
2251  *
2252  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2253  */
2254 #ifdef CONFIG_ELF_CORE
2255 struct page *get_dump_page(unsigned long addr, int *locked)
2256 {
2257 	struct page *page;
2258 	int ret;
2259 
2260 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2261 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2262 	return (ret == 1) ? page : NULL;
2263 }
2264 #endif /* CONFIG_ELF_CORE */
2265 
2266 #ifdef CONFIG_MIGRATION
2267 
2268 /*
2269  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2270  * avoid this complication, by simply interpreting a list of folios as a list of
2271  * pages, that approach won't work in the longer term, because eventually the
2272  * layouts of struct page and struct folio will become completely different.
2273  * Furthermore, this pof approach avoids excessive page_folio() calls.
2274  */
2275 struct pages_or_folios {
2276 	union {
2277 		struct page **pages;
2278 		struct folio **folios;
2279 		void **entries;
2280 	};
2281 	bool has_folios;
2282 	long nr_entries;
2283 };
2284 
2285 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2286 {
2287 	if (pofs->has_folios)
2288 		return pofs->folios[i];
2289 	return page_folio(pofs->pages[i]);
2290 }
2291 
2292 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2293 {
2294 	pofs->entries[i] = NULL;
2295 }
2296 
2297 static void pofs_unpin(struct pages_or_folios *pofs)
2298 {
2299 	if (pofs->has_folios)
2300 		unpin_folios(pofs->folios, pofs->nr_entries);
2301 	else
2302 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2303 }
2304 
2305 /*
2306  * Returns the number of collected folios. Return value is always >= 0.
2307  */
2308 static void collect_longterm_unpinnable_folios(
2309 		struct list_head *movable_folio_list,
2310 		struct pages_or_folios *pofs)
2311 {
2312 	struct folio *prev_folio = NULL;
2313 	bool drain_allow = true;
2314 	unsigned long i;
2315 
2316 	for (i = 0; i < pofs->nr_entries; i++) {
2317 		struct folio *folio = pofs_get_folio(pofs, i);
2318 
2319 		if (folio == prev_folio)
2320 			continue;
2321 		prev_folio = folio;
2322 
2323 		if (folio_is_longterm_pinnable(folio))
2324 			continue;
2325 
2326 		if (folio_is_device_coherent(folio))
2327 			continue;
2328 
2329 		if (folio_test_hugetlb(folio)) {
2330 			folio_isolate_hugetlb(folio, movable_folio_list);
2331 			continue;
2332 		}
2333 
2334 		if (!folio_test_lru(folio) && drain_allow) {
2335 			lru_add_drain_all();
2336 			drain_allow = false;
2337 		}
2338 
2339 		if (!folio_isolate_lru(folio))
2340 			continue;
2341 
2342 		list_add_tail(&folio->lru, movable_folio_list);
2343 		node_stat_mod_folio(folio,
2344 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2345 				    folio_nr_pages(folio));
2346 	}
2347 }
2348 
2349 /*
2350  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2351  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2352  * failure (or partial success).
2353  */
2354 static int
2355 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2356 				   struct pages_or_folios *pofs)
2357 {
2358 	int ret;
2359 	unsigned long i;
2360 
2361 	for (i = 0; i < pofs->nr_entries; i++) {
2362 		struct folio *folio = pofs_get_folio(pofs, i);
2363 
2364 		if (folio_is_device_coherent(folio)) {
2365 			/*
2366 			 * Migration will fail if the folio is pinned, so
2367 			 * convert the pin on the source folio to a normal
2368 			 * reference.
2369 			 */
2370 			pofs_clear_entry(pofs, i);
2371 			folio_get(folio);
2372 			gup_put_folio(folio, 1, FOLL_PIN);
2373 
2374 			if (migrate_device_coherent_folio(folio)) {
2375 				ret = -EBUSY;
2376 				goto err;
2377 			}
2378 
2379 			continue;
2380 		}
2381 
2382 		/*
2383 		 * We can't migrate folios with unexpected references, so drop
2384 		 * the reference obtained by __get_user_pages_locked().
2385 		 * Migrating folios have been added to movable_folio_list after
2386 		 * calling folio_isolate_lru() which takes a reference so the
2387 		 * folio won't be freed if it's migrating.
2388 		 */
2389 		unpin_folio(folio);
2390 		pofs_clear_entry(pofs, i);
2391 	}
2392 
2393 	if (!list_empty(movable_folio_list)) {
2394 		struct migration_target_control mtc = {
2395 			.nid = NUMA_NO_NODE,
2396 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2397 			.reason = MR_LONGTERM_PIN,
2398 		};
2399 
2400 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2401 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2402 				  MR_LONGTERM_PIN, NULL)) {
2403 			ret = -ENOMEM;
2404 			goto err;
2405 		}
2406 	}
2407 
2408 	putback_movable_pages(movable_folio_list);
2409 
2410 	return -EAGAIN;
2411 
2412 err:
2413 	pofs_unpin(pofs);
2414 	putback_movable_pages(movable_folio_list);
2415 
2416 	return ret;
2417 }
2418 
2419 static long
2420 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2421 {
2422 	LIST_HEAD(movable_folio_list);
2423 
2424 	collect_longterm_unpinnable_folios(&movable_folio_list, pofs);
2425 	if (list_empty(&movable_folio_list))
2426 		return 0;
2427 
2428 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2429 }
2430 
2431 /*
2432  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2433  * Rather confusingly, all folios in the range are required to be pinned via
2434  * FOLL_PIN, before calling this routine.
2435  *
2436  * Return values:
2437  *
2438  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2439  * then this routine leaves all folios pinned and returns zero for success.
2440  *
2441  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2442  * routine will migrate those folios away, unpin all the folios in the range. If
2443  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2444  * caller should re-pin the entire range with FOLL_PIN and then call this
2445  * routine again.
2446  *
2447  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2448  * indicates a migration failure. The caller should give up, and propagate the
2449  * error back up the call stack. The caller does not need to unpin any folios in
2450  * that case, because this routine will do the unpinning.
2451  */
2452 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2453 					     struct folio **folios)
2454 {
2455 	struct pages_or_folios pofs = {
2456 		.folios = folios,
2457 		.has_folios = true,
2458 		.nr_entries = nr_folios,
2459 	};
2460 
2461 	return check_and_migrate_movable_pages_or_folios(&pofs);
2462 }
2463 
2464 /*
2465  * Return values and behavior are the same as those for
2466  * check_and_migrate_movable_folios().
2467  */
2468 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2469 					    struct page **pages)
2470 {
2471 	struct pages_or_folios pofs = {
2472 		.pages = pages,
2473 		.has_folios = false,
2474 		.nr_entries = nr_pages,
2475 	};
2476 
2477 	return check_and_migrate_movable_pages_or_folios(&pofs);
2478 }
2479 #else
2480 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2481 					    struct page **pages)
2482 {
2483 	return 0;
2484 }
2485 
2486 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2487 					     struct folio **folios)
2488 {
2489 	return 0;
2490 }
2491 #endif /* CONFIG_MIGRATION */
2492 
2493 /*
2494  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2495  * allows us to process the FOLL_LONGTERM flag.
2496  */
2497 static long __gup_longterm_locked(struct mm_struct *mm,
2498 				  unsigned long start,
2499 				  unsigned long nr_pages,
2500 				  struct page **pages,
2501 				  int *locked,
2502 				  unsigned int gup_flags)
2503 {
2504 	unsigned int flags;
2505 	long rc, nr_pinned_pages;
2506 
2507 	if (!(gup_flags & FOLL_LONGTERM))
2508 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2509 					       locked, gup_flags);
2510 
2511 	flags = memalloc_pin_save();
2512 	do {
2513 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2514 							  pages, locked,
2515 							  gup_flags);
2516 		if (nr_pinned_pages <= 0) {
2517 			rc = nr_pinned_pages;
2518 			break;
2519 		}
2520 
2521 		/* FOLL_LONGTERM implies FOLL_PIN */
2522 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2523 	} while (rc == -EAGAIN);
2524 	memalloc_pin_restore(flags);
2525 	return rc ? rc : nr_pinned_pages;
2526 }
2527 
2528 /*
2529  * Check that the given flags are valid for the exported gup/pup interface, and
2530  * update them with the required flags that the caller must have set.
2531  */
2532 static bool is_valid_gup_args(struct page **pages, int *locked,
2533 			      unsigned int *gup_flags_p, unsigned int to_set)
2534 {
2535 	unsigned int gup_flags = *gup_flags_p;
2536 
2537 	/*
2538 	 * These flags not allowed to be specified externally to the gup
2539 	 * interfaces:
2540 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2541 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2542 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2543 	 */
2544 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2545 		return false;
2546 
2547 	gup_flags |= to_set;
2548 	if (locked) {
2549 		/* At the external interface locked must be set */
2550 		if (WARN_ON_ONCE(*locked != 1))
2551 			return false;
2552 
2553 		gup_flags |= FOLL_UNLOCKABLE;
2554 	}
2555 
2556 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2557 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2558 			 (FOLL_PIN | FOLL_GET)))
2559 		return false;
2560 
2561 	/* LONGTERM can only be specified when pinning */
2562 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2563 		return false;
2564 
2565 	/* Pages input must be given if using GET/PIN */
2566 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2567 		return false;
2568 
2569 	/* We want to allow the pgmap to be hot-unplugged at all times */
2570 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2571 			 (gup_flags & FOLL_PCI_P2PDMA)))
2572 		return false;
2573 
2574 	*gup_flags_p = gup_flags;
2575 	return true;
2576 }
2577 
2578 #ifdef CONFIG_MMU
2579 /**
2580  * get_user_pages_remote() - pin user pages in memory
2581  * @mm:		mm_struct of target mm
2582  * @start:	starting user address
2583  * @nr_pages:	number of pages from start to pin
2584  * @gup_flags:	flags modifying lookup behaviour
2585  * @pages:	array that receives pointers to the pages pinned.
2586  *		Should be at least nr_pages long. Or NULL, if caller
2587  *		only intends to ensure the pages are faulted in.
2588  * @locked:	pointer to lock flag indicating whether lock is held and
2589  *		subsequently whether VM_FAULT_RETRY functionality can be
2590  *		utilised. Lock must initially be held.
2591  *
2592  * Returns either number of pages pinned (which may be less than the
2593  * number requested), or an error. Details about the return value:
2594  *
2595  * -- If nr_pages is 0, returns 0.
2596  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2597  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2598  *    pages pinned. Again, this may be less than nr_pages.
2599  *
2600  * The caller is responsible for releasing returned @pages, via put_page().
2601  *
2602  * Must be called with mmap_lock held for read or write.
2603  *
2604  * get_user_pages_remote walks a process's page tables and takes a reference
2605  * to each struct page that each user address corresponds to at a given
2606  * instant. That is, it takes the page that would be accessed if a user
2607  * thread accesses the given user virtual address at that instant.
2608  *
2609  * This does not guarantee that the page exists in the user mappings when
2610  * get_user_pages_remote returns, and there may even be a completely different
2611  * page there in some cases (eg. if mmapped pagecache has been invalidated
2612  * and subsequently re-faulted). However it does guarantee that the page
2613  * won't be freed completely. And mostly callers simply care that the page
2614  * contains data that was valid *at some point in time*. Typically, an IO
2615  * or similar operation cannot guarantee anything stronger anyway because
2616  * locks can't be held over the syscall boundary.
2617  *
2618  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2619  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2620  * be called after the page is finished with, and before put_page is called.
2621  *
2622  * get_user_pages_remote is typically used for fewer-copy IO operations,
2623  * to get a handle on the memory by some means other than accesses
2624  * via the user virtual addresses. The pages may be submitted for
2625  * DMA to devices or accessed via their kernel linear mapping (via the
2626  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2627  *
2628  * See also get_user_pages_fast, for performance critical applications.
2629  *
2630  * get_user_pages_remote should be phased out in favor of
2631  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2632  * should use get_user_pages_remote because it cannot pass
2633  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2634  */
2635 long get_user_pages_remote(struct mm_struct *mm,
2636 		unsigned long start, unsigned long nr_pages,
2637 		unsigned int gup_flags, struct page **pages,
2638 		int *locked)
2639 {
2640 	int local_locked = 1;
2641 
2642 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2643 			       FOLL_TOUCH | FOLL_REMOTE))
2644 		return -EINVAL;
2645 
2646 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2647 				       locked ? locked : &local_locked,
2648 				       gup_flags);
2649 }
2650 EXPORT_SYMBOL(get_user_pages_remote);
2651 
2652 #else /* CONFIG_MMU */
2653 long get_user_pages_remote(struct mm_struct *mm,
2654 			   unsigned long start, unsigned long nr_pages,
2655 			   unsigned int gup_flags, struct page **pages,
2656 			   int *locked)
2657 {
2658 	return 0;
2659 }
2660 #endif /* !CONFIG_MMU */
2661 
2662 /**
2663  * get_user_pages() - pin user pages in memory
2664  * @start:      starting user address
2665  * @nr_pages:   number of pages from start to pin
2666  * @gup_flags:  flags modifying lookup behaviour
2667  * @pages:      array that receives pointers to the pages pinned.
2668  *              Should be at least nr_pages long. Or NULL, if caller
2669  *              only intends to ensure the pages are faulted in.
2670  *
2671  * This is the same as get_user_pages_remote(), just with a less-flexible
2672  * calling convention where we assume that the mm being operated on belongs to
2673  * the current task, and doesn't allow passing of a locked parameter.  We also
2674  * obviously don't pass FOLL_REMOTE in here.
2675  */
2676 long get_user_pages(unsigned long start, unsigned long nr_pages,
2677 		    unsigned int gup_flags, struct page **pages)
2678 {
2679 	int locked = 1;
2680 
2681 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2682 		return -EINVAL;
2683 
2684 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2685 				       &locked, gup_flags);
2686 }
2687 EXPORT_SYMBOL(get_user_pages);
2688 
2689 /*
2690  * get_user_pages_unlocked() is suitable to replace the form:
2691  *
2692  *      mmap_read_lock(mm);
2693  *      get_user_pages(mm, ..., pages, NULL);
2694  *      mmap_read_unlock(mm);
2695  *
2696  *  with:
2697  *
2698  *      get_user_pages_unlocked(mm, ..., pages);
2699  *
2700  * It is functionally equivalent to get_user_pages_fast so
2701  * get_user_pages_fast should be used instead if specific gup_flags
2702  * (e.g. FOLL_FORCE) are not required.
2703  */
2704 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2705 			     struct page **pages, unsigned int gup_flags)
2706 {
2707 	int locked = 0;
2708 
2709 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2710 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2711 		return -EINVAL;
2712 
2713 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2714 				       &locked, gup_flags);
2715 }
2716 EXPORT_SYMBOL(get_user_pages_unlocked);
2717 
2718 /*
2719  * GUP-fast
2720  *
2721  * get_user_pages_fast attempts to pin user pages by walking the page
2722  * tables directly and avoids taking locks. Thus the walker needs to be
2723  * protected from page table pages being freed from under it, and should
2724  * block any THP splits.
2725  *
2726  * One way to achieve this is to have the walker disable interrupts, and
2727  * rely on IPIs from the TLB flushing code blocking before the page table
2728  * pages are freed. This is unsuitable for architectures that do not need
2729  * to broadcast an IPI when invalidating TLBs.
2730  *
2731  * Another way to achieve this is to batch up page table containing pages
2732  * belonging to more than one mm_user, then rcu_sched a callback to free those
2733  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2734  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2735  * (which is a relatively rare event). The code below adopts this strategy.
2736  *
2737  * Before activating this code, please be aware that the following assumptions
2738  * are currently made:
2739  *
2740  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2741  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2742  *
2743  *  *) ptes can be read atomically by the architecture.
2744  *
2745  *  *) valid user addesses are below TASK_MAX_SIZE
2746  *
2747  * The last two assumptions can be relaxed by the addition of helper functions.
2748  *
2749  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2750  */
2751 #ifdef CONFIG_HAVE_GUP_FAST
2752 /*
2753  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2754  * a specific folio.
2755  *
2756  * This call assumes the caller has pinned the folio, that the lowest page table
2757  * level still points to this folio, and that interrupts have been disabled.
2758  *
2759  * GUP-fast must reject all secretmem folios.
2760  *
2761  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2762  * (see comment describing the writable_file_mapping_allowed() function). We
2763  * therefore try to avoid the most egregious case of a long-term mapping doing
2764  * so.
2765  *
2766  * This function cannot be as thorough as that one as the VMA is not available
2767  * in the fast path, so instead we whitelist known good cases and if in doubt,
2768  * fall back to the slow path.
2769  */
2770 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2771 {
2772 	bool reject_file_backed = false;
2773 	struct address_space *mapping;
2774 	bool check_secretmem = false;
2775 	unsigned long mapping_flags;
2776 
2777 	/*
2778 	 * If we aren't pinning then no problematic write can occur. A long term
2779 	 * pin is the most egregious case so this is the one we disallow.
2780 	 */
2781 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2782 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2783 		reject_file_backed = true;
2784 
2785 	/* We hold a folio reference, so we can safely access folio fields. */
2786 
2787 	/* secretmem folios are always order-0 folios. */
2788 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2789 		check_secretmem = true;
2790 
2791 	if (!reject_file_backed && !check_secretmem)
2792 		return true;
2793 
2794 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2795 		return false;
2796 
2797 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2798 	if (folio_test_hugetlb(folio))
2799 		return true;
2800 
2801 	/*
2802 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2803 	 * cannot proceed, which means no actions performed under RCU can
2804 	 * proceed either.
2805 	 *
2806 	 * inodes and thus their mappings are freed under RCU, which means the
2807 	 * mapping cannot be freed beneath us and thus we can safely dereference
2808 	 * it.
2809 	 */
2810 	lockdep_assert_irqs_disabled();
2811 
2812 	/*
2813 	 * However, there may be operations which _alter_ the mapping, so ensure
2814 	 * we read it once and only once.
2815 	 */
2816 	mapping = READ_ONCE(folio->mapping);
2817 
2818 	/*
2819 	 * The mapping may have been truncated, in any case we cannot determine
2820 	 * if this mapping is safe - fall back to slow path to determine how to
2821 	 * proceed.
2822 	 */
2823 	if (!mapping)
2824 		return false;
2825 
2826 	/* Anonymous folios pose no problem. */
2827 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2828 	if (mapping_flags)
2829 		return mapping_flags & PAGE_MAPPING_ANON;
2830 
2831 	/*
2832 	 * At this point, we know the mapping is non-null and points to an
2833 	 * address_space object.
2834 	 */
2835 	if (check_secretmem && secretmem_mapping(mapping))
2836 		return false;
2837 	/* The only remaining allowed file system is shmem. */
2838 	return !reject_file_backed || shmem_mapping(mapping);
2839 }
2840 
2841 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2842 		unsigned int flags, struct page **pages)
2843 {
2844 	while ((*nr) - nr_start) {
2845 		struct folio *folio = page_folio(pages[--(*nr)]);
2846 
2847 		folio_clear_referenced(folio);
2848 		gup_put_folio(folio, 1, flags);
2849 	}
2850 }
2851 
2852 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2853 /*
2854  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2855  * operations.
2856  *
2857  * To pin the page, GUP-fast needs to do below in order:
2858  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2859  *
2860  * For the rest of pgtable operations where pgtable updates can be racy
2861  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2862  * is pinned.
2863  *
2864  * Above will work for all pte-level operations, including THP split.
2865  *
2866  * For THP collapse, it's a bit more complicated because GUP-fast may be
2867  * walking a pgtable page that is being freed (pte is still valid but pmd
2868  * can be cleared already).  To avoid race in such condition, we need to
2869  * also check pmd here to make sure pmd doesn't change (corresponds to
2870  * pmdp_collapse_flush() in the THP collapse code path).
2871  */
2872 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2873 		unsigned long end, unsigned int flags, struct page **pages,
2874 		int *nr)
2875 {
2876 	struct dev_pagemap *pgmap = NULL;
2877 	int nr_start = *nr, ret = 0;
2878 	pte_t *ptep, *ptem;
2879 
2880 	ptem = ptep = pte_offset_map(&pmd, addr);
2881 	if (!ptep)
2882 		return 0;
2883 	do {
2884 		pte_t pte = ptep_get_lockless(ptep);
2885 		struct page *page;
2886 		struct folio *folio;
2887 
2888 		/*
2889 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2890 		 * pte_access_permitted() better should reject these pages
2891 		 * either way: otherwise, GUP-fast might succeed in
2892 		 * cases where ordinary GUP would fail due to VMA access
2893 		 * permissions.
2894 		 */
2895 		if (pte_protnone(pte))
2896 			goto pte_unmap;
2897 
2898 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2899 			goto pte_unmap;
2900 
2901 		if (pte_devmap(pte)) {
2902 			if (unlikely(flags & FOLL_LONGTERM))
2903 				goto pte_unmap;
2904 
2905 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2906 			if (unlikely(!pgmap)) {
2907 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2908 				goto pte_unmap;
2909 			}
2910 		} else if (pte_special(pte))
2911 			goto pte_unmap;
2912 
2913 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2914 		page = pte_page(pte);
2915 
2916 		folio = try_grab_folio_fast(page, 1, flags);
2917 		if (!folio)
2918 			goto pte_unmap;
2919 
2920 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2921 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2922 			gup_put_folio(folio, 1, flags);
2923 			goto pte_unmap;
2924 		}
2925 
2926 		if (!gup_fast_folio_allowed(folio, flags)) {
2927 			gup_put_folio(folio, 1, flags);
2928 			goto pte_unmap;
2929 		}
2930 
2931 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2932 			gup_put_folio(folio, 1, flags);
2933 			goto pte_unmap;
2934 		}
2935 
2936 		/*
2937 		 * We need to make the page accessible if and only if we are
2938 		 * going to access its content (the FOLL_PIN case).  Please
2939 		 * see Documentation/core-api/pin_user_pages.rst for
2940 		 * details.
2941 		 */
2942 		if (flags & FOLL_PIN) {
2943 			ret = arch_make_folio_accessible(folio);
2944 			if (ret) {
2945 				gup_put_folio(folio, 1, flags);
2946 				goto pte_unmap;
2947 			}
2948 		}
2949 		folio_set_referenced(folio);
2950 		pages[*nr] = page;
2951 		(*nr)++;
2952 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2953 
2954 	ret = 1;
2955 
2956 pte_unmap:
2957 	if (pgmap)
2958 		put_dev_pagemap(pgmap);
2959 	pte_unmap(ptem);
2960 	return ret;
2961 }
2962 #else
2963 
2964 /*
2965  * If we can't determine whether or not a pte is special, then fail immediately
2966  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2967  * to be special.
2968  *
2969  * For a futex to be placed on a THP tail page, get_futex_key requires a
2970  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2971  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2972  */
2973 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2974 		unsigned long end, unsigned int flags, struct page **pages,
2975 		int *nr)
2976 {
2977 	return 0;
2978 }
2979 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2980 
2981 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2982 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2983 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
2984 {
2985 	int nr_start = *nr;
2986 	struct dev_pagemap *pgmap = NULL;
2987 
2988 	do {
2989 		struct folio *folio;
2990 		struct page *page = pfn_to_page(pfn);
2991 
2992 		pgmap = get_dev_pagemap(pfn, pgmap);
2993 		if (unlikely(!pgmap)) {
2994 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2995 			break;
2996 		}
2997 
2998 		folio = try_grab_folio_fast(page, 1, flags);
2999 		if (!folio) {
3000 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3001 			break;
3002 		}
3003 		folio_set_referenced(folio);
3004 		pages[*nr] = page;
3005 		(*nr)++;
3006 		pfn++;
3007 	} while (addr += PAGE_SIZE, addr != end);
3008 
3009 	put_dev_pagemap(pgmap);
3010 	return addr == end;
3011 }
3012 
3013 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3014 		unsigned long end, unsigned int flags, struct page **pages,
3015 		int *nr)
3016 {
3017 	unsigned long fault_pfn;
3018 	int nr_start = *nr;
3019 
3020 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3021 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3022 		return 0;
3023 
3024 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3025 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3026 		return 0;
3027 	}
3028 	return 1;
3029 }
3030 
3031 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3032 		unsigned long end, unsigned int flags, struct page **pages,
3033 		int *nr)
3034 {
3035 	unsigned long fault_pfn;
3036 	int nr_start = *nr;
3037 
3038 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3039 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3040 		return 0;
3041 
3042 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3043 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3044 		return 0;
3045 	}
3046 	return 1;
3047 }
3048 #else
3049 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3050 		unsigned long end, unsigned int flags, struct page **pages,
3051 		int *nr)
3052 {
3053 	BUILD_BUG();
3054 	return 0;
3055 }
3056 
3057 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3058 		unsigned long end, unsigned int flags, struct page **pages,
3059 		int *nr)
3060 {
3061 	BUILD_BUG();
3062 	return 0;
3063 }
3064 #endif
3065 
3066 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3067 		unsigned long end, unsigned int flags, struct page **pages,
3068 		int *nr)
3069 {
3070 	struct page *page;
3071 	struct folio *folio;
3072 	int refs;
3073 
3074 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3075 		return 0;
3076 
3077 	if (pmd_special(orig))
3078 		return 0;
3079 
3080 	if (pmd_devmap(orig)) {
3081 		if (unlikely(flags & FOLL_LONGTERM))
3082 			return 0;
3083 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3084 					        pages, nr);
3085 	}
3086 
3087 	page = pmd_page(orig);
3088 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3089 
3090 	folio = try_grab_folio_fast(page, refs, flags);
3091 	if (!folio)
3092 		return 0;
3093 
3094 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3095 		gup_put_folio(folio, refs, flags);
3096 		return 0;
3097 	}
3098 
3099 	if (!gup_fast_folio_allowed(folio, flags)) {
3100 		gup_put_folio(folio, refs, flags);
3101 		return 0;
3102 	}
3103 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3104 		gup_put_folio(folio, refs, flags);
3105 		return 0;
3106 	}
3107 
3108 	*nr += refs;
3109 	folio_set_referenced(folio);
3110 	return 1;
3111 }
3112 
3113 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3114 		unsigned long end, unsigned int flags, struct page **pages,
3115 		int *nr)
3116 {
3117 	struct page *page;
3118 	struct folio *folio;
3119 	int refs;
3120 
3121 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3122 		return 0;
3123 
3124 	if (pud_special(orig))
3125 		return 0;
3126 
3127 	if (pud_devmap(orig)) {
3128 		if (unlikely(flags & FOLL_LONGTERM))
3129 			return 0;
3130 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3131 					        pages, nr);
3132 	}
3133 
3134 	page = pud_page(orig);
3135 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3136 
3137 	folio = try_grab_folio_fast(page, refs, flags);
3138 	if (!folio)
3139 		return 0;
3140 
3141 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3142 		gup_put_folio(folio, refs, flags);
3143 		return 0;
3144 	}
3145 
3146 	if (!gup_fast_folio_allowed(folio, flags)) {
3147 		gup_put_folio(folio, refs, flags);
3148 		return 0;
3149 	}
3150 
3151 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3152 		gup_put_folio(folio, refs, flags);
3153 		return 0;
3154 	}
3155 
3156 	*nr += refs;
3157 	folio_set_referenced(folio);
3158 	return 1;
3159 }
3160 
3161 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3162 		unsigned long end, unsigned int flags, struct page **pages,
3163 		int *nr)
3164 {
3165 	unsigned long next;
3166 	pmd_t *pmdp;
3167 
3168 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3169 	do {
3170 		pmd_t pmd = pmdp_get_lockless(pmdp);
3171 
3172 		next = pmd_addr_end(addr, end);
3173 		if (!pmd_present(pmd))
3174 			return 0;
3175 
3176 		if (unlikely(pmd_leaf(pmd))) {
3177 			/* See gup_fast_pte_range() */
3178 			if (pmd_protnone(pmd))
3179 				return 0;
3180 
3181 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3182 				pages, nr))
3183 				return 0;
3184 
3185 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3186 					       pages, nr))
3187 			return 0;
3188 	} while (pmdp++, addr = next, addr != end);
3189 
3190 	return 1;
3191 }
3192 
3193 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3194 		unsigned long end, unsigned int flags, struct page **pages,
3195 		int *nr)
3196 {
3197 	unsigned long next;
3198 	pud_t *pudp;
3199 
3200 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3201 	do {
3202 		pud_t pud = READ_ONCE(*pudp);
3203 
3204 		next = pud_addr_end(addr, end);
3205 		if (unlikely(!pud_present(pud)))
3206 			return 0;
3207 		if (unlikely(pud_leaf(pud))) {
3208 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3209 					       pages, nr))
3210 				return 0;
3211 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3212 					       pages, nr))
3213 			return 0;
3214 	} while (pudp++, addr = next, addr != end);
3215 
3216 	return 1;
3217 }
3218 
3219 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3220 		unsigned long end, unsigned int flags, struct page **pages,
3221 		int *nr)
3222 {
3223 	unsigned long next;
3224 	p4d_t *p4dp;
3225 
3226 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3227 	do {
3228 		p4d_t p4d = READ_ONCE(*p4dp);
3229 
3230 		next = p4d_addr_end(addr, end);
3231 		if (!p4d_present(p4d))
3232 			return 0;
3233 		BUILD_BUG_ON(p4d_leaf(p4d));
3234 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3235 					pages, nr))
3236 			return 0;
3237 	} while (p4dp++, addr = next, addr != end);
3238 
3239 	return 1;
3240 }
3241 
3242 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3243 		unsigned int flags, struct page **pages, int *nr)
3244 {
3245 	unsigned long next;
3246 	pgd_t *pgdp;
3247 
3248 	pgdp = pgd_offset(current->mm, addr);
3249 	do {
3250 		pgd_t pgd = READ_ONCE(*pgdp);
3251 
3252 		next = pgd_addr_end(addr, end);
3253 		if (pgd_none(pgd))
3254 			return;
3255 		BUILD_BUG_ON(pgd_leaf(pgd));
3256 		if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3257 					pages, nr))
3258 			return;
3259 	} while (pgdp++, addr = next, addr != end);
3260 }
3261 #else
3262 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3263 		unsigned int flags, struct page **pages, int *nr)
3264 {
3265 }
3266 #endif /* CONFIG_HAVE_GUP_FAST */
3267 
3268 #ifndef gup_fast_permitted
3269 /*
3270  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3271  * we need to fall back to the slow version:
3272  */
3273 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3274 {
3275 	return true;
3276 }
3277 #endif
3278 
3279 static unsigned long gup_fast(unsigned long start, unsigned long end,
3280 		unsigned int gup_flags, struct page **pages)
3281 {
3282 	unsigned long flags;
3283 	int nr_pinned = 0;
3284 	unsigned seq;
3285 
3286 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3287 	    !gup_fast_permitted(start, end))
3288 		return 0;
3289 
3290 	if (gup_flags & FOLL_PIN) {
3291 		if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3292 			return 0;
3293 	}
3294 
3295 	/*
3296 	 * Disable interrupts. The nested form is used, in order to allow full,
3297 	 * general purpose use of this routine.
3298 	 *
3299 	 * With interrupts disabled, we block page table pages from being freed
3300 	 * from under us. See struct mmu_table_batch comments in
3301 	 * include/asm-generic/tlb.h for more details.
3302 	 *
3303 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3304 	 * that come from THPs splitting.
3305 	 */
3306 	local_irq_save(flags);
3307 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3308 	local_irq_restore(flags);
3309 
3310 	/*
3311 	 * When pinning pages for DMA there could be a concurrent write protect
3312 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3313 	 */
3314 	if (gup_flags & FOLL_PIN) {
3315 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3316 			gup_fast_unpin_user_pages(pages, nr_pinned);
3317 			return 0;
3318 		} else {
3319 			sanity_check_pinned_pages(pages, nr_pinned);
3320 		}
3321 	}
3322 	return nr_pinned;
3323 }
3324 
3325 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3326 		unsigned int gup_flags, struct page **pages)
3327 {
3328 	unsigned long len, end;
3329 	unsigned long nr_pinned;
3330 	int locked = 0;
3331 	int ret;
3332 
3333 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3334 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3335 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3336 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3337 		return -EINVAL;
3338 
3339 	if (gup_flags & FOLL_PIN)
3340 		mm_set_has_pinned_flag(&current->mm->flags);
3341 
3342 	if (!(gup_flags & FOLL_FAST_ONLY))
3343 		might_lock_read(&current->mm->mmap_lock);
3344 
3345 	start = untagged_addr(start) & PAGE_MASK;
3346 	len = nr_pages << PAGE_SHIFT;
3347 	if (check_add_overflow(start, len, &end))
3348 		return -EOVERFLOW;
3349 	if (end > TASK_SIZE_MAX)
3350 		return -EFAULT;
3351 
3352 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3353 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3354 		return nr_pinned;
3355 
3356 	/* Slow path: try to get the remaining pages with get_user_pages */
3357 	start += nr_pinned << PAGE_SHIFT;
3358 	pages += nr_pinned;
3359 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3360 				    pages, &locked,
3361 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3362 	if (ret < 0) {
3363 		/*
3364 		 * The caller has to unpin the pages we already pinned so
3365 		 * returning -errno is not an option
3366 		 */
3367 		if (nr_pinned)
3368 			return nr_pinned;
3369 		return ret;
3370 	}
3371 	return ret + nr_pinned;
3372 }
3373 
3374 /**
3375  * get_user_pages_fast_only() - pin user pages in memory
3376  * @start:      starting user address
3377  * @nr_pages:   number of pages from start to pin
3378  * @gup_flags:  flags modifying pin behaviour
3379  * @pages:      array that receives pointers to the pages pinned.
3380  *              Should be at least nr_pages long.
3381  *
3382  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3383  * the regular GUP.
3384  *
3385  * If the architecture does not support this function, simply return with no
3386  * pages pinned.
3387  *
3388  * Careful, careful! COW breaking can go either way, so a non-write
3389  * access can get ambiguous page results. If you call this function without
3390  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3391  */
3392 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3393 			     unsigned int gup_flags, struct page **pages)
3394 {
3395 	/*
3396 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3397 	 * because gup fast is always a "pin with a +1 page refcount" request.
3398 	 *
3399 	 * FOLL_FAST_ONLY is required in order to match the API description of
3400 	 * this routine: no fall back to regular ("slow") GUP.
3401 	 */
3402 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3403 			       FOLL_GET | FOLL_FAST_ONLY))
3404 		return -EINVAL;
3405 
3406 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3407 }
3408 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3409 
3410 /**
3411  * get_user_pages_fast() - pin user pages in memory
3412  * @start:      starting user address
3413  * @nr_pages:   number of pages from start to pin
3414  * @gup_flags:  flags modifying pin behaviour
3415  * @pages:      array that receives pointers to the pages pinned.
3416  *              Should be at least nr_pages long.
3417  *
3418  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3419  * If not successful, it will fall back to taking the lock and
3420  * calling get_user_pages().
3421  *
3422  * Returns number of pages pinned. This may be fewer than the number requested.
3423  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3424  * -errno.
3425  */
3426 int get_user_pages_fast(unsigned long start, int nr_pages,
3427 			unsigned int gup_flags, struct page **pages)
3428 {
3429 	/*
3430 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3431 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3432 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3433 	 * request.
3434 	 */
3435 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3436 		return -EINVAL;
3437 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3438 }
3439 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3440 
3441 /**
3442  * pin_user_pages_fast() - pin user pages in memory without taking locks
3443  *
3444  * @start:      starting user address
3445  * @nr_pages:   number of pages from start to pin
3446  * @gup_flags:  flags modifying pin behaviour
3447  * @pages:      array that receives pointers to the pages pinned.
3448  *              Should be at least nr_pages long.
3449  *
3450  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3451  * get_user_pages_fast() for documentation on the function arguments, because
3452  * the arguments here are identical.
3453  *
3454  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3455  * see Documentation/core-api/pin_user_pages.rst for further details.
3456  *
3457  * Note that if a zero_page is amongst the returned pages, it will not have
3458  * pins in it and unpin_user_page() will not remove pins from it.
3459  */
3460 int pin_user_pages_fast(unsigned long start, int nr_pages,
3461 			unsigned int gup_flags, struct page **pages)
3462 {
3463 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3464 		return -EINVAL;
3465 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3466 }
3467 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3468 
3469 /**
3470  * pin_user_pages_remote() - pin pages of a remote process
3471  *
3472  * @mm:		mm_struct of target mm
3473  * @start:	starting user address
3474  * @nr_pages:	number of pages from start to pin
3475  * @gup_flags:	flags modifying lookup behaviour
3476  * @pages:	array that receives pointers to the pages pinned.
3477  *		Should be at least nr_pages long.
3478  * @locked:	pointer to lock flag indicating whether lock is held and
3479  *		subsequently whether VM_FAULT_RETRY functionality can be
3480  *		utilised. Lock must initially be held.
3481  *
3482  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3483  * get_user_pages_remote() for documentation on the function arguments, because
3484  * the arguments here are identical.
3485  *
3486  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3487  * see Documentation/core-api/pin_user_pages.rst for details.
3488  *
3489  * Note that if a zero_page is amongst the returned pages, it will not have
3490  * pins in it and unpin_user_page*() will not remove pins from it.
3491  */
3492 long pin_user_pages_remote(struct mm_struct *mm,
3493 			   unsigned long start, unsigned long nr_pages,
3494 			   unsigned int gup_flags, struct page **pages,
3495 			   int *locked)
3496 {
3497 	int local_locked = 1;
3498 
3499 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3500 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3501 		return 0;
3502 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3503 				     locked ? locked : &local_locked,
3504 				     gup_flags);
3505 }
3506 EXPORT_SYMBOL(pin_user_pages_remote);
3507 
3508 /**
3509  * pin_user_pages() - pin user pages in memory for use by other devices
3510  *
3511  * @start:	starting user address
3512  * @nr_pages:	number of pages from start to pin
3513  * @gup_flags:	flags modifying lookup behaviour
3514  * @pages:	array that receives pointers to the pages pinned.
3515  *		Should be at least nr_pages long.
3516  *
3517  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3518  * FOLL_PIN is set.
3519  *
3520  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3521  * see Documentation/core-api/pin_user_pages.rst for details.
3522  *
3523  * Note that if a zero_page is amongst the returned pages, it will not have
3524  * pins in it and unpin_user_page*() will not remove pins from it.
3525  */
3526 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3527 		    unsigned int gup_flags, struct page **pages)
3528 {
3529 	int locked = 1;
3530 
3531 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3532 		return 0;
3533 	return __gup_longterm_locked(current->mm, start, nr_pages,
3534 				     pages, &locked, gup_flags);
3535 }
3536 EXPORT_SYMBOL(pin_user_pages);
3537 
3538 /*
3539  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3540  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3541  * FOLL_PIN and rejects FOLL_GET.
3542  *
3543  * Note that if a zero_page is amongst the returned pages, it will not have
3544  * pins in it and unpin_user_page*() will not remove pins from it.
3545  */
3546 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3547 			     struct page **pages, unsigned int gup_flags)
3548 {
3549 	int locked = 0;
3550 
3551 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3552 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3553 		return 0;
3554 
3555 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3556 				     &locked, gup_flags);
3557 }
3558 EXPORT_SYMBOL(pin_user_pages_unlocked);
3559 
3560 /**
3561  * memfd_pin_folios() - pin folios associated with a memfd
3562  * @memfd:      the memfd whose folios are to be pinned
3563  * @start:      the first memfd offset
3564  * @end:        the last memfd offset (inclusive)
3565  * @folios:     array that receives pointers to the folios pinned
3566  * @max_folios: maximum number of entries in @folios
3567  * @offset:     the offset into the first folio
3568  *
3569  * Attempt to pin folios associated with a memfd in the contiguous range
3570  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3571  * the folios can either be found in the page cache or need to be allocated
3572  * if necessary. Once the folios are located, they are all pinned via
3573  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3574  * And, eventually, these pinned folios must be released either using
3575  * unpin_folios() or unpin_folio().
3576  *
3577  * It must be noted that the folios may be pinned for an indefinite amount
3578  * of time. And, in most cases, the duration of time they may stay pinned
3579  * would be controlled by the userspace. This behavior is effectively the
3580  * same as using FOLL_LONGTERM with other GUP APIs.
3581  *
3582  * Returns number of folios pinned, which could be less than @max_folios
3583  * as it depends on the folio sizes that cover the range [start, end].
3584  * If no folios were pinned, it returns -errno.
3585  */
3586 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3587 		      struct folio **folios, unsigned int max_folios,
3588 		      pgoff_t *offset)
3589 {
3590 	unsigned int flags, nr_folios, nr_found;
3591 	unsigned int i, pgshift = PAGE_SHIFT;
3592 	pgoff_t start_idx, end_idx, next_idx;
3593 	struct folio *folio = NULL;
3594 	struct folio_batch fbatch;
3595 	struct hstate *h;
3596 	long ret = -EINVAL;
3597 
3598 	if (start < 0 || start > end || !max_folios)
3599 		return -EINVAL;
3600 
3601 	if (!memfd)
3602 		return -EINVAL;
3603 
3604 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3605 		return -EINVAL;
3606 
3607 	if (end >= i_size_read(file_inode(memfd)))
3608 		return -EINVAL;
3609 
3610 	if (is_file_hugepages(memfd)) {
3611 		h = hstate_file(memfd);
3612 		pgshift = huge_page_shift(h);
3613 	}
3614 
3615 	flags = memalloc_pin_save();
3616 	do {
3617 		nr_folios = 0;
3618 		start_idx = start >> pgshift;
3619 		end_idx = end >> pgshift;
3620 		if (is_file_hugepages(memfd)) {
3621 			start_idx <<= huge_page_order(h);
3622 			end_idx <<= huge_page_order(h);
3623 		}
3624 
3625 		folio_batch_init(&fbatch);
3626 		while (start_idx <= end_idx && nr_folios < max_folios) {
3627 			/*
3628 			 * In most cases, we should be able to find the folios
3629 			 * in the page cache. If we cannot find them for some
3630 			 * reason, we try to allocate them and add them to the
3631 			 * page cache.
3632 			 */
3633 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3634 							     &start_idx,
3635 							     end_idx,
3636 							     &fbatch);
3637 			if (folio) {
3638 				folio_put(folio);
3639 				folio = NULL;
3640 			}
3641 
3642 			next_idx = 0;
3643 			for (i = 0; i < nr_found; i++) {
3644 				/*
3645 				 * As there can be multiple entries for a
3646 				 * given folio in the batch returned by
3647 				 * filemap_get_folios_contig(), the below
3648 				 * check is to ensure that we pin and return a
3649 				 * unique set of folios between start and end.
3650 				 */
3651 				if (next_idx &&
3652 				    next_idx != folio_index(fbatch.folios[i]))
3653 					continue;
3654 
3655 				folio = page_folio(&fbatch.folios[i]->page);
3656 
3657 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3658 					folio_batch_release(&fbatch);
3659 					ret = -EINVAL;
3660 					goto err;
3661 				}
3662 
3663 				if (nr_folios == 0)
3664 					*offset = offset_in_folio(folio, start);
3665 
3666 				folios[nr_folios] = folio;
3667 				next_idx = folio_next_index(folio);
3668 				if (++nr_folios == max_folios)
3669 					break;
3670 			}
3671 
3672 			folio = NULL;
3673 			folio_batch_release(&fbatch);
3674 			if (!nr_found) {
3675 				folio = memfd_alloc_folio(memfd, start_idx);
3676 				if (IS_ERR(folio)) {
3677 					ret = PTR_ERR(folio);
3678 					if (ret != -EEXIST)
3679 						goto err;
3680 					folio = NULL;
3681 				}
3682 			}
3683 		}
3684 
3685 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3686 	} while (ret == -EAGAIN);
3687 
3688 	memalloc_pin_restore(flags);
3689 	return ret ? ret : nr_folios;
3690 err:
3691 	memalloc_pin_restore(flags);
3692 	unpin_folios(folios, nr_folios);
3693 
3694 	return ret;
3695 }
3696 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3697 
3698 /**
3699  * folio_add_pins() - add pins to an already-pinned folio
3700  * @folio: the folio to add more pins to
3701  * @pins: number of pins to add
3702  *
3703  * Try to add more pins to an already-pinned folio. The semantics
3704  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3705  * be changed.
3706  *
3707  * This function is helpful when having obtained a pin on a large folio
3708  * using memfd_pin_folios(), but wanting to logically unpin parts
3709  * (e.g., individual pages) of the folio later, for example, using
3710  * unpin_user_page_range_dirty_lock().
3711  *
3712  * This is not the right interface to initially pin a folio.
3713  */
3714 int folio_add_pins(struct folio *folio, unsigned int pins)
3715 {
3716 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3717 
3718 	return try_grab_folio(folio, pins, FOLL_PIN);
3719 }
3720 EXPORT_SYMBOL_GPL(folio_add_pins);
3721