1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, unsigned int flags) 83 { 84 if (flags & FOLL_GET) 85 return try_get_compound_head(page, refs); 86 else if (flags & FOLL_PIN) { 87 int orig_refs = refs; 88 89 /* 90 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 91 * path, so fail and let the caller fall back to the slow path. 92 */ 93 if (unlikely(flags & FOLL_LONGTERM) && 94 is_migrate_cma_page(page)) 95 return NULL; 96 97 /* 98 * When pinning a compound page of order > 1 (which is what 99 * hpage_pincount_available() checks for), use an exact count to 100 * track it, via hpage_pincount_add/_sub(). 101 * 102 * However, be sure to *also* increment the normal page refcount 103 * field at least once, so that the page really is pinned. 104 */ 105 if (!hpage_pincount_available(page)) 106 refs *= GUP_PIN_COUNTING_BIAS; 107 108 page = try_get_compound_head(page, refs); 109 if (!page) 110 return NULL; 111 112 if (hpage_pincount_available(page)) 113 hpage_pincount_add(page, refs); 114 115 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 116 orig_refs); 117 118 return page; 119 } 120 121 WARN_ON_ONCE(1); 122 return NULL; 123 } 124 125 static void put_compound_head(struct page *page, int refs, unsigned int flags) 126 { 127 if (flags & FOLL_PIN) { 128 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 129 refs); 130 131 if (hpage_pincount_available(page)) 132 hpage_pincount_sub(page, refs); 133 else 134 refs *= GUP_PIN_COUNTING_BIAS; 135 } 136 137 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 138 /* 139 * Calling put_page() for each ref is unnecessarily slow. Only the last 140 * ref needs a put_page(). 141 */ 142 if (refs > 1) 143 page_ref_sub(page, refs - 1); 144 put_page(page); 145 } 146 147 /** 148 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 149 * 150 * This might not do anything at all, depending on the flags argument. 151 * 152 * "grab" names in this file mean, "look at flags to decide whether to use 153 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 154 * 155 * @page: pointer to page to be grabbed 156 * @flags: gup flags: these are the FOLL_* flag values. 157 * 158 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 159 * time. Cases: 160 * 161 * FOLL_GET: page's refcount will be incremented by 1. 162 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 163 * 164 * Return: true for success, or if no action was required (if neither FOLL_PIN 165 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 166 * FOLL_PIN was set, but the page could not be grabbed. 167 */ 168 bool __must_check try_grab_page(struct page *page, unsigned int flags) 169 { 170 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 171 172 if (flags & FOLL_GET) 173 return try_get_page(page); 174 else if (flags & FOLL_PIN) { 175 int refs = 1; 176 177 page = compound_head(page); 178 179 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 180 return false; 181 182 if (hpage_pincount_available(page)) 183 hpage_pincount_add(page, 1); 184 else 185 refs = GUP_PIN_COUNTING_BIAS; 186 187 /* 188 * Similar to try_grab_compound_head(): even if using the 189 * hpage_pincount_add/_sub() routines, be sure to 190 * *also* increment the normal page refcount field at least 191 * once, so that the page really is pinned. 192 */ 193 page_ref_add(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 196 } 197 198 return true; 199 } 200 201 /** 202 * unpin_user_page() - release a dma-pinned page 203 * @page: pointer to page to be released 204 * 205 * Pages that were pinned via pin_user_pages*() must be released via either 206 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 207 * that such pages can be separately tracked and uniquely handled. In 208 * particular, interactions with RDMA and filesystems need special handling. 209 */ 210 void unpin_user_page(struct page *page) 211 { 212 put_compound_head(compound_head(page), 1, FOLL_PIN); 213 } 214 EXPORT_SYMBOL(unpin_user_page); 215 216 static inline void compound_range_next(unsigned long i, unsigned long npages, 217 struct page **list, struct page **head, 218 unsigned int *ntails) 219 { 220 struct page *next, *page; 221 unsigned int nr = 1; 222 223 if (i >= npages) 224 return; 225 226 next = *list + i; 227 page = compound_head(next); 228 if (PageCompound(page) && compound_order(page) >= 1) 229 nr = min_t(unsigned int, 230 page + compound_nr(page) - next, npages - i); 231 232 *head = page; 233 *ntails = nr; 234 } 235 236 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 237 for (__i = 0, \ 238 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 239 __i < __npages; __i += __ntails, \ 240 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 241 242 static inline void compound_next(unsigned long i, unsigned long npages, 243 struct page **list, struct page **head, 244 unsigned int *ntails) 245 { 246 struct page *page; 247 unsigned int nr; 248 249 if (i >= npages) 250 return; 251 252 page = compound_head(list[i]); 253 for (nr = i + 1; nr < npages; nr++) { 254 if (compound_head(list[nr]) != page) 255 break; 256 } 257 258 *head = page; 259 *ntails = nr - i; 260 } 261 262 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 263 for (__i = 0, \ 264 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 265 __i < __npages; __i += __ntails, \ 266 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 267 268 /** 269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 270 * @pages: array of pages to be maybe marked dirty, and definitely released. 271 * @npages: number of pages in the @pages array. 272 * @make_dirty: whether to mark the pages dirty 273 * 274 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 275 * variants called on that page. 276 * 277 * For each page in the @pages array, make that page (or its head page, if a 278 * compound page) dirty, if @make_dirty is true, and if the page was previously 279 * listed as clean. In any case, releases all pages using unpin_user_page(), 280 * possibly via unpin_user_pages(), for the non-dirty case. 281 * 282 * Please see the unpin_user_page() documentation for details. 283 * 284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 285 * required, then the caller should a) verify that this is really correct, 286 * because _lock() is usually required, and b) hand code it: 287 * set_page_dirty_lock(), unpin_user_page(). 288 * 289 */ 290 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 291 bool make_dirty) 292 { 293 unsigned long index; 294 struct page *head; 295 unsigned int ntails; 296 297 if (!make_dirty) { 298 unpin_user_pages(pages, npages); 299 return; 300 } 301 302 for_each_compound_head(index, pages, npages, head, ntails) { 303 /* 304 * Checking PageDirty at this point may race with 305 * clear_page_dirty_for_io(), but that's OK. Two key 306 * cases: 307 * 308 * 1) This code sees the page as already dirty, so it 309 * skips the call to set_page_dirty(). That could happen 310 * because clear_page_dirty_for_io() called 311 * page_mkclean(), followed by set_page_dirty(). 312 * However, now the page is going to get written back, 313 * which meets the original intention of setting it 314 * dirty, so all is well: clear_page_dirty_for_io() goes 315 * on to call TestClearPageDirty(), and write the page 316 * back. 317 * 318 * 2) This code sees the page as clean, so it calls 319 * set_page_dirty(). The page stays dirty, despite being 320 * written back, so it gets written back again in the 321 * next writeback cycle. This is harmless. 322 */ 323 if (!PageDirty(head)) 324 set_page_dirty_lock(head); 325 put_compound_head(head, ntails, FOLL_PIN); 326 } 327 } 328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 329 330 /** 331 * unpin_user_page_range_dirty_lock() - release and optionally dirty 332 * gup-pinned page range 333 * 334 * @page: the starting page of a range maybe marked dirty, and definitely released. 335 * @npages: number of consecutive pages to release. 336 * @make_dirty: whether to mark the pages dirty 337 * 338 * "gup-pinned page range" refers to a range of pages that has had one of the 339 * pin_user_pages() variants called on that page. 340 * 341 * For the page ranges defined by [page .. page+npages], make that range (or 342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 343 * page range was previously listed as clean. 344 * 345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 346 * required, then the caller should a) verify that this is really correct, 347 * because _lock() is usually required, and b) hand code it: 348 * set_page_dirty_lock(), unpin_user_page(). 349 * 350 */ 351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 352 bool make_dirty) 353 { 354 unsigned long index; 355 struct page *head; 356 unsigned int ntails; 357 358 for_each_compound_range(index, &page, npages, head, ntails) { 359 if (make_dirty && !PageDirty(head)) 360 set_page_dirty_lock(head); 361 put_compound_head(head, ntails, FOLL_PIN); 362 } 363 } 364 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 365 366 /** 367 * unpin_user_pages() - release an array of gup-pinned pages. 368 * @pages: array of pages to be marked dirty and released. 369 * @npages: number of pages in the @pages array. 370 * 371 * For each page in the @pages array, release the page using unpin_user_page(). 372 * 373 * Please see the unpin_user_page() documentation for details. 374 */ 375 void unpin_user_pages(struct page **pages, unsigned long npages) 376 { 377 unsigned long index; 378 struct page *head; 379 unsigned int ntails; 380 381 /* 382 * If this WARN_ON() fires, then the system *might* be leaking pages (by 383 * leaving them pinned), but probably not. More likely, gup/pup returned 384 * a hard -ERRNO error to the caller, who erroneously passed it here. 385 */ 386 if (WARN_ON(IS_ERR_VALUE(npages))) 387 return; 388 389 for_each_compound_head(index, pages, npages, head, ntails) 390 put_compound_head(head, ntails, FOLL_PIN); 391 } 392 EXPORT_SYMBOL(unpin_user_pages); 393 394 #ifdef CONFIG_MMU 395 static struct page *no_page_table(struct vm_area_struct *vma, 396 unsigned int flags) 397 { 398 /* 399 * When core dumping an enormous anonymous area that nobody 400 * has touched so far, we don't want to allocate unnecessary pages or 401 * page tables. Return error instead of NULL to skip handle_mm_fault, 402 * then get_dump_page() will return NULL to leave a hole in the dump. 403 * But we can only make this optimization where a hole would surely 404 * be zero-filled if handle_mm_fault() actually did handle it. 405 */ 406 if ((flags & FOLL_DUMP) && 407 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 408 return ERR_PTR(-EFAULT); 409 return NULL; 410 } 411 412 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 413 pte_t *pte, unsigned int flags) 414 { 415 /* No page to get reference */ 416 if (flags & FOLL_GET) 417 return -EFAULT; 418 419 if (flags & FOLL_TOUCH) { 420 pte_t entry = *pte; 421 422 if (flags & FOLL_WRITE) 423 entry = pte_mkdirty(entry); 424 entry = pte_mkyoung(entry); 425 426 if (!pte_same(*pte, entry)) { 427 set_pte_at(vma->vm_mm, address, pte, entry); 428 update_mmu_cache(vma, address, pte); 429 } 430 } 431 432 /* Proper page table entry exists, but no corresponding struct page */ 433 return -EEXIST; 434 } 435 436 /* 437 * FOLL_FORCE can write to even unwritable pte's, but only 438 * after we've gone through a COW cycle and they are dirty. 439 */ 440 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 441 { 442 return pte_write(pte) || 443 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 444 } 445 446 static struct page *follow_page_pte(struct vm_area_struct *vma, 447 unsigned long address, pmd_t *pmd, unsigned int flags, 448 struct dev_pagemap **pgmap) 449 { 450 struct mm_struct *mm = vma->vm_mm; 451 struct page *page; 452 spinlock_t *ptl; 453 pte_t *ptep, pte; 454 int ret; 455 456 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 457 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 458 (FOLL_PIN | FOLL_GET))) 459 return ERR_PTR(-EINVAL); 460 retry: 461 if (unlikely(pmd_bad(*pmd))) 462 return no_page_table(vma, flags); 463 464 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 465 pte = *ptep; 466 if (!pte_present(pte)) { 467 swp_entry_t entry; 468 /* 469 * KSM's break_ksm() relies upon recognizing a ksm page 470 * even while it is being migrated, so for that case we 471 * need migration_entry_wait(). 472 */ 473 if (likely(!(flags & FOLL_MIGRATION))) 474 goto no_page; 475 if (pte_none(pte)) 476 goto no_page; 477 entry = pte_to_swp_entry(pte); 478 if (!is_migration_entry(entry)) 479 goto no_page; 480 pte_unmap_unlock(ptep, ptl); 481 migration_entry_wait(mm, pmd, address); 482 goto retry; 483 } 484 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 485 goto no_page; 486 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 487 pte_unmap_unlock(ptep, ptl); 488 return NULL; 489 } 490 491 page = vm_normal_page(vma, address, pte); 492 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 493 /* 494 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 495 * case since they are only valid while holding the pgmap 496 * reference. 497 */ 498 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 499 if (*pgmap) 500 page = pte_page(pte); 501 else 502 goto no_page; 503 } else if (unlikely(!page)) { 504 if (flags & FOLL_DUMP) { 505 /* Avoid special (like zero) pages in core dumps */ 506 page = ERR_PTR(-EFAULT); 507 goto out; 508 } 509 510 if (is_zero_pfn(pte_pfn(pte))) { 511 page = pte_page(pte); 512 } else { 513 ret = follow_pfn_pte(vma, address, ptep, flags); 514 page = ERR_PTR(ret); 515 goto out; 516 } 517 } 518 519 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 520 if (unlikely(!try_grab_page(page, flags))) { 521 page = ERR_PTR(-ENOMEM); 522 goto out; 523 } 524 /* 525 * We need to make the page accessible if and only if we are going 526 * to access its content (the FOLL_PIN case). Please see 527 * Documentation/core-api/pin_user_pages.rst for details. 528 */ 529 if (flags & FOLL_PIN) { 530 ret = arch_make_page_accessible(page); 531 if (ret) { 532 unpin_user_page(page); 533 page = ERR_PTR(ret); 534 goto out; 535 } 536 } 537 if (flags & FOLL_TOUCH) { 538 if ((flags & FOLL_WRITE) && 539 !pte_dirty(pte) && !PageDirty(page)) 540 set_page_dirty(page); 541 /* 542 * pte_mkyoung() would be more correct here, but atomic care 543 * is needed to avoid losing the dirty bit: it is easier to use 544 * mark_page_accessed(). 545 */ 546 mark_page_accessed(page); 547 } 548 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 549 /* Do not mlock pte-mapped THP */ 550 if (PageTransCompound(page)) 551 goto out; 552 553 /* 554 * The preliminary mapping check is mainly to avoid the 555 * pointless overhead of lock_page on the ZERO_PAGE 556 * which might bounce very badly if there is contention. 557 * 558 * If the page is already locked, we don't need to 559 * handle it now - vmscan will handle it later if and 560 * when it attempts to reclaim the page. 561 */ 562 if (page->mapping && trylock_page(page)) { 563 lru_add_drain(); /* push cached pages to LRU */ 564 /* 565 * Because we lock page here, and migration is 566 * blocked by the pte's page reference, and we 567 * know the page is still mapped, we don't even 568 * need to check for file-cache page truncation. 569 */ 570 mlock_vma_page(page); 571 unlock_page(page); 572 } 573 } 574 out: 575 pte_unmap_unlock(ptep, ptl); 576 return page; 577 no_page: 578 pte_unmap_unlock(ptep, ptl); 579 if (!pte_none(pte)) 580 return NULL; 581 return no_page_table(vma, flags); 582 } 583 584 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 585 unsigned long address, pud_t *pudp, 586 unsigned int flags, 587 struct follow_page_context *ctx) 588 { 589 pmd_t *pmd, pmdval; 590 spinlock_t *ptl; 591 struct page *page; 592 struct mm_struct *mm = vma->vm_mm; 593 594 pmd = pmd_offset(pudp, address); 595 /* 596 * The READ_ONCE() will stabilize the pmdval in a register or 597 * on the stack so that it will stop changing under the code. 598 */ 599 pmdval = READ_ONCE(*pmd); 600 if (pmd_none(pmdval)) 601 return no_page_table(vma, flags); 602 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 603 page = follow_huge_pmd(mm, address, pmd, flags); 604 if (page) 605 return page; 606 return no_page_table(vma, flags); 607 } 608 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 609 page = follow_huge_pd(vma, address, 610 __hugepd(pmd_val(pmdval)), flags, 611 PMD_SHIFT); 612 if (page) 613 return page; 614 return no_page_table(vma, flags); 615 } 616 retry: 617 if (!pmd_present(pmdval)) { 618 if (likely(!(flags & FOLL_MIGRATION))) 619 return no_page_table(vma, flags); 620 VM_BUG_ON(thp_migration_supported() && 621 !is_pmd_migration_entry(pmdval)); 622 if (is_pmd_migration_entry(pmdval)) 623 pmd_migration_entry_wait(mm, pmd); 624 pmdval = READ_ONCE(*pmd); 625 /* 626 * MADV_DONTNEED may convert the pmd to null because 627 * mmap_lock is held in read mode 628 */ 629 if (pmd_none(pmdval)) 630 return no_page_table(vma, flags); 631 goto retry; 632 } 633 if (pmd_devmap(pmdval)) { 634 ptl = pmd_lock(mm, pmd); 635 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 636 spin_unlock(ptl); 637 if (page) 638 return page; 639 } 640 if (likely(!pmd_trans_huge(pmdval))) 641 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 642 643 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 644 return no_page_table(vma, flags); 645 646 retry_locked: 647 ptl = pmd_lock(mm, pmd); 648 if (unlikely(pmd_none(*pmd))) { 649 spin_unlock(ptl); 650 return no_page_table(vma, flags); 651 } 652 if (unlikely(!pmd_present(*pmd))) { 653 spin_unlock(ptl); 654 if (likely(!(flags & FOLL_MIGRATION))) 655 return no_page_table(vma, flags); 656 pmd_migration_entry_wait(mm, pmd); 657 goto retry_locked; 658 } 659 if (unlikely(!pmd_trans_huge(*pmd))) { 660 spin_unlock(ptl); 661 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 662 } 663 if (flags & FOLL_SPLIT_PMD) { 664 int ret; 665 page = pmd_page(*pmd); 666 if (is_huge_zero_page(page)) { 667 spin_unlock(ptl); 668 ret = 0; 669 split_huge_pmd(vma, pmd, address); 670 if (pmd_trans_unstable(pmd)) 671 ret = -EBUSY; 672 } else { 673 spin_unlock(ptl); 674 split_huge_pmd(vma, pmd, address); 675 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 676 } 677 678 return ret ? ERR_PTR(ret) : 679 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 680 } 681 page = follow_trans_huge_pmd(vma, address, pmd, flags); 682 spin_unlock(ptl); 683 ctx->page_mask = HPAGE_PMD_NR - 1; 684 return page; 685 } 686 687 static struct page *follow_pud_mask(struct vm_area_struct *vma, 688 unsigned long address, p4d_t *p4dp, 689 unsigned int flags, 690 struct follow_page_context *ctx) 691 { 692 pud_t *pud; 693 spinlock_t *ptl; 694 struct page *page; 695 struct mm_struct *mm = vma->vm_mm; 696 697 pud = pud_offset(p4dp, address); 698 if (pud_none(*pud)) 699 return no_page_table(vma, flags); 700 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 701 page = follow_huge_pud(mm, address, pud, flags); 702 if (page) 703 return page; 704 return no_page_table(vma, flags); 705 } 706 if (is_hugepd(__hugepd(pud_val(*pud)))) { 707 page = follow_huge_pd(vma, address, 708 __hugepd(pud_val(*pud)), flags, 709 PUD_SHIFT); 710 if (page) 711 return page; 712 return no_page_table(vma, flags); 713 } 714 if (pud_devmap(*pud)) { 715 ptl = pud_lock(mm, pud); 716 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 717 spin_unlock(ptl); 718 if (page) 719 return page; 720 } 721 if (unlikely(pud_bad(*pud))) 722 return no_page_table(vma, flags); 723 724 return follow_pmd_mask(vma, address, pud, flags, ctx); 725 } 726 727 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 728 unsigned long address, pgd_t *pgdp, 729 unsigned int flags, 730 struct follow_page_context *ctx) 731 { 732 p4d_t *p4d; 733 struct page *page; 734 735 p4d = p4d_offset(pgdp, address); 736 if (p4d_none(*p4d)) 737 return no_page_table(vma, flags); 738 BUILD_BUG_ON(p4d_huge(*p4d)); 739 if (unlikely(p4d_bad(*p4d))) 740 return no_page_table(vma, flags); 741 742 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 743 page = follow_huge_pd(vma, address, 744 __hugepd(p4d_val(*p4d)), flags, 745 P4D_SHIFT); 746 if (page) 747 return page; 748 return no_page_table(vma, flags); 749 } 750 return follow_pud_mask(vma, address, p4d, flags, ctx); 751 } 752 753 /** 754 * follow_page_mask - look up a page descriptor from a user-virtual address 755 * @vma: vm_area_struct mapping @address 756 * @address: virtual address to look up 757 * @flags: flags modifying lookup behaviour 758 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 759 * pointer to output page_mask 760 * 761 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 762 * 763 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 764 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 765 * 766 * On output, the @ctx->page_mask is set according to the size of the page. 767 * 768 * Return: the mapped (struct page *), %NULL if no mapping exists, or 769 * an error pointer if there is a mapping to something not represented 770 * by a page descriptor (see also vm_normal_page()). 771 */ 772 static struct page *follow_page_mask(struct vm_area_struct *vma, 773 unsigned long address, unsigned int flags, 774 struct follow_page_context *ctx) 775 { 776 pgd_t *pgd; 777 struct page *page; 778 struct mm_struct *mm = vma->vm_mm; 779 780 ctx->page_mask = 0; 781 782 /* make this handle hugepd */ 783 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 784 if (!IS_ERR(page)) { 785 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 786 return page; 787 } 788 789 pgd = pgd_offset(mm, address); 790 791 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 792 return no_page_table(vma, flags); 793 794 if (pgd_huge(*pgd)) { 795 page = follow_huge_pgd(mm, address, pgd, flags); 796 if (page) 797 return page; 798 return no_page_table(vma, flags); 799 } 800 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 801 page = follow_huge_pd(vma, address, 802 __hugepd(pgd_val(*pgd)), flags, 803 PGDIR_SHIFT); 804 if (page) 805 return page; 806 return no_page_table(vma, flags); 807 } 808 809 return follow_p4d_mask(vma, address, pgd, flags, ctx); 810 } 811 812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 813 unsigned int foll_flags) 814 { 815 struct follow_page_context ctx = { NULL }; 816 struct page *page; 817 818 page = follow_page_mask(vma, address, foll_flags, &ctx); 819 if (ctx.pgmap) 820 put_dev_pagemap(ctx.pgmap); 821 return page; 822 } 823 824 static int get_gate_page(struct mm_struct *mm, unsigned long address, 825 unsigned int gup_flags, struct vm_area_struct **vma, 826 struct page **page) 827 { 828 pgd_t *pgd; 829 p4d_t *p4d; 830 pud_t *pud; 831 pmd_t *pmd; 832 pte_t *pte; 833 int ret = -EFAULT; 834 835 /* user gate pages are read-only */ 836 if (gup_flags & FOLL_WRITE) 837 return -EFAULT; 838 if (address > TASK_SIZE) 839 pgd = pgd_offset_k(address); 840 else 841 pgd = pgd_offset_gate(mm, address); 842 if (pgd_none(*pgd)) 843 return -EFAULT; 844 p4d = p4d_offset(pgd, address); 845 if (p4d_none(*p4d)) 846 return -EFAULT; 847 pud = pud_offset(p4d, address); 848 if (pud_none(*pud)) 849 return -EFAULT; 850 pmd = pmd_offset(pud, address); 851 if (!pmd_present(*pmd)) 852 return -EFAULT; 853 VM_BUG_ON(pmd_trans_huge(*pmd)); 854 pte = pte_offset_map(pmd, address); 855 if (pte_none(*pte)) 856 goto unmap; 857 *vma = get_gate_vma(mm); 858 if (!page) 859 goto out; 860 *page = vm_normal_page(*vma, address, *pte); 861 if (!*page) { 862 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 863 goto unmap; 864 *page = pte_page(*pte); 865 } 866 if (unlikely(!try_grab_page(*page, gup_flags))) { 867 ret = -ENOMEM; 868 goto unmap; 869 } 870 out: 871 ret = 0; 872 unmap: 873 pte_unmap(pte); 874 return ret; 875 } 876 877 /* 878 * mmap_lock must be held on entry. If @locked != NULL and *@flags 879 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 880 * is, *@locked will be set to 0 and -EBUSY returned. 881 */ 882 static int faultin_page(struct vm_area_struct *vma, 883 unsigned long address, unsigned int *flags, int *locked) 884 { 885 unsigned int fault_flags = 0; 886 vm_fault_t ret; 887 888 /* mlock all present pages, but do not fault in new pages */ 889 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 890 return -ENOENT; 891 if (*flags & FOLL_WRITE) 892 fault_flags |= FAULT_FLAG_WRITE; 893 if (*flags & FOLL_REMOTE) 894 fault_flags |= FAULT_FLAG_REMOTE; 895 if (locked) 896 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 897 if (*flags & FOLL_NOWAIT) 898 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 899 if (*flags & FOLL_TRIED) { 900 /* 901 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 902 * can co-exist 903 */ 904 fault_flags |= FAULT_FLAG_TRIED; 905 } 906 907 ret = handle_mm_fault(vma, address, fault_flags, NULL); 908 if (ret & VM_FAULT_ERROR) { 909 int err = vm_fault_to_errno(ret, *flags); 910 911 if (err) 912 return err; 913 BUG(); 914 } 915 916 if (ret & VM_FAULT_RETRY) { 917 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 918 *locked = 0; 919 return -EBUSY; 920 } 921 922 /* 923 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 924 * necessary, even if maybe_mkwrite decided not to set pte_write. We 925 * can thus safely do subsequent page lookups as if they were reads. 926 * But only do so when looping for pte_write is futile: in some cases 927 * userspace may also be wanting to write to the gotten user page, 928 * which a read fault here might prevent (a readonly page might get 929 * reCOWed by userspace write). 930 */ 931 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 932 *flags |= FOLL_COW; 933 return 0; 934 } 935 936 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 937 { 938 vm_flags_t vm_flags = vma->vm_flags; 939 int write = (gup_flags & FOLL_WRITE); 940 int foreign = (gup_flags & FOLL_REMOTE); 941 942 if (vm_flags & (VM_IO | VM_PFNMAP)) 943 return -EFAULT; 944 945 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 946 return -EFAULT; 947 948 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 949 return -EOPNOTSUPP; 950 951 if (write) { 952 if (!(vm_flags & VM_WRITE)) { 953 if (!(gup_flags & FOLL_FORCE)) 954 return -EFAULT; 955 /* 956 * We used to let the write,force case do COW in a 957 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 958 * set a breakpoint in a read-only mapping of an 959 * executable, without corrupting the file (yet only 960 * when that file had been opened for writing!). 961 * Anon pages in shared mappings are surprising: now 962 * just reject it. 963 */ 964 if (!is_cow_mapping(vm_flags)) 965 return -EFAULT; 966 } 967 } else if (!(vm_flags & VM_READ)) { 968 if (!(gup_flags & FOLL_FORCE)) 969 return -EFAULT; 970 /* 971 * Is there actually any vma we can reach here which does not 972 * have VM_MAYREAD set? 973 */ 974 if (!(vm_flags & VM_MAYREAD)) 975 return -EFAULT; 976 } 977 /* 978 * gups are always data accesses, not instruction 979 * fetches, so execute=false here 980 */ 981 if (!arch_vma_access_permitted(vma, write, false, foreign)) 982 return -EFAULT; 983 return 0; 984 } 985 986 /** 987 * __get_user_pages() - pin user pages in memory 988 * @mm: mm_struct of target mm 989 * @start: starting user address 990 * @nr_pages: number of pages from start to pin 991 * @gup_flags: flags modifying pin behaviour 992 * @pages: array that receives pointers to the pages pinned. 993 * Should be at least nr_pages long. Or NULL, if caller 994 * only intends to ensure the pages are faulted in. 995 * @vmas: array of pointers to vmas corresponding to each page. 996 * Or NULL if the caller does not require them. 997 * @locked: whether we're still with the mmap_lock held 998 * 999 * Returns either number of pages pinned (which may be less than the 1000 * number requested), or an error. Details about the return value: 1001 * 1002 * -- If nr_pages is 0, returns 0. 1003 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1004 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1005 * pages pinned. Again, this may be less than nr_pages. 1006 * -- 0 return value is possible when the fault would need to be retried. 1007 * 1008 * The caller is responsible for releasing returned @pages, via put_page(). 1009 * 1010 * @vmas are valid only as long as mmap_lock is held. 1011 * 1012 * Must be called with mmap_lock held. It may be released. See below. 1013 * 1014 * __get_user_pages walks a process's page tables and takes a reference to 1015 * each struct page that each user address corresponds to at a given 1016 * instant. That is, it takes the page that would be accessed if a user 1017 * thread accesses the given user virtual address at that instant. 1018 * 1019 * This does not guarantee that the page exists in the user mappings when 1020 * __get_user_pages returns, and there may even be a completely different 1021 * page there in some cases (eg. if mmapped pagecache has been invalidated 1022 * and subsequently re faulted). However it does guarantee that the page 1023 * won't be freed completely. And mostly callers simply care that the page 1024 * contains data that was valid *at some point in time*. Typically, an IO 1025 * or similar operation cannot guarantee anything stronger anyway because 1026 * locks can't be held over the syscall boundary. 1027 * 1028 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1029 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1030 * appropriate) must be called after the page is finished with, and 1031 * before put_page is called. 1032 * 1033 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1034 * released by an up_read(). That can happen if @gup_flags does not 1035 * have FOLL_NOWAIT. 1036 * 1037 * A caller using such a combination of @locked and @gup_flags 1038 * must therefore hold the mmap_lock for reading only, and recognize 1039 * when it's been released. Otherwise, it must be held for either 1040 * reading or writing and will not be released. 1041 * 1042 * In most cases, get_user_pages or get_user_pages_fast should be used 1043 * instead of __get_user_pages. __get_user_pages should be used only if 1044 * you need some special @gup_flags. 1045 */ 1046 static long __get_user_pages(struct mm_struct *mm, 1047 unsigned long start, unsigned long nr_pages, 1048 unsigned int gup_flags, struct page **pages, 1049 struct vm_area_struct **vmas, int *locked) 1050 { 1051 long ret = 0, i = 0; 1052 struct vm_area_struct *vma = NULL; 1053 struct follow_page_context ctx = { NULL }; 1054 1055 if (!nr_pages) 1056 return 0; 1057 1058 start = untagged_addr(start); 1059 1060 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1061 1062 /* 1063 * If FOLL_FORCE is set then do not force a full fault as the hinting 1064 * fault information is unrelated to the reference behaviour of a task 1065 * using the address space 1066 */ 1067 if (!(gup_flags & FOLL_FORCE)) 1068 gup_flags |= FOLL_NUMA; 1069 1070 do { 1071 struct page *page; 1072 unsigned int foll_flags = gup_flags; 1073 unsigned int page_increm; 1074 1075 /* first iteration or cross vma bound */ 1076 if (!vma || start >= vma->vm_end) { 1077 vma = find_extend_vma(mm, start); 1078 if (!vma && in_gate_area(mm, start)) { 1079 ret = get_gate_page(mm, start & PAGE_MASK, 1080 gup_flags, &vma, 1081 pages ? &pages[i] : NULL); 1082 if (ret) 1083 goto out; 1084 ctx.page_mask = 0; 1085 goto next_page; 1086 } 1087 1088 if (!vma) { 1089 ret = -EFAULT; 1090 goto out; 1091 } 1092 ret = check_vma_flags(vma, gup_flags); 1093 if (ret) 1094 goto out; 1095 1096 if (is_vm_hugetlb_page(vma)) { 1097 i = follow_hugetlb_page(mm, vma, pages, vmas, 1098 &start, &nr_pages, i, 1099 gup_flags, locked); 1100 if (locked && *locked == 0) { 1101 /* 1102 * We've got a VM_FAULT_RETRY 1103 * and we've lost mmap_lock. 1104 * We must stop here. 1105 */ 1106 BUG_ON(gup_flags & FOLL_NOWAIT); 1107 BUG_ON(ret != 0); 1108 goto out; 1109 } 1110 continue; 1111 } 1112 } 1113 retry: 1114 /* 1115 * If we have a pending SIGKILL, don't keep faulting pages and 1116 * potentially allocating memory. 1117 */ 1118 if (fatal_signal_pending(current)) { 1119 ret = -EINTR; 1120 goto out; 1121 } 1122 cond_resched(); 1123 1124 page = follow_page_mask(vma, start, foll_flags, &ctx); 1125 if (!page) { 1126 ret = faultin_page(vma, start, &foll_flags, locked); 1127 switch (ret) { 1128 case 0: 1129 goto retry; 1130 case -EBUSY: 1131 ret = 0; 1132 fallthrough; 1133 case -EFAULT: 1134 case -ENOMEM: 1135 case -EHWPOISON: 1136 goto out; 1137 case -ENOENT: 1138 goto next_page; 1139 } 1140 BUG(); 1141 } else if (PTR_ERR(page) == -EEXIST) { 1142 /* 1143 * Proper page table entry exists, but no corresponding 1144 * struct page. 1145 */ 1146 goto next_page; 1147 } else if (IS_ERR(page)) { 1148 ret = PTR_ERR(page); 1149 goto out; 1150 } 1151 if (pages) { 1152 pages[i] = page; 1153 flush_anon_page(vma, page, start); 1154 flush_dcache_page(page); 1155 ctx.page_mask = 0; 1156 } 1157 next_page: 1158 if (vmas) { 1159 vmas[i] = vma; 1160 ctx.page_mask = 0; 1161 } 1162 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1163 if (page_increm > nr_pages) 1164 page_increm = nr_pages; 1165 i += page_increm; 1166 start += page_increm * PAGE_SIZE; 1167 nr_pages -= page_increm; 1168 } while (nr_pages); 1169 out: 1170 if (ctx.pgmap) 1171 put_dev_pagemap(ctx.pgmap); 1172 return i ? i : ret; 1173 } 1174 1175 static bool vma_permits_fault(struct vm_area_struct *vma, 1176 unsigned int fault_flags) 1177 { 1178 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1179 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1180 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1181 1182 if (!(vm_flags & vma->vm_flags)) 1183 return false; 1184 1185 /* 1186 * The architecture might have a hardware protection 1187 * mechanism other than read/write that can deny access. 1188 * 1189 * gup always represents data access, not instruction 1190 * fetches, so execute=false here: 1191 */ 1192 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1193 return false; 1194 1195 return true; 1196 } 1197 1198 /** 1199 * fixup_user_fault() - manually resolve a user page fault 1200 * @mm: mm_struct of target mm 1201 * @address: user address 1202 * @fault_flags:flags to pass down to handle_mm_fault() 1203 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1204 * does not allow retry. If NULL, the caller must guarantee 1205 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1206 * 1207 * This is meant to be called in the specific scenario where for locking reasons 1208 * we try to access user memory in atomic context (within a pagefault_disable() 1209 * section), this returns -EFAULT, and we want to resolve the user fault before 1210 * trying again. 1211 * 1212 * Typically this is meant to be used by the futex code. 1213 * 1214 * The main difference with get_user_pages() is that this function will 1215 * unconditionally call handle_mm_fault() which will in turn perform all the 1216 * necessary SW fixup of the dirty and young bits in the PTE, while 1217 * get_user_pages() only guarantees to update these in the struct page. 1218 * 1219 * This is important for some architectures where those bits also gate the 1220 * access permission to the page because they are maintained in software. On 1221 * such architectures, gup() will not be enough to make a subsequent access 1222 * succeed. 1223 * 1224 * This function will not return with an unlocked mmap_lock. So it has not the 1225 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1226 */ 1227 int fixup_user_fault(struct mm_struct *mm, 1228 unsigned long address, unsigned int fault_flags, 1229 bool *unlocked) 1230 { 1231 struct vm_area_struct *vma; 1232 vm_fault_t ret, major = 0; 1233 1234 address = untagged_addr(address); 1235 1236 if (unlocked) 1237 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1238 1239 retry: 1240 vma = find_extend_vma(mm, address); 1241 if (!vma || address < vma->vm_start) 1242 return -EFAULT; 1243 1244 if (!vma_permits_fault(vma, fault_flags)) 1245 return -EFAULT; 1246 1247 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1248 fatal_signal_pending(current)) 1249 return -EINTR; 1250 1251 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1252 major |= ret & VM_FAULT_MAJOR; 1253 if (ret & VM_FAULT_ERROR) { 1254 int err = vm_fault_to_errno(ret, 0); 1255 1256 if (err) 1257 return err; 1258 BUG(); 1259 } 1260 1261 if (ret & VM_FAULT_RETRY) { 1262 mmap_read_lock(mm); 1263 *unlocked = true; 1264 fault_flags |= FAULT_FLAG_TRIED; 1265 goto retry; 1266 } 1267 1268 return 0; 1269 } 1270 EXPORT_SYMBOL_GPL(fixup_user_fault); 1271 1272 /* 1273 * Please note that this function, unlike __get_user_pages will not 1274 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1275 */ 1276 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1277 unsigned long start, 1278 unsigned long nr_pages, 1279 struct page **pages, 1280 struct vm_area_struct **vmas, 1281 int *locked, 1282 unsigned int flags) 1283 { 1284 long ret, pages_done; 1285 bool lock_dropped; 1286 1287 if (locked) { 1288 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1289 BUG_ON(vmas); 1290 /* check caller initialized locked */ 1291 BUG_ON(*locked != 1); 1292 } 1293 1294 if (flags & FOLL_PIN) 1295 atomic_set(&mm->has_pinned, 1); 1296 1297 /* 1298 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1299 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1300 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1301 * for FOLL_GET, not for the newer FOLL_PIN. 1302 * 1303 * FOLL_PIN always expects pages to be non-null, but no need to assert 1304 * that here, as any failures will be obvious enough. 1305 */ 1306 if (pages && !(flags & FOLL_PIN)) 1307 flags |= FOLL_GET; 1308 1309 pages_done = 0; 1310 lock_dropped = false; 1311 for (;;) { 1312 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1313 vmas, locked); 1314 if (!locked) 1315 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1316 return ret; 1317 1318 /* VM_FAULT_RETRY cannot return errors */ 1319 if (!*locked) { 1320 BUG_ON(ret < 0); 1321 BUG_ON(ret >= nr_pages); 1322 } 1323 1324 if (ret > 0) { 1325 nr_pages -= ret; 1326 pages_done += ret; 1327 if (!nr_pages) 1328 break; 1329 } 1330 if (*locked) { 1331 /* 1332 * VM_FAULT_RETRY didn't trigger or it was a 1333 * FOLL_NOWAIT. 1334 */ 1335 if (!pages_done) 1336 pages_done = ret; 1337 break; 1338 } 1339 /* 1340 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1341 * For the prefault case (!pages) we only update counts. 1342 */ 1343 if (likely(pages)) 1344 pages += ret; 1345 start += ret << PAGE_SHIFT; 1346 lock_dropped = true; 1347 1348 retry: 1349 /* 1350 * Repeat on the address that fired VM_FAULT_RETRY 1351 * with both FAULT_FLAG_ALLOW_RETRY and 1352 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1353 * by fatal signals, so we need to check it before we 1354 * start trying again otherwise it can loop forever. 1355 */ 1356 1357 if (fatal_signal_pending(current)) { 1358 if (!pages_done) 1359 pages_done = -EINTR; 1360 break; 1361 } 1362 1363 ret = mmap_read_lock_killable(mm); 1364 if (ret) { 1365 BUG_ON(ret > 0); 1366 if (!pages_done) 1367 pages_done = ret; 1368 break; 1369 } 1370 1371 *locked = 1; 1372 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1373 pages, NULL, locked); 1374 if (!*locked) { 1375 /* Continue to retry until we succeeded */ 1376 BUG_ON(ret != 0); 1377 goto retry; 1378 } 1379 if (ret != 1) { 1380 BUG_ON(ret > 1); 1381 if (!pages_done) 1382 pages_done = ret; 1383 break; 1384 } 1385 nr_pages--; 1386 pages_done++; 1387 if (!nr_pages) 1388 break; 1389 if (likely(pages)) 1390 pages++; 1391 start += PAGE_SIZE; 1392 } 1393 if (lock_dropped && *locked) { 1394 /* 1395 * We must let the caller know we temporarily dropped the lock 1396 * and so the critical section protected by it was lost. 1397 */ 1398 mmap_read_unlock(mm); 1399 *locked = 0; 1400 } 1401 return pages_done; 1402 } 1403 1404 /** 1405 * populate_vma_page_range() - populate a range of pages in the vma. 1406 * @vma: target vma 1407 * @start: start address 1408 * @end: end address 1409 * @locked: whether the mmap_lock is still held 1410 * 1411 * This takes care of mlocking the pages too if VM_LOCKED is set. 1412 * 1413 * Return either number of pages pinned in the vma, or a negative error 1414 * code on error. 1415 * 1416 * vma->vm_mm->mmap_lock must be held. 1417 * 1418 * If @locked is NULL, it may be held for read or write and will 1419 * be unperturbed. 1420 * 1421 * If @locked is non-NULL, it must held for read only and may be 1422 * released. If it's released, *@locked will be set to 0. 1423 */ 1424 long populate_vma_page_range(struct vm_area_struct *vma, 1425 unsigned long start, unsigned long end, int *locked) 1426 { 1427 struct mm_struct *mm = vma->vm_mm; 1428 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1429 int gup_flags; 1430 1431 VM_BUG_ON(start & ~PAGE_MASK); 1432 VM_BUG_ON(end & ~PAGE_MASK); 1433 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1434 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1435 mmap_assert_locked(mm); 1436 1437 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1438 if (vma->vm_flags & VM_LOCKONFAULT) 1439 gup_flags &= ~FOLL_POPULATE; 1440 /* 1441 * We want to touch writable mappings with a write fault in order 1442 * to break COW, except for shared mappings because these don't COW 1443 * and we would not want to dirty them for nothing. 1444 */ 1445 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1446 gup_flags |= FOLL_WRITE; 1447 1448 /* 1449 * We want mlock to succeed for regions that have any permissions 1450 * other than PROT_NONE. 1451 */ 1452 if (vma_is_accessible(vma)) 1453 gup_flags |= FOLL_FORCE; 1454 1455 /* 1456 * We made sure addr is within a VMA, so the following will 1457 * not result in a stack expansion that recurses back here. 1458 */ 1459 return __get_user_pages(mm, start, nr_pages, gup_flags, 1460 NULL, NULL, locked); 1461 } 1462 1463 /* 1464 * __mm_populate - populate and/or mlock pages within a range of address space. 1465 * 1466 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1467 * flags. VMAs must be already marked with the desired vm_flags, and 1468 * mmap_lock must not be held. 1469 */ 1470 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1471 { 1472 struct mm_struct *mm = current->mm; 1473 unsigned long end, nstart, nend; 1474 struct vm_area_struct *vma = NULL; 1475 int locked = 0; 1476 long ret = 0; 1477 1478 end = start + len; 1479 1480 for (nstart = start; nstart < end; nstart = nend) { 1481 /* 1482 * We want to fault in pages for [nstart; end) address range. 1483 * Find first corresponding VMA. 1484 */ 1485 if (!locked) { 1486 locked = 1; 1487 mmap_read_lock(mm); 1488 vma = find_vma(mm, nstart); 1489 } else if (nstart >= vma->vm_end) 1490 vma = vma->vm_next; 1491 if (!vma || vma->vm_start >= end) 1492 break; 1493 /* 1494 * Set [nstart; nend) to intersection of desired address 1495 * range with the first VMA. Also, skip undesirable VMA types. 1496 */ 1497 nend = min(end, vma->vm_end); 1498 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1499 continue; 1500 if (nstart < vma->vm_start) 1501 nstart = vma->vm_start; 1502 /* 1503 * Now fault in a range of pages. populate_vma_page_range() 1504 * double checks the vma flags, so that it won't mlock pages 1505 * if the vma was already munlocked. 1506 */ 1507 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1508 if (ret < 0) { 1509 if (ignore_errors) { 1510 ret = 0; 1511 continue; /* continue at next VMA */ 1512 } 1513 break; 1514 } 1515 nend = nstart + ret * PAGE_SIZE; 1516 ret = 0; 1517 } 1518 if (locked) 1519 mmap_read_unlock(mm); 1520 return ret; /* 0 or negative error code */ 1521 } 1522 #else /* CONFIG_MMU */ 1523 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1524 unsigned long nr_pages, struct page **pages, 1525 struct vm_area_struct **vmas, int *locked, 1526 unsigned int foll_flags) 1527 { 1528 struct vm_area_struct *vma; 1529 unsigned long vm_flags; 1530 int i; 1531 1532 /* calculate required read or write permissions. 1533 * If FOLL_FORCE is set, we only require the "MAY" flags. 1534 */ 1535 vm_flags = (foll_flags & FOLL_WRITE) ? 1536 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1537 vm_flags &= (foll_flags & FOLL_FORCE) ? 1538 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1539 1540 for (i = 0; i < nr_pages; i++) { 1541 vma = find_vma(mm, start); 1542 if (!vma) 1543 goto finish_or_fault; 1544 1545 /* protect what we can, including chardevs */ 1546 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1547 !(vm_flags & vma->vm_flags)) 1548 goto finish_or_fault; 1549 1550 if (pages) { 1551 pages[i] = virt_to_page(start); 1552 if (pages[i]) 1553 get_page(pages[i]); 1554 } 1555 if (vmas) 1556 vmas[i] = vma; 1557 start = (start + PAGE_SIZE) & PAGE_MASK; 1558 } 1559 1560 return i; 1561 1562 finish_or_fault: 1563 return i ? : -EFAULT; 1564 } 1565 #endif /* !CONFIG_MMU */ 1566 1567 /** 1568 * get_dump_page() - pin user page in memory while writing it to core dump 1569 * @addr: user address 1570 * 1571 * Returns struct page pointer of user page pinned for dump, 1572 * to be freed afterwards by put_page(). 1573 * 1574 * Returns NULL on any kind of failure - a hole must then be inserted into 1575 * the corefile, to preserve alignment with its headers; and also returns 1576 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1577 * allowing a hole to be left in the corefile to save diskspace. 1578 * 1579 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1580 */ 1581 #ifdef CONFIG_ELF_CORE 1582 struct page *get_dump_page(unsigned long addr) 1583 { 1584 struct mm_struct *mm = current->mm; 1585 struct page *page; 1586 int locked = 1; 1587 int ret; 1588 1589 if (mmap_read_lock_killable(mm)) 1590 return NULL; 1591 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1592 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1593 if (locked) 1594 mmap_read_unlock(mm); 1595 1596 if (ret == 1 && is_page_poisoned(page)) 1597 return NULL; 1598 1599 return (ret == 1) ? page : NULL; 1600 } 1601 #endif /* CONFIG_ELF_CORE */ 1602 1603 #ifdef CONFIG_CMA 1604 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1605 unsigned long start, 1606 unsigned long nr_pages, 1607 struct page **pages, 1608 struct vm_area_struct **vmas, 1609 unsigned int gup_flags) 1610 { 1611 unsigned long i; 1612 unsigned long step; 1613 bool drain_allow = true; 1614 bool migrate_allow = true; 1615 LIST_HEAD(cma_page_list); 1616 long ret = nr_pages; 1617 struct migration_target_control mtc = { 1618 .nid = NUMA_NO_NODE, 1619 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1620 }; 1621 1622 check_again: 1623 for (i = 0; i < nr_pages;) { 1624 1625 struct page *head = compound_head(pages[i]); 1626 1627 /* 1628 * gup may start from a tail page. Advance step by the left 1629 * part. 1630 */ 1631 step = compound_nr(head) - (pages[i] - head); 1632 /* 1633 * If we get a page from the CMA zone, since we are going to 1634 * be pinning these entries, we might as well move them out 1635 * of the CMA zone if possible. 1636 */ 1637 if (is_migrate_cma_page(head)) { 1638 if (PageHuge(head)) 1639 isolate_huge_page(head, &cma_page_list); 1640 else { 1641 if (!PageLRU(head) && drain_allow) { 1642 lru_add_drain_all(); 1643 drain_allow = false; 1644 } 1645 1646 if (!isolate_lru_page(head)) { 1647 list_add_tail(&head->lru, &cma_page_list); 1648 mod_node_page_state(page_pgdat(head), 1649 NR_ISOLATED_ANON + 1650 page_is_file_lru(head), 1651 thp_nr_pages(head)); 1652 } 1653 } 1654 } 1655 1656 i += step; 1657 } 1658 1659 if (!list_empty(&cma_page_list)) { 1660 /* 1661 * drop the above get_user_pages reference. 1662 */ 1663 if (gup_flags & FOLL_PIN) 1664 unpin_user_pages(pages, nr_pages); 1665 else 1666 for (i = 0; i < nr_pages; i++) 1667 put_page(pages[i]); 1668 1669 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1670 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1671 /* 1672 * some of the pages failed migration. Do get_user_pages 1673 * without migration. 1674 */ 1675 migrate_allow = false; 1676 1677 if (!list_empty(&cma_page_list)) 1678 putback_movable_pages(&cma_page_list); 1679 } 1680 /* 1681 * We did migrate all the pages, Try to get the page references 1682 * again migrating any new CMA pages which we failed to isolate 1683 * earlier. 1684 */ 1685 ret = __get_user_pages_locked(mm, start, nr_pages, 1686 pages, vmas, NULL, 1687 gup_flags); 1688 1689 if ((ret > 0) && migrate_allow) { 1690 nr_pages = ret; 1691 drain_allow = true; 1692 goto check_again; 1693 } 1694 } 1695 1696 return ret; 1697 } 1698 #else 1699 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1700 unsigned long start, 1701 unsigned long nr_pages, 1702 struct page **pages, 1703 struct vm_area_struct **vmas, 1704 unsigned int gup_flags) 1705 { 1706 return nr_pages; 1707 } 1708 #endif /* CONFIG_CMA */ 1709 1710 /* 1711 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1712 * allows us to process the FOLL_LONGTERM flag. 1713 */ 1714 static long __gup_longterm_locked(struct mm_struct *mm, 1715 unsigned long start, 1716 unsigned long nr_pages, 1717 struct page **pages, 1718 struct vm_area_struct **vmas, 1719 unsigned int gup_flags) 1720 { 1721 unsigned long flags = 0; 1722 long rc; 1723 1724 if (gup_flags & FOLL_LONGTERM) 1725 flags = memalloc_nocma_save(); 1726 1727 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL, 1728 gup_flags); 1729 1730 if (gup_flags & FOLL_LONGTERM) { 1731 if (rc > 0) 1732 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1733 vmas, gup_flags); 1734 memalloc_nocma_restore(flags); 1735 } 1736 return rc; 1737 } 1738 1739 static bool is_valid_gup_flags(unsigned int gup_flags) 1740 { 1741 /* 1742 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1743 * never directly by the caller, so enforce that with an assertion: 1744 */ 1745 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1746 return false; 1747 /* 1748 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1749 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1750 * FOLL_PIN. 1751 */ 1752 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1753 return false; 1754 1755 return true; 1756 } 1757 1758 #ifdef CONFIG_MMU 1759 static long __get_user_pages_remote(struct mm_struct *mm, 1760 unsigned long start, unsigned long nr_pages, 1761 unsigned int gup_flags, struct page **pages, 1762 struct vm_area_struct **vmas, int *locked) 1763 { 1764 /* 1765 * Parts of FOLL_LONGTERM behavior are incompatible with 1766 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1767 * vmas. However, this only comes up if locked is set, and there are 1768 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1769 * allow what we can. 1770 */ 1771 if (gup_flags & FOLL_LONGTERM) { 1772 if (WARN_ON_ONCE(locked)) 1773 return -EINVAL; 1774 /* 1775 * This will check the vmas (even if our vmas arg is NULL) 1776 * and return -ENOTSUPP if DAX isn't allowed in this case: 1777 */ 1778 return __gup_longterm_locked(mm, start, nr_pages, pages, 1779 vmas, gup_flags | FOLL_TOUCH | 1780 FOLL_REMOTE); 1781 } 1782 1783 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1784 locked, 1785 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1786 } 1787 1788 /** 1789 * get_user_pages_remote() - pin user pages in memory 1790 * @mm: mm_struct of target mm 1791 * @start: starting user address 1792 * @nr_pages: number of pages from start to pin 1793 * @gup_flags: flags modifying lookup behaviour 1794 * @pages: array that receives pointers to the pages pinned. 1795 * Should be at least nr_pages long. Or NULL, if caller 1796 * only intends to ensure the pages are faulted in. 1797 * @vmas: array of pointers to vmas corresponding to each page. 1798 * Or NULL if the caller does not require them. 1799 * @locked: pointer to lock flag indicating whether lock is held and 1800 * subsequently whether VM_FAULT_RETRY functionality can be 1801 * utilised. Lock must initially be held. 1802 * 1803 * Returns either number of pages pinned (which may be less than the 1804 * number requested), or an error. Details about the return value: 1805 * 1806 * -- If nr_pages is 0, returns 0. 1807 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1808 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1809 * pages pinned. Again, this may be less than nr_pages. 1810 * 1811 * The caller is responsible for releasing returned @pages, via put_page(). 1812 * 1813 * @vmas are valid only as long as mmap_lock is held. 1814 * 1815 * Must be called with mmap_lock held for read or write. 1816 * 1817 * get_user_pages_remote walks a process's page tables and takes a reference 1818 * to each struct page that each user address corresponds to at a given 1819 * instant. That is, it takes the page that would be accessed if a user 1820 * thread accesses the given user virtual address at that instant. 1821 * 1822 * This does not guarantee that the page exists in the user mappings when 1823 * get_user_pages_remote returns, and there may even be a completely different 1824 * page there in some cases (eg. if mmapped pagecache has been invalidated 1825 * and subsequently re faulted). However it does guarantee that the page 1826 * won't be freed completely. And mostly callers simply care that the page 1827 * contains data that was valid *at some point in time*. Typically, an IO 1828 * or similar operation cannot guarantee anything stronger anyway because 1829 * locks can't be held over the syscall boundary. 1830 * 1831 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1832 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1833 * be called after the page is finished with, and before put_page is called. 1834 * 1835 * get_user_pages_remote is typically used for fewer-copy IO operations, 1836 * to get a handle on the memory by some means other than accesses 1837 * via the user virtual addresses. The pages may be submitted for 1838 * DMA to devices or accessed via their kernel linear mapping (via the 1839 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1840 * 1841 * See also get_user_pages_fast, for performance critical applications. 1842 * 1843 * get_user_pages_remote should be phased out in favor of 1844 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1845 * should use get_user_pages_remote because it cannot pass 1846 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1847 */ 1848 long get_user_pages_remote(struct mm_struct *mm, 1849 unsigned long start, unsigned long nr_pages, 1850 unsigned int gup_flags, struct page **pages, 1851 struct vm_area_struct **vmas, int *locked) 1852 { 1853 if (!is_valid_gup_flags(gup_flags)) 1854 return -EINVAL; 1855 1856 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1857 pages, vmas, locked); 1858 } 1859 EXPORT_SYMBOL(get_user_pages_remote); 1860 1861 #else /* CONFIG_MMU */ 1862 long get_user_pages_remote(struct mm_struct *mm, 1863 unsigned long start, unsigned long nr_pages, 1864 unsigned int gup_flags, struct page **pages, 1865 struct vm_area_struct **vmas, int *locked) 1866 { 1867 return 0; 1868 } 1869 1870 static long __get_user_pages_remote(struct mm_struct *mm, 1871 unsigned long start, unsigned long nr_pages, 1872 unsigned int gup_flags, struct page **pages, 1873 struct vm_area_struct **vmas, int *locked) 1874 { 1875 return 0; 1876 } 1877 #endif /* !CONFIG_MMU */ 1878 1879 /** 1880 * get_user_pages() - pin user pages in memory 1881 * @start: starting user address 1882 * @nr_pages: number of pages from start to pin 1883 * @gup_flags: flags modifying lookup behaviour 1884 * @pages: array that receives pointers to the pages pinned. 1885 * Should be at least nr_pages long. Or NULL, if caller 1886 * only intends to ensure the pages are faulted in. 1887 * @vmas: array of pointers to vmas corresponding to each page. 1888 * Or NULL if the caller does not require them. 1889 * 1890 * This is the same as get_user_pages_remote(), just with a less-flexible 1891 * calling convention where we assume that the mm being operated on belongs to 1892 * the current task, and doesn't allow passing of a locked parameter. We also 1893 * obviously don't pass FOLL_REMOTE in here. 1894 */ 1895 long get_user_pages(unsigned long start, unsigned long nr_pages, 1896 unsigned int gup_flags, struct page **pages, 1897 struct vm_area_struct **vmas) 1898 { 1899 if (!is_valid_gup_flags(gup_flags)) 1900 return -EINVAL; 1901 1902 return __gup_longterm_locked(current->mm, start, nr_pages, 1903 pages, vmas, gup_flags | FOLL_TOUCH); 1904 } 1905 EXPORT_SYMBOL(get_user_pages); 1906 1907 /** 1908 * get_user_pages_locked() - variant of get_user_pages() 1909 * 1910 * @start: starting user address 1911 * @nr_pages: number of pages from start to pin 1912 * @gup_flags: flags modifying lookup behaviour 1913 * @pages: array that receives pointers to the pages pinned. 1914 * Should be at least nr_pages long. Or NULL, if caller 1915 * only intends to ensure the pages are faulted in. 1916 * @locked: pointer to lock flag indicating whether lock is held and 1917 * subsequently whether VM_FAULT_RETRY functionality can be 1918 * utilised. Lock must initially be held. 1919 * 1920 * It is suitable to replace the form: 1921 * 1922 * mmap_read_lock(mm); 1923 * do_something() 1924 * get_user_pages(mm, ..., pages, NULL); 1925 * mmap_read_unlock(mm); 1926 * 1927 * to: 1928 * 1929 * int locked = 1; 1930 * mmap_read_lock(mm); 1931 * do_something() 1932 * get_user_pages_locked(mm, ..., pages, &locked); 1933 * if (locked) 1934 * mmap_read_unlock(mm); 1935 * 1936 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1937 * paths better by using either get_user_pages_locked() or 1938 * get_user_pages_unlocked(). 1939 * 1940 */ 1941 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1942 unsigned int gup_flags, struct page **pages, 1943 int *locked) 1944 { 1945 /* 1946 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1947 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1948 * vmas. As there are no users of this flag in this call we simply 1949 * disallow this option for now. 1950 */ 1951 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1952 return -EINVAL; 1953 /* 1954 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1955 * never directly by the caller, so enforce that: 1956 */ 1957 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1958 return -EINVAL; 1959 1960 return __get_user_pages_locked(current->mm, start, nr_pages, 1961 pages, NULL, locked, 1962 gup_flags | FOLL_TOUCH); 1963 } 1964 EXPORT_SYMBOL(get_user_pages_locked); 1965 1966 /* 1967 * get_user_pages_unlocked() is suitable to replace the form: 1968 * 1969 * mmap_read_lock(mm); 1970 * get_user_pages(mm, ..., pages, NULL); 1971 * mmap_read_unlock(mm); 1972 * 1973 * with: 1974 * 1975 * get_user_pages_unlocked(mm, ..., pages); 1976 * 1977 * It is functionally equivalent to get_user_pages_fast so 1978 * get_user_pages_fast should be used instead if specific gup_flags 1979 * (e.g. FOLL_FORCE) are not required. 1980 */ 1981 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1982 struct page **pages, unsigned int gup_flags) 1983 { 1984 struct mm_struct *mm = current->mm; 1985 int locked = 1; 1986 long ret; 1987 1988 /* 1989 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1990 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1991 * vmas. As there are no users of this flag in this call we simply 1992 * disallow this option for now. 1993 */ 1994 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1995 return -EINVAL; 1996 1997 mmap_read_lock(mm); 1998 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 1999 &locked, gup_flags | FOLL_TOUCH); 2000 if (locked) 2001 mmap_read_unlock(mm); 2002 return ret; 2003 } 2004 EXPORT_SYMBOL(get_user_pages_unlocked); 2005 2006 /* 2007 * Fast GUP 2008 * 2009 * get_user_pages_fast attempts to pin user pages by walking the page 2010 * tables directly and avoids taking locks. Thus the walker needs to be 2011 * protected from page table pages being freed from under it, and should 2012 * block any THP splits. 2013 * 2014 * One way to achieve this is to have the walker disable interrupts, and 2015 * rely on IPIs from the TLB flushing code blocking before the page table 2016 * pages are freed. This is unsuitable for architectures that do not need 2017 * to broadcast an IPI when invalidating TLBs. 2018 * 2019 * Another way to achieve this is to batch up page table containing pages 2020 * belonging to more than one mm_user, then rcu_sched a callback to free those 2021 * pages. Disabling interrupts will allow the fast_gup walker to both block 2022 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2023 * (which is a relatively rare event). The code below adopts this strategy. 2024 * 2025 * Before activating this code, please be aware that the following assumptions 2026 * are currently made: 2027 * 2028 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2029 * free pages containing page tables or TLB flushing requires IPI broadcast. 2030 * 2031 * *) ptes can be read atomically by the architecture. 2032 * 2033 * *) access_ok is sufficient to validate userspace address ranges. 2034 * 2035 * The last two assumptions can be relaxed by the addition of helper functions. 2036 * 2037 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2038 */ 2039 #ifdef CONFIG_HAVE_FAST_GUP 2040 2041 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2042 unsigned int flags, 2043 struct page **pages) 2044 { 2045 while ((*nr) - nr_start) { 2046 struct page *page = pages[--(*nr)]; 2047 2048 ClearPageReferenced(page); 2049 if (flags & FOLL_PIN) 2050 unpin_user_page(page); 2051 else 2052 put_page(page); 2053 } 2054 } 2055 2056 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2057 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2058 unsigned int flags, struct page **pages, int *nr) 2059 { 2060 struct dev_pagemap *pgmap = NULL; 2061 int nr_start = *nr, ret = 0; 2062 pte_t *ptep, *ptem; 2063 2064 ptem = ptep = pte_offset_map(&pmd, addr); 2065 do { 2066 pte_t pte = ptep_get_lockless(ptep); 2067 struct page *head, *page; 2068 2069 /* 2070 * Similar to the PMD case below, NUMA hinting must take slow 2071 * path using the pte_protnone check. 2072 */ 2073 if (pte_protnone(pte)) 2074 goto pte_unmap; 2075 2076 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2077 goto pte_unmap; 2078 2079 if (pte_devmap(pte)) { 2080 if (unlikely(flags & FOLL_LONGTERM)) 2081 goto pte_unmap; 2082 2083 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2084 if (unlikely(!pgmap)) { 2085 undo_dev_pagemap(nr, nr_start, flags, pages); 2086 goto pte_unmap; 2087 } 2088 } else if (pte_special(pte)) 2089 goto pte_unmap; 2090 2091 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2092 page = pte_page(pte); 2093 2094 head = try_grab_compound_head(page, 1, flags); 2095 if (!head) 2096 goto pte_unmap; 2097 2098 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2099 put_compound_head(head, 1, flags); 2100 goto pte_unmap; 2101 } 2102 2103 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2104 2105 /* 2106 * We need to make the page accessible if and only if we are 2107 * going to access its content (the FOLL_PIN case). Please 2108 * see Documentation/core-api/pin_user_pages.rst for 2109 * details. 2110 */ 2111 if (flags & FOLL_PIN) { 2112 ret = arch_make_page_accessible(page); 2113 if (ret) { 2114 unpin_user_page(page); 2115 goto pte_unmap; 2116 } 2117 } 2118 SetPageReferenced(page); 2119 pages[*nr] = page; 2120 (*nr)++; 2121 2122 } while (ptep++, addr += PAGE_SIZE, addr != end); 2123 2124 ret = 1; 2125 2126 pte_unmap: 2127 if (pgmap) 2128 put_dev_pagemap(pgmap); 2129 pte_unmap(ptem); 2130 return ret; 2131 } 2132 #else 2133 2134 /* 2135 * If we can't determine whether or not a pte is special, then fail immediately 2136 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2137 * to be special. 2138 * 2139 * For a futex to be placed on a THP tail page, get_futex_key requires a 2140 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2141 * useful to have gup_huge_pmd even if we can't operate on ptes. 2142 */ 2143 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2144 unsigned int flags, struct page **pages, int *nr) 2145 { 2146 return 0; 2147 } 2148 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2149 2150 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2151 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2152 unsigned long end, unsigned int flags, 2153 struct page **pages, int *nr) 2154 { 2155 int nr_start = *nr; 2156 struct dev_pagemap *pgmap = NULL; 2157 2158 do { 2159 struct page *page = pfn_to_page(pfn); 2160 2161 pgmap = get_dev_pagemap(pfn, pgmap); 2162 if (unlikely(!pgmap)) { 2163 undo_dev_pagemap(nr, nr_start, flags, pages); 2164 return 0; 2165 } 2166 SetPageReferenced(page); 2167 pages[*nr] = page; 2168 if (unlikely(!try_grab_page(page, flags))) { 2169 undo_dev_pagemap(nr, nr_start, flags, pages); 2170 return 0; 2171 } 2172 (*nr)++; 2173 pfn++; 2174 } while (addr += PAGE_SIZE, addr != end); 2175 2176 if (pgmap) 2177 put_dev_pagemap(pgmap); 2178 return 1; 2179 } 2180 2181 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2182 unsigned long end, unsigned int flags, 2183 struct page **pages, int *nr) 2184 { 2185 unsigned long fault_pfn; 2186 int nr_start = *nr; 2187 2188 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2189 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2190 return 0; 2191 2192 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2193 undo_dev_pagemap(nr, nr_start, flags, pages); 2194 return 0; 2195 } 2196 return 1; 2197 } 2198 2199 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2200 unsigned long end, unsigned int flags, 2201 struct page **pages, int *nr) 2202 { 2203 unsigned long fault_pfn; 2204 int nr_start = *nr; 2205 2206 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2207 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2208 return 0; 2209 2210 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2211 undo_dev_pagemap(nr, nr_start, flags, pages); 2212 return 0; 2213 } 2214 return 1; 2215 } 2216 #else 2217 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2218 unsigned long end, unsigned int flags, 2219 struct page **pages, int *nr) 2220 { 2221 BUILD_BUG(); 2222 return 0; 2223 } 2224 2225 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2226 unsigned long end, unsigned int flags, 2227 struct page **pages, int *nr) 2228 { 2229 BUILD_BUG(); 2230 return 0; 2231 } 2232 #endif 2233 2234 static int record_subpages(struct page *page, unsigned long addr, 2235 unsigned long end, struct page **pages) 2236 { 2237 int nr; 2238 2239 for (nr = 0; addr != end; addr += PAGE_SIZE) 2240 pages[nr++] = page++; 2241 2242 return nr; 2243 } 2244 2245 #ifdef CONFIG_ARCH_HAS_HUGEPD 2246 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2247 unsigned long sz) 2248 { 2249 unsigned long __boundary = (addr + sz) & ~(sz-1); 2250 return (__boundary - 1 < end - 1) ? __boundary : end; 2251 } 2252 2253 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2254 unsigned long end, unsigned int flags, 2255 struct page **pages, int *nr) 2256 { 2257 unsigned long pte_end; 2258 struct page *head, *page; 2259 pte_t pte; 2260 int refs; 2261 2262 pte_end = (addr + sz) & ~(sz-1); 2263 if (pte_end < end) 2264 end = pte_end; 2265 2266 pte = huge_ptep_get(ptep); 2267 2268 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2269 return 0; 2270 2271 /* hugepages are never "special" */ 2272 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2273 2274 head = pte_page(pte); 2275 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2276 refs = record_subpages(page, addr, end, pages + *nr); 2277 2278 head = try_grab_compound_head(head, refs, flags); 2279 if (!head) 2280 return 0; 2281 2282 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2283 put_compound_head(head, refs, flags); 2284 return 0; 2285 } 2286 2287 *nr += refs; 2288 SetPageReferenced(head); 2289 return 1; 2290 } 2291 2292 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2293 unsigned int pdshift, unsigned long end, unsigned int flags, 2294 struct page **pages, int *nr) 2295 { 2296 pte_t *ptep; 2297 unsigned long sz = 1UL << hugepd_shift(hugepd); 2298 unsigned long next; 2299 2300 ptep = hugepte_offset(hugepd, addr, pdshift); 2301 do { 2302 next = hugepte_addr_end(addr, end, sz); 2303 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2304 return 0; 2305 } while (ptep++, addr = next, addr != end); 2306 2307 return 1; 2308 } 2309 #else 2310 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2311 unsigned int pdshift, unsigned long end, unsigned int flags, 2312 struct page **pages, int *nr) 2313 { 2314 return 0; 2315 } 2316 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2317 2318 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2319 unsigned long end, unsigned int flags, 2320 struct page **pages, int *nr) 2321 { 2322 struct page *head, *page; 2323 int refs; 2324 2325 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2326 return 0; 2327 2328 if (pmd_devmap(orig)) { 2329 if (unlikely(flags & FOLL_LONGTERM)) 2330 return 0; 2331 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2332 pages, nr); 2333 } 2334 2335 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2336 refs = record_subpages(page, addr, end, pages + *nr); 2337 2338 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2339 if (!head) 2340 return 0; 2341 2342 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2343 put_compound_head(head, refs, flags); 2344 return 0; 2345 } 2346 2347 *nr += refs; 2348 SetPageReferenced(head); 2349 return 1; 2350 } 2351 2352 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2353 unsigned long end, unsigned int flags, 2354 struct page **pages, int *nr) 2355 { 2356 struct page *head, *page; 2357 int refs; 2358 2359 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2360 return 0; 2361 2362 if (pud_devmap(orig)) { 2363 if (unlikely(flags & FOLL_LONGTERM)) 2364 return 0; 2365 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2366 pages, nr); 2367 } 2368 2369 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2370 refs = record_subpages(page, addr, end, pages + *nr); 2371 2372 head = try_grab_compound_head(pud_page(orig), refs, flags); 2373 if (!head) 2374 return 0; 2375 2376 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2377 put_compound_head(head, refs, flags); 2378 return 0; 2379 } 2380 2381 *nr += refs; 2382 SetPageReferenced(head); 2383 return 1; 2384 } 2385 2386 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2387 unsigned long end, unsigned int flags, 2388 struct page **pages, int *nr) 2389 { 2390 int refs; 2391 struct page *head, *page; 2392 2393 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2394 return 0; 2395 2396 BUILD_BUG_ON(pgd_devmap(orig)); 2397 2398 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2399 refs = record_subpages(page, addr, end, pages + *nr); 2400 2401 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2402 if (!head) 2403 return 0; 2404 2405 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2406 put_compound_head(head, refs, flags); 2407 return 0; 2408 } 2409 2410 *nr += refs; 2411 SetPageReferenced(head); 2412 return 1; 2413 } 2414 2415 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2416 unsigned int flags, struct page **pages, int *nr) 2417 { 2418 unsigned long next; 2419 pmd_t *pmdp; 2420 2421 pmdp = pmd_offset_lockless(pudp, pud, addr); 2422 do { 2423 pmd_t pmd = READ_ONCE(*pmdp); 2424 2425 next = pmd_addr_end(addr, end); 2426 if (!pmd_present(pmd)) 2427 return 0; 2428 2429 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2430 pmd_devmap(pmd))) { 2431 /* 2432 * NUMA hinting faults need to be handled in the GUP 2433 * slowpath for accounting purposes and so that they 2434 * can be serialised against THP migration. 2435 */ 2436 if (pmd_protnone(pmd)) 2437 return 0; 2438 2439 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2440 pages, nr)) 2441 return 0; 2442 2443 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2444 /* 2445 * architecture have different format for hugetlbfs 2446 * pmd format and THP pmd format 2447 */ 2448 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2449 PMD_SHIFT, next, flags, pages, nr)) 2450 return 0; 2451 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2452 return 0; 2453 } while (pmdp++, addr = next, addr != end); 2454 2455 return 1; 2456 } 2457 2458 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2459 unsigned int flags, struct page **pages, int *nr) 2460 { 2461 unsigned long next; 2462 pud_t *pudp; 2463 2464 pudp = pud_offset_lockless(p4dp, p4d, addr); 2465 do { 2466 pud_t pud = READ_ONCE(*pudp); 2467 2468 next = pud_addr_end(addr, end); 2469 if (unlikely(!pud_present(pud))) 2470 return 0; 2471 if (unlikely(pud_huge(pud))) { 2472 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2473 pages, nr)) 2474 return 0; 2475 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2476 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2477 PUD_SHIFT, next, flags, pages, nr)) 2478 return 0; 2479 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2480 return 0; 2481 } while (pudp++, addr = next, addr != end); 2482 2483 return 1; 2484 } 2485 2486 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2487 unsigned int flags, struct page **pages, int *nr) 2488 { 2489 unsigned long next; 2490 p4d_t *p4dp; 2491 2492 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2493 do { 2494 p4d_t p4d = READ_ONCE(*p4dp); 2495 2496 next = p4d_addr_end(addr, end); 2497 if (p4d_none(p4d)) 2498 return 0; 2499 BUILD_BUG_ON(p4d_huge(p4d)); 2500 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2501 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2502 P4D_SHIFT, next, flags, pages, nr)) 2503 return 0; 2504 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2505 return 0; 2506 } while (p4dp++, addr = next, addr != end); 2507 2508 return 1; 2509 } 2510 2511 static void gup_pgd_range(unsigned long addr, unsigned long end, 2512 unsigned int flags, struct page **pages, int *nr) 2513 { 2514 unsigned long next; 2515 pgd_t *pgdp; 2516 2517 pgdp = pgd_offset(current->mm, addr); 2518 do { 2519 pgd_t pgd = READ_ONCE(*pgdp); 2520 2521 next = pgd_addr_end(addr, end); 2522 if (pgd_none(pgd)) 2523 return; 2524 if (unlikely(pgd_huge(pgd))) { 2525 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2526 pages, nr)) 2527 return; 2528 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2529 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2530 PGDIR_SHIFT, next, flags, pages, nr)) 2531 return; 2532 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2533 return; 2534 } while (pgdp++, addr = next, addr != end); 2535 } 2536 #else 2537 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2538 unsigned int flags, struct page **pages, int *nr) 2539 { 2540 } 2541 #endif /* CONFIG_HAVE_FAST_GUP */ 2542 2543 #ifndef gup_fast_permitted 2544 /* 2545 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2546 * we need to fall back to the slow version: 2547 */ 2548 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2549 { 2550 return true; 2551 } 2552 #endif 2553 2554 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2555 unsigned int gup_flags, struct page **pages) 2556 { 2557 int ret; 2558 2559 /* 2560 * FIXME: FOLL_LONGTERM does not work with 2561 * get_user_pages_unlocked() (see comments in that function) 2562 */ 2563 if (gup_flags & FOLL_LONGTERM) { 2564 mmap_read_lock(current->mm); 2565 ret = __gup_longterm_locked(current->mm, 2566 start, nr_pages, 2567 pages, NULL, gup_flags); 2568 mmap_read_unlock(current->mm); 2569 } else { 2570 ret = get_user_pages_unlocked(start, nr_pages, 2571 pages, gup_flags); 2572 } 2573 2574 return ret; 2575 } 2576 2577 static unsigned long lockless_pages_from_mm(unsigned long start, 2578 unsigned long end, 2579 unsigned int gup_flags, 2580 struct page **pages) 2581 { 2582 unsigned long flags; 2583 int nr_pinned = 0; 2584 unsigned seq; 2585 2586 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2587 !gup_fast_permitted(start, end)) 2588 return 0; 2589 2590 if (gup_flags & FOLL_PIN) { 2591 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2592 if (seq & 1) 2593 return 0; 2594 } 2595 2596 /* 2597 * Disable interrupts. The nested form is used, in order to allow full, 2598 * general purpose use of this routine. 2599 * 2600 * With interrupts disabled, we block page table pages from being freed 2601 * from under us. See struct mmu_table_batch comments in 2602 * include/asm-generic/tlb.h for more details. 2603 * 2604 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2605 * that come from THPs splitting. 2606 */ 2607 local_irq_save(flags); 2608 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2609 local_irq_restore(flags); 2610 2611 /* 2612 * When pinning pages for DMA there could be a concurrent write protect 2613 * from fork() via copy_page_range(), in this case always fail fast GUP. 2614 */ 2615 if (gup_flags & FOLL_PIN) { 2616 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2617 unpin_user_pages(pages, nr_pinned); 2618 return 0; 2619 } 2620 } 2621 return nr_pinned; 2622 } 2623 2624 static int internal_get_user_pages_fast(unsigned long start, 2625 unsigned long nr_pages, 2626 unsigned int gup_flags, 2627 struct page **pages) 2628 { 2629 unsigned long len, end; 2630 unsigned long nr_pinned; 2631 int ret; 2632 2633 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2634 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2635 FOLL_FAST_ONLY))) 2636 return -EINVAL; 2637 2638 if (gup_flags & FOLL_PIN) 2639 atomic_set(¤t->mm->has_pinned, 1); 2640 2641 if (!(gup_flags & FOLL_FAST_ONLY)) 2642 might_lock_read(¤t->mm->mmap_lock); 2643 2644 start = untagged_addr(start) & PAGE_MASK; 2645 len = nr_pages << PAGE_SHIFT; 2646 if (check_add_overflow(start, len, &end)) 2647 return 0; 2648 if (unlikely(!access_ok((void __user *)start, len))) 2649 return -EFAULT; 2650 2651 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2652 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2653 return nr_pinned; 2654 2655 /* Slow path: try to get the remaining pages with get_user_pages */ 2656 start += nr_pinned << PAGE_SHIFT; 2657 pages += nr_pinned; 2658 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2659 pages); 2660 if (ret < 0) { 2661 /* 2662 * The caller has to unpin the pages we already pinned so 2663 * returning -errno is not an option 2664 */ 2665 if (nr_pinned) 2666 return nr_pinned; 2667 return ret; 2668 } 2669 return ret + nr_pinned; 2670 } 2671 2672 /** 2673 * get_user_pages_fast_only() - pin user pages in memory 2674 * @start: starting user address 2675 * @nr_pages: number of pages from start to pin 2676 * @gup_flags: flags modifying pin behaviour 2677 * @pages: array that receives pointers to the pages pinned. 2678 * Should be at least nr_pages long. 2679 * 2680 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2681 * the regular GUP. 2682 * Note a difference with get_user_pages_fast: this always returns the 2683 * number of pages pinned, 0 if no pages were pinned. 2684 * 2685 * If the architecture does not support this function, simply return with no 2686 * pages pinned. 2687 * 2688 * Careful, careful! COW breaking can go either way, so a non-write 2689 * access can get ambiguous page results. If you call this function without 2690 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2691 */ 2692 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2693 unsigned int gup_flags, struct page **pages) 2694 { 2695 int nr_pinned; 2696 /* 2697 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2698 * because gup fast is always a "pin with a +1 page refcount" request. 2699 * 2700 * FOLL_FAST_ONLY is required in order to match the API description of 2701 * this routine: no fall back to regular ("slow") GUP. 2702 */ 2703 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2704 2705 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2706 pages); 2707 2708 /* 2709 * As specified in the API description above, this routine is not 2710 * allowed to return negative values. However, the common core 2711 * routine internal_get_user_pages_fast() *can* return -errno. 2712 * Therefore, correct for that here: 2713 */ 2714 if (nr_pinned < 0) 2715 nr_pinned = 0; 2716 2717 return nr_pinned; 2718 } 2719 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2720 2721 /** 2722 * get_user_pages_fast() - pin user pages in memory 2723 * @start: starting user address 2724 * @nr_pages: number of pages from start to pin 2725 * @gup_flags: flags modifying pin behaviour 2726 * @pages: array that receives pointers to the pages pinned. 2727 * Should be at least nr_pages long. 2728 * 2729 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2730 * If not successful, it will fall back to taking the lock and 2731 * calling get_user_pages(). 2732 * 2733 * Returns number of pages pinned. This may be fewer than the number requested. 2734 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2735 * -errno. 2736 */ 2737 int get_user_pages_fast(unsigned long start, int nr_pages, 2738 unsigned int gup_flags, struct page **pages) 2739 { 2740 if (!is_valid_gup_flags(gup_flags)) 2741 return -EINVAL; 2742 2743 /* 2744 * The caller may or may not have explicitly set FOLL_GET; either way is 2745 * OK. However, internally (within mm/gup.c), gup fast variants must set 2746 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2747 * request. 2748 */ 2749 gup_flags |= FOLL_GET; 2750 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2751 } 2752 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2753 2754 /** 2755 * pin_user_pages_fast() - pin user pages in memory without taking locks 2756 * 2757 * @start: starting user address 2758 * @nr_pages: number of pages from start to pin 2759 * @gup_flags: flags modifying pin behaviour 2760 * @pages: array that receives pointers to the pages pinned. 2761 * Should be at least nr_pages long. 2762 * 2763 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2764 * get_user_pages_fast() for documentation on the function arguments, because 2765 * the arguments here are identical. 2766 * 2767 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2768 * see Documentation/core-api/pin_user_pages.rst for further details. 2769 */ 2770 int pin_user_pages_fast(unsigned long start, int nr_pages, 2771 unsigned int gup_flags, struct page **pages) 2772 { 2773 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2774 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2775 return -EINVAL; 2776 2777 gup_flags |= FOLL_PIN; 2778 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2779 } 2780 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2781 2782 /* 2783 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2784 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2785 * 2786 * The API rules are the same, too: no negative values may be returned. 2787 */ 2788 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2789 unsigned int gup_flags, struct page **pages) 2790 { 2791 int nr_pinned; 2792 2793 /* 2794 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2795 * rules require returning 0, rather than -errno: 2796 */ 2797 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2798 return 0; 2799 /* 2800 * FOLL_FAST_ONLY is required in order to match the API description of 2801 * this routine: no fall back to regular ("slow") GUP. 2802 */ 2803 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2804 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2805 pages); 2806 /* 2807 * This routine is not allowed to return negative values. However, 2808 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2809 * correct for that here: 2810 */ 2811 if (nr_pinned < 0) 2812 nr_pinned = 0; 2813 2814 return nr_pinned; 2815 } 2816 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2817 2818 /** 2819 * pin_user_pages_remote() - pin pages of a remote process 2820 * 2821 * @mm: mm_struct of target mm 2822 * @start: starting user address 2823 * @nr_pages: number of pages from start to pin 2824 * @gup_flags: flags modifying lookup behaviour 2825 * @pages: array that receives pointers to the pages pinned. 2826 * Should be at least nr_pages long. Or NULL, if caller 2827 * only intends to ensure the pages are faulted in. 2828 * @vmas: array of pointers to vmas corresponding to each page. 2829 * Or NULL if the caller does not require them. 2830 * @locked: pointer to lock flag indicating whether lock is held and 2831 * subsequently whether VM_FAULT_RETRY functionality can be 2832 * utilised. Lock must initially be held. 2833 * 2834 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2835 * get_user_pages_remote() for documentation on the function arguments, because 2836 * the arguments here are identical. 2837 * 2838 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2839 * see Documentation/core-api/pin_user_pages.rst for details. 2840 */ 2841 long pin_user_pages_remote(struct mm_struct *mm, 2842 unsigned long start, unsigned long nr_pages, 2843 unsigned int gup_flags, struct page **pages, 2844 struct vm_area_struct **vmas, int *locked) 2845 { 2846 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2847 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2848 return -EINVAL; 2849 2850 gup_flags |= FOLL_PIN; 2851 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2852 pages, vmas, locked); 2853 } 2854 EXPORT_SYMBOL(pin_user_pages_remote); 2855 2856 /** 2857 * pin_user_pages() - pin user pages in memory for use by other devices 2858 * 2859 * @start: starting user address 2860 * @nr_pages: number of pages from start to pin 2861 * @gup_flags: flags modifying lookup behaviour 2862 * @pages: array that receives pointers to the pages pinned. 2863 * Should be at least nr_pages long. Or NULL, if caller 2864 * only intends to ensure the pages are faulted in. 2865 * @vmas: array of pointers to vmas corresponding to each page. 2866 * Or NULL if the caller does not require them. 2867 * 2868 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2869 * FOLL_PIN is set. 2870 * 2871 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2872 * see Documentation/core-api/pin_user_pages.rst for details. 2873 */ 2874 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2875 unsigned int gup_flags, struct page **pages, 2876 struct vm_area_struct **vmas) 2877 { 2878 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2879 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2880 return -EINVAL; 2881 2882 gup_flags |= FOLL_PIN; 2883 return __gup_longterm_locked(current->mm, start, nr_pages, 2884 pages, vmas, gup_flags); 2885 } 2886 EXPORT_SYMBOL(pin_user_pages); 2887 2888 /* 2889 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2890 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2891 * FOLL_PIN and rejects FOLL_GET. 2892 */ 2893 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2894 struct page **pages, unsigned int gup_flags) 2895 { 2896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2897 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2898 return -EINVAL; 2899 2900 gup_flags |= FOLL_PIN; 2901 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2902 } 2903 EXPORT_SYMBOL(pin_user_pages_unlocked); 2904 2905 /* 2906 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2907 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2908 * FOLL_GET. 2909 */ 2910 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2911 unsigned int gup_flags, struct page **pages, 2912 int *locked) 2913 { 2914 /* 2915 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2916 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2917 * vmas. As there are no users of this flag in this call we simply 2918 * disallow this option for now. 2919 */ 2920 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2921 return -EINVAL; 2922 2923 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2924 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2925 return -EINVAL; 2926 2927 gup_flags |= FOLL_PIN; 2928 return __get_user_pages_locked(current->mm, start, nr_pages, 2929 pages, NULL, locked, 2930 gup_flags | FOLL_TOUCH); 2931 } 2932 EXPORT_SYMBOL(pin_user_pages_locked); 2933