xref: /linux/mm/gup.c (revision 97733180fafbeb7cc3fd1c8be60d05980615f5d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /*
66  * Return the compound head page with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 	struct page *head = compound_head(page);
72 
73 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 		return NULL;
75 	if (unlikely(!page_cache_add_speculative(head, refs)))
76 		return NULL;
77 
78 	/*
79 	 * At this point we have a stable reference to the head page; but it
80 	 * could be that between the compound_head() lookup and the refcount
81 	 * increment, the compound page was split, in which case we'd end up
82 	 * holding a reference on a page that has nothing to do with the page
83 	 * we were given anymore.
84 	 * So now that the head page is stable, recheck that the pages still
85 	 * belong together.
86 	 */
87 	if (unlikely(compound_head(page) != head)) {
88 		put_page_refs(head, refs);
89 		return NULL;
90 	}
91 
92 	return head;
93 }
94 
95 /**
96  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97  * flags-dependent amount.
98  *
99  * Even though the name includes "compound_head", this function is still
100  * appropriate for callers that have a non-compound @page to get.
101  *
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the page's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: page's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
116  *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
117  *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  *    FOLL_PIN on normal pages, or compound pages that are two pages long:
120  *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121  *
122  * Return: head page (with refcount appropriately incremented) for success, or
123  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124  * considered failure, and furthermore, a likely bug in the caller, so a warning
125  * is also emitted.
126  */
127 struct page *try_grab_compound_head(struct page *page,
128 				    int refs, unsigned int flags)
129 {
130 	if (flags & FOLL_GET)
131 		return try_get_compound_head(page, refs);
132 	else if (flags & FOLL_PIN) {
133 		/*
134 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 		 * right zone, so fail and let the caller fall back to the slow
136 		 * path.
137 		 */
138 		if (unlikely((flags & FOLL_LONGTERM) &&
139 			     !is_pinnable_page(page)))
140 			return NULL;
141 
142 		/*
143 		 * CAUTION: Don't use compound_head() on the page before this
144 		 * point, the result won't be stable.
145 		 */
146 		page = try_get_compound_head(page, refs);
147 		if (!page)
148 			return NULL;
149 
150 		/*
151 		 * When pinning a compound page of order > 1 (which is what
152 		 * hpage_pincount_available() checks for), use an exact count to
153 		 * track it, via hpage_pincount_add/_sub().
154 		 *
155 		 * However, be sure to *also* increment the normal page refcount
156 		 * field at least once, so that the page really is pinned.
157 		 * That's why the refcount from the earlier
158 		 * try_get_compound_head() is left intact.
159 		 */
160 		if (hpage_pincount_available(page))
161 			hpage_pincount_add(page, refs);
162 		else
163 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164 
165 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 				    refs);
167 
168 		return page;
169 	}
170 
171 	WARN_ON_ONCE(1);
172 	return NULL;
173 }
174 
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 	if (flags & FOLL_PIN) {
178 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 				    refs);
180 
181 		if (hpage_pincount_available(page))
182 			hpage_pincount_sub(page, refs);
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	put_page_refs(page, refs);
188 }
189 
190 /**
191  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192  *
193  * This might not do anything at all, depending on the flags argument.
194  *
195  * "grab" names in this file mean, "look at flags to decide whether to use
196  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197  *
198  * @page:    pointer to page to be grabbed
199  * @flags:   gup flags: these are the FOLL_* flag values.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_compound_head() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	if (!(flags & (FOLL_GET | FOLL_PIN)))
212 		return true;
213 
214 	return try_grab_compound_head(page, 1, flags);
215 }
216 
217 /**
218  * unpin_user_page() - release a dma-pinned page
219  * @page:            pointer to page to be released
220  *
221  * Pages that were pinned via pin_user_pages*() must be released via either
222  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
223  * that such pages can be separately tracked and uniquely handled. In
224  * particular, interactions with RDMA and filesystems need special handling.
225  */
226 void unpin_user_page(struct page *page)
227 {
228 	put_compound_head(compound_head(page), 1, FOLL_PIN);
229 }
230 EXPORT_SYMBOL(unpin_user_page);
231 
232 static inline void compound_range_next(unsigned long i, unsigned long npages,
233 				       struct page **list, struct page **head,
234 				       unsigned int *ntails)
235 {
236 	struct page *next, *page;
237 	unsigned int nr = 1;
238 
239 	if (i >= npages)
240 		return;
241 
242 	next = *list + i;
243 	page = compound_head(next);
244 	if (PageCompound(page) && compound_order(page) >= 1)
245 		nr = min_t(unsigned int,
246 			   page + compound_nr(page) - next, npages - i);
247 
248 	*head = page;
249 	*ntails = nr;
250 }
251 
252 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
253 	for (__i = 0, \
254 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
255 	     __i < __npages; __i += __ntails, \
256 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
257 
258 static inline void compound_next(unsigned long i, unsigned long npages,
259 				 struct page **list, struct page **head,
260 				 unsigned int *ntails)
261 {
262 	struct page *page;
263 	unsigned int nr;
264 
265 	if (i >= npages)
266 		return;
267 
268 	page = compound_head(list[i]);
269 	for (nr = i + 1; nr < npages; nr++) {
270 		if (compound_head(list[nr]) != page)
271 			break;
272 	}
273 
274 	*head = page;
275 	*ntails = nr - i;
276 }
277 
278 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
279 	for (__i = 0, \
280 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
281 	     __i < __npages; __i += __ntails, \
282 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long index;
310 	struct page *head;
311 	unsigned int ntails;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	for_each_compound_head(index, pages, npages, head, ntails) {
319 		/*
320 		 * Checking PageDirty at this point may race with
321 		 * clear_page_dirty_for_io(), but that's OK. Two key
322 		 * cases:
323 		 *
324 		 * 1) This code sees the page as already dirty, so it
325 		 * skips the call to set_page_dirty(). That could happen
326 		 * because clear_page_dirty_for_io() called
327 		 * page_mkclean(), followed by set_page_dirty().
328 		 * However, now the page is going to get written back,
329 		 * which meets the original intention of setting it
330 		 * dirty, so all is well: clear_page_dirty_for_io() goes
331 		 * on to call TestClearPageDirty(), and write the page
332 		 * back.
333 		 *
334 		 * 2) This code sees the page as clean, so it calls
335 		 * set_page_dirty(). The page stays dirty, despite being
336 		 * written back, so it gets written back again in the
337 		 * next writeback cycle. This is harmless.
338 		 */
339 		if (!PageDirty(head))
340 			set_page_dirty_lock(head);
341 		put_compound_head(head, ntails, FOLL_PIN);
342 	}
343 }
344 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345 
346 /**
347  * unpin_user_page_range_dirty_lock() - release and optionally dirty
348  * gup-pinned page range
349  *
350  * @page:  the starting page of a range maybe marked dirty, and definitely released.
351  * @npages: number of consecutive pages to release.
352  * @make_dirty: whether to mark the pages dirty
353  *
354  * "gup-pinned page range" refers to a range of pages that has had one of the
355  * pin_user_pages() variants called on that page.
356  *
357  * For the page ranges defined by [page .. page+npages], make that range (or
358  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
359  * page range was previously listed as clean.
360  *
361  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
362  * required, then the caller should a) verify that this is really correct,
363  * because _lock() is usually required, and b) hand code it:
364  * set_page_dirty_lock(), unpin_user_page().
365  *
366  */
367 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
368 				      bool make_dirty)
369 {
370 	unsigned long index;
371 	struct page *head;
372 	unsigned int ntails;
373 
374 	for_each_compound_range(index, &page, npages, head, ntails) {
375 		if (make_dirty && !PageDirty(head))
376 			set_page_dirty_lock(head);
377 		put_compound_head(head, ntails, FOLL_PIN);
378 	}
379 }
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381 
382 /**
383  * unpin_user_pages() - release an array of gup-pinned pages.
384  * @pages:  array of pages to be marked dirty and released.
385  * @npages: number of pages in the @pages array.
386  *
387  * For each page in the @pages array, release the page using unpin_user_page().
388  *
389  * Please see the unpin_user_page() documentation for details.
390  */
391 void unpin_user_pages(struct page **pages, unsigned long npages)
392 {
393 	unsigned long index;
394 	struct page *head;
395 	unsigned int ntails;
396 
397 	/*
398 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
399 	 * leaving them pinned), but probably not. More likely, gup/pup returned
400 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
401 	 */
402 	if (WARN_ON(IS_ERR_VALUE(npages)))
403 		return;
404 
405 	for_each_compound_head(index, pages, npages, head, ntails)
406 		put_compound_head(head, ntails, FOLL_PIN);
407 }
408 EXPORT_SYMBOL(unpin_user_pages);
409 
410 /*
411  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
412  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
413  * cache bouncing on large SMP machines for concurrent pinned gups.
414  */
415 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
416 {
417 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
418 		set_bit(MMF_HAS_PINNED, mm_flags);
419 }
420 
421 #ifdef CONFIG_MMU
422 static struct page *no_page_table(struct vm_area_struct *vma,
423 		unsigned int flags)
424 {
425 	/*
426 	 * When core dumping an enormous anonymous area that nobody
427 	 * has touched so far, we don't want to allocate unnecessary pages or
428 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
429 	 * then get_dump_page() will return NULL to leave a hole in the dump.
430 	 * But we can only make this optimization where a hole would surely
431 	 * be zero-filled if handle_mm_fault() actually did handle it.
432 	 */
433 	if ((flags & FOLL_DUMP) &&
434 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
435 		return ERR_PTR(-EFAULT);
436 	return NULL;
437 }
438 
439 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
440 		pte_t *pte, unsigned int flags)
441 {
442 	/* No page to get reference */
443 	if (flags & FOLL_GET)
444 		return -EFAULT;
445 
446 	if (flags & FOLL_TOUCH) {
447 		pte_t entry = *pte;
448 
449 		if (flags & FOLL_WRITE)
450 			entry = pte_mkdirty(entry);
451 		entry = pte_mkyoung(entry);
452 
453 		if (!pte_same(*pte, entry)) {
454 			set_pte_at(vma->vm_mm, address, pte, entry);
455 			update_mmu_cache(vma, address, pte);
456 		}
457 	}
458 
459 	/* Proper page table entry exists, but no corresponding struct page */
460 	return -EEXIST;
461 }
462 
463 /*
464  * FOLL_FORCE can write to even unwritable pte's, but only
465  * after we've gone through a COW cycle and they are dirty.
466  */
467 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
468 {
469 	return pte_write(pte) ||
470 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
471 }
472 
473 static struct page *follow_page_pte(struct vm_area_struct *vma,
474 		unsigned long address, pmd_t *pmd, unsigned int flags,
475 		struct dev_pagemap **pgmap)
476 {
477 	struct mm_struct *mm = vma->vm_mm;
478 	struct page *page;
479 	spinlock_t *ptl;
480 	pte_t *ptep, pte;
481 	int ret;
482 
483 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
484 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
485 			 (FOLL_PIN | FOLL_GET)))
486 		return ERR_PTR(-EINVAL);
487 retry:
488 	if (unlikely(pmd_bad(*pmd)))
489 		return no_page_table(vma, flags);
490 
491 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
492 	pte = *ptep;
493 	if (!pte_present(pte)) {
494 		swp_entry_t entry;
495 		/*
496 		 * KSM's break_ksm() relies upon recognizing a ksm page
497 		 * even while it is being migrated, so for that case we
498 		 * need migration_entry_wait().
499 		 */
500 		if (likely(!(flags & FOLL_MIGRATION)))
501 			goto no_page;
502 		if (pte_none(pte))
503 			goto no_page;
504 		entry = pte_to_swp_entry(pte);
505 		if (!is_migration_entry(entry))
506 			goto no_page;
507 		pte_unmap_unlock(ptep, ptl);
508 		migration_entry_wait(mm, pmd, address);
509 		goto retry;
510 	}
511 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
512 		goto no_page;
513 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
514 		pte_unmap_unlock(ptep, ptl);
515 		return NULL;
516 	}
517 
518 	page = vm_normal_page(vma, address, pte);
519 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
520 		/*
521 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
522 		 * case since they are only valid while holding the pgmap
523 		 * reference.
524 		 */
525 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
526 		if (*pgmap)
527 			page = pte_page(pte);
528 		else
529 			goto no_page;
530 	} else if (unlikely(!page)) {
531 		if (flags & FOLL_DUMP) {
532 			/* Avoid special (like zero) pages in core dumps */
533 			page = ERR_PTR(-EFAULT);
534 			goto out;
535 		}
536 
537 		if (is_zero_pfn(pte_pfn(pte))) {
538 			page = pte_page(pte);
539 		} else {
540 			ret = follow_pfn_pte(vma, address, ptep, flags);
541 			page = ERR_PTR(ret);
542 			goto out;
543 		}
544 	}
545 
546 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
547 	if (unlikely(!try_grab_page(page, flags))) {
548 		page = ERR_PTR(-ENOMEM);
549 		goto out;
550 	}
551 	/*
552 	 * We need to make the page accessible if and only if we are going
553 	 * to access its content (the FOLL_PIN case).  Please see
554 	 * Documentation/core-api/pin_user_pages.rst for details.
555 	 */
556 	if (flags & FOLL_PIN) {
557 		ret = arch_make_page_accessible(page);
558 		if (ret) {
559 			unpin_user_page(page);
560 			page = ERR_PTR(ret);
561 			goto out;
562 		}
563 	}
564 	if (flags & FOLL_TOUCH) {
565 		if ((flags & FOLL_WRITE) &&
566 		    !pte_dirty(pte) && !PageDirty(page))
567 			set_page_dirty(page);
568 		/*
569 		 * pte_mkyoung() would be more correct here, but atomic care
570 		 * is needed to avoid losing the dirty bit: it is easier to use
571 		 * mark_page_accessed().
572 		 */
573 		mark_page_accessed(page);
574 	}
575 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
576 		/* Do not mlock pte-mapped THP */
577 		if (PageTransCompound(page))
578 			goto out;
579 
580 		/*
581 		 * The preliminary mapping check is mainly to avoid the
582 		 * pointless overhead of lock_page on the ZERO_PAGE
583 		 * which might bounce very badly if there is contention.
584 		 *
585 		 * If the page is already locked, we don't need to
586 		 * handle it now - vmscan will handle it later if and
587 		 * when it attempts to reclaim the page.
588 		 */
589 		if (page->mapping && trylock_page(page)) {
590 			lru_add_drain();  /* push cached pages to LRU */
591 			/*
592 			 * Because we lock page here, and migration is
593 			 * blocked by the pte's page reference, and we
594 			 * know the page is still mapped, we don't even
595 			 * need to check for file-cache page truncation.
596 			 */
597 			mlock_vma_page(page);
598 			unlock_page(page);
599 		}
600 	}
601 out:
602 	pte_unmap_unlock(ptep, ptl);
603 	return page;
604 no_page:
605 	pte_unmap_unlock(ptep, ptl);
606 	if (!pte_none(pte))
607 		return NULL;
608 	return no_page_table(vma, flags);
609 }
610 
611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 				    unsigned long address, pud_t *pudp,
613 				    unsigned int flags,
614 				    struct follow_page_context *ctx)
615 {
616 	pmd_t *pmd, pmdval;
617 	spinlock_t *ptl;
618 	struct page *page;
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	pmd = pmd_offset(pudp, address);
622 	/*
623 	 * The READ_ONCE() will stabilize the pmdval in a register or
624 	 * on the stack so that it will stop changing under the code.
625 	 */
626 	pmdval = READ_ONCE(*pmd);
627 	if (pmd_none(pmdval))
628 		return no_page_table(vma, flags);
629 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 		page = follow_huge_pmd(mm, address, pmd, flags);
631 		if (page)
632 			return page;
633 		return no_page_table(vma, flags);
634 	}
635 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 		page = follow_huge_pd(vma, address,
637 				      __hugepd(pmd_val(pmdval)), flags,
638 				      PMD_SHIFT);
639 		if (page)
640 			return page;
641 		return no_page_table(vma, flags);
642 	}
643 retry:
644 	if (!pmd_present(pmdval)) {
645 		/*
646 		 * Should never reach here, if thp migration is not supported;
647 		 * Otherwise, it must be a thp migration entry.
648 		 */
649 		VM_BUG_ON(!thp_migration_supported() ||
650 				  !is_pmd_migration_entry(pmdval));
651 
652 		if (likely(!(flags & FOLL_MIGRATION)))
653 			return no_page_table(vma, flags);
654 
655 		pmd_migration_entry_wait(mm, pmd);
656 		pmdval = READ_ONCE(*pmd);
657 		/*
658 		 * MADV_DONTNEED may convert the pmd to null because
659 		 * mmap_lock is held in read mode
660 		 */
661 		if (pmd_none(pmdval))
662 			return no_page_table(vma, flags);
663 		goto retry;
664 	}
665 	if (pmd_devmap(pmdval)) {
666 		ptl = pmd_lock(mm, pmd);
667 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
668 		spin_unlock(ptl);
669 		if (page)
670 			return page;
671 	}
672 	if (likely(!pmd_trans_huge(pmdval)))
673 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
674 
675 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
676 		return no_page_table(vma, flags);
677 
678 retry_locked:
679 	ptl = pmd_lock(mm, pmd);
680 	if (unlikely(pmd_none(*pmd))) {
681 		spin_unlock(ptl);
682 		return no_page_table(vma, flags);
683 	}
684 	if (unlikely(!pmd_present(*pmd))) {
685 		spin_unlock(ptl);
686 		if (likely(!(flags & FOLL_MIGRATION)))
687 			return no_page_table(vma, flags);
688 		pmd_migration_entry_wait(mm, pmd);
689 		goto retry_locked;
690 	}
691 	if (unlikely(!pmd_trans_huge(*pmd))) {
692 		spin_unlock(ptl);
693 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
694 	}
695 	if (flags & FOLL_SPLIT_PMD) {
696 		int ret;
697 		page = pmd_page(*pmd);
698 		if (is_huge_zero_page(page)) {
699 			spin_unlock(ptl);
700 			ret = 0;
701 			split_huge_pmd(vma, pmd, address);
702 			if (pmd_trans_unstable(pmd))
703 				ret = -EBUSY;
704 		} else {
705 			spin_unlock(ptl);
706 			split_huge_pmd(vma, pmd, address);
707 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
708 		}
709 
710 		return ret ? ERR_PTR(ret) :
711 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
712 	}
713 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
714 	spin_unlock(ptl);
715 	ctx->page_mask = HPAGE_PMD_NR - 1;
716 	return page;
717 }
718 
719 static struct page *follow_pud_mask(struct vm_area_struct *vma,
720 				    unsigned long address, p4d_t *p4dp,
721 				    unsigned int flags,
722 				    struct follow_page_context *ctx)
723 {
724 	pud_t *pud;
725 	spinlock_t *ptl;
726 	struct page *page;
727 	struct mm_struct *mm = vma->vm_mm;
728 
729 	pud = pud_offset(p4dp, address);
730 	if (pud_none(*pud))
731 		return no_page_table(vma, flags);
732 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
733 		page = follow_huge_pud(mm, address, pud, flags);
734 		if (page)
735 			return page;
736 		return no_page_table(vma, flags);
737 	}
738 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
739 		page = follow_huge_pd(vma, address,
740 				      __hugepd(pud_val(*pud)), flags,
741 				      PUD_SHIFT);
742 		if (page)
743 			return page;
744 		return no_page_table(vma, flags);
745 	}
746 	if (pud_devmap(*pud)) {
747 		ptl = pud_lock(mm, pud);
748 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
749 		spin_unlock(ptl);
750 		if (page)
751 			return page;
752 	}
753 	if (unlikely(pud_bad(*pud)))
754 		return no_page_table(vma, flags);
755 
756 	return follow_pmd_mask(vma, address, pud, flags, ctx);
757 }
758 
759 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
760 				    unsigned long address, pgd_t *pgdp,
761 				    unsigned int flags,
762 				    struct follow_page_context *ctx)
763 {
764 	p4d_t *p4d;
765 	struct page *page;
766 
767 	p4d = p4d_offset(pgdp, address);
768 	if (p4d_none(*p4d))
769 		return no_page_table(vma, flags);
770 	BUILD_BUG_ON(p4d_huge(*p4d));
771 	if (unlikely(p4d_bad(*p4d)))
772 		return no_page_table(vma, flags);
773 
774 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
775 		page = follow_huge_pd(vma, address,
776 				      __hugepd(p4d_val(*p4d)), flags,
777 				      P4D_SHIFT);
778 		if (page)
779 			return page;
780 		return no_page_table(vma, flags);
781 	}
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * On output, the @ctx->page_mask is set according to the size of the page.
799  *
800  * Return: the mapped (struct page *), %NULL if no mapping exists, or
801  * an error pointer if there is a mapping to something not represented
802  * by a page descriptor (see also vm_normal_page()).
803  */
804 static struct page *follow_page_mask(struct vm_area_struct *vma,
805 			      unsigned long address, unsigned int flags,
806 			      struct follow_page_context *ctx)
807 {
808 	pgd_t *pgd;
809 	struct page *page;
810 	struct mm_struct *mm = vma->vm_mm;
811 
812 	ctx->page_mask = 0;
813 
814 	/* make this handle hugepd */
815 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
816 	if (!IS_ERR(page)) {
817 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
818 		return page;
819 	}
820 
821 	pgd = pgd_offset(mm, address);
822 
823 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
824 		return no_page_table(vma, flags);
825 
826 	if (pgd_huge(*pgd)) {
827 		page = follow_huge_pgd(mm, address, pgd, flags);
828 		if (page)
829 			return page;
830 		return no_page_table(vma, flags);
831 	}
832 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
833 		page = follow_huge_pd(vma, address,
834 				      __hugepd(pgd_val(*pgd)), flags,
835 				      PGDIR_SHIFT);
836 		if (page)
837 			return page;
838 		return no_page_table(vma, flags);
839 	}
840 
841 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
842 }
843 
844 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
845 			 unsigned int foll_flags)
846 {
847 	struct follow_page_context ctx = { NULL };
848 	struct page *page;
849 
850 	if (vma_is_secretmem(vma))
851 		return NULL;
852 
853 	page = follow_page_mask(vma, address, foll_flags, &ctx);
854 	if (ctx.pgmap)
855 		put_dev_pagemap(ctx.pgmap);
856 	return page;
857 }
858 
859 static int get_gate_page(struct mm_struct *mm, unsigned long address,
860 		unsigned int gup_flags, struct vm_area_struct **vma,
861 		struct page **page)
862 {
863 	pgd_t *pgd;
864 	p4d_t *p4d;
865 	pud_t *pud;
866 	pmd_t *pmd;
867 	pte_t *pte;
868 	int ret = -EFAULT;
869 
870 	/* user gate pages are read-only */
871 	if (gup_flags & FOLL_WRITE)
872 		return -EFAULT;
873 	if (address > TASK_SIZE)
874 		pgd = pgd_offset_k(address);
875 	else
876 		pgd = pgd_offset_gate(mm, address);
877 	if (pgd_none(*pgd))
878 		return -EFAULT;
879 	p4d = p4d_offset(pgd, address);
880 	if (p4d_none(*p4d))
881 		return -EFAULT;
882 	pud = pud_offset(p4d, address);
883 	if (pud_none(*pud))
884 		return -EFAULT;
885 	pmd = pmd_offset(pud, address);
886 	if (!pmd_present(*pmd))
887 		return -EFAULT;
888 	VM_BUG_ON(pmd_trans_huge(*pmd));
889 	pte = pte_offset_map(pmd, address);
890 	if (pte_none(*pte))
891 		goto unmap;
892 	*vma = get_gate_vma(mm);
893 	if (!page)
894 		goto out;
895 	*page = vm_normal_page(*vma, address, *pte);
896 	if (!*page) {
897 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
898 			goto unmap;
899 		*page = pte_page(*pte);
900 	}
901 	if (unlikely(!try_grab_page(*page, gup_flags))) {
902 		ret = -ENOMEM;
903 		goto unmap;
904 	}
905 out:
906 	ret = 0;
907 unmap:
908 	pte_unmap(pte);
909 	return ret;
910 }
911 
912 /*
913  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
914  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
915  * is, *@locked will be set to 0 and -EBUSY returned.
916  */
917 static int faultin_page(struct vm_area_struct *vma,
918 		unsigned long address, unsigned int *flags, int *locked)
919 {
920 	unsigned int fault_flags = 0;
921 	vm_fault_t ret;
922 
923 	/* mlock all present pages, but do not fault in new pages */
924 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
925 		return -ENOENT;
926 	if (*flags & FOLL_NOFAULT)
927 		return -EFAULT;
928 	if (*flags & FOLL_WRITE)
929 		fault_flags |= FAULT_FLAG_WRITE;
930 	if (*flags & FOLL_REMOTE)
931 		fault_flags |= FAULT_FLAG_REMOTE;
932 	if (locked)
933 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
934 	if (*flags & FOLL_NOWAIT)
935 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
936 	if (*flags & FOLL_TRIED) {
937 		/*
938 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
939 		 * can co-exist
940 		 */
941 		fault_flags |= FAULT_FLAG_TRIED;
942 	}
943 
944 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
945 	if (ret & VM_FAULT_ERROR) {
946 		int err = vm_fault_to_errno(ret, *flags);
947 
948 		if (err)
949 			return err;
950 		BUG();
951 	}
952 
953 	if (ret & VM_FAULT_RETRY) {
954 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
955 			*locked = 0;
956 		return -EBUSY;
957 	}
958 
959 	/*
960 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
961 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
962 	 * can thus safely do subsequent page lookups as if they were reads.
963 	 * But only do so when looping for pte_write is futile: in some cases
964 	 * userspace may also be wanting to write to the gotten user page,
965 	 * which a read fault here might prevent (a readonly page might get
966 	 * reCOWed by userspace write).
967 	 */
968 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
969 		*flags |= FOLL_COW;
970 	return 0;
971 }
972 
973 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
974 {
975 	vm_flags_t vm_flags = vma->vm_flags;
976 	int write = (gup_flags & FOLL_WRITE);
977 	int foreign = (gup_flags & FOLL_REMOTE);
978 
979 	if (vm_flags & (VM_IO | VM_PFNMAP))
980 		return -EFAULT;
981 
982 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
983 		return -EFAULT;
984 
985 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
986 		return -EOPNOTSUPP;
987 
988 	if (vma_is_secretmem(vma))
989 		return -EFAULT;
990 
991 	if (write) {
992 		if (!(vm_flags & VM_WRITE)) {
993 			if (!(gup_flags & FOLL_FORCE))
994 				return -EFAULT;
995 			/*
996 			 * We used to let the write,force case do COW in a
997 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
998 			 * set a breakpoint in a read-only mapping of an
999 			 * executable, without corrupting the file (yet only
1000 			 * when that file had been opened for writing!).
1001 			 * Anon pages in shared mappings are surprising: now
1002 			 * just reject it.
1003 			 */
1004 			if (!is_cow_mapping(vm_flags))
1005 				return -EFAULT;
1006 		}
1007 	} else if (!(vm_flags & VM_READ)) {
1008 		if (!(gup_flags & FOLL_FORCE))
1009 			return -EFAULT;
1010 		/*
1011 		 * Is there actually any vma we can reach here which does not
1012 		 * have VM_MAYREAD set?
1013 		 */
1014 		if (!(vm_flags & VM_MAYREAD))
1015 			return -EFAULT;
1016 	}
1017 	/*
1018 	 * gups are always data accesses, not instruction
1019 	 * fetches, so execute=false here
1020 	 */
1021 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1022 		return -EFAULT;
1023 	return 0;
1024 }
1025 
1026 /**
1027  * __get_user_pages() - pin user pages in memory
1028  * @mm:		mm_struct of target mm
1029  * @start:	starting user address
1030  * @nr_pages:	number of pages from start to pin
1031  * @gup_flags:	flags modifying pin behaviour
1032  * @pages:	array that receives pointers to the pages pinned.
1033  *		Should be at least nr_pages long. Or NULL, if caller
1034  *		only intends to ensure the pages are faulted in.
1035  * @vmas:	array of pointers to vmas corresponding to each page.
1036  *		Or NULL if the caller does not require them.
1037  * @locked:     whether we're still with the mmap_lock held
1038  *
1039  * Returns either number of pages pinned (which may be less than the
1040  * number requested), or an error. Details about the return value:
1041  *
1042  * -- If nr_pages is 0, returns 0.
1043  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1044  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1045  *    pages pinned. Again, this may be less than nr_pages.
1046  * -- 0 return value is possible when the fault would need to be retried.
1047  *
1048  * The caller is responsible for releasing returned @pages, via put_page().
1049  *
1050  * @vmas are valid only as long as mmap_lock is held.
1051  *
1052  * Must be called with mmap_lock held.  It may be released.  See below.
1053  *
1054  * __get_user_pages walks a process's page tables and takes a reference to
1055  * each struct page that each user address corresponds to at a given
1056  * instant. That is, it takes the page that would be accessed if a user
1057  * thread accesses the given user virtual address at that instant.
1058  *
1059  * This does not guarantee that the page exists in the user mappings when
1060  * __get_user_pages returns, and there may even be a completely different
1061  * page there in some cases (eg. if mmapped pagecache has been invalidated
1062  * and subsequently re faulted). However it does guarantee that the page
1063  * won't be freed completely. And mostly callers simply care that the page
1064  * contains data that was valid *at some point in time*. Typically, an IO
1065  * or similar operation cannot guarantee anything stronger anyway because
1066  * locks can't be held over the syscall boundary.
1067  *
1068  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1069  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1070  * appropriate) must be called after the page is finished with, and
1071  * before put_page is called.
1072  *
1073  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1074  * released by an up_read().  That can happen if @gup_flags does not
1075  * have FOLL_NOWAIT.
1076  *
1077  * A caller using such a combination of @locked and @gup_flags
1078  * must therefore hold the mmap_lock for reading only, and recognize
1079  * when it's been released.  Otherwise, it must be held for either
1080  * reading or writing and will not be released.
1081  *
1082  * In most cases, get_user_pages or get_user_pages_fast should be used
1083  * instead of __get_user_pages. __get_user_pages should be used only if
1084  * you need some special @gup_flags.
1085  */
1086 static long __get_user_pages(struct mm_struct *mm,
1087 		unsigned long start, unsigned long nr_pages,
1088 		unsigned int gup_flags, struct page **pages,
1089 		struct vm_area_struct **vmas, int *locked)
1090 {
1091 	long ret = 0, i = 0;
1092 	struct vm_area_struct *vma = NULL;
1093 	struct follow_page_context ctx = { NULL };
1094 
1095 	if (!nr_pages)
1096 		return 0;
1097 
1098 	start = untagged_addr(start);
1099 
1100 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1101 
1102 	/*
1103 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1104 	 * fault information is unrelated to the reference behaviour of a task
1105 	 * using the address space
1106 	 */
1107 	if (!(gup_flags & FOLL_FORCE))
1108 		gup_flags |= FOLL_NUMA;
1109 
1110 	do {
1111 		struct page *page;
1112 		unsigned int foll_flags = gup_flags;
1113 		unsigned int page_increm;
1114 
1115 		/* first iteration or cross vma bound */
1116 		if (!vma || start >= vma->vm_end) {
1117 			vma = find_extend_vma(mm, start);
1118 			if (!vma && in_gate_area(mm, start)) {
1119 				ret = get_gate_page(mm, start & PAGE_MASK,
1120 						gup_flags, &vma,
1121 						pages ? &pages[i] : NULL);
1122 				if (ret)
1123 					goto out;
1124 				ctx.page_mask = 0;
1125 				goto next_page;
1126 			}
1127 
1128 			if (!vma) {
1129 				ret = -EFAULT;
1130 				goto out;
1131 			}
1132 			ret = check_vma_flags(vma, gup_flags);
1133 			if (ret)
1134 				goto out;
1135 
1136 			if (is_vm_hugetlb_page(vma)) {
1137 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1138 						&start, &nr_pages, i,
1139 						gup_flags, locked);
1140 				if (locked && *locked == 0) {
1141 					/*
1142 					 * We've got a VM_FAULT_RETRY
1143 					 * and we've lost mmap_lock.
1144 					 * We must stop here.
1145 					 */
1146 					BUG_ON(gup_flags & FOLL_NOWAIT);
1147 					goto out;
1148 				}
1149 				continue;
1150 			}
1151 		}
1152 retry:
1153 		/*
1154 		 * If we have a pending SIGKILL, don't keep faulting pages and
1155 		 * potentially allocating memory.
1156 		 */
1157 		if (fatal_signal_pending(current)) {
1158 			ret = -EINTR;
1159 			goto out;
1160 		}
1161 		cond_resched();
1162 
1163 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1164 		if (!page) {
1165 			ret = faultin_page(vma, start, &foll_flags, locked);
1166 			switch (ret) {
1167 			case 0:
1168 				goto retry;
1169 			case -EBUSY:
1170 				ret = 0;
1171 				fallthrough;
1172 			case -EFAULT:
1173 			case -ENOMEM:
1174 			case -EHWPOISON:
1175 				goto out;
1176 			case -ENOENT:
1177 				goto next_page;
1178 			}
1179 			BUG();
1180 		} else if (PTR_ERR(page) == -EEXIST) {
1181 			/*
1182 			 * Proper page table entry exists, but no corresponding
1183 			 * struct page.
1184 			 */
1185 			goto next_page;
1186 		} else if (IS_ERR(page)) {
1187 			ret = PTR_ERR(page);
1188 			goto out;
1189 		}
1190 		if (pages) {
1191 			pages[i] = page;
1192 			flush_anon_page(vma, page, start);
1193 			flush_dcache_page(page);
1194 			ctx.page_mask = 0;
1195 		}
1196 next_page:
1197 		if (vmas) {
1198 			vmas[i] = vma;
1199 			ctx.page_mask = 0;
1200 		}
1201 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1202 		if (page_increm > nr_pages)
1203 			page_increm = nr_pages;
1204 		i += page_increm;
1205 		start += page_increm * PAGE_SIZE;
1206 		nr_pages -= page_increm;
1207 	} while (nr_pages);
1208 out:
1209 	if (ctx.pgmap)
1210 		put_dev_pagemap(ctx.pgmap);
1211 	return i ? i : ret;
1212 }
1213 
1214 static bool vma_permits_fault(struct vm_area_struct *vma,
1215 			      unsigned int fault_flags)
1216 {
1217 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1218 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1219 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1220 
1221 	if (!(vm_flags & vma->vm_flags))
1222 		return false;
1223 
1224 	/*
1225 	 * The architecture might have a hardware protection
1226 	 * mechanism other than read/write that can deny access.
1227 	 *
1228 	 * gup always represents data access, not instruction
1229 	 * fetches, so execute=false here:
1230 	 */
1231 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1232 		return false;
1233 
1234 	return true;
1235 }
1236 
1237 /**
1238  * fixup_user_fault() - manually resolve a user page fault
1239  * @mm:		mm_struct of target mm
1240  * @address:	user address
1241  * @fault_flags:flags to pass down to handle_mm_fault()
1242  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1243  *		does not allow retry. If NULL, the caller must guarantee
1244  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1245  *
1246  * This is meant to be called in the specific scenario where for locking reasons
1247  * we try to access user memory in atomic context (within a pagefault_disable()
1248  * section), this returns -EFAULT, and we want to resolve the user fault before
1249  * trying again.
1250  *
1251  * Typically this is meant to be used by the futex code.
1252  *
1253  * The main difference with get_user_pages() is that this function will
1254  * unconditionally call handle_mm_fault() which will in turn perform all the
1255  * necessary SW fixup of the dirty and young bits in the PTE, while
1256  * get_user_pages() only guarantees to update these in the struct page.
1257  *
1258  * This is important for some architectures where those bits also gate the
1259  * access permission to the page because they are maintained in software.  On
1260  * such architectures, gup() will not be enough to make a subsequent access
1261  * succeed.
1262  *
1263  * This function will not return with an unlocked mmap_lock. So it has not the
1264  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1265  */
1266 int fixup_user_fault(struct mm_struct *mm,
1267 		     unsigned long address, unsigned int fault_flags,
1268 		     bool *unlocked)
1269 {
1270 	struct vm_area_struct *vma;
1271 	vm_fault_t ret;
1272 
1273 	address = untagged_addr(address);
1274 
1275 	if (unlocked)
1276 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1277 
1278 retry:
1279 	vma = find_extend_vma(mm, address);
1280 	if (!vma || address < vma->vm_start)
1281 		return -EFAULT;
1282 
1283 	if (!vma_permits_fault(vma, fault_flags))
1284 		return -EFAULT;
1285 
1286 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1287 	    fatal_signal_pending(current))
1288 		return -EINTR;
1289 
1290 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1291 	if (ret & VM_FAULT_ERROR) {
1292 		int err = vm_fault_to_errno(ret, 0);
1293 
1294 		if (err)
1295 			return err;
1296 		BUG();
1297 	}
1298 
1299 	if (ret & VM_FAULT_RETRY) {
1300 		mmap_read_lock(mm);
1301 		*unlocked = true;
1302 		fault_flags |= FAULT_FLAG_TRIED;
1303 		goto retry;
1304 	}
1305 
1306 	return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(fixup_user_fault);
1309 
1310 /*
1311  * Please note that this function, unlike __get_user_pages will not
1312  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1313  */
1314 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1315 						unsigned long start,
1316 						unsigned long nr_pages,
1317 						struct page **pages,
1318 						struct vm_area_struct **vmas,
1319 						int *locked,
1320 						unsigned int flags)
1321 {
1322 	long ret, pages_done;
1323 	bool lock_dropped;
1324 
1325 	if (locked) {
1326 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1327 		BUG_ON(vmas);
1328 		/* check caller initialized locked */
1329 		BUG_ON(*locked != 1);
1330 	}
1331 
1332 	if (flags & FOLL_PIN)
1333 		mm_set_has_pinned_flag(&mm->flags);
1334 
1335 	/*
1336 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1337 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1338 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1339 	 * for FOLL_GET, not for the newer FOLL_PIN.
1340 	 *
1341 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1342 	 * that here, as any failures will be obvious enough.
1343 	 */
1344 	if (pages && !(flags & FOLL_PIN))
1345 		flags |= FOLL_GET;
1346 
1347 	pages_done = 0;
1348 	lock_dropped = false;
1349 	for (;;) {
1350 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1351 				       vmas, locked);
1352 		if (!locked)
1353 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1354 			return ret;
1355 
1356 		/* VM_FAULT_RETRY cannot return errors */
1357 		if (!*locked) {
1358 			BUG_ON(ret < 0);
1359 			BUG_ON(ret >= nr_pages);
1360 		}
1361 
1362 		if (ret > 0) {
1363 			nr_pages -= ret;
1364 			pages_done += ret;
1365 			if (!nr_pages)
1366 				break;
1367 		}
1368 		if (*locked) {
1369 			/*
1370 			 * VM_FAULT_RETRY didn't trigger or it was a
1371 			 * FOLL_NOWAIT.
1372 			 */
1373 			if (!pages_done)
1374 				pages_done = ret;
1375 			break;
1376 		}
1377 		/*
1378 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1379 		 * For the prefault case (!pages) we only update counts.
1380 		 */
1381 		if (likely(pages))
1382 			pages += ret;
1383 		start += ret << PAGE_SHIFT;
1384 		lock_dropped = true;
1385 
1386 retry:
1387 		/*
1388 		 * Repeat on the address that fired VM_FAULT_RETRY
1389 		 * with both FAULT_FLAG_ALLOW_RETRY and
1390 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1391 		 * by fatal signals, so we need to check it before we
1392 		 * start trying again otherwise it can loop forever.
1393 		 */
1394 
1395 		if (fatal_signal_pending(current)) {
1396 			if (!pages_done)
1397 				pages_done = -EINTR;
1398 			break;
1399 		}
1400 
1401 		ret = mmap_read_lock_killable(mm);
1402 		if (ret) {
1403 			BUG_ON(ret > 0);
1404 			if (!pages_done)
1405 				pages_done = ret;
1406 			break;
1407 		}
1408 
1409 		*locked = 1;
1410 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1411 				       pages, NULL, locked);
1412 		if (!*locked) {
1413 			/* Continue to retry until we succeeded */
1414 			BUG_ON(ret != 0);
1415 			goto retry;
1416 		}
1417 		if (ret != 1) {
1418 			BUG_ON(ret > 1);
1419 			if (!pages_done)
1420 				pages_done = ret;
1421 			break;
1422 		}
1423 		nr_pages--;
1424 		pages_done++;
1425 		if (!nr_pages)
1426 			break;
1427 		if (likely(pages))
1428 			pages++;
1429 		start += PAGE_SIZE;
1430 	}
1431 	if (lock_dropped && *locked) {
1432 		/*
1433 		 * We must let the caller know we temporarily dropped the lock
1434 		 * and so the critical section protected by it was lost.
1435 		 */
1436 		mmap_read_unlock(mm);
1437 		*locked = 0;
1438 	}
1439 	return pages_done;
1440 }
1441 
1442 /**
1443  * populate_vma_page_range() -  populate a range of pages in the vma.
1444  * @vma:   target vma
1445  * @start: start address
1446  * @end:   end address
1447  * @locked: whether the mmap_lock is still held
1448  *
1449  * This takes care of mlocking the pages too if VM_LOCKED is set.
1450  *
1451  * Return either number of pages pinned in the vma, or a negative error
1452  * code on error.
1453  *
1454  * vma->vm_mm->mmap_lock must be held.
1455  *
1456  * If @locked is NULL, it may be held for read or write and will
1457  * be unperturbed.
1458  *
1459  * If @locked is non-NULL, it must held for read only and may be
1460  * released.  If it's released, *@locked will be set to 0.
1461  */
1462 long populate_vma_page_range(struct vm_area_struct *vma,
1463 		unsigned long start, unsigned long end, int *locked)
1464 {
1465 	struct mm_struct *mm = vma->vm_mm;
1466 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1467 	int gup_flags;
1468 
1469 	VM_BUG_ON(!PAGE_ALIGNED(start));
1470 	VM_BUG_ON(!PAGE_ALIGNED(end));
1471 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1472 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1473 	mmap_assert_locked(mm);
1474 
1475 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1476 	if (vma->vm_flags & VM_LOCKONFAULT)
1477 		gup_flags &= ~FOLL_POPULATE;
1478 	/*
1479 	 * We want to touch writable mappings with a write fault in order
1480 	 * to break COW, except for shared mappings because these don't COW
1481 	 * and we would not want to dirty them for nothing.
1482 	 */
1483 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1484 		gup_flags |= FOLL_WRITE;
1485 
1486 	/*
1487 	 * We want mlock to succeed for regions that have any permissions
1488 	 * other than PROT_NONE.
1489 	 */
1490 	if (vma_is_accessible(vma))
1491 		gup_flags |= FOLL_FORCE;
1492 
1493 	/*
1494 	 * We made sure addr is within a VMA, so the following will
1495 	 * not result in a stack expansion that recurses back here.
1496 	 */
1497 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1498 				NULL, NULL, locked);
1499 }
1500 
1501 /*
1502  * faultin_vma_page_range() - populate (prefault) page tables inside the
1503  *			      given VMA range readable/writable
1504  *
1505  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1506  *
1507  * @vma: target vma
1508  * @start: start address
1509  * @end: end address
1510  * @write: whether to prefault readable or writable
1511  * @locked: whether the mmap_lock is still held
1512  *
1513  * Returns either number of processed pages in the vma, or a negative error
1514  * code on error (see __get_user_pages()).
1515  *
1516  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1517  * covered by the VMA.
1518  *
1519  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1520  *
1521  * If @locked is non-NULL, it must held for read only and may be released.  If
1522  * it's released, *@locked will be set to 0.
1523  */
1524 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1525 			    unsigned long end, bool write, int *locked)
1526 {
1527 	struct mm_struct *mm = vma->vm_mm;
1528 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1529 	int gup_flags;
1530 
1531 	VM_BUG_ON(!PAGE_ALIGNED(start));
1532 	VM_BUG_ON(!PAGE_ALIGNED(end));
1533 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1534 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1535 	mmap_assert_locked(mm);
1536 
1537 	/*
1538 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1539 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1540 	 *	       difference with !FOLL_FORCE, because the page is writable
1541 	 *	       in the page table.
1542 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1543 	 *		  a poisoned page.
1544 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1545 	 * !FOLL_FORCE: Require proper access permissions.
1546 	 */
1547 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1548 	if (write)
1549 		gup_flags |= FOLL_WRITE;
1550 
1551 	/*
1552 	 * We want to report -EINVAL instead of -EFAULT for any permission
1553 	 * problems or incompatible mappings.
1554 	 */
1555 	if (check_vma_flags(vma, gup_flags))
1556 		return -EINVAL;
1557 
1558 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1559 				NULL, NULL, locked);
1560 }
1561 
1562 /*
1563  * __mm_populate - populate and/or mlock pages within a range of address space.
1564  *
1565  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1566  * flags. VMAs must be already marked with the desired vm_flags, and
1567  * mmap_lock must not be held.
1568  */
1569 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1570 {
1571 	struct mm_struct *mm = current->mm;
1572 	unsigned long end, nstart, nend;
1573 	struct vm_area_struct *vma = NULL;
1574 	int locked = 0;
1575 	long ret = 0;
1576 
1577 	end = start + len;
1578 
1579 	for (nstart = start; nstart < end; nstart = nend) {
1580 		/*
1581 		 * We want to fault in pages for [nstart; end) address range.
1582 		 * Find first corresponding VMA.
1583 		 */
1584 		if (!locked) {
1585 			locked = 1;
1586 			mmap_read_lock(mm);
1587 			vma = find_vma(mm, nstart);
1588 		} else if (nstart >= vma->vm_end)
1589 			vma = vma->vm_next;
1590 		if (!vma || vma->vm_start >= end)
1591 			break;
1592 		/*
1593 		 * Set [nstart; nend) to intersection of desired address
1594 		 * range with the first VMA. Also, skip undesirable VMA types.
1595 		 */
1596 		nend = min(end, vma->vm_end);
1597 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1598 			continue;
1599 		if (nstart < vma->vm_start)
1600 			nstart = vma->vm_start;
1601 		/*
1602 		 * Now fault in a range of pages. populate_vma_page_range()
1603 		 * double checks the vma flags, so that it won't mlock pages
1604 		 * if the vma was already munlocked.
1605 		 */
1606 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1607 		if (ret < 0) {
1608 			if (ignore_errors) {
1609 				ret = 0;
1610 				continue;	/* continue at next VMA */
1611 			}
1612 			break;
1613 		}
1614 		nend = nstart + ret * PAGE_SIZE;
1615 		ret = 0;
1616 	}
1617 	if (locked)
1618 		mmap_read_unlock(mm);
1619 	return ret;	/* 0 or negative error code */
1620 }
1621 #else /* CONFIG_MMU */
1622 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1623 		unsigned long nr_pages, struct page **pages,
1624 		struct vm_area_struct **vmas, int *locked,
1625 		unsigned int foll_flags)
1626 {
1627 	struct vm_area_struct *vma;
1628 	unsigned long vm_flags;
1629 	long i;
1630 
1631 	/* calculate required read or write permissions.
1632 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1633 	 */
1634 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1635 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1636 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1637 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1638 
1639 	for (i = 0; i < nr_pages; i++) {
1640 		vma = find_vma(mm, start);
1641 		if (!vma)
1642 			goto finish_or_fault;
1643 
1644 		/* protect what we can, including chardevs */
1645 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1646 		    !(vm_flags & vma->vm_flags))
1647 			goto finish_or_fault;
1648 
1649 		if (pages) {
1650 			pages[i] = virt_to_page(start);
1651 			if (pages[i])
1652 				get_page(pages[i]);
1653 		}
1654 		if (vmas)
1655 			vmas[i] = vma;
1656 		start = (start + PAGE_SIZE) & PAGE_MASK;
1657 	}
1658 
1659 	return i;
1660 
1661 finish_or_fault:
1662 	return i ? : -EFAULT;
1663 }
1664 #endif /* !CONFIG_MMU */
1665 
1666 /**
1667  * fault_in_writeable - fault in userspace address range for writing
1668  * @uaddr: start of address range
1669  * @size: size of address range
1670  *
1671  * Returns the number of bytes not faulted in (like copy_to_user() and
1672  * copy_from_user()).
1673  */
1674 size_t fault_in_writeable(char __user *uaddr, size_t size)
1675 {
1676 	char __user *start = uaddr, *end;
1677 
1678 	if (unlikely(size == 0))
1679 		return 0;
1680 	if (!user_write_access_begin(uaddr, size))
1681 		return size;
1682 	if (!PAGE_ALIGNED(uaddr)) {
1683 		unsafe_put_user(0, uaddr, out);
1684 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1685 	}
1686 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1687 	if (unlikely(end < start))
1688 		end = NULL;
1689 	while (uaddr != end) {
1690 		unsafe_put_user(0, uaddr, out);
1691 		uaddr += PAGE_SIZE;
1692 	}
1693 
1694 out:
1695 	user_write_access_end();
1696 	if (size > uaddr - start)
1697 		return size - (uaddr - start);
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL(fault_in_writeable);
1701 
1702 /*
1703  * fault_in_safe_writeable - fault in an address range for writing
1704  * @uaddr: start of address range
1705  * @size: length of address range
1706  *
1707  * Faults in an address range using get_user_pages, i.e., without triggering
1708  * hardware page faults.  This is primarily useful when we already know that
1709  * some or all of the pages in the address range aren't in memory.
1710  *
1711  * Other than fault_in_writeable(), this function is non-destructive.
1712  *
1713  * Note that we don't pin or otherwise hold the pages referenced that we fault
1714  * in.  There's no guarantee that they'll stay in memory for any duration of
1715  * time.
1716  *
1717  * Returns the number of bytes not faulted in, like copy_to_user() and
1718  * copy_from_user().
1719  */
1720 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1721 {
1722 	unsigned long start = (unsigned long)untagged_addr(uaddr);
1723 	unsigned long end, nstart, nend;
1724 	struct mm_struct *mm = current->mm;
1725 	struct vm_area_struct *vma = NULL;
1726 	int locked = 0;
1727 
1728 	nstart = start & PAGE_MASK;
1729 	end = PAGE_ALIGN(start + size);
1730 	if (end < nstart)
1731 		end = 0;
1732 	for (; nstart != end; nstart = nend) {
1733 		unsigned long nr_pages;
1734 		long ret;
1735 
1736 		if (!locked) {
1737 			locked = 1;
1738 			mmap_read_lock(mm);
1739 			vma = find_vma(mm, nstart);
1740 		} else if (nstart >= vma->vm_end)
1741 			vma = vma->vm_next;
1742 		if (!vma || vma->vm_start >= end)
1743 			break;
1744 		nend = end ? min(end, vma->vm_end) : vma->vm_end;
1745 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1746 			continue;
1747 		if (nstart < vma->vm_start)
1748 			nstart = vma->vm_start;
1749 		nr_pages = (nend - nstart) / PAGE_SIZE;
1750 		ret = __get_user_pages_locked(mm, nstart, nr_pages,
1751 					      NULL, NULL, &locked,
1752 					      FOLL_TOUCH | FOLL_WRITE);
1753 		if (ret <= 0)
1754 			break;
1755 		nend = nstart + ret * PAGE_SIZE;
1756 	}
1757 	if (locked)
1758 		mmap_read_unlock(mm);
1759 	if (nstart == end)
1760 		return 0;
1761 	return size - min_t(size_t, nstart - start, size);
1762 }
1763 EXPORT_SYMBOL(fault_in_safe_writeable);
1764 
1765 /**
1766  * fault_in_readable - fault in userspace address range for reading
1767  * @uaddr: start of user address range
1768  * @size: size of user address range
1769  *
1770  * Returns the number of bytes not faulted in (like copy_to_user() and
1771  * copy_from_user()).
1772  */
1773 size_t fault_in_readable(const char __user *uaddr, size_t size)
1774 {
1775 	const char __user *start = uaddr, *end;
1776 	volatile char c;
1777 
1778 	if (unlikely(size == 0))
1779 		return 0;
1780 	if (!user_read_access_begin(uaddr, size))
1781 		return size;
1782 	if (!PAGE_ALIGNED(uaddr)) {
1783 		unsafe_get_user(c, uaddr, out);
1784 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1785 	}
1786 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1787 	if (unlikely(end < start))
1788 		end = NULL;
1789 	while (uaddr != end) {
1790 		unsafe_get_user(c, uaddr, out);
1791 		uaddr += PAGE_SIZE;
1792 	}
1793 
1794 out:
1795 	user_read_access_end();
1796 	(void)c;
1797 	if (size > uaddr - start)
1798 		return size - (uaddr - start);
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL(fault_in_readable);
1802 
1803 /**
1804  * get_dump_page() - pin user page in memory while writing it to core dump
1805  * @addr: user address
1806  *
1807  * Returns struct page pointer of user page pinned for dump,
1808  * to be freed afterwards by put_page().
1809  *
1810  * Returns NULL on any kind of failure - a hole must then be inserted into
1811  * the corefile, to preserve alignment with its headers; and also returns
1812  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1813  * allowing a hole to be left in the corefile to save disk space.
1814  *
1815  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1816  */
1817 #ifdef CONFIG_ELF_CORE
1818 struct page *get_dump_page(unsigned long addr)
1819 {
1820 	struct mm_struct *mm = current->mm;
1821 	struct page *page;
1822 	int locked = 1;
1823 	int ret;
1824 
1825 	if (mmap_read_lock_killable(mm))
1826 		return NULL;
1827 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1828 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1829 	if (locked)
1830 		mmap_read_unlock(mm);
1831 	return (ret == 1) ? page : NULL;
1832 }
1833 #endif /* CONFIG_ELF_CORE */
1834 
1835 #ifdef CONFIG_MIGRATION
1836 /*
1837  * Check whether all pages are pinnable, if so return number of pages.  If some
1838  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1839  * pages were migrated, or if some pages were not successfully isolated.
1840  * Return negative error if migration fails.
1841  */
1842 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1843 					    struct page **pages,
1844 					    unsigned int gup_flags)
1845 {
1846 	unsigned long i;
1847 	unsigned long isolation_error_count = 0;
1848 	bool drain_allow = true;
1849 	LIST_HEAD(movable_page_list);
1850 	long ret = 0;
1851 	struct page *prev_head = NULL;
1852 	struct page *head;
1853 	struct migration_target_control mtc = {
1854 		.nid = NUMA_NO_NODE,
1855 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1856 	};
1857 
1858 	for (i = 0; i < nr_pages; i++) {
1859 		head = compound_head(pages[i]);
1860 		if (head == prev_head)
1861 			continue;
1862 		prev_head = head;
1863 		/*
1864 		 * If we get a movable page, since we are going to be pinning
1865 		 * these entries, try to move them out if possible.
1866 		 */
1867 		if (!is_pinnable_page(head)) {
1868 			if (PageHuge(head)) {
1869 				if (!isolate_huge_page(head, &movable_page_list))
1870 					isolation_error_count++;
1871 			} else {
1872 				if (!PageLRU(head) && drain_allow) {
1873 					lru_add_drain_all();
1874 					drain_allow = false;
1875 				}
1876 
1877 				if (isolate_lru_page(head)) {
1878 					isolation_error_count++;
1879 					continue;
1880 				}
1881 				list_add_tail(&head->lru, &movable_page_list);
1882 				mod_node_page_state(page_pgdat(head),
1883 						    NR_ISOLATED_ANON +
1884 						    page_is_file_lru(head),
1885 						    thp_nr_pages(head));
1886 			}
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * If list is empty, and no isolation errors, means that all pages are
1892 	 * in the correct zone.
1893 	 */
1894 	if (list_empty(&movable_page_list) && !isolation_error_count)
1895 		return nr_pages;
1896 
1897 	if (gup_flags & FOLL_PIN) {
1898 		unpin_user_pages(pages, nr_pages);
1899 	} else {
1900 		for (i = 0; i < nr_pages; i++)
1901 			put_page(pages[i]);
1902 	}
1903 	if (!list_empty(&movable_page_list)) {
1904 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1905 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1906 				    MR_LONGTERM_PIN, NULL);
1907 		if (ret && !list_empty(&movable_page_list))
1908 			putback_movable_pages(&movable_page_list);
1909 	}
1910 
1911 	return ret > 0 ? -ENOMEM : ret;
1912 }
1913 #else
1914 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1915 					    struct page **pages,
1916 					    unsigned int gup_flags)
1917 {
1918 	return nr_pages;
1919 }
1920 #endif /* CONFIG_MIGRATION */
1921 
1922 /*
1923  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1924  * allows us to process the FOLL_LONGTERM flag.
1925  */
1926 static long __gup_longterm_locked(struct mm_struct *mm,
1927 				  unsigned long start,
1928 				  unsigned long nr_pages,
1929 				  struct page **pages,
1930 				  struct vm_area_struct **vmas,
1931 				  unsigned int gup_flags)
1932 {
1933 	unsigned int flags;
1934 	long rc;
1935 
1936 	if (!(gup_flags & FOLL_LONGTERM))
1937 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1938 					       NULL, gup_flags);
1939 	flags = memalloc_pin_save();
1940 	do {
1941 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1942 					     NULL, gup_flags);
1943 		if (rc <= 0)
1944 			break;
1945 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1946 	} while (!rc);
1947 	memalloc_pin_restore(flags);
1948 
1949 	return rc;
1950 }
1951 
1952 static bool is_valid_gup_flags(unsigned int gup_flags)
1953 {
1954 	/*
1955 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1956 	 * never directly by the caller, so enforce that with an assertion:
1957 	 */
1958 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1959 		return false;
1960 	/*
1961 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1962 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1963 	 * FOLL_PIN.
1964 	 */
1965 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1966 		return false;
1967 
1968 	return true;
1969 }
1970 
1971 #ifdef CONFIG_MMU
1972 static long __get_user_pages_remote(struct mm_struct *mm,
1973 				    unsigned long start, unsigned long nr_pages,
1974 				    unsigned int gup_flags, struct page **pages,
1975 				    struct vm_area_struct **vmas, int *locked)
1976 {
1977 	/*
1978 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1979 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1980 	 * vmas. However, this only comes up if locked is set, and there are
1981 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1982 	 * allow what we can.
1983 	 */
1984 	if (gup_flags & FOLL_LONGTERM) {
1985 		if (WARN_ON_ONCE(locked))
1986 			return -EINVAL;
1987 		/*
1988 		 * This will check the vmas (even if our vmas arg is NULL)
1989 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1990 		 */
1991 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1992 					     vmas, gup_flags | FOLL_TOUCH |
1993 					     FOLL_REMOTE);
1994 	}
1995 
1996 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1997 				       locked,
1998 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1999 }
2000 
2001 /**
2002  * get_user_pages_remote() - pin user pages in memory
2003  * @mm:		mm_struct of target mm
2004  * @start:	starting user address
2005  * @nr_pages:	number of pages from start to pin
2006  * @gup_flags:	flags modifying lookup behaviour
2007  * @pages:	array that receives pointers to the pages pinned.
2008  *		Should be at least nr_pages long. Or NULL, if caller
2009  *		only intends to ensure the pages are faulted in.
2010  * @vmas:	array of pointers to vmas corresponding to each page.
2011  *		Or NULL if the caller does not require them.
2012  * @locked:	pointer to lock flag indicating whether lock is held and
2013  *		subsequently whether VM_FAULT_RETRY functionality can be
2014  *		utilised. Lock must initially be held.
2015  *
2016  * Returns either number of pages pinned (which may be less than the
2017  * number requested), or an error. Details about the return value:
2018  *
2019  * -- If nr_pages is 0, returns 0.
2020  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2021  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2022  *    pages pinned. Again, this may be less than nr_pages.
2023  *
2024  * The caller is responsible for releasing returned @pages, via put_page().
2025  *
2026  * @vmas are valid only as long as mmap_lock is held.
2027  *
2028  * Must be called with mmap_lock held for read or write.
2029  *
2030  * get_user_pages_remote walks a process's page tables and takes a reference
2031  * to each struct page that each user address corresponds to at a given
2032  * instant. That is, it takes the page that would be accessed if a user
2033  * thread accesses the given user virtual address at that instant.
2034  *
2035  * This does not guarantee that the page exists in the user mappings when
2036  * get_user_pages_remote returns, and there may even be a completely different
2037  * page there in some cases (eg. if mmapped pagecache has been invalidated
2038  * and subsequently re faulted). However it does guarantee that the page
2039  * won't be freed completely. And mostly callers simply care that the page
2040  * contains data that was valid *at some point in time*. Typically, an IO
2041  * or similar operation cannot guarantee anything stronger anyway because
2042  * locks can't be held over the syscall boundary.
2043  *
2044  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2045  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2046  * be called after the page is finished with, and before put_page is called.
2047  *
2048  * get_user_pages_remote is typically used for fewer-copy IO operations,
2049  * to get a handle on the memory by some means other than accesses
2050  * via the user virtual addresses. The pages may be submitted for
2051  * DMA to devices or accessed via their kernel linear mapping (via the
2052  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2053  *
2054  * See also get_user_pages_fast, for performance critical applications.
2055  *
2056  * get_user_pages_remote should be phased out in favor of
2057  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2058  * should use get_user_pages_remote because it cannot pass
2059  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2060  */
2061 long get_user_pages_remote(struct mm_struct *mm,
2062 		unsigned long start, unsigned long nr_pages,
2063 		unsigned int gup_flags, struct page **pages,
2064 		struct vm_area_struct **vmas, int *locked)
2065 {
2066 	if (!is_valid_gup_flags(gup_flags))
2067 		return -EINVAL;
2068 
2069 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2070 				       pages, vmas, locked);
2071 }
2072 EXPORT_SYMBOL(get_user_pages_remote);
2073 
2074 #else /* CONFIG_MMU */
2075 long get_user_pages_remote(struct mm_struct *mm,
2076 			   unsigned long start, unsigned long nr_pages,
2077 			   unsigned int gup_flags, struct page **pages,
2078 			   struct vm_area_struct **vmas, int *locked)
2079 {
2080 	return 0;
2081 }
2082 
2083 static long __get_user_pages_remote(struct mm_struct *mm,
2084 				    unsigned long start, unsigned long nr_pages,
2085 				    unsigned int gup_flags, struct page **pages,
2086 				    struct vm_area_struct **vmas, int *locked)
2087 {
2088 	return 0;
2089 }
2090 #endif /* !CONFIG_MMU */
2091 
2092 /**
2093  * get_user_pages() - pin user pages in memory
2094  * @start:      starting user address
2095  * @nr_pages:   number of pages from start to pin
2096  * @gup_flags:  flags modifying lookup behaviour
2097  * @pages:      array that receives pointers to the pages pinned.
2098  *              Should be at least nr_pages long. Or NULL, if caller
2099  *              only intends to ensure the pages are faulted in.
2100  * @vmas:       array of pointers to vmas corresponding to each page.
2101  *              Or NULL if the caller does not require them.
2102  *
2103  * This is the same as get_user_pages_remote(), just with a less-flexible
2104  * calling convention where we assume that the mm being operated on belongs to
2105  * the current task, and doesn't allow passing of a locked parameter.  We also
2106  * obviously don't pass FOLL_REMOTE in here.
2107  */
2108 long get_user_pages(unsigned long start, unsigned long nr_pages,
2109 		unsigned int gup_flags, struct page **pages,
2110 		struct vm_area_struct **vmas)
2111 {
2112 	if (!is_valid_gup_flags(gup_flags))
2113 		return -EINVAL;
2114 
2115 	return __gup_longterm_locked(current->mm, start, nr_pages,
2116 				     pages, vmas, gup_flags | FOLL_TOUCH);
2117 }
2118 EXPORT_SYMBOL(get_user_pages);
2119 
2120 /**
2121  * get_user_pages_locked() - variant of get_user_pages()
2122  *
2123  * @start:      starting user address
2124  * @nr_pages:   number of pages from start to pin
2125  * @gup_flags:  flags modifying lookup behaviour
2126  * @pages:      array that receives pointers to the pages pinned.
2127  *              Should be at least nr_pages long. Or NULL, if caller
2128  *              only intends to ensure the pages are faulted in.
2129  * @locked:     pointer to lock flag indicating whether lock is held and
2130  *              subsequently whether VM_FAULT_RETRY functionality can be
2131  *              utilised. Lock must initially be held.
2132  *
2133  * It is suitable to replace the form:
2134  *
2135  *      mmap_read_lock(mm);
2136  *      do_something()
2137  *      get_user_pages(mm, ..., pages, NULL);
2138  *      mmap_read_unlock(mm);
2139  *
2140  *  to:
2141  *
2142  *      int locked = 1;
2143  *      mmap_read_lock(mm);
2144  *      do_something()
2145  *      get_user_pages_locked(mm, ..., pages, &locked);
2146  *      if (locked)
2147  *          mmap_read_unlock(mm);
2148  *
2149  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2150  * paths better by using either get_user_pages_locked() or
2151  * get_user_pages_unlocked().
2152  *
2153  */
2154 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2155 			   unsigned int gup_flags, struct page **pages,
2156 			   int *locked)
2157 {
2158 	/*
2159 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2160 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2161 	 * vmas.  As there are no users of this flag in this call we simply
2162 	 * disallow this option for now.
2163 	 */
2164 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2165 		return -EINVAL;
2166 	/*
2167 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2168 	 * never directly by the caller, so enforce that:
2169 	 */
2170 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2171 		return -EINVAL;
2172 
2173 	return __get_user_pages_locked(current->mm, start, nr_pages,
2174 				       pages, NULL, locked,
2175 				       gup_flags | FOLL_TOUCH);
2176 }
2177 EXPORT_SYMBOL(get_user_pages_locked);
2178 
2179 /*
2180  * get_user_pages_unlocked() is suitable to replace the form:
2181  *
2182  *      mmap_read_lock(mm);
2183  *      get_user_pages(mm, ..., pages, NULL);
2184  *      mmap_read_unlock(mm);
2185  *
2186  *  with:
2187  *
2188  *      get_user_pages_unlocked(mm, ..., pages);
2189  *
2190  * It is functionally equivalent to get_user_pages_fast so
2191  * get_user_pages_fast should be used instead if specific gup_flags
2192  * (e.g. FOLL_FORCE) are not required.
2193  */
2194 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2195 			     struct page **pages, unsigned int gup_flags)
2196 {
2197 	struct mm_struct *mm = current->mm;
2198 	int locked = 1;
2199 	long ret;
2200 
2201 	/*
2202 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2203 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2204 	 * vmas.  As there are no users of this flag in this call we simply
2205 	 * disallow this option for now.
2206 	 */
2207 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2208 		return -EINVAL;
2209 
2210 	mmap_read_lock(mm);
2211 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2212 				      &locked, gup_flags | FOLL_TOUCH);
2213 	if (locked)
2214 		mmap_read_unlock(mm);
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL(get_user_pages_unlocked);
2218 
2219 /*
2220  * Fast GUP
2221  *
2222  * get_user_pages_fast attempts to pin user pages by walking the page
2223  * tables directly and avoids taking locks. Thus the walker needs to be
2224  * protected from page table pages being freed from under it, and should
2225  * block any THP splits.
2226  *
2227  * One way to achieve this is to have the walker disable interrupts, and
2228  * rely on IPIs from the TLB flushing code blocking before the page table
2229  * pages are freed. This is unsuitable for architectures that do not need
2230  * to broadcast an IPI when invalidating TLBs.
2231  *
2232  * Another way to achieve this is to batch up page table containing pages
2233  * belonging to more than one mm_user, then rcu_sched a callback to free those
2234  * pages. Disabling interrupts will allow the fast_gup walker to both block
2235  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2236  * (which is a relatively rare event). The code below adopts this strategy.
2237  *
2238  * Before activating this code, please be aware that the following assumptions
2239  * are currently made:
2240  *
2241  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2242  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2243  *
2244  *  *) ptes can be read atomically by the architecture.
2245  *
2246  *  *) access_ok is sufficient to validate userspace address ranges.
2247  *
2248  * The last two assumptions can be relaxed by the addition of helper functions.
2249  *
2250  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2251  */
2252 #ifdef CONFIG_HAVE_FAST_GUP
2253 
2254 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2255 					    unsigned int flags,
2256 					    struct page **pages)
2257 {
2258 	while ((*nr) - nr_start) {
2259 		struct page *page = pages[--(*nr)];
2260 
2261 		ClearPageReferenced(page);
2262 		if (flags & FOLL_PIN)
2263 			unpin_user_page(page);
2264 		else
2265 			put_page(page);
2266 	}
2267 }
2268 
2269 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2270 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2271 			 unsigned int flags, struct page **pages, int *nr)
2272 {
2273 	struct dev_pagemap *pgmap = NULL;
2274 	int nr_start = *nr, ret = 0;
2275 	pte_t *ptep, *ptem;
2276 
2277 	ptem = ptep = pte_offset_map(&pmd, addr);
2278 	do {
2279 		pte_t pte = ptep_get_lockless(ptep);
2280 		struct page *head, *page;
2281 
2282 		/*
2283 		 * Similar to the PMD case below, NUMA hinting must take slow
2284 		 * path using the pte_protnone check.
2285 		 */
2286 		if (pte_protnone(pte))
2287 			goto pte_unmap;
2288 
2289 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2290 			goto pte_unmap;
2291 
2292 		if (pte_devmap(pte)) {
2293 			if (unlikely(flags & FOLL_LONGTERM))
2294 				goto pte_unmap;
2295 
2296 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2297 			if (unlikely(!pgmap)) {
2298 				undo_dev_pagemap(nr, nr_start, flags, pages);
2299 				goto pte_unmap;
2300 			}
2301 		} else if (pte_special(pte))
2302 			goto pte_unmap;
2303 
2304 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2305 		page = pte_page(pte);
2306 
2307 		head = try_grab_compound_head(page, 1, flags);
2308 		if (!head)
2309 			goto pte_unmap;
2310 
2311 		if (unlikely(page_is_secretmem(page))) {
2312 			put_compound_head(head, 1, flags);
2313 			goto pte_unmap;
2314 		}
2315 
2316 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2317 			put_compound_head(head, 1, flags);
2318 			goto pte_unmap;
2319 		}
2320 
2321 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2322 
2323 		/*
2324 		 * We need to make the page accessible if and only if we are
2325 		 * going to access its content (the FOLL_PIN case).  Please
2326 		 * see Documentation/core-api/pin_user_pages.rst for
2327 		 * details.
2328 		 */
2329 		if (flags & FOLL_PIN) {
2330 			ret = arch_make_page_accessible(page);
2331 			if (ret) {
2332 				unpin_user_page(page);
2333 				goto pte_unmap;
2334 			}
2335 		}
2336 		SetPageReferenced(page);
2337 		pages[*nr] = page;
2338 		(*nr)++;
2339 
2340 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2341 
2342 	ret = 1;
2343 
2344 pte_unmap:
2345 	if (pgmap)
2346 		put_dev_pagemap(pgmap);
2347 	pte_unmap(ptem);
2348 	return ret;
2349 }
2350 #else
2351 
2352 /*
2353  * If we can't determine whether or not a pte is special, then fail immediately
2354  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2355  * to be special.
2356  *
2357  * For a futex to be placed on a THP tail page, get_futex_key requires a
2358  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2359  * useful to have gup_huge_pmd even if we can't operate on ptes.
2360  */
2361 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2362 			 unsigned int flags, struct page **pages, int *nr)
2363 {
2364 	return 0;
2365 }
2366 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2367 
2368 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2369 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2370 			     unsigned long end, unsigned int flags,
2371 			     struct page **pages, int *nr)
2372 {
2373 	int nr_start = *nr;
2374 	struct dev_pagemap *pgmap = NULL;
2375 
2376 	do {
2377 		struct page *page = pfn_to_page(pfn);
2378 
2379 		pgmap = get_dev_pagemap(pfn, pgmap);
2380 		if (unlikely(!pgmap)) {
2381 			undo_dev_pagemap(nr, nr_start, flags, pages);
2382 			break;
2383 		}
2384 		SetPageReferenced(page);
2385 		pages[*nr] = page;
2386 		if (unlikely(!try_grab_page(page, flags))) {
2387 			undo_dev_pagemap(nr, nr_start, flags, pages);
2388 			break;
2389 		}
2390 		(*nr)++;
2391 		pfn++;
2392 	} while (addr += PAGE_SIZE, addr != end);
2393 
2394 	put_dev_pagemap(pgmap);
2395 	return addr == end;
2396 }
2397 
2398 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2399 				 unsigned long end, unsigned int flags,
2400 				 struct page **pages, int *nr)
2401 {
2402 	unsigned long fault_pfn;
2403 	int nr_start = *nr;
2404 
2405 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2406 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2407 		return 0;
2408 
2409 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2410 		undo_dev_pagemap(nr, nr_start, flags, pages);
2411 		return 0;
2412 	}
2413 	return 1;
2414 }
2415 
2416 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2417 				 unsigned long end, unsigned int flags,
2418 				 struct page **pages, int *nr)
2419 {
2420 	unsigned long fault_pfn;
2421 	int nr_start = *nr;
2422 
2423 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2424 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2425 		return 0;
2426 
2427 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2428 		undo_dev_pagemap(nr, nr_start, flags, pages);
2429 		return 0;
2430 	}
2431 	return 1;
2432 }
2433 #else
2434 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2435 				 unsigned long end, unsigned int flags,
2436 				 struct page **pages, int *nr)
2437 {
2438 	BUILD_BUG();
2439 	return 0;
2440 }
2441 
2442 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2443 				 unsigned long end, unsigned int flags,
2444 				 struct page **pages, int *nr)
2445 {
2446 	BUILD_BUG();
2447 	return 0;
2448 }
2449 #endif
2450 
2451 static int record_subpages(struct page *page, unsigned long addr,
2452 			   unsigned long end, struct page **pages)
2453 {
2454 	int nr;
2455 
2456 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2457 		pages[nr++] = page++;
2458 
2459 	return nr;
2460 }
2461 
2462 #ifdef CONFIG_ARCH_HAS_HUGEPD
2463 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2464 				      unsigned long sz)
2465 {
2466 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2467 	return (__boundary - 1 < end - 1) ? __boundary : end;
2468 }
2469 
2470 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2471 		       unsigned long end, unsigned int flags,
2472 		       struct page **pages, int *nr)
2473 {
2474 	unsigned long pte_end;
2475 	struct page *head, *page;
2476 	pte_t pte;
2477 	int refs;
2478 
2479 	pte_end = (addr + sz) & ~(sz-1);
2480 	if (pte_end < end)
2481 		end = pte_end;
2482 
2483 	pte = huge_ptep_get(ptep);
2484 
2485 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2486 		return 0;
2487 
2488 	/* hugepages are never "special" */
2489 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2490 
2491 	head = pte_page(pte);
2492 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2493 	refs = record_subpages(page, addr, end, pages + *nr);
2494 
2495 	head = try_grab_compound_head(head, refs, flags);
2496 	if (!head)
2497 		return 0;
2498 
2499 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2500 		put_compound_head(head, refs, flags);
2501 		return 0;
2502 	}
2503 
2504 	*nr += refs;
2505 	SetPageReferenced(head);
2506 	return 1;
2507 }
2508 
2509 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2510 		unsigned int pdshift, unsigned long end, unsigned int flags,
2511 		struct page **pages, int *nr)
2512 {
2513 	pte_t *ptep;
2514 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2515 	unsigned long next;
2516 
2517 	ptep = hugepte_offset(hugepd, addr, pdshift);
2518 	do {
2519 		next = hugepte_addr_end(addr, end, sz);
2520 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2521 			return 0;
2522 	} while (ptep++, addr = next, addr != end);
2523 
2524 	return 1;
2525 }
2526 #else
2527 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2528 		unsigned int pdshift, unsigned long end, unsigned int flags,
2529 		struct page **pages, int *nr)
2530 {
2531 	return 0;
2532 }
2533 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2534 
2535 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2536 			unsigned long end, unsigned int flags,
2537 			struct page **pages, int *nr)
2538 {
2539 	struct page *head, *page;
2540 	int refs;
2541 
2542 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2543 		return 0;
2544 
2545 	if (pmd_devmap(orig)) {
2546 		if (unlikely(flags & FOLL_LONGTERM))
2547 			return 0;
2548 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2549 					     pages, nr);
2550 	}
2551 
2552 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2553 	refs = record_subpages(page, addr, end, pages + *nr);
2554 
2555 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2556 	if (!head)
2557 		return 0;
2558 
2559 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2560 		put_compound_head(head, refs, flags);
2561 		return 0;
2562 	}
2563 
2564 	*nr += refs;
2565 	SetPageReferenced(head);
2566 	return 1;
2567 }
2568 
2569 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2570 			unsigned long end, unsigned int flags,
2571 			struct page **pages, int *nr)
2572 {
2573 	struct page *head, *page;
2574 	int refs;
2575 
2576 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2577 		return 0;
2578 
2579 	if (pud_devmap(orig)) {
2580 		if (unlikely(flags & FOLL_LONGTERM))
2581 			return 0;
2582 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2583 					     pages, nr);
2584 	}
2585 
2586 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2587 	refs = record_subpages(page, addr, end, pages + *nr);
2588 
2589 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2590 	if (!head)
2591 		return 0;
2592 
2593 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2594 		put_compound_head(head, refs, flags);
2595 		return 0;
2596 	}
2597 
2598 	*nr += refs;
2599 	SetPageReferenced(head);
2600 	return 1;
2601 }
2602 
2603 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2604 			unsigned long end, unsigned int flags,
2605 			struct page **pages, int *nr)
2606 {
2607 	int refs;
2608 	struct page *head, *page;
2609 
2610 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2611 		return 0;
2612 
2613 	BUILD_BUG_ON(pgd_devmap(orig));
2614 
2615 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2616 	refs = record_subpages(page, addr, end, pages + *nr);
2617 
2618 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2619 	if (!head)
2620 		return 0;
2621 
2622 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2623 		put_compound_head(head, refs, flags);
2624 		return 0;
2625 	}
2626 
2627 	*nr += refs;
2628 	SetPageReferenced(head);
2629 	return 1;
2630 }
2631 
2632 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2633 		unsigned int flags, struct page **pages, int *nr)
2634 {
2635 	unsigned long next;
2636 	pmd_t *pmdp;
2637 
2638 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2639 	do {
2640 		pmd_t pmd = READ_ONCE(*pmdp);
2641 
2642 		next = pmd_addr_end(addr, end);
2643 		if (!pmd_present(pmd))
2644 			return 0;
2645 
2646 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2647 			     pmd_devmap(pmd))) {
2648 			/*
2649 			 * NUMA hinting faults need to be handled in the GUP
2650 			 * slowpath for accounting purposes and so that they
2651 			 * can be serialised against THP migration.
2652 			 */
2653 			if (pmd_protnone(pmd))
2654 				return 0;
2655 
2656 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2657 				pages, nr))
2658 				return 0;
2659 
2660 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2661 			/*
2662 			 * architecture have different format for hugetlbfs
2663 			 * pmd format and THP pmd format
2664 			 */
2665 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2666 					 PMD_SHIFT, next, flags, pages, nr))
2667 				return 0;
2668 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2669 			return 0;
2670 	} while (pmdp++, addr = next, addr != end);
2671 
2672 	return 1;
2673 }
2674 
2675 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2676 			 unsigned int flags, struct page **pages, int *nr)
2677 {
2678 	unsigned long next;
2679 	pud_t *pudp;
2680 
2681 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2682 	do {
2683 		pud_t pud = READ_ONCE(*pudp);
2684 
2685 		next = pud_addr_end(addr, end);
2686 		if (unlikely(!pud_present(pud)))
2687 			return 0;
2688 		if (unlikely(pud_huge(pud))) {
2689 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2690 					  pages, nr))
2691 				return 0;
2692 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2693 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2694 					 PUD_SHIFT, next, flags, pages, nr))
2695 				return 0;
2696 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2697 			return 0;
2698 	} while (pudp++, addr = next, addr != end);
2699 
2700 	return 1;
2701 }
2702 
2703 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2704 			 unsigned int flags, struct page **pages, int *nr)
2705 {
2706 	unsigned long next;
2707 	p4d_t *p4dp;
2708 
2709 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2710 	do {
2711 		p4d_t p4d = READ_ONCE(*p4dp);
2712 
2713 		next = p4d_addr_end(addr, end);
2714 		if (p4d_none(p4d))
2715 			return 0;
2716 		BUILD_BUG_ON(p4d_huge(p4d));
2717 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2718 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2719 					 P4D_SHIFT, next, flags, pages, nr))
2720 				return 0;
2721 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2722 			return 0;
2723 	} while (p4dp++, addr = next, addr != end);
2724 
2725 	return 1;
2726 }
2727 
2728 static void gup_pgd_range(unsigned long addr, unsigned long end,
2729 		unsigned int flags, struct page **pages, int *nr)
2730 {
2731 	unsigned long next;
2732 	pgd_t *pgdp;
2733 
2734 	pgdp = pgd_offset(current->mm, addr);
2735 	do {
2736 		pgd_t pgd = READ_ONCE(*pgdp);
2737 
2738 		next = pgd_addr_end(addr, end);
2739 		if (pgd_none(pgd))
2740 			return;
2741 		if (unlikely(pgd_huge(pgd))) {
2742 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2743 					  pages, nr))
2744 				return;
2745 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2746 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2747 					 PGDIR_SHIFT, next, flags, pages, nr))
2748 				return;
2749 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2750 			return;
2751 	} while (pgdp++, addr = next, addr != end);
2752 }
2753 #else
2754 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2755 		unsigned int flags, struct page **pages, int *nr)
2756 {
2757 }
2758 #endif /* CONFIG_HAVE_FAST_GUP */
2759 
2760 #ifndef gup_fast_permitted
2761 /*
2762  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2763  * we need to fall back to the slow version:
2764  */
2765 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2766 {
2767 	return true;
2768 }
2769 #endif
2770 
2771 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2772 				   unsigned int gup_flags, struct page **pages)
2773 {
2774 	int ret;
2775 
2776 	/*
2777 	 * FIXME: FOLL_LONGTERM does not work with
2778 	 * get_user_pages_unlocked() (see comments in that function)
2779 	 */
2780 	if (gup_flags & FOLL_LONGTERM) {
2781 		mmap_read_lock(current->mm);
2782 		ret = __gup_longterm_locked(current->mm,
2783 					    start, nr_pages,
2784 					    pages, NULL, gup_flags);
2785 		mmap_read_unlock(current->mm);
2786 	} else {
2787 		ret = get_user_pages_unlocked(start, nr_pages,
2788 					      pages, gup_flags);
2789 	}
2790 
2791 	return ret;
2792 }
2793 
2794 static unsigned long lockless_pages_from_mm(unsigned long start,
2795 					    unsigned long end,
2796 					    unsigned int gup_flags,
2797 					    struct page **pages)
2798 {
2799 	unsigned long flags;
2800 	int nr_pinned = 0;
2801 	unsigned seq;
2802 
2803 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2804 	    !gup_fast_permitted(start, end))
2805 		return 0;
2806 
2807 	if (gup_flags & FOLL_PIN) {
2808 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2809 		if (seq & 1)
2810 			return 0;
2811 	}
2812 
2813 	/*
2814 	 * Disable interrupts. The nested form is used, in order to allow full,
2815 	 * general purpose use of this routine.
2816 	 *
2817 	 * With interrupts disabled, we block page table pages from being freed
2818 	 * from under us. See struct mmu_table_batch comments in
2819 	 * include/asm-generic/tlb.h for more details.
2820 	 *
2821 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2822 	 * that come from THPs splitting.
2823 	 */
2824 	local_irq_save(flags);
2825 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2826 	local_irq_restore(flags);
2827 
2828 	/*
2829 	 * When pinning pages for DMA there could be a concurrent write protect
2830 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2831 	 */
2832 	if (gup_flags & FOLL_PIN) {
2833 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2834 			unpin_user_pages(pages, nr_pinned);
2835 			return 0;
2836 		}
2837 	}
2838 	return nr_pinned;
2839 }
2840 
2841 static int internal_get_user_pages_fast(unsigned long start,
2842 					unsigned long nr_pages,
2843 					unsigned int gup_flags,
2844 					struct page **pages)
2845 {
2846 	unsigned long len, end;
2847 	unsigned long nr_pinned;
2848 	int ret;
2849 
2850 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2851 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2852 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2853 		return -EINVAL;
2854 
2855 	if (gup_flags & FOLL_PIN)
2856 		mm_set_has_pinned_flag(&current->mm->flags);
2857 
2858 	if (!(gup_flags & FOLL_FAST_ONLY))
2859 		might_lock_read(&current->mm->mmap_lock);
2860 
2861 	start = untagged_addr(start) & PAGE_MASK;
2862 	len = nr_pages << PAGE_SHIFT;
2863 	if (check_add_overflow(start, len, &end))
2864 		return 0;
2865 	if (unlikely(!access_ok((void __user *)start, len)))
2866 		return -EFAULT;
2867 
2868 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2869 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2870 		return nr_pinned;
2871 
2872 	/* Slow path: try to get the remaining pages with get_user_pages */
2873 	start += nr_pinned << PAGE_SHIFT;
2874 	pages += nr_pinned;
2875 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2876 				      pages);
2877 	if (ret < 0) {
2878 		/*
2879 		 * The caller has to unpin the pages we already pinned so
2880 		 * returning -errno is not an option
2881 		 */
2882 		if (nr_pinned)
2883 			return nr_pinned;
2884 		return ret;
2885 	}
2886 	return ret + nr_pinned;
2887 }
2888 
2889 /**
2890  * get_user_pages_fast_only() - pin user pages in memory
2891  * @start:      starting user address
2892  * @nr_pages:   number of pages from start to pin
2893  * @gup_flags:  flags modifying pin behaviour
2894  * @pages:      array that receives pointers to the pages pinned.
2895  *              Should be at least nr_pages long.
2896  *
2897  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2898  * the regular GUP.
2899  * Note a difference with get_user_pages_fast: this always returns the
2900  * number of pages pinned, 0 if no pages were pinned.
2901  *
2902  * If the architecture does not support this function, simply return with no
2903  * pages pinned.
2904  *
2905  * Careful, careful! COW breaking can go either way, so a non-write
2906  * access can get ambiguous page results. If you call this function without
2907  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2908  */
2909 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2910 			     unsigned int gup_flags, struct page **pages)
2911 {
2912 	int nr_pinned;
2913 	/*
2914 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2915 	 * because gup fast is always a "pin with a +1 page refcount" request.
2916 	 *
2917 	 * FOLL_FAST_ONLY is required in order to match the API description of
2918 	 * this routine: no fall back to regular ("slow") GUP.
2919 	 */
2920 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2921 
2922 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2923 						 pages);
2924 
2925 	/*
2926 	 * As specified in the API description above, this routine is not
2927 	 * allowed to return negative values. However, the common core
2928 	 * routine internal_get_user_pages_fast() *can* return -errno.
2929 	 * Therefore, correct for that here:
2930 	 */
2931 	if (nr_pinned < 0)
2932 		nr_pinned = 0;
2933 
2934 	return nr_pinned;
2935 }
2936 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2937 
2938 /**
2939  * get_user_pages_fast() - pin user pages in memory
2940  * @start:      starting user address
2941  * @nr_pages:   number of pages from start to pin
2942  * @gup_flags:  flags modifying pin behaviour
2943  * @pages:      array that receives pointers to the pages pinned.
2944  *              Should be at least nr_pages long.
2945  *
2946  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2947  * If not successful, it will fall back to taking the lock and
2948  * calling get_user_pages().
2949  *
2950  * Returns number of pages pinned. This may be fewer than the number requested.
2951  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2952  * -errno.
2953  */
2954 int get_user_pages_fast(unsigned long start, int nr_pages,
2955 			unsigned int gup_flags, struct page **pages)
2956 {
2957 	if (!is_valid_gup_flags(gup_flags))
2958 		return -EINVAL;
2959 
2960 	/*
2961 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2962 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2963 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2964 	 * request.
2965 	 */
2966 	gup_flags |= FOLL_GET;
2967 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2968 }
2969 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2970 
2971 /**
2972  * pin_user_pages_fast() - pin user pages in memory without taking locks
2973  *
2974  * @start:      starting user address
2975  * @nr_pages:   number of pages from start to pin
2976  * @gup_flags:  flags modifying pin behaviour
2977  * @pages:      array that receives pointers to the pages pinned.
2978  *              Should be at least nr_pages long.
2979  *
2980  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2981  * get_user_pages_fast() for documentation on the function arguments, because
2982  * the arguments here are identical.
2983  *
2984  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2985  * see Documentation/core-api/pin_user_pages.rst for further details.
2986  */
2987 int pin_user_pages_fast(unsigned long start, int nr_pages,
2988 			unsigned int gup_flags, struct page **pages)
2989 {
2990 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2991 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2992 		return -EINVAL;
2993 
2994 	gup_flags |= FOLL_PIN;
2995 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2996 }
2997 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2998 
2999 /*
3000  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3001  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3002  *
3003  * The API rules are the same, too: no negative values may be returned.
3004  */
3005 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3006 			     unsigned int gup_flags, struct page **pages)
3007 {
3008 	int nr_pinned;
3009 
3010 	/*
3011 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3012 	 * rules require returning 0, rather than -errno:
3013 	 */
3014 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3015 		return 0;
3016 	/*
3017 	 * FOLL_FAST_ONLY is required in order to match the API description of
3018 	 * this routine: no fall back to regular ("slow") GUP.
3019 	 */
3020 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3021 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3022 						 pages);
3023 	/*
3024 	 * This routine is not allowed to return negative values. However,
3025 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3026 	 * correct for that here:
3027 	 */
3028 	if (nr_pinned < 0)
3029 		nr_pinned = 0;
3030 
3031 	return nr_pinned;
3032 }
3033 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3034 
3035 /**
3036  * pin_user_pages_remote() - pin pages of a remote process
3037  *
3038  * @mm:		mm_struct of target mm
3039  * @start:	starting user address
3040  * @nr_pages:	number of pages from start to pin
3041  * @gup_flags:	flags modifying lookup behaviour
3042  * @pages:	array that receives pointers to the pages pinned.
3043  *		Should be at least nr_pages long. Or NULL, if caller
3044  *		only intends to ensure the pages are faulted in.
3045  * @vmas:	array of pointers to vmas corresponding to each page.
3046  *		Or NULL if the caller does not require them.
3047  * @locked:	pointer to lock flag indicating whether lock is held and
3048  *		subsequently whether VM_FAULT_RETRY functionality can be
3049  *		utilised. Lock must initially be held.
3050  *
3051  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3052  * get_user_pages_remote() for documentation on the function arguments, because
3053  * the arguments here are identical.
3054  *
3055  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3056  * see Documentation/core-api/pin_user_pages.rst for details.
3057  */
3058 long pin_user_pages_remote(struct mm_struct *mm,
3059 			   unsigned long start, unsigned long nr_pages,
3060 			   unsigned int gup_flags, struct page **pages,
3061 			   struct vm_area_struct **vmas, int *locked)
3062 {
3063 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3064 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3065 		return -EINVAL;
3066 
3067 	gup_flags |= FOLL_PIN;
3068 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3069 				       pages, vmas, locked);
3070 }
3071 EXPORT_SYMBOL(pin_user_pages_remote);
3072 
3073 /**
3074  * pin_user_pages() - pin user pages in memory for use by other devices
3075  *
3076  * @start:	starting user address
3077  * @nr_pages:	number of pages from start to pin
3078  * @gup_flags:	flags modifying lookup behaviour
3079  * @pages:	array that receives pointers to the pages pinned.
3080  *		Should be at least nr_pages long. Or NULL, if caller
3081  *		only intends to ensure the pages are faulted in.
3082  * @vmas:	array of pointers to vmas corresponding to each page.
3083  *		Or NULL if the caller does not require them.
3084  *
3085  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3086  * FOLL_PIN is set.
3087  *
3088  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3089  * see Documentation/core-api/pin_user_pages.rst for details.
3090  */
3091 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3092 		    unsigned int gup_flags, struct page **pages,
3093 		    struct vm_area_struct **vmas)
3094 {
3095 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3096 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3097 		return -EINVAL;
3098 
3099 	gup_flags |= FOLL_PIN;
3100 	return __gup_longterm_locked(current->mm, start, nr_pages,
3101 				     pages, vmas, gup_flags);
3102 }
3103 EXPORT_SYMBOL(pin_user_pages);
3104 
3105 /*
3106  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3107  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3108  * FOLL_PIN and rejects FOLL_GET.
3109  */
3110 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3111 			     struct page **pages, unsigned int gup_flags)
3112 {
3113 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3114 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3115 		return -EINVAL;
3116 
3117 	gup_flags |= FOLL_PIN;
3118 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3119 }
3120 EXPORT_SYMBOL(pin_user_pages_unlocked);
3121 
3122 /*
3123  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3124  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3125  * FOLL_GET.
3126  */
3127 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3128 			   unsigned int gup_flags, struct page **pages,
3129 			   int *locked)
3130 {
3131 	/*
3132 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3133 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3134 	 * vmas.  As there are no users of this flag in this call we simply
3135 	 * disallow this option for now.
3136 	 */
3137 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3138 		return -EINVAL;
3139 
3140 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3141 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3142 		return -EINVAL;
3143 
3144 	gup_flags |= FOLL_PIN;
3145 	return __get_user_pages_locked(current->mm, start, nr_pages,
3146 				       pages, NULL, locked,
3147 				       gup_flags | FOLL_TOUCH);
3148 }
3149 EXPORT_SYMBOL(pin_user_pages_locked);
3150