xref: /linux/mm/gup.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 						   int refs, unsigned int flags)
83 {
84 	if (flags & FOLL_GET)
85 		return try_get_compound_head(page, refs);
86 	else if (flags & FOLL_PIN) {
87 		int orig_refs = refs;
88 
89 		/*
90 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
91 		 * path, so fail and let the caller fall back to the slow path.
92 		 */
93 		if (unlikely(flags & FOLL_LONGTERM) &&
94 				is_migrate_cma_page(page))
95 			return NULL;
96 
97 		/*
98 		 * When pinning a compound page of order > 1 (which is what
99 		 * hpage_pincount_available() checks for), use an exact count to
100 		 * track it, via hpage_pincount_add/_sub().
101 		 *
102 		 * However, be sure to *also* increment the normal page refcount
103 		 * field at least once, so that the page really is pinned.
104 		 */
105 		if (!hpage_pincount_available(page))
106 			refs *= GUP_PIN_COUNTING_BIAS;
107 
108 		page = try_get_compound_head(page, refs);
109 		if (!page)
110 			return NULL;
111 
112 		if (hpage_pincount_available(page))
113 			hpage_pincount_add(page, refs);
114 
115 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
116 				    orig_refs);
117 
118 		return page;
119 	}
120 
121 	WARN_ON_ONCE(1);
122 	return NULL;
123 }
124 
125 static void put_compound_head(struct page *page, int refs, unsigned int flags)
126 {
127 	if (flags & FOLL_PIN) {
128 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
129 				    refs);
130 
131 		if (hpage_pincount_available(page))
132 			hpage_pincount_sub(page, refs);
133 		else
134 			refs *= GUP_PIN_COUNTING_BIAS;
135 	}
136 
137 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
138 	/*
139 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
140 	 * ref needs a put_page().
141 	 */
142 	if (refs > 1)
143 		page_ref_sub(page, refs - 1);
144 	put_page(page);
145 }
146 
147 /**
148  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
149  *
150  * This might not do anything at all, depending on the flags argument.
151  *
152  * "grab" names in this file mean, "look at flags to decide whether to use
153  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
154  *
155  * @page:    pointer to page to be grabbed
156  * @flags:   gup flags: these are the FOLL_* flag values.
157  *
158  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
159  * time. Cases:
160  *
161  *    FOLL_GET: page's refcount will be incremented by 1.
162  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
163  *
164  * Return: true for success, or if no action was required (if neither FOLL_PIN
165  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
166  * FOLL_PIN was set, but the page could not be grabbed.
167  */
168 bool __must_check try_grab_page(struct page *page, unsigned int flags)
169 {
170 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
171 
172 	if (flags & FOLL_GET)
173 		return try_get_page(page);
174 	else if (flags & FOLL_PIN) {
175 		int refs = 1;
176 
177 		page = compound_head(page);
178 
179 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
180 			return false;
181 
182 		if (hpage_pincount_available(page))
183 			hpage_pincount_add(page, 1);
184 		else
185 			refs = GUP_PIN_COUNTING_BIAS;
186 
187 		/*
188 		 * Similar to try_grab_compound_head(): even if using the
189 		 * hpage_pincount_add/_sub() routines, be sure to
190 		 * *also* increment the normal page refcount field at least
191 		 * once, so that the page really is pinned.
192 		 */
193 		page_ref_add(page, refs);
194 
195 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
196 	}
197 
198 	return true;
199 }
200 
201 /**
202  * unpin_user_page() - release a dma-pinned page
203  * @page:            pointer to page to be released
204  *
205  * Pages that were pinned via pin_user_pages*() must be released via either
206  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
207  * that such pages can be separately tracked and uniquely handled. In
208  * particular, interactions with RDMA and filesystems need special handling.
209  */
210 void unpin_user_page(struct page *page)
211 {
212 	put_compound_head(compound_head(page), 1, FOLL_PIN);
213 }
214 EXPORT_SYMBOL(unpin_user_page);
215 
216 static inline void compound_range_next(unsigned long i, unsigned long npages,
217 				       struct page **list, struct page **head,
218 				       unsigned int *ntails)
219 {
220 	struct page *next, *page;
221 	unsigned int nr = 1;
222 
223 	if (i >= npages)
224 		return;
225 
226 	next = *list + i;
227 	page = compound_head(next);
228 	if (PageCompound(page) && compound_order(page) >= 1)
229 		nr = min_t(unsigned int,
230 			   page + compound_nr(page) - next, npages - i);
231 
232 	*head = page;
233 	*ntails = nr;
234 }
235 
236 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
237 	for (__i = 0, \
238 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
239 	     __i < __npages; __i += __ntails, \
240 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
241 
242 static inline void compound_next(unsigned long i, unsigned long npages,
243 				 struct page **list, struct page **head,
244 				 unsigned int *ntails)
245 {
246 	struct page *page;
247 	unsigned int nr;
248 
249 	if (i >= npages)
250 		return;
251 
252 	page = compound_head(list[i]);
253 	for (nr = i + 1; nr < npages; nr++) {
254 		if (compound_head(list[nr]) != page)
255 			break;
256 	}
257 
258 	*head = page;
259 	*ntails = nr - i;
260 }
261 
262 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
263 	for (__i = 0, \
264 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
265 	     __i < __npages; __i += __ntails, \
266 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
267 
268 /**
269  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270  * @pages:  array of pages to be maybe marked dirty, and definitely released.
271  * @npages: number of pages in the @pages array.
272  * @make_dirty: whether to mark the pages dirty
273  *
274  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275  * variants called on that page.
276  *
277  * For each page in the @pages array, make that page (or its head page, if a
278  * compound page) dirty, if @make_dirty is true, and if the page was previously
279  * listed as clean. In any case, releases all pages using unpin_user_page(),
280  * possibly via unpin_user_pages(), for the non-dirty case.
281  *
282  * Please see the unpin_user_page() documentation for details.
283  *
284  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285  * required, then the caller should a) verify that this is really correct,
286  * because _lock() is usually required, and b) hand code it:
287  * set_page_dirty_lock(), unpin_user_page().
288  *
289  */
290 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
291 				 bool make_dirty)
292 {
293 	unsigned long index;
294 	struct page *head;
295 	unsigned int ntails;
296 
297 	if (!make_dirty) {
298 		unpin_user_pages(pages, npages);
299 		return;
300 	}
301 
302 	for_each_compound_head(index, pages, npages, head, ntails) {
303 		/*
304 		 * Checking PageDirty at this point may race with
305 		 * clear_page_dirty_for_io(), but that's OK. Two key
306 		 * cases:
307 		 *
308 		 * 1) This code sees the page as already dirty, so it
309 		 * skips the call to set_page_dirty(). That could happen
310 		 * because clear_page_dirty_for_io() called
311 		 * page_mkclean(), followed by set_page_dirty().
312 		 * However, now the page is going to get written back,
313 		 * which meets the original intention of setting it
314 		 * dirty, so all is well: clear_page_dirty_for_io() goes
315 		 * on to call TestClearPageDirty(), and write the page
316 		 * back.
317 		 *
318 		 * 2) This code sees the page as clean, so it calls
319 		 * set_page_dirty(). The page stays dirty, despite being
320 		 * written back, so it gets written back again in the
321 		 * next writeback cycle. This is harmless.
322 		 */
323 		if (!PageDirty(head))
324 			set_page_dirty_lock(head);
325 		put_compound_head(head, ntails, FOLL_PIN);
326 	}
327 }
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329 
330 /**
331  * unpin_user_page_range_dirty_lock() - release and optionally dirty
332  * gup-pinned page range
333  *
334  * @page:  the starting page of a range maybe marked dirty, and definitely released.
335  * @npages: number of consecutive pages to release.
336  * @make_dirty: whether to mark the pages dirty
337  *
338  * "gup-pinned page range" refers to a range of pages that has had one of the
339  * pin_user_pages() variants called on that page.
340  *
341  * For the page ranges defined by [page .. page+npages], make that range (or
342  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343  * page range was previously listed as clean.
344  *
345  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346  * required, then the caller should a) verify that this is really correct,
347  * because _lock() is usually required, and b) hand code it:
348  * set_page_dirty_lock(), unpin_user_page().
349  *
350  */
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 				      bool make_dirty)
353 {
354 	unsigned long index;
355 	struct page *head;
356 	unsigned int ntails;
357 
358 	for_each_compound_range(index, &page, npages, head, ntails) {
359 		if (make_dirty && !PageDirty(head))
360 			set_page_dirty_lock(head);
361 		put_compound_head(head, ntails, FOLL_PIN);
362 	}
363 }
364 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
365 
366 /**
367  * unpin_user_pages() - release an array of gup-pinned pages.
368  * @pages:  array of pages to be marked dirty and released.
369  * @npages: number of pages in the @pages array.
370  *
371  * For each page in the @pages array, release the page using unpin_user_page().
372  *
373  * Please see the unpin_user_page() documentation for details.
374  */
375 void unpin_user_pages(struct page **pages, unsigned long npages)
376 {
377 	unsigned long index;
378 	struct page *head;
379 	unsigned int ntails;
380 
381 	/*
382 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
383 	 * leaving them pinned), but probably not. More likely, gup/pup returned
384 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
385 	 */
386 	if (WARN_ON(IS_ERR_VALUE(npages)))
387 		return;
388 
389 	for_each_compound_head(index, pages, npages, head, ntails)
390 		put_compound_head(head, ntails, FOLL_PIN);
391 }
392 EXPORT_SYMBOL(unpin_user_pages);
393 
394 #ifdef CONFIG_MMU
395 static struct page *no_page_table(struct vm_area_struct *vma,
396 		unsigned int flags)
397 {
398 	/*
399 	 * When core dumping an enormous anonymous area that nobody
400 	 * has touched so far, we don't want to allocate unnecessary pages or
401 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
402 	 * then get_dump_page() will return NULL to leave a hole in the dump.
403 	 * But we can only make this optimization where a hole would surely
404 	 * be zero-filled if handle_mm_fault() actually did handle it.
405 	 */
406 	if ((flags & FOLL_DUMP) &&
407 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
408 		return ERR_PTR(-EFAULT);
409 	return NULL;
410 }
411 
412 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
413 		pte_t *pte, unsigned int flags)
414 {
415 	/* No page to get reference */
416 	if (flags & FOLL_GET)
417 		return -EFAULT;
418 
419 	if (flags & FOLL_TOUCH) {
420 		pte_t entry = *pte;
421 
422 		if (flags & FOLL_WRITE)
423 			entry = pte_mkdirty(entry);
424 		entry = pte_mkyoung(entry);
425 
426 		if (!pte_same(*pte, entry)) {
427 			set_pte_at(vma->vm_mm, address, pte, entry);
428 			update_mmu_cache(vma, address, pte);
429 		}
430 	}
431 
432 	/* Proper page table entry exists, but no corresponding struct page */
433 	return -EEXIST;
434 }
435 
436 /*
437  * FOLL_FORCE can write to even unwritable pte's, but only
438  * after we've gone through a COW cycle and they are dirty.
439  */
440 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
441 {
442 	return pte_write(pte) ||
443 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
444 }
445 
446 static struct page *follow_page_pte(struct vm_area_struct *vma,
447 		unsigned long address, pmd_t *pmd, unsigned int flags,
448 		struct dev_pagemap **pgmap)
449 {
450 	struct mm_struct *mm = vma->vm_mm;
451 	struct page *page;
452 	spinlock_t *ptl;
453 	pte_t *ptep, pte;
454 	int ret;
455 
456 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
457 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
458 			 (FOLL_PIN | FOLL_GET)))
459 		return ERR_PTR(-EINVAL);
460 retry:
461 	if (unlikely(pmd_bad(*pmd)))
462 		return no_page_table(vma, flags);
463 
464 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
465 	pte = *ptep;
466 	if (!pte_present(pte)) {
467 		swp_entry_t entry;
468 		/*
469 		 * KSM's break_ksm() relies upon recognizing a ksm page
470 		 * even while it is being migrated, so for that case we
471 		 * need migration_entry_wait().
472 		 */
473 		if (likely(!(flags & FOLL_MIGRATION)))
474 			goto no_page;
475 		if (pte_none(pte))
476 			goto no_page;
477 		entry = pte_to_swp_entry(pte);
478 		if (!is_migration_entry(entry))
479 			goto no_page;
480 		pte_unmap_unlock(ptep, ptl);
481 		migration_entry_wait(mm, pmd, address);
482 		goto retry;
483 	}
484 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
485 		goto no_page;
486 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
487 		pte_unmap_unlock(ptep, ptl);
488 		return NULL;
489 	}
490 
491 	page = vm_normal_page(vma, address, pte);
492 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
493 		/*
494 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
495 		 * case since they are only valid while holding the pgmap
496 		 * reference.
497 		 */
498 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
499 		if (*pgmap)
500 			page = pte_page(pte);
501 		else
502 			goto no_page;
503 	} else if (unlikely(!page)) {
504 		if (flags & FOLL_DUMP) {
505 			/* Avoid special (like zero) pages in core dumps */
506 			page = ERR_PTR(-EFAULT);
507 			goto out;
508 		}
509 
510 		if (is_zero_pfn(pte_pfn(pte))) {
511 			page = pte_page(pte);
512 		} else {
513 			ret = follow_pfn_pte(vma, address, ptep, flags);
514 			page = ERR_PTR(ret);
515 			goto out;
516 		}
517 	}
518 
519 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
520 	if (unlikely(!try_grab_page(page, flags))) {
521 		page = ERR_PTR(-ENOMEM);
522 		goto out;
523 	}
524 	/*
525 	 * We need to make the page accessible if and only if we are going
526 	 * to access its content (the FOLL_PIN case).  Please see
527 	 * Documentation/core-api/pin_user_pages.rst for details.
528 	 */
529 	if (flags & FOLL_PIN) {
530 		ret = arch_make_page_accessible(page);
531 		if (ret) {
532 			unpin_user_page(page);
533 			page = ERR_PTR(ret);
534 			goto out;
535 		}
536 	}
537 	if (flags & FOLL_TOUCH) {
538 		if ((flags & FOLL_WRITE) &&
539 		    !pte_dirty(pte) && !PageDirty(page))
540 			set_page_dirty(page);
541 		/*
542 		 * pte_mkyoung() would be more correct here, but atomic care
543 		 * is needed to avoid losing the dirty bit: it is easier to use
544 		 * mark_page_accessed().
545 		 */
546 		mark_page_accessed(page);
547 	}
548 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
549 		/* Do not mlock pte-mapped THP */
550 		if (PageTransCompound(page))
551 			goto out;
552 
553 		/*
554 		 * The preliminary mapping check is mainly to avoid the
555 		 * pointless overhead of lock_page on the ZERO_PAGE
556 		 * which might bounce very badly if there is contention.
557 		 *
558 		 * If the page is already locked, we don't need to
559 		 * handle it now - vmscan will handle it later if and
560 		 * when it attempts to reclaim the page.
561 		 */
562 		if (page->mapping && trylock_page(page)) {
563 			lru_add_drain();  /* push cached pages to LRU */
564 			/*
565 			 * Because we lock page here, and migration is
566 			 * blocked by the pte's page reference, and we
567 			 * know the page is still mapped, we don't even
568 			 * need to check for file-cache page truncation.
569 			 */
570 			mlock_vma_page(page);
571 			unlock_page(page);
572 		}
573 	}
574 out:
575 	pte_unmap_unlock(ptep, ptl);
576 	return page;
577 no_page:
578 	pte_unmap_unlock(ptep, ptl);
579 	if (!pte_none(pte))
580 		return NULL;
581 	return no_page_table(vma, flags);
582 }
583 
584 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
585 				    unsigned long address, pud_t *pudp,
586 				    unsigned int flags,
587 				    struct follow_page_context *ctx)
588 {
589 	pmd_t *pmd, pmdval;
590 	spinlock_t *ptl;
591 	struct page *page;
592 	struct mm_struct *mm = vma->vm_mm;
593 
594 	pmd = pmd_offset(pudp, address);
595 	/*
596 	 * The READ_ONCE() will stabilize the pmdval in a register or
597 	 * on the stack so that it will stop changing under the code.
598 	 */
599 	pmdval = READ_ONCE(*pmd);
600 	if (pmd_none(pmdval))
601 		return no_page_table(vma, flags);
602 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
603 		page = follow_huge_pmd(mm, address, pmd, flags);
604 		if (page)
605 			return page;
606 		return no_page_table(vma, flags);
607 	}
608 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
609 		page = follow_huge_pd(vma, address,
610 				      __hugepd(pmd_val(pmdval)), flags,
611 				      PMD_SHIFT);
612 		if (page)
613 			return page;
614 		return no_page_table(vma, flags);
615 	}
616 retry:
617 	if (!pmd_present(pmdval)) {
618 		if (likely(!(flags & FOLL_MIGRATION)))
619 			return no_page_table(vma, flags);
620 		VM_BUG_ON(thp_migration_supported() &&
621 				  !is_pmd_migration_entry(pmdval));
622 		if (is_pmd_migration_entry(pmdval))
623 			pmd_migration_entry_wait(mm, pmd);
624 		pmdval = READ_ONCE(*pmd);
625 		/*
626 		 * MADV_DONTNEED may convert the pmd to null because
627 		 * mmap_lock is held in read mode
628 		 */
629 		if (pmd_none(pmdval))
630 			return no_page_table(vma, flags);
631 		goto retry;
632 	}
633 	if (pmd_devmap(pmdval)) {
634 		ptl = pmd_lock(mm, pmd);
635 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
636 		spin_unlock(ptl);
637 		if (page)
638 			return page;
639 	}
640 	if (likely(!pmd_trans_huge(pmdval)))
641 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
642 
643 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
644 		return no_page_table(vma, flags);
645 
646 retry_locked:
647 	ptl = pmd_lock(mm, pmd);
648 	if (unlikely(pmd_none(*pmd))) {
649 		spin_unlock(ptl);
650 		return no_page_table(vma, flags);
651 	}
652 	if (unlikely(!pmd_present(*pmd))) {
653 		spin_unlock(ptl);
654 		if (likely(!(flags & FOLL_MIGRATION)))
655 			return no_page_table(vma, flags);
656 		pmd_migration_entry_wait(mm, pmd);
657 		goto retry_locked;
658 	}
659 	if (unlikely(!pmd_trans_huge(*pmd))) {
660 		spin_unlock(ptl);
661 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
662 	}
663 	if (flags & FOLL_SPLIT_PMD) {
664 		int ret;
665 		page = pmd_page(*pmd);
666 		if (is_huge_zero_page(page)) {
667 			spin_unlock(ptl);
668 			ret = 0;
669 			split_huge_pmd(vma, pmd, address);
670 			if (pmd_trans_unstable(pmd))
671 				ret = -EBUSY;
672 		} else {
673 			spin_unlock(ptl);
674 			split_huge_pmd(vma, pmd, address);
675 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
676 		}
677 
678 		return ret ? ERR_PTR(ret) :
679 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
680 	}
681 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
682 	spin_unlock(ptl);
683 	ctx->page_mask = HPAGE_PMD_NR - 1;
684 	return page;
685 }
686 
687 static struct page *follow_pud_mask(struct vm_area_struct *vma,
688 				    unsigned long address, p4d_t *p4dp,
689 				    unsigned int flags,
690 				    struct follow_page_context *ctx)
691 {
692 	pud_t *pud;
693 	spinlock_t *ptl;
694 	struct page *page;
695 	struct mm_struct *mm = vma->vm_mm;
696 
697 	pud = pud_offset(p4dp, address);
698 	if (pud_none(*pud))
699 		return no_page_table(vma, flags);
700 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
701 		page = follow_huge_pud(mm, address, pud, flags);
702 		if (page)
703 			return page;
704 		return no_page_table(vma, flags);
705 	}
706 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
707 		page = follow_huge_pd(vma, address,
708 				      __hugepd(pud_val(*pud)), flags,
709 				      PUD_SHIFT);
710 		if (page)
711 			return page;
712 		return no_page_table(vma, flags);
713 	}
714 	if (pud_devmap(*pud)) {
715 		ptl = pud_lock(mm, pud);
716 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
717 		spin_unlock(ptl);
718 		if (page)
719 			return page;
720 	}
721 	if (unlikely(pud_bad(*pud)))
722 		return no_page_table(vma, flags);
723 
724 	return follow_pmd_mask(vma, address, pud, flags, ctx);
725 }
726 
727 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
728 				    unsigned long address, pgd_t *pgdp,
729 				    unsigned int flags,
730 				    struct follow_page_context *ctx)
731 {
732 	p4d_t *p4d;
733 	struct page *page;
734 
735 	p4d = p4d_offset(pgdp, address);
736 	if (p4d_none(*p4d))
737 		return no_page_table(vma, flags);
738 	BUILD_BUG_ON(p4d_huge(*p4d));
739 	if (unlikely(p4d_bad(*p4d)))
740 		return no_page_table(vma, flags);
741 
742 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
743 		page = follow_huge_pd(vma, address,
744 				      __hugepd(p4d_val(*p4d)), flags,
745 				      P4D_SHIFT);
746 		if (page)
747 			return page;
748 		return no_page_table(vma, flags);
749 	}
750 	return follow_pud_mask(vma, address, p4d, flags, ctx);
751 }
752 
753 /**
754  * follow_page_mask - look up a page descriptor from a user-virtual address
755  * @vma: vm_area_struct mapping @address
756  * @address: virtual address to look up
757  * @flags: flags modifying lookup behaviour
758  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
759  *       pointer to output page_mask
760  *
761  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
762  *
763  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
764  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
765  *
766  * On output, the @ctx->page_mask is set according to the size of the page.
767  *
768  * Return: the mapped (struct page *), %NULL if no mapping exists, or
769  * an error pointer if there is a mapping to something not represented
770  * by a page descriptor (see also vm_normal_page()).
771  */
772 static struct page *follow_page_mask(struct vm_area_struct *vma,
773 			      unsigned long address, unsigned int flags,
774 			      struct follow_page_context *ctx)
775 {
776 	pgd_t *pgd;
777 	struct page *page;
778 	struct mm_struct *mm = vma->vm_mm;
779 
780 	ctx->page_mask = 0;
781 
782 	/* make this handle hugepd */
783 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
784 	if (!IS_ERR(page)) {
785 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
786 		return page;
787 	}
788 
789 	pgd = pgd_offset(mm, address);
790 
791 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
792 		return no_page_table(vma, flags);
793 
794 	if (pgd_huge(*pgd)) {
795 		page = follow_huge_pgd(mm, address, pgd, flags);
796 		if (page)
797 			return page;
798 		return no_page_table(vma, flags);
799 	}
800 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
801 		page = follow_huge_pd(vma, address,
802 				      __hugepd(pgd_val(*pgd)), flags,
803 				      PGDIR_SHIFT);
804 		if (page)
805 			return page;
806 		return no_page_table(vma, flags);
807 	}
808 
809 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
810 }
811 
812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 			 unsigned int foll_flags)
814 {
815 	struct follow_page_context ctx = { NULL };
816 	struct page *page;
817 
818 	page = follow_page_mask(vma, address, foll_flags, &ctx);
819 	if (ctx.pgmap)
820 		put_dev_pagemap(ctx.pgmap);
821 	return page;
822 }
823 
824 static int get_gate_page(struct mm_struct *mm, unsigned long address,
825 		unsigned int gup_flags, struct vm_area_struct **vma,
826 		struct page **page)
827 {
828 	pgd_t *pgd;
829 	p4d_t *p4d;
830 	pud_t *pud;
831 	pmd_t *pmd;
832 	pte_t *pte;
833 	int ret = -EFAULT;
834 
835 	/* user gate pages are read-only */
836 	if (gup_flags & FOLL_WRITE)
837 		return -EFAULT;
838 	if (address > TASK_SIZE)
839 		pgd = pgd_offset_k(address);
840 	else
841 		pgd = pgd_offset_gate(mm, address);
842 	if (pgd_none(*pgd))
843 		return -EFAULT;
844 	p4d = p4d_offset(pgd, address);
845 	if (p4d_none(*p4d))
846 		return -EFAULT;
847 	pud = pud_offset(p4d, address);
848 	if (pud_none(*pud))
849 		return -EFAULT;
850 	pmd = pmd_offset(pud, address);
851 	if (!pmd_present(*pmd))
852 		return -EFAULT;
853 	VM_BUG_ON(pmd_trans_huge(*pmd));
854 	pte = pte_offset_map(pmd, address);
855 	if (pte_none(*pte))
856 		goto unmap;
857 	*vma = get_gate_vma(mm);
858 	if (!page)
859 		goto out;
860 	*page = vm_normal_page(*vma, address, *pte);
861 	if (!*page) {
862 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
863 			goto unmap;
864 		*page = pte_page(*pte);
865 	}
866 	if (unlikely(!try_grab_page(*page, gup_flags))) {
867 		ret = -ENOMEM;
868 		goto unmap;
869 	}
870 out:
871 	ret = 0;
872 unmap:
873 	pte_unmap(pte);
874 	return ret;
875 }
876 
877 /*
878  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
879  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
880  * is, *@locked will be set to 0 and -EBUSY returned.
881  */
882 static int faultin_page(struct vm_area_struct *vma,
883 		unsigned long address, unsigned int *flags, int *locked)
884 {
885 	unsigned int fault_flags = 0;
886 	vm_fault_t ret;
887 
888 	/* mlock all present pages, but do not fault in new pages */
889 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
890 		return -ENOENT;
891 	if (*flags & FOLL_WRITE)
892 		fault_flags |= FAULT_FLAG_WRITE;
893 	if (*flags & FOLL_REMOTE)
894 		fault_flags |= FAULT_FLAG_REMOTE;
895 	if (locked)
896 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
897 	if (*flags & FOLL_NOWAIT)
898 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
899 	if (*flags & FOLL_TRIED) {
900 		/*
901 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
902 		 * can co-exist
903 		 */
904 		fault_flags |= FAULT_FLAG_TRIED;
905 	}
906 
907 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
908 	if (ret & VM_FAULT_ERROR) {
909 		int err = vm_fault_to_errno(ret, *flags);
910 
911 		if (err)
912 			return err;
913 		BUG();
914 	}
915 
916 	if (ret & VM_FAULT_RETRY) {
917 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
918 			*locked = 0;
919 		return -EBUSY;
920 	}
921 
922 	/*
923 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
924 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
925 	 * can thus safely do subsequent page lookups as if they were reads.
926 	 * But only do so when looping for pte_write is futile: in some cases
927 	 * userspace may also be wanting to write to the gotten user page,
928 	 * which a read fault here might prevent (a readonly page might get
929 	 * reCOWed by userspace write).
930 	 */
931 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
932 		*flags |= FOLL_COW;
933 	return 0;
934 }
935 
936 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
937 {
938 	vm_flags_t vm_flags = vma->vm_flags;
939 	int write = (gup_flags & FOLL_WRITE);
940 	int foreign = (gup_flags & FOLL_REMOTE);
941 
942 	if (vm_flags & (VM_IO | VM_PFNMAP))
943 		return -EFAULT;
944 
945 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
946 		return -EFAULT;
947 
948 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
949 		return -EOPNOTSUPP;
950 
951 	if (write) {
952 		if (!(vm_flags & VM_WRITE)) {
953 			if (!(gup_flags & FOLL_FORCE))
954 				return -EFAULT;
955 			/*
956 			 * We used to let the write,force case do COW in a
957 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
958 			 * set a breakpoint in a read-only mapping of an
959 			 * executable, without corrupting the file (yet only
960 			 * when that file had been opened for writing!).
961 			 * Anon pages in shared mappings are surprising: now
962 			 * just reject it.
963 			 */
964 			if (!is_cow_mapping(vm_flags))
965 				return -EFAULT;
966 		}
967 	} else if (!(vm_flags & VM_READ)) {
968 		if (!(gup_flags & FOLL_FORCE))
969 			return -EFAULT;
970 		/*
971 		 * Is there actually any vma we can reach here which does not
972 		 * have VM_MAYREAD set?
973 		 */
974 		if (!(vm_flags & VM_MAYREAD))
975 			return -EFAULT;
976 	}
977 	/*
978 	 * gups are always data accesses, not instruction
979 	 * fetches, so execute=false here
980 	 */
981 	if (!arch_vma_access_permitted(vma, write, false, foreign))
982 		return -EFAULT;
983 	return 0;
984 }
985 
986 /**
987  * __get_user_pages() - pin user pages in memory
988  * @mm:		mm_struct of target mm
989  * @start:	starting user address
990  * @nr_pages:	number of pages from start to pin
991  * @gup_flags:	flags modifying pin behaviour
992  * @pages:	array that receives pointers to the pages pinned.
993  *		Should be at least nr_pages long. Or NULL, if caller
994  *		only intends to ensure the pages are faulted in.
995  * @vmas:	array of pointers to vmas corresponding to each page.
996  *		Or NULL if the caller does not require them.
997  * @locked:     whether we're still with the mmap_lock held
998  *
999  * Returns either number of pages pinned (which may be less than the
1000  * number requested), or an error. Details about the return value:
1001  *
1002  * -- If nr_pages is 0, returns 0.
1003  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1004  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1005  *    pages pinned. Again, this may be less than nr_pages.
1006  * -- 0 return value is possible when the fault would need to be retried.
1007  *
1008  * The caller is responsible for releasing returned @pages, via put_page().
1009  *
1010  * @vmas are valid only as long as mmap_lock is held.
1011  *
1012  * Must be called with mmap_lock held.  It may be released.  See below.
1013  *
1014  * __get_user_pages walks a process's page tables and takes a reference to
1015  * each struct page that each user address corresponds to at a given
1016  * instant. That is, it takes the page that would be accessed if a user
1017  * thread accesses the given user virtual address at that instant.
1018  *
1019  * This does not guarantee that the page exists in the user mappings when
1020  * __get_user_pages returns, and there may even be a completely different
1021  * page there in some cases (eg. if mmapped pagecache has been invalidated
1022  * and subsequently re faulted). However it does guarantee that the page
1023  * won't be freed completely. And mostly callers simply care that the page
1024  * contains data that was valid *at some point in time*. Typically, an IO
1025  * or similar operation cannot guarantee anything stronger anyway because
1026  * locks can't be held over the syscall boundary.
1027  *
1028  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1029  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1030  * appropriate) must be called after the page is finished with, and
1031  * before put_page is called.
1032  *
1033  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1034  * released by an up_read().  That can happen if @gup_flags does not
1035  * have FOLL_NOWAIT.
1036  *
1037  * A caller using such a combination of @locked and @gup_flags
1038  * must therefore hold the mmap_lock for reading only, and recognize
1039  * when it's been released.  Otherwise, it must be held for either
1040  * reading or writing and will not be released.
1041  *
1042  * In most cases, get_user_pages or get_user_pages_fast should be used
1043  * instead of __get_user_pages. __get_user_pages should be used only if
1044  * you need some special @gup_flags.
1045  */
1046 static long __get_user_pages(struct mm_struct *mm,
1047 		unsigned long start, unsigned long nr_pages,
1048 		unsigned int gup_flags, struct page **pages,
1049 		struct vm_area_struct **vmas, int *locked)
1050 {
1051 	long ret = 0, i = 0;
1052 	struct vm_area_struct *vma = NULL;
1053 	struct follow_page_context ctx = { NULL };
1054 
1055 	if (!nr_pages)
1056 		return 0;
1057 
1058 	start = untagged_addr(start);
1059 
1060 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1061 
1062 	/*
1063 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1064 	 * fault information is unrelated to the reference behaviour of a task
1065 	 * using the address space
1066 	 */
1067 	if (!(gup_flags & FOLL_FORCE))
1068 		gup_flags |= FOLL_NUMA;
1069 
1070 	do {
1071 		struct page *page;
1072 		unsigned int foll_flags = gup_flags;
1073 		unsigned int page_increm;
1074 
1075 		/* first iteration or cross vma bound */
1076 		if (!vma || start >= vma->vm_end) {
1077 			vma = find_extend_vma(mm, start);
1078 			if (!vma && in_gate_area(mm, start)) {
1079 				ret = get_gate_page(mm, start & PAGE_MASK,
1080 						gup_flags, &vma,
1081 						pages ? &pages[i] : NULL);
1082 				if (ret)
1083 					goto out;
1084 				ctx.page_mask = 0;
1085 				goto next_page;
1086 			}
1087 
1088 			if (!vma) {
1089 				ret = -EFAULT;
1090 				goto out;
1091 			}
1092 			ret = check_vma_flags(vma, gup_flags);
1093 			if (ret)
1094 				goto out;
1095 
1096 			if (is_vm_hugetlb_page(vma)) {
1097 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1098 						&start, &nr_pages, i,
1099 						gup_flags, locked);
1100 				if (locked && *locked == 0) {
1101 					/*
1102 					 * We've got a VM_FAULT_RETRY
1103 					 * and we've lost mmap_lock.
1104 					 * We must stop here.
1105 					 */
1106 					BUG_ON(gup_flags & FOLL_NOWAIT);
1107 					BUG_ON(ret != 0);
1108 					goto out;
1109 				}
1110 				continue;
1111 			}
1112 		}
1113 retry:
1114 		/*
1115 		 * If we have a pending SIGKILL, don't keep faulting pages and
1116 		 * potentially allocating memory.
1117 		 */
1118 		if (fatal_signal_pending(current)) {
1119 			ret = -EINTR;
1120 			goto out;
1121 		}
1122 		cond_resched();
1123 
1124 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1125 		if (!page) {
1126 			ret = faultin_page(vma, start, &foll_flags, locked);
1127 			switch (ret) {
1128 			case 0:
1129 				goto retry;
1130 			case -EBUSY:
1131 				ret = 0;
1132 				fallthrough;
1133 			case -EFAULT:
1134 			case -ENOMEM:
1135 			case -EHWPOISON:
1136 				goto out;
1137 			case -ENOENT:
1138 				goto next_page;
1139 			}
1140 			BUG();
1141 		} else if (PTR_ERR(page) == -EEXIST) {
1142 			/*
1143 			 * Proper page table entry exists, but no corresponding
1144 			 * struct page.
1145 			 */
1146 			goto next_page;
1147 		} else if (IS_ERR(page)) {
1148 			ret = PTR_ERR(page);
1149 			goto out;
1150 		}
1151 		if (pages) {
1152 			pages[i] = page;
1153 			flush_anon_page(vma, page, start);
1154 			flush_dcache_page(page);
1155 			ctx.page_mask = 0;
1156 		}
1157 next_page:
1158 		if (vmas) {
1159 			vmas[i] = vma;
1160 			ctx.page_mask = 0;
1161 		}
1162 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1163 		if (page_increm > nr_pages)
1164 			page_increm = nr_pages;
1165 		i += page_increm;
1166 		start += page_increm * PAGE_SIZE;
1167 		nr_pages -= page_increm;
1168 	} while (nr_pages);
1169 out:
1170 	if (ctx.pgmap)
1171 		put_dev_pagemap(ctx.pgmap);
1172 	return i ? i : ret;
1173 }
1174 
1175 static bool vma_permits_fault(struct vm_area_struct *vma,
1176 			      unsigned int fault_flags)
1177 {
1178 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1179 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1180 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1181 
1182 	if (!(vm_flags & vma->vm_flags))
1183 		return false;
1184 
1185 	/*
1186 	 * The architecture might have a hardware protection
1187 	 * mechanism other than read/write that can deny access.
1188 	 *
1189 	 * gup always represents data access, not instruction
1190 	 * fetches, so execute=false here:
1191 	 */
1192 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1193 		return false;
1194 
1195 	return true;
1196 }
1197 
1198 /**
1199  * fixup_user_fault() - manually resolve a user page fault
1200  * @mm:		mm_struct of target mm
1201  * @address:	user address
1202  * @fault_flags:flags to pass down to handle_mm_fault()
1203  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1204  *		does not allow retry. If NULL, the caller must guarantee
1205  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1206  *
1207  * This is meant to be called in the specific scenario where for locking reasons
1208  * we try to access user memory in atomic context (within a pagefault_disable()
1209  * section), this returns -EFAULT, and we want to resolve the user fault before
1210  * trying again.
1211  *
1212  * Typically this is meant to be used by the futex code.
1213  *
1214  * The main difference with get_user_pages() is that this function will
1215  * unconditionally call handle_mm_fault() which will in turn perform all the
1216  * necessary SW fixup of the dirty and young bits in the PTE, while
1217  * get_user_pages() only guarantees to update these in the struct page.
1218  *
1219  * This is important for some architectures where those bits also gate the
1220  * access permission to the page because they are maintained in software.  On
1221  * such architectures, gup() will not be enough to make a subsequent access
1222  * succeed.
1223  *
1224  * This function will not return with an unlocked mmap_lock. So it has not the
1225  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1226  */
1227 int fixup_user_fault(struct mm_struct *mm,
1228 		     unsigned long address, unsigned int fault_flags,
1229 		     bool *unlocked)
1230 {
1231 	struct vm_area_struct *vma;
1232 	vm_fault_t ret, major = 0;
1233 
1234 	address = untagged_addr(address);
1235 
1236 	if (unlocked)
1237 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1238 
1239 retry:
1240 	vma = find_extend_vma(mm, address);
1241 	if (!vma || address < vma->vm_start)
1242 		return -EFAULT;
1243 
1244 	if (!vma_permits_fault(vma, fault_flags))
1245 		return -EFAULT;
1246 
1247 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1248 	    fatal_signal_pending(current))
1249 		return -EINTR;
1250 
1251 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1252 	major |= ret & VM_FAULT_MAJOR;
1253 	if (ret & VM_FAULT_ERROR) {
1254 		int err = vm_fault_to_errno(ret, 0);
1255 
1256 		if (err)
1257 			return err;
1258 		BUG();
1259 	}
1260 
1261 	if (ret & VM_FAULT_RETRY) {
1262 		mmap_read_lock(mm);
1263 		*unlocked = true;
1264 		fault_flags |= FAULT_FLAG_TRIED;
1265 		goto retry;
1266 	}
1267 
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(fixup_user_fault);
1271 
1272 /*
1273  * Please note that this function, unlike __get_user_pages will not
1274  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1275  */
1276 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1277 						unsigned long start,
1278 						unsigned long nr_pages,
1279 						struct page **pages,
1280 						struct vm_area_struct **vmas,
1281 						int *locked,
1282 						unsigned int flags)
1283 {
1284 	long ret, pages_done;
1285 	bool lock_dropped;
1286 
1287 	if (locked) {
1288 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1289 		BUG_ON(vmas);
1290 		/* check caller initialized locked */
1291 		BUG_ON(*locked != 1);
1292 	}
1293 
1294 	if (flags & FOLL_PIN)
1295 		atomic_set(&mm->has_pinned, 1);
1296 
1297 	/*
1298 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1299 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1300 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1301 	 * for FOLL_GET, not for the newer FOLL_PIN.
1302 	 *
1303 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1304 	 * that here, as any failures will be obvious enough.
1305 	 */
1306 	if (pages && !(flags & FOLL_PIN))
1307 		flags |= FOLL_GET;
1308 
1309 	pages_done = 0;
1310 	lock_dropped = false;
1311 	for (;;) {
1312 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1313 				       vmas, locked);
1314 		if (!locked)
1315 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1316 			return ret;
1317 
1318 		/* VM_FAULT_RETRY cannot return errors */
1319 		if (!*locked) {
1320 			BUG_ON(ret < 0);
1321 			BUG_ON(ret >= nr_pages);
1322 		}
1323 
1324 		if (ret > 0) {
1325 			nr_pages -= ret;
1326 			pages_done += ret;
1327 			if (!nr_pages)
1328 				break;
1329 		}
1330 		if (*locked) {
1331 			/*
1332 			 * VM_FAULT_RETRY didn't trigger or it was a
1333 			 * FOLL_NOWAIT.
1334 			 */
1335 			if (!pages_done)
1336 				pages_done = ret;
1337 			break;
1338 		}
1339 		/*
1340 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1341 		 * For the prefault case (!pages) we only update counts.
1342 		 */
1343 		if (likely(pages))
1344 			pages += ret;
1345 		start += ret << PAGE_SHIFT;
1346 		lock_dropped = true;
1347 
1348 retry:
1349 		/*
1350 		 * Repeat on the address that fired VM_FAULT_RETRY
1351 		 * with both FAULT_FLAG_ALLOW_RETRY and
1352 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1353 		 * by fatal signals, so we need to check it before we
1354 		 * start trying again otherwise it can loop forever.
1355 		 */
1356 
1357 		if (fatal_signal_pending(current)) {
1358 			if (!pages_done)
1359 				pages_done = -EINTR;
1360 			break;
1361 		}
1362 
1363 		ret = mmap_read_lock_killable(mm);
1364 		if (ret) {
1365 			BUG_ON(ret > 0);
1366 			if (!pages_done)
1367 				pages_done = ret;
1368 			break;
1369 		}
1370 
1371 		*locked = 1;
1372 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1373 				       pages, NULL, locked);
1374 		if (!*locked) {
1375 			/* Continue to retry until we succeeded */
1376 			BUG_ON(ret != 0);
1377 			goto retry;
1378 		}
1379 		if (ret != 1) {
1380 			BUG_ON(ret > 1);
1381 			if (!pages_done)
1382 				pages_done = ret;
1383 			break;
1384 		}
1385 		nr_pages--;
1386 		pages_done++;
1387 		if (!nr_pages)
1388 			break;
1389 		if (likely(pages))
1390 			pages++;
1391 		start += PAGE_SIZE;
1392 	}
1393 	if (lock_dropped && *locked) {
1394 		/*
1395 		 * We must let the caller know we temporarily dropped the lock
1396 		 * and so the critical section protected by it was lost.
1397 		 */
1398 		mmap_read_unlock(mm);
1399 		*locked = 0;
1400 	}
1401 	return pages_done;
1402 }
1403 
1404 /**
1405  * populate_vma_page_range() -  populate a range of pages in the vma.
1406  * @vma:   target vma
1407  * @start: start address
1408  * @end:   end address
1409  * @locked: whether the mmap_lock is still held
1410  *
1411  * This takes care of mlocking the pages too if VM_LOCKED is set.
1412  *
1413  * Return either number of pages pinned in the vma, or a negative error
1414  * code on error.
1415  *
1416  * vma->vm_mm->mmap_lock must be held.
1417  *
1418  * If @locked is NULL, it may be held for read or write and will
1419  * be unperturbed.
1420  *
1421  * If @locked is non-NULL, it must held for read only and may be
1422  * released.  If it's released, *@locked will be set to 0.
1423  */
1424 long populate_vma_page_range(struct vm_area_struct *vma,
1425 		unsigned long start, unsigned long end, int *locked)
1426 {
1427 	struct mm_struct *mm = vma->vm_mm;
1428 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1429 	int gup_flags;
1430 
1431 	VM_BUG_ON(start & ~PAGE_MASK);
1432 	VM_BUG_ON(end   & ~PAGE_MASK);
1433 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1434 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1435 	mmap_assert_locked(mm);
1436 
1437 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1438 	if (vma->vm_flags & VM_LOCKONFAULT)
1439 		gup_flags &= ~FOLL_POPULATE;
1440 	/*
1441 	 * We want to touch writable mappings with a write fault in order
1442 	 * to break COW, except for shared mappings because these don't COW
1443 	 * and we would not want to dirty them for nothing.
1444 	 */
1445 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1446 		gup_flags |= FOLL_WRITE;
1447 
1448 	/*
1449 	 * We want mlock to succeed for regions that have any permissions
1450 	 * other than PROT_NONE.
1451 	 */
1452 	if (vma_is_accessible(vma))
1453 		gup_flags |= FOLL_FORCE;
1454 
1455 	/*
1456 	 * We made sure addr is within a VMA, so the following will
1457 	 * not result in a stack expansion that recurses back here.
1458 	 */
1459 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1460 				NULL, NULL, locked);
1461 }
1462 
1463 /*
1464  * __mm_populate - populate and/or mlock pages within a range of address space.
1465  *
1466  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1467  * flags. VMAs must be already marked with the desired vm_flags, and
1468  * mmap_lock must not be held.
1469  */
1470 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1471 {
1472 	struct mm_struct *mm = current->mm;
1473 	unsigned long end, nstart, nend;
1474 	struct vm_area_struct *vma = NULL;
1475 	int locked = 0;
1476 	long ret = 0;
1477 
1478 	end = start + len;
1479 
1480 	for (nstart = start; nstart < end; nstart = nend) {
1481 		/*
1482 		 * We want to fault in pages for [nstart; end) address range.
1483 		 * Find first corresponding VMA.
1484 		 */
1485 		if (!locked) {
1486 			locked = 1;
1487 			mmap_read_lock(mm);
1488 			vma = find_vma(mm, nstart);
1489 		} else if (nstart >= vma->vm_end)
1490 			vma = vma->vm_next;
1491 		if (!vma || vma->vm_start >= end)
1492 			break;
1493 		/*
1494 		 * Set [nstart; nend) to intersection of desired address
1495 		 * range with the first VMA. Also, skip undesirable VMA types.
1496 		 */
1497 		nend = min(end, vma->vm_end);
1498 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1499 			continue;
1500 		if (nstart < vma->vm_start)
1501 			nstart = vma->vm_start;
1502 		/*
1503 		 * Now fault in a range of pages. populate_vma_page_range()
1504 		 * double checks the vma flags, so that it won't mlock pages
1505 		 * if the vma was already munlocked.
1506 		 */
1507 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1508 		if (ret < 0) {
1509 			if (ignore_errors) {
1510 				ret = 0;
1511 				continue;	/* continue at next VMA */
1512 			}
1513 			break;
1514 		}
1515 		nend = nstart + ret * PAGE_SIZE;
1516 		ret = 0;
1517 	}
1518 	if (locked)
1519 		mmap_read_unlock(mm);
1520 	return ret;	/* 0 or negative error code */
1521 }
1522 #else /* CONFIG_MMU */
1523 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1524 		unsigned long nr_pages, struct page **pages,
1525 		struct vm_area_struct **vmas, int *locked,
1526 		unsigned int foll_flags)
1527 {
1528 	struct vm_area_struct *vma;
1529 	unsigned long vm_flags;
1530 	int i;
1531 
1532 	/* calculate required read or write permissions.
1533 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1534 	 */
1535 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1536 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1537 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1538 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1539 
1540 	for (i = 0; i < nr_pages; i++) {
1541 		vma = find_vma(mm, start);
1542 		if (!vma)
1543 			goto finish_or_fault;
1544 
1545 		/* protect what we can, including chardevs */
1546 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1547 		    !(vm_flags & vma->vm_flags))
1548 			goto finish_or_fault;
1549 
1550 		if (pages) {
1551 			pages[i] = virt_to_page(start);
1552 			if (pages[i])
1553 				get_page(pages[i]);
1554 		}
1555 		if (vmas)
1556 			vmas[i] = vma;
1557 		start = (start + PAGE_SIZE) & PAGE_MASK;
1558 	}
1559 
1560 	return i;
1561 
1562 finish_or_fault:
1563 	return i ? : -EFAULT;
1564 }
1565 #endif /* !CONFIG_MMU */
1566 
1567 /**
1568  * get_dump_page() - pin user page in memory while writing it to core dump
1569  * @addr: user address
1570  *
1571  * Returns struct page pointer of user page pinned for dump,
1572  * to be freed afterwards by put_page().
1573  *
1574  * Returns NULL on any kind of failure - a hole must then be inserted into
1575  * the corefile, to preserve alignment with its headers; and also returns
1576  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1577  * allowing a hole to be left in the corefile to save diskspace.
1578  *
1579  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1580  */
1581 #ifdef CONFIG_ELF_CORE
1582 struct page *get_dump_page(unsigned long addr)
1583 {
1584 	struct mm_struct *mm = current->mm;
1585 	struct page *page;
1586 	int locked = 1;
1587 	int ret;
1588 
1589 	if (mmap_read_lock_killable(mm))
1590 		return NULL;
1591 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1592 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1593 	if (locked)
1594 		mmap_read_unlock(mm);
1595 
1596 	if (ret == 1 && is_page_poisoned(page))
1597 		return NULL;
1598 
1599 	return (ret == 1) ? page : NULL;
1600 }
1601 #endif /* CONFIG_ELF_CORE */
1602 
1603 #ifdef CONFIG_CMA
1604 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1605 					unsigned long start,
1606 					unsigned long nr_pages,
1607 					struct page **pages,
1608 					struct vm_area_struct **vmas,
1609 					unsigned int gup_flags)
1610 {
1611 	unsigned long i;
1612 	unsigned long step;
1613 	bool drain_allow = true;
1614 	bool migrate_allow = true;
1615 	LIST_HEAD(cma_page_list);
1616 	long ret = nr_pages;
1617 	struct migration_target_control mtc = {
1618 		.nid = NUMA_NO_NODE,
1619 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1620 	};
1621 
1622 check_again:
1623 	for (i = 0; i < nr_pages;) {
1624 
1625 		struct page *head = compound_head(pages[i]);
1626 
1627 		/*
1628 		 * gup may start from a tail page. Advance step by the left
1629 		 * part.
1630 		 */
1631 		step = compound_nr(head) - (pages[i] - head);
1632 		/*
1633 		 * If we get a page from the CMA zone, since we are going to
1634 		 * be pinning these entries, we might as well move them out
1635 		 * of the CMA zone if possible.
1636 		 */
1637 		if (is_migrate_cma_page(head)) {
1638 			if (PageHuge(head))
1639 				isolate_huge_page(head, &cma_page_list);
1640 			else {
1641 				if (!PageLRU(head) && drain_allow) {
1642 					lru_add_drain_all();
1643 					drain_allow = false;
1644 				}
1645 
1646 				if (!isolate_lru_page(head)) {
1647 					list_add_tail(&head->lru, &cma_page_list);
1648 					mod_node_page_state(page_pgdat(head),
1649 							    NR_ISOLATED_ANON +
1650 							    page_is_file_lru(head),
1651 							    thp_nr_pages(head));
1652 				}
1653 			}
1654 		}
1655 
1656 		i += step;
1657 	}
1658 
1659 	if (!list_empty(&cma_page_list)) {
1660 		/*
1661 		 * drop the above get_user_pages reference.
1662 		 */
1663 		if (gup_flags & FOLL_PIN)
1664 			unpin_user_pages(pages, nr_pages);
1665 		else
1666 			for (i = 0; i < nr_pages; i++)
1667 				put_page(pages[i]);
1668 
1669 		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1670 			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1671 			/*
1672 			 * some of the pages failed migration. Do get_user_pages
1673 			 * without migration.
1674 			 */
1675 			migrate_allow = false;
1676 
1677 			if (!list_empty(&cma_page_list))
1678 				putback_movable_pages(&cma_page_list);
1679 		}
1680 		/*
1681 		 * We did migrate all the pages, Try to get the page references
1682 		 * again migrating any new CMA pages which we failed to isolate
1683 		 * earlier.
1684 		 */
1685 		ret = __get_user_pages_locked(mm, start, nr_pages,
1686 						   pages, vmas, NULL,
1687 						   gup_flags);
1688 
1689 		if ((ret > 0) && migrate_allow) {
1690 			nr_pages = ret;
1691 			drain_allow = true;
1692 			goto check_again;
1693 		}
1694 	}
1695 
1696 	return ret;
1697 }
1698 #else
1699 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1700 					unsigned long start,
1701 					unsigned long nr_pages,
1702 					struct page **pages,
1703 					struct vm_area_struct **vmas,
1704 					unsigned int gup_flags)
1705 {
1706 	return nr_pages;
1707 }
1708 #endif /* CONFIG_CMA */
1709 
1710 /*
1711  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1712  * allows us to process the FOLL_LONGTERM flag.
1713  */
1714 static long __gup_longterm_locked(struct mm_struct *mm,
1715 				  unsigned long start,
1716 				  unsigned long nr_pages,
1717 				  struct page **pages,
1718 				  struct vm_area_struct **vmas,
1719 				  unsigned int gup_flags)
1720 {
1721 	unsigned long flags = 0;
1722 	long rc;
1723 
1724 	if (gup_flags & FOLL_LONGTERM)
1725 		flags = memalloc_nocma_save();
1726 
1727 	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1728 				     gup_flags);
1729 
1730 	if (gup_flags & FOLL_LONGTERM) {
1731 		if (rc > 0)
1732 			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1733 							 vmas, gup_flags);
1734 		memalloc_nocma_restore(flags);
1735 	}
1736 	return rc;
1737 }
1738 
1739 static bool is_valid_gup_flags(unsigned int gup_flags)
1740 {
1741 	/*
1742 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1743 	 * never directly by the caller, so enforce that with an assertion:
1744 	 */
1745 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1746 		return false;
1747 	/*
1748 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1749 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1750 	 * FOLL_PIN.
1751 	 */
1752 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1753 		return false;
1754 
1755 	return true;
1756 }
1757 
1758 #ifdef CONFIG_MMU
1759 static long __get_user_pages_remote(struct mm_struct *mm,
1760 				    unsigned long start, unsigned long nr_pages,
1761 				    unsigned int gup_flags, struct page **pages,
1762 				    struct vm_area_struct **vmas, int *locked)
1763 {
1764 	/*
1765 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1766 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1767 	 * vmas. However, this only comes up if locked is set, and there are
1768 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1769 	 * allow what we can.
1770 	 */
1771 	if (gup_flags & FOLL_LONGTERM) {
1772 		if (WARN_ON_ONCE(locked))
1773 			return -EINVAL;
1774 		/*
1775 		 * This will check the vmas (even if our vmas arg is NULL)
1776 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1777 		 */
1778 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1779 					     vmas, gup_flags | FOLL_TOUCH |
1780 					     FOLL_REMOTE);
1781 	}
1782 
1783 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1784 				       locked,
1785 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1786 }
1787 
1788 /**
1789  * get_user_pages_remote() - pin user pages in memory
1790  * @mm:		mm_struct of target mm
1791  * @start:	starting user address
1792  * @nr_pages:	number of pages from start to pin
1793  * @gup_flags:	flags modifying lookup behaviour
1794  * @pages:	array that receives pointers to the pages pinned.
1795  *		Should be at least nr_pages long. Or NULL, if caller
1796  *		only intends to ensure the pages are faulted in.
1797  * @vmas:	array of pointers to vmas corresponding to each page.
1798  *		Or NULL if the caller does not require them.
1799  * @locked:	pointer to lock flag indicating whether lock is held and
1800  *		subsequently whether VM_FAULT_RETRY functionality can be
1801  *		utilised. Lock must initially be held.
1802  *
1803  * Returns either number of pages pinned (which may be less than the
1804  * number requested), or an error. Details about the return value:
1805  *
1806  * -- If nr_pages is 0, returns 0.
1807  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1808  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1809  *    pages pinned. Again, this may be less than nr_pages.
1810  *
1811  * The caller is responsible for releasing returned @pages, via put_page().
1812  *
1813  * @vmas are valid only as long as mmap_lock is held.
1814  *
1815  * Must be called with mmap_lock held for read or write.
1816  *
1817  * get_user_pages_remote walks a process's page tables and takes a reference
1818  * to each struct page that each user address corresponds to at a given
1819  * instant. That is, it takes the page that would be accessed if a user
1820  * thread accesses the given user virtual address at that instant.
1821  *
1822  * This does not guarantee that the page exists in the user mappings when
1823  * get_user_pages_remote returns, and there may even be a completely different
1824  * page there in some cases (eg. if mmapped pagecache has been invalidated
1825  * and subsequently re faulted). However it does guarantee that the page
1826  * won't be freed completely. And mostly callers simply care that the page
1827  * contains data that was valid *at some point in time*. Typically, an IO
1828  * or similar operation cannot guarantee anything stronger anyway because
1829  * locks can't be held over the syscall boundary.
1830  *
1831  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1832  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1833  * be called after the page is finished with, and before put_page is called.
1834  *
1835  * get_user_pages_remote is typically used for fewer-copy IO operations,
1836  * to get a handle on the memory by some means other than accesses
1837  * via the user virtual addresses. The pages may be submitted for
1838  * DMA to devices or accessed via their kernel linear mapping (via the
1839  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1840  *
1841  * See also get_user_pages_fast, for performance critical applications.
1842  *
1843  * get_user_pages_remote should be phased out in favor of
1844  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1845  * should use get_user_pages_remote because it cannot pass
1846  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1847  */
1848 long get_user_pages_remote(struct mm_struct *mm,
1849 		unsigned long start, unsigned long nr_pages,
1850 		unsigned int gup_flags, struct page **pages,
1851 		struct vm_area_struct **vmas, int *locked)
1852 {
1853 	if (!is_valid_gup_flags(gup_flags))
1854 		return -EINVAL;
1855 
1856 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1857 				       pages, vmas, locked);
1858 }
1859 EXPORT_SYMBOL(get_user_pages_remote);
1860 
1861 #else /* CONFIG_MMU */
1862 long get_user_pages_remote(struct mm_struct *mm,
1863 			   unsigned long start, unsigned long nr_pages,
1864 			   unsigned int gup_flags, struct page **pages,
1865 			   struct vm_area_struct **vmas, int *locked)
1866 {
1867 	return 0;
1868 }
1869 
1870 static long __get_user_pages_remote(struct mm_struct *mm,
1871 				    unsigned long start, unsigned long nr_pages,
1872 				    unsigned int gup_flags, struct page **pages,
1873 				    struct vm_area_struct **vmas, int *locked)
1874 {
1875 	return 0;
1876 }
1877 #endif /* !CONFIG_MMU */
1878 
1879 /**
1880  * get_user_pages() - pin user pages in memory
1881  * @start:      starting user address
1882  * @nr_pages:   number of pages from start to pin
1883  * @gup_flags:  flags modifying lookup behaviour
1884  * @pages:      array that receives pointers to the pages pinned.
1885  *              Should be at least nr_pages long. Or NULL, if caller
1886  *              only intends to ensure the pages are faulted in.
1887  * @vmas:       array of pointers to vmas corresponding to each page.
1888  *              Or NULL if the caller does not require them.
1889  *
1890  * This is the same as get_user_pages_remote(), just with a less-flexible
1891  * calling convention where we assume that the mm being operated on belongs to
1892  * the current task, and doesn't allow passing of a locked parameter.  We also
1893  * obviously don't pass FOLL_REMOTE in here.
1894  */
1895 long get_user_pages(unsigned long start, unsigned long nr_pages,
1896 		unsigned int gup_flags, struct page **pages,
1897 		struct vm_area_struct **vmas)
1898 {
1899 	if (!is_valid_gup_flags(gup_flags))
1900 		return -EINVAL;
1901 
1902 	return __gup_longterm_locked(current->mm, start, nr_pages,
1903 				     pages, vmas, gup_flags | FOLL_TOUCH);
1904 }
1905 EXPORT_SYMBOL(get_user_pages);
1906 
1907 /**
1908  * get_user_pages_locked() - variant of get_user_pages()
1909  *
1910  * @start:      starting user address
1911  * @nr_pages:   number of pages from start to pin
1912  * @gup_flags:  flags modifying lookup behaviour
1913  * @pages:      array that receives pointers to the pages pinned.
1914  *              Should be at least nr_pages long. Or NULL, if caller
1915  *              only intends to ensure the pages are faulted in.
1916  * @locked:     pointer to lock flag indicating whether lock is held and
1917  *              subsequently whether VM_FAULT_RETRY functionality can be
1918  *              utilised. Lock must initially be held.
1919  *
1920  * It is suitable to replace the form:
1921  *
1922  *      mmap_read_lock(mm);
1923  *      do_something()
1924  *      get_user_pages(mm, ..., pages, NULL);
1925  *      mmap_read_unlock(mm);
1926  *
1927  *  to:
1928  *
1929  *      int locked = 1;
1930  *      mmap_read_lock(mm);
1931  *      do_something()
1932  *      get_user_pages_locked(mm, ..., pages, &locked);
1933  *      if (locked)
1934  *          mmap_read_unlock(mm);
1935  *
1936  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1937  * paths better by using either get_user_pages_locked() or
1938  * get_user_pages_unlocked().
1939  *
1940  */
1941 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1942 			   unsigned int gup_flags, struct page **pages,
1943 			   int *locked)
1944 {
1945 	/*
1946 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1947 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1948 	 * vmas.  As there are no users of this flag in this call we simply
1949 	 * disallow this option for now.
1950 	 */
1951 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1952 		return -EINVAL;
1953 	/*
1954 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1955 	 * never directly by the caller, so enforce that:
1956 	 */
1957 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1958 		return -EINVAL;
1959 
1960 	return __get_user_pages_locked(current->mm, start, nr_pages,
1961 				       pages, NULL, locked,
1962 				       gup_flags | FOLL_TOUCH);
1963 }
1964 EXPORT_SYMBOL(get_user_pages_locked);
1965 
1966 /*
1967  * get_user_pages_unlocked() is suitable to replace the form:
1968  *
1969  *      mmap_read_lock(mm);
1970  *      get_user_pages(mm, ..., pages, NULL);
1971  *      mmap_read_unlock(mm);
1972  *
1973  *  with:
1974  *
1975  *      get_user_pages_unlocked(mm, ..., pages);
1976  *
1977  * It is functionally equivalent to get_user_pages_fast so
1978  * get_user_pages_fast should be used instead if specific gup_flags
1979  * (e.g. FOLL_FORCE) are not required.
1980  */
1981 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1982 			     struct page **pages, unsigned int gup_flags)
1983 {
1984 	struct mm_struct *mm = current->mm;
1985 	int locked = 1;
1986 	long ret;
1987 
1988 	/*
1989 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1990 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1991 	 * vmas.  As there are no users of this flag in this call we simply
1992 	 * disallow this option for now.
1993 	 */
1994 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1995 		return -EINVAL;
1996 
1997 	mmap_read_lock(mm);
1998 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1999 				      &locked, gup_flags | FOLL_TOUCH);
2000 	if (locked)
2001 		mmap_read_unlock(mm);
2002 	return ret;
2003 }
2004 EXPORT_SYMBOL(get_user_pages_unlocked);
2005 
2006 /*
2007  * Fast GUP
2008  *
2009  * get_user_pages_fast attempts to pin user pages by walking the page
2010  * tables directly and avoids taking locks. Thus the walker needs to be
2011  * protected from page table pages being freed from under it, and should
2012  * block any THP splits.
2013  *
2014  * One way to achieve this is to have the walker disable interrupts, and
2015  * rely on IPIs from the TLB flushing code blocking before the page table
2016  * pages are freed. This is unsuitable for architectures that do not need
2017  * to broadcast an IPI when invalidating TLBs.
2018  *
2019  * Another way to achieve this is to batch up page table containing pages
2020  * belonging to more than one mm_user, then rcu_sched a callback to free those
2021  * pages. Disabling interrupts will allow the fast_gup walker to both block
2022  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2023  * (which is a relatively rare event). The code below adopts this strategy.
2024  *
2025  * Before activating this code, please be aware that the following assumptions
2026  * are currently made:
2027  *
2028  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2029  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2030  *
2031  *  *) ptes can be read atomically by the architecture.
2032  *
2033  *  *) access_ok is sufficient to validate userspace address ranges.
2034  *
2035  * The last two assumptions can be relaxed by the addition of helper functions.
2036  *
2037  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2038  */
2039 #ifdef CONFIG_HAVE_FAST_GUP
2040 
2041 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2042 					    unsigned int flags,
2043 					    struct page **pages)
2044 {
2045 	while ((*nr) - nr_start) {
2046 		struct page *page = pages[--(*nr)];
2047 
2048 		ClearPageReferenced(page);
2049 		if (flags & FOLL_PIN)
2050 			unpin_user_page(page);
2051 		else
2052 			put_page(page);
2053 	}
2054 }
2055 
2056 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2057 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2058 			 unsigned int flags, struct page **pages, int *nr)
2059 {
2060 	struct dev_pagemap *pgmap = NULL;
2061 	int nr_start = *nr, ret = 0;
2062 	pte_t *ptep, *ptem;
2063 
2064 	ptem = ptep = pte_offset_map(&pmd, addr);
2065 	do {
2066 		pte_t pte = ptep_get_lockless(ptep);
2067 		struct page *head, *page;
2068 
2069 		/*
2070 		 * Similar to the PMD case below, NUMA hinting must take slow
2071 		 * path using the pte_protnone check.
2072 		 */
2073 		if (pte_protnone(pte))
2074 			goto pte_unmap;
2075 
2076 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2077 			goto pte_unmap;
2078 
2079 		if (pte_devmap(pte)) {
2080 			if (unlikely(flags & FOLL_LONGTERM))
2081 				goto pte_unmap;
2082 
2083 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2084 			if (unlikely(!pgmap)) {
2085 				undo_dev_pagemap(nr, nr_start, flags, pages);
2086 				goto pte_unmap;
2087 			}
2088 		} else if (pte_special(pte))
2089 			goto pte_unmap;
2090 
2091 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2092 		page = pte_page(pte);
2093 
2094 		head = try_grab_compound_head(page, 1, flags);
2095 		if (!head)
2096 			goto pte_unmap;
2097 
2098 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2099 			put_compound_head(head, 1, flags);
2100 			goto pte_unmap;
2101 		}
2102 
2103 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2104 
2105 		/*
2106 		 * We need to make the page accessible if and only if we are
2107 		 * going to access its content (the FOLL_PIN case).  Please
2108 		 * see Documentation/core-api/pin_user_pages.rst for
2109 		 * details.
2110 		 */
2111 		if (flags & FOLL_PIN) {
2112 			ret = arch_make_page_accessible(page);
2113 			if (ret) {
2114 				unpin_user_page(page);
2115 				goto pte_unmap;
2116 			}
2117 		}
2118 		SetPageReferenced(page);
2119 		pages[*nr] = page;
2120 		(*nr)++;
2121 
2122 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2123 
2124 	ret = 1;
2125 
2126 pte_unmap:
2127 	if (pgmap)
2128 		put_dev_pagemap(pgmap);
2129 	pte_unmap(ptem);
2130 	return ret;
2131 }
2132 #else
2133 
2134 /*
2135  * If we can't determine whether or not a pte is special, then fail immediately
2136  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2137  * to be special.
2138  *
2139  * For a futex to be placed on a THP tail page, get_futex_key requires a
2140  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2141  * useful to have gup_huge_pmd even if we can't operate on ptes.
2142  */
2143 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2144 			 unsigned int flags, struct page **pages, int *nr)
2145 {
2146 	return 0;
2147 }
2148 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2149 
2150 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2151 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2152 			     unsigned long end, unsigned int flags,
2153 			     struct page **pages, int *nr)
2154 {
2155 	int nr_start = *nr;
2156 	struct dev_pagemap *pgmap = NULL;
2157 
2158 	do {
2159 		struct page *page = pfn_to_page(pfn);
2160 
2161 		pgmap = get_dev_pagemap(pfn, pgmap);
2162 		if (unlikely(!pgmap)) {
2163 			undo_dev_pagemap(nr, nr_start, flags, pages);
2164 			return 0;
2165 		}
2166 		SetPageReferenced(page);
2167 		pages[*nr] = page;
2168 		if (unlikely(!try_grab_page(page, flags))) {
2169 			undo_dev_pagemap(nr, nr_start, flags, pages);
2170 			return 0;
2171 		}
2172 		(*nr)++;
2173 		pfn++;
2174 	} while (addr += PAGE_SIZE, addr != end);
2175 
2176 	if (pgmap)
2177 		put_dev_pagemap(pgmap);
2178 	return 1;
2179 }
2180 
2181 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2182 				 unsigned long end, unsigned int flags,
2183 				 struct page **pages, int *nr)
2184 {
2185 	unsigned long fault_pfn;
2186 	int nr_start = *nr;
2187 
2188 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2189 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2190 		return 0;
2191 
2192 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2193 		undo_dev_pagemap(nr, nr_start, flags, pages);
2194 		return 0;
2195 	}
2196 	return 1;
2197 }
2198 
2199 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2200 				 unsigned long end, unsigned int flags,
2201 				 struct page **pages, int *nr)
2202 {
2203 	unsigned long fault_pfn;
2204 	int nr_start = *nr;
2205 
2206 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2207 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2208 		return 0;
2209 
2210 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2211 		undo_dev_pagemap(nr, nr_start, flags, pages);
2212 		return 0;
2213 	}
2214 	return 1;
2215 }
2216 #else
2217 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2218 				 unsigned long end, unsigned int flags,
2219 				 struct page **pages, int *nr)
2220 {
2221 	BUILD_BUG();
2222 	return 0;
2223 }
2224 
2225 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2226 				 unsigned long end, unsigned int flags,
2227 				 struct page **pages, int *nr)
2228 {
2229 	BUILD_BUG();
2230 	return 0;
2231 }
2232 #endif
2233 
2234 static int record_subpages(struct page *page, unsigned long addr,
2235 			   unsigned long end, struct page **pages)
2236 {
2237 	int nr;
2238 
2239 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2240 		pages[nr++] = page++;
2241 
2242 	return nr;
2243 }
2244 
2245 #ifdef CONFIG_ARCH_HAS_HUGEPD
2246 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2247 				      unsigned long sz)
2248 {
2249 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2250 	return (__boundary - 1 < end - 1) ? __boundary : end;
2251 }
2252 
2253 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2254 		       unsigned long end, unsigned int flags,
2255 		       struct page **pages, int *nr)
2256 {
2257 	unsigned long pte_end;
2258 	struct page *head, *page;
2259 	pte_t pte;
2260 	int refs;
2261 
2262 	pte_end = (addr + sz) & ~(sz-1);
2263 	if (pte_end < end)
2264 		end = pte_end;
2265 
2266 	pte = huge_ptep_get(ptep);
2267 
2268 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2269 		return 0;
2270 
2271 	/* hugepages are never "special" */
2272 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2273 
2274 	head = pte_page(pte);
2275 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2276 	refs = record_subpages(page, addr, end, pages + *nr);
2277 
2278 	head = try_grab_compound_head(head, refs, flags);
2279 	if (!head)
2280 		return 0;
2281 
2282 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2283 		put_compound_head(head, refs, flags);
2284 		return 0;
2285 	}
2286 
2287 	*nr += refs;
2288 	SetPageReferenced(head);
2289 	return 1;
2290 }
2291 
2292 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2293 		unsigned int pdshift, unsigned long end, unsigned int flags,
2294 		struct page **pages, int *nr)
2295 {
2296 	pte_t *ptep;
2297 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2298 	unsigned long next;
2299 
2300 	ptep = hugepte_offset(hugepd, addr, pdshift);
2301 	do {
2302 		next = hugepte_addr_end(addr, end, sz);
2303 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2304 			return 0;
2305 	} while (ptep++, addr = next, addr != end);
2306 
2307 	return 1;
2308 }
2309 #else
2310 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2311 		unsigned int pdshift, unsigned long end, unsigned int flags,
2312 		struct page **pages, int *nr)
2313 {
2314 	return 0;
2315 }
2316 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2317 
2318 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2319 			unsigned long end, unsigned int flags,
2320 			struct page **pages, int *nr)
2321 {
2322 	struct page *head, *page;
2323 	int refs;
2324 
2325 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2326 		return 0;
2327 
2328 	if (pmd_devmap(orig)) {
2329 		if (unlikely(flags & FOLL_LONGTERM))
2330 			return 0;
2331 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2332 					     pages, nr);
2333 	}
2334 
2335 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2336 	refs = record_subpages(page, addr, end, pages + *nr);
2337 
2338 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2339 	if (!head)
2340 		return 0;
2341 
2342 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2343 		put_compound_head(head, refs, flags);
2344 		return 0;
2345 	}
2346 
2347 	*nr += refs;
2348 	SetPageReferenced(head);
2349 	return 1;
2350 }
2351 
2352 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2353 			unsigned long end, unsigned int flags,
2354 			struct page **pages, int *nr)
2355 {
2356 	struct page *head, *page;
2357 	int refs;
2358 
2359 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2360 		return 0;
2361 
2362 	if (pud_devmap(orig)) {
2363 		if (unlikely(flags & FOLL_LONGTERM))
2364 			return 0;
2365 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2366 					     pages, nr);
2367 	}
2368 
2369 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2370 	refs = record_subpages(page, addr, end, pages + *nr);
2371 
2372 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2373 	if (!head)
2374 		return 0;
2375 
2376 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2377 		put_compound_head(head, refs, flags);
2378 		return 0;
2379 	}
2380 
2381 	*nr += refs;
2382 	SetPageReferenced(head);
2383 	return 1;
2384 }
2385 
2386 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2387 			unsigned long end, unsigned int flags,
2388 			struct page **pages, int *nr)
2389 {
2390 	int refs;
2391 	struct page *head, *page;
2392 
2393 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2394 		return 0;
2395 
2396 	BUILD_BUG_ON(pgd_devmap(orig));
2397 
2398 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2399 	refs = record_subpages(page, addr, end, pages + *nr);
2400 
2401 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2402 	if (!head)
2403 		return 0;
2404 
2405 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2406 		put_compound_head(head, refs, flags);
2407 		return 0;
2408 	}
2409 
2410 	*nr += refs;
2411 	SetPageReferenced(head);
2412 	return 1;
2413 }
2414 
2415 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2416 		unsigned int flags, struct page **pages, int *nr)
2417 {
2418 	unsigned long next;
2419 	pmd_t *pmdp;
2420 
2421 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2422 	do {
2423 		pmd_t pmd = READ_ONCE(*pmdp);
2424 
2425 		next = pmd_addr_end(addr, end);
2426 		if (!pmd_present(pmd))
2427 			return 0;
2428 
2429 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2430 			     pmd_devmap(pmd))) {
2431 			/*
2432 			 * NUMA hinting faults need to be handled in the GUP
2433 			 * slowpath for accounting purposes and so that they
2434 			 * can be serialised against THP migration.
2435 			 */
2436 			if (pmd_protnone(pmd))
2437 				return 0;
2438 
2439 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2440 				pages, nr))
2441 				return 0;
2442 
2443 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2444 			/*
2445 			 * architecture have different format for hugetlbfs
2446 			 * pmd format and THP pmd format
2447 			 */
2448 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2449 					 PMD_SHIFT, next, flags, pages, nr))
2450 				return 0;
2451 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2452 			return 0;
2453 	} while (pmdp++, addr = next, addr != end);
2454 
2455 	return 1;
2456 }
2457 
2458 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2459 			 unsigned int flags, struct page **pages, int *nr)
2460 {
2461 	unsigned long next;
2462 	pud_t *pudp;
2463 
2464 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2465 	do {
2466 		pud_t pud = READ_ONCE(*pudp);
2467 
2468 		next = pud_addr_end(addr, end);
2469 		if (unlikely(!pud_present(pud)))
2470 			return 0;
2471 		if (unlikely(pud_huge(pud))) {
2472 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2473 					  pages, nr))
2474 				return 0;
2475 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2476 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2477 					 PUD_SHIFT, next, flags, pages, nr))
2478 				return 0;
2479 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2480 			return 0;
2481 	} while (pudp++, addr = next, addr != end);
2482 
2483 	return 1;
2484 }
2485 
2486 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2487 			 unsigned int flags, struct page **pages, int *nr)
2488 {
2489 	unsigned long next;
2490 	p4d_t *p4dp;
2491 
2492 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2493 	do {
2494 		p4d_t p4d = READ_ONCE(*p4dp);
2495 
2496 		next = p4d_addr_end(addr, end);
2497 		if (p4d_none(p4d))
2498 			return 0;
2499 		BUILD_BUG_ON(p4d_huge(p4d));
2500 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2501 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2502 					 P4D_SHIFT, next, flags, pages, nr))
2503 				return 0;
2504 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2505 			return 0;
2506 	} while (p4dp++, addr = next, addr != end);
2507 
2508 	return 1;
2509 }
2510 
2511 static void gup_pgd_range(unsigned long addr, unsigned long end,
2512 		unsigned int flags, struct page **pages, int *nr)
2513 {
2514 	unsigned long next;
2515 	pgd_t *pgdp;
2516 
2517 	pgdp = pgd_offset(current->mm, addr);
2518 	do {
2519 		pgd_t pgd = READ_ONCE(*pgdp);
2520 
2521 		next = pgd_addr_end(addr, end);
2522 		if (pgd_none(pgd))
2523 			return;
2524 		if (unlikely(pgd_huge(pgd))) {
2525 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2526 					  pages, nr))
2527 				return;
2528 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2529 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2530 					 PGDIR_SHIFT, next, flags, pages, nr))
2531 				return;
2532 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2533 			return;
2534 	} while (pgdp++, addr = next, addr != end);
2535 }
2536 #else
2537 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2538 		unsigned int flags, struct page **pages, int *nr)
2539 {
2540 }
2541 #endif /* CONFIG_HAVE_FAST_GUP */
2542 
2543 #ifndef gup_fast_permitted
2544 /*
2545  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2546  * we need to fall back to the slow version:
2547  */
2548 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2549 {
2550 	return true;
2551 }
2552 #endif
2553 
2554 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2555 				   unsigned int gup_flags, struct page **pages)
2556 {
2557 	int ret;
2558 
2559 	/*
2560 	 * FIXME: FOLL_LONGTERM does not work with
2561 	 * get_user_pages_unlocked() (see comments in that function)
2562 	 */
2563 	if (gup_flags & FOLL_LONGTERM) {
2564 		mmap_read_lock(current->mm);
2565 		ret = __gup_longterm_locked(current->mm,
2566 					    start, nr_pages,
2567 					    pages, NULL, gup_flags);
2568 		mmap_read_unlock(current->mm);
2569 	} else {
2570 		ret = get_user_pages_unlocked(start, nr_pages,
2571 					      pages, gup_flags);
2572 	}
2573 
2574 	return ret;
2575 }
2576 
2577 static unsigned long lockless_pages_from_mm(unsigned long start,
2578 					    unsigned long end,
2579 					    unsigned int gup_flags,
2580 					    struct page **pages)
2581 {
2582 	unsigned long flags;
2583 	int nr_pinned = 0;
2584 	unsigned seq;
2585 
2586 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2587 	    !gup_fast_permitted(start, end))
2588 		return 0;
2589 
2590 	if (gup_flags & FOLL_PIN) {
2591 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2592 		if (seq & 1)
2593 			return 0;
2594 	}
2595 
2596 	/*
2597 	 * Disable interrupts. The nested form is used, in order to allow full,
2598 	 * general purpose use of this routine.
2599 	 *
2600 	 * With interrupts disabled, we block page table pages from being freed
2601 	 * from under us. See struct mmu_table_batch comments in
2602 	 * include/asm-generic/tlb.h for more details.
2603 	 *
2604 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2605 	 * that come from THPs splitting.
2606 	 */
2607 	local_irq_save(flags);
2608 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2609 	local_irq_restore(flags);
2610 
2611 	/*
2612 	 * When pinning pages for DMA there could be a concurrent write protect
2613 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2614 	 */
2615 	if (gup_flags & FOLL_PIN) {
2616 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2617 			unpin_user_pages(pages, nr_pinned);
2618 			return 0;
2619 		}
2620 	}
2621 	return nr_pinned;
2622 }
2623 
2624 static int internal_get_user_pages_fast(unsigned long start,
2625 					unsigned long nr_pages,
2626 					unsigned int gup_flags,
2627 					struct page **pages)
2628 {
2629 	unsigned long len, end;
2630 	unsigned long nr_pinned;
2631 	int ret;
2632 
2633 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2634 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2635 				       FOLL_FAST_ONLY)))
2636 		return -EINVAL;
2637 
2638 	if (gup_flags & FOLL_PIN)
2639 		atomic_set(&current->mm->has_pinned, 1);
2640 
2641 	if (!(gup_flags & FOLL_FAST_ONLY))
2642 		might_lock_read(&current->mm->mmap_lock);
2643 
2644 	start = untagged_addr(start) & PAGE_MASK;
2645 	len = nr_pages << PAGE_SHIFT;
2646 	if (check_add_overflow(start, len, &end))
2647 		return 0;
2648 	if (unlikely(!access_ok((void __user *)start, len)))
2649 		return -EFAULT;
2650 
2651 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2652 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2653 		return nr_pinned;
2654 
2655 	/* Slow path: try to get the remaining pages with get_user_pages */
2656 	start += nr_pinned << PAGE_SHIFT;
2657 	pages += nr_pinned;
2658 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2659 				      pages);
2660 	if (ret < 0) {
2661 		/*
2662 		 * The caller has to unpin the pages we already pinned so
2663 		 * returning -errno is not an option
2664 		 */
2665 		if (nr_pinned)
2666 			return nr_pinned;
2667 		return ret;
2668 	}
2669 	return ret + nr_pinned;
2670 }
2671 
2672 /**
2673  * get_user_pages_fast_only() - pin user pages in memory
2674  * @start:      starting user address
2675  * @nr_pages:   number of pages from start to pin
2676  * @gup_flags:  flags modifying pin behaviour
2677  * @pages:      array that receives pointers to the pages pinned.
2678  *              Should be at least nr_pages long.
2679  *
2680  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2681  * the regular GUP.
2682  * Note a difference with get_user_pages_fast: this always returns the
2683  * number of pages pinned, 0 if no pages were pinned.
2684  *
2685  * If the architecture does not support this function, simply return with no
2686  * pages pinned.
2687  *
2688  * Careful, careful! COW breaking can go either way, so a non-write
2689  * access can get ambiguous page results. If you call this function without
2690  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2691  */
2692 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2693 			     unsigned int gup_flags, struct page **pages)
2694 {
2695 	int nr_pinned;
2696 	/*
2697 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2698 	 * because gup fast is always a "pin with a +1 page refcount" request.
2699 	 *
2700 	 * FOLL_FAST_ONLY is required in order to match the API description of
2701 	 * this routine: no fall back to regular ("slow") GUP.
2702 	 */
2703 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2704 
2705 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2706 						 pages);
2707 
2708 	/*
2709 	 * As specified in the API description above, this routine is not
2710 	 * allowed to return negative values. However, the common core
2711 	 * routine internal_get_user_pages_fast() *can* return -errno.
2712 	 * Therefore, correct for that here:
2713 	 */
2714 	if (nr_pinned < 0)
2715 		nr_pinned = 0;
2716 
2717 	return nr_pinned;
2718 }
2719 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2720 
2721 /**
2722  * get_user_pages_fast() - pin user pages in memory
2723  * @start:      starting user address
2724  * @nr_pages:   number of pages from start to pin
2725  * @gup_flags:  flags modifying pin behaviour
2726  * @pages:      array that receives pointers to the pages pinned.
2727  *              Should be at least nr_pages long.
2728  *
2729  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2730  * If not successful, it will fall back to taking the lock and
2731  * calling get_user_pages().
2732  *
2733  * Returns number of pages pinned. This may be fewer than the number requested.
2734  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2735  * -errno.
2736  */
2737 int get_user_pages_fast(unsigned long start, int nr_pages,
2738 			unsigned int gup_flags, struct page **pages)
2739 {
2740 	if (!is_valid_gup_flags(gup_flags))
2741 		return -EINVAL;
2742 
2743 	/*
2744 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2745 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2746 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2747 	 * request.
2748 	 */
2749 	gup_flags |= FOLL_GET;
2750 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2751 }
2752 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2753 
2754 /**
2755  * pin_user_pages_fast() - pin user pages in memory without taking locks
2756  *
2757  * @start:      starting user address
2758  * @nr_pages:   number of pages from start to pin
2759  * @gup_flags:  flags modifying pin behaviour
2760  * @pages:      array that receives pointers to the pages pinned.
2761  *              Should be at least nr_pages long.
2762  *
2763  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2764  * get_user_pages_fast() for documentation on the function arguments, because
2765  * the arguments here are identical.
2766  *
2767  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2768  * see Documentation/core-api/pin_user_pages.rst for further details.
2769  */
2770 int pin_user_pages_fast(unsigned long start, int nr_pages,
2771 			unsigned int gup_flags, struct page **pages)
2772 {
2773 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2774 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2775 		return -EINVAL;
2776 
2777 	gup_flags |= FOLL_PIN;
2778 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2779 }
2780 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2781 
2782 /*
2783  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2784  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2785  *
2786  * The API rules are the same, too: no negative values may be returned.
2787  */
2788 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2789 			     unsigned int gup_flags, struct page **pages)
2790 {
2791 	int nr_pinned;
2792 
2793 	/*
2794 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2795 	 * rules require returning 0, rather than -errno:
2796 	 */
2797 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2798 		return 0;
2799 	/*
2800 	 * FOLL_FAST_ONLY is required in order to match the API description of
2801 	 * this routine: no fall back to regular ("slow") GUP.
2802 	 */
2803 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2804 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2805 						 pages);
2806 	/*
2807 	 * This routine is not allowed to return negative values. However,
2808 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2809 	 * correct for that here:
2810 	 */
2811 	if (nr_pinned < 0)
2812 		nr_pinned = 0;
2813 
2814 	return nr_pinned;
2815 }
2816 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2817 
2818 /**
2819  * pin_user_pages_remote() - pin pages of a remote process
2820  *
2821  * @mm:		mm_struct of target mm
2822  * @start:	starting user address
2823  * @nr_pages:	number of pages from start to pin
2824  * @gup_flags:	flags modifying lookup behaviour
2825  * @pages:	array that receives pointers to the pages pinned.
2826  *		Should be at least nr_pages long. Or NULL, if caller
2827  *		only intends to ensure the pages are faulted in.
2828  * @vmas:	array of pointers to vmas corresponding to each page.
2829  *		Or NULL if the caller does not require them.
2830  * @locked:	pointer to lock flag indicating whether lock is held and
2831  *		subsequently whether VM_FAULT_RETRY functionality can be
2832  *		utilised. Lock must initially be held.
2833  *
2834  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2835  * get_user_pages_remote() for documentation on the function arguments, because
2836  * the arguments here are identical.
2837  *
2838  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2839  * see Documentation/core-api/pin_user_pages.rst for details.
2840  */
2841 long pin_user_pages_remote(struct mm_struct *mm,
2842 			   unsigned long start, unsigned long nr_pages,
2843 			   unsigned int gup_flags, struct page **pages,
2844 			   struct vm_area_struct **vmas, int *locked)
2845 {
2846 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2847 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2848 		return -EINVAL;
2849 
2850 	gup_flags |= FOLL_PIN;
2851 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2852 				       pages, vmas, locked);
2853 }
2854 EXPORT_SYMBOL(pin_user_pages_remote);
2855 
2856 /**
2857  * pin_user_pages() - pin user pages in memory for use by other devices
2858  *
2859  * @start:	starting user address
2860  * @nr_pages:	number of pages from start to pin
2861  * @gup_flags:	flags modifying lookup behaviour
2862  * @pages:	array that receives pointers to the pages pinned.
2863  *		Should be at least nr_pages long. Or NULL, if caller
2864  *		only intends to ensure the pages are faulted in.
2865  * @vmas:	array of pointers to vmas corresponding to each page.
2866  *		Or NULL if the caller does not require them.
2867  *
2868  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2869  * FOLL_PIN is set.
2870  *
2871  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2872  * see Documentation/core-api/pin_user_pages.rst for details.
2873  */
2874 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2875 		    unsigned int gup_flags, struct page **pages,
2876 		    struct vm_area_struct **vmas)
2877 {
2878 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2879 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2880 		return -EINVAL;
2881 
2882 	gup_flags |= FOLL_PIN;
2883 	return __gup_longterm_locked(current->mm, start, nr_pages,
2884 				     pages, vmas, gup_flags);
2885 }
2886 EXPORT_SYMBOL(pin_user_pages);
2887 
2888 /*
2889  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2890  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2891  * FOLL_PIN and rejects FOLL_GET.
2892  */
2893 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2894 			     struct page **pages, unsigned int gup_flags)
2895 {
2896 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2897 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2898 		return -EINVAL;
2899 
2900 	gup_flags |= FOLL_PIN;
2901 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2902 }
2903 EXPORT_SYMBOL(pin_user_pages_unlocked);
2904 
2905 /*
2906  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2907  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2908  * FOLL_GET.
2909  */
2910 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2911 			   unsigned int gup_flags, struct page **pages,
2912 			   int *locked)
2913 {
2914 	/*
2915 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2916 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2917 	 * vmas.  As there are no users of this flag in this call we simply
2918 	 * disallow this option for now.
2919 	 */
2920 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2921 		return -EINVAL;
2922 
2923 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2924 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2925 		return -EINVAL;
2926 
2927 	gup_flags |= FOLL_PIN;
2928 	return __get_user_pages_locked(current->mm, start, nr_pages,
2929 				       pages, NULL, locked,
2930 				       gup_flags | FOLL_TOUCH);
2931 }
2932 EXPORT_SYMBOL(pin_user_pages_locked);
2933