xref: /linux/mm/gup.c (revision a2a4ee550704901aa148b57a55cb73cc1e8ae9b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		folio_put_refs(folio, refs);
91 		goto retry;
92 	}
93 
94 	return folio;
95 }
96 
97 /**
98  * try_grab_folio() - Attempt to get or pin a folio.
99  * @page:  pointer to page to be grabbed
100  * @refs:  the value to (effectively) add to the folio's refcount
101  * @flags: gup flags: these are the FOLL_* flag values.
102  *
103  * "grab" names in this file mean, "look at flags to decide whether to use
104  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
105  *
106  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
107  * same time. (That's true throughout the get_user_pages*() and
108  * pin_user_pages*() APIs.) Cases:
109  *
110  *    FOLL_GET: folio's refcount will be incremented by @refs.
111  *
112  *    FOLL_PIN on large folios: folio's refcount will be incremented by
113  *    @refs, and its compound_pincount will be incremented by @refs.
114  *
115  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
116  *    @refs * GUP_PIN_COUNTING_BIAS.
117  *
118  * Return: The folio containing @page (with refcount appropriately
119  * incremented) for success, or NULL upon failure. If neither FOLL_GET
120  * nor FOLL_PIN was set, that's considered failure, and furthermore,
121  * a likely bug in the caller, so a warning is also emitted.
122  */
123 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
124 {
125 	if (flags & FOLL_GET)
126 		return try_get_folio(page, refs);
127 	else if (flags & FOLL_PIN) {
128 		struct folio *folio;
129 
130 		/*
131 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
132 		 * right zone, so fail and let the caller fall back to the slow
133 		 * path.
134 		 */
135 		if (unlikely((flags & FOLL_LONGTERM) &&
136 			     !is_pinnable_page(page)))
137 			return NULL;
138 
139 		/*
140 		 * CAUTION: Don't use compound_head() on the page before this
141 		 * point, the result won't be stable.
142 		 */
143 		folio = try_get_folio(page, refs);
144 		if (!folio)
145 			return NULL;
146 
147 		/*
148 		 * When pinning a large folio, use an exact count to track it.
149 		 *
150 		 * However, be sure to *also* increment the normal folio
151 		 * refcount field at least once, so that the folio really
152 		 * is pinned.  That's why the refcount from the earlier
153 		 * try_get_folio() is left intact.
154 		 */
155 		if (folio_test_large(folio))
156 			atomic_add(refs, folio_pincount_ptr(folio));
157 		else
158 			folio_ref_add(folio,
159 					refs * (GUP_PIN_COUNTING_BIAS - 1));
160 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
161 
162 		return folio;
163 	}
164 
165 	WARN_ON_ONCE(1);
166 	return NULL;
167 }
168 
169 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
170 {
171 	if (flags & FOLL_PIN) {
172 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
173 		if (folio_test_large(folio))
174 			atomic_sub(refs, folio_pincount_ptr(folio));
175 		else
176 			refs *= GUP_PIN_COUNTING_BIAS;
177 	}
178 
179 	folio_put_refs(folio, refs);
180 }
181 
182 /**
183  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
184  * @page:    pointer to page to be grabbed
185  * @flags:   gup flags: these are the FOLL_* flag values.
186  *
187  * This might not do anything at all, depending on the flags argument.
188  *
189  * "grab" names in this file mean, "look at flags to decide whether to use
190  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
191  *
192  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
193  * time. Cases: please see the try_grab_folio() documentation, with
194  * "refs=1".
195  *
196  * Return: true for success, or if no action was required (if neither FOLL_PIN
197  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
198  * FOLL_PIN was set, but the page could not be grabbed.
199  */
200 bool __must_check try_grab_page(struct page *page, unsigned int flags)
201 {
202 	struct folio *folio = page_folio(page);
203 
204 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
205 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
206 		return false;
207 
208 	if (flags & FOLL_GET)
209 		folio_ref_inc(folio);
210 	else if (flags & FOLL_PIN) {
211 		/*
212 		 * Similar to try_grab_folio(): be sure to *also*
213 		 * increment the normal page refcount field at least once,
214 		 * so that the page really is pinned.
215 		 */
216 		if (folio_test_large(folio)) {
217 			folio_ref_add(folio, 1);
218 			atomic_add(1, folio_pincount_ptr(folio));
219 		} else {
220 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
221 		}
222 
223 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
224 	}
225 
226 	return true;
227 }
228 
229 /**
230  * unpin_user_page() - release a dma-pinned page
231  * @page:            pointer to page to be released
232  *
233  * Pages that were pinned via pin_user_pages*() must be released via either
234  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
235  * that such pages can be separately tracked and uniquely handled. In
236  * particular, interactions with RDMA and filesystems need special handling.
237  */
238 void unpin_user_page(struct page *page)
239 {
240 	sanity_check_pinned_pages(&page, 1);
241 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
242 }
243 EXPORT_SYMBOL(unpin_user_page);
244 
245 static inline struct folio *gup_folio_range_next(struct page *start,
246 		unsigned long npages, unsigned long i, unsigned int *ntails)
247 {
248 	struct page *next = nth_page(start, i);
249 	struct folio *folio = page_folio(next);
250 	unsigned int nr = 1;
251 
252 	if (folio_test_large(folio))
253 		nr = min_t(unsigned int, npages - i,
254 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
255 
256 	*ntails = nr;
257 	return folio;
258 }
259 
260 static inline struct folio *gup_folio_next(struct page **list,
261 		unsigned long npages, unsigned long i, unsigned int *ntails)
262 {
263 	struct folio *folio = page_folio(list[i]);
264 	unsigned int nr;
265 
266 	for (nr = i + 1; nr < npages; nr++) {
267 		if (page_folio(list[nr]) != folio)
268 			break;
269 	}
270 
271 	*ntails = nr - i;
272 	return folio;
273 }
274 
275 /**
276  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
277  * @pages:  array of pages to be maybe marked dirty, and definitely released.
278  * @npages: number of pages in the @pages array.
279  * @make_dirty: whether to mark the pages dirty
280  *
281  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
282  * variants called on that page.
283  *
284  * For each page in the @pages array, make that page (or its head page, if a
285  * compound page) dirty, if @make_dirty is true, and if the page was previously
286  * listed as clean. In any case, releases all pages using unpin_user_page(),
287  * possibly via unpin_user_pages(), for the non-dirty case.
288  *
289  * Please see the unpin_user_page() documentation for details.
290  *
291  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
292  * required, then the caller should a) verify that this is really correct,
293  * because _lock() is usually required, and b) hand code it:
294  * set_page_dirty_lock(), unpin_user_page().
295  *
296  */
297 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
298 				 bool make_dirty)
299 {
300 	unsigned long i;
301 	struct folio *folio;
302 	unsigned int nr;
303 
304 	if (!make_dirty) {
305 		unpin_user_pages(pages, npages);
306 		return;
307 	}
308 
309 	sanity_check_pinned_pages(pages, npages);
310 	for (i = 0; i < npages; i += nr) {
311 		folio = gup_folio_next(pages, npages, i, &nr);
312 		/*
313 		 * Checking PageDirty at this point may race with
314 		 * clear_page_dirty_for_io(), but that's OK. Two key
315 		 * cases:
316 		 *
317 		 * 1) This code sees the page as already dirty, so it
318 		 * skips the call to set_page_dirty(). That could happen
319 		 * because clear_page_dirty_for_io() called
320 		 * page_mkclean(), followed by set_page_dirty().
321 		 * However, now the page is going to get written back,
322 		 * which meets the original intention of setting it
323 		 * dirty, so all is well: clear_page_dirty_for_io() goes
324 		 * on to call TestClearPageDirty(), and write the page
325 		 * back.
326 		 *
327 		 * 2) This code sees the page as clean, so it calls
328 		 * set_page_dirty(). The page stays dirty, despite being
329 		 * written back, so it gets written back again in the
330 		 * next writeback cycle. This is harmless.
331 		 */
332 		if (!folio_test_dirty(folio)) {
333 			folio_lock(folio);
334 			folio_mark_dirty(folio);
335 			folio_unlock(folio);
336 		}
337 		gup_put_folio(folio, nr, FOLL_PIN);
338 	}
339 }
340 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
341 
342 /**
343  * unpin_user_page_range_dirty_lock() - release and optionally dirty
344  * gup-pinned page range
345  *
346  * @page:  the starting page of a range maybe marked dirty, and definitely released.
347  * @npages: number of consecutive pages to release.
348  * @make_dirty: whether to mark the pages dirty
349  *
350  * "gup-pinned page range" refers to a range of pages that has had one of the
351  * pin_user_pages() variants called on that page.
352  *
353  * For the page ranges defined by [page .. page+npages], make that range (or
354  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
355  * page range was previously listed as clean.
356  *
357  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
358  * required, then the caller should a) verify that this is really correct,
359  * because _lock() is usually required, and b) hand code it:
360  * set_page_dirty_lock(), unpin_user_page().
361  *
362  */
363 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
364 				      bool make_dirty)
365 {
366 	unsigned long i;
367 	struct folio *folio;
368 	unsigned int nr;
369 
370 	for (i = 0; i < npages; i += nr) {
371 		folio = gup_folio_range_next(page, npages, i, &nr);
372 		if (make_dirty && !folio_test_dirty(folio)) {
373 			folio_lock(folio);
374 			folio_mark_dirty(folio);
375 			folio_unlock(folio);
376 		}
377 		gup_put_folio(folio, nr, FOLL_PIN);
378 	}
379 }
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381 
382 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
383 {
384 	unsigned long i;
385 	struct folio *folio;
386 	unsigned int nr;
387 
388 	/*
389 	 * Don't perform any sanity checks because we might have raced with
390 	 * fork() and some anonymous pages might now actually be shared --
391 	 * which is why we're unpinning after all.
392 	 */
393 	for (i = 0; i < npages; i += nr) {
394 		folio = gup_folio_next(pages, npages, i, &nr);
395 		gup_put_folio(folio, nr, FOLL_PIN);
396 	}
397 }
398 
399 /**
400  * unpin_user_pages() - release an array of gup-pinned pages.
401  * @pages:  array of pages to be marked dirty and released.
402  * @npages: number of pages in the @pages array.
403  *
404  * For each page in the @pages array, release the page using unpin_user_page().
405  *
406  * Please see the unpin_user_page() documentation for details.
407  */
408 void unpin_user_pages(struct page **pages, unsigned long npages)
409 {
410 	unsigned long i;
411 	struct folio *folio;
412 	unsigned int nr;
413 
414 	/*
415 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
416 	 * leaving them pinned), but probably not. More likely, gup/pup returned
417 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
418 	 */
419 	if (WARN_ON(IS_ERR_VALUE(npages)))
420 		return;
421 
422 	sanity_check_pinned_pages(pages, npages);
423 	for (i = 0; i < npages; i += nr) {
424 		folio = gup_folio_next(pages, npages, i, &nr);
425 		gup_put_folio(folio, nr, FOLL_PIN);
426 	}
427 }
428 EXPORT_SYMBOL(unpin_user_pages);
429 
430 /*
431  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
432  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
433  * cache bouncing on large SMP machines for concurrent pinned gups.
434  */
435 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
436 {
437 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
438 		set_bit(MMF_HAS_PINNED, mm_flags);
439 }
440 
441 #ifdef CONFIG_MMU
442 static struct page *no_page_table(struct vm_area_struct *vma,
443 		unsigned int flags)
444 {
445 	/*
446 	 * When core dumping an enormous anonymous area that nobody
447 	 * has touched so far, we don't want to allocate unnecessary pages or
448 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
449 	 * then get_dump_page() will return NULL to leave a hole in the dump.
450 	 * But we can only make this optimization where a hole would surely
451 	 * be zero-filled if handle_mm_fault() actually did handle it.
452 	 */
453 	if ((flags & FOLL_DUMP) &&
454 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
455 		return ERR_PTR(-EFAULT);
456 	return NULL;
457 }
458 
459 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
460 		pte_t *pte, unsigned int flags)
461 {
462 	if (flags & FOLL_TOUCH) {
463 		pte_t entry = *pte;
464 
465 		if (flags & FOLL_WRITE)
466 			entry = pte_mkdirty(entry);
467 		entry = pte_mkyoung(entry);
468 
469 		if (!pte_same(*pte, entry)) {
470 			set_pte_at(vma->vm_mm, address, pte, entry);
471 			update_mmu_cache(vma, address, pte);
472 		}
473 	}
474 
475 	/* Proper page table entry exists, but no corresponding struct page */
476 	return -EEXIST;
477 }
478 
479 /*
480  * FOLL_FORCE can write to even unwritable pte's, but only
481  * after we've gone through a COW cycle and they are dirty.
482  */
483 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
484 {
485 	return pte_write(pte) ||
486 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
487 }
488 
489 static struct page *follow_page_pte(struct vm_area_struct *vma,
490 		unsigned long address, pmd_t *pmd, unsigned int flags,
491 		struct dev_pagemap **pgmap)
492 {
493 	struct mm_struct *mm = vma->vm_mm;
494 	struct page *page;
495 	spinlock_t *ptl;
496 	pte_t *ptep, pte;
497 	int ret;
498 
499 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
500 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
501 			 (FOLL_PIN | FOLL_GET)))
502 		return ERR_PTR(-EINVAL);
503 retry:
504 	if (unlikely(pmd_bad(*pmd)))
505 		return no_page_table(vma, flags);
506 
507 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
508 	pte = *ptep;
509 	if (!pte_present(pte)) {
510 		swp_entry_t entry;
511 		/*
512 		 * KSM's break_ksm() relies upon recognizing a ksm page
513 		 * even while it is being migrated, so for that case we
514 		 * need migration_entry_wait().
515 		 */
516 		if (likely(!(flags & FOLL_MIGRATION)))
517 			goto no_page;
518 		if (pte_none(pte))
519 			goto no_page;
520 		entry = pte_to_swp_entry(pte);
521 		if (!is_migration_entry(entry))
522 			goto no_page;
523 		pte_unmap_unlock(ptep, ptl);
524 		migration_entry_wait(mm, pmd, address);
525 		goto retry;
526 	}
527 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
528 		goto no_page;
529 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
530 		pte_unmap_unlock(ptep, ptl);
531 		return NULL;
532 	}
533 
534 	page = vm_normal_page(vma, address, pte);
535 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
536 		/*
537 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
538 		 * case since they are only valid while holding the pgmap
539 		 * reference.
540 		 */
541 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
542 		if (*pgmap)
543 			page = pte_page(pte);
544 		else
545 			goto no_page;
546 	} else if (unlikely(!page)) {
547 		if (flags & FOLL_DUMP) {
548 			/* Avoid special (like zero) pages in core dumps */
549 			page = ERR_PTR(-EFAULT);
550 			goto out;
551 		}
552 
553 		if (is_zero_pfn(pte_pfn(pte))) {
554 			page = pte_page(pte);
555 		} else {
556 			ret = follow_pfn_pte(vma, address, ptep, flags);
557 			page = ERR_PTR(ret);
558 			goto out;
559 		}
560 	}
561 
562 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
563 		page = ERR_PTR(-EMLINK);
564 		goto out;
565 	}
566 
567 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
568 		       !PageAnonExclusive(page), page);
569 
570 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
571 	if (unlikely(!try_grab_page(page, flags))) {
572 		page = ERR_PTR(-ENOMEM);
573 		goto out;
574 	}
575 	/*
576 	 * We need to make the page accessible if and only if we are going
577 	 * to access its content (the FOLL_PIN case).  Please see
578 	 * Documentation/core-api/pin_user_pages.rst for details.
579 	 */
580 	if (flags & FOLL_PIN) {
581 		ret = arch_make_page_accessible(page);
582 		if (ret) {
583 			unpin_user_page(page);
584 			page = ERR_PTR(ret);
585 			goto out;
586 		}
587 	}
588 	if (flags & FOLL_TOUCH) {
589 		if ((flags & FOLL_WRITE) &&
590 		    !pte_dirty(pte) && !PageDirty(page))
591 			set_page_dirty(page);
592 		/*
593 		 * pte_mkyoung() would be more correct here, but atomic care
594 		 * is needed to avoid losing the dirty bit: it is easier to use
595 		 * mark_page_accessed().
596 		 */
597 		mark_page_accessed(page);
598 	}
599 out:
600 	pte_unmap_unlock(ptep, ptl);
601 	return page;
602 no_page:
603 	pte_unmap_unlock(ptep, ptl);
604 	if (!pte_none(pte))
605 		return NULL;
606 	return no_page_table(vma, flags);
607 }
608 
609 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
610 				    unsigned long address, pud_t *pudp,
611 				    unsigned int flags,
612 				    struct follow_page_context *ctx)
613 {
614 	pmd_t *pmd, pmdval;
615 	spinlock_t *ptl;
616 	struct page *page;
617 	struct mm_struct *mm = vma->vm_mm;
618 
619 	pmd = pmd_offset(pudp, address);
620 	/*
621 	 * The READ_ONCE() will stabilize the pmdval in a register or
622 	 * on the stack so that it will stop changing under the code.
623 	 */
624 	pmdval = READ_ONCE(*pmd);
625 	if (pmd_none(pmdval))
626 		return no_page_table(vma, flags);
627 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
628 		page = follow_huge_pmd(mm, address, pmd, flags);
629 		if (page)
630 			return page;
631 		return no_page_table(vma, flags);
632 	}
633 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
634 		page = follow_huge_pd(vma, address,
635 				      __hugepd(pmd_val(pmdval)), flags,
636 				      PMD_SHIFT);
637 		if (page)
638 			return page;
639 		return no_page_table(vma, flags);
640 	}
641 retry:
642 	if (!pmd_present(pmdval)) {
643 		/*
644 		 * Should never reach here, if thp migration is not supported;
645 		 * Otherwise, it must be a thp migration entry.
646 		 */
647 		VM_BUG_ON(!thp_migration_supported() ||
648 				  !is_pmd_migration_entry(pmdval));
649 
650 		if (likely(!(flags & FOLL_MIGRATION)))
651 			return no_page_table(vma, flags);
652 
653 		pmd_migration_entry_wait(mm, pmd);
654 		pmdval = READ_ONCE(*pmd);
655 		/*
656 		 * MADV_DONTNEED may convert the pmd to null because
657 		 * mmap_lock is held in read mode
658 		 */
659 		if (pmd_none(pmdval))
660 			return no_page_table(vma, flags);
661 		goto retry;
662 	}
663 	if (pmd_devmap(pmdval)) {
664 		ptl = pmd_lock(mm, pmd);
665 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
666 		spin_unlock(ptl);
667 		if (page)
668 			return page;
669 	}
670 	if (likely(!pmd_trans_huge(pmdval)))
671 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
672 
673 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
674 		return no_page_table(vma, flags);
675 
676 retry_locked:
677 	ptl = pmd_lock(mm, pmd);
678 	if (unlikely(pmd_none(*pmd))) {
679 		spin_unlock(ptl);
680 		return no_page_table(vma, flags);
681 	}
682 	if (unlikely(!pmd_present(*pmd))) {
683 		spin_unlock(ptl);
684 		if (likely(!(flags & FOLL_MIGRATION)))
685 			return no_page_table(vma, flags);
686 		pmd_migration_entry_wait(mm, pmd);
687 		goto retry_locked;
688 	}
689 	if (unlikely(!pmd_trans_huge(*pmd))) {
690 		spin_unlock(ptl);
691 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
692 	}
693 	if (flags & FOLL_SPLIT_PMD) {
694 		int ret;
695 		page = pmd_page(*pmd);
696 		if (is_huge_zero_page(page)) {
697 			spin_unlock(ptl);
698 			ret = 0;
699 			split_huge_pmd(vma, pmd, address);
700 			if (pmd_trans_unstable(pmd))
701 				ret = -EBUSY;
702 		} else {
703 			spin_unlock(ptl);
704 			split_huge_pmd(vma, pmd, address);
705 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
706 		}
707 
708 		return ret ? ERR_PTR(ret) :
709 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
710 	}
711 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
712 	spin_unlock(ptl);
713 	ctx->page_mask = HPAGE_PMD_NR - 1;
714 	return page;
715 }
716 
717 static struct page *follow_pud_mask(struct vm_area_struct *vma,
718 				    unsigned long address, p4d_t *p4dp,
719 				    unsigned int flags,
720 				    struct follow_page_context *ctx)
721 {
722 	pud_t *pud;
723 	spinlock_t *ptl;
724 	struct page *page;
725 	struct mm_struct *mm = vma->vm_mm;
726 
727 	pud = pud_offset(p4dp, address);
728 	if (pud_none(*pud))
729 		return no_page_table(vma, flags);
730 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
731 		page = follow_huge_pud(mm, address, pud, flags);
732 		if (page)
733 			return page;
734 		return no_page_table(vma, flags);
735 	}
736 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
737 		page = follow_huge_pd(vma, address,
738 				      __hugepd(pud_val(*pud)), flags,
739 				      PUD_SHIFT);
740 		if (page)
741 			return page;
742 		return no_page_table(vma, flags);
743 	}
744 	if (pud_devmap(*pud)) {
745 		ptl = pud_lock(mm, pud);
746 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
747 		spin_unlock(ptl);
748 		if (page)
749 			return page;
750 	}
751 	if (unlikely(pud_bad(*pud)))
752 		return no_page_table(vma, flags);
753 
754 	return follow_pmd_mask(vma, address, pud, flags, ctx);
755 }
756 
757 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
758 				    unsigned long address, pgd_t *pgdp,
759 				    unsigned int flags,
760 				    struct follow_page_context *ctx)
761 {
762 	p4d_t *p4d;
763 	struct page *page;
764 
765 	p4d = p4d_offset(pgdp, address);
766 	if (p4d_none(*p4d))
767 		return no_page_table(vma, flags);
768 	BUILD_BUG_ON(p4d_huge(*p4d));
769 	if (unlikely(p4d_bad(*p4d)))
770 		return no_page_table(vma, flags);
771 
772 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
773 		page = follow_huge_pd(vma, address,
774 				      __hugepd(p4d_val(*p4d)), flags,
775 				      P4D_SHIFT);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 	return follow_pud_mask(vma, address, p4d, flags, ctx);
781 }
782 
783 /**
784  * follow_page_mask - look up a page descriptor from a user-virtual address
785  * @vma: vm_area_struct mapping @address
786  * @address: virtual address to look up
787  * @flags: flags modifying lookup behaviour
788  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
789  *       pointer to output page_mask
790  *
791  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
792  *
793  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
794  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
795  *
796  * When getting an anonymous page and the caller has to trigger unsharing
797  * of a shared anonymous page first, -EMLINK is returned. The caller should
798  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
799  * relevant with FOLL_PIN and !FOLL_WRITE.
800  *
801  * On output, the @ctx->page_mask is set according to the size of the page.
802  *
803  * Return: the mapped (struct page *), %NULL if no mapping exists, or
804  * an error pointer if there is a mapping to something not represented
805  * by a page descriptor (see also vm_normal_page()).
806  */
807 static struct page *follow_page_mask(struct vm_area_struct *vma,
808 			      unsigned long address, unsigned int flags,
809 			      struct follow_page_context *ctx)
810 {
811 	pgd_t *pgd;
812 	struct page *page;
813 	struct mm_struct *mm = vma->vm_mm;
814 
815 	ctx->page_mask = 0;
816 
817 	/* make this handle hugepd */
818 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
819 	if (!IS_ERR(page)) {
820 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
821 		return page;
822 	}
823 
824 	pgd = pgd_offset(mm, address);
825 
826 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
827 		return no_page_table(vma, flags);
828 
829 	if (pgd_huge(*pgd)) {
830 		page = follow_huge_pgd(mm, address, pgd, flags);
831 		if (page)
832 			return page;
833 		return no_page_table(vma, flags);
834 	}
835 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
836 		page = follow_huge_pd(vma, address,
837 				      __hugepd(pgd_val(*pgd)), flags,
838 				      PGDIR_SHIFT);
839 		if (page)
840 			return page;
841 		return no_page_table(vma, flags);
842 	}
843 
844 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
845 }
846 
847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
848 			 unsigned int foll_flags)
849 {
850 	struct follow_page_context ctx = { NULL };
851 	struct page *page;
852 
853 	if (vma_is_secretmem(vma))
854 		return NULL;
855 
856 	if (foll_flags & FOLL_PIN)
857 		return NULL;
858 
859 	page = follow_page_mask(vma, address, foll_flags, &ctx);
860 	if (ctx.pgmap)
861 		put_dev_pagemap(ctx.pgmap);
862 	return page;
863 }
864 
865 static int get_gate_page(struct mm_struct *mm, unsigned long address,
866 		unsigned int gup_flags, struct vm_area_struct **vma,
867 		struct page **page)
868 {
869 	pgd_t *pgd;
870 	p4d_t *p4d;
871 	pud_t *pud;
872 	pmd_t *pmd;
873 	pte_t *pte;
874 	int ret = -EFAULT;
875 
876 	/* user gate pages are read-only */
877 	if (gup_flags & FOLL_WRITE)
878 		return -EFAULT;
879 	if (address > TASK_SIZE)
880 		pgd = pgd_offset_k(address);
881 	else
882 		pgd = pgd_offset_gate(mm, address);
883 	if (pgd_none(*pgd))
884 		return -EFAULT;
885 	p4d = p4d_offset(pgd, address);
886 	if (p4d_none(*p4d))
887 		return -EFAULT;
888 	pud = pud_offset(p4d, address);
889 	if (pud_none(*pud))
890 		return -EFAULT;
891 	pmd = pmd_offset(pud, address);
892 	if (!pmd_present(*pmd))
893 		return -EFAULT;
894 	VM_BUG_ON(pmd_trans_huge(*pmd));
895 	pte = pte_offset_map(pmd, address);
896 	if (pte_none(*pte))
897 		goto unmap;
898 	*vma = get_gate_vma(mm);
899 	if (!page)
900 		goto out;
901 	*page = vm_normal_page(*vma, address, *pte);
902 	if (!*page) {
903 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
904 			goto unmap;
905 		*page = pte_page(*pte);
906 	}
907 	if (unlikely(!try_grab_page(*page, gup_flags))) {
908 		ret = -ENOMEM;
909 		goto unmap;
910 	}
911 out:
912 	ret = 0;
913 unmap:
914 	pte_unmap(pte);
915 	return ret;
916 }
917 
918 /*
919  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
920  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
921  * is, *@locked will be set to 0 and -EBUSY returned.
922  */
923 static int faultin_page(struct vm_area_struct *vma,
924 		unsigned long address, unsigned int *flags, bool unshare,
925 		int *locked)
926 {
927 	unsigned int fault_flags = 0;
928 	vm_fault_t ret;
929 
930 	if (*flags & FOLL_NOFAULT)
931 		return -EFAULT;
932 	if (*flags & FOLL_WRITE)
933 		fault_flags |= FAULT_FLAG_WRITE;
934 	if (*flags & FOLL_REMOTE)
935 		fault_flags |= FAULT_FLAG_REMOTE;
936 	if (locked)
937 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
938 	if (*flags & FOLL_NOWAIT)
939 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
940 	if (*flags & FOLL_TRIED) {
941 		/*
942 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
943 		 * can co-exist
944 		 */
945 		fault_flags |= FAULT_FLAG_TRIED;
946 	}
947 	if (unshare) {
948 		fault_flags |= FAULT_FLAG_UNSHARE;
949 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
950 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
951 	}
952 
953 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
954 	if (ret & VM_FAULT_ERROR) {
955 		int err = vm_fault_to_errno(ret, *flags);
956 
957 		if (err)
958 			return err;
959 		BUG();
960 	}
961 
962 	if (ret & VM_FAULT_RETRY) {
963 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
964 			*locked = 0;
965 		return -EBUSY;
966 	}
967 
968 	/*
969 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
970 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
971 	 * can thus safely do subsequent page lookups as if they were reads.
972 	 * But only do so when looping for pte_write is futile: in some cases
973 	 * userspace may also be wanting to write to the gotten user page,
974 	 * which a read fault here might prevent (a readonly page might get
975 	 * reCOWed by userspace write).
976 	 */
977 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
978 		*flags |= FOLL_COW;
979 	return 0;
980 }
981 
982 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
983 {
984 	vm_flags_t vm_flags = vma->vm_flags;
985 	int write = (gup_flags & FOLL_WRITE);
986 	int foreign = (gup_flags & FOLL_REMOTE);
987 
988 	if (vm_flags & (VM_IO | VM_PFNMAP))
989 		return -EFAULT;
990 
991 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
992 		return -EFAULT;
993 
994 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
995 		return -EOPNOTSUPP;
996 
997 	if (vma_is_secretmem(vma))
998 		return -EFAULT;
999 
1000 	if (write) {
1001 		if (!(vm_flags & VM_WRITE)) {
1002 			if (!(gup_flags & FOLL_FORCE))
1003 				return -EFAULT;
1004 			/*
1005 			 * We used to let the write,force case do COW in a
1006 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1007 			 * set a breakpoint in a read-only mapping of an
1008 			 * executable, without corrupting the file (yet only
1009 			 * when that file had been opened for writing!).
1010 			 * Anon pages in shared mappings are surprising: now
1011 			 * just reject it.
1012 			 */
1013 			if (!is_cow_mapping(vm_flags))
1014 				return -EFAULT;
1015 		}
1016 	} else if (!(vm_flags & VM_READ)) {
1017 		if (!(gup_flags & FOLL_FORCE))
1018 			return -EFAULT;
1019 		/*
1020 		 * Is there actually any vma we can reach here which does not
1021 		 * have VM_MAYREAD set?
1022 		 */
1023 		if (!(vm_flags & VM_MAYREAD))
1024 			return -EFAULT;
1025 	}
1026 	/*
1027 	 * gups are always data accesses, not instruction
1028 	 * fetches, so execute=false here
1029 	 */
1030 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1031 		return -EFAULT;
1032 	return 0;
1033 }
1034 
1035 /**
1036  * __get_user_pages() - pin user pages in memory
1037  * @mm:		mm_struct of target mm
1038  * @start:	starting user address
1039  * @nr_pages:	number of pages from start to pin
1040  * @gup_flags:	flags modifying pin behaviour
1041  * @pages:	array that receives pointers to the pages pinned.
1042  *		Should be at least nr_pages long. Or NULL, if caller
1043  *		only intends to ensure the pages are faulted in.
1044  * @vmas:	array of pointers to vmas corresponding to each page.
1045  *		Or NULL if the caller does not require them.
1046  * @locked:     whether we're still with the mmap_lock held
1047  *
1048  * Returns either number of pages pinned (which may be less than the
1049  * number requested), or an error. Details about the return value:
1050  *
1051  * -- If nr_pages is 0, returns 0.
1052  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1053  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1054  *    pages pinned. Again, this may be less than nr_pages.
1055  * -- 0 return value is possible when the fault would need to be retried.
1056  *
1057  * The caller is responsible for releasing returned @pages, via put_page().
1058  *
1059  * @vmas are valid only as long as mmap_lock is held.
1060  *
1061  * Must be called with mmap_lock held.  It may be released.  See below.
1062  *
1063  * __get_user_pages walks a process's page tables and takes a reference to
1064  * each struct page that each user address corresponds to at a given
1065  * instant. That is, it takes the page that would be accessed if a user
1066  * thread accesses the given user virtual address at that instant.
1067  *
1068  * This does not guarantee that the page exists in the user mappings when
1069  * __get_user_pages returns, and there may even be a completely different
1070  * page there in some cases (eg. if mmapped pagecache has been invalidated
1071  * and subsequently re faulted). However it does guarantee that the page
1072  * won't be freed completely. And mostly callers simply care that the page
1073  * contains data that was valid *at some point in time*. Typically, an IO
1074  * or similar operation cannot guarantee anything stronger anyway because
1075  * locks can't be held over the syscall boundary.
1076  *
1077  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1078  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1079  * appropriate) must be called after the page is finished with, and
1080  * before put_page is called.
1081  *
1082  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1083  * released by an up_read().  That can happen if @gup_flags does not
1084  * have FOLL_NOWAIT.
1085  *
1086  * A caller using such a combination of @locked and @gup_flags
1087  * must therefore hold the mmap_lock for reading only, and recognize
1088  * when it's been released.  Otherwise, it must be held for either
1089  * reading or writing and will not be released.
1090  *
1091  * In most cases, get_user_pages or get_user_pages_fast should be used
1092  * instead of __get_user_pages. __get_user_pages should be used only if
1093  * you need some special @gup_flags.
1094  */
1095 static long __get_user_pages(struct mm_struct *mm,
1096 		unsigned long start, unsigned long nr_pages,
1097 		unsigned int gup_flags, struct page **pages,
1098 		struct vm_area_struct **vmas, int *locked)
1099 {
1100 	long ret = 0, i = 0;
1101 	struct vm_area_struct *vma = NULL;
1102 	struct follow_page_context ctx = { NULL };
1103 
1104 	if (!nr_pages)
1105 		return 0;
1106 
1107 	start = untagged_addr(start);
1108 
1109 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1110 
1111 	/*
1112 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1113 	 * fault information is unrelated to the reference behaviour of a task
1114 	 * using the address space
1115 	 */
1116 	if (!(gup_flags & FOLL_FORCE))
1117 		gup_flags |= FOLL_NUMA;
1118 
1119 	do {
1120 		struct page *page;
1121 		unsigned int foll_flags = gup_flags;
1122 		unsigned int page_increm;
1123 
1124 		/* first iteration or cross vma bound */
1125 		if (!vma || start >= vma->vm_end) {
1126 			vma = find_extend_vma(mm, start);
1127 			if (!vma && in_gate_area(mm, start)) {
1128 				ret = get_gate_page(mm, start & PAGE_MASK,
1129 						gup_flags, &vma,
1130 						pages ? &pages[i] : NULL);
1131 				if (ret)
1132 					goto out;
1133 				ctx.page_mask = 0;
1134 				goto next_page;
1135 			}
1136 
1137 			if (!vma) {
1138 				ret = -EFAULT;
1139 				goto out;
1140 			}
1141 			ret = check_vma_flags(vma, gup_flags);
1142 			if (ret)
1143 				goto out;
1144 
1145 			if (is_vm_hugetlb_page(vma)) {
1146 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1147 						&start, &nr_pages, i,
1148 						gup_flags, locked);
1149 				if (locked && *locked == 0) {
1150 					/*
1151 					 * We've got a VM_FAULT_RETRY
1152 					 * and we've lost mmap_lock.
1153 					 * We must stop here.
1154 					 */
1155 					BUG_ON(gup_flags & FOLL_NOWAIT);
1156 					goto out;
1157 				}
1158 				continue;
1159 			}
1160 		}
1161 retry:
1162 		/*
1163 		 * If we have a pending SIGKILL, don't keep faulting pages and
1164 		 * potentially allocating memory.
1165 		 */
1166 		if (fatal_signal_pending(current)) {
1167 			ret = -EINTR;
1168 			goto out;
1169 		}
1170 		cond_resched();
1171 
1172 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1173 		if (!page || PTR_ERR(page) == -EMLINK) {
1174 			ret = faultin_page(vma, start, &foll_flags,
1175 					   PTR_ERR(page) == -EMLINK, locked);
1176 			switch (ret) {
1177 			case 0:
1178 				goto retry;
1179 			case -EBUSY:
1180 				ret = 0;
1181 				fallthrough;
1182 			case -EFAULT:
1183 			case -ENOMEM:
1184 			case -EHWPOISON:
1185 				goto out;
1186 			}
1187 			BUG();
1188 		} else if (PTR_ERR(page) == -EEXIST) {
1189 			/*
1190 			 * Proper page table entry exists, but no corresponding
1191 			 * struct page. If the caller expects **pages to be
1192 			 * filled in, bail out now, because that can't be done
1193 			 * for this page.
1194 			 */
1195 			if (pages) {
1196 				ret = PTR_ERR(page);
1197 				goto out;
1198 			}
1199 
1200 			goto next_page;
1201 		} else if (IS_ERR(page)) {
1202 			ret = PTR_ERR(page);
1203 			goto out;
1204 		}
1205 		if (pages) {
1206 			pages[i] = page;
1207 			flush_anon_page(vma, page, start);
1208 			flush_dcache_page(page);
1209 			ctx.page_mask = 0;
1210 		}
1211 next_page:
1212 		if (vmas) {
1213 			vmas[i] = vma;
1214 			ctx.page_mask = 0;
1215 		}
1216 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1217 		if (page_increm > nr_pages)
1218 			page_increm = nr_pages;
1219 		i += page_increm;
1220 		start += page_increm * PAGE_SIZE;
1221 		nr_pages -= page_increm;
1222 	} while (nr_pages);
1223 out:
1224 	if (ctx.pgmap)
1225 		put_dev_pagemap(ctx.pgmap);
1226 	return i ? i : ret;
1227 }
1228 
1229 static bool vma_permits_fault(struct vm_area_struct *vma,
1230 			      unsigned int fault_flags)
1231 {
1232 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1233 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1234 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1235 
1236 	if (!(vm_flags & vma->vm_flags))
1237 		return false;
1238 
1239 	/*
1240 	 * The architecture might have a hardware protection
1241 	 * mechanism other than read/write that can deny access.
1242 	 *
1243 	 * gup always represents data access, not instruction
1244 	 * fetches, so execute=false here:
1245 	 */
1246 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 /**
1253  * fixup_user_fault() - manually resolve a user page fault
1254  * @mm:		mm_struct of target mm
1255  * @address:	user address
1256  * @fault_flags:flags to pass down to handle_mm_fault()
1257  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1258  *		does not allow retry. If NULL, the caller must guarantee
1259  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1260  *
1261  * This is meant to be called in the specific scenario where for locking reasons
1262  * we try to access user memory in atomic context (within a pagefault_disable()
1263  * section), this returns -EFAULT, and we want to resolve the user fault before
1264  * trying again.
1265  *
1266  * Typically this is meant to be used by the futex code.
1267  *
1268  * The main difference with get_user_pages() is that this function will
1269  * unconditionally call handle_mm_fault() which will in turn perform all the
1270  * necessary SW fixup of the dirty and young bits in the PTE, while
1271  * get_user_pages() only guarantees to update these in the struct page.
1272  *
1273  * This is important for some architectures where those bits also gate the
1274  * access permission to the page because they are maintained in software.  On
1275  * such architectures, gup() will not be enough to make a subsequent access
1276  * succeed.
1277  *
1278  * This function will not return with an unlocked mmap_lock. So it has not the
1279  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1280  */
1281 int fixup_user_fault(struct mm_struct *mm,
1282 		     unsigned long address, unsigned int fault_flags,
1283 		     bool *unlocked)
1284 {
1285 	struct vm_area_struct *vma;
1286 	vm_fault_t ret;
1287 
1288 	address = untagged_addr(address);
1289 
1290 	if (unlocked)
1291 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1292 
1293 retry:
1294 	vma = find_extend_vma(mm, address);
1295 	if (!vma || address < vma->vm_start)
1296 		return -EFAULT;
1297 
1298 	if (!vma_permits_fault(vma, fault_flags))
1299 		return -EFAULT;
1300 
1301 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1302 	    fatal_signal_pending(current))
1303 		return -EINTR;
1304 
1305 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1306 	if (ret & VM_FAULT_ERROR) {
1307 		int err = vm_fault_to_errno(ret, 0);
1308 
1309 		if (err)
1310 			return err;
1311 		BUG();
1312 	}
1313 
1314 	if (ret & VM_FAULT_RETRY) {
1315 		mmap_read_lock(mm);
1316 		*unlocked = true;
1317 		fault_flags |= FAULT_FLAG_TRIED;
1318 		goto retry;
1319 	}
1320 
1321 	return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(fixup_user_fault);
1324 
1325 /*
1326  * Please note that this function, unlike __get_user_pages will not
1327  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1328  */
1329 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1330 						unsigned long start,
1331 						unsigned long nr_pages,
1332 						struct page **pages,
1333 						struct vm_area_struct **vmas,
1334 						int *locked,
1335 						unsigned int flags)
1336 {
1337 	long ret, pages_done;
1338 	bool lock_dropped;
1339 
1340 	if (locked) {
1341 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1342 		BUG_ON(vmas);
1343 		/* check caller initialized locked */
1344 		BUG_ON(*locked != 1);
1345 	}
1346 
1347 	if (flags & FOLL_PIN)
1348 		mm_set_has_pinned_flag(&mm->flags);
1349 
1350 	/*
1351 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1352 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1353 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1354 	 * for FOLL_GET, not for the newer FOLL_PIN.
1355 	 *
1356 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1357 	 * that here, as any failures will be obvious enough.
1358 	 */
1359 	if (pages && !(flags & FOLL_PIN))
1360 		flags |= FOLL_GET;
1361 
1362 	pages_done = 0;
1363 	lock_dropped = false;
1364 	for (;;) {
1365 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1366 				       vmas, locked);
1367 		if (!locked)
1368 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1369 			return ret;
1370 
1371 		/* VM_FAULT_RETRY cannot return errors */
1372 		if (!*locked) {
1373 			BUG_ON(ret < 0);
1374 			BUG_ON(ret >= nr_pages);
1375 		}
1376 
1377 		if (ret > 0) {
1378 			nr_pages -= ret;
1379 			pages_done += ret;
1380 			if (!nr_pages)
1381 				break;
1382 		}
1383 		if (*locked) {
1384 			/*
1385 			 * VM_FAULT_RETRY didn't trigger or it was a
1386 			 * FOLL_NOWAIT.
1387 			 */
1388 			if (!pages_done)
1389 				pages_done = ret;
1390 			break;
1391 		}
1392 		/*
1393 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1394 		 * For the prefault case (!pages) we only update counts.
1395 		 */
1396 		if (likely(pages))
1397 			pages += ret;
1398 		start += ret << PAGE_SHIFT;
1399 		lock_dropped = true;
1400 
1401 retry:
1402 		/*
1403 		 * Repeat on the address that fired VM_FAULT_RETRY
1404 		 * with both FAULT_FLAG_ALLOW_RETRY and
1405 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1406 		 * by fatal signals, so we need to check it before we
1407 		 * start trying again otherwise it can loop forever.
1408 		 */
1409 
1410 		if (fatal_signal_pending(current)) {
1411 			if (!pages_done)
1412 				pages_done = -EINTR;
1413 			break;
1414 		}
1415 
1416 		ret = mmap_read_lock_killable(mm);
1417 		if (ret) {
1418 			BUG_ON(ret > 0);
1419 			if (!pages_done)
1420 				pages_done = ret;
1421 			break;
1422 		}
1423 
1424 		*locked = 1;
1425 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1426 				       pages, NULL, locked);
1427 		if (!*locked) {
1428 			/* Continue to retry until we succeeded */
1429 			BUG_ON(ret != 0);
1430 			goto retry;
1431 		}
1432 		if (ret != 1) {
1433 			BUG_ON(ret > 1);
1434 			if (!pages_done)
1435 				pages_done = ret;
1436 			break;
1437 		}
1438 		nr_pages--;
1439 		pages_done++;
1440 		if (!nr_pages)
1441 			break;
1442 		if (likely(pages))
1443 			pages++;
1444 		start += PAGE_SIZE;
1445 	}
1446 	if (lock_dropped && *locked) {
1447 		/*
1448 		 * We must let the caller know we temporarily dropped the lock
1449 		 * and so the critical section protected by it was lost.
1450 		 */
1451 		mmap_read_unlock(mm);
1452 		*locked = 0;
1453 	}
1454 	return pages_done;
1455 }
1456 
1457 /**
1458  * populate_vma_page_range() -  populate a range of pages in the vma.
1459  * @vma:   target vma
1460  * @start: start address
1461  * @end:   end address
1462  * @locked: whether the mmap_lock is still held
1463  *
1464  * This takes care of mlocking the pages too if VM_LOCKED is set.
1465  *
1466  * Return either number of pages pinned in the vma, or a negative error
1467  * code on error.
1468  *
1469  * vma->vm_mm->mmap_lock must be held.
1470  *
1471  * If @locked is NULL, it may be held for read or write and will
1472  * be unperturbed.
1473  *
1474  * If @locked is non-NULL, it must held for read only and may be
1475  * released.  If it's released, *@locked will be set to 0.
1476  */
1477 long populate_vma_page_range(struct vm_area_struct *vma,
1478 		unsigned long start, unsigned long end, int *locked)
1479 {
1480 	struct mm_struct *mm = vma->vm_mm;
1481 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1482 	int gup_flags;
1483 	long ret;
1484 
1485 	VM_BUG_ON(!PAGE_ALIGNED(start));
1486 	VM_BUG_ON(!PAGE_ALIGNED(end));
1487 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1488 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1489 	mmap_assert_locked(mm);
1490 
1491 	/*
1492 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1493 	 * faultin_page() to break COW, so it has no work to do here.
1494 	 */
1495 	if (vma->vm_flags & VM_LOCKONFAULT)
1496 		return nr_pages;
1497 
1498 	gup_flags = FOLL_TOUCH;
1499 	/*
1500 	 * We want to touch writable mappings with a write fault in order
1501 	 * to break COW, except for shared mappings because these don't COW
1502 	 * and we would not want to dirty them for nothing.
1503 	 */
1504 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1505 		gup_flags |= FOLL_WRITE;
1506 
1507 	/*
1508 	 * We want mlock to succeed for regions that have any permissions
1509 	 * other than PROT_NONE.
1510 	 */
1511 	if (vma_is_accessible(vma))
1512 		gup_flags |= FOLL_FORCE;
1513 
1514 	/*
1515 	 * We made sure addr is within a VMA, so the following will
1516 	 * not result in a stack expansion that recurses back here.
1517 	 */
1518 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1519 				NULL, NULL, locked);
1520 	lru_add_drain();
1521 	return ret;
1522 }
1523 
1524 /*
1525  * faultin_vma_page_range() - populate (prefault) page tables inside the
1526  *			      given VMA range readable/writable
1527  *
1528  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1529  *
1530  * @vma: target vma
1531  * @start: start address
1532  * @end: end address
1533  * @write: whether to prefault readable or writable
1534  * @locked: whether the mmap_lock is still held
1535  *
1536  * Returns either number of processed pages in the vma, or a negative error
1537  * code on error (see __get_user_pages()).
1538  *
1539  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1540  * covered by the VMA.
1541  *
1542  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1543  *
1544  * If @locked is non-NULL, it must held for read only and may be released.  If
1545  * it's released, *@locked will be set to 0.
1546  */
1547 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1548 			    unsigned long end, bool write, int *locked)
1549 {
1550 	struct mm_struct *mm = vma->vm_mm;
1551 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1552 	int gup_flags;
1553 	long ret;
1554 
1555 	VM_BUG_ON(!PAGE_ALIGNED(start));
1556 	VM_BUG_ON(!PAGE_ALIGNED(end));
1557 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1558 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1559 	mmap_assert_locked(mm);
1560 
1561 	/*
1562 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1563 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1564 	 *	       difference with !FOLL_FORCE, because the page is writable
1565 	 *	       in the page table.
1566 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1567 	 *		  a poisoned page.
1568 	 * !FOLL_FORCE: Require proper access permissions.
1569 	 */
1570 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1571 	if (write)
1572 		gup_flags |= FOLL_WRITE;
1573 
1574 	/*
1575 	 * We want to report -EINVAL instead of -EFAULT for any permission
1576 	 * problems or incompatible mappings.
1577 	 */
1578 	if (check_vma_flags(vma, gup_flags))
1579 		return -EINVAL;
1580 
1581 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1582 				NULL, NULL, locked);
1583 	lru_add_drain();
1584 	return ret;
1585 }
1586 
1587 /*
1588  * __mm_populate - populate and/or mlock pages within a range of address space.
1589  *
1590  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591  * flags. VMAs must be already marked with the desired vm_flags, and
1592  * mmap_lock must not be held.
1593  */
1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1595 {
1596 	struct mm_struct *mm = current->mm;
1597 	unsigned long end, nstart, nend;
1598 	struct vm_area_struct *vma = NULL;
1599 	int locked = 0;
1600 	long ret = 0;
1601 
1602 	end = start + len;
1603 
1604 	for (nstart = start; nstart < end; nstart = nend) {
1605 		/*
1606 		 * We want to fault in pages for [nstart; end) address range.
1607 		 * Find first corresponding VMA.
1608 		 */
1609 		if (!locked) {
1610 			locked = 1;
1611 			mmap_read_lock(mm);
1612 			vma = find_vma(mm, nstart);
1613 		} else if (nstart >= vma->vm_end)
1614 			vma = vma->vm_next;
1615 		if (!vma || vma->vm_start >= end)
1616 			break;
1617 		/*
1618 		 * Set [nstart; nend) to intersection of desired address
1619 		 * range with the first VMA. Also, skip undesirable VMA types.
1620 		 */
1621 		nend = min(end, vma->vm_end);
1622 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1623 			continue;
1624 		if (nstart < vma->vm_start)
1625 			nstart = vma->vm_start;
1626 		/*
1627 		 * Now fault in a range of pages. populate_vma_page_range()
1628 		 * double checks the vma flags, so that it won't mlock pages
1629 		 * if the vma was already munlocked.
1630 		 */
1631 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1632 		if (ret < 0) {
1633 			if (ignore_errors) {
1634 				ret = 0;
1635 				continue;	/* continue at next VMA */
1636 			}
1637 			break;
1638 		}
1639 		nend = nstart + ret * PAGE_SIZE;
1640 		ret = 0;
1641 	}
1642 	if (locked)
1643 		mmap_read_unlock(mm);
1644 	return ret;	/* 0 or negative error code */
1645 }
1646 #else /* CONFIG_MMU */
1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648 		unsigned long nr_pages, struct page **pages,
1649 		struct vm_area_struct **vmas, int *locked,
1650 		unsigned int foll_flags)
1651 {
1652 	struct vm_area_struct *vma;
1653 	unsigned long vm_flags;
1654 	long i;
1655 
1656 	/* calculate required read or write permissions.
1657 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1658 	 */
1659 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1660 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1662 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1663 
1664 	for (i = 0; i < nr_pages; i++) {
1665 		vma = find_vma(mm, start);
1666 		if (!vma)
1667 			goto finish_or_fault;
1668 
1669 		/* protect what we can, including chardevs */
1670 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671 		    !(vm_flags & vma->vm_flags))
1672 			goto finish_or_fault;
1673 
1674 		if (pages) {
1675 			pages[i] = virt_to_page(start);
1676 			if (pages[i])
1677 				get_page(pages[i]);
1678 		}
1679 		if (vmas)
1680 			vmas[i] = vma;
1681 		start = (start + PAGE_SIZE) & PAGE_MASK;
1682 	}
1683 
1684 	return i;
1685 
1686 finish_or_fault:
1687 	return i ? : -EFAULT;
1688 }
1689 #endif /* !CONFIG_MMU */
1690 
1691 /**
1692  * fault_in_writeable - fault in userspace address range for writing
1693  * @uaddr: start of address range
1694  * @size: size of address range
1695  *
1696  * Returns the number of bytes not faulted in (like copy_to_user() and
1697  * copy_from_user()).
1698  */
1699 size_t fault_in_writeable(char __user *uaddr, size_t size)
1700 {
1701 	char __user *start = uaddr, *end;
1702 
1703 	if (unlikely(size == 0))
1704 		return 0;
1705 	if (!user_write_access_begin(uaddr, size))
1706 		return size;
1707 	if (!PAGE_ALIGNED(uaddr)) {
1708 		unsafe_put_user(0, uaddr, out);
1709 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1710 	}
1711 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712 	if (unlikely(end < start))
1713 		end = NULL;
1714 	while (uaddr != end) {
1715 		unsafe_put_user(0, uaddr, out);
1716 		uaddr += PAGE_SIZE;
1717 	}
1718 
1719 out:
1720 	user_write_access_end();
1721 	if (size > uaddr - start)
1722 		return size - (uaddr - start);
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(fault_in_writeable);
1726 
1727 /**
1728  * fault_in_subpage_writeable - fault in an address range for writing
1729  * @uaddr: start of address range
1730  * @size: size of address range
1731  *
1732  * Fault in a user address range for writing while checking for permissions at
1733  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1734  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1735  *
1736  * Returns the number of bytes not faulted in (like copy_to_user() and
1737  * copy_from_user()).
1738  */
1739 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1740 {
1741 	size_t faulted_in;
1742 
1743 	/*
1744 	 * Attempt faulting in at page granularity first for page table
1745 	 * permission checking. The arch-specific probe_subpage_writeable()
1746 	 * functions may not check for this.
1747 	 */
1748 	faulted_in = size - fault_in_writeable(uaddr, size);
1749 	if (faulted_in)
1750 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1751 
1752 	return size - faulted_in;
1753 }
1754 EXPORT_SYMBOL(fault_in_subpage_writeable);
1755 
1756 /*
1757  * fault_in_safe_writeable - fault in an address range for writing
1758  * @uaddr: start of address range
1759  * @size: length of address range
1760  *
1761  * Faults in an address range for writing.  This is primarily useful when we
1762  * already know that some or all of the pages in the address range aren't in
1763  * memory.
1764  *
1765  * Unlike fault_in_writeable(), this function is non-destructive.
1766  *
1767  * Note that we don't pin or otherwise hold the pages referenced that we fault
1768  * in.  There's no guarantee that they'll stay in memory for any duration of
1769  * time.
1770  *
1771  * Returns the number of bytes not faulted in, like copy_to_user() and
1772  * copy_from_user().
1773  */
1774 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1775 {
1776 	unsigned long start = (unsigned long)uaddr, end;
1777 	struct mm_struct *mm = current->mm;
1778 	bool unlocked = false;
1779 
1780 	if (unlikely(size == 0))
1781 		return 0;
1782 	end = PAGE_ALIGN(start + size);
1783 	if (end < start)
1784 		end = 0;
1785 
1786 	mmap_read_lock(mm);
1787 	do {
1788 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1789 			break;
1790 		start = (start + PAGE_SIZE) & PAGE_MASK;
1791 	} while (start != end);
1792 	mmap_read_unlock(mm);
1793 
1794 	if (size > (unsigned long)uaddr - start)
1795 		return size - ((unsigned long)uaddr - start);
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL(fault_in_safe_writeable);
1799 
1800 /**
1801  * fault_in_readable - fault in userspace address range for reading
1802  * @uaddr: start of user address range
1803  * @size: size of user address range
1804  *
1805  * Returns the number of bytes not faulted in (like copy_to_user() and
1806  * copy_from_user()).
1807  */
1808 size_t fault_in_readable(const char __user *uaddr, size_t size)
1809 {
1810 	const char __user *start = uaddr, *end;
1811 	volatile char c;
1812 
1813 	if (unlikely(size == 0))
1814 		return 0;
1815 	if (!user_read_access_begin(uaddr, size))
1816 		return size;
1817 	if (!PAGE_ALIGNED(uaddr)) {
1818 		unsafe_get_user(c, uaddr, out);
1819 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1820 	}
1821 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1822 	if (unlikely(end < start))
1823 		end = NULL;
1824 	while (uaddr != end) {
1825 		unsafe_get_user(c, uaddr, out);
1826 		uaddr += PAGE_SIZE;
1827 	}
1828 
1829 out:
1830 	user_read_access_end();
1831 	(void)c;
1832 	if (size > uaddr - start)
1833 		return size - (uaddr - start);
1834 	return 0;
1835 }
1836 EXPORT_SYMBOL(fault_in_readable);
1837 
1838 /**
1839  * get_dump_page() - pin user page in memory while writing it to core dump
1840  * @addr: user address
1841  *
1842  * Returns struct page pointer of user page pinned for dump,
1843  * to be freed afterwards by put_page().
1844  *
1845  * Returns NULL on any kind of failure - a hole must then be inserted into
1846  * the corefile, to preserve alignment with its headers; and also returns
1847  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1848  * allowing a hole to be left in the corefile to save disk space.
1849  *
1850  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1851  */
1852 #ifdef CONFIG_ELF_CORE
1853 struct page *get_dump_page(unsigned long addr)
1854 {
1855 	struct mm_struct *mm = current->mm;
1856 	struct page *page;
1857 	int locked = 1;
1858 	int ret;
1859 
1860 	if (mmap_read_lock_killable(mm))
1861 		return NULL;
1862 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1863 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1864 	if (locked)
1865 		mmap_read_unlock(mm);
1866 	return (ret == 1) ? page : NULL;
1867 }
1868 #endif /* CONFIG_ELF_CORE */
1869 
1870 #ifdef CONFIG_MIGRATION
1871 /*
1872  * Check whether all pages are pinnable, if so return number of pages.  If some
1873  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1874  * pages were migrated, or if some pages were not successfully isolated.
1875  * Return negative error if migration fails.
1876  */
1877 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1878 					    struct page **pages,
1879 					    unsigned int gup_flags)
1880 {
1881 	unsigned long isolation_error_count = 0, i;
1882 	struct folio *prev_folio = NULL;
1883 	LIST_HEAD(movable_page_list);
1884 	bool drain_allow = true;
1885 	int ret = 0;
1886 
1887 	for (i = 0; i < nr_pages; i++) {
1888 		struct folio *folio = page_folio(pages[i]);
1889 
1890 		if (folio == prev_folio)
1891 			continue;
1892 		prev_folio = folio;
1893 
1894 		if (folio_is_pinnable(folio))
1895 			continue;
1896 
1897 		/*
1898 		 * Try to move out any movable page before pinning the range.
1899 		 */
1900 		if (folio_test_hugetlb(folio)) {
1901 			if (!isolate_huge_page(&folio->page,
1902 						&movable_page_list))
1903 				isolation_error_count++;
1904 			continue;
1905 		}
1906 
1907 		if (!folio_test_lru(folio) && drain_allow) {
1908 			lru_add_drain_all();
1909 			drain_allow = false;
1910 		}
1911 
1912 		if (folio_isolate_lru(folio)) {
1913 			isolation_error_count++;
1914 			continue;
1915 		}
1916 		list_add_tail(&folio->lru, &movable_page_list);
1917 		node_stat_mod_folio(folio,
1918 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1919 				    folio_nr_pages(folio));
1920 	}
1921 
1922 	if (!list_empty(&movable_page_list) || isolation_error_count)
1923 		goto unpin_pages;
1924 
1925 	/*
1926 	 * If list is empty, and no isolation errors, means that all pages are
1927 	 * in the correct zone.
1928 	 */
1929 	return nr_pages;
1930 
1931 unpin_pages:
1932 	if (gup_flags & FOLL_PIN) {
1933 		unpin_user_pages(pages, nr_pages);
1934 	} else {
1935 		for (i = 0; i < nr_pages; i++)
1936 			put_page(pages[i]);
1937 	}
1938 
1939 	if (!list_empty(&movable_page_list)) {
1940 		struct migration_target_control mtc = {
1941 			.nid = NUMA_NO_NODE,
1942 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1943 		};
1944 
1945 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1946 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1947 				    MR_LONGTERM_PIN, NULL);
1948 		if (ret > 0) /* number of pages not migrated */
1949 			ret = -ENOMEM;
1950 	}
1951 
1952 	if (ret && !list_empty(&movable_page_list))
1953 		putback_movable_pages(&movable_page_list);
1954 	return ret;
1955 }
1956 #else
1957 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1958 					    struct page **pages,
1959 					    unsigned int gup_flags)
1960 {
1961 	return nr_pages;
1962 }
1963 #endif /* CONFIG_MIGRATION */
1964 
1965 /*
1966  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1967  * allows us to process the FOLL_LONGTERM flag.
1968  */
1969 static long __gup_longterm_locked(struct mm_struct *mm,
1970 				  unsigned long start,
1971 				  unsigned long nr_pages,
1972 				  struct page **pages,
1973 				  struct vm_area_struct **vmas,
1974 				  unsigned int gup_flags)
1975 {
1976 	unsigned int flags;
1977 	long rc;
1978 
1979 	if (!(gup_flags & FOLL_LONGTERM))
1980 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1981 					       NULL, gup_flags);
1982 	flags = memalloc_pin_save();
1983 	do {
1984 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1985 					     NULL, gup_flags);
1986 		if (rc <= 0)
1987 			break;
1988 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1989 	} while (!rc);
1990 	memalloc_pin_restore(flags);
1991 
1992 	return rc;
1993 }
1994 
1995 static bool is_valid_gup_flags(unsigned int gup_flags)
1996 {
1997 	/*
1998 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1999 	 * never directly by the caller, so enforce that with an assertion:
2000 	 */
2001 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2002 		return false;
2003 	/*
2004 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2005 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2006 	 * FOLL_PIN.
2007 	 */
2008 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2009 		return false;
2010 
2011 	return true;
2012 }
2013 
2014 #ifdef CONFIG_MMU
2015 static long __get_user_pages_remote(struct mm_struct *mm,
2016 				    unsigned long start, unsigned long nr_pages,
2017 				    unsigned int gup_flags, struct page **pages,
2018 				    struct vm_area_struct **vmas, int *locked)
2019 {
2020 	/*
2021 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2022 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2023 	 * vmas. However, this only comes up if locked is set, and there are
2024 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2025 	 * allow what we can.
2026 	 */
2027 	if (gup_flags & FOLL_LONGTERM) {
2028 		if (WARN_ON_ONCE(locked))
2029 			return -EINVAL;
2030 		/*
2031 		 * This will check the vmas (even if our vmas arg is NULL)
2032 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2033 		 */
2034 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2035 					     vmas, gup_flags | FOLL_TOUCH |
2036 					     FOLL_REMOTE);
2037 	}
2038 
2039 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2040 				       locked,
2041 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2042 }
2043 
2044 /**
2045  * get_user_pages_remote() - pin user pages in memory
2046  * @mm:		mm_struct of target mm
2047  * @start:	starting user address
2048  * @nr_pages:	number of pages from start to pin
2049  * @gup_flags:	flags modifying lookup behaviour
2050  * @pages:	array that receives pointers to the pages pinned.
2051  *		Should be at least nr_pages long. Or NULL, if caller
2052  *		only intends to ensure the pages are faulted in.
2053  * @vmas:	array of pointers to vmas corresponding to each page.
2054  *		Or NULL if the caller does not require them.
2055  * @locked:	pointer to lock flag indicating whether lock is held and
2056  *		subsequently whether VM_FAULT_RETRY functionality can be
2057  *		utilised. Lock must initially be held.
2058  *
2059  * Returns either number of pages pinned (which may be less than the
2060  * number requested), or an error. Details about the return value:
2061  *
2062  * -- If nr_pages is 0, returns 0.
2063  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2064  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2065  *    pages pinned. Again, this may be less than nr_pages.
2066  *
2067  * The caller is responsible for releasing returned @pages, via put_page().
2068  *
2069  * @vmas are valid only as long as mmap_lock is held.
2070  *
2071  * Must be called with mmap_lock held for read or write.
2072  *
2073  * get_user_pages_remote walks a process's page tables and takes a reference
2074  * to each struct page that each user address corresponds to at a given
2075  * instant. That is, it takes the page that would be accessed if a user
2076  * thread accesses the given user virtual address at that instant.
2077  *
2078  * This does not guarantee that the page exists in the user mappings when
2079  * get_user_pages_remote returns, and there may even be a completely different
2080  * page there in some cases (eg. if mmapped pagecache has been invalidated
2081  * and subsequently re faulted). However it does guarantee that the page
2082  * won't be freed completely. And mostly callers simply care that the page
2083  * contains data that was valid *at some point in time*. Typically, an IO
2084  * or similar operation cannot guarantee anything stronger anyway because
2085  * locks can't be held over the syscall boundary.
2086  *
2087  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2088  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2089  * be called after the page is finished with, and before put_page is called.
2090  *
2091  * get_user_pages_remote is typically used for fewer-copy IO operations,
2092  * to get a handle on the memory by some means other than accesses
2093  * via the user virtual addresses. The pages may be submitted for
2094  * DMA to devices or accessed via their kernel linear mapping (via the
2095  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2096  *
2097  * See also get_user_pages_fast, for performance critical applications.
2098  *
2099  * get_user_pages_remote should be phased out in favor of
2100  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2101  * should use get_user_pages_remote because it cannot pass
2102  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2103  */
2104 long get_user_pages_remote(struct mm_struct *mm,
2105 		unsigned long start, unsigned long nr_pages,
2106 		unsigned int gup_flags, struct page **pages,
2107 		struct vm_area_struct **vmas, int *locked)
2108 {
2109 	if (!is_valid_gup_flags(gup_flags))
2110 		return -EINVAL;
2111 
2112 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2113 				       pages, vmas, locked);
2114 }
2115 EXPORT_SYMBOL(get_user_pages_remote);
2116 
2117 #else /* CONFIG_MMU */
2118 long get_user_pages_remote(struct mm_struct *mm,
2119 			   unsigned long start, unsigned long nr_pages,
2120 			   unsigned int gup_flags, struct page **pages,
2121 			   struct vm_area_struct **vmas, int *locked)
2122 {
2123 	return 0;
2124 }
2125 
2126 static long __get_user_pages_remote(struct mm_struct *mm,
2127 				    unsigned long start, unsigned long nr_pages,
2128 				    unsigned int gup_flags, struct page **pages,
2129 				    struct vm_area_struct **vmas, int *locked)
2130 {
2131 	return 0;
2132 }
2133 #endif /* !CONFIG_MMU */
2134 
2135 /**
2136  * get_user_pages() - pin user pages in memory
2137  * @start:      starting user address
2138  * @nr_pages:   number of pages from start to pin
2139  * @gup_flags:  flags modifying lookup behaviour
2140  * @pages:      array that receives pointers to the pages pinned.
2141  *              Should be at least nr_pages long. Or NULL, if caller
2142  *              only intends to ensure the pages are faulted in.
2143  * @vmas:       array of pointers to vmas corresponding to each page.
2144  *              Or NULL if the caller does not require them.
2145  *
2146  * This is the same as get_user_pages_remote(), just with a less-flexible
2147  * calling convention where we assume that the mm being operated on belongs to
2148  * the current task, and doesn't allow passing of a locked parameter.  We also
2149  * obviously don't pass FOLL_REMOTE in here.
2150  */
2151 long get_user_pages(unsigned long start, unsigned long nr_pages,
2152 		unsigned int gup_flags, struct page **pages,
2153 		struct vm_area_struct **vmas)
2154 {
2155 	if (!is_valid_gup_flags(gup_flags))
2156 		return -EINVAL;
2157 
2158 	return __gup_longterm_locked(current->mm, start, nr_pages,
2159 				     pages, vmas, gup_flags | FOLL_TOUCH);
2160 }
2161 EXPORT_SYMBOL(get_user_pages);
2162 
2163 /*
2164  * get_user_pages_unlocked() is suitable to replace the form:
2165  *
2166  *      mmap_read_lock(mm);
2167  *      get_user_pages(mm, ..., pages, NULL);
2168  *      mmap_read_unlock(mm);
2169  *
2170  *  with:
2171  *
2172  *      get_user_pages_unlocked(mm, ..., pages);
2173  *
2174  * It is functionally equivalent to get_user_pages_fast so
2175  * get_user_pages_fast should be used instead if specific gup_flags
2176  * (e.g. FOLL_FORCE) are not required.
2177  */
2178 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2179 			     struct page **pages, unsigned int gup_flags)
2180 {
2181 	struct mm_struct *mm = current->mm;
2182 	int locked = 1;
2183 	long ret;
2184 
2185 	/*
2186 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2187 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2188 	 * vmas.  As there are no users of this flag in this call we simply
2189 	 * disallow this option for now.
2190 	 */
2191 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2192 		return -EINVAL;
2193 
2194 	mmap_read_lock(mm);
2195 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2196 				      &locked, gup_flags | FOLL_TOUCH);
2197 	if (locked)
2198 		mmap_read_unlock(mm);
2199 	return ret;
2200 }
2201 EXPORT_SYMBOL(get_user_pages_unlocked);
2202 
2203 /*
2204  * Fast GUP
2205  *
2206  * get_user_pages_fast attempts to pin user pages by walking the page
2207  * tables directly and avoids taking locks. Thus the walker needs to be
2208  * protected from page table pages being freed from under it, and should
2209  * block any THP splits.
2210  *
2211  * One way to achieve this is to have the walker disable interrupts, and
2212  * rely on IPIs from the TLB flushing code blocking before the page table
2213  * pages are freed. This is unsuitable for architectures that do not need
2214  * to broadcast an IPI when invalidating TLBs.
2215  *
2216  * Another way to achieve this is to batch up page table containing pages
2217  * belonging to more than one mm_user, then rcu_sched a callback to free those
2218  * pages. Disabling interrupts will allow the fast_gup walker to both block
2219  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2220  * (which is a relatively rare event). The code below adopts this strategy.
2221  *
2222  * Before activating this code, please be aware that the following assumptions
2223  * are currently made:
2224  *
2225  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2226  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2227  *
2228  *  *) ptes can be read atomically by the architecture.
2229  *
2230  *  *) access_ok is sufficient to validate userspace address ranges.
2231  *
2232  * The last two assumptions can be relaxed by the addition of helper functions.
2233  *
2234  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2235  */
2236 #ifdef CONFIG_HAVE_FAST_GUP
2237 
2238 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2239 					    unsigned int flags,
2240 					    struct page **pages)
2241 {
2242 	while ((*nr) - nr_start) {
2243 		struct page *page = pages[--(*nr)];
2244 
2245 		ClearPageReferenced(page);
2246 		if (flags & FOLL_PIN)
2247 			unpin_user_page(page);
2248 		else
2249 			put_page(page);
2250 	}
2251 }
2252 
2253 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2254 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2255 			 unsigned int flags, struct page **pages, int *nr)
2256 {
2257 	struct dev_pagemap *pgmap = NULL;
2258 	int nr_start = *nr, ret = 0;
2259 	pte_t *ptep, *ptem;
2260 
2261 	ptem = ptep = pte_offset_map(&pmd, addr);
2262 	do {
2263 		pte_t pte = ptep_get_lockless(ptep);
2264 		struct page *page;
2265 		struct folio *folio;
2266 
2267 		/*
2268 		 * Similar to the PMD case below, NUMA hinting must take slow
2269 		 * path using the pte_protnone check.
2270 		 */
2271 		if (pte_protnone(pte))
2272 			goto pte_unmap;
2273 
2274 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2275 			goto pte_unmap;
2276 
2277 		if (pte_devmap(pte)) {
2278 			if (unlikely(flags & FOLL_LONGTERM))
2279 				goto pte_unmap;
2280 
2281 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2282 			if (unlikely(!pgmap)) {
2283 				undo_dev_pagemap(nr, nr_start, flags, pages);
2284 				goto pte_unmap;
2285 			}
2286 		} else if (pte_special(pte))
2287 			goto pte_unmap;
2288 
2289 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2290 		page = pte_page(pte);
2291 
2292 		folio = try_grab_folio(page, 1, flags);
2293 		if (!folio)
2294 			goto pte_unmap;
2295 
2296 		if (unlikely(page_is_secretmem(page))) {
2297 			gup_put_folio(folio, 1, flags);
2298 			goto pte_unmap;
2299 		}
2300 
2301 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2302 			gup_put_folio(folio, 1, flags);
2303 			goto pte_unmap;
2304 		}
2305 
2306 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2307 			gup_put_folio(folio, 1, flags);
2308 			goto pte_unmap;
2309 		}
2310 
2311 		/*
2312 		 * We need to make the page accessible if and only if we are
2313 		 * going to access its content (the FOLL_PIN case).  Please
2314 		 * see Documentation/core-api/pin_user_pages.rst for
2315 		 * details.
2316 		 */
2317 		if (flags & FOLL_PIN) {
2318 			ret = arch_make_page_accessible(page);
2319 			if (ret) {
2320 				gup_put_folio(folio, 1, flags);
2321 				goto pte_unmap;
2322 			}
2323 		}
2324 		folio_set_referenced(folio);
2325 		pages[*nr] = page;
2326 		(*nr)++;
2327 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2328 
2329 	ret = 1;
2330 
2331 pte_unmap:
2332 	if (pgmap)
2333 		put_dev_pagemap(pgmap);
2334 	pte_unmap(ptem);
2335 	return ret;
2336 }
2337 #else
2338 
2339 /*
2340  * If we can't determine whether or not a pte is special, then fail immediately
2341  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2342  * to be special.
2343  *
2344  * For a futex to be placed on a THP tail page, get_futex_key requires a
2345  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2346  * useful to have gup_huge_pmd even if we can't operate on ptes.
2347  */
2348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2349 			 unsigned int flags, struct page **pages, int *nr)
2350 {
2351 	return 0;
2352 }
2353 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2354 
2355 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2356 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2357 			     unsigned long end, unsigned int flags,
2358 			     struct page **pages, int *nr)
2359 {
2360 	int nr_start = *nr;
2361 	struct dev_pagemap *pgmap = NULL;
2362 
2363 	do {
2364 		struct page *page = pfn_to_page(pfn);
2365 
2366 		pgmap = get_dev_pagemap(pfn, pgmap);
2367 		if (unlikely(!pgmap)) {
2368 			undo_dev_pagemap(nr, nr_start, flags, pages);
2369 			break;
2370 		}
2371 		SetPageReferenced(page);
2372 		pages[*nr] = page;
2373 		if (unlikely(!try_grab_page(page, flags))) {
2374 			undo_dev_pagemap(nr, nr_start, flags, pages);
2375 			break;
2376 		}
2377 		(*nr)++;
2378 		pfn++;
2379 	} while (addr += PAGE_SIZE, addr != end);
2380 
2381 	put_dev_pagemap(pgmap);
2382 	return addr == end;
2383 }
2384 
2385 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2386 				 unsigned long end, unsigned int flags,
2387 				 struct page **pages, int *nr)
2388 {
2389 	unsigned long fault_pfn;
2390 	int nr_start = *nr;
2391 
2392 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2393 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2394 		return 0;
2395 
2396 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2397 		undo_dev_pagemap(nr, nr_start, flags, pages);
2398 		return 0;
2399 	}
2400 	return 1;
2401 }
2402 
2403 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2404 				 unsigned long end, unsigned int flags,
2405 				 struct page **pages, int *nr)
2406 {
2407 	unsigned long fault_pfn;
2408 	int nr_start = *nr;
2409 
2410 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2411 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2412 		return 0;
2413 
2414 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2415 		undo_dev_pagemap(nr, nr_start, flags, pages);
2416 		return 0;
2417 	}
2418 	return 1;
2419 }
2420 #else
2421 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2422 				 unsigned long end, unsigned int flags,
2423 				 struct page **pages, int *nr)
2424 {
2425 	BUILD_BUG();
2426 	return 0;
2427 }
2428 
2429 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2430 				 unsigned long end, unsigned int flags,
2431 				 struct page **pages, int *nr)
2432 {
2433 	BUILD_BUG();
2434 	return 0;
2435 }
2436 #endif
2437 
2438 static int record_subpages(struct page *page, unsigned long addr,
2439 			   unsigned long end, struct page **pages)
2440 {
2441 	int nr;
2442 
2443 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2444 		pages[nr] = nth_page(page, nr);
2445 
2446 	return nr;
2447 }
2448 
2449 #ifdef CONFIG_ARCH_HAS_HUGEPD
2450 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2451 				      unsigned long sz)
2452 {
2453 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2454 	return (__boundary - 1 < end - 1) ? __boundary : end;
2455 }
2456 
2457 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2458 		       unsigned long end, unsigned int flags,
2459 		       struct page **pages, int *nr)
2460 {
2461 	unsigned long pte_end;
2462 	struct page *page;
2463 	struct folio *folio;
2464 	pte_t pte;
2465 	int refs;
2466 
2467 	pte_end = (addr + sz) & ~(sz-1);
2468 	if (pte_end < end)
2469 		end = pte_end;
2470 
2471 	pte = huge_ptep_get(ptep);
2472 
2473 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2474 		return 0;
2475 
2476 	/* hugepages are never "special" */
2477 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2478 
2479 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2480 	refs = record_subpages(page, addr, end, pages + *nr);
2481 
2482 	folio = try_grab_folio(page, refs, flags);
2483 	if (!folio)
2484 		return 0;
2485 
2486 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2487 		gup_put_folio(folio, refs, flags);
2488 		return 0;
2489 	}
2490 
2491 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2492 		gup_put_folio(folio, refs, flags);
2493 		return 0;
2494 	}
2495 
2496 	*nr += refs;
2497 	folio_set_referenced(folio);
2498 	return 1;
2499 }
2500 
2501 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2502 		unsigned int pdshift, unsigned long end, unsigned int flags,
2503 		struct page **pages, int *nr)
2504 {
2505 	pte_t *ptep;
2506 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2507 	unsigned long next;
2508 
2509 	ptep = hugepte_offset(hugepd, addr, pdshift);
2510 	do {
2511 		next = hugepte_addr_end(addr, end, sz);
2512 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2513 			return 0;
2514 	} while (ptep++, addr = next, addr != end);
2515 
2516 	return 1;
2517 }
2518 #else
2519 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2520 		unsigned int pdshift, unsigned long end, unsigned int flags,
2521 		struct page **pages, int *nr)
2522 {
2523 	return 0;
2524 }
2525 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2526 
2527 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2528 			unsigned long end, unsigned int flags,
2529 			struct page **pages, int *nr)
2530 {
2531 	struct page *page;
2532 	struct folio *folio;
2533 	int refs;
2534 
2535 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2536 		return 0;
2537 
2538 	if (pmd_devmap(orig)) {
2539 		if (unlikely(flags & FOLL_LONGTERM))
2540 			return 0;
2541 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2542 					     pages, nr);
2543 	}
2544 
2545 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2546 	refs = record_subpages(page, addr, end, pages + *nr);
2547 
2548 	folio = try_grab_folio(page, refs, flags);
2549 	if (!folio)
2550 		return 0;
2551 
2552 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2553 		gup_put_folio(folio, refs, flags);
2554 		return 0;
2555 	}
2556 
2557 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2558 		gup_put_folio(folio, refs, flags);
2559 		return 0;
2560 	}
2561 
2562 	*nr += refs;
2563 	folio_set_referenced(folio);
2564 	return 1;
2565 }
2566 
2567 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2568 			unsigned long end, unsigned int flags,
2569 			struct page **pages, int *nr)
2570 {
2571 	struct page *page;
2572 	struct folio *folio;
2573 	int refs;
2574 
2575 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2576 		return 0;
2577 
2578 	if (pud_devmap(orig)) {
2579 		if (unlikely(flags & FOLL_LONGTERM))
2580 			return 0;
2581 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2582 					     pages, nr);
2583 	}
2584 
2585 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2586 	refs = record_subpages(page, addr, end, pages + *nr);
2587 
2588 	folio = try_grab_folio(page, refs, flags);
2589 	if (!folio)
2590 		return 0;
2591 
2592 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2593 		gup_put_folio(folio, refs, flags);
2594 		return 0;
2595 	}
2596 
2597 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2598 		gup_put_folio(folio, refs, flags);
2599 		return 0;
2600 	}
2601 
2602 	*nr += refs;
2603 	folio_set_referenced(folio);
2604 	return 1;
2605 }
2606 
2607 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2608 			unsigned long end, unsigned int flags,
2609 			struct page **pages, int *nr)
2610 {
2611 	int refs;
2612 	struct page *page;
2613 	struct folio *folio;
2614 
2615 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2616 		return 0;
2617 
2618 	BUILD_BUG_ON(pgd_devmap(orig));
2619 
2620 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2621 	refs = record_subpages(page, addr, end, pages + *nr);
2622 
2623 	folio = try_grab_folio(page, refs, flags);
2624 	if (!folio)
2625 		return 0;
2626 
2627 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2628 		gup_put_folio(folio, refs, flags);
2629 		return 0;
2630 	}
2631 
2632 	*nr += refs;
2633 	folio_set_referenced(folio);
2634 	return 1;
2635 }
2636 
2637 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2638 		unsigned int flags, struct page **pages, int *nr)
2639 {
2640 	unsigned long next;
2641 	pmd_t *pmdp;
2642 
2643 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2644 	do {
2645 		pmd_t pmd = READ_ONCE(*pmdp);
2646 
2647 		next = pmd_addr_end(addr, end);
2648 		if (!pmd_present(pmd))
2649 			return 0;
2650 
2651 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2652 			     pmd_devmap(pmd))) {
2653 			/*
2654 			 * NUMA hinting faults need to be handled in the GUP
2655 			 * slowpath for accounting purposes and so that they
2656 			 * can be serialised against THP migration.
2657 			 */
2658 			if (pmd_protnone(pmd))
2659 				return 0;
2660 
2661 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2662 				pages, nr))
2663 				return 0;
2664 
2665 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2666 			/*
2667 			 * architecture have different format for hugetlbfs
2668 			 * pmd format and THP pmd format
2669 			 */
2670 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2671 					 PMD_SHIFT, next, flags, pages, nr))
2672 				return 0;
2673 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2674 			return 0;
2675 	} while (pmdp++, addr = next, addr != end);
2676 
2677 	return 1;
2678 }
2679 
2680 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2681 			 unsigned int flags, struct page **pages, int *nr)
2682 {
2683 	unsigned long next;
2684 	pud_t *pudp;
2685 
2686 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2687 	do {
2688 		pud_t pud = READ_ONCE(*pudp);
2689 
2690 		next = pud_addr_end(addr, end);
2691 		if (unlikely(!pud_present(pud)))
2692 			return 0;
2693 		if (unlikely(pud_huge(pud))) {
2694 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2695 					  pages, nr))
2696 				return 0;
2697 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2698 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2699 					 PUD_SHIFT, next, flags, pages, nr))
2700 				return 0;
2701 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2702 			return 0;
2703 	} while (pudp++, addr = next, addr != end);
2704 
2705 	return 1;
2706 }
2707 
2708 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2709 			 unsigned int flags, struct page **pages, int *nr)
2710 {
2711 	unsigned long next;
2712 	p4d_t *p4dp;
2713 
2714 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2715 	do {
2716 		p4d_t p4d = READ_ONCE(*p4dp);
2717 
2718 		next = p4d_addr_end(addr, end);
2719 		if (p4d_none(p4d))
2720 			return 0;
2721 		BUILD_BUG_ON(p4d_huge(p4d));
2722 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2723 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2724 					 P4D_SHIFT, next, flags, pages, nr))
2725 				return 0;
2726 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2727 			return 0;
2728 	} while (p4dp++, addr = next, addr != end);
2729 
2730 	return 1;
2731 }
2732 
2733 static void gup_pgd_range(unsigned long addr, unsigned long end,
2734 		unsigned int flags, struct page **pages, int *nr)
2735 {
2736 	unsigned long next;
2737 	pgd_t *pgdp;
2738 
2739 	pgdp = pgd_offset(current->mm, addr);
2740 	do {
2741 		pgd_t pgd = READ_ONCE(*pgdp);
2742 
2743 		next = pgd_addr_end(addr, end);
2744 		if (pgd_none(pgd))
2745 			return;
2746 		if (unlikely(pgd_huge(pgd))) {
2747 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2748 					  pages, nr))
2749 				return;
2750 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2751 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2752 					 PGDIR_SHIFT, next, flags, pages, nr))
2753 				return;
2754 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2755 			return;
2756 	} while (pgdp++, addr = next, addr != end);
2757 }
2758 #else
2759 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2760 		unsigned int flags, struct page **pages, int *nr)
2761 {
2762 }
2763 #endif /* CONFIG_HAVE_FAST_GUP */
2764 
2765 #ifndef gup_fast_permitted
2766 /*
2767  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2768  * we need to fall back to the slow version:
2769  */
2770 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2771 {
2772 	return true;
2773 }
2774 #endif
2775 
2776 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2777 				   unsigned int gup_flags, struct page **pages)
2778 {
2779 	int ret;
2780 
2781 	/*
2782 	 * FIXME: FOLL_LONGTERM does not work with
2783 	 * get_user_pages_unlocked() (see comments in that function)
2784 	 */
2785 	if (gup_flags & FOLL_LONGTERM) {
2786 		mmap_read_lock(current->mm);
2787 		ret = __gup_longterm_locked(current->mm,
2788 					    start, nr_pages,
2789 					    pages, NULL, gup_flags);
2790 		mmap_read_unlock(current->mm);
2791 	} else {
2792 		ret = get_user_pages_unlocked(start, nr_pages,
2793 					      pages, gup_flags);
2794 	}
2795 
2796 	return ret;
2797 }
2798 
2799 static unsigned long lockless_pages_from_mm(unsigned long start,
2800 					    unsigned long end,
2801 					    unsigned int gup_flags,
2802 					    struct page **pages)
2803 {
2804 	unsigned long flags;
2805 	int nr_pinned = 0;
2806 	unsigned seq;
2807 
2808 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2809 	    !gup_fast_permitted(start, end))
2810 		return 0;
2811 
2812 	if (gup_flags & FOLL_PIN) {
2813 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2814 		if (seq & 1)
2815 			return 0;
2816 	}
2817 
2818 	/*
2819 	 * Disable interrupts. The nested form is used, in order to allow full,
2820 	 * general purpose use of this routine.
2821 	 *
2822 	 * With interrupts disabled, we block page table pages from being freed
2823 	 * from under us. See struct mmu_table_batch comments in
2824 	 * include/asm-generic/tlb.h for more details.
2825 	 *
2826 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2827 	 * that come from THPs splitting.
2828 	 */
2829 	local_irq_save(flags);
2830 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2831 	local_irq_restore(flags);
2832 
2833 	/*
2834 	 * When pinning pages for DMA there could be a concurrent write protect
2835 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2836 	 */
2837 	if (gup_flags & FOLL_PIN) {
2838 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2839 			unpin_user_pages_lockless(pages, nr_pinned);
2840 			return 0;
2841 		} else {
2842 			sanity_check_pinned_pages(pages, nr_pinned);
2843 		}
2844 	}
2845 	return nr_pinned;
2846 }
2847 
2848 static int internal_get_user_pages_fast(unsigned long start,
2849 					unsigned long nr_pages,
2850 					unsigned int gup_flags,
2851 					struct page **pages)
2852 {
2853 	unsigned long len, end;
2854 	unsigned long nr_pinned;
2855 	int ret;
2856 
2857 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2858 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2859 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2860 		return -EINVAL;
2861 
2862 	if (gup_flags & FOLL_PIN)
2863 		mm_set_has_pinned_flag(&current->mm->flags);
2864 
2865 	if (!(gup_flags & FOLL_FAST_ONLY))
2866 		might_lock_read(&current->mm->mmap_lock);
2867 
2868 	start = untagged_addr(start) & PAGE_MASK;
2869 	len = nr_pages << PAGE_SHIFT;
2870 	if (check_add_overflow(start, len, &end))
2871 		return 0;
2872 	if (unlikely(!access_ok((void __user *)start, len)))
2873 		return -EFAULT;
2874 
2875 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2876 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2877 		return nr_pinned;
2878 
2879 	/* Slow path: try to get the remaining pages with get_user_pages */
2880 	start += nr_pinned << PAGE_SHIFT;
2881 	pages += nr_pinned;
2882 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2883 				      pages);
2884 	if (ret < 0) {
2885 		/*
2886 		 * The caller has to unpin the pages we already pinned so
2887 		 * returning -errno is not an option
2888 		 */
2889 		if (nr_pinned)
2890 			return nr_pinned;
2891 		return ret;
2892 	}
2893 	return ret + nr_pinned;
2894 }
2895 
2896 /**
2897  * get_user_pages_fast_only() - pin user pages in memory
2898  * @start:      starting user address
2899  * @nr_pages:   number of pages from start to pin
2900  * @gup_flags:  flags modifying pin behaviour
2901  * @pages:      array that receives pointers to the pages pinned.
2902  *              Should be at least nr_pages long.
2903  *
2904  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2905  * the regular GUP.
2906  * Note a difference with get_user_pages_fast: this always returns the
2907  * number of pages pinned, 0 if no pages were pinned.
2908  *
2909  * If the architecture does not support this function, simply return with no
2910  * pages pinned.
2911  *
2912  * Careful, careful! COW breaking can go either way, so a non-write
2913  * access can get ambiguous page results. If you call this function without
2914  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2915  */
2916 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2917 			     unsigned int gup_flags, struct page **pages)
2918 {
2919 	int nr_pinned;
2920 	/*
2921 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2922 	 * because gup fast is always a "pin with a +1 page refcount" request.
2923 	 *
2924 	 * FOLL_FAST_ONLY is required in order to match the API description of
2925 	 * this routine: no fall back to regular ("slow") GUP.
2926 	 */
2927 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2928 
2929 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2930 						 pages);
2931 
2932 	/*
2933 	 * As specified in the API description above, this routine is not
2934 	 * allowed to return negative values. However, the common core
2935 	 * routine internal_get_user_pages_fast() *can* return -errno.
2936 	 * Therefore, correct for that here:
2937 	 */
2938 	if (nr_pinned < 0)
2939 		nr_pinned = 0;
2940 
2941 	return nr_pinned;
2942 }
2943 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2944 
2945 /**
2946  * get_user_pages_fast() - pin user pages in memory
2947  * @start:      starting user address
2948  * @nr_pages:   number of pages from start to pin
2949  * @gup_flags:  flags modifying pin behaviour
2950  * @pages:      array that receives pointers to the pages pinned.
2951  *              Should be at least nr_pages long.
2952  *
2953  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2954  * If not successful, it will fall back to taking the lock and
2955  * calling get_user_pages().
2956  *
2957  * Returns number of pages pinned. This may be fewer than the number requested.
2958  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2959  * -errno.
2960  */
2961 int get_user_pages_fast(unsigned long start, int nr_pages,
2962 			unsigned int gup_flags, struct page **pages)
2963 {
2964 	if (!is_valid_gup_flags(gup_flags))
2965 		return -EINVAL;
2966 
2967 	/*
2968 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2969 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2970 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2971 	 * request.
2972 	 */
2973 	gup_flags |= FOLL_GET;
2974 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2975 }
2976 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2977 
2978 /**
2979  * pin_user_pages_fast() - pin user pages in memory without taking locks
2980  *
2981  * @start:      starting user address
2982  * @nr_pages:   number of pages from start to pin
2983  * @gup_flags:  flags modifying pin behaviour
2984  * @pages:      array that receives pointers to the pages pinned.
2985  *              Should be at least nr_pages long.
2986  *
2987  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2988  * get_user_pages_fast() for documentation on the function arguments, because
2989  * the arguments here are identical.
2990  *
2991  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2992  * see Documentation/core-api/pin_user_pages.rst for further details.
2993  */
2994 int pin_user_pages_fast(unsigned long start, int nr_pages,
2995 			unsigned int gup_flags, struct page **pages)
2996 {
2997 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2998 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2999 		return -EINVAL;
3000 
3001 	if (WARN_ON_ONCE(!pages))
3002 		return -EINVAL;
3003 
3004 	gup_flags |= FOLL_PIN;
3005 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3006 }
3007 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3008 
3009 /*
3010  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3011  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3012  *
3013  * The API rules are the same, too: no negative values may be returned.
3014  */
3015 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3016 			     unsigned int gup_flags, struct page **pages)
3017 {
3018 	int nr_pinned;
3019 
3020 	/*
3021 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3022 	 * rules require returning 0, rather than -errno:
3023 	 */
3024 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3025 		return 0;
3026 
3027 	if (WARN_ON_ONCE(!pages))
3028 		return 0;
3029 	/*
3030 	 * FOLL_FAST_ONLY is required in order to match the API description of
3031 	 * this routine: no fall back to regular ("slow") GUP.
3032 	 */
3033 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3034 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3035 						 pages);
3036 	/*
3037 	 * This routine is not allowed to return negative values. However,
3038 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3039 	 * correct for that here:
3040 	 */
3041 	if (nr_pinned < 0)
3042 		nr_pinned = 0;
3043 
3044 	return nr_pinned;
3045 }
3046 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3047 
3048 /**
3049  * pin_user_pages_remote() - pin pages of a remote process
3050  *
3051  * @mm:		mm_struct of target mm
3052  * @start:	starting user address
3053  * @nr_pages:	number of pages from start to pin
3054  * @gup_flags:	flags modifying lookup behaviour
3055  * @pages:	array that receives pointers to the pages pinned.
3056  *		Should be at least nr_pages long.
3057  * @vmas:	array of pointers to vmas corresponding to each page.
3058  *		Or NULL if the caller does not require them.
3059  * @locked:	pointer to lock flag indicating whether lock is held and
3060  *		subsequently whether VM_FAULT_RETRY functionality can be
3061  *		utilised. Lock must initially be held.
3062  *
3063  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3064  * get_user_pages_remote() for documentation on the function arguments, because
3065  * the arguments here are identical.
3066  *
3067  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3068  * see Documentation/core-api/pin_user_pages.rst for details.
3069  */
3070 long pin_user_pages_remote(struct mm_struct *mm,
3071 			   unsigned long start, unsigned long nr_pages,
3072 			   unsigned int gup_flags, struct page **pages,
3073 			   struct vm_area_struct **vmas, int *locked)
3074 {
3075 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3076 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3077 		return -EINVAL;
3078 
3079 	if (WARN_ON_ONCE(!pages))
3080 		return -EINVAL;
3081 
3082 	gup_flags |= FOLL_PIN;
3083 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3084 				       pages, vmas, locked);
3085 }
3086 EXPORT_SYMBOL(pin_user_pages_remote);
3087 
3088 /**
3089  * pin_user_pages() - pin user pages in memory for use by other devices
3090  *
3091  * @start:	starting user address
3092  * @nr_pages:	number of pages from start to pin
3093  * @gup_flags:	flags modifying lookup behaviour
3094  * @pages:	array that receives pointers to the pages pinned.
3095  *		Should be at least nr_pages long.
3096  * @vmas:	array of pointers to vmas corresponding to each page.
3097  *		Or NULL if the caller does not require them.
3098  *
3099  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3100  * FOLL_PIN is set.
3101  *
3102  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3103  * see Documentation/core-api/pin_user_pages.rst for details.
3104  */
3105 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3106 		    unsigned int gup_flags, struct page **pages,
3107 		    struct vm_area_struct **vmas)
3108 {
3109 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3110 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3111 		return -EINVAL;
3112 
3113 	if (WARN_ON_ONCE(!pages))
3114 		return -EINVAL;
3115 
3116 	gup_flags |= FOLL_PIN;
3117 	return __gup_longterm_locked(current->mm, start, nr_pages,
3118 				     pages, vmas, gup_flags);
3119 }
3120 EXPORT_SYMBOL(pin_user_pages);
3121 
3122 /*
3123  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3124  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3125  * FOLL_PIN and rejects FOLL_GET.
3126  */
3127 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3128 			     struct page **pages, unsigned int gup_flags)
3129 {
3130 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3131 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3132 		return -EINVAL;
3133 
3134 	if (WARN_ON_ONCE(!pages))
3135 		return -EINVAL;
3136 
3137 	gup_flags |= FOLL_PIN;
3138 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3139 }
3140 EXPORT_SYMBOL(pin_user_pages_unlocked);
3141