xref: /linux/mm/gup.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 						   int refs, unsigned int flags)
83 {
84 	if (flags & FOLL_GET)
85 		return try_get_compound_head(page, refs);
86 	else if (flags & FOLL_PIN) {
87 		int orig_refs = refs;
88 
89 		/*
90 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
91 		 * path, so fail and let the caller fall back to the slow path.
92 		 */
93 		if (unlikely(flags & FOLL_LONGTERM) &&
94 				is_migrate_cma_page(page))
95 			return NULL;
96 
97 		/*
98 		 * When pinning a compound page of order > 1 (which is what
99 		 * hpage_pincount_available() checks for), use an exact count to
100 		 * track it, via hpage_pincount_add/_sub().
101 		 *
102 		 * However, be sure to *also* increment the normal page refcount
103 		 * field at least once, so that the page really is pinned.
104 		 */
105 		if (!hpage_pincount_available(page))
106 			refs *= GUP_PIN_COUNTING_BIAS;
107 
108 		page = try_get_compound_head(page, refs);
109 		if (!page)
110 			return NULL;
111 
112 		if (hpage_pincount_available(page))
113 			hpage_pincount_add(page, refs);
114 
115 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
116 				    orig_refs);
117 
118 		return page;
119 	}
120 
121 	WARN_ON_ONCE(1);
122 	return NULL;
123 }
124 
125 static void put_compound_head(struct page *page, int refs, unsigned int flags)
126 {
127 	if (flags & FOLL_PIN) {
128 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
129 				    refs);
130 
131 		if (hpage_pincount_available(page))
132 			hpage_pincount_sub(page, refs);
133 		else
134 			refs *= GUP_PIN_COUNTING_BIAS;
135 	}
136 
137 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
138 	/*
139 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
140 	 * ref needs a put_page().
141 	 */
142 	if (refs > 1)
143 		page_ref_sub(page, refs - 1);
144 	put_page(page);
145 }
146 
147 /**
148  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
149  *
150  * This might not do anything at all, depending on the flags argument.
151  *
152  * "grab" names in this file mean, "look at flags to decide whether to use
153  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
154  *
155  * @page:    pointer to page to be grabbed
156  * @flags:   gup flags: these are the FOLL_* flag values.
157  *
158  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
159  * time. Cases:
160  *
161  *    FOLL_GET: page's refcount will be incremented by 1.
162  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
163  *
164  * Return: true for success, or if no action was required (if neither FOLL_PIN
165  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
166  * FOLL_PIN was set, but the page could not be grabbed.
167  */
168 bool __must_check try_grab_page(struct page *page, unsigned int flags)
169 {
170 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
171 
172 	if (flags & FOLL_GET)
173 		return try_get_page(page);
174 	else if (flags & FOLL_PIN) {
175 		int refs = 1;
176 
177 		page = compound_head(page);
178 
179 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
180 			return false;
181 
182 		if (hpage_pincount_available(page))
183 			hpage_pincount_add(page, 1);
184 		else
185 			refs = GUP_PIN_COUNTING_BIAS;
186 
187 		/*
188 		 * Similar to try_grab_compound_head(): even if using the
189 		 * hpage_pincount_add/_sub() routines, be sure to
190 		 * *also* increment the normal page refcount field at least
191 		 * once, so that the page really is pinned.
192 		 */
193 		page_ref_add(page, refs);
194 
195 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
196 	}
197 
198 	return true;
199 }
200 
201 /**
202  * unpin_user_page() - release a dma-pinned page
203  * @page:            pointer to page to be released
204  *
205  * Pages that were pinned via pin_user_pages*() must be released via either
206  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
207  * that such pages can be separately tracked and uniquely handled. In
208  * particular, interactions with RDMA and filesystems need special handling.
209  */
210 void unpin_user_page(struct page *page)
211 {
212 	put_compound_head(compound_head(page), 1, FOLL_PIN);
213 }
214 EXPORT_SYMBOL(unpin_user_page);
215 
216 /**
217  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
218  * @pages:  array of pages to be maybe marked dirty, and definitely released.
219  * @npages: number of pages in the @pages array.
220  * @make_dirty: whether to mark the pages dirty
221  *
222  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
223  * variants called on that page.
224  *
225  * For each page in the @pages array, make that page (or its head page, if a
226  * compound page) dirty, if @make_dirty is true, and if the page was previously
227  * listed as clean. In any case, releases all pages using unpin_user_page(),
228  * possibly via unpin_user_pages(), for the non-dirty case.
229  *
230  * Please see the unpin_user_page() documentation for details.
231  *
232  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
233  * required, then the caller should a) verify that this is really correct,
234  * because _lock() is usually required, and b) hand code it:
235  * set_page_dirty_lock(), unpin_user_page().
236  *
237  */
238 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
239 				 bool make_dirty)
240 {
241 	unsigned long index;
242 
243 	/*
244 	 * TODO: this can be optimized for huge pages: if a series of pages is
245 	 * physically contiguous and part of the same compound page, then a
246 	 * single operation to the head page should suffice.
247 	 */
248 
249 	if (!make_dirty) {
250 		unpin_user_pages(pages, npages);
251 		return;
252 	}
253 
254 	for (index = 0; index < npages; index++) {
255 		struct page *page = compound_head(pages[index]);
256 		/*
257 		 * Checking PageDirty at this point may race with
258 		 * clear_page_dirty_for_io(), but that's OK. Two key
259 		 * cases:
260 		 *
261 		 * 1) This code sees the page as already dirty, so it
262 		 * skips the call to set_page_dirty(). That could happen
263 		 * because clear_page_dirty_for_io() called
264 		 * page_mkclean(), followed by set_page_dirty().
265 		 * However, now the page is going to get written back,
266 		 * which meets the original intention of setting it
267 		 * dirty, so all is well: clear_page_dirty_for_io() goes
268 		 * on to call TestClearPageDirty(), and write the page
269 		 * back.
270 		 *
271 		 * 2) This code sees the page as clean, so it calls
272 		 * set_page_dirty(). The page stays dirty, despite being
273 		 * written back, so it gets written back again in the
274 		 * next writeback cycle. This is harmless.
275 		 */
276 		if (!PageDirty(page))
277 			set_page_dirty_lock(page);
278 		unpin_user_page(page);
279 	}
280 }
281 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
282 
283 /**
284  * unpin_user_pages() - release an array of gup-pinned pages.
285  * @pages:  array of pages to be marked dirty and released.
286  * @npages: number of pages in the @pages array.
287  *
288  * For each page in the @pages array, release the page using unpin_user_page().
289  *
290  * Please see the unpin_user_page() documentation for details.
291  */
292 void unpin_user_pages(struct page **pages, unsigned long npages)
293 {
294 	unsigned long index;
295 
296 	/*
297 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
298 	 * leaving them pinned), but probably not. More likely, gup/pup returned
299 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
300 	 */
301 	if (WARN_ON(IS_ERR_VALUE(npages)))
302 		return;
303 	/*
304 	 * TODO: this can be optimized for huge pages: if a series of pages is
305 	 * physically contiguous and part of the same compound page, then a
306 	 * single operation to the head page should suffice.
307 	 */
308 	for (index = 0; index < npages; index++)
309 		unpin_user_page(pages[index]);
310 }
311 EXPORT_SYMBOL(unpin_user_pages);
312 
313 #ifdef CONFIG_MMU
314 static struct page *no_page_table(struct vm_area_struct *vma,
315 		unsigned int flags)
316 {
317 	/*
318 	 * When core dumping an enormous anonymous area that nobody
319 	 * has touched so far, we don't want to allocate unnecessary pages or
320 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
321 	 * then get_dump_page() will return NULL to leave a hole in the dump.
322 	 * But we can only make this optimization where a hole would surely
323 	 * be zero-filled if handle_mm_fault() actually did handle it.
324 	 */
325 	if ((flags & FOLL_DUMP) &&
326 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
327 		return ERR_PTR(-EFAULT);
328 	return NULL;
329 }
330 
331 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
332 		pte_t *pte, unsigned int flags)
333 {
334 	/* No page to get reference */
335 	if (flags & FOLL_GET)
336 		return -EFAULT;
337 
338 	if (flags & FOLL_TOUCH) {
339 		pte_t entry = *pte;
340 
341 		if (flags & FOLL_WRITE)
342 			entry = pte_mkdirty(entry);
343 		entry = pte_mkyoung(entry);
344 
345 		if (!pte_same(*pte, entry)) {
346 			set_pte_at(vma->vm_mm, address, pte, entry);
347 			update_mmu_cache(vma, address, pte);
348 		}
349 	}
350 
351 	/* Proper page table entry exists, but no corresponding struct page */
352 	return -EEXIST;
353 }
354 
355 /*
356  * FOLL_FORCE can write to even unwritable pte's, but only
357  * after we've gone through a COW cycle and they are dirty.
358  */
359 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
360 {
361 	return pte_write(pte) ||
362 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
363 }
364 
365 static struct page *follow_page_pte(struct vm_area_struct *vma,
366 		unsigned long address, pmd_t *pmd, unsigned int flags,
367 		struct dev_pagemap **pgmap)
368 {
369 	struct mm_struct *mm = vma->vm_mm;
370 	struct page *page;
371 	spinlock_t *ptl;
372 	pte_t *ptep, pte;
373 	int ret;
374 
375 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
376 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
377 			 (FOLL_PIN | FOLL_GET)))
378 		return ERR_PTR(-EINVAL);
379 retry:
380 	if (unlikely(pmd_bad(*pmd)))
381 		return no_page_table(vma, flags);
382 
383 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
384 	pte = *ptep;
385 	if (!pte_present(pte)) {
386 		swp_entry_t entry;
387 		/*
388 		 * KSM's break_ksm() relies upon recognizing a ksm page
389 		 * even while it is being migrated, so for that case we
390 		 * need migration_entry_wait().
391 		 */
392 		if (likely(!(flags & FOLL_MIGRATION)))
393 			goto no_page;
394 		if (pte_none(pte))
395 			goto no_page;
396 		entry = pte_to_swp_entry(pte);
397 		if (!is_migration_entry(entry))
398 			goto no_page;
399 		pte_unmap_unlock(ptep, ptl);
400 		migration_entry_wait(mm, pmd, address);
401 		goto retry;
402 	}
403 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
404 		goto no_page;
405 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
406 		pte_unmap_unlock(ptep, ptl);
407 		return NULL;
408 	}
409 
410 	page = vm_normal_page(vma, address, pte);
411 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
412 		/*
413 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
414 		 * case since they are only valid while holding the pgmap
415 		 * reference.
416 		 */
417 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
418 		if (*pgmap)
419 			page = pte_page(pte);
420 		else
421 			goto no_page;
422 	} else if (unlikely(!page)) {
423 		if (flags & FOLL_DUMP) {
424 			/* Avoid special (like zero) pages in core dumps */
425 			page = ERR_PTR(-EFAULT);
426 			goto out;
427 		}
428 
429 		if (is_zero_pfn(pte_pfn(pte))) {
430 			page = pte_page(pte);
431 		} else {
432 			ret = follow_pfn_pte(vma, address, ptep, flags);
433 			page = ERR_PTR(ret);
434 			goto out;
435 		}
436 	}
437 
438 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
439 		get_page(page);
440 		pte_unmap_unlock(ptep, ptl);
441 		lock_page(page);
442 		ret = split_huge_page(page);
443 		unlock_page(page);
444 		put_page(page);
445 		if (ret)
446 			return ERR_PTR(ret);
447 		goto retry;
448 	}
449 
450 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
451 	if (unlikely(!try_grab_page(page, flags))) {
452 		page = ERR_PTR(-ENOMEM);
453 		goto out;
454 	}
455 	/*
456 	 * We need to make the page accessible if and only if we are going
457 	 * to access its content (the FOLL_PIN case).  Please see
458 	 * Documentation/core-api/pin_user_pages.rst for details.
459 	 */
460 	if (flags & FOLL_PIN) {
461 		ret = arch_make_page_accessible(page);
462 		if (ret) {
463 			unpin_user_page(page);
464 			page = ERR_PTR(ret);
465 			goto out;
466 		}
467 	}
468 	if (flags & FOLL_TOUCH) {
469 		if ((flags & FOLL_WRITE) &&
470 		    !pte_dirty(pte) && !PageDirty(page))
471 			set_page_dirty(page);
472 		/*
473 		 * pte_mkyoung() would be more correct here, but atomic care
474 		 * is needed to avoid losing the dirty bit: it is easier to use
475 		 * mark_page_accessed().
476 		 */
477 		mark_page_accessed(page);
478 	}
479 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
480 		/* Do not mlock pte-mapped THP */
481 		if (PageTransCompound(page))
482 			goto out;
483 
484 		/*
485 		 * The preliminary mapping check is mainly to avoid the
486 		 * pointless overhead of lock_page on the ZERO_PAGE
487 		 * which might bounce very badly if there is contention.
488 		 *
489 		 * If the page is already locked, we don't need to
490 		 * handle it now - vmscan will handle it later if and
491 		 * when it attempts to reclaim the page.
492 		 */
493 		if (page->mapping && trylock_page(page)) {
494 			lru_add_drain();  /* push cached pages to LRU */
495 			/*
496 			 * Because we lock page here, and migration is
497 			 * blocked by the pte's page reference, and we
498 			 * know the page is still mapped, we don't even
499 			 * need to check for file-cache page truncation.
500 			 */
501 			mlock_vma_page(page);
502 			unlock_page(page);
503 		}
504 	}
505 out:
506 	pte_unmap_unlock(ptep, ptl);
507 	return page;
508 no_page:
509 	pte_unmap_unlock(ptep, ptl);
510 	if (!pte_none(pte))
511 		return NULL;
512 	return no_page_table(vma, flags);
513 }
514 
515 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
516 				    unsigned long address, pud_t *pudp,
517 				    unsigned int flags,
518 				    struct follow_page_context *ctx)
519 {
520 	pmd_t *pmd, pmdval;
521 	spinlock_t *ptl;
522 	struct page *page;
523 	struct mm_struct *mm = vma->vm_mm;
524 
525 	pmd = pmd_offset(pudp, address);
526 	/*
527 	 * The READ_ONCE() will stabilize the pmdval in a register or
528 	 * on the stack so that it will stop changing under the code.
529 	 */
530 	pmdval = READ_ONCE(*pmd);
531 	if (pmd_none(pmdval))
532 		return no_page_table(vma, flags);
533 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
534 		page = follow_huge_pmd(mm, address, pmd, flags);
535 		if (page)
536 			return page;
537 		return no_page_table(vma, flags);
538 	}
539 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
540 		page = follow_huge_pd(vma, address,
541 				      __hugepd(pmd_val(pmdval)), flags,
542 				      PMD_SHIFT);
543 		if (page)
544 			return page;
545 		return no_page_table(vma, flags);
546 	}
547 retry:
548 	if (!pmd_present(pmdval)) {
549 		if (likely(!(flags & FOLL_MIGRATION)))
550 			return no_page_table(vma, flags);
551 		VM_BUG_ON(thp_migration_supported() &&
552 				  !is_pmd_migration_entry(pmdval));
553 		if (is_pmd_migration_entry(pmdval))
554 			pmd_migration_entry_wait(mm, pmd);
555 		pmdval = READ_ONCE(*pmd);
556 		/*
557 		 * MADV_DONTNEED may convert the pmd to null because
558 		 * mmap_lock is held in read mode
559 		 */
560 		if (pmd_none(pmdval))
561 			return no_page_table(vma, flags);
562 		goto retry;
563 	}
564 	if (pmd_devmap(pmdval)) {
565 		ptl = pmd_lock(mm, pmd);
566 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
567 		spin_unlock(ptl);
568 		if (page)
569 			return page;
570 	}
571 	if (likely(!pmd_trans_huge(pmdval)))
572 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
573 
574 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
575 		return no_page_table(vma, flags);
576 
577 retry_locked:
578 	ptl = pmd_lock(mm, pmd);
579 	if (unlikely(pmd_none(*pmd))) {
580 		spin_unlock(ptl);
581 		return no_page_table(vma, flags);
582 	}
583 	if (unlikely(!pmd_present(*pmd))) {
584 		spin_unlock(ptl);
585 		if (likely(!(flags & FOLL_MIGRATION)))
586 			return no_page_table(vma, flags);
587 		pmd_migration_entry_wait(mm, pmd);
588 		goto retry_locked;
589 	}
590 	if (unlikely(!pmd_trans_huge(*pmd))) {
591 		spin_unlock(ptl);
592 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
593 	}
594 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
595 		int ret;
596 		page = pmd_page(*pmd);
597 		if (is_huge_zero_page(page)) {
598 			spin_unlock(ptl);
599 			ret = 0;
600 			split_huge_pmd(vma, pmd, address);
601 			if (pmd_trans_unstable(pmd))
602 				ret = -EBUSY;
603 		} else if (flags & FOLL_SPLIT) {
604 			if (unlikely(!try_get_page(page))) {
605 				spin_unlock(ptl);
606 				return ERR_PTR(-ENOMEM);
607 			}
608 			spin_unlock(ptl);
609 			lock_page(page);
610 			ret = split_huge_page(page);
611 			unlock_page(page);
612 			put_page(page);
613 			if (pmd_none(*pmd))
614 				return no_page_table(vma, flags);
615 		} else {  /* flags & FOLL_SPLIT_PMD */
616 			spin_unlock(ptl);
617 			split_huge_pmd(vma, pmd, address);
618 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
619 		}
620 
621 		return ret ? ERR_PTR(ret) :
622 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
623 	}
624 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
625 	spin_unlock(ptl);
626 	ctx->page_mask = HPAGE_PMD_NR - 1;
627 	return page;
628 }
629 
630 static struct page *follow_pud_mask(struct vm_area_struct *vma,
631 				    unsigned long address, p4d_t *p4dp,
632 				    unsigned int flags,
633 				    struct follow_page_context *ctx)
634 {
635 	pud_t *pud;
636 	spinlock_t *ptl;
637 	struct page *page;
638 	struct mm_struct *mm = vma->vm_mm;
639 
640 	pud = pud_offset(p4dp, address);
641 	if (pud_none(*pud))
642 		return no_page_table(vma, flags);
643 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
644 		page = follow_huge_pud(mm, address, pud, flags);
645 		if (page)
646 			return page;
647 		return no_page_table(vma, flags);
648 	}
649 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
650 		page = follow_huge_pd(vma, address,
651 				      __hugepd(pud_val(*pud)), flags,
652 				      PUD_SHIFT);
653 		if (page)
654 			return page;
655 		return no_page_table(vma, flags);
656 	}
657 	if (pud_devmap(*pud)) {
658 		ptl = pud_lock(mm, pud);
659 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
660 		spin_unlock(ptl);
661 		if (page)
662 			return page;
663 	}
664 	if (unlikely(pud_bad(*pud)))
665 		return no_page_table(vma, flags);
666 
667 	return follow_pmd_mask(vma, address, pud, flags, ctx);
668 }
669 
670 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
671 				    unsigned long address, pgd_t *pgdp,
672 				    unsigned int flags,
673 				    struct follow_page_context *ctx)
674 {
675 	p4d_t *p4d;
676 	struct page *page;
677 
678 	p4d = p4d_offset(pgdp, address);
679 	if (p4d_none(*p4d))
680 		return no_page_table(vma, flags);
681 	BUILD_BUG_ON(p4d_huge(*p4d));
682 	if (unlikely(p4d_bad(*p4d)))
683 		return no_page_table(vma, flags);
684 
685 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
686 		page = follow_huge_pd(vma, address,
687 				      __hugepd(p4d_val(*p4d)), flags,
688 				      P4D_SHIFT);
689 		if (page)
690 			return page;
691 		return no_page_table(vma, flags);
692 	}
693 	return follow_pud_mask(vma, address, p4d, flags, ctx);
694 }
695 
696 /**
697  * follow_page_mask - look up a page descriptor from a user-virtual address
698  * @vma: vm_area_struct mapping @address
699  * @address: virtual address to look up
700  * @flags: flags modifying lookup behaviour
701  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
702  *       pointer to output page_mask
703  *
704  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
705  *
706  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
707  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
708  *
709  * On output, the @ctx->page_mask is set according to the size of the page.
710  *
711  * Return: the mapped (struct page *), %NULL if no mapping exists, or
712  * an error pointer if there is a mapping to something not represented
713  * by a page descriptor (see also vm_normal_page()).
714  */
715 static struct page *follow_page_mask(struct vm_area_struct *vma,
716 			      unsigned long address, unsigned int flags,
717 			      struct follow_page_context *ctx)
718 {
719 	pgd_t *pgd;
720 	struct page *page;
721 	struct mm_struct *mm = vma->vm_mm;
722 
723 	ctx->page_mask = 0;
724 
725 	/* make this handle hugepd */
726 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
727 	if (!IS_ERR(page)) {
728 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
729 		return page;
730 	}
731 
732 	pgd = pgd_offset(mm, address);
733 
734 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
735 		return no_page_table(vma, flags);
736 
737 	if (pgd_huge(*pgd)) {
738 		page = follow_huge_pgd(mm, address, pgd, flags);
739 		if (page)
740 			return page;
741 		return no_page_table(vma, flags);
742 	}
743 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
744 		page = follow_huge_pd(vma, address,
745 				      __hugepd(pgd_val(*pgd)), flags,
746 				      PGDIR_SHIFT);
747 		if (page)
748 			return page;
749 		return no_page_table(vma, flags);
750 	}
751 
752 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
753 }
754 
755 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
756 			 unsigned int foll_flags)
757 {
758 	struct follow_page_context ctx = { NULL };
759 	struct page *page;
760 
761 	page = follow_page_mask(vma, address, foll_flags, &ctx);
762 	if (ctx.pgmap)
763 		put_dev_pagemap(ctx.pgmap);
764 	return page;
765 }
766 
767 static int get_gate_page(struct mm_struct *mm, unsigned long address,
768 		unsigned int gup_flags, struct vm_area_struct **vma,
769 		struct page **page)
770 {
771 	pgd_t *pgd;
772 	p4d_t *p4d;
773 	pud_t *pud;
774 	pmd_t *pmd;
775 	pte_t *pte;
776 	int ret = -EFAULT;
777 
778 	/* user gate pages are read-only */
779 	if (gup_flags & FOLL_WRITE)
780 		return -EFAULT;
781 	if (address > TASK_SIZE)
782 		pgd = pgd_offset_k(address);
783 	else
784 		pgd = pgd_offset_gate(mm, address);
785 	if (pgd_none(*pgd))
786 		return -EFAULT;
787 	p4d = p4d_offset(pgd, address);
788 	if (p4d_none(*p4d))
789 		return -EFAULT;
790 	pud = pud_offset(p4d, address);
791 	if (pud_none(*pud))
792 		return -EFAULT;
793 	pmd = pmd_offset(pud, address);
794 	if (!pmd_present(*pmd))
795 		return -EFAULT;
796 	VM_BUG_ON(pmd_trans_huge(*pmd));
797 	pte = pte_offset_map(pmd, address);
798 	if (pte_none(*pte))
799 		goto unmap;
800 	*vma = get_gate_vma(mm);
801 	if (!page)
802 		goto out;
803 	*page = vm_normal_page(*vma, address, *pte);
804 	if (!*page) {
805 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
806 			goto unmap;
807 		*page = pte_page(*pte);
808 	}
809 	if (unlikely(!try_grab_page(*page, gup_flags))) {
810 		ret = -ENOMEM;
811 		goto unmap;
812 	}
813 out:
814 	ret = 0;
815 unmap:
816 	pte_unmap(pte);
817 	return ret;
818 }
819 
820 /*
821  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
822  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
823  * is, *@locked will be set to 0 and -EBUSY returned.
824  */
825 static int faultin_page(struct vm_area_struct *vma,
826 		unsigned long address, unsigned int *flags, int *locked)
827 {
828 	unsigned int fault_flags = 0;
829 	vm_fault_t ret;
830 
831 	/* mlock all present pages, but do not fault in new pages */
832 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
833 		return -ENOENT;
834 	if (*flags & FOLL_WRITE)
835 		fault_flags |= FAULT_FLAG_WRITE;
836 	if (*flags & FOLL_REMOTE)
837 		fault_flags |= FAULT_FLAG_REMOTE;
838 	if (locked)
839 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
840 	if (*flags & FOLL_NOWAIT)
841 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
842 	if (*flags & FOLL_TRIED) {
843 		/*
844 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
845 		 * can co-exist
846 		 */
847 		fault_flags |= FAULT_FLAG_TRIED;
848 	}
849 
850 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
851 	if (ret & VM_FAULT_ERROR) {
852 		int err = vm_fault_to_errno(ret, *flags);
853 
854 		if (err)
855 			return err;
856 		BUG();
857 	}
858 
859 	if (ret & VM_FAULT_RETRY) {
860 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
861 			*locked = 0;
862 		return -EBUSY;
863 	}
864 
865 	/*
866 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
867 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
868 	 * can thus safely do subsequent page lookups as if they were reads.
869 	 * But only do so when looping for pte_write is futile: in some cases
870 	 * userspace may also be wanting to write to the gotten user page,
871 	 * which a read fault here might prevent (a readonly page might get
872 	 * reCOWed by userspace write).
873 	 */
874 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
875 		*flags |= FOLL_COW;
876 	return 0;
877 }
878 
879 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
880 {
881 	vm_flags_t vm_flags = vma->vm_flags;
882 	int write = (gup_flags & FOLL_WRITE);
883 	int foreign = (gup_flags & FOLL_REMOTE);
884 
885 	if (vm_flags & (VM_IO | VM_PFNMAP))
886 		return -EFAULT;
887 
888 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
889 		return -EFAULT;
890 
891 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
892 		return -EOPNOTSUPP;
893 
894 	if (write) {
895 		if (!(vm_flags & VM_WRITE)) {
896 			if (!(gup_flags & FOLL_FORCE))
897 				return -EFAULT;
898 			/*
899 			 * We used to let the write,force case do COW in a
900 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
901 			 * set a breakpoint in a read-only mapping of an
902 			 * executable, without corrupting the file (yet only
903 			 * when that file had been opened for writing!).
904 			 * Anon pages in shared mappings are surprising: now
905 			 * just reject it.
906 			 */
907 			if (!is_cow_mapping(vm_flags))
908 				return -EFAULT;
909 		}
910 	} else if (!(vm_flags & VM_READ)) {
911 		if (!(gup_flags & FOLL_FORCE))
912 			return -EFAULT;
913 		/*
914 		 * Is there actually any vma we can reach here which does not
915 		 * have VM_MAYREAD set?
916 		 */
917 		if (!(vm_flags & VM_MAYREAD))
918 			return -EFAULT;
919 	}
920 	/*
921 	 * gups are always data accesses, not instruction
922 	 * fetches, so execute=false here
923 	 */
924 	if (!arch_vma_access_permitted(vma, write, false, foreign))
925 		return -EFAULT;
926 	return 0;
927 }
928 
929 /**
930  * __get_user_pages() - pin user pages in memory
931  * @mm:		mm_struct of target mm
932  * @start:	starting user address
933  * @nr_pages:	number of pages from start to pin
934  * @gup_flags:	flags modifying pin behaviour
935  * @pages:	array that receives pointers to the pages pinned.
936  *		Should be at least nr_pages long. Or NULL, if caller
937  *		only intends to ensure the pages are faulted in.
938  * @vmas:	array of pointers to vmas corresponding to each page.
939  *		Or NULL if the caller does not require them.
940  * @locked:     whether we're still with the mmap_lock held
941  *
942  * Returns either number of pages pinned (which may be less than the
943  * number requested), or an error. Details about the return value:
944  *
945  * -- If nr_pages is 0, returns 0.
946  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
947  * -- If nr_pages is >0, and some pages were pinned, returns the number of
948  *    pages pinned. Again, this may be less than nr_pages.
949  * -- 0 return value is possible when the fault would need to be retried.
950  *
951  * The caller is responsible for releasing returned @pages, via put_page().
952  *
953  * @vmas are valid only as long as mmap_lock is held.
954  *
955  * Must be called with mmap_lock held.  It may be released.  See below.
956  *
957  * __get_user_pages walks a process's page tables and takes a reference to
958  * each struct page that each user address corresponds to at a given
959  * instant. That is, it takes the page that would be accessed if a user
960  * thread accesses the given user virtual address at that instant.
961  *
962  * This does not guarantee that the page exists in the user mappings when
963  * __get_user_pages returns, and there may even be a completely different
964  * page there in some cases (eg. if mmapped pagecache has been invalidated
965  * and subsequently re faulted). However it does guarantee that the page
966  * won't be freed completely. And mostly callers simply care that the page
967  * contains data that was valid *at some point in time*. Typically, an IO
968  * or similar operation cannot guarantee anything stronger anyway because
969  * locks can't be held over the syscall boundary.
970  *
971  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
972  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
973  * appropriate) must be called after the page is finished with, and
974  * before put_page is called.
975  *
976  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
977  * released by an up_read().  That can happen if @gup_flags does not
978  * have FOLL_NOWAIT.
979  *
980  * A caller using such a combination of @locked and @gup_flags
981  * must therefore hold the mmap_lock for reading only, and recognize
982  * when it's been released.  Otherwise, it must be held for either
983  * reading or writing and will not be released.
984  *
985  * In most cases, get_user_pages or get_user_pages_fast should be used
986  * instead of __get_user_pages. __get_user_pages should be used only if
987  * you need some special @gup_flags.
988  */
989 static long __get_user_pages(struct mm_struct *mm,
990 		unsigned long start, unsigned long nr_pages,
991 		unsigned int gup_flags, struct page **pages,
992 		struct vm_area_struct **vmas, int *locked)
993 {
994 	long ret = 0, i = 0;
995 	struct vm_area_struct *vma = NULL;
996 	struct follow_page_context ctx = { NULL };
997 
998 	if (!nr_pages)
999 		return 0;
1000 
1001 	start = untagged_addr(start);
1002 
1003 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1004 
1005 	/*
1006 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1007 	 * fault information is unrelated to the reference behaviour of a task
1008 	 * using the address space
1009 	 */
1010 	if (!(gup_flags & FOLL_FORCE))
1011 		gup_flags |= FOLL_NUMA;
1012 
1013 	do {
1014 		struct page *page;
1015 		unsigned int foll_flags = gup_flags;
1016 		unsigned int page_increm;
1017 
1018 		/* first iteration or cross vma bound */
1019 		if (!vma || start >= vma->vm_end) {
1020 			vma = find_extend_vma(mm, start);
1021 			if (!vma && in_gate_area(mm, start)) {
1022 				ret = get_gate_page(mm, start & PAGE_MASK,
1023 						gup_flags, &vma,
1024 						pages ? &pages[i] : NULL);
1025 				if (ret)
1026 					goto out;
1027 				ctx.page_mask = 0;
1028 				goto next_page;
1029 			}
1030 
1031 			if (!vma) {
1032 				ret = -EFAULT;
1033 				goto out;
1034 			}
1035 			ret = check_vma_flags(vma, gup_flags);
1036 			if (ret)
1037 				goto out;
1038 
1039 			if (is_vm_hugetlb_page(vma)) {
1040 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1041 						&start, &nr_pages, i,
1042 						gup_flags, locked);
1043 				if (locked && *locked == 0) {
1044 					/*
1045 					 * We've got a VM_FAULT_RETRY
1046 					 * and we've lost mmap_lock.
1047 					 * We must stop here.
1048 					 */
1049 					BUG_ON(gup_flags & FOLL_NOWAIT);
1050 					BUG_ON(ret != 0);
1051 					goto out;
1052 				}
1053 				continue;
1054 			}
1055 		}
1056 retry:
1057 		/*
1058 		 * If we have a pending SIGKILL, don't keep faulting pages and
1059 		 * potentially allocating memory.
1060 		 */
1061 		if (fatal_signal_pending(current)) {
1062 			ret = -EINTR;
1063 			goto out;
1064 		}
1065 		cond_resched();
1066 
1067 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1068 		if (!page) {
1069 			ret = faultin_page(vma, start, &foll_flags, locked);
1070 			switch (ret) {
1071 			case 0:
1072 				goto retry;
1073 			case -EBUSY:
1074 				ret = 0;
1075 				fallthrough;
1076 			case -EFAULT:
1077 			case -ENOMEM:
1078 			case -EHWPOISON:
1079 				goto out;
1080 			case -ENOENT:
1081 				goto next_page;
1082 			}
1083 			BUG();
1084 		} else if (PTR_ERR(page) == -EEXIST) {
1085 			/*
1086 			 * Proper page table entry exists, but no corresponding
1087 			 * struct page.
1088 			 */
1089 			goto next_page;
1090 		} else if (IS_ERR(page)) {
1091 			ret = PTR_ERR(page);
1092 			goto out;
1093 		}
1094 		if (pages) {
1095 			pages[i] = page;
1096 			flush_anon_page(vma, page, start);
1097 			flush_dcache_page(page);
1098 			ctx.page_mask = 0;
1099 		}
1100 next_page:
1101 		if (vmas) {
1102 			vmas[i] = vma;
1103 			ctx.page_mask = 0;
1104 		}
1105 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1106 		if (page_increm > nr_pages)
1107 			page_increm = nr_pages;
1108 		i += page_increm;
1109 		start += page_increm * PAGE_SIZE;
1110 		nr_pages -= page_increm;
1111 	} while (nr_pages);
1112 out:
1113 	if (ctx.pgmap)
1114 		put_dev_pagemap(ctx.pgmap);
1115 	return i ? i : ret;
1116 }
1117 
1118 static bool vma_permits_fault(struct vm_area_struct *vma,
1119 			      unsigned int fault_flags)
1120 {
1121 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1122 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1123 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1124 
1125 	if (!(vm_flags & vma->vm_flags))
1126 		return false;
1127 
1128 	/*
1129 	 * The architecture might have a hardware protection
1130 	 * mechanism other than read/write that can deny access.
1131 	 *
1132 	 * gup always represents data access, not instruction
1133 	 * fetches, so execute=false here:
1134 	 */
1135 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1136 		return false;
1137 
1138 	return true;
1139 }
1140 
1141 /**
1142  * fixup_user_fault() - manually resolve a user page fault
1143  * @mm:		mm_struct of target mm
1144  * @address:	user address
1145  * @fault_flags:flags to pass down to handle_mm_fault()
1146  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1147  *		does not allow retry. If NULL, the caller must guarantee
1148  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1149  *
1150  * This is meant to be called in the specific scenario where for locking reasons
1151  * we try to access user memory in atomic context (within a pagefault_disable()
1152  * section), this returns -EFAULT, and we want to resolve the user fault before
1153  * trying again.
1154  *
1155  * Typically this is meant to be used by the futex code.
1156  *
1157  * The main difference with get_user_pages() is that this function will
1158  * unconditionally call handle_mm_fault() which will in turn perform all the
1159  * necessary SW fixup of the dirty and young bits in the PTE, while
1160  * get_user_pages() only guarantees to update these in the struct page.
1161  *
1162  * This is important for some architectures where those bits also gate the
1163  * access permission to the page because they are maintained in software.  On
1164  * such architectures, gup() will not be enough to make a subsequent access
1165  * succeed.
1166  *
1167  * This function will not return with an unlocked mmap_lock. So it has not the
1168  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1169  */
1170 int fixup_user_fault(struct mm_struct *mm,
1171 		     unsigned long address, unsigned int fault_flags,
1172 		     bool *unlocked)
1173 {
1174 	struct vm_area_struct *vma;
1175 	vm_fault_t ret, major = 0;
1176 
1177 	address = untagged_addr(address);
1178 
1179 	if (unlocked)
1180 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1181 
1182 retry:
1183 	vma = find_extend_vma(mm, address);
1184 	if (!vma || address < vma->vm_start)
1185 		return -EFAULT;
1186 
1187 	if (!vma_permits_fault(vma, fault_flags))
1188 		return -EFAULT;
1189 
1190 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1191 	    fatal_signal_pending(current))
1192 		return -EINTR;
1193 
1194 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1195 	major |= ret & VM_FAULT_MAJOR;
1196 	if (ret & VM_FAULT_ERROR) {
1197 		int err = vm_fault_to_errno(ret, 0);
1198 
1199 		if (err)
1200 			return err;
1201 		BUG();
1202 	}
1203 
1204 	if (ret & VM_FAULT_RETRY) {
1205 		mmap_read_lock(mm);
1206 		*unlocked = true;
1207 		fault_flags |= FAULT_FLAG_TRIED;
1208 		goto retry;
1209 	}
1210 
1211 	return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(fixup_user_fault);
1214 
1215 /*
1216  * Please note that this function, unlike __get_user_pages will not
1217  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1218  */
1219 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1220 						unsigned long start,
1221 						unsigned long nr_pages,
1222 						struct page **pages,
1223 						struct vm_area_struct **vmas,
1224 						int *locked,
1225 						unsigned int flags)
1226 {
1227 	long ret, pages_done;
1228 	bool lock_dropped;
1229 
1230 	if (locked) {
1231 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1232 		BUG_ON(vmas);
1233 		/* check caller initialized locked */
1234 		BUG_ON(*locked != 1);
1235 	}
1236 
1237 	if (flags & FOLL_PIN)
1238 		atomic_set(&mm->has_pinned, 1);
1239 
1240 	/*
1241 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1242 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1243 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1244 	 * for FOLL_GET, not for the newer FOLL_PIN.
1245 	 *
1246 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1247 	 * that here, as any failures will be obvious enough.
1248 	 */
1249 	if (pages && !(flags & FOLL_PIN))
1250 		flags |= FOLL_GET;
1251 
1252 	pages_done = 0;
1253 	lock_dropped = false;
1254 	for (;;) {
1255 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1256 				       vmas, locked);
1257 		if (!locked)
1258 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1259 			return ret;
1260 
1261 		/* VM_FAULT_RETRY cannot return errors */
1262 		if (!*locked) {
1263 			BUG_ON(ret < 0);
1264 			BUG_ON(ret >= nr_pages);
1265 		}
1266 
1267 		if (ret > 0) {
1268 			nr_pages -= ret;
1269 			pages_done += ret;
1270 			if (!nr_pages)
1271 				break;
1272 		}
1273 		if (*locked) {
1274 			/*
1275 			 * VM_FAULT_RETRY didn't trigger or it was a
1276 			 * FOLL_NOWAIT.
1277 			 */
1278 			if (!pages_done)
1279 				pages_done = ret;
1280 			break;
1281 		}
1282 		/*
1283 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1284 		 * For the prefault case (!pages) we only update counts.
1285 		 */
1286 		if (likely(pages))
1287 			pages += ret;
1288 		start += ret << PAGE_SHIFT;
1289 		lock_dropped = true;
1290 
1291 retry:
1292 		/*
1293 		 * Repeat on the address that fired VM_FAULT_RETRY
1294 		 * with both FAULT_FLAG_ALLOW_RETRY and
1295 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1296 		 * by fatal signals, so we need to check it before we
1297 		 * start trying again otherwise it can loop forever.
1298 		 */
1299 
1300 		if (fatal_signal_pending(current)) {
1301 			if (!pages_done)
1302 				pages_done = -EINTR;
1303 			break;
1304 		}
1305 
1306 		ret = mmap_read_lock_killable(mm);
1307 		if (ret) {
1308 			BUG_ON(ret > 0);
1309 			if (!pages_done)
1310 				pages_done = ret;
1311 			break;
1312 		}
1313 
1314 		*locked = 1;
1315 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1316 				       pages, NULL, locked);
1317 		if (!*locked) {
1318 			/* Continue to retry until we succeeded */
1319 			BUG_ON(ret != 0);
1320 			goto retry;
1321 		}
1322 		if (ret != 1) {
1323 			BUG_ON(ret > 1);
1324 			if (!pages_done)
1325 				pages_done = ret;
1326 			break;
1327 		}
1328 		nr_pages--;
1329 		pages_done++;
1330 		if (!nr_pages)
1331 			break;
1332 		if (likely(pages))
1333 			pages++;
1334 		start += PAGE_SIZE;
1335 	}
1336 	if (lock_dropped && *locked) {
1337 		/*
1338 		 * We must let the caller know we temporarily dropped the lock
1339 		 * and so the critical section protected by it was lost.
1340 		 */
1341 		mmap_read_unlock(mm);
1342 		*locked = 0;
1343 	}
1344 	return pages_done;
1345 }
1346 
1347 /**
1348  * populate_vma_page_range() -  populate a range of pages in the vma.
1349  * @vma:   target vma
1350  * @start: start address
1351  * @end:   end address
1352  * @locked: whether the mmap_lock is still held
1353  *
1354  * This takes care of mlocking the pages too if VM_LOCKED is set.
1355  *
1356  * Return either number of pages pinned in the vma, or a negative error
1357  * code on error.
1358  *
1359  * vma->vm_mm->mmap_lock must be held.
1360  *
1361  * If @locked is NULL, it may be held for read or write and will
1362  * be unperturbed.
1363  *
1364  * If @locked is non-NULL, it must held for read only and may be
1365  * released.  If it's released, *@locked will be set to 0.
1366  */
1367 long populate_vma_page_range(struct vm_area_struct *vma,
1368 		unsigned long start, unsigned long end, int *locked)
1369 {
1370 	struct mm_struct *mm = vma->vm_mm;
1371 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1372 	int gup_flags;
1373 
1374 	VM_BUG_ON(start & ~PAGE_MASK);
1375 	VM_BUG_ON(end   & ~PAGE_MASK);
1376 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1377 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1378 	mmap_assert_locked(mm);
1379 
1380 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1381 	if (vma->vm_flags & VM_LOCKONFAULT)
1382 		gup_flags &= ~FOLL_POPULATE;
1383 	/*
1384 	 * We want to touch writable mappings with a write fault in order
1385 	 * to break COW, except for shared mappings because these don't COW
1386 	 * and we would not want to dirty them for nothing.
1387 	 */
1388 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1389 		gup_flags |= FOLL_WRITE;
1390 
1391 	/*
1392 	 * We want mlock to succeed for regions that have any permissions
1393 	 * other than PROT_NONE.
1394 	 */
1395 	if (vma_is_accessible(vma))
1396 		gup_flags |= FOLL_FORCE;
1397 
1398 	/*
1399 	 * We made sure addr is within a VMA, so the following will
1400 	 * not result in a stack expansion that recurses back here.
1401 	 */
1402 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1403 				NULL, NULL, locked);
1404 }
1405 
1406 /*
1407  * __mm_populate - populate and/or mlock pages within a range of address space.
1408  *
1409  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1410  * flags. VMAs must be already marked with the desired vm_flags, and
1411  * mmap_lock must not be held.
1412  */
1413 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1414 {
1415 	struct mm_struct *mm = current->mm;
1416 	unsigned long end, nstart, nend;
1417 	struct vm_area_struct *vma = NULL;
1418 	int locked = 0;
1419 	long ret = 0;
1420 
1421 	end = start + len;
1422 
1423 	for (nstart = start; nstart < end; nstart = nend) {
1424 		/*
1425 		 * We want to fault in pages for [nstart; end) address range.
1426 		 * Find first corresponding VMA.
1427 		 */
1428 		if (!locked) {
1429 			locked = 1;
1430 			mmap_read_lock(mm);
1431 			vma = find_vma(mm, nstart);
1432 		} else if (nstart >= vma->vm_end)
1433 			vma = vma->vm_next;
1434 		if (!vma || vma->vm_start >= end)
1435 			break;
1436 		/*
1437 		 * Set [nstart; nend) to intersection of desired address
1438 		 * range with the first VMA. Also, skip undesirable VMA types.
1439 		 */
1440 		nend = min(end, vma->vm_end);
1441 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1442 			continue;
1443 		if (nstart < vma->vm_start)
1444 			nstart = vma->vm_start;
1445 		/*
1446 		 * Now fault in a range of pages. populate_vma_page_range()
1447 		 * double checks the vma flags, so that it won't mlock pages
1448 		 * if the vma was already munlocked.
1449 		 */
1450 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1451 		if (ret < 0) {
1452 			if (ignore_errors) {
1453 				ret = 0;
1454 				continue;	/* continue at next VMA */
1455 			}
1456 			break;
1457 		}
1458 		nend = nstart + ret * PAGE_SIZE;
1459 		ret = 0;
1460 	}
1461 	if (locked)
1462 		mmap_read_unlock(mm);
1463 	return ret;	/* 0 or negative error code */
1464 }
1465 #else /* CONFIG_MMU */
1466 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1467 		unsigned long nr_pages, struct page **pages,
1468 		struct vm_area_struct **vmas, int *locked,
1469 		unsigned int foll_flags)
1470 {
1471 	struct vm_area_struct *vma;
1472 	unsigned long vm_flags;
1473 	int i;
1474 
1475 	/* calculate required read or write permissions.
1476 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1477 	 */
1478 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1479 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1480 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1481 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1482 
1483 	for (i = 0; i < nr_pages; i++) {
1484 		vma = find_vma(mm, start);
1485 		if (!vma)
1486 			goto finish_or_fault;
1487 
1488 		/* protect what we can, including chardevs */
1489 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1490 		    !(vm_flags & vma->vm_flags))
1491 			goto finish_or_fault;
1492 
1493 		if (pages) {
1494 			pages[i] = virt_to_page(start);
1495 			if (pages[i])
1496 				get_page(pages[i]);
1497 		}
1498 		if (vmas)
1499 			vmas[i] = vma;
1500 		start = (start + PAGE_SIZE) & PAGE_MASK;
1501 	}
1502 
1503 	return i;
1504 
1505 finish_or_fault:
1506 	return i ? : -EFAULT;
1507 }
1508 #endif /* !CONFIG_MMU */
1509 
1510 /**
1511  * get_dump_page() - pin user page in memory while writing it to core dump
1512  * @addr: user address
1513  *
1514  * Returns struct page pointer of user page pinned for dump,
1515  * to be freed afterwards by put_page().
1516  *
1517  * Returns NULL on any kind of failure - a hole must then be inserted into
1518  * the corefile, to preserve alignment with its headers; and also returns
1519  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1520  * allowing a hole to be left in the corefile to save diskspace.
1521  *
1522  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1523  */
1524 #ifdef CONFIG_ELF_CORE
1525 struct page *get_dump_page(unsigned long addr)
1526 {
1527 	struct mm_struct *mm = current->mm;
1528 	struct page *page;
1529 	int locked = 1;
1530 	int ret;
1531 
1532 	if (mmap_read_lock_killable(mm))
1533 		return NULL;
1534 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1535 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1536 	if (locked)
1537 		mmap_read_unlock(mm);
1538 	return (ret == 1) ? page : NULL;
1539 }
1540 #endif /* CONFIG_ELF_CORE */
1541 
1542 #ifdef CONFIG_CMA
1543 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1544 					unsigned long start,
1545 					unsigned long nr_pages,
1546 					struct page **pages,
1547 					struct vm_area_struct **vmas,
1548 					unsigned int gup_flags)
1549 {
1550 	unsigned long i;
1551 	unsigned long step;
1552 	bool drain_allow = true;
1553 	bool migrate_allow = true;
1554 	LIST_HEAD(cma_page_list);
1555 	long ret = nr_pages;
1556 	struct migration_target_control mtc = {
1557 		.nid = NUMA_NO_NODE,
1558 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1559 	};
1560 
1561 check_again:
1562 	for (i = 0; i < nr_pages;) {
1563 
1564 		struct page *head = compound_head(pages[i]);
1565 
1566 		/*
1567 		 * gup may start from a tail page. Advance step by the left
1568 		 * part.
1569 		 */
1570 		step = compound_nr(head) - (pages[i] - head);
1571 		/*
1572 		 * If we get a page from the CMA zone, since we are going to
1573 		 * be pinning these entries, we might as well move them out
1574 		 * of the CMA zone if possible.
1575 		 */
1576 		if (is_migrate_cma_page(head)) {
1577 			if (PageHuge(head))
1578 				isolate_huge_page(head, &cma_page_list);
1579 			else {
1580 				if (!PageLRU(head) && drain_allow) {
1581 					lru_add_drain_all();
1582 					drain_allow = false;
1583 				}
1584 
1585 				if (!isolate_lru_page(head)) {
1586 					list_add_tail(&head->lru, &cma_page_list);
1587 					mod_node_page_state(page_pgdat(head),
1588 							    NR_ISOLATED_ANON +
1589 							    page_is_file_lru(head),
1590 							    thp_nr_pages(head));
1591 				}
1592 			}
1593 		}
1594 
1595 		i += step;
1596 	}
1597 
1598 	if (!list_empty(&cma_page_list)) {
1599 		/*
1600 		 * drop the above get_user_pages reference.
1601 		 */
1602 		if (gup_flags & FOLL_PIN)
1603 			unpin_user_pages(pages, nr_pages);
1604 		else
1605 			for (i = 0; i < nr_pages; i++)
1606 				put_page(pages[i]);
1607 
1608 		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1609 			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1610 			/*
1611 			 * some of the pages failed migration. Do get_user_pages
1612 			 * without migration.
1613 			 */
1614 			migrate_allow = false;
1615 
1616 			if (!list_empty(&cma_page_list))
1617 				putback_movable_pages(&cma_page_list);
1618 		}
1619 		/*
1620 		 * We did migrate all the pages, Try to get the page references
1621 		 * again migrating any new CMA pages which we failed to isolate
1622 		 * earlier.
1623 		 */
1624 		ret = __get_user_pages_locked(mm, start, nr_pages,
1625 						   pages, vmas, NULL,
1626 						   gup_flags);
1627 
1628 		if ((ret > 0) && migrate_allow) {
1629 			nr_pages = ret;
1630 			drain_allow = true;
1631 			goto check_again;
1632 		}
1633 	}
1634 
1635 	return ret;
1636 }
1637 #else
1638 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1639 					unsigned long start,
1640 					unsigned long nr_pages,
1641 					struct page **pages,
1642 					struct vm_area_struct **vmas,
1643 					unsigned int gup_flags)
1644 {
1645 	return nr_pages;
1646 }
1647 #endif /* CONFIG_CMA */
1648 
1649 /*
1650  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1651  * allows us to process the FOLL_LONGTERM flag.
1652  */
1653 static long __gup_longterm_locked(struct mm_struct *mm,
1654 				  unsigned long start,
1655 				  unsigned long nr_pages,
1656 				  struct page **pages,
1657 				  struct vm_area_struct **vmas,
1658 				  unsigned int gup_flags)
1659 {
1660 	unsigned long flags = 0;
1661 	long rc;
1662 
1663 	if (gup_flags & FOLL_LONGTERM)
1664 		flags = memalloc_nocma_save();
1665 
1666 	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1667 				     gup_flags);
1668 
1669 	if (gup_flags & FOLL_LONGTERM) {
1670 		if (rc > 0)
1671 			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1672 							 vmas, gup_flags);
1673 		memalloc_nocma_restore(flags);
1674 	}
1675 	return rc;
1676 }
1677 
1678 static bool is_valid_gup_flags(unsigned int gup_flags)
1679 {
1680 	/*
1681 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1682 	 * never directly by the caller, so enforce that with an assertion:
1683 	 */
1684 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1685 		return false;
1686 	/*
1687 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1688 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1689 	 * FOLL_PIN.
1690 	 */
1691 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1692 		return false;
1693 
1694 	return true;
1695 }
1696 
1697 #ifdef CONFIG_MMU
1698 static long __get_user_pages_remote(struct mm_struct *mm,
1699 				    unsigned long start, unsigned long nr_pages,
1700 				    unsigned int gup_flags, struct page **pages,
1701 				    struct vm_area_struct **vmas, int *locked)
1702 {
1703 	/*
1704 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1705 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1706 	 * vmas. However, this only comes up if locked is set, and there are
1707 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1708 	 * allow what we can.
1709 	 */
1710 	if (gup_flags & FOLL_LONGTERM) {
1711 		if (WARN_ON_ONCE(locked))
1712 			return -EINVAL;
1713 		/*
1714 		 * This will check the vmas (even if our vmas arg is NULL)
1715 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1716 		 */
1717 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1718 					     vmas, gup_flags | FOLL_TOUCH |
1719 					     FOLL_REMOTE);
1720 	}
1721 
1722 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1723 				       locked,
1724 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1725 }
1726 
1727 /**
1728  * get_user_pages_remote() - pin user pages in memory
1729  * @mm:		mm_struct of target mm
1730  * @start:	starting user address
1731  * @nr_pages:	number of pages from start to pin
1732  * @gup_flags:	flags modifying lookup behaviour
1733  * @pages:	array that receives pointers to the pages pinned.
1734  *		Should be at least nr_pages long. Or NULL, if caller
1735  *		only intends to ensure the pages are faulted in.
1736  * @vmas:	array of pointers to vmas corresponding to each page.
1737  *		Or NULL if the caller does not require them.
1738  * @locked:	pointer to lock flag indicating whether lock is held and
1739  *		subsequently whether VM_FAULT_RETRY functionality can be
1740  *		utilised. Lock must initially be held.
1741  *
1742  * Returns either number of pages pinned (which may be less than the
1743  * number requested), or an error. Details about the return value:
1744  *
1745  * -- If nr_pages is 0, returns 0.
1746  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1747  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1748  *    pages pinned. Again, this may be less than nr_pages.
1749  *
1750  * The caller is responsible for releasing returned @pages, via put_page().
1751  *
1752  * @vmas are valid only as long as mmap_lock is held.
1753  *
1754  * Must be called with mmap_lock held for read or write.
1755  *
1756  * get_user_pages_remote walks a process's page tables and takes a reference
1757  * to each struct page that each user address corresponds to at a given
1758  * instant. That is, it takes the page that would be accessed if a user
1759  * thread accesses the given user virtual address at that instant.
1760  *
1761  * This does not guarantee that the page exists in the user mappings when
1762  * get_user_pages_remote returns, and there may even be a completely different
1763  * page there in some cases (eg. if mmapped pagecache has been invalidated
1764  * and subsequently re faulted). However it does guarantee that the page
1765  * won't be freed completely. And mostly callers simply care that the page
1766  * contains data that was valid *at some point in time*. Typically, an IO
1767  * or similar operation cannot guarantee anything stronger anyway because
1768  * locks can't be held over the syscall boundary.
1769  *
1770  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1771  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1772  * be called after the page is finished with, and before put_page is called.
1773  *
1774  * get_user_pages_remote is typically used for fewer-copy IO operations,
1775  * to get a handle on the memory by some means other than accesses
1776  * via the user virtual addresses. The pages may be submitted for
1777  * DMA to devices or accessed via their kernel linear mapping (via the
1778  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1779  *
1780  * See also get_user_pages_fast, for performance critical applications.
1781  *
1782  * get_user_pages_remote should be phased out in favor of
1783  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1784  * should use get_user_pages_remote because it cannot pass
1785  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1786  */
1787 long get_user_pages_remote(struct mm_struct *mm,
1788 		unsigned long start, unsigned long nr_pages,
1789 		unsigned int gup_flags, struct page **pages,
1790 		struct vm_area_struct **vmas, int *locked)
1791 {
1792 	if (!is_valid_gup_flags(gup_flags))
1793 		return -EINVAL;
1794 
1795 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1796 				       pages, vmas, locked);
1797 }
1798 EXPORT_SYMBOL(get_user_pages_remote);
1799 
1800 #else /* CONFIG_MMU */
1801 long get_user_pages_remote(struct mm_struct *mm,
1802 			   unsigned long start, unsigned long nr_pages,
1803 			   unsigned int gup_flags, struct page **pages,
1804 			   struct vm_area_struct **vmas, int *locked)
1805 {
1806 	return 0;
1807 }
1808 
1809 static long __get_user_pages_remote(struct mm_struct *mm,
1810 				    unsigned long start, unsigned long nr_pages,
1811 				    unsigned int gup_flags, struct page **pages,
1812 				    struct vm_area_struct **vmas, int *locked)
1813 {
1814 	return 0;
1815 }
1816 #endif /* !CONFIG_MMU */
1817 
1818 /**
1819  * get_user_pages() - pin user pages in memory
1820  * @start:      starting user address
1821  * @nr_pages:   number of pages from start to pin
1822  * @gup_flags:  flags modifying lookup behaviour
1823  * @pages:      array that receives pointers to the pages pinned.
1824  *              Should be at least nr_pages long. Or NULL, if caller
1825  *              only intends to ensure the pages are faulted in.
1826  * @vmas:       array of pointers to vmas corresponding to each page.
1827  *              Or NULL if the caller does not require them.
1828  *
1829  * This is the same as get_user_pages_remote(), just with a less-flexible
1830  * calling convention where we assume that the mm being operated on belongs to
1831  * the current task, and doesn't allow passing of a locked parameter.  We also
1832  * obviously don't pass FOLL_REMOTE in here.
1833  */
1834 long get_user_pages(unsigned long start, unsigned long nr_pages,
1835 		unsigned int gup_flags, struct page **pages,
1836 		struct vm_area_struct **vmas)
1837 {
1838 	if (!is_valid_gup_flags(gup_flags))
1839 		return -EINVAL;
1840 
1841 	return __gup_longterm_locked(current->mm, start, nr_pages,
1842 				     pages, vmas, gup_flags | FOLL_TOUCH);
1843 }
1844 EXPORT_SYMBOL(get_user_pages);
1845 
1846 /**
1847  * get_user_pages_locked() - variant of get_user_pages()
1848  *
1849  * @start:      starting user address
1850  * @nr_pages:   number of pages from start to pin
1851  * @gup_flags:  flags modifying lookup behaviour
1852  * @pages:      array that receives pointers to the pages pinned.
1853  *              Should be at least nr_pages long. Or NULL, if caller
1854  *              only intends to ensure the pages are faulted in.
1855  * @locked:     pointer to lock flag indicating whether lock is held and
1856  *              subsequently whether VM_FAULT_RETRY functionality can be
1857  *              utilised. Lock must initially be held.
1858  *
1859  * It is suitable to replace the form:
1860  *
1861  *      mmap_read_lock(mm);
1862  *      do_something()
1863  *      get_user_pages(mm, ..., pages, NULL);
1864  *      mmap_read_unlock(mm);
1865  *
1866  *  to:
1867  *
1868  *      int locked = 1;
1869  *      mmap_read_lock(mm);
1870  *      do_something()
1871  *      get_user_pages_locked(mm, ..., pages, &locked);
1872  *      if (locked)
1873  *          mmap_read_unlock(mm);
1874  *
1875  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1876  * paths better by using either get_user_pages_locked() or
1877  * get_user_pages_unlocked().
1878  *
1879  */
1880 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1881 			   unsigned int gup_flags, struct page **pages,
1882 			   int *locked)
1883 {
1884 	/*
1885 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1886 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1887 	 * vmas.  As there are no users of this flag in this call we simply
1888 	 * disallow this option for now.
1889 	 */
1890 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1891 		return -EINVAL;
1892 	/*
1893 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1894 	 * never directly by the caller, so enforce that:
1895 	 */
1896 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1897 		return -EINVAL;
1898 
1899 	return __get_user_pages_locked(current->mm, start, nr_pages,
1900 				       pages, NULL, locked,
1901 				       gup_flags | FOLL_TOUCH);
1902 }
1903 EXPORT_SYMBOL(get_user_pages_locked);
1904 
1905 /*
1906  * get_user_pages_unlocked() is suitable to replace the form:
1907  *
1908  *      mmap_read_lock(mm);
1909  *      get_user_pages(mm, ..., pages, NULL);
1910  *      mmap_read_unlock(mm);
1911  *
1912  *  with:
1913  *
1914  *      get_user_pages_unlocked(mm, ..., pages);
1915  *
1916  * It is functionally equivalent to get_user_pages_fast so
1917  * get_user_pages_fast should be used instead if specific gup_flags
1918  * (e.g. FOLL_FORCE) are not required.
1919  */
1920 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1921 			     struct page **pages, unsigned int gup_flags)
1922 {
1923 	struct mm_struct *mm = current->mm;
1924 	int locked = 1;
1925 	long ret;
1926 
1927 	/*
1928 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1929 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1930 	 * vmas.  As there are no users of this flag in this call we simply
1931 	 * disallow this option for now.
1932 	 */
1933 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1934 		return -EINVAL;
1935 
1936 	mmap_read_lock(mm);
1937 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1938 				      &locked, gup_flags | FOLL_TOUCH);
1939 	if (locked)
1940 		mmap_read_unlock(mm);
1941 	return ret;
1942 }
1943 EXPORT_SYMBOL(get_user_pages_unlocked);
1944 
1945 /*
1946  * Fast GUP
1947  *
1948  * get_user_pages_fast attempts to pin user pages by walking the page
1949  * tables directly and avoids taking locks. Thus the walker needs to be
1950  * protected from page table pages being freed from under it, and should
1951  * block any THP splits.
1952  *
1953  * One way to achieve this is to have the walker disable interrupts, and
1954  * rely on IPIs from the TLB flushing code blocking before the page table
1955  * pages are freed. This is unsuitable for architectures that do not need
1956  * to broadcast an IPI when invalidating TLBs.
1957  *
1958  * Another way to achieve this is to batch up page table containing pages
1959  * belonging to more than one mm_user, then rcu_sched a callback to free those
1960  * pages. Disabling interrupts will allow the fast_gup walker to both block
1961  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1962  * (which is a relatively rare event). The code below adopts this strategy.
1963  *
1964  * Before activating this code, please be aware that the following assumptions
1965  * are currently made:
1966  *
1967  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1968  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1969  *
1970  *  *) ptes can be read atomically by the architecture.
1971  *
1972  *  *) access_ok is sufficient to validate userspace address ranges.
1973  *
1974  * The last two assumptions can be relaxed by the addition of helper functions.
1975  *
1976  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1977  */
1978 #ifdef CONFIG_HAVE_FAST_GUP
1979 
1980 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1981 					    unsigned int flags,
1982 					    struct page **pages)
1983 {
1984 	while ((*nr) - nr_start) {
1985 		struct page *page = pages[--(*nr)];
1986 
1987 		ClearPageReferenced(page);
1988 		if (flags & FOLL_PIN)
1989 			unpin_user_page(page);
1990 		else
1991 			put_page(page);
1992 	}
1993 }
1994 
1995 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1996 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1997 			 unsigned int flags, struct page **pages, int *nr)
1998 {
1999 	struct dev_pagemap *pgmap = NULL;
2000 	int nr_start = *nr, ret = 0;
2001 	pte_t *ptep, *ptem;
2002 
2003 	ptem = ptep = pte_offset_map(&pmd, addr);
2004 	do {
2005 		pte_t pte = ptep_get_lockless(ptep);
2006 		struct page *head, *page;
2007 
2008 		/*
2009 		 * Similar to the PMD case below, NUMA hinting must take slow
2010 		 * path using the pte_protnone check.
2011 		 */
2012 		if (pte_protnone(pte))
2013 			goto pte_unmap;
2014 
2015 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2016 			goto pte_unmap;
2017 
2018 		if (pte_devmap(pte)) {
2019 			if (unlikely(flags & FOLL_LONGTERM))
2020 				goto pte_unmap;
2021 
2022 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2023 			if (unlikely(!pgmap)) {
2024 				undo_dev_pagemap(nr, nr_start, flags, pages);
2025 				goto pte_unmap;
2026 			}
2027 		} else if (pte_special(pte))
2028 			goto pte_unmap;
2029 
2030 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2031 		page = pte_page(pte);
2032 
2033 		head = try_grab_compound_head(page, 1, flags);
2034 		if (!head)
2035 			goto pte_unmap;
2036 
2037 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2038 			put_compound_head(head, 1, flags);
2039 			goto pte_unmap;
2040 		}
2041 
2042 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2043 
2044 		/*
2045 		 * We need to make the page accessible if and only if we are
2046 		 * going to access its content (the FOLL_PIN case).  Please
2047 		 * see Documentation/core-api/pin_user_pages.rst for
2048 		 * details.
2049 		 */
2050 		if (flags & FOLL_PIN) {
2051 			ret = arch_make_page_accessible(page);
2052 			if (ret) {
2053 				unpin_user_page(page);
2054 				goto pte_unmap;
2055 			}
2056 		}
2057 		SetPageReferenced(page);
2058 		pages[*nr] = page;
2059 		(*nr)++;
2060 
2061 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2062 
2063 	ret = 1;
2064 
2065 pte_unmap:
2066 	if (pgmap)
2067 		put_dev_pagemap(pgmap);
2068 	pte_unmap(ptem);
2069 	return ret;
2070 }
2071 #else
2072 
2073 /*
2074  * If we can't determine whether or not a pte is special, then fail immediately
2075  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2076  * to be special.
2077  *
2078  * For a futex to be placed on a THP tail page, get_futex_key requires a
2079  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2080  * useful to have gup_huge_pmd even if we can't operate on ptes.
2081  */
2082 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2083 			 unsigned int flags, struct page **pages, int *nr)
2084 {
2085 	return 0;
2086 }
2087 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2088 
2089 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2090 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2091 			     unsigned long end, unsigned int flags,
2092 			     struct page **pages, int *nr)
2093 {
2094 	int nr_start = *nr;
2095 	struct dev_pagemap *pgmap = NULL;
2096 
2097 	do {
2098 		struct page *page = pfn_to_page(pfn);
2099 
2100 		pgmap = get_dev_pagemap(pfn, pgmap);
2101 		if (unlikely(!pgmap)) {
2102 			undo_dev_pagemap(nr, nr_start, flags, pages);
2103 			return 0;
2104 		}
2105 		SetPageReferenced(page);
2106 		pages[*nr] = page;
2107 		if (unlikely(!try_grab_page(page, flags))) {
2108 			undo_dev_pagemap(nr, nr_start, flags, pages);
2109 			return 0;
2110 		}
2111 		(*nr)++;
2112 		pfn++;
2113 	} while (addr += PAGE_SIZE, addr != end);
2114 
2115 	if (pgmap)
2116 		put_dev_pagemap(pgmap);
2117 	return 1;
2118 }
2119 
2120 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2121 				 unsigned long end, unsigned int flags,
2122 				 struct page **pages, int *nr)
2123 {
2124 	unsigned long fault_pfn;
2125 	int nr_start = *nr;
2126 
2127 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2128 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2129 		return 0;
2130 
2131 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2132 		undo_dev_pagemap(nr, nr_start, flags, pages);
2133 		return 0;
2134 	}
2135 	return 1;
2136 }
2137 
2138 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2139 				 unsigned long end, unsigned int flags,
2140 				 struct page **pages, int *nr)
2141 {
2142 	unsigned long fault_pfn;
2143 	int nr_start = *nr;
2144 
2145 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2146 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2147 		return 0;
2148 
2149 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2150 		undo_dev_pagemap(nr, nr_start, flags, pages);
2151 		return 0;
2152 	}
2153 	return 1;
2154 }
2155 #else
2156 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2157 				 unsigned long end, unsigned int flags,
2158 				 struct page **pages, int *nr)
2159 {
2160 	BUILD_BUG();
2161 	return 0;
2162 }
2163 
2164 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2165 				 unsigned long end, unsigned int flags,
2166 				 struct page **pages, int *nr)
2167 {
2168 	BUILD_BUG();
2169 	return 0;
2170 }
2171 #endif
2172 
2173 static int record_subpages(struct page *page, unsigned long addr,
2174 			   unsigned long end, struct page **pages)
2175 {
2176 	int nr;
2177 
2178 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2179 		pages[nr++] = page++;
2180 
2181 	return nr;
2182 }
2183 
2184 #ifdef CONFIG_ARCH_HAS_HUGEPD
2185 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2186 				      unsigned long sz)
2187 {
2188 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2189 	return (__boundary - 1 < end - 1) ? __boundary : end;
2190 }
2191 
2192 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2193 		       unsigned long end, unsigned int flags,
2194 		       struct page **pages, int *nr)
2195 {
2196 	unsigned long pte_end;
2197 	struct page *head, *page;
2198 	pte_t pte;
2199 	int refs;
2200 
2201 	pte_end = (addr + sz) & ~(sz-1);
2202 	if (pte_end < end)
2203 		end = pte_end;
2204 
2205 	pte = huge_ptep_get(ptep);
2206 
2207 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2208 		return 0;
2209 
2210 	/* hugepages are never "special" */
2211 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2212 
2213 	head = pte_page(pte);
2214 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2215 	refs = record_subpages(page, addr, end, pages + *nr);
2216 
2217 	head = try_grab_compound_head(head, refs, flags);
2218 	if (!head)
2219 		return 0;
2220 
2221 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2222 		put_compound_head(head, refs, flags);
2223 		return 0;
2224 	}
2225 
2226 	*nr += refs;
2227 	SetPageReferenced(head);
2228 	return 1;
2229 }
2230 
2231 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2232 		unsigned int pdshift, unsigned long end, unsigned int flags,
2233 		struct page **pages, int *nr)
2234 {
2235 	pte_t *ptep;
2236 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2237 	unsigned long next;
2238 
2239 	ptep = hugepte_offset(hugepd, addr, pdshift);
2240 	do {
2241 		next = hugepte_addr_end(addr, end, sz);
2242 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2243 			return 0;
2244 	} while (ptep++, addr = next, addr != end);
2245 
2246 	return 1;
2247 }
2248 #else
2249 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2250 		unsigned int pdshift, unsigned long end, unsigned int flags,
2251 		struct page **pages, int *nr)
2252 {
2253 	return 0;
2254 }
2255 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2256 
2257 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258 			unsigned long end, unsigned int flags,
2259 			struct page **pages, int *nr)
2260 {
2261 	struct page *head, *page;
2262 	int refs;
2263 
2264 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2265 		return 0;
2266 
2267 	if (pmd_devmap(orig)) {
2268 		if (unlikely(flags & FOLL_LONGTERM))
2269 			return 0;
2270 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2271 					     pages, nr);
2272 	}
2273 
2274 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2275 	refs = record_subpages(page, addr, end, pages + *nr);
2276 
2277 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2278 	if (!head)
2279 		return 0;
2280 
2281 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2282 		put_compound_head(head, refs, flags);
2283 		return 0;
2284 	}
2285 
2286 	*nr += refs;
2287 	SetPageReferenced(head);
2288 	return 1;
2289 }
2290 
2291 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2292 			unsigned long end, unsigned int flags,
2293 			struct page **pages, int *nr)
2294 {
2295 	struct page *head, *page;
2296 	int refs;
2297 
2298 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2299 		return 0;
2300 
2301 	if (pud_devmap(orig)) {
2302 		if (unlikely(flags & FOLL_LONGTERM))
2303 			return 0;
2304 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2305 					     pages, nr);
2306 	}
2307 
2308 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2309 	refs = record_subpages(page, addr, end, pages + *nr);
2310 
2311 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2312 	if (!head)
2313 		return 0;
2314 
2315 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2316 		put_compound_head(head, refs, flags);
2317 		return 0;
2318 	}
2319 
2320 	*nr += refs;
2321 	SetPageReferenced(head);
2322 	return 1;
2323 }
2324 
2325 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2326 			unsigned long end, unsigned int flags,
2327 			struct page **pages, int *nr)
2328 {
2329 	int refs;
2330 	struct page *head, *page;
2331 
2332 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2333 		return 0;
2334 
2335 	BUILD_BUG_ON(pgd_devmap(orig));
2336 
2337 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2338 	refs = record_subpages(page, addr, end, pages + *nr);
2339 
2340 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2341 	if (!head)
2342 		return 0;
2343 
2344 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2345 		put_compound_head(head, refs, flags);
2346 		return 0;
2347 	}
2348 
2349 	*nr += refs;
2350 	SetPageReferenced(head);
2351 	return 1;
2352 }
2353 
2354 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2355 		unsigned int flags, struct page **pages, int *nr)
2356 {
2357 	unsigned long next;
2358 	pmd_t *pmdp;
2359 
2360 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2361 	do {
2362 		pmd_t pmd = READ_ONCE(*pmdp);
2363 
2364 		next = pmd_addr_end(addr, end);
2365 		if (!pmd_present(pmd))
2366 			return 0;
2367 
2368 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2369 			     pmd_devmap(pmd))) {
2370 			/*
2371 			 * NUMA hinting faults need to be handled in the GUP
2372 			 * slowpath for accounting purposes and so that they
2373 			 * can be serialised against THP migration.
2374 			 */
2375 			if (pmd_protnone(pmd))
2376 				return 0;
2377 
2378 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2379 				pages, nr))
2380 				return 0;
2381 
2382 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2383 			/*
2384 			 * architecture have different format for hugetlbfs
2385 			 * pmd format and THP pmd format
2386 			 */
2387 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2388 					 PMD_SHIFT, next, flags, pages, nr))
2389 				return 0;
2390 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2391 			return 0;
2392 	} while (pmdp++, addr = next, addr != end);
2393 
2394 	return 1;
2395 }
2396 
2397 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2398 			 unsigned int flags, struct page **pages, int *nr)
2399 {
2400 	unsigned long next;
2401 	pud_t *pudp;
2402 
2403 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2404 	do {
2405 		pud_t pud = READ_ONCE(*pudp);
2406 
2407 		next = pud_addr_end(addr, end);
2408 		if (unlikely(!pud_present(pud)))
2409 			return 0;
2410 		if (unlikely(pud_huge(pud))) {
2411 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2412 					  pages, nr))
2413 				return 0;
2414 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2415 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2416 					 PUD_SHIFT, next, flags, pages, nr))
2417 				return 0;
2418 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2419 			return 0;
2420 	} while (pudp++, addr = next, addr != end);
2421 
2422 	return 1;
2423 }
2424 
2425 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2426 			 unsigned int flags, struct page **pages, int *nr)
2427 {
2428 	unsigned long next;
2429 	p4d_t *p4dp;
2430 
2431 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2432 	do {
2433 		p4d_t p4d = READ_ONCE(*p4dp);
2434 
2435 		next = p4d_addr_end(addr, end);
2436 		if (p4d_none(p4d))
2437 			return 0;
2438 		BUILD_BUG_ON(p4d_huge(p4d));
2439 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2440 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2441 					 P4D_SHIFT, next, flags, pages, nr))
2442 				return 0;
2443 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2444 			return 0;
2445 	} while (p4dp++, addr = next, addr != end);
2446 
2447 	return 1;
2448 }
2449 
2450 static void gup_pgd_range(unsigned long addr, unsigned long end,
2451 		unsigned int flags, struct page **pages, int *nr)
2452 {
2453 	unsigned long next;
2454 	pgd_t *pgdp;
2455 
2456 	pgdp = pgd_offset(current->mm, addr);
2457 	do {
2458 		pgd_t pgd = READ_ONCE(*pgdp);
2459 
2460 		next = pgd_addr_end(addr, end);
2461 		if (pgd_none(pgd))
2462 			return;
2463 		if (unlikely(pgd_huge(pgd))) {
2464 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2465 					  pages, nr))
2466 				return;
2467 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2468 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2469 					 PGDIR_SHIFT, next, flags, pages, nr))
2470 				return;
2471 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2472 			return;
2473 	} while (pgdp++, addr = next, addr != end);
2474 }
2475 #else
2476 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2477 		unsigned int flags, struct page **pages, int *nr)
2478 {
2479 }
2480 #endif /* CONFIG_HAVE_FAST_GUP */
2481 
2482 #ifndef gup_fast_permitted
2483 /*
2484  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2485  * we need to fall back to the slow version:
2486  */
2487 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2488 {
2489 	return true;
2490 }
2491 #endif
2492 
2493 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2494 				   unsigned int gup_flags, struct page **pages)
2495 {
2496 	int ret;
2497 
2498 	/*
2499 	 * FIXME: FOLL_LONGTERM does not work with
2500 	 * get_user_pages_unlocked() (see comments in that function)
2501 	 */
2502 	if (gup_flags & FOLL_LONGTERM) {
2503 		mmap_read_lock(current->mm);
2504 		ret = __gup_longterm_locked(current->mm,
2505 					    start, nr_pages,
2506 					    pages, NULL, gup_flags);
2507 		mmap_read_unlock(current->mm);
2508 	} else {
2509 		ret = get_user_pages_unlocked(start, nr_pages,
2510 					      pages, gup_flags);
2511 	}
2512 
2513 	return ret;
2514 }
2515 
2516 static unsigned long lockless_pages_from_mm(unsigned long start,
2517 					    unsigned long end,
2518 					    unsigned int gup_flags,
2519 					    struct page **pages)
2520 {
2521 	unsigned long flags;
2522 	int nr_pinned = 0;
2523 	unsigned seq;
2524 
2525 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2526 	    !gup_fast_permitted(start, end))
2527 		return 0;
2528 
2529 	if (gup_flags & FOLL_PIN) {
2530 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2531 		if (seq & 1)
2532 			return 0;
2533 	}
2534 
2535 	/*
2536 	 * Disable interrupts. The nested form is used, in order to allow full,
2537 	 * general purpose use of this routine.
2538 	 *
2539 	 * With interrupts disabled, we block page table pages from being freed
2540 	 * from under us. See struct mmu_table_batch comments in
2541 	 * include/asm-generic/tlb.h for more details.
2542 	 *
2543 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2544 	 * that come from THPs splitting.
2545 	 */
2546 	local_irq_save(flags);
2547 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2548 	local_irq_restore(flags);
2549 
2550 	/*
2551 	 * When pinning pages for DMA there could be a concurrent write protect
2552 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2553 	 */
2554 	if (gup_flags & FOLL_PIN) {
2555 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2556 			unpin_user_pages(pages, nr_pinned);
2557 			return 0;
2558 		}
2559 	}
2560 	return nr_pinned;
2561 }
2562 
2563 static int internal_get_user_pages_fast(unsigned long start,
2564 					unsigned long nr_pages,
2565 					unsigned int gup_flags,
2566 					struct page **pages)
2567 {
2568 	unsigned long len, end;
2569 	unsigned long nr_pinned;
2570 	int ret;
2571 
2572 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2573 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2574 				       FOLL_FAST_ONLY)))
2575 		return -EINVAL;
2576 
2577 	if (gup_flags & FOLL_PIN)
2578 		atomic_set(&current->mm->has_pinned, 1);
2579 
2580 	if (!(gup_flags & FOLL_FAST_ONLY))
2581 		might_lock_read(&current->mm->mmap_lock);
2582 
2583 	start = untagged_addr(start) & PAGE_MASK;
2584 	len = nr_pages << PAGE_SHIFT;
2585 	if (check_add_overflow(start, len, &end))
2586 		return 0;
2587 	if (unlikely(!access_ok((void __user *)start, len)))
2588 		return -EFAULT;
2589 
2590 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2591 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2592 		return nr_pinned;
2593 
2594 	/* Slow path: try to get the remaining pages with get_user_pages */
2595 	start += nr_pinned << PAGE_SHIFT;
2596 	pages += nr_pinned;
2597 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2598 				      pages);
2599 	if (ret < 0) {
2600 		/*
2601 		 * The caller has to unpin the pages we already pinned so
2602 		 * returning -errno is not an option
2603 		 */
2604 		if (nr_pinned)
2605 			return nr_pinned;
2606 		return ret;
2607 	}
2608 	return ret + nr_pinned;
2609 }
2610 
2611 /**
2612  * get_user_pages_fast_only() - pin user pages in memory
2613  * @start:      starting user address
2614  * @nr_pages:   number of pages from start to pin
2615  * @gup_flags:  flags modifying pin behaviour
2616  * @pages:      array that receives pointers to the pages pinned.
2617  *              Should be at least nr_pages long.
2618  *
2619  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2620  * the regular GUP.
2621  * Note a difference with get_user_pages_fast: this always returns the
2622  * number of pages pinned, 0 if no pages were pinned.
2623  *
2624  * If the architecture does not support this function, simply return with no
2625  * pages pinned.
2626  *
2627  * Careful, careful! COW breaking can go either way, so a non-write
2628  * access can get ambiguous page results. If you call this function without
2629  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2630  */
2631 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2632 			     unsigned int gup_flags, struct page **pages)
2633 {
2634 	int nr_pinned;
2635 	/*
2636 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2637 	 * because gup fast is always a "pin with a +1 page refcount" request.
2638 	 *
2639 	 * FOLL_FAST_ONLY is required in order to match the API description of
2640 	 * this routine: no fall back to regular ("slow") GUP.
2641 	 */
2642 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2643 
2644 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2645 						 pages);
2646 
2647 	/*
2648 	 * As specified in the API description above, this routine is not
2649 	 * allowed to return negative values. However, the common core
2650 	 * routine internal_get_user_pages_fast() *can* return -errno.
2651 	 * Therefore, correct for that here:
2652 	 */
2653 	if (nr_pinned < 0)
2654 		nr_pinned = 0;
2655 
2656 	return nr_pinned;
2657 }
2658 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2659 
2660 /**
2661  * get_user_pages_fast() - pin user pages in memory
2662  * @start:      starting user address
2663  * @nr_pages:   number of pages from start to pin
2664  * @gup_flags:  flags modifying pin behaviour
2665  * @pages:      array that receives pointers to the pages pinned.
2666  *              Should be at least nr_pages long.
2667  *
2668  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2669  * If not successful, it will fall back to taking the lock and
2670  * calling get_user_pages().
2671  *
2672  * Returns number of pages pinned. This may be fewer than the number requested.
2673  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2674  * -errno.
2675  */
2676 int get_user_pages_fast(unsigned long start, int nr_pages,
2677 			unsigned int gup_flags, struct page **pages)
2678 {
2679 	if (!is_valid_gup_flags(gup_flags))
2680 		return -EINVAL;
2681 
2682 	/*
2683 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2684 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2685 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2686 	 * request.
2687 	 */
2688 	gup_flags |= FOLL_GET;
2689 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2690 }
2691 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2692 
2693 /**
2694  * pin_user_pages_fast() - pin user pages in memory without taking locks
2695  *
2696  * @start:      starting user address
2697  * @nr_pages:   number of pages from start to pin
2698  * @gup_flags:  flags modifying pin behaviour
2699  * @pages:      array that receives pointers to the pages pinned.
2700  *              Should be at least nr_pages long.
2701  *
2702  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2703  * get_user_pages_fast() for documentation on the function arguments, because
2704  * the arguments here are identical.
2705  *
2706  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2707  * see Documentation/core-api/pin_user_pages.rst for further details.
2708  */
2709 int pin_user_pages_fast(unsigned long start, int nr_pages,
2710 			unsigned int gup_flags, struct page **pages)
2711 {
2712 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2713 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2714 		return -EINVAL;
2715 
2716 	gup_flags |= FOLL_PIN;
2717 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2718 }
2719 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2720 
2721 /*
2722  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2723  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2724  *
2725  * The API rules are the same, too: no negative values may be returned.
2726  */
2727 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2728 			     unsigned int gup_flags, struct page **pages)
2729 {
2730 	int nr_pinned;
2731 
2732 	/*
2733 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2734 	 * rules require returning 0, rather than -errno:
2735 	 */
2736 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2737 		return 0;
2738 	/*
2739 	 * FOLL_FAST_ONLY is required in order to match the API description of
2740 	 * this routine: no fall back to regular ("slow") GUP.
2741 	 */
2742 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2743 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2744 						 pages);
2745 	/*
2746 	 * This routine is not allowed to return negative values. However,
2747 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2748 	 * correct for that here:
2749 	 */
2750 	if (nr_pinned < 0)
2751 		nr_pinned = 0;
2752 
2753 	return nr_pinned;
2754 }
2755 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2756 
2757 /**
2758  * pin_user_pages_remote() - pin pages of a remote process
2759  *
2760  * @mm:		mm_struct of target mm
2761  * @start:	starting user address
2762  * @nr_pages:	number of pages from start to pin
2763  * @gup_flags:	flags modifying lookup behaviour
2764  * @pages:	array that receives pointers to the pages pinned.
2765  *		Should be at least nr_pages long. Or NULL, if caller
2766  *		only intends to ensure the pages are faulted in.
2767  * @vmas:	array of pointers to vmas corresponding to each page.
2768  *		Or NULL if the caller does not require them.
2769  * @locked:	pointer to lock flag indicating whether lock is held and
2770  *		subsequently whether VM_FAULT_RETRY functionality can be
2771  *		utilised. Lock must initially be held.
2772  *
2773  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2774  * get_user_pages_remote() for documentation on the function arguments, because
2775  * the arguments here are identical.
2776  *
2777  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2778  * see Documentation/core-api/pin_user_pages.rst for details.
2779  */
2780 long pin_user_pages_remote(struct mm_struct *mm,
2781 			   unsigned long start, unsigned long nr_pages,
2782 			   unsigned int gup_flags, struct page **pages,
2783 			   struct vm_area_struct **vmas, int *locked)
2784 {
2785 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2786 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2787 		return -EINVAL;
2788 
2789 	gup_flags |= FOLL_PIN;
2790 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2791 				       pages, vmas, locked);
2792 }
2793 EXPORT_SYMBOL(pin_user_pages_remote);
2794 
2795 /**
2796  * pin_user_pages() - pin user pages in memory for use by other devices
2797  *
2798  * @start:	starting user address
2799  * @nr_pages:	number of pages from start to pin
2800  * @gup_flags:	flags modifying lookup behaviour
2801  * @pages:	array that receives pointers to the pages pinned.
2802  *		Should be at least nr_pages long. Or NULL, if caller
2803  *		only intends to ensure the pages are faulted in.
2804  * @vmas:	array of pointers to vmas corresponding to each page.
2805  *		Or NULL if the caller does not require them.
2806  *
2807  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2808  * FOLL_PIN is set.
2809  *
2810  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2811  * see Documentation/core-api/pin_user_pages.rst for details.
2812  */
2813 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2814 		    unsigned int gup_flags, struct page **pages,
2815 		    struct vm_area_struct **vmas)
2816 {
2817 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2818 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2819 		return -EINVAL;
2820 
2821 	gup_flags |= FOLL_PIN;
2822 	return __gup_longterm_locked(current->mm, start, nr_pages,
2823 				     pages, vmas, gup_flags);
2824 }
2825 EXPORT_SYMBOL(pin_user_pages);
2826 
2827 /*
2828  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2829  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2830  * FOLL_PIN and rejects FOLL_GET.
2831  */
2832 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2833 			     struct page **pages, unsigned int gup_flags)
2834 {
2835 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2836 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2837 		return -EINVAL;
2838 
2839 	gup_flags |= FOLL_PIN;
2840 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2841 }
2842 EXPORT_SYMBOL(pin_user_pages_unlocked);
2843 
2844 /*
2845  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2846  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2847  * FOLL_GET.
2848  */
2849 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2850 			   unsigned int gup_flags, struct page **pages,
2851 			   int *locked)
2852 {
2853 	/*
2854 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2855 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2856 	 * vmas.  As there are no users of this flag in this call we simply
2857 	 * disallow this option for now.
2858 	 */
2859 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2860 		return -EINVAL;
2861 
2862 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2863 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2864 		return -EINVAL;
2865 
2866 	gup_flags |= FOLL_PIN;
2867 	return __get_user_pages_locked(current->mm, start, nr_pages,
2868 				       pages, NULL, locked,
2869 				       gup_flags | FOLL_TOUCH);
2870 }
2871 EXPORT_SYMBOL(pin_user_pages_locked);
2872