1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* Equivalent to calling put_page() @refs times. */ 49 static void put_page_refs(struct page *page, int refs) 50 { 51 #ifdef CONFIG_DEBUG_VM 52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) 53 return; 54 #endif 55 56 /* 57 * Calling put_page() for each ref is unnecessarily slow. Only the last 58 * ref needs a put_page(). 59 */ 60 if (refs > 1) 61 page_ref_sub(page, refs - 1); 62 put_page(page); 63 } 64 65 /* 66 * Return the compound head page with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct page *try_get_compound_head(struct page *page, int refs) 70 { 71 struct page *head = compound_head(page); 72 73 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 74 return NULL; 75 if (unlikely(!page_cache_add_speculative(head, refs))) 76 return NULL; 77 78 /* 79 * At this point we have a stable reference to the head page; but it 80 * could be that between the compound_head() lookup and the refcount 81 * increment, the compound page was split, in which case we'd end up 82 * holding a reference on a page that has nothing to do with the page 83 * we were given anymore. 84 * So now that the head page is stable, recheck that the pages still 85 * belong together. 86 */ 87 if (unlikely(compound_head(page) != head)) { 88 put_page_refs(head, refs); 89 return NULL; 90 } 91 92 return head; 93 } 94 95 /** 96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 97 * flags-dependent amount. 98 * 99 * Even though the name includes "compound_head", this function is still 100 * appropriate for callers that have a non-compound @page to get. 101 * 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the page's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: page's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will 116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be 117 * incremented by @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * FOLL_PIN on normal pages, or compound pages that are two pages long: 120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS. 121 * 122 * Return: head page (with refcount appropriately incremented) for success, or 123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 124 * considered failure, and furthermore, a likely bug in the caller, so a warning 125 * is also emitted. 126 */ 127 struct page *try_grab_compound_head(struct page *page, 128 int refs, unsigned int flags) 129 { 130 if (flags & FOLL_GET) 131 return try_get_compound_head(page, refs); 132 else if (flags & FOLL_PIN) { 133 /* 134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 135 * right zone, so fail and let the caller fall back to the slow 136 * path. 137 */ 138 if (unlikely((flags & FOLL_LONGTERM) && 139 !is_pinnable_page(page))) 140 return NULL; 141 142 /* 143 * CAUTION: Don't use compound_head() on the page before this 144 * point, the result won't be stable. 145 */ 146 page = try_get_compound_head(page, refs); 147 if (!page) 148 return NULL; 149 150 /* 151 * When pinning a compound page of order > 1 (which is what 152 * hpage_pincount_available() checks for), use an exact count to 153 * track it, via hpage_pincount_add/_sub(). 154 * 155 * However, be sure to *also* increment the normal page refcount 156 * field at least once, so that the page really is pinned. 157 * That's why the refcount from the earlier 158 * try_get_compound_head() is left intact. 159 */ 160 if (hpage_pincount_available(page)) 161 hpage_pincount_add(page, refs); 162 else 163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 166 refs); 167 168 return page; 169 } 170 171 WARN_ON_ONCE(1); 172 return NULL; 173 } 174 175 static void put_compound_head(struct page *page, int refs, unsigned int flags) 176 { 177 if (flags & FOLL_PIN) { 178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 179 refs); 180 181 if (hpage_pincount_available(page)) 182 hpage_pincount_sub(page, refs); 183 else 184 refs *= GUP_PIN_COUNTING_BIAS; 185 } 186 187 put_page_refs(page, refs); 188 } 189 190 /** 191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 192 * 193 * This might not do anything at all, depending on the flags argument. 194 * 195 * "grab" names in this file mean, "look at flags to decide whether to use 196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 197 * 198 * @page: pointer to page to be grabbed 199 * @flags: gup flags: these are the FOLL_* flag values. 200 * 201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 202 * time. Cases: please see the try_grab_compound_head() documentation, with 203 * "refs=1". 204 * 205 * Return: true for success, or if no action was required (if neither FOLL_PIN 206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 207 * FOLL_PIN was set, but the page could not be grabbed. 208 */ 209 bool __must_check try_grab_page(struct page *page, unsigned int flags) 210 { 211 if (!(flags & (FOLL_GET | FOLL_PIN))) 212 return true; 213 214 return try_grab_compound_head(page, 1, flags); 215 } 216 217 /** 218 * unpin_user_page() - release a dma-pinned page 219 * @page: pointer to page to be released 220 * 221 * Pages that were pinned via pin_user_pages*() must be released via either 222 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 223 * that such pages can be separately tracked and uniquely handled. In 224 * particular, interactions with RDMA and filesystems need special handling. 225 */ 226 void unpin_user_page(struct page *page) 227 { 228 put_compound_head(compound_head(page), 1, FOLL_PIN); 229 } 230 EXPORT_SYMBOL(unpin_user_page); 231 232 static inline void compound_range_next(unsigned long i, unsigned long npages, 233 struct page **list, struct page **head, 234 unsigned int *ntails) 235 { 236 struct page *next, *page; 237 unsigned int nr = 1; 238 239 if (i >= npages) 240 return; 241 242 next = *list + i; 243 page = compound_head(next); 244 if (PageCompound(page) && compound_order(page) >= 1) 245 nr = min_t(unsigned int, 246 page + compound_nr(page) - next, npages - i); 247 248 *head = page; 249 *ntails = nr; 250 } 251 252 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 253 for (__i = 0, \ 254 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 255 __i < __npages; __i += __ntails, \ 256 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 257 258 static inline void compound_next(unsigned long i, unsigned long npages, 259 struct page **list, struct page **head, 260 unsigned int *ntails) 261 { 262 struct page *page; 263 unsigned int nr; 264 265 if (i >= npages) 266 return; 267 268 page = compound_head(list[i]); 269 for (nr = i + 1; nr < npages; nr++) { 270 if (compound_head(list[nr]) != page) 271 break; 272 } 273 274 *head = page; 275 *ntails = nr - i; 276 } 277 278 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 279 for (__i = 0, \ 280 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 281 __i < __npages; __i += __ntails, \ 282 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 283 284 /** 285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 286 * @pages: array of pages to be maybe marked dirty, and definitely released. 287 * @npages: number of pages in the @pages array. 288 * @make_dirty: whether to mark the pages dirty 289 * 290 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 291 * variants called on that page. 292 * 293 * For each page in the @pages array, make that page (or its head page, if a 294 * compound page) dirty, if @make_dirty is true, and if the page was previously 295 * listed as clean. In any case, releases all pages using unpin_user_page(), 296 * possibly via unpin_user_pages(), for the non-dirty case. 297 * 298 * Please see the unpin_user_page() documentation for details. 299 * 300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 301 * required, then the caller should a) verify that this is really correct, 302 * because _lock() is usually required, and b) hand code it: 303 * set_page_dirty_lock(), unpin_user_page(). 304 * 305 */ 306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 307 bool make_dirty) 308 { 309 unsigned long index; 310 struct page *head; 311 unsigned int ntails; 312 313 if (!make_dirty) { 314 unpin_user_pages(pages, npages); 315 return; 316 } 317 318 for_each_compound_head(index, pages, npages, head, ntails) { 319 /* 320 * Checking PageDirty at this point may race with 321 * clear_page_dirty_for_io(), but that's OK. Two key 322 * cases: 323 * 324 * 1) This code sees the page as already dirty, so it 325 * skips the call to set_page_dirty(). That could happen 326 * because clear_page_dirty_for_io() called 327 * page_mkclean(), followed by set_page_dirty(). 328 * However, now the page is going to get written back, 329 * which meets the original intention of setting it 330 * dirty, so all is well: clear_page_dirty_for_io() goes 331 * on to call TestClearPageDirty(), and write the page 332 * back. 333 * 334 * 2) This code sees the page as clean, so it calls 335 * set_page_dirty(). The page stays dirty, despite being 336 * written back, so it gets written back again in the 337 * next writeback cycle. This is harmless. 338 */ 339 if (!PageDirty(head)) 340 set_page_dirty_lock(head); 341 put_compound_head(head, ntails, FOLL_PIN); 342 } 343 } 344 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 345 346 /** 347 * unpin_user_page_range_dirty_lock() - release and optionally dirty 348 * gup-pinned page range 349 * 350 * @page: the starting page of a range maybe marked dirty, and definitely released. 351 * @npages: number of consecutive pages to release. 352 * @make_dirty: whether to mark the pages dirty 353 * 354 * "gup-pinned page range" refers to a range of pages that has had one of the 355 * pin_user_pages() variants called on that page. 356 * 357 * For the page ranges defined by [page .. page+npages], make that range (or 358 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 359 * page range was previously listed as clean. 360 * 361 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 362 * required, then the caller should a) verify that this is really correct, 363 * because _lock() is usually required, and b) hand code it: 364 * set_page_dirty_lock(), unpin_user_page(). 365 * 366 */ 367 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 368 bool make_dirty) 369 { 370 unsigned long index; 371 struct page *head; 372 unsigned int ntails; 373 374 for_each_compound_range(index, &page, npages, head, ntails) { 375 if (make_dirty && !PageDirty(head)) 376 set_page_dirty_lock(head); 377 put_compound_head(head, ntails, FOLL_PIN); 378 } 379 } 380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 381 382 /** 383 * unpin_user_pages() - release an array of gup-pinned pages. 384 * @pages: array of pages to be marked dirty and released. 385 * @npages: number of pages in the @pages array. 386 * 387 * For each page in the @pages array, release the page using unpin_user_page(). 388 * 389 * Please see the unpin_user_page() documentation for details. 390 */ 391 void unpin_user_pages(struct page **pages, unsigned long npages) 392 { 393 unsigned long index; 394 struct page *head; 395 unsigned int ntails; 396 397 /* 398 * If this WARN_ON() fires, then the system *might* be leaking pages (by 399 * leaving them pinned), but probably not. More likely, gup/pup returned 400 * a hard -ERRNO error to the caller, who erroneously passed it here. 401 */ 402 if (WARN_ON(IS_ERR_VALUE(npages))) 403 return; 404 405 for_each_compound_head(index, pages, npages, head, ntails) 406 put_compound_head(head, ntails, FOLL_PIN); 407 } 408 EXPORT_SYMBOL(unpin_user_pages); 409 410 /* 411 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 412 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 413 * cache bouncing on large SMP machines for concurrent pinned gups. 414 */ 415 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 416 { 417 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 418 set_bit(MMF_HAS_PINNED, mm_flags); 419 } 420 421 #ifdef CONFIG_MMU 422 static struct page *no_page_table(struct vm_area_struct *vma, 423 unsigned int flags) 424 { 425 /* 426 * When core dumping an enormous anonymous area that nobody 427 * has touched so far, we don't want to allocate unnecessary pages or 428 * page tables. Return error instead of NULL to skip handle_mm_fault, 429 * then get_dump_page() will return NULL to leave a hole in the dump. 430 * But we can only make this optimization where a hole would surely 431 * be zero-filled if handle_mm_fault() actually did handle it. 432 */ 433 if ((flags & FOLL_DUMP) && 434 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 435 return ERR_PTR(-EFAULT); 436 return NULL; 437 } 438 439 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 440 pte_t *pte, unsigned int flags) 441 { 442 /* No page to get reference */ 443 if (flags & FOLL_GET) 444 return -EFAULT; 445 446 if (flags & FOLL_TOUCH) { 447 pte_t entry = *pte; 448 449 if (flags & FOLL_WRITE) 450 entry = pte_mkdirty(entry); 451 entry = pte_mkyoung(entry); 452 453 if (!pte_same(*pte, entry)) { 454 set_pte_at(vma->vm_mm, address, pte, entry); 455 update_mmu_cache(vma, address, pte); 456 } 457 } 458 459 /* Proper page table entry exists, but no corresponding struct page */ 460 return -EEXIST; 461 } 462 463 /* 464 * FOLL_FORCE can write to even unwritable pte's, but only 465 * after we've gone through a COW cycle and they are dirty. 466 */ 467 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 468 { 469 return pte_write(pte) || 470 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 471 } 472 473 static struct page *follow_page_pte(struct vm_area_struct *vma, 474 unsigned long address, pmd_t *pmd, unsigned int flags, 475 struct dev_pagemap **pgmap) 476 { 477 struct mm_struct *mm = vma->vm_mm; 478 struct page *page; 479 spinlock_t *ptl; 480 pte_t *ptep, pte; 481 int ret; 482 483 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 484 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 485 (FOLL_PIN | FOLL_GET))) 486 return ERR_PTR(-EINVAL); 487 retry: 488 if (unlikely(pmd_bad(*pmd))) 489 return no_page_table(vma, flags); 490 491 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 492 pte = *ptep; 493 if (!pte_present(pte)) { 494 swp_entry_t entry; 495 /* 496 * KSM's break_ksm() relies upon recognizing a ksm page 497 * even while it is being migrated, so for that case we 498 * need migration_entry_wait(). 499 */ 500 if (likely(!(flags & FOLL_MIGRATION))) 501 goto no_page; 502 if (pte_none(pte)) 503 goto no_page; 504 entry = pte_to_swp_entry(pte); 505 if (!is_migration_entry(entry)) 506 goto no_page; 507 pte_unmap_unlock(ptep, ptl); 508 migration_entry_wait(mm, pmd, address); 509 goto retry; 510 } 511 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 512 goto no_page; 513 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 514 pte_unmap_unlock(ptep, ptl); 515 return NULL; 516 } 517 518 page = vm_normal_page(vma, address, pte); 519 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 520 /* 521 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 522 * case since they are only valid while holding the pgmap 523 * reference. 524 */ 525 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 526 if (*pgmap) 527 page = pte_page(pte); 528 else 529 goto no_page; 530 } else if (unlikely(!page)) { 531 if (flags & FOLL_DUMP) { 532 /* Avoid special (like zero) pages in core dumps */ 533 page = ERR_PTR(-EFAULT); 534 goto out; 535 } 536 537 if (is_zero_pfn(pte_pfn(pte))) { 538 page = pte_page(pte); 539 } else { 540 ret = follow_pfn_pte(vma, address, ptep, flags); 541 page = ERR_PTR(ret); 542 goto out; 543 } 544 } 545 546 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 547 if (unlikely(!try_grab_page(page, flags))) { 548 page = ERR_PTR(-ENOMEM); 549 goto out; 550 } 551 /* 552 * We need to make the page accessible if and only if we are going 553 * to access its content (the FOLL_PIN case). Please see 554 * Documentation/core-api/pin_user_pages.rst for details. 555 */ 556 if (flags & FOLL_PIN) { 557 ret = arch_make_page_accessible(page); 558 if (ret) { 559 unpin_user_page(page); 560 page = ERR_PTR(ret); 561 goto out; 562 } 563 } 564 if (flags & FOLL_TOUCH) { 565 if ((flags & FOLL_WRITE) && 566 !pte_dirty(pte) && !PageDirty(page)) 567 set_page_dirty(page); 568 /* 569 * pte_mkyoung() would be more correct here, but atomic care 570 * is needed to avoid losing the dirty bit: it is easier to use 571 * mark_page_accessed(). 572 */ 573 mark_page_accessed(page); 574 } 575 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 576 /* Do not mlock pte-mapped THP */ 577 if (PageTransCompound(page)) 578 goto out; 579 580 /* 581 * The preliminary mapping check is mainly to avoid the 582 * pointless overhead of lock_page on the ZERO_PAGE 583 * which might bounce very badly if there is contention. 584 * 585 * If the page is already locked, we don't need to 586 * handle it now - vmscan will handle it later if and 587 * when it attempts to reclaim the page. 588 */ 589 if (page->mapping && trylock_page(page)) { 590 lru_add_drain(); /* push cached pages to LRU */ 591 /* 592 * Because we lock page here, and migration is 593 * blocked by the pte's page reference, and we 594 * know the page is still mapped, we don't even 595 * need to check for file-cache page truncation. 596 */ 597 mlock_vma_page(page); 598 unlock_page(page); 599 } 600 } 601 out: 602 pte_unmap_unlock(ptep, ptl); 603 return page; 604 no_page: 605 pte_unmap_unlock(ptep, ptl); 606 if (!pte_none(pte)) 607 return NULL; 608 return no_page_table(vma, flags); 609 } 610 611 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 612 unsigned long address, pud_t *pudp, 613 unsigned int flags, 614 struct follow_page_context *ctx) 615 { 616 pmd_t *pmd, pmdval; 617 spinlock_t *ptl; 618 struct page *page; 619 struct mm_struct *mm = vma->vm_mm; 620 621 pmd = pmd_offset(pudp, address); 622 /* 623 * The READ_ONCE() will stabilize the pmdval in a register or 624 * on the stack so that it will stop changing under the code. 625 */ 626 pmdval = READ_ONCE(*pmd); 627 if (pmd_none(pmdval)) 628 return no_page_table(vma, flags); 629 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 630 page = follow_huge_pmd(mm, address, pmd, flags); 631 if (page) 632 return page; 633 return no_page_table(vma, flags); 634 } 635 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 636 page = follow_huge_pd(vma, address, 637 __hugepd(pmd_val(pmdval)), flags, 638 PMD_SHIFT); 639 if (page) 640 return page; 641 return no_page_table(vma, flags); 642 } 643 retry: 644 if (!pmd_present(pmdval)) { 645 if (likely(!(flags & FOLL_MIGRATION))) 646 return no_page_table(vma, flags); 647 VM_BUG_ON(thp_migration_supported() && 648 !is_pmd_migration_entry(pmdval)); 649 if (is_pmd_migration_entry(pmdval)) 650 pmd_migration_entry_wait(mm, pmd); 651 pmdval = READ_ONCE(*pmd); 652 /* 653 * MADV_DONTNEED may convert the pmd to null because 654 * mmap_lock is held in read mode 655 */ 656 if (pmd_none(pmdval)) 657 return no_page_table(vma, flags); 658 goto retry; 659 } 660 if (pmd_devmap(pmdval)) { 661 ptl = pmd_lock(mm, pmd); 662 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 663 spin_unlock(ptl); 664 if (page) 665 return page; 666 } 667 if (likely(!pmd_trans_huge(pmdval))) 668 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 669 670 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 671 return no_page_table(vma, flags); 672 673 retry_locked: 674 ptl = pmd_lock(mm, pmd); 675 if (unlikely(pmd_none(*pmd))) { 676 spin_unlock(ptl); 677 return no_page_table(vma, flags); 678 } 679 if (unlikely(!pmd_present(*pmd))) { 680 spin_unlock(ptl); 681 if (likely(!(flags & FOLL_MIGRATION))) 682 return no_page_table(vma, flags); 683 pmd_migration_entry_wait(mm, pmd); 684 goto retry_locked; 685 } 686 if (unlikely(!pmd_trans_huge(*pmd))) { 687 spin_unlock(ptl); 688 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 689 } 690 if (flags & FOLL_SPLIT_PMD) { 691 int ret; 692 page = pmd_page(*pmd); 693 if (is_huge_zero_page(page)) { 694 spin_unlock(ptl); 695 ret = 0; 696 split_huge_pmd(vma, pmd, address); 697 if (pmd_trans_unstable(pmd)) 698 ret = -EBUSY; 699 } else { 700 spin_unlock(ptl); 701 split_huge_pmd(vma, pmd, address); 702 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 703 } 704 705 return ret ? ERR_PTR(ret) : 706 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 707 } 708 page = follow_trans_huge_pmd(vma, address, pmd, flags); 709 spin_unlock(ptl); 710 ctx->page_mask = HPAGE_PMD_NR - 1; 711 return page; 712 } 713 714 static struct page *follow_pud_mask(struct vm_area_struct *vma, 715 unsigned long address, p4d_t *p4dp, 716 unsigned int flags, 717 struct follow_page_context *ctx) 718 { 719 pud_t *pud; 720 spinlock_t *ptl; 721 struct page *page; 722 struct mm_struct *mm = vma->vm_mm; 723 724 pud = pud_offset(p4dp, address); 725 if (pud_none(*pud)) 726 return no_page_table(vma, flags); 727 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 728 page = follow_huge_pud(mm, address, pud, flags); 729 if (page) 730 return page; 731 return no_page_table(vma, flags); 732 } 733 if (is_hugepd(__hugepd(pud_val(*pud)))) { 734 page = follow_huge_pd(vma, address, 735 __hugepd(pud_val(*pud)), flags, 736 PUD_SHIFT); 737 if (page) 738 return page; 739 return no_page_table(vma, flags); 740 } 741 if (pud_devmap(*pud)) { 742 ptl = pud_lock(mm, pud); 743 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 744 spin_unlock(ptl); 745 if (page) 746 return page; 747 } 748 if (unlikely(pud_bad(*pud))) 749 return no_page_table(vma, flags); 750 751 return follow_pmd_mask(vma, address, pud, flags, ctx); 752 } 753 754 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 755 unsigned long address, pgd_t *pgdp, 756 unsigned int flags, 757 struct follow_page_context *ctx) 758 { 759 p4d_t *p4d; 760 struct page *page; 761 762 p4d = p4d_offset(pgdp, address); 763 if (p4d_none(*p4d)) 764 return no_page_table(vma, flags); 765 BUILD_BUG_ON(p4d_huge(*p4d)); 766 if (unlikely(p4d_bad(*p4d))) 767 return no_page_table(vma, flags); 768 769 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 770 page = follow_huge_pd(vma, address, 771 __hugepd(p4d_val(*p4d)), flags, 772 P4D_SHIFT); 773 if (page) 774 return page; 775 return no_page_table(vma, flags); 776 } 777 return follow_pud_mask(vma, address, p4d, flags, ctx); 778 } 779 780 /** 781 * follow_page_mask - look up a page descriptor from a user-virtual address 782 * @vma: vm_area_struct mapping @address 783 * @address: virtual address to look up 784 * @flags: flags modifying lookup behaviour 785 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 786 * pointer to output page_mask 787 * 788 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 789 * 790 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 791 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 792 * 793 * On output, the @ctx->page_mask is set according to the size of the page. 794 * 795 * Return: the mapped (struct page *), %NULL if no mapping exists, or 796 * an error pointer if there is a mapping to something not represented 797 * by a page descriptor (see also vm_normal_page()). 798 */ 799 static struct page *follow_page_mask(struct vm_area_struct *vma, 800 unsigned long address, unsigned int flags, 801 struct follow_page_context *ctx) 802 { 803 pgd_t *pgd; 804 struct page *page; 805 struct mm_struct *mm = vma->vm_mm; 806 807 ctx->page_mask = 0; 808 809 /* make this handle hugepd */ 810 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 811 if (!IS_ERR(page)) { 812 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 813 return page; 814 } 815 816 pgd = pgd_offset(mm, address); 817 818 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 819 return no_page_table(vma, flags); 820 821 if (pgd_huge(*pgd)) { 822 page = follow_huge_pgd(mm, address, pgd, flags); 823 if (page) 824 return page; 825 return no_page_table(vma, flags); 826 } 827 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 828 page = follow_huge_pd(vma, address, 829 __hugepd(pgd_val(*pgd)), flags, 830 PGDIR_SHIFT); 831 if (page) 832 return page; 833 return no_page_table(vma, flags); 834 } 835 836 return follow_p4d_mask(vma, address, pgd, flags, ctx); 837 } 838 839 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 840 unsigned int foll_flags) 841 { 842 struct follow_page_context ctx = { NULL }; 843 struct page *page; 844 845 if (vma_is_secretmem(vma)) 846 return NULL; 847 848 page = follow_page_mask(vma, address, foll_flags, &ctx); 849 if (ctx.pgmap) 850 put_dev_pagemap(ctx.pgmap); 851 return page; 852 } 853 854 static int get_gate_page(struct mm_struct *mm, unsigned long address, 855 unsigned int gup_flags, struct vm_area_struct **vma, 856 struct page **page) 857 { 858 pgd_t *pgd; 859 p4d_t *p4d; 860 pud_t *pud; 861 pmd_t *pmd; 862 pte_t *pte; 863 int ret = -EFAULT; 864 865 /* user gate pages are read-only */ 866 if (gup_flags & FOLL_WRITE) 867 return -EFAULT; 868 if (address > TASK_SIZE) 869 pgd = pgd_offset_k(address); 870 else 871 pgd = pgd_offset_gate(mm, address); 872 if (pgd_none(*pgd)) 873 return -EFAULT; 874 p4d = p4d_offset(pgd, address); 875 if (p4d_none(*p4d)) 876 return -EFAULT; 877 pud = pud_offset(p4d, address); 878 if (pud_none(*pud)) 879 return -EFAULT; 880 pmd = pmd_offset(pud, address); 881 if (!pmd_present(*pmd)) 882 return -EFAULT; 883 VM_BUG_ON(pmd_trans_huge(*pmd)); 884 pte = pte_offset_map(pmd, address); 885 if (pte_none(*pte)) 886 goto unmap; 887 *vma = get_gate_vma(mm); 888 if (!page) 889 goto out; 890 *page = vm_normal_page(*vma, address, *pte); 891 if (!*page) { 892 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 893 goto unmap; 894 *page = pte_page(*pte); 895 } 896 if (unlikely(!try_grab_page(*page, gup_flags))) { 897 ret = -ENOMEM; 898 goto unmap; 899 } 900 out: 901 ret = 0; 902 unmap: 903 pte_unmap(pte); 904 return ret; 905 } 906 907 /* 908 * mmap_lock must be held on entry. If @locked != NULL and *@flags 909 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 910 * is, *@locked will be set to 0 and -EBUSY returned. 911 */ 912 static int faultin_page(struct vm_area_struct *vma, 913 unsigned long address, unsigned int *flags, int *locked) 914 { 915 unsigned int fault_flags = 0; 916 vm_fault_t ret; 917 918 /* mlock all present pages, but do not fault in new pages */ 919 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 920 return -ENOENT; 921 if (*flags & FOLL_NOFAULT) 922 return -EFAULT; 923 if (*flags & FOLL_WRITE) 924 fault_flags |= FAULT_FLAG_WRITE; 925 if (*flags & FOLL_REMOTE) 926 fault_flags |= FAULT_FLAG_REMOTE; 927 if (locked) 928 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 929 if (*flags & FOLL_NOWAIT) 930 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 931 if (*flags & FOLL_TRIED) { 932 /* 933 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 934 * can co-exist 935 */ 936 fault_flags |= FAULT_FLAG_TRIED; 937 } 938 939 ret = handle_mm_fault(vma, address, fault_flags, NULL); 940 if (ret & VM_FAULT_ERROR) { 941 int err = vm_fault_to_errno(ret, *flags); 942 943 if (err) 944 return err; 945 BUG(); 946 } 947 948 if (ret & VM_FAULT_RETRY) { 949 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 950 *locked = 0; 951 return -EBUSY; 952 } 953 954 /* 955 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 956 * necessary, even if maybe_mkwrite decided not to set pte_write. We 957 * can thus safely do subsequent page lookups as if they were reads. 958 * But only do so when looping for pte_write is futile: in some cases 959 * userspace may also be wanting to write to the gotten user page, 960 * which a read fault here might prevent (a readonly page might get 961 * reCOWed by userspace write). 962 */ 963 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 964 *flags |= FOLL_COW; 965 return 0; 966 } 967 968 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 969 { 970 vm_flags_t vm_flags = vma->vm_flags; 971 int write = (gup_flags & FOLL_WRITE); 972 int foreign = (gup_flags & FOLL_REMOTE); 973 974 if (vm_flags & (VM_IO | VM_PFNMAP)) 975 return -EFAULT; 976 977 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 978 return -EFAULT; 979 980 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 981 return -EOPNOTSUPP; 982 983 if (vma_is_secretmem(vma)) 984 return -EFAULT; 985 986 if (write) { 987 if (!(vm_flags & VM_WRITE)) { 988 if (!(gup_flags & FOLL_FORCE)) 989 return -EFAULT; 990 /* 991 * We used to let the write,force case do COW in a 992 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 993 * set a breakpoint in a read-only mapping of an 994 * executable, without corrupting the file (yet only 995 * when that file had been opened for writing!). 996 * Anon pages in shared mappings are surprising: now 997 * just reject it. 998 */ 999 if (!is_cow_mapping(vm_flags)) 1000 return -EFAULT; 1001 } 1002 } else if (!(vm_flags & VM_READ)) { 1003 if (!(gup_flags & FOLL_FORCE)) 1004 return -EFAULT; 1005 /* 1006 * Is there actually any vma we can reach here which does not 1007 * have VM_MAYREAD set? 1008 */ 1009 if (!(vm_flags & VM_MAYREAD)) 1010 return -EFAULT; 1011 } 1012 /* 1013 * gups are always data accesses, not instruction 1014 * fetches, so execute=false here 1015 */ 1016 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1017 return -EFAULT; 1018 return 0; 1019 } 1020 1021 /** 1022 * __get_user_pages() - pin user pages in memory 1023 * @mm: mm_struct of target mm 1024 * @start: starting user address 1025 * @nr_pages: number of pages from start to pin 1026 * @gup_flags: flags modifying pin behaviour 1027 * @pages: array that receives pointers to the pages pinned. 1028 * Should be at least nr_pages long. Or NULL, if caller 1029 * only intends to ensure the pages are faulted in. 1030 * @vmas: array of pointers to vmas corresponding to each page. 1031 * Or NULL if the caller does not require them. 1032 * @locked: whether we're still with the mmap_lock held 1033 * 1034 * Returns either number of pages pinned (which may be less than the 1035 * number requested), or an error. Details about the return value: 1036 * 1037 * -- If nr_pages is 0, returns 0. 1038 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1039 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1040 * pages pinned. Again, this may be less than nr_pages. 1041 * -- 0 return value is possible when the fault would need to be retried. 1042 * 1043 * The caller is responsible for releasing returned @pages, via put_page(). 1044 * 1045 * @vmas are valid only as long as mmap_lock is held. 1046 * 1047 * Must be called with mmap_lock held. It may be released. See below. 1048 * 1049 * __get_user_pages walks a process's page tables and takes a reference to 1050 * each struct page that each user address corresponds to at a given 1051 * instant. That is, it takes the page that would be accessed if a user 1052 * thread accesses the given user virtual address at that instant. 1053 * 1054 * This does not guarantee that the page exists in the user mappings when 1055 * __get_user_pages returns, and there may even be a completely different 1056 * page there in some cases (eg. if mmapped pagecache has been invalidated 1057 * and subsequently re faulted). However it does guarantee that the page 1058 * won't be freed completely. And mostly callers simply care that the page 1059 * contains data that was valid *at some point in time*. Typically, an IO 1060 * or similar operation cannot guarantee anything stronger anyway because 1061 * locks can't be held over the syscall boundary. 1062 * 1063 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1064 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1065 * appropriate) must be called after the page is finished with, and 1066 * before put_page is called. 1067 * 1068 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1069 * released by an up_read(). That can happen if @gup_flags does not 1070 * have FOLL_NOWAIT. 1071 * 1072 * A caller using such a combination of @locked and @gup_flags 1073 * must therefore hold the mmap_lock for reading only, and recognize 1074 * when it's been released. Otherwise, it must be held for either 1075 * reading or writing and will not be released. 1076 * 1077 * In most cases, get_user_pages or get_user_pages_fast should be used 1078 * instead of __get_user_pages. __get_user_pages should be used only if 1079 * you need some special @gup_flags. 1080 */ 1081 static long __get_user_pages(struct mm_struct *mm, 1082 unsigned long start, unsigned long nr_pages, 1083 unsigned int gup_flags, struct page **pages, 1084 struct vm_area_struct **vmas, int *locked) 1085 { 1086 long ret = 0, i = 0; 1087 struct vm_area_struct *vma = NULL; 1088 struct follow_page_context ctx = { NULL }; 1089 1090 if (!nr_pages) 1091 return 0; 1092 1093 start = untagged_addr(start); 1094 1095 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1096 1097 /* 1098 * If FOLL_FORCE is set then do not force a full fault as the hinting 1099 * fault information is unrelated to the reference behaviour of a task 1100 * using the address space 1101 */ 1102 if (!(gup_flags & FOLL_FORCE)) 1103 gup_flags |= FOLL_NUMA; 1104 1105 do { 1106 struct page *page; 1107 unsigned int foll_flags = gup_flags; 1108 unsigned int page_increm; 1109 1110 /* first iteration or cross vma bound */ 1111 if (!vma || start >= vma->vm_end) { 1112 vma = find_extend_vma(mm, start); 1113 if (!vma && in_gate_area(mm, start)) { 1114 ret = get_gate_page(mm, start & PAGE_MASK, 1115 gup_flags, &vma, 1116 pages ? &pages[i] : NULL); 1117 if (ret) 1118 goto out; 1119 ctx.page_mask = 0; 1120 goto next_page; 1121 } 1122 1123 if (!vma) { 1124 ret = -EFAULT; 1125 goto out; 1126 } 1127 ret = check_vma_flags(vma, gup_flags); 1128 if (ret) 1129 goto out; 1130 1131 if (is_vm_hugetlb_page(vma)) { 1132 i = follow_hugetlb_page(mm, vma, pages, vmas, 1133 &start, &nr_pages, i, 1134 gup_flags, locked); 1135 if (locked && *locked == 0) { 1136 /* 1137 * We've got a VM_FAULT_RETRY 1138 * and we've lost mmap_lock. 1139 * We must stop here. 1140 */ 1141 BUG_ON(gup_flags & FOLL_NOWAIT); 1142 goto out; 1143 } 1144 continue; 1145 } 1146 } 1147 retry: 1148 /* 1149 * If we have a pending SIGKILL, don't keep faulting pages and 1150 * potentially allocating memory. 1151 */ 1152 if (fatal_signal_pending(current)) { 1153 ret = -EINTR; 1154 goto out; 1155 } 1156 cond_resched(); 1157 1158 page = follow_page_mask(vma, start, foll_flags, &ctx); 1159 if (!page) { 1160 ret = faultin_page(vma, start, &foll_flags, locked); 1161 switch (ret) { 1162 case 0: 1163 goto retry; 1164 case -EBUSY: 1165 ret = 0; 1166 fallthrough; 1167 case -EFAULT: 1168 case -ENOMEM: 1169 case -EHWPOISON: 1170 goto out; 1171 case -ENOENT: 1172 goto next_page; 1173 } 1174 BUG(); 1175 } else if (PTR_ERR(page) == -EEXIST) { 1176 /* 1177 * Proper page table entry exists, but no corresponding 1178 * struct page. 1179 */ 1180 goto next_page; 1181 } else if (IS_ERR(page)) { 1182 ret = PTR_ERR(page); 1183 goto out; 1184 } 1185 if (pages) { 1186 pages[i] = page; 1187 flush_anon_page(vma, page, start); 1188 flush_dcache_page(page); 1189 ctx.page_mask = 0; 1190 } 1191 next_page: 1192 if (vmas) { 1193 vmas[i] = vma; 1194 ctx.page_mask = 0; 1195 } 1196 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1197 if (page_increm > nr_pages) 1198 page_increm = nr_pages; 1199 i += page_increm; 1200 start += page_increm * PAGE_SIZE; 1201 nr_pages -= page_increm; 1202 } while (nr_pages); 1203 out: 1204 if (ctx.pgmap) 1205 put_dev_pagemap(ctx.pgmap); 1206 return i ? i : ret; 1207 } 1208 1209 static bool vma_permits_fault(struct vm_area_struct *vma, 1210 unsigned int fault_flags) 1211 { 1212 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1213 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1214 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1215 1216 if (!(vm_flags & vma->vm_flags)) 1217 return false; 1218 1219 /* 1220 * The architecture might have a hardware protection 1221 * mechanism other than read/write that can deny access. 1222 * 1223 * gup always represents data access, not instruction 1224 * fetches, so execute=false here: 1225 */ 1226 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1227 return false; 1228 1229 return true; 1230 } 1231 1232 /** 1233 * fixup_user_fault() - manually resolve a user page fault 1234 * @mm: mm_struct of target mm 1235 * @address: user address 1236 * @fault_flags:flags to pass down to handle_mm_fault() 1237 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1238 * does not allow retry. If NULL, the caller must guarantee 1239 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1240 * 1241 * This is meant to be called in the specific scenario where for locking reasons 1242 * we try to access user memory in atomic context (within a pagefault_disable() 1243 * section), this returns -EFAULT, and we want to resolve the user fault before 1244 * trying again. 1245 * 1246 * Typically this is meant to be used by the futex code. 1247 * 1248 * The main difference with get_user_pages() is that this function will 1249 * unconditionally call handle_mm_fault() which will in turn perform all the 1250 * necessary SW fixup of the dirty and young bits in the PTE, while 1251 * get_user_pages() only guarantees to update these in the struct page. 1252 * 1253 * This is important for some architectures where those bits also gate the 1254 * access permission to the page because they are maintained in software. On 1255 * such architectures, gup() will not be enough to make a subsequent access 1256 * succeed. 1257 * 1258 * This function will not return with an unlocked mmap_lock. So it has not the 1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1260 */ 1261 int fixup_user_fault(struct mm_struct *mm, 1262 unsigned long address, unsigned int fault_flags, 1263 bool *unlocked) 1264 { 1265 struct vm_area_struct *vma; 1266 vm_fault_t ret; 1267 1268 address = untagged_addr(address); 1269 1270 if (unlocked) 1271 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1272 1273 retry: 1274 vma = find_extend_vma(mm, address); 1275 if (!vma || address < vma->vm_start) 1276 return -EFAULT; 1277 1278 if (!vma_permits_fault(vma, fault_flags)) 1279 return -EFAULT; 1280 1281 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1282 fatal_signal_pending(current)) 1283 return -EINTR; 1284 1285 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1286 if (ret & VM_FAULT_ERROR) { 1287 int err = vm_fault_to_errno(ret, 0); 1288 1289 if (err) 1290 return err; 1291 BUG(); 1292 } 1293 1294 if (ret & VM_FAULT_RETRY) { 1295 mmap_read_lock(mm); 1296 *unlocked = true; 1297 fault_flags |= FAULT_FLAG_TRIED; 1298 goto retry; 1299 } 1300 1301 return 0; 1302 } 1303 EXPORT_SYMBOL_GPL(fixup_user_fault); 1304 1305 /* 1306 * Please note that this function, unlike __get_user_pages will not 1307 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1308 */ 1309 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1310 unsigned long start, 1311 unsigned long nr_pages, 1312 struct page **pages, 1313 struct vm_area_struct **vmas, 1314 int *locked, 1315 unsigned int flags) 1316 { 1317 long ret, pages_done; 1318 bool lock_dropped; 1319 1320 if (locked) { 1321 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1322 BUG_ON(vmas); 1323 /* check caller initialized locked */ 1324 BUG_ON(*locked != 1); 1325 } 1326 1327 if (flags & FOLL_PIN) 1328 mm_set_has_pinned_flag(&mm->flags); 1329 1330 /* 1331 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1332 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1333 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1334 * for FOLL_GET, not for the newer FOLL_PIN. 1335 * 1336 * FOLL_PIN always expects pages to be non-null, but no need to assert 1337 * that here, as any failures will be obvious enough. 1338 */ 1339 if (pages && !(flags & FOLL_PIN)) 1340 flags |= FOLL_GET; 1341 1342 pages_done = 0; 1343 lock_dropped = false; 1344 for (;;) { 1345 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1346 vmas, locked); 1347 if (!locked) 1348 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1349 return ret; 1350 1351 /* VM_FAULT_RETRY cannot return errors */ 1352 if (!*locked) { 1353 BUG_ON(ret < 0); 1354 BUG_ON(ret >= nr_pages); 1355 } 1356 1357 if (ret > 0) { 1358 nr_pages -= ret; 1359 pages_done += ret; 1360 if (!nr_pages) 1361 break; 1362 } 1363 if (*locked) { 1364 /* 1365 * VM_FAULT_RETRY didn't trigger or it was a 1366 * FOLL_NOWAIT. 1367 */ 1368 if (!pages_done) 1369 pages_done = ret; 1370 break; 1371 } 1372 /* 1373 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1374 * For the prefault case (!pages) we only update counts. 1375 */ 1376 if (likely(pages)) 1377 pages += ret; 1378 start += ret << PAGE_SHIFT; 1379 lock_dropped = true; 1380 1381 retry: 1382 /* 1383 * Repeat on the address that fired VM_FAULT_RETRY 1384 * with both FAULT_FLAG_ALLOW_RETRY and 1385 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1386 * by fatal signals, so we need to check it before we 1387 * start trying again otherwise it can loop forever. 1388 */ 1389 1390 if (fatal_signal_pending(current)) { 1391 if (!pages_done) 1392 pages_done = -EINTR; 1393 break; 1394 } 1395 1396 ret = mmap_read_lock_killable(mm); 1397 if (ret) { 1398 BUG_ON(ret > 0); 1399 if (!pages_done) 1400 pages_done = ret; 1401 break; 1402 } 1403 1404 *locked = 1; 1405 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1406 pages, NULL, locked); 1407 if (!*locked) { 1408 /* Continue to retry until we succeeded */ 1409 BUG_ON(ret != 0); 1410 goto retry; 1411 } 1412 if (ret != 1) { 1413 BUG_ON(ret > 1); 1414 if (!pages_done) 1415 pages_done = ret; 1416 break; 1417 } 1418 nr_pages--; 1419 pages_done++; 1420 if (!nr_pages) 1421 break; 1422 if (likely(pages)) 1423 pages++; 1424 start += PAGE_SIZE; 1425 } 1426 if (lock_dropped && *locked) { 1427 /* 1428 * We must let the caller know we temporarily dropped the lock 1429 * and so the critical section protected by it was lost. 1430 */ 1431 mmap_read_unlock(mm); 1432 *locked = 0; 1433 } 1434 return pages_done; 1435 } 1436 1437 /** 1438 * populate_vma_page_range() - populate a range of pages in the vma. 1439 * @vma: target vma 1440 * @start: start address 1441 * @end: end address 1442 * @locked: whether the mmap_lock is still held 1443 * 1444 * This takes care of mlocking the pages too if VM_LOCKED is set. 1445 * 1446 * Return either number of pages pinned in the vma, or a negative error 1447 * code on error. 1448 * 1449 * vma->vm_mm->mmap_lock must be held. 1450 * 1451 * If @locked is NULL, it may be held for read or write and will 1452 * be unperturbed. 1453 * 1454 * If @locked is non-NULL, it must held for read only and may be 1455 * released. If it's released, *@locked will be set to 0. 1456 */ 1457 long populate_vma_page_range(struct vm_area_struct *vma, 1458 unsigned long start, unsigned long end, int *locked) 1459 { 1460 struct mm_struct *mm = vma->vm_mm; 1461 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1462 int gup_flags; 1463 1464 VM_BUG_ON(!PAGE_ALIGNED(start)); 1465 VM_BUG_ON(!PAGE_ALIGNED(end)); 1466 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1467 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1468 mmap_assert_locked(mm); 1469 1470 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1471 if (vma->vm_flags & VM_LOCKONFAULT) 1472 gup_flags &= ~FOLL_POPULATE; 1473 /* 1474 * We want to touch writable mappings with a write fault in order 1475 * to break COW, except for shared mappings because these don't COW 1476 * and we would not want to dirty them for nothing. 1477 */ 1478 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1479 gup_flags |= FOLL_WRITE; 1480 1481 /* 1482 * We want mlock to succeed for regions that have any permissions 1483 * other than PROT_NONE. 1484 */ 1485 if (vma_is_accessible(vma)) 1486 gup_flags |= FOLL_FORCE; 1487 1488 /* 1489 * We made sure addr is within a VMA, so the following will 1490 * not result in a stack expansion that recurses back here. 1491 */ 1492 return __get_user_pages(mm, start, nr_pages, gup_flags, 1493 NULL, NULL, locked); 1494 } 1495 1496 /* 1497 * faultin_vma_page_range() - populate (prefault) page tables inside the 1498 * given VMA range readable/writable 1499 * 1500 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1501 * 1502 * @vma: target vma 1503 * @start: start address 1504 * @end: end address 1505 * @write: whether to prefault readable or writable 1506 * @locked: whether the mmap_lock is still held 1507 * 1508 * Returns either number of processed pages in the vma, or a negative error 1509 * code on error (see __get_user_pages()). 1510 * 1511 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1512 * covered by the VMA. 1513 * 1514 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1515 * 1516 * If @locked is non-NULL, it must held for read only and may be released. If 1517 * it's released, *@locked will be set to 0. 1518 */ 1519 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1520 unsigned long end, bool write, int *locked) 1521 { 1522 struct mm_struct *mm = vma->vm_mm; 1523 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1524 int gup_flags; 1525 1526 VM_BUG_ON(!PAGE_ALIGNED(start)); 1527 VM_BUG_ON(!PAGE_ALIGNED(end)); 1528 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1529 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1530 mmap_assert_locked(mm); 1531 1532 /* 1533 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1534 * the page dirty with FOLL_WRITE -- which doesn't make a 1535 * difference with !FOLL_FORCE, because the page is writable 1536 * in the page table. 1537 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1538 * a poisoned page. 1539 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. 1540 * !FOLL_FORCE: Require proper access permissions. 1541 */ 1542 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; 1543 if (write) 1544 gup_flags |= FOLL_WRITE; 1545 1546 /* 1547 * We want to report -EINVAL instead of -EFAULT for any permission 1548 * problems or incompatible mappings. 1549 */ 1550 if (check_vma_flags(vma, gup_flags)) 1551 return -EINVAL; 1552 1553 return __get_user_pages(mm, start, nr_pages, gup_flags, 1554 NULL, NULL, locked); 1555 } 1556 1557 /* 1558 * __mm_populate - populate and/or mlock pages within a range of address space. 1559 * 1560 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1561 * flags. VMAs must be already marked with the desired vm_flags, and 1562 * mmap_lock must not be held. 1563 */ 1564 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1565 { 1566 struct mm_struct *mm = current->mm; 1567 unsigned long end, nstart, nend; 1568 struct vm_area_struct *vma = NULL; 1569 int locked = 0; 1570 long ret = 0; 1571 1572 end = start + len; 1573 1574 for (nstart = start; nstart < end; nstart = nend) { 1575 /* 1576 * We want to fault in pages for [nstart; end) address range. 1577 * Find first corresponding VMA. 1578 */ 1579 if (!locked) { 1580 locked = 1; 1581 mmap_read_lock(mm); 1582 vma = find_vma(mm, nstart); 1583 } else if (nstart >= vma->vm_end) 1584 vma = vma->vm_next; 1585 if (!vma || vma->vm_start >= end) 1586 break; 1587 /* 1588 * Set [nstart; nend) to intersection of desired address 1589 * range with the first VMA. Also, skip undesirable VMA types. 1590 */ 1591 nend = min(end, vma->vm_end); 1592 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1593 continue; 1594 if (nstart < vma->vm_start) 1595 nstart = vma->vm_start; 1596 /* 1597 * Now fault in a range of pages. populate_vma_page_range() 1598 * double checks the vma flags, so that it won't mlock pages 1599 * if the vma was already munlocked. 1600 */ 1601 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1602 if (ret < 0) { 1603 if (ignore_errors) { 1604 ret = 0; 1605 continue; /* continue at next VMA */ 1606 } 1607 break; 1608 } 1609 nend = nstart + ret * PAGE_SIZE; 1610 ret = 0; 1611 } 1612 if (locked) 1613 mmap_read_unlock(mm); 1614 return ret; /* 0 or negative error code */ 1615 } 1616 #else /* CONFIG_MMU */ 1617 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1618 unsigned long nr_pages, struct page **pages, 1619 struct vm_area_struct **vmas, int *locked, 1620 unsigned int foll_flags) 1621 { 1622 struct vm_area_struct *vma; 1623 unsigned long vm_flags; 1624 long i; 1625 1626 /* calculate required read or write permissions. 1627 * If FOLL_FORCE is set, we only require the "MAY" flags. 1628 */ 1629 vm_flags = (foll_flags & FOLL_WRITE) ? 1630 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1631 vm_flags &= (foll_flags & FOLL_FORCE) ? 1632 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1633 1634 for (i = 0; i < nr_pages; i++) { 1635 vma = find_vma(mm, start); 1636 if (!vma) 1637 goto finish_or_fault; 1638 1639 /* protect what we can, including chardevs */ 1640 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1641 !(vm_flags & vma->vm_flags)) 1642 goto finish_or_fault; 1643 1644 if (pages) { 1645 pages[i] = virt_to_page(start); 1646 if (pages[i]) 1647 get_page(pages[i]); 1648 } 1649 if (vmas) 1650 vmas[i] = vma; 1651 start = (start + PAGE_SIZE) & PAGE_MASK; 1652 } 1653 1654 return i; 1655 1656 finish_or_fault: 1657 return i ? : -EFAULT; 1658 } 1659 #endif /* !CONFIG_MMU */ 1660 1661 /** 1662 * fault_in_writeable - fault in userspace address range for writing 1663 * @uaddr: start of address range 1664 * @size: size of address range 1665 * 1666 * Returns the number of bytes not faulted in (like copy_to_user() and 1667 * copy_from_user()). 1668 */ 1669 size_t fault_in_writeable(char __user *uaddr, size_t size) 1670 { 1671 char __user *start = uaddr, *end; 1672 1673 if (unlikely(size == 0)) 1674 return 0; 1675 if (!PAGE_ALIGNED(uaddr)) { 1676 if (unlikely(__put_user(0, uaddr) != 0)) 1677 return size; 1678 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1679 } 1680 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1681 if (unlikely(end < start)) 1682 end = NULL; 1683 while (uaddr != end) { 1684 if (unlikely(__put_user(0, uaddr) != 0)) 1685 goto out; 1686 uaddr += PAGE_SIZE; 1687 } 1688 1689 out: 1690 if (size > uaddr - start) 1691 return size - (uaddr - start); 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(fault_in_writeable); 1695 1696 /* 1697 * fault_in_safe_writeable - fault in an address range for writing 1698 * @uaddr: start of address range 1699 * @size: length of address range 1700 * 1701 * Faults in an address range using get_user_pages, i.e., without triggering 1702 * hardware page faults. This is primarily useful when we already know that 1703 * some or all of the pages in the address range aren't in memory. 1704 * 1705 * Other than fault_in_writeable(), this function is non-destructive. 1706 * 1707 * Note that we don't pin or otherwise hold the pages referenced that we fault 1708 * in. There's no guarantee that they'll stay in memory for any duration of 1709 * time. 1710 * 1711 * Returns the number of bytes not faulted in, like copy_to_user() and 1712 * copy_from_user(). 1713 */ 1714 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1715 { 1716 unsigned long start = (unsigned long)untagged_addr(uaddr); 1717 unsigned long end, nstart, nend; 1718 struct mm_struct *mm = current->mm; 1719 struct vm_area_struct *vma = NULL; 1720 int locked = 0; 1721 1722 nstart = start & PAGE_MASK; 1723 end = PAGE_ALIGN(start + size); 1724 if (end < nstart) 1725 end = 0; 1726 for (; nstart != end; nstart = nend) { 1727 unsigned long nr_pages; 1728 long ret; 1729 1730 if (!locked) { 1731 locked = 1; 1732 mmap_read_lock(mm); 1733 vma = find_vma(mm, nstart); 1734 } else if (nstart >= vma->vm_end) 1735 vma = vma->vm_next; 1736 if (!vma || vma->vm_start >= end) 1737 break; 1738 nend = end ? min(end, vma->vm_end) : vma->vm_end; 1739 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1740 continue; 1741 if (nstart < vma->vm_start) 1742 nstart = vma->vm_start; 1743 nr_pages = (nend - nstart) / PAGE_SIZE; 1744 ret = __get_user_pages_locked(mm, nstart, nr_pages, 1745 NULL, NULL, &locked, 1746 FOLL_TOUCH | FOLL_WRITE); 1747 if (ret <= 0) 1748 break; 1749 nend = nstart + ret * PAGE_SIZE; 1750 } 1751 if (locked) 1752 mmap_read_unlock(mm); 1753 if (nstart == end) 1754 return 0; 1755 return size - min_t(size_t, nstart - start, size); 1756 } 1757 EXPORT_SYMBOL(fault_in_safe_writeable); 1758 1759 /** 1760 * fault_in_readable - fault in userspace address range for reading 1761 * @uaddr: start of user address range 1762 * @size: size of user address range 1763 * 1764 * Returns the number of bytes not faulted in (like copy_to_user() and 1765 * copy_from_user()). 1766 */ 1767 size_t fault_in_readable(const char __user *uaddr, size_t size) 1768 { 1769 const char __user *start = uaddr, *end; 1770 volatile char c; 1771 1772 if (unlikely(size == 0)) 1773 return 0; 1774 if (!PAGE_ALIGNED(uaddr)) { 1775 if (unlikely(__get_user(c, uaddr) != 0)) 1776 return size; 1777 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1778 } 1779 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1780 if (unlikely(end < start)) 1781 end = NULL; 1782 while (uaddr != end) { 1783 if (unlikely(__get_user(c, uaddr) != 0)) 1784 goto out; 1785 uaddr += PAGE_SIZE; 1786 } 1787 1788 out: 1789 (void)c; 1790 if (size > uaddr - start) 1791 return size - (uaddr - start); 1792 return 0; 1793 } 1794 EXPORT_SYMBOL(fault_in_readable); 1795 1796 /** 1797 * get_dump_page() - pin user page in memory while writing it to core dump 1798 * @addr: user address 1799 * 1800 * Returns struct page pointer of user page pinned for dump, 1801 * to be freed afterwards by put_page(). 1802 * 1803 * Returns NULL on any kind of failure - a hole must then be inserted into 1804 * the corefile, to preserve alignment with its headers; and also returns 1805 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1806 * allowing a hole to be left in the corefile to save disk space. 1807 * 1808 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1809 */ 1810 #ifdef CONFIG_ELF_CORE 1811 struct page *get_dump_page(unsigned long addr) 1812 { 1813 struct mm_struct *mm = current->mm; 1814 struct page *page; 1815 int locked = 1; 1816 int ret; 1817 1818 if (mmap_read_lock_killable(mm)) 1819 return NULL; 1820 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1821 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1822 if (locked) 1823 mmap_read_unlock(mm); 1824 return (ret == 1) ? page : NULL; 1825 } 1826 #endif /* CONFIG_ELF_CORE */ 1827 1828 #ifdef CONFIG_MIGRATION 1829 /* 1830 * Check whether all pages are pinnable, if so return number of pages. If some 1831 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1832 * pages were migrated, or if some pages were not successfully isolated. 1833 * Return negative error if migration fails. 1834 */ 1835 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1836 struct page **pages, 1837 unsigned int gup_flags) 1838 { 1839 unsigned long i; 1840 unsigned long isolation_error_count = 0; 1841 bool drain_allow = true; 1842 LIST_HEAD(movable_page_list); 1843 long ret = 0; 1844 struct page *prev_head = NULL; 1845 struct page *head; 1846 struct migration_target_control mtc = { 1847 .nid = NUMA_NO_NODE, 1848 .gfp_mask = GFP_USER | __GFP_NOWARN, 1849 }; 1850 1851 for (i = 0; i < nr_pages; i++) { 1852 head = compound_head(pages[i]); 1853 if (head == prev_head) 1854 continue; 1855 prev_head = head; 1856 /* 1857 * If we get a movable page, since we are going to be pinning 1858 * these entries, try to move them out if possible. 1859 */ 1860 if (!is_pinnable_page(head)) { 1861 if (PageHuge(head)) { 1862 if (!isolate_huge_page(head, &movable_page_list)) 1863 isolation_error_count++; 1864 } else { 1865 if (!PageLRU(head) && drain_allow) { 1866 lru_add_drain_all(); 1867 drain_allow = false; 1868 } 1869 1870 if (isolate_lru_page(head)) { 1871 isolation_error_count++; 1872 continue; 1873 } 1874 list_add_tail(&head->lru, &movable_page_list); 1875 mod_node_page_state(page_pgdat(head), 1876 NR_ISOLATED_ANON + 1877 page_is_file_lru(head), 1878 thp_nr_pages(head)); 1879 } 1880 } 1881 } 1882 1883 /* 1884 * If list is empty, and no isolation errors, means that all pages are 1885 * in the correct zone. 1886 */ 1887 if (list_empty(&movable_page_list) && !isolation_error_count) 1888 return nr_pages; 1889 1890 if (gup_flags & FOLL_PIN) { 1891 unpin_user_pages(pages, nr_pages); 1892 } else { 1893 for (i = 0; i < nr_pages; i++) 1894 put_page(pages[i]); 1895 } 1896 if (!list_empty(&movable_page_list)) { 1897 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1898 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1899 MR_LONGTERM_PIN, NULL); 1900 if (ret && !list_empty(&movable_page_list)) 1901 putback_movable_pages(&movable_page_list); 1902 } 1903 1904 return ret > 0 ? -ENOMEM : ret; 1905 } 1906 #else 1907 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1908 struct page **pages, 1909 unsigned int gup_flags) 1910 { 1911 return nr_pages; 1912 } 1913 #endif /* CONFIG_MIGRATION */ 1914 1915 /* 1916 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1917 * allows us to process the FOLL_LONGTERM flag. 1918 */ 1919 static long __gup_longterm_locked(struct mm_struct *mm, 1920 unsigned long start, 1921 unsigned long nr_pages, 1922 struct page **pages, 1923 struct vm_area_struct **vmas, 1924 unsigned int gup_flags) 1925 { 1926 unsigned int flags; 1927 long rc; 1928 1929 if (!(gup_flags & FOLL_LONGTERM)) 1930 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1931 NULL, gup_flags); 1932 flags = memalloc_pin_save(); 1933 do { 1934 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1935 NULL, gup_flags); 1936 if (rc <= 0) 1937 break; 1938 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1939 } while (!rc); 1940 memalloc_pin_restore(flags); 1941 1942 return rc; 1943 } 1944 1945 static bool is_valid_gup_flags(unsigned int gup_flags) 1946 { 1947 /* 1948 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1949 * never directly by the caller, so enforce that with an assertion: 1950 */ 1951 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1952 return false; 1953 /* 1954 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1955 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1956 * FOLL_PIN. 1957 */ 1958 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1959 return false; 1960 1961 return true; 1962 } 1963 1964 #ifdef CONFIG_MMU 1965 static long __get_user_pages_remote(struct mm_struct *mm, 1966 unsigned long start, unsigned long nr_pages, 1967 unsigned int gup_flags, struct page **pages, 1968 struct vm_area_struct **vmas, int *locked) 1969 { 1970 /* 1971 * Parts of FOLL_LONGTERM behavior are incompatible with 1972 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1973 * vmas. However, this only comes up if locked is set, and there are 1974 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1975 * allow what we can. 1976 */ 1977 if (gup_flags & FOLL_LONGTERM) { 1978 if (WARN_ON_ONCE(locked)) 1979 return -EINVAL; 1980 /* 1981 * This will check the vmas (even if our vmas arg is NULL) 1982 * and return -ENOTSUPP if DAX isn't allowed in this case: 1983 */ 1984 return __gup_longterm_locked(mm, start, nr_pages, pages, 1985 vmas, gup_flags | FOLL_TOUCH | 1986 FOLL_REMOTE); 1987 } 1988 1989 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1990 locked, 1991 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1992 } 1993 1994 /** 1995 * get_user_pages_remote() - pin user pages in memory 1996 * @mm: mm_struct of target mm 1997 * @start: starting user address 1998 * @nr_pages: number of pages from start to pin 1999 * @gup_flags: flags modifying lookup behaviour 2000 * @pages: array that receives pointers to the pages pinned. 2001 * Should be at least nr_pages long. Or NULL, if caller 2002 * only intends to ensure the pages are faulted in. 2003 * @vmas: array of pointers to vmas corresponding to each page. 2004 * Or NULL if the caller does not require them. 2005 * @locked: pointer to lock flag indicating whether lock is held and 2006 * subsequently whether VM_FAULT_RETRY functionality can be 2007 * utilised. Lock must initially be held. 2008 * 2009 * Returns either number of pages pinned (which may be less than the 2010 * number requested), or an error. Details about the return value: 2011 * 2012 * -- If nr_pages is 0, returns 0. 2013 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2014 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2015 * pages pinned. Again, this may be less than nr_pages. 2016 * 2017 * The caller is responsible for releasing returned @pages, via put_page(). 2018 * 2019 * @vmas are valid only as long as mmap_lock is held. 2020 * 2021 * Must be called with mmap_lock held for read or write. 2022 * 2023 * get_user_pages_remote walks a process's page tables and takes a reference 2024 * to each struct page that each user address corresponds to at a given 2025 * instant. That is, it takes the page that would be accessed if a user 2026 * thread accesses the given user virtual address at that instant. 2027 * 2028 * This does not guarantee that the page exists in the user mappings when 2029 * get_user_pages_remote returns, and there may even be a completely different 2030 * page there in some cases (eg. if mmapped pagecache has been invalidated 2031 * and subsequently re faulted). However it does guarantee that the page 2032 * won't be freed completely. And mostly callers simply care that the page 2033 * contains data that was valid *at some point in time*. Typically, an IO 2034 * or similar operation cannot guarantee anything stronger anyway because 2035 * locks can't be held over the syscall boundary. 2036 * 2037 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2038 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2039 * be called after the page is finished with, and before put_page is called. 2040 * 2041 * get_user_pages_remote is typically used for fewer-copy IO operations, 2042 * to get a handle on the memory by some means other than accesses 2043 * via the user virtual addresses. The pages may be submitted for 2044 * DMA to devices or accessed via their kernel linear mapping (via the 2045 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2046 * 2047 * See also get_user_pages_fast, for performance critical applications. 2048 * 2049 * get_user_pages_remote should be phased out in favor of 2050 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2051 * should use get_user_pages_remote because it cannot pass 2052 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2053 */ 2054 long get_user_pages_remote(struct mm_struct *mm, 2055 unsigned long start, unsigned long nr_pages, 2056 unsigned int gup_flags, struct page **pages, 2057 struct vm_area_struct **vmas, int *locked) 2058 { 2059 if (!is_valid_gup_flags(gup_flags)) 2060 return -EINVAL; 2061 2062 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2063 pages, vmas, locked); 2064 } 2065 EXPORT_SYMBOL(get_user_pages_remote); 2066 2067 #else /* CONFIG_MMU */ 2068 long get_user_pages_remote(struct mm_struct *mm, 2069 unsigned long start, unsigned long nr_pages, 2070 unsigned int gup_flags, struct page **pages, 2071 struct vm_area_struct **vmas, int *locked) 2072 { 2073 return 0; 2074 } 2075 2076 static long __get_user_pages_remote(struct mm_struct *mm, 2077 unsigned long start, unsigned long nr_pages, 2078 unsigned int gup_flags, struct page **pages, 2079 struct vm_area_struct **vmas, int *locked) 2080 { 2081 return 0; 2082 } 2083 #endif /* !CONFIG_MMU */ 2084 2085 /** 2086 * get_user_pages() - pin user pages in memory 2087 * @start: starting user address 2088 * @nr_pages: number of pages from start to pin 2089 * @gup_flags: flags modifying lookup behaviour 2090 * @pages: array that receives pointers to the pages pinned. 2091 * Should be at least nr_pages long. Or NULL, if caller 2092 * only intends to ensure the pages are faulted in. 2093 * @vmas: array of pointers to vmas corresponding to each page. 2094 * Or NULL if the caller does not require them. 2095 * 2096 * This is the same as get_user_pages_remote(), just with a less-flexible 2097 * calling convention where we assume that the mm being operated on belongs to 2098 * the current task, and doesn't allow passing of a locked parameter. We also 2099 * obviously don't pass FOLL_REMOTE in here. 2100 */ 2101 long get_user_pages(unsigned long start, unsigned long nr_pages, 2102 unsigned int gup_flags, struct page **pages, 2103 struct vm_area_struct **vmas) 2104 { 2105 if (!is_valid_gup_flags(gup_flags)) 2106 return -EINVAL; 2107 2108 return __gup_longterm_locked(current->mm, start, nr_pages, 2109 pages, vmas, gup_flags | FOLL_TOUCH); 2110 } 2111 EXPORT_SYMBOL(get_user_pages); 2112 2113 /** 2114 * get_user_pages_locked() - variant of get_user_pages() 2115 * 2116 * @start: starting user address 2117 * @nr_pages: number of pages from start to pin 2118 * @gup_flags: flags modifying lookup behaviour 2119 * @pages: array that receives pointers to the pages pinned. 2120 * Should be at least nr_pages long. Or NULL, if caller 2121 * only intends to ensure the pages are faulted in. 2122 * @locked: pointer to lock flag indicating whether lock is held and 2123 * subsequently whether VM_FAULT_RETRY functionality can be 2124 * utilised. Lock must initially be held. 2125 * 2126 * It is suitable to replace the form: 2127 * 2128 * mmap_read_lock(mm); 2129 * do_something() 2130 * get_user_pages(mm, ..., pages, NULL); 2131 * mmap_read_unlock(mm); 2132 * 2133 * to: 2134 * 2135 * int locked = 1; 2136 * mmap_read_lock(mm); 2137 * do_something() 2138 * get_user_pages_locked(mm, ..., pages, &locked); 2139 * if (locked) 2140 * mmap_read_unlock(mm); 2141 * 2142 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2143 * paths better by using either get_user_pages_locked() or 2144 * get_user_pages_unlocked(). 2145 * 2146 */ 2147 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2148 unsigned int gup_flags, struct page **pages, 2149 int *locked) 2150 { 2151 /* 2152 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2153 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2154 * vmas. As there are no users of this flag in this call we simply 2155 * disallow this option for now. 2156 */ 2157 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2158 return -EINVAL; 2159 /* 2160 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2161 * never directly by the caller, so enforce that: 2162 */ 2163 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2164 return -EINVAL; 2165 2166 return __get_user_pages_locked(current->mm, start, nr_pages, 2167 pages, NULL, locked, 2168 gup_flags | FOLL_TOUCH); 2169 } 2170 EXPORT_SYMBOL(get_user_pages_locked); 2171 2172 /* 2173 * get_user_pages_unlocked() is suitable to replace the form: 2174 * 2175 * mmap_read_lock(mm); 2176 * get_user_pages(mm, ..., pages, NULL); 2177 * mmap_read_unlock(mm); 2178 * 2179 * with: 2180 * 2181 * get_user_pages_unlocked(mm, ..., pages); 2182 * 2183 * It is functionally equivalent to get_user_pages_fast so 2184 * get_user_pages_fast should be used instead if specific gup_flags 2185 * (e.g. FOLL_FORCE) are not required. 2186 */ 2187 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2188 struct page **pages, unsigned int gup_flags) 2189 { 2190 struct mm_struct *mm = current->mm; 2191 int locked = 1; 2192 long ret; 2193 2194 /* 2195 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2196 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2197 * vmas. As there are no users of this flag in this call we simply 2198 * disallow this option for now. 2199 */ 2200 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2201 return -EINVAL; 2202 2203 mmap_read_lock(mm); 2204 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2205 &locked, gup_flags | FOLL_TOUCH); 2206 if (locked) 2207 mmap_read_unlock(mm); 2208 return ret; 2209 } 2210 EXPORT_SYMBOL(get_user_pages_unlocked); 2211 2212 /* 2213 * Fast GUP 2214 * 2215 * get_user_pages_fast attempts to pin user pages by walking the page 2216 * tables directly and avoids taking locks. Thus the walker needs to be 2217 * protected from page table pages being freed from under it, and should 2218 * block any THP splits. 2219 * 2220 * One way to achieve this is to have the walker disable interrupts, and 2221 * rely on IPIs from the TLB flushing code blocking before the page table 2222 * pages are freed. This is unsuitable for architectures that do not need 2223 * to broadcast an IPI when invalidating TLBs. 2224 * 2225 * Another way to achieve this is to batch up page table containing pages 2226 * belonging to more than one mm_user, then rcu_sched a callback to free those 2227 * pages. Disabling interrupts will allow the fast_gup walker to both block 2228 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2229 * (which is a relatively rare event). The code below adopts this strategy. 2230 * 2231 * Before activating this code, please be aware that the following assumptions 2232 * are currently made: 2233 * 2234 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2235 * free pages containing page tables or TLB flushing requires IPI broadcast. 2236 * 2237 * *) ptes can be read atomically by the architecture. 2238 * 2239 * *) access_ok is sufficient to validate userspace address ranges. 2240 * 2241 * The last two assumptions can be relaxed by the addition of helper functions. 2242 * 2243 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2244 */ 2245 #ifdef CONFIG_HAVE_FAST_GUP 2246 2247 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2248 unsigned int flags, 2249 struct page **pages) 2250 { 2251 while ((*nr) - nr_start) { 2252 struct page *page = pages[--(*nr)]; 2253 2254 ClearPageReferenced(page); 2255 if (flags & FOLL_PIN) 2256 unpin_user_page(page); 2257 else 2258 put_page(page); 2259 } 2260 } 2261 2262 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2263 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2264 unsigned int flags, struct page **pages, int *nr) 2265 { 2266 struct dev_pagemap *pgmap = NULL; 2267 int nr_start = *nr, ret = 0; 2268 pte_t *ptep, *ptem; 2269 2270 ptem = ptep = pte_offset_map(&pmd, addr); 2271 do { 2272 pte_t pte = ptep_get_lockless(ptep); 2273 struct page *head, *page; 2274 2275 /* 2276 * Similar to the PMD case below, NUMA hinting must take slow 2277 * path using the pte_protnone check. 2278 */ 2279 if (pte_protnone(pte)) 2280 goto pte_unmap; 2281 2282 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2283 goto pte_unmap; 2284 2285 if (pte_devmap(pte)) { 2286 if (unlikely(flags & FOLL_LONGTERM)) 2287 goto pte_unmap; 2288 2289 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2290 if (unlikely(!pgmap)) { 2291 undo_dev_pagemap(nr, nr_start, flags, pages); 2292 goto pte_unmap; 2293 } 2294 } else if (pte_special(pte)) 2295 goto pte_unmap; 2296 2297 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2298 page = pte_page(pte); 2299 2300 head = try_grab_compound_head(page, 1, flags); 2301 if (!head) 2302 goto pte_unmap; 2303 2304 if (unlikely(page_is_secretmem(page))) { 2305 put_compound_head(head, 1, flags); 2306 goto pte_unmap; 2307 } 2308 2309 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2310 put_compound_head(head, 1, flags); 2311 goto pte_unmap; 2312 } 2313 2314 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2315 2316 /* 2317 * We need to make the page accessible if and only if we are 2318 * going to access its content (the FOLL_PIN case). Please 2319 * see Documentation/core-api/pin_user_pages.rst for 2320 * details. 2321 */ 2322 if (flags & FOLL_PIN) { 2323 ret = arch_make_page_accessible(page); 2324 if (ret) { 2325 unpin_user_page(page); 2326 goto pte_unmap; 2327 } 2328 } 2329 SetPageReferenced(page); 2330 pages[*nr] = page; 2331 (*nr)++; 2332 2333 } while (ptep++, addr += PAGE_SIZE, addr != end); 2334 2335 ret = 1; 2336 2337 pte_unmap: 2338 if (pgmap) 2339 put_dev_pagemap(pgmap); 2340 pte_unmap(ptem); 2341 return ret; 2342 } 2343 #else 2344 2345 /* 2346 * If we can't determine whether or not a pte is special, then fail immediately 2347 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2348 * to be special. 2349 * 2350 * For a futex to be placed on a THP tail page, get_futex_key requires a 2351 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2352 * useful to have gup_huge_pmd even if we can't operate on ptes. 2353 */ 2354 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2355 unsigned int flags, struct page **pages, int *nr) 2356 { 2357 return 0; 2358 } 2359 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2360 2361 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2362 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2363 unsigned long end, unsigned int flags, 2364 struct page **pages, int *nr) 2365 { 2366 int nr_start = *nr; 2367 struct dev_pagemap *pgmap = NULL; 2368 2369 do { 2370 struct page *page = pfn_to_page(pfn); 2371 2372 pgmap = get_dev_pagemap(pfn, pgmap); 2373 if (unlikely(!pgmap)) { 2374 undo_dev_pagemap(nr, nr_start, flags, pages); 2375 break; 2376 } 2377 SetPageReferenced(page); 2378 pages[*nr] = page; 2379 if (unlikely(!try_grab_page(page, flags))) { 2380 undo_dev_pagemap(nr, nr_start, flags, pages); 2381 break; 2382 } 2383 (*nr)++; 2384 pfn++; 2385 } while (addr += PAGE_SIZE, addr != end); 2386 2387 put_dev_pagemap(pgmap); 2388 return addr == end; 2389 } 2390 2391 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2392 unsigned long end, unsigned int flags, 2393 struct page **pages, int *nr) 2394 { 2395 unsigned long fault_pfn; 2396 int nr_start = *nr; 2397 2398 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2399 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2400 return 0; 2401 2402 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2403 undo_dev_pagemap(nr, nr_start, flags, pages); 2404 return 0; 2405 } 2406 return 1; 2407 } 2408 2409 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2410 unsigned long end, unsigned int flags, 2411 struct page **pages, int *nr) 2412 { 2413 unsigned long fault_pfn; 2414 int nr_start = *nr; 2415 2416 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2417 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2418 return 0; 2419 2420 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2421 undo_dev_pagemap(nr, nr_start, flags, pages); 2422 return 0; 2423 } 2424 return 1; 2425 } 2426 #else 2427 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2428 unsigned long end, unsigned int flags, 2429 struct page **pages, int *nr) 2430 { 2431 BUILD_BUG(); 2432 return 0; 2433 } 2434 2435 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2436 unsigned long end, unsigned int flags, 2437 struct page **pages, int *nr) 2438 { 2439 BUILD_BUG(); 2440 return 0; 2441 } 2442 #endif 2443 2444 static int record_subpages(struct page *page, unsigned long addr, 2445 unsigned long end, struct page **pages) 2446 { 2447 int nr; 2448 2449 for (nr = 0; addr != end; addr += PAGE_SIZE) 2450 pages[nr++] = page++; 2451 2452 return nr; 2453 } 2454 2455 #ifdef CONFIG_ARCH_HAS_HUGEPD 2456 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2457 unsigned long sz) 2458 { 2459 unsigned long __boundary = (addr + sz) & ~(sz-1); 2460 return (__boundary - 1 < end - 1) ? __boundary : end; 2461 } 2462 2463 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2464 unsigned long end, unsigned int flags, 2465 struct page **pages, int *nr) 2466 { 2467 unsigned long pte_end; 2468 struct page *head, *page; 2469 pte_t pte; 2470 int refs; 2471 2472 pte_end = (addr + sz) & ~(sz-1); 2473 if (pte_end < end) 2474 end = pte_end; 2475 2476 pte = huge_ptep_get(ptep); 2477 2478 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2479 return 0; 2480 2481 /* hugepages are never "special" */ 2482 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2483 2484 head = pte_page(pte); 2485 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2486 refs = record_subpages(page, addr, end, pages + *nr); 2487 2488 head = try_grab_compound_head(head, refs, flags); 2489 if (!head) 2490 return 0; 2491 2492 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2493 put_compound_head(head, refs, flags); 2494 return 0; 2495 } 2496 2497 *nr += refs; 2498 SetPageReferenced(head); 2499 return 1; 2500 } 2501 2502 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2503 unsigned int pdshift, unsigned long end, unsigned int flags, 2504 struct page **pages, int *nr) 2505 { 2506 pte_t *ptep; 2507 unsigned long sz = 1UL << hugepd_shift(hugepd); 2508 unsigned long next; 2509 2510 ptep = hugepte_offset(hugepd, addr, pdshift); 2511 do { 2512 next = hugepte_addr_end(addr, end, sz); 2513 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2514 return 0; 2515 } while (ptep++, addr = next, addr != end); 2516 2517 return 1; 2518 } 2519 #else 2520 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2521 unsigned int pdshift, unsigned long end, unsigned int flags, 2522 struct page **pages, int *nr) 2523 { 2524 return 0; 2525 } 2526 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2527 2528 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2529 unsigned long end, unsigned int flags, 2530 struct page **pages, int *nr) 2531 { 2532 struct page *head, *page; 2533 int refs; 2534 2535 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2536 return 0; 2537 2538 if (pmd_devmap(orig)) { 2539 if (unlikely(flags & FOLL_LONGTERM)) 2540 return 0; 2541 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2542 pages, nr); 2543 } 2544 2545 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2546 refs = record_subpages(page, addr, end, pages + *nr); 2547 2548 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2549 if (!head) 2550 return 0; 2551 2552 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2553 put_compound_head(head, refs, flags); 2554 return 0; 2555 } 2556 2557 *nr += refs; 2558 SetPageReferenced(head); 2559 return 1; 2560 } 2561 2562 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2563 unsigned long end, unsigned int flags, 2564 struct page **pages, int *nr) 2565 { 2566 struct page *head, *page; 2567 int refs; 2568 2569 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2570 return 0; 2571 2572 if (pud_devmap(orig)) { 2573 if (unlikely(flags & FOLL_LONGTERM)) 2574 return 0; 2575 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2576 pages, nr); 2577 } 2578 2579 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2580 refs = record_subpages(page, addr, end, pages + *nr); 2581 2582 head = try_grab_compound_head(pud_page(orig), refs, flags); 2583 if (!head) 2584 return 0; 2585 2586 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2587 put_compound_head(head, refs, flags); 2588 return 0; 2589 } 2590 2591 *nr += refs; 2592 SetPageReferenced(head); 2593 return 1; 2594 } 2595 2596 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2597 unsigned long end, unsigned int flags, 2598 struct page **pages, int *nr) 2599 { 2600 int refs; 2601 struct page *head, *page; 2602 2603 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2604 return 0; 2605 2606 BUILD_BUG_ON(pgd_devmap(orig)); 2607 2608 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2609 refs = record_subpages(page, addr, end, pages + *nr); 2610 2611 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2612 if (!head) 2613 return 0; 2614 2615 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2616 put_compound_head(head, refs, flags); 2617 return 0; 2618 } 2619 2620 *nr += refs; 2621 SetPageReferenced(head); 2622 return 1; 2623 } 2624 2625 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2626 unsigned int flags, struct page **pages, int *nr) 2627 { 2628 unsigned long next; 2629 pmd_t *pmdp; 2630 2631 pmdp = pmd_offset_lockless(pudp, pud, addr); 2632 do { 2633 pmd_t pmd = READ_ONCE(*pmdp); 2634 2635 next = pmd_addr_end(addr, end); 2636 if (!pmd_present(pmd)) 2637 return 0; 2638 2639 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2640 pmd_devmap(pmd))) { 2641 /* 2642 * NUMA hinting faults need to be handled in the GUP 2643 * slowpath for accounting purposes and so that they 2644 * can be serialised against THP migration. 2645 */ 2646 if (pmd_protnone(pmd)) 2647 return 0; 2648 2649 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2650 pages, nr)) 2651 return 0; 2652 2653 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2654 /* 2655 * architecture have different format for hugetlbfs 2656 * pmd format and THP pmd format 2657 */ 2658 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2659 PMD_SHIFT, next, flags, pages, nr)) 2660 return 0; 2661 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2662 return 0; 2663 } while (pmdp++, addr = next, addr != end); 2664 2665 return 1; 2666 } 2667 2668 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2669 unsigned int flags, struct page **pages, int *nr) 2670 { 2671 unsigned long next; 2672 pud_t *pudp; 2673 2674 pudp = pud_offset_lockless(p4dp, p4d, addr); 2675 do { 2676 pud_t pud = READ_ONCE(*pudp); 2677 2678 next = pud_addr_end(addr, end); 2679 if (unlikely(!pud_present(pud))) 2680 return 0; 2681 if (unlikely(pud_huge(pud))) { 2682 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2683 pages, nr)) 2684 return 0; 2685 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2686 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2687 PUD_SHIFT, next, flags, pages, nr)) 2688 return 0; 2689 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2690 return 0; 2691 } while (pudp++, addr = next, addr != end); 2692 2693 return 1; 2694 } 2695 2696 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2697 unsigned int flags, struct page **pages, int *nr) 2698 { 2699 unsigned long next; 2700 p4d_t *p4dp; 2701 2702 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2703 do { 2704 p4d_t p4d = READ_ONCE(*p4dp); 2705 2706 next = p4d_addr_end(addr, end); 2707 if (p4d_none(p4d)) 2708 return 0; 2709 BUILD_BUG_ON(p4d_huge(p4d)); 2710 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2711 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2712 P4D_SHIFT, next, flags, pages, nr)) 2713 return 0; 2714 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2715 return 0; 2716 } while (p4dp++, addr = next, addr != end); 2717 2718 return 1; 2719 } 2720 2721 static void gup_pgd_range(unsigned long addr, unsigned long end, 2722 unsigned int flags, struct page **pages, int *nr) 2723 { 2724 unsigned long next; 2725 pgd_t *pgdp; 2726 2727 pgdp = pgd_offset(current->mm, addr); 2728 do { 2729 pgd_t pgd = READ_ONCE(*pgdp); 2730 2731 next = pgd_addr_end(addr, end); 2732 if (pgd_none(pgd)) 2733 return; 2734 if (unlikely(pgd_huge(pgd))) { 2735 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2736 pages, nr)) 2737 return; 2738 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2739 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2740 PGDIR_SHIFT, next, flags, pages, nr)) 2741 return; 2742 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2743 return; 2744 } while (pgdp++, addr = next, addr != end); 2745 } 2746 #else 2747 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2748 unsigned int flags, struct page **pages, int *nr) 2749 { 2750 } 2751 #endif /* CONFIG_HAVE_FAST_GUP */ 2752 2753 #ifndef gup_fast_permitted 2754 /* 2755 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2756 * we need to fall back to the slow version: 2757 */ 2758 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2759 { 2760 return true; 2761 } 2762 #endif 2763 2764 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2765 unsigned int gup_flags, struct page **pages) 2766 { 2767 int ret; 2768 2769 /* 2770 * FIXME: FOLL_LONGTERM does not work with 2771 * get_user_pages_unlocked() (see comments in that function) 2772 */ 2773 if (gup_flags & FOLL_LONGTERM) { 2774 mmap_read_lock(current->mm); 2775 ret = __gup_longterm_locked(current->mm, 2776 start, nr_pages, 2777 pages, NULL, gup_flags); 2778 mmap_read_unlock(current->mm); 2779 } else { 2780 ret = get_user_pages_unlocked(start, nr_pages, 2781 pages, gup_flags); 2782 } 2783 2784 return ret; 2785 } 2786 2787 static unsigned long lockless_pages_from_mm(unsigned long start, 2788 unsigned long end, 2789 unsigned int gup_flags, 2790 struct page **pages) 2791 { 2792 unsigned long flags; 2793 int nr_pinned = 0; 2794 unsigned seq; 2795 2796 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2797 !gup_fast_permitted(start, end)) 2798 return 0; 2799 2800 if (gup_flags & FOLL_PIN) { 2801 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2802 if (seq & 1) 2803 return 0; 2804 } 2805 2806 /* 2807 * Disable interrupts. The nested form is used, in order to allow full, 2808 * general purpose use of this routine. 2809 * 2810 * With interrupts disabled, we block page table pages from being freed 2811 * from under us. See struct mmu_table_batch comments in 2812 * include/asm-generic/tlb.h for more details. 2813 * 2814 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2815 * that come from THPs splitting. 2816 */ 2817 local_irq_save(flags); 2818 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2819 local_irq_restore(flags); 2820 2821 /* 2822 * When pinning pages for DMA there could be a concurrent write protect 2823 * from fork() via copy_page_range(), in this case always fail fast GUP. 2824 */ 2825 if (gup_flags & FOLL_PIN) { 2826 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2827 unpin_user_pages(pages, nr_pinned); 2828 return 0; 2829 } 2830 } 2831 return nr_pinned; 2832 } 2833 2834 static int internal_get_user_pages_fast(unsigned long start, 2835 unsigned long nr_pages, 2836 unsigned int gup_flags, 2837 struct page **pages) 2838 { 2839 unsigned long len, end; 2840 unsigned long nr_pinned; 2841 int ret; 2842 2843 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2844 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2845 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2846 return -EINVAL; 2847 2848 if (gup_flags & FOLL_PIN) 2849 mm_set_has_pinned_flag(¤t->mm->flags); 2850 2851 if (!(gup_flags & FOLL_FAST_ONLY)) 2852 might_lock_read(¤t->mm->mmap_lock); 2853 2854 start = untagged_addr(start) & PAGE_MASK; 2855 len = nr_pages << PAGE_SHIFT; 2856 if (check_add_overflow(start, len, &end)) 2857 return 0; 2858 if (unlikely(!access_ok((void __user *)start, len))) 2859 return -EFAULT; 2860 2861 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2862 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2863 return nr_pinned; 2864 2865 /* Slow path: try to get the remaining pages with get_user_pages */ 2866 start += nr_pinned << PAGE_SHIFT; 2867 pages += nr_pinned; 2868 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2869 pages); 2870 if (ret < 0) { 2871 /* 2872 * The caller has to unpin the pages we already pinned so 2873 * returning -errno is not an option 2874 */ 2875 if (nr_pinned) 2876 return nr_pinned; 2877 return ret; 2878 } 2879 return ret + nr_pinned; 2880 } 2881 2882 /** 2883 * get_user_pages_fast_only() - pin user pages in memory 2884 * @start: starting user address 2885 * @nr_pages: number of pages from start to pin 2886 * @gup_flags: flags modifying pin behaviour 2887 * @pages: array that receives pointers to the pages pinned. 2888 * Should be at least nr_pages long. 2889 * 2890 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2891 * the regular GUP. 2892 * Note a difference with get_user_pages_fast: this always returns the 2893 * number of pages pinned, 0 if no pages were pinned. 2894 * 2895 * If the architecture does not support this function, simply return with no 2896 * pages pinned. 2897 * 2898 * Careful, careful! COW breaking can go either way, so a non-write 2899 * access can get ambiguous page results. If you call this function without 2900 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2901 */ 2902 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2903 unsigned int gup_flags, struct page **pages) 2904 { 2905 int nr_pinned; 2906 /* 2907 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2908 * because gup fast is always a "pin with a +1 page refcount" request. 2909 * 2910 * FOLL_FAST_ONLY is required in order to match the API description of 2911 * this routine: no fall back to regular ("slow") GUP. 2912 */ 2913 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2914 2915 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2916 pages); 2917 2918 /* 2919 * As specified in the API description above, this routine is not 2920 * allowed to return negative values. However, the common core 2921 * routine internal_get_user_pages_fast() *can* return -errno. 2922 * Therefore, correct for that here: 2923 */ 2924 if (nr_pinned < 0) 2925 nr_pinned = 0; 2926 2927 return nr_pinned; 2928 } 2929 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2930 2931 /** 2932 * get_user_pages_fast() - pin user pages in memory 2933 * @start: starting user address 2934 * @nr_pages: number of pages from start to pin 2935 * @gup_flags: flags modifying pin behaviour 2936 * @pages: array that receives pointers to the pages pinned. 2937 * Should be at least nr_pages long. 2938 * 2939 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2940 * If not successful, it will fall back to taking the lock and 2941 * calling get_user_pages(). 2942 * 2943 * Returns number of pages pinned. This may be fewer than the number requested. 2944 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2945 * -errno. 2946 */ 2947 int get_user_pages_fast(unsigned long start, int nr_pages, 2948 unsigned int gup_flags, struct page **pages) 2949 { 2950 if (!is_valid_gup_flags(gup_flags)) 2951 return -EINVAL; 2952 2953 /* 2954 * The caller may or may not have explicitly set FOLL_GET; either way is 2955 * OK. However, internally (within mm/gup.c), gup fast variants must set 2956 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2957 * request. 2958 */ 2959 gup_flags |= FOLL_GET; 2960 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2961 } 2962 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2963 2964 /** 2965 * pin_user_pages_fast() - pin user pages in memory without taking locks 2966 * 2967 * @start: starting user address 2968 * @nr_pages: number of pages from start to pin 2969 * @gup_flags: flags modifying pin behaviour 2970 * @pages: array that receives pointers to the pages pinned. 2971 * Should be at least nr_pages long. 2972 * 2973 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2974 * get_user_pages_fast() for documentation on the function arguments, because 2975 * the arguments here are identical. 2976 * 2977 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2978 * see Documentation/core-api/pin_user_pages.rst for further details. 2979 */ 2980 int pin_user_pages_fast(unsigned long start, int nr_pages, 2981 unsigned int gup_flags, struct page **pages) 2982 { 2983 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2984 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2985 return -EINVAL; 2986 2987 gup_flags |= FOLL_PIN; 2988 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2989 } 2990 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2991 2992 /* 2993 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2994 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2995 * 2996 * The API rules are the same, too: no negative values may be returned. 2997 */ 2998 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2999 unsigned int gup_flags, struct page **pages) 3000 { 3001 int nr_pinned; 3002 3003 /* 3004 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3005 * rules require returning 0, rather than -errno: 3006 */ 3007 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3008 return 0; 3009 /* 3010 * FOLL_FAST_ONLY is required in order to match the API description of 3011 * this routine: no fall back to regular ("slow") GUP. 3012 */ 3013 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3014 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3015 pages); 3016 /* 3017 * This routine is not allowed to return negative values. However, 3018 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3019 * correct for that here: 3020 */ 3021 if (nr_pinned < 0) 3022 nr_pinned = 0; 3023 3024 return nr_pinned; 3025 } 3026 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3027 3028 /** 3029 * pin_user_pages_remote() - pin pages of a remote process 3030 * 3031 * @mm: mm_struct of target mm 3032 * @start: starting user address 3033 * @nr_pages: number of pages from start to pin 3034 * @gup_flags: flags modifying lookup behaviour 3035 * @pages: array that receives pointers to the pages pinned. 3036 * Should be at least nr_pages long. Or NULL, if caller 3037 * only intends to ensure the pages are faulted in. 3038 * @vmas: array of pointers to vmas corresponding to each page. 3039 * Or NULL if the caller does not require them. 3040 * @locked: pointer to lock flag indicating whether lock is held and 3041 * subsequently whether VM_FAULT_RETRY functionality can be 3042 * utilised. Lock must initially be held. 3043 * 3044 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3045 * get_user_pages_remote() for documentation on the function arguments, because 3046 * the arguments here are identical. 3047 * 3048 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3049 * see Documentation/core-api/pin_user_pages.rst for details. 3050 */ 3051 long pin_user_pages_remote(struct mm_struct *mm, 3052 unsigned long start, unsigned long nr_pages, 3053 unsigned int gup_flags, struct page **pages, 3054 struct vm_area_struct **vmas, int *locked) 3055 { 3056 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3057 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3058 return -EINVAL; 3059 3060 gup_flags |= FOLL_PIN; 3061 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3062 pages, vmas, locked); 3063 } 3064 EXPORT_SYMBOL(pin_user_pages_remote); 3065 3066 /** 3067 * pin_user_pages() - pin user pages in memory for use by other devices 3068 * 3069 * @start: starting user address 3070 * @nr_pages: number of pages from start to pin 3071 * @gup_flags: flags modifying lookup behaviour 3072 * @pages: array that receives pointers to the pages pinned. 3073 * Should be at least nr_pages long. Or NULL, if caller 3074 * only intends to ensure the pages are faulted in. 3075 * @vmas: array of pointers to vmas corresponding to each page. 3076 * Or NULL if the caller does not require them. 3077 * 3078 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3079 * FOLL_PIN is set. 3080 * 3081 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3082 * see Documentation/core-api/pin_user_pages.rst for details. 3083 */ 3084 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3085 unsigned int gup_flags, struct page **pages, 3086 struct vm_area_struct **vmas) 3087 { 3088 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3089 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3090 return -EINVAL; 3091 3092 gup_flags |= FOLL_PIN; 3093 return __gup_longterm_locked(current->mm, start, nr_pages, 3094 pages, vmas, gup_flags); 3095 } 3096 EXPORT_SYMBOL(pin_user_pages); 3097 3098 /* 3099 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3100 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3101 * FOLL_PIN and rejects FOLL_GET. 3102 */ 3103 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3104 struct page **pages, unsigned int gup_flags) 3105 { 3106 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3107 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3108 return -EINVAL; 3109 3110 gup_flags |= FOLL_PIN; 3111 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3112 } 3113 EXPORT_SYMBOL(pin_user_pages_unlocked); 3114 3115 /* 3116 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 3117 * Behavior is the same, except that this one sets FOLL_PIN and rejects 3118 * FOLL_GET. 3119 */ 3120 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 3121 unsigned int gup_flags, struct page **pages, 3122 int *locked) 3123 { 3124 /* 3125 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 3126 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 3127 * vmas. As there are no users of this flag in this call we simply 3128 * disallow this option for now. 3129 */ 3130 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 3131 return -EINVAL; 3132 3133 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3134 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3135 return -EINVAL; 3136 3137 gup_flags |= FOLL_PIN; 3138 return __get_user_pages_locked(current->mm, start, nr_pages, 3139 pages, NULL, locked, 3140 gup_flags | FOLL_TOUCH); 3141 } 3142 EXPORT_SYMBOL(pin_user_pages_locked); 3143