xref: /linux/mm/gup.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/pgtable.h>
18 #include <asm/tlbflush.h>
19 
20 #include "internal.h"
21 
22 static struct page *no_page_table(struct vm_area_struct *vma,
23 		unsigned int flags)
24 {
25 	/*
26 	 * When core dumping an enormous anonymous area that nobody
27 	 * has touched so far, we don't want to allocate unnecessary pages or
28 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
29 	 * then get_dump_page() will return NULL to leave a hole in the dump.
30 	 * But we can only make this optimization where a hole would surely
31 	 * be zero-filled if handle_mm_fault() actually did handle it.
32 	 */
33 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
34 		return ERR_PTR(-EFAULT);
35 	return NULL;
36 }
37 
38 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
39 		pte_t *pte, unsigned int flags)
40 {
41 	/* No page to get reference */
42 	if (flags & FOLL_GET)
43 		return -EFAULT;
44 
45 	if (flags & FOLL_TOUCH) {
46 		pte_t entry = *pte;
47 
48 		if (flags & FOLL_WRITE)
49 			entry = pte_mkdirty(entry);
50 		entry = pte_mkyoung(entry);
51 
52 		if (!pte_same(*pte, entry)) {
53 			set_pte_at(vma->vm_mm, address, pte, entry);
54 			update_mmu_cache(vma, address, pte);
55 		}
56 	}
57 
58 	/* Proper page table entry exists, but no corresponding struct page */
59 	return -EEXIST;
60 }
61 
62 static struct page *follow_page_pte(struct vm_area_struct *vma,
63 		unsigned long address, pmd_t *pmd, unsigned int flags)
64 {
65 	struct mm_struct *mm = vma->vm_mm;
66 	struct dev_pagemap *pgmap = NULL;
67 	struct page *page;
68 	spinlock_t *ptl;
69 	pte_t *ptep, pte;
70 
71 retry:
72 	if (unlikely(pmd_bad(*pmd)))
73 		return no_page_table(vma, flags);
74 
75 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
76 	pte = *ptep;
77 	if (!pte_present(pte)) {
78 		swp_entry_t entry;
79 		/*
80 		 * KSM's break_ksm() relies upon recognizing a ksm page
81 		 * even while it is being migrated, so for that case we
82 		 * need migration_entry_wait().
83 		 */
84 		if (likely(!(flags & FOLL_MIGRATION)))
85 			goto no_page;
86 		if (pte_none(pte))
87 			goto no_page;
88 		entry = pte_to_swp_entry(pte);
89 		if (!is_migration_entry(entry))
90 			goto no_page;
91 		pte_unmap_unlock(ptep, ptl);
92 		migration_entry_wait(mm, pmd, address);
93 		goto retry;
94 	}
95 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
96 		goto no_page;
97 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
98 		pte_unmap_unlock(ptep, ptl);
99 		return NULL;
100 	}
101 
102 	page = vm_normal_page(vma, address, pte);
103 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
104 		/*
105 		 * Only return device mapping pages in the FOLL_GET case since
106 		 * they are only valid while holding the pgmap reference.
107 		 */
108 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
109 		if (pgmap)
110 			page = pte_page(pte);
111 		else
112 			goto no_page;
113 	} else if (unlikely(!page)) {
114 		if (flags & FOLL_DUMP) {
115 			/* Avoid special (like zero) pages in core dumps */
116 			page = ERR_PTR(-EFAULT);
117 			goto out;
118 		}
119 
120 		if (is_zero_pfn(pte_pfn(pte))) {
121 			page = pte_page(pte);
122 		} else {
123 			int ret;
124 
125 			ret = follow_pfn_pte(vma, address, ptep, flags);
126 			page = ERR_PTR(ret);
127 			goto out;
128 		}
129 	}
130 
131 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
132 		int ret;
133 		get_page(page);
134 		pte_unmap_unlock(ptep, ptl);
135 		lock_page(page);
136 		ret = split_huge_page(page);
137 		unlock_page(page);
138 		put_page(page);
139 		if (ret)
140 			return ERR_PTR(ret);
141 		goto retry;
142 	}
143 
144 	if (flags & FOLL_GET) {
145 		get_page(page);
146 
147 		/* drop the pgmap reference now that we hold the page */
148 		if (pgmap) {
149 			put_dev_pagemap(pgmap);
150 			pgmap = NULL;
151 		}
152 	}
153 	if (flags & FOLL_TOUCH) {
154 		if ((flags & FOLL_WRITE) &&
155 		    !pte_dirty(pte) && !PageDirty(page))
156 			set_page_dirty(page);
157 		/*
158 		 * pte_mkyoung() would be more correct here, but atomic care
159 		 * is needed to avoid losing the dirty bit: it is easier to use
160 		 * mark_page_accessed().
161 		 */
162 		mark_page_accessed(page);
163 	}
164 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
165 		/* Do not mlock pte-mapped THP */
166 		if (PageTransCompound(page))
167 			goto out;
168 
169 		/*
170 		 * The preliminary mapping check is mainly to avoid the
171 		 * pointless overhead of lock_page on the ZERO_PAGE
172 		 * which might bounce very badly if there is contention.
173 		 *
174 		 * If the page is already locked, we don't need to
175 		 * handle it now - vmscan will handle it later if and
176 		 * when it attempts to reclaim the page.
177 		 */
178 		if (page->mapping && trylock_page(page)) {
179 			lru_add_drain();  /* push cached pages to LRU */
180 			/*
181 			 * Because we lock page here, and migration is
182 			 * blocked by the pte's page reference, and we
183 			 * know the page is still mapped, we don't even
184 			 * need to check for file-cache page truncation.
185 			 */
186 			mlock_vma_page(page);
187 			unlock_page(page);
188 		}
189 	}
190 out:
191 	pte_unmap_unlock(ptep, ptl);
192 	return page;
193 no_page:
194 	pte_unmap_unlock(ptep, ptl);
195 	if (!pte_none(pte))
196 		return NULL;
197 	return no_page_table(vma, flags);
198 }
199 
200 /**
201  * follow_page_mask - look up a page descriptor from a user-virtual address
202  * @vma: vm_area_struct mapping @address
203  * @address: virtual address to look up
204  * @flags: flags modifying lookup behaviour
205  * @page_mask: on output, *page_mask is set according to the size of the page
206  *
207  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
208  *
209  * Returns the mapped (struct page *), %NULL if no mapping exists, or
210  * an error pointer if there is a mapping to something not represented
211  * by a page descriptor (see also vm_normal_page()).
212  */
213 struct page *follow_page_mask(struct vm_area_struct *vma,
214 			      unsigned long address, unsigned int flags,
215 			      unsigned int *page_mask)
216 {
217 	pgd_t *pgd;
218 	pud_t *pud;
219 	pmd_t *pmd;
220 	spinlock_t *ptl;
221 	struct page *page;
222 	struct mm_struct *mm = vma->vm_mm;
223 
224 	*page_mask = 0;
225 
226 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
227 	if (!IS_ERR(page)) {
228 		BUG_ON(flags & FOLL_GET);
229 		return page;
230 	}
231 
232 	pgd = pgd_offset(mm, address);
233 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
234 		return no_page_table(vma, flags);
235 
236 	pud = pud_offset(pgd, address);
237 	if (pud_none(*pud))
238 		return no_page_table(vma, flags);
239 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
240 		page = follow_huge_pud(mm, address, pud, flags);
241 		if (page)
242 			return page;
243 		return no_page_table(vma, flags);
244 	}
245 	if (unlikely(pud_bad(*pud)))
246 		return no_page_table(vma, flags);
247 
248 	pmd = pmd_offset(pud, address);
249 	if (pmd_none(*pmd))
250 		return no_page_table(vma, flags);
251 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
252 		page = follow_huge_pmd(mm, address, pmd, flags);
253 		if (page)
254 			return page;
255 		return no_page_table(vma, flags);
256 	}
257 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
258 		return no_page_table(vma, flags);
259 	if (pmd_devmap(*pmd)) {
260 		ptl = pmd_lock(mm, pmd);
261 		page = follow_devmap_pmd(vma, address, pmd, flags);
262 		spin_unlock(ptl);
263 		if (page)
264 			return page;
265 	}
266 	if (likely(!pmd_trans_huge(*pmd)))
267 		return follow_page_pte(vma, address, pmd, flags);
268 
269 	ptl = pmd_lock(mm, pmd);
270 	if (unlikely(!pmd_trans_huge(*pmd))) {
271 		spin_unlock(ptl);
272 		return follow_page_pte(vma, address, pmd, flags);
273 	}
274 	if (flags & FOLL_SPLIT) {
275 		int ret;
276 		page = pmd_page(*pmd);
277 		if (is_huge_zero_page(page)) {
278 			spin_unlock(ptl);
279 			ret = 0;
280 			split_huge_pmd(vma, pmd, address);
281 		} else {
282 			get_page(page);
283 			spin_unlock(ptl);
284 			lock_page(page);
285 			ret = split_huge_page(page);
286 			unlock_page(page);
287 			put_page(page);
288 		}
289 
290 		return ret ? ERR_PTR(ret) :
291 			follow_page_pte(vma, address, pmd, flags);
292 	}
293 
294 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
295 	spin_unlock(ptl);
296 	*page_mask = HPAGE_PMD_NR - 1;
297 	return page;
298 }
299 
300 static int get_gate_page(struct mm_struct *mm, unsigned long address,
301 		unsigned int gup_flags, struct vm_area_struct **vma,
302 		struct page **page)
303 {
304 	pgd_t *pgd;
305 	pud_t *pud;
306 	pmd_t *pmd;
307 	pte_t *pte;
308 	int ret = -EFAULT;
309 
310 	/* user gate pages are read-only */
311 	if (gup_flags & FOLL_WRITE)
312 		return -EFAULT;
313 	if (address > TASK_SIZE)
314 		pgd = pgd_offset_k(address);
315 	else
316 		pgd = pgd_offset_gate(mm, address);
317 	BUG_ON(pgd_none(*pgd));
318 	pud = pud_offset(pgd, address);
319 	BUG_ON(pud_none(*pud));
320 	pmd = pmd_offset(pud, address);
321 	if (pmd_none(*pmd))
322 		return -EFAULT;
323 	VM_BUG_ON(pmd_trans_huge(*pmd));
324 	pte = pte_offset_map(pmd, address);
325 	if (pte_none(*pte))
326 		goto unmap;
327 	*vma = get_gate_vma(mm);
328 	if (!page)
329 		goto out;
330 	*page = vm_normal_page(*vma, address, *pte);
331 	if (!*page) {
332 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
333 			goto unmap;
334 		*page = pte_page(*pte);
335 	}
336 	get_page(*page);
337 out:
338 	ret = 0;
339 unmap:
340 	pte_unmap(pte);
341 	return ret;
342 }
343 
344 /*
345  * mmap_sem must be held on entry.  If @nonblocking != NULL and
346  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
347  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
348  */
349 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
350 		unsigned long address, unsigned int *flags, int *nonblocking)
351 {
352 	struct mm_struct *mm = vma->vm_mm;
353 	unsigned int fault_flags = 0;
354 	int ret;
355 
356 	/* mlock all present pages, but do not fault in new pages */
357 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
358 		return -ENOENT;
359 	/* For mm_populate(), just skip the stack guard page. */
360 	if ((*flags & FOLL_POPULATE) &&
361 			(stack_guard_page_start(vma, address) ||
362 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
363 		return -ENOENT;
364 	if (*flags & FOLL_WRITE)
365 		fault_flags |= FAULT_FLAG_WRITE;
366 	if (nonblocking)
367 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
368 	if (*flags & FOLL_NOWAIT)
369 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
370 	if (*flags & FOLL_TRIED) {
371 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
372 		fault_flags |= FAULT_FLAG_TRIED;
373 	}
374 
375 	ret = handle_mm_fault(mm, vma, address, fault_flags);
376 	if (ret & VM_FAULT_ERROR) {
377 		if (ret & VM_FAULT_OOM)
378 			return -ENOMEM;
379 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
380 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
381 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
382 			return -EFAULT;
383 		BUG();
384 	}
385 
386 	if (tsk) {
387 		if (ret & VM_FAULT_MAJOR)
388 			tsk->maj_flt++;
389 		else
390 			tsk->min_flt++;
391 	}
392 
393 	if (ret & VM_FAULT_RETRY) {
394 		if (nonblocking)
395 			*nonblocking = 0;
396 		return -EBUSY;
397 	}
398 
399 	/*
400 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
401 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
402 	 * can thus safely do subsequent page lookups as if they were reads.
403 	 * But only do so when looping for pte_write is futile: in some cases
404 	 * userspace may also be wanting to write to the gotten user page,
405 	 * which a read fault here might prevent (a readonly page might get
406 	 * reCOWed by userspace write).
407 	 */
408 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
409 		*flags &= ~FOLL_WRITE;
410 	return 0;
411 }
412 
413 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
414 {
415 	vm_flags_t vm_flags = vma->vm_flags;
416 
417 	if (vm_flags & (VM_IO | VM_PFNMAP))
418 		return -EFAULT;
419 
420 	if (gup_flags & FOLL_WRITE) {
421 		if (!(vm_flags & VM_WRITE)) {
422 			if (!(gup_flags & FOLL_FORCE))
423 				return -EFAULT;
424 			/*
425 			 * We used to let the write,force case do COW in a
426 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
427 			 * set a breakpoint in a read-only mapping of an
428 			 * executable, without corrupting the file (yet only
429 			 * when that file had been opened for writing!).
430 			 * Anon pages in shared mappings are surprising: now
431 			 * just reject it.
432 			 */
433 			if (!is_cow_mapping(vm_flags))
434 				return -EFAULT;
435 		}
436 	} else if (!(vm_flags & VM_READ)) {
437 		if (!(gup_flags & FOLL_FORCE))
438 			return -EFAULT;
439 		/*
440 		 * Is there actually any vma we can reach here which does not
441 		 * have VM_MAYREAD set?
442 		 */
443 		if (!(vm_flags & VM_MAYREAD))
444 			return -EFAULT;
445 	}
446 	return 0;
447 }
448 
449 /**
450  * __get_user_pages() - pin user pages in memory
451  * @tsk:	task_struct of target task
452  * @mm:		mm_struct of target mm
453  * @start:	starting user address
454  * @nr_pages:	number of pages from start to pin
455  * @gup_flags:	flags modifying pin behaviour
456  * @pages:	array that receives pointers to the pages pinned.
457  *		Should be at least nr_pages long. Or NULL, if caller
458  *		only intends to ensure the pages are faulted in.
459  * @vmas:	array of pointers to vmas corresponding to each page.
460  *		Or NULL if the caller does not require them.
461  * @nonblocking: whether waiting for disk IO or mmap_sem contention
462  *
463  * Returns number of pages pinned. This may be fewer than the number
464  * requested. If nr_pages is 0 or negative, returns 0. If no pages
465  * were pinned, returns -errno. Each page returned must be released
466  * with a put_page() call when it is finished with. vmas will only
467  * remain valid while mmap_sem is held.
468  *
469  * Must be called with mmap_sem held.  It may be released.  See below.
470  *
471  * __get_user_pages walks a process's page tables and takes a reference to
472  * each struct page that each user address corresponds to at a given
473  * instant. That is, it takes the page that would be accessed if a user
474  * thread accesses the given user virtual address at that instant.
475  *
476  * This does not guarantee that the page exists in the user mappings when
477  * __get_user_pages returns, and there may even be a completely different
478  * page there in some cases (eg. if mmapped pagecache has been invalidated
479  * and subsequently re faulted). However it does guarantee that the page
480  * won't be freed completely. And mostly callers simply care that the page
481  * contains data that was valid *at some point in time*. Typically, an IO
482  * or similar operation cannot guarantee anything stronger anyway because
483  * locks can't be held over the syscall boundary.
484  *
485  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
486  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
487  * appropriate) must be called after the page is finished with, and
488  * before put_page is called.
489  *
490  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
491  * or mmap_sem contention, and if waiting is needed to pin all pages,
492  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
493  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
494  * this case.
495  *
496  * A caller using such a combination of @nonblocking and @gup_flags
497  * must therefore hold the mmap_sem for reading only, and recognize
498  * when it's been released.  Otherwise, it must be held for either
499  * reading or writing and will not be released.
500  *
501  * In most cases, get_user_pages or get_user_pages_fast should be used
502  * instead of __get_user_pages. __get_user_pages should be used only if
503  * you need some special @gup_flags.
504  */
505 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
506 		unsigned long start, unsigned long nr_pages,
507 		unsigned int gup_flags, struct page **pages,
508 		struct vm_area_struct **vmas, int *nonblocking)
509 {
510 	long i = 0;
511 	unsigned int page_mask;
512 	struct vm_area_struct *vma = NULL;
513 
514 	if (!nr_pages)
515 		return 0;
516 
517 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
518 
519 	/*
520 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
521 	 * fault information is unrelated to the reference behaviour of a task
522 	 * using the address space
523 	 */
524 	if (!(gup_flags & FOLL_FORCE))
525 		gup_flags |= FOLL_NUMA;
526 
527 	do {
528 		struct page *page;
529 		unsigned int foll_flags = gup_flags;
530 		unsigned int page_increm;
531 
532 		/* first iteration or cross vma bound */
533 		if (!vma || start >= vma->vm_end) {
534 			vma = find_extend_vma(mm, start);
535 			if (!vma && in_gate_area(mm, start)) {
536 				int ret;
537 				ret = get_gate_page(mm, start & PAGE_MASK,
538 						gup_flags, &vma,
539 						pages ? &pages[i] : NULL);
540 				if (ret)
541 					return i ? : ret;
542 				page_mask = 0;
543 				goto next_page;
544 			}
545 
546 			if (!vma || check_vma_flags(vma, gup_flags))
547 				return i ? : -EFAULT;
548 			if (is_vm_hugetlb_page(vma)) {
549 				i = follow_hugetlb_page(mm, vma, pages, vmas,
550 						&start, &nr_pages, i,
551 						gup_flags);
552 				continue;
553 			}
554 		}
555 retry:
556 		/*
557 		 * If we have a pending SIGKILL, don't keep faulting pages and
558 		 * potentially allocating memory.
559 		 */
560 		if (unlikely(fatal_signal_pending(current)))
561 			return i ? i : -ERESTARTSYS;
562 		cond_resched();
563 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
564 		if (!page) {
565 			int ret;
566 			ret = faultin_page(tsk, vma, start, &foll_flags,
567 					nonblocking);
568 			switch (ret) {
569 			case 0:
570 				goto retry;
571 			case -EFAULT:
572 			case -ENOMEM:
573 			case -EHWPOISON:
574 				return i ? i : ret;
575 			case -EBUSY:
576 				return i;
577 			case -ENOENT:
578 				goto next_page;
579 			}
580 			BUG();
581 		} else if (PTR_ERR(page) == -EEXIST) {
582 			/*
583 			 * Proper page table entry exists, but no corresponding
584 			 * struct page.
585 			 */
586 			goto next_page;
587 		} else if (IS_ERR(page)) {
588 			return i ? i : PTR_ERR(page);
589 		}
590 		if (pages) {
591 			pages[i] = page;
592 			flush_anon_page(vma, page, start);
593 			flush_dcache_page(page);
594 			page_mask = 0;
595 		}
596 next_page:
597 		if (vmas) {
598 			vmas[i] = vma;
599 			page_mask = 0;
600 		}
601 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
602 		if (page_increm > nr_pages)
603 			page_increm = nr_pages;
604 		i += page_increm;
605 		start += page_increm * PAGE_SIZE;
606 		nr_pages -= page_increm;
607 	} while (nr_pages);
608 	return i;
609 }
610 EXPORT_SYMBOL(__get_user_pages);
611 
612 /*
613  * fixup_user_fault() - manually resolve a user page fault
614  * @tsk:	the task_struct to use for page fault accounting, or
615  *		NULL if faults are not to be recorded.
616  * @mm:		mm_struct of target mm
617  * @address:	user address
618  * @fault_flags:flags to pass down to handle_mm_fault()
619  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
620  *		does not allow retry
621  *
622  * This is meant to be called in the specific scenario where for locking reasons
623  * we try to access user memory in atomic context (within a pagefault_disable()
624  * section), this returns -EFAULT, and we want to resolve the user fault before
625  * trying again.
626  *
627  * Typically this is meant to be used by the futex code.
628  *
629  * The main difference with get_user_pages() is that this function will
630  * unconditionally call handle_mm_fault() which will in turn perform all the
631  * necessary SW fixup of the dirty and young bits in the PTE, while
632  * get_user_pages() only guarantees to update these in the struct page.
633  *
634  * This is important for some architectures where those bits also gate the
635  * access permission to the page because they are maintained in software.  On
636  * such architectures, gup() will not be enough to make a subsequent access
637  * succeed.
638  *
639  * This function will not return with an unlocked mmap_sem. So it has not the
640  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
641  */
642 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
643 		     unsigned long address, unsigned int fault_flags,
644 		     bool *unlocked)
645 {
646 	struct vm_area_struct *vma;
647 	vm_flags_t vm_flags;
648 	int ret, major = 0;
649 
650 	if (unlocked)
651 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
652 
653 retry:
654 	vma = find_extend_vma(mm, address);
655 	if (!vma || address < vma->vm_start)
656 		return -EFAULT;
657 
658 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
659 	if (!(vm_flags & vma->vm_flags))
660 		return -EFAULT;
661 
662 	ret = handle_mm_fault(mm, vma, address, fault_flags);
663 	major |= ret & VM_FAULT_MAJOR;
664 	if (ret & VM_FAULT_ERROR) {
665 		if (ret & VM_FAULT_OOM)
666 			return -ENOMEM;
667 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
668 			return -EHWPOISON;
669 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
670 			return -EFAULT;
671 		BUG();
672 	}
673 
674 	if (ret & VM_FAULT_RETRY) {
675 		down_read(&mm->mmap_sem);
676 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
677 			*unlocked = true;
678 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
679 			fault_flags |= FAULT_FLAG_TRIED;
680 			goto retry;
681 		}
682 	}
683 
684 	if (tsk) {
685 		if (major)
686 			tsk->maj_flt++;
687 		else
688 			tsk->min_flt++;
689 	}
690 	return 0;
691 }
692 
693 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
694 						struct mm_struct *mm,
695 						unsigned long start,
696 						unsigned long nr_pages,
697 						int write, int force,
698 						struct page **pages,
699 						struct vm_area_struct **vmas,
700 						int *locked, bool notify_drop,
701 						unsigned int flags)
702 {
703 	long ret, pages_done;
704 	bool lock_dropped;
705 
706 	if (locked) {
707 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
708 		BUG_ON(vmas);
709 		/* check caller initialized locked */
710 		BUG_ON(*locked != 1);
711 	}
712 
713 	if (pages)
714 		flags |= FOLL_GET;
715 	if (write)
716 		flags |= FOLL_WRITE;
717 	if (force)
718 		flags |= FOLL_FORCE;
719 
720 	pages_done = 0;
721 	lock_dropped = false;
722 	for (;;) {
723 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
724 				       vmas, locked);
725 		if (!locked)
726 			/* VM_FAULT_RETRY couldn't trigger, bypass */
727 			return ret;
728 
729 		/* VM_FAULT_RETRY cannot return errors */
730 		if (!*locked) {
731 			BUG_ON(ret < 0);
732 			BUG_ON(ret >= nr_pages);
733 		}
734 
735 		if (!pages)
736 			/* If it's a prefault don't insist harder */
737 			return ret;
738 
739 		if (ret > 0) {
740 			nr_pages -= ret;
741 			pages_done += ret;
742 			if (!nr_pages)
743 				break;
744 		}
745 		if (*locked) {
746 			/* VM_FAULT_RETRY didn't trigger */
747 			if (!pages_done)
748 				pages_done = ret;
749 			break;
750 		}
751 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
752 		pages += ret;
753 		start += ret << PAGE_SHIFT;
754 
755 		/*
756 		 * Repeat on the address that fired VM_FAULT_RETRY
757 		 * without FAULT_FLAG_ALLOW_RETRY but with
758 		 * FAULT_FLAG_TRIED.
759 		 */
760 		*locked = 1;
761 		lock_dropped = true;
762 		down_read(&mm->mmap_sem);
763 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
764 				       pages, NULL, NULL);
765 		if (ret != 1) {
766 			BUG_ON(ret > 1);
767 			if (!pages_done)
768 				pages_done = ret;
769 			break;
770 		}
771 		nr_pages--;
772 		pages_done++;
773 		if (!nr_pages)
774 			break;
775 		pages++;
776 		start += PAGE_SIZE;
777 	}
778 	if (notify_drop && lock_dropped && *locked) {
779 		/*
780 		 * We must let the caller know we temporarily dropped the lock
781 		 * and so the critical section protected by it was lost.
782 		 */
783 		up_read(&mm->mmap_sem);
784 		*locked = 0;
785 	}
786 	return pages_done;
787 }
788 
789 /*
790  * We can leverage the VM_FAULT_RETRY functionality in the page fault
791  * paths better by using either get_user_pages_locked() or
792  * get_user_pages_unlocked().
793  *
794  * get_user_pages_locked() is suitable to replace the form:
795  *
796  *      down_read(&mm->mmap_sem);
797  *      do_something()
798  *      get_user_pages(tsk, mm, ..., pages, NULL);
799  *      up_read(&mm->mmap_sem);
800  *
801  *  to:
802  *
803  *      int locked = 1;
804  *      down_read(&mm->mmap_sem);
805  *      do_something()
806  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
807  *      if (locked)
808  *          up_read(&mm->mmap_sem);
809  */
810 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
811 			   unsigned long start, unsigned long nr_pages,
812 			   int write, int force, struct page **pages,
813 			   int *locked)
814 {
815 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
816 				       pages, NULL, locked, true, FOLL_TOUCH);
817 }
818 EXPORT_SYMBOL(get_user_pages_locked);
819 
820 /*
821  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
822  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
823  *
824  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
825  * caller if required (just like with __get_user_pages). "FOLL_GET",
826  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
827  * according to the parameters "pages", "write", "force"
828  * respectively.
829  */
830 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
831 					       unsigned long start, unsigned long nr_pages,
832 					       int write, int force, struct page **pages,
833 					       unsigned int gup_flags)
834 {
835 	long ret;
836 	int locked = 1;
837 	down_read(&mm->mmap_sem);
838 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
839 				      pages, NULL, &locked, false, gup_flags);
840 	if (locked)
841 		up_read(&mm->mmap_sem);
842 	return ret;
843 }
844 EXPORT_SYMBOL(__get_user_pages_unlocked);
845 
846 /*
847  * get_user_pages_unlocked() is suitable to replace the form:
848  *
849  *      down_read(&mm->mmap_sem);
850  *      get_user_pages(tsk, mm, ..., pages, NULL);
851  *      up_read(&mm->mmap_sem);
852  *
853  *  with:
854  *
855  *      get_user_pages_unlocked(tsk, mm, ..., pages);
856  *
857  * It is functionally equivalent to get_user_pages_fast so
858  * get_user_pages_fast should be used instead, if the two parameters
859  * "tsk" and "mm" are respectively equal to current and current->mm,
860  * or if "force" shall be set to 1 (get_user_pages_fast misses the
861  * "force" parameter).
862  */
863 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
864 			     unsigned long start, unsigned long nr_pages,
865 			     int write, int force, struct page **pages)
866 {
867 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
868 					 force, pages, FOLL_TOUCH);
869 }
870 EXPORT_SYMBOL(get_user_pages_unlocked);
871 
872 /*
873  * get_user_pages() - pin user pages in memory
874  * @tsk:	the task_struct to use for page fault accounting, or
875  *		NULL if faults are not to be recorded.
876  * @mm:		mm_struct of target mm
877  * @start:	starting user address
878  * @nr_pages:	number of pages from start to pin
879  * @write:	whether pages will be written to by the caller
880  * @force:	whether to force access even when user mapping is currently
881  *		protected (but never forces write access to shared mapping).
882  * @pages:	array that receives pointers to the pages pinned.
883  *		Should be at least nr_pages long. Or NULL, if caller
884  *		only intends to ensure the pages are faulted in.
885  * @vmas:	array of pointers to vmas corresponding to each page.
886  *		Or NULL if the caller does not require them.
887  *
888  * Returns number of pages pinned. This may be fewer than the number
889  * requested. If nr_pages is 0 or negative, returns 0. If no pages
890  * were pinned, returns -errno. Each page returned must be released
891  * with a put_page() call when it is finished with. vmas will only
892  * remain valid while mmap_sem is held.
893  *
894  * Must be called with mmap_sem held for read or write.
895  *
896  * get_user_pages walks a process's page tables and takes a reference to
897  * each struct page that each user address corresponds to at a given
898  * instant. That is, it takes the page that would be accessed if a user
899  * thread accesses the given user virtual address at that instant.
900  *
901  * This does not guarantee that the page exists in the user mappings when
902  * get_user_pages returns, and there may even be a completely different
903  * page there in some cases (eg. if mmapped pagecache has been invalidated
904  * and subsequently re faulted). However it does guarantee that the page
905  * won't be freed completely. And mostly callers simply care that the page
906  * contains data that was valid *at some point in time*. Typically, an IO
907  * or similar operation cannot guarantee anything stronger anyway because
908  * locks can't be held over the syscall boundary.
909  *
910  * If write=0, the page must not be written to. If the page is written to,
911  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
912  * after the page is finished with, and before put_page is called.
913  *
914  * get_user_pages is typically used for fewer-copy IO operations, to get a
915  * handle on the memory by some means other than accesses via the user virtual
916  * addresses. The pages may be submitted for DMA to devices or accessed via
917  * their kernel linear mapping (via the kmap APIs). Care should be taken to
918  * use the correct cache flushing APIs.
919  *
920  * See also get_user_pages_fast, for performance critical applications.
921  *
922  * get_user_pages should be phased out in favor of
923  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
924  * should use get_user_pages because it cannot pass
925  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
926  */
927 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
928 		unsigned long start, unsigned long nr_pages, int write,
929 		int force, struct page **pages, struct vm_area_struct **vmas)
930 {
931 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
932 				       pages, vmas, NULL, false, FOLL_TOUCH);
933 }
934 EXPORT_SYMBOL(get_user_pages);
935 
936 /**
937  * populate_vma_page_range() -  populate a range of pages in the vma.
938  * @vma:   target vma
939  * @start: start address
940  * @end:   end address
941  * @nonblocking:
942  *
943  * This takes care of mlocking the pages too if VM_LOCKED is set.
944  *
945  * return 0 on success, negative error code on error.
946  *
947  * vma->vm_mm->mmap_sem must be held.
948  *
949  * If @nonblocking is NULL, it may be held for read or write and will
950  * be unperturbed.
951  *
952  * If @nonblocking is non-NULL, it must held for read only and may be
953  * released.  If it's released, *@nonblocking will be set to 0.
954  */
955 long populate_vma_page_range(struct vm_area_struct *vma,
956 		unsigned long start, unsigned long end, int *nonblocking)
957 {
958 	struct mm_struct *mm = vma->vm_mm;
959 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
960 	int gup_flags;
961 
962 	VM_BUG_ON(start & ~PAGE_MASK);
963 	VM_BUG_ON(end   & ~PAGE_MASK);
964 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
965 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
966 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
967 
968 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
969 	if (vma->vm_flags & VM_LOCKONFAULT)
970 		gup_flags &= ~FOLL_POPULATE;
971 	/*
972 	 * We want to touch writable mappings with a write fault in order
973 	 * to break COW, except for shared mappings because these don't COW
974 	 * and we would not want to dirty them for nothing.
975 	 */
976 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
977 		gup_flags |= FOLL_WRITE;
978 
979 	/*
980 	 * We want mlock to succeed for regions that have any permissions
981 	 * other than PROT_NONE.
982 	 */
983 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
984 		gup_flags |= FOLL_FORCE;
985 
986 	/*
987 	 * We made sure addr is within a VMA, so the following will
988 	 * not result in a stack expansion that recurses back here.
989 	 */
990 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
991 				NULL, NULL, nonblocking);
992 }
993 
994 /*
995  * __mm_populate - populate and/or mlock pages within a range of address space.
996  *
997  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
998  * flags. VMAs must be already marked with the desired vm_flags, and
999  * mmap_sem must not be held.
1000  */
1001 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1002 {
1003 	struct mm_struct *mm = current->mm;
1004 	unsigned long end, nstart, nend;
1005 	struct vm_area_struct *vma = NULL;
1006 	int locked = 0;
1007 	long ret = 0;
1008 
1009 	VM_BUG_ON(start & ~PAGE_MASK);
1010 	VM_BUG_ON(len != PAGE_ALIGN(len));
1011 	end = start + len;
1012 
1013 	for (nstart = start; nstart < end; nstart = nend) {
1014 		/*
1015 		 * We want to fault in pages for [nstart; end) address range.
1016 		 * Find first corresponding VMA.
1017 		 */
1018 		if (!locked) {
1019 			locked = 1;
1020 			down_read(&mm->mmap_sem);
1021 			vma = find_vma(mm, nstart);
1022 		} else if (nstart >= vma->vm_end)
1023 			vma = vma->vm_next;
1024 		if (!vma || vma->vm_start >= end)
1025 			break;
1026 		/*
1027 		 * Set [nstart; nend) to intersection of desired address
1028 		 * range with the first VMA. Also, skip undesirable VMA types.
1029 		 */
1030 		nend = min(end, vma->vm_end);
1031 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1032 			continue;
1033 		if (nstart < vma->vm_start)
1034 			nstart = vma->vm_start;
1035 		/*
1036 		 * Now fault in a range of pages. populate_vma_page_range()
1037 		 * double checks the vma flags, so that it won't mlock pages
1038 		 * if the vma was already munlocked.
1039 		 */
1040 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1041 		if (ret < 0) {
1042 			if (ignore_errors) {
1043 				ret = 0;
1044 				continue;	/* continue at next VMA */
1045 			}
1046 			break;
1047 		}
1048 		nend = nstart + ret * PAGE_SIZE;
1049 		ret = 0;
1050 	}
1051 	if (locked)
1052 		up_read(&mm->mmap_sem);
1053 	return ret;	/* 0 or negative error code */
1054 }
1055 
1056 /**
1057  * get_dump_page() - pin user page in memory while writing it to core dump
1058  * @addr: user address
1059  *
1060  * Returns struct page pointer of user page pinned for dump,
1061  * to be freed afterwards by page_cache_release() or put_page().
1062  *
1063  * Returns NULL on any kind of failure - a hole must then be inserted into
1064  * the corefile, to preserve alignment with its headers; and also returns
1065  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1066  * allowing a hole to be left in the corefile to save diskspace.
1067  *
1068  * Called without mmap_sem, but after all other threads have been killed.
1069  */
1070 #ifdef CONFIG_ELF_CORE
1071 struct page *get_dump_page(unsigned long addr)
1072 {
1073 	struct vm_area_struct *vma;
1074 	struct page *page;
1075 
1076 	if (__get_user_pages(current, current->mm, addr, 1,
1077 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1078 			     NULL) < 1)
1079 		return NULL;
1080 	flush_cache_page(vma, addr, page_to_pfn(page));
1081 	return page;
1082 }
1083 #endif /* CONFIG_ELF_CORE */
1084 
1085 /*
1086  * Generic RCU Fast GUP
1087  *
1088  * get_user_pages_fast attempts to pin user pages by walking the page
1089  * tables directly and avoids taking locks. Thus the walker needs to be
1090  * protected from page table pages being freed from under it, and should
1091  * block any THP splits.
1092  *
1093  * One way to achieve this is to have the walker disable interrupts, and
1094  * rely on IPIs from the TLB flushing code blocking before the page table
1095  * pages are freed. This is unsuitable for architectures that do not need
1096  * to broadcast an IPI when invalidating TLBs.
1097  *
1098  * Another way to achieve this is to batch up page table containing pages
1099  * belonging to more than one mm_user, then rcu_sched a callback to free those
1100  * pages. Disabling interrupts will allow the fast_gup walker to both block
1101  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1102  * (which is a relatively rare event). The code below adopts this strategy.
1103  *
1104  * Before activating this code, please be aware that the following assumptions
1105  * are currently made:
1106  *
1107  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1108  *      pages containing page tables.
1109  *
1110  *  *) ptes can be read atomically by the architecture.
1111  *
1112  *  *) access_ok is sufficient to validate userspace address ranges.
1113  *
1114  * The last two assumptions can be relaxed by the addition of helper functions.
1115  *
1116  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1117  */
1118 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1119 
1120 #ifdef __HAVE_ARCH_PTE_SPECIAL
1121 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1122 			 int write, struct page **pages, int *nr)
1123 {
1124 	pte_t *ptep, *ptem;
1125 	int ret = 0;
1126 
1127 	ptem = ptep = pte_offset_map(&pmd, addr);
1128 	do {
1129 		/*
1130 		 * In the line below we are assuming that the pte can be read
1131 		 * atomically. If this is not the case for your architecture,
1132 		 * please wrap this in a helper function!
1133 		 *
1134 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1135 		 */
1136 		pte_t pte = READ_ONCE(*ptep);
1137 		struct page *head, *page;
1138 
1139 		/*
1140 		 * Similar to the PMD case below, NUMA hinting must take slow
1141 		 * path using the pte_protnone check.
1142 		 */
1143 		if (!pte_present(pte) || pte_special(pte) ||
1144 			pte_protnone(pte) || (write && !pte_write(pte)))
1145 			goto pte_unmap;
1146 
1147 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1148 		page = pte_page(pte);
1149 		head = compound_head(page);
1150 
1151 		if (!page_cache_get_speculative(head))
1152 			goto pte_unmap;
1153 
1154 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1155 			put_page(head);
1156 			goto pte_unmap;
1157 		}
1158 
1159 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1160 		pages[*nr] = page;
1161 		(*nr)++;
1162 
1163 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1164 
1165 	ret = 1;
1166 
1167 pte_unmap:
1168 	pte_unmap(ptem);
1169 	return ret;
1170 }
1171 #else
1172 
1173 /*
1174  * If we can't determine whether or not a pte is special, then fail immediately
1175  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1176  * to be special.
1177  *
1178  * For a futex to be placed on a THP tail page, get_futex_key requires a
1179  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1180  * useful to have gup_huge_pmd even if we can't operate on ptes.
1181  */
1182 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1183 			 int write, struct page **pages, int *nr)
1184 {
1185 	return 0;
1186 }
1187 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1188 
1189 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1190 		unsigned long end, int write, struct page **pages, int *nr)
1191 {
1192 	struct page *head, *page;
1193 	int refs;
1194 
1195 	if (write && !pmd_write(orig))
1196 		return 0;
1197 
1198 	refs = 0;
1199 	head = pmd_page(orig);
1200 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1201 	do {
1202 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1203 		pages[*nr] = page;
1204 		(*nr)++;
1205 		page++;
1206 		refs++;
1207 	} while (addr += PAGE_SIZE, addr != end);
1208 
1209 	if (!page_cache_add_speculative(head, refs)) {
1210 		*nr -= refs;
1211 		return 0;
1212 	}
1213 
1214 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1215 		*nr -= refs;
1216 		while (refs--)
1217 			put_page(head);
1218 		return 0;
1219 	}
1220 
1221 	return 1;
1222 }
1223 
1224 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1225 		unsigned long end, int write, struct page **pages, int *nr)
1226 {
1227 	struct page *head, *page;
1228 	int refs;
1229 
1230 	if (write && !pud_write(orig))
1231 		return 0;
1232 
1233 	refs = 0;
1234 	head = pud_page(orig);
1235 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1236 	do {
1237 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1238 		pages[*nr] = page;
1239 		(*nr)++;
1240 		page++;
1241 		refs++;
1242 	} while (addr += PAGE_SIZE, addr != end);
1243 
1244 	if (!page_cache_add_speculative(head, refs)) {
1245 		*nr -= refs;
1246 		return 0;
1247 	}
1248 
1249 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1250 		*nr -= refs;
1251 		while (refs--)
1252 			put_page(head);
1253 		return 0;
1254 	}
1255 
1256 	return 1;
1257 }
1258 
1259 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1260 			unsigned long end, int write,
1261 			struct page **pages, int *nr)
1262 {
1263 	int refs;
1264 	struct page *head, *page;
1265 
1266 	if (write && !pgd_write(orig))
1267 		return 0;
1268 
1269 	refs = 0;
1270 	head = pgd_page(orig);
1271 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1272 	do {
1273 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1274 		pages[*nr] = page;
1275 		(*nr)++;
1276 		page++;
1277 		refs++;
1278 	} while (addr += PAGE_SIZE, addr != end);
1279 
1280 	if (!page_cache_add_speculative(head, refs)) {
1281 		*nr -= refs;
1282 		return 0;
1283 	}
1284 
1285 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1286 		*nr -= refs;
1287 		while (refs--)
1288 			put_page(head);
1289 		return 0;
1290 	}
1291 
1292 	return 1;
1293 }
1294 
1295 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1296 		int write, struct page **pages, int *nr)
1297 {
1298 	unsigned long next;
1299 	pmd_t *pmdp;
1300 
1301 	pmdp = pmd_offset(&pud, addr);
1302 	do {
1303 		pmd_t pmd = READ_ONCE(*pmdp);
1304 
1305 		next = pmd_addr_end(addr, end);
1306 		if (pmd_none(pmd))
1307 			return 0;
1308 
1309 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1310 			/*
1311 			 * NUMA hinting faults need to be handled in the GUP
1312 			 * slowpath for accounting purposes and so that they
1313 			 * can be serialised against THP migration.
1314 			 */
1315 			if (pmd_protnone(pmd))
1316 				return 0;
1317 
1318 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1319 				pages, nr))
1320 				return 0;
1321 
1322 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1323 			/*
1324 			 * architecture have different format for hugetlbfs
1325 			 * pmd format and THP pmd format
1326 			 */
1327 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1328 					 PMD_SHIFT, next, write, pages, nr))
1329 				return 0;
1330 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1331 				return 0;
1332 	} while (pmdp++, addr = next, addr != end);
1333 
1334 	return 1;
1335 }
1336 
1337 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1338 			 int write, struct page **pages, int *nr)
1339 {
1340 	unsigned long next;
1341 	pud_t *pudp;
1342 
1343 	pudp = pud_offset(&pgd, addr);
1344 	do {
1345 		pud_t pud = READ_ONCE(*pudp);
1346 
1347 		next = pud_addr_end(addr, end);
1348 		if (pud_none(pud))
1349 			return 0;
1350 		if (unlikely(pud_huge(pud))) {
1351 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1352 					  pages, nr))
1353 				return 0;
1354 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1355 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1356 					 PUD_SHIFT, next, write, pages, nr))
1357 				return 0;
1358 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1359 			return 0;
1360 	} while (pudp++, addr = next, addr != end);
1361 
1362 	return 1;
1363 }
1364 
1365 /*
1366  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1367  * the regular GUP. It will only return non-negative values.
1368  */
1369 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1370 			  struct page **pages)
1371 {
1372 	struct mm_struct *mm = current->mm;
1373 	unsigned long addr, len, end;
1374 	unsigned long next, flags;
1375 	pgd_t *pgdp;
1376 	int nr = 0;
1377 
1378 	start &= PAGE_MASK;
1379 	addr = start;
1380 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1381 	end = start + len;
1382 
1383 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1384 					start, len)))
1385 		return 0;
1386 
1387 	/*
1388 	 * Disable interrupts.  We use the nested form as we can already have
1389 	 * interrupts disabled by get_futex_key.
1390 	 *
1391 	 * With interrupts disabled, we block page table pages from being
1392 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1393 	 * for more details.
1394 	 *
1395 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1396 	 * block IPIs that come from THPs splitting.
1397 	 */
1398 
1399 	local_irq_save(flags);
1400 	pgdp = pgd_offset(mm, addr);
1401 	do {
1402 		pgd_t pgd = READ_ONCE(*pgdp);
1403 
1404 		next = pgd_addr_end(addr, end);
1405 		if (pgd_none(pgd))
1406 			break;
1407 		if (unlikely(pgd_huge(pgd))) {
1408 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1409 					  pages, &nr))
1410 				break;
1411 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1412 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1413 					 PGDIR_SHIFT, next, write, pages, &nr))
1414 				break;
1415 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1416 			break;
1417 	} while (pgdp++, addr = next, addr != end);
1418 	local_irq_restore(flags);
1419 
1420 	return nr;
1421 }
1422 
1423 /**
1424  * get_user_pages_fast() - pin user pages in memory
1425  * @start:	starting user address
1426  * @nr_pages:	number of pages from start to pin
1427  * @write:	whether pages will be written to
1428  * @pages:	array that receives pointers to the pages pinned.
1429  *		Should be at least nr_pages long.
1430  *
1431  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1432  * If not successful, it will fall back to taking the lock and
1433  * calling get_user_pages().
1434  *
1435  * Returns number of pages pinned. This may be fewer than the number
1436  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1437  * were pinned, returns -errno.
1438  */
1439 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1440 			struct page **pages)
1441 {
1442 	struct mm_struct *mm = current->mm;
1443 	int nr, ret;
1444 
1445 	start &= PAGE_MASK;
1446 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1447 	ret = nr;
1448 
1449 	if (nr < nr_pages) {
1450 		/* Try to get the remaining pages with get_user_pages */
1451 		start += nr << PAGE_SHIFT;
1452 		pages += nr;
1453 
1454 		ret = get_user_pages_unlocked(current, mm, start,
1455 					      nr_pages - nr, write, 0, pages);
1456 
1457 		/* Have to be a bit careful with return values */
1458 		if (nr > 0) {
1459 			if (ret < 0)
1460 				ret = nr;
1461 			else
1462 				ret += nr;
1463 		}
1464 	}
1465 
1466 	return ret;
1467 }
1468 
1469 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1470