xref: /linux/mm/gup.c (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
15 #include <asm/pgtable.h>
16 
17 #include "internal.h"
18 
19 static struct page *no_page_table(struct vm_area_struct *vma,
20 		unsigned int flags)
21 {
22 	/*
23 	 * When core dumping an enormous anonymous area that nobody
24 	 * has touched so far, we don't want to allocate unnecessary pages or
25 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
26 	 * then get_dump_page() will return NULL to leave a hole in the dump.
27 	 * But we can only make this optimization where a hole would surely
28 	 * be zero-filled if handle_mm_fault() actually did handle it.
29 	 */
30 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
31 		return ERR_PTR(-EFAULT);
32 	return NULL;
33 }
34 
35 static struct page *follow_page_pte(struct vm_area_struct *vma,
36 		unsigned long address, pmd_t *pmd, unsigned int flags)
37 {
38 	struct mm_struct *mm = vma->vm_mm;
39 	struct page *page;
40 	spinlock_t *ptl;
41 	pte_t *ptep, pte;
42 
43 retry:
44 	if (unlikely(pmd_bad(*pmd)))
45 		return no_page_table(vma, flags);
46 
47 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
48 	pte = *ptep;
49 	if (!pte_present(pte)) {
50 		swp_entry_t entry;
51 		/*
52 		 * KSM's break_ksm() relies upon recognizing a ksm page
53 		 * even while it is being migrated, so for that case we
54 		 * need migration_entry_wait().
55 		 */
56 		if (likely(!(flags & FOLL_MIGRATION)))
57 			goto no_page;
58 		if (pte_none(pte))
59 			goto no_page;
60 		entry = pte_to_swp_entry(pte);
61 		if (!is_migration_entry(entry))
62 			goto no_page;
63 		pte_unmap_unlock(ptep, ptl);
64 		migration_entry_wait(mm, pmd, address);
65 		goto retry;
66 	}
67 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
68 		goto no_page;
69 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
70 		pte_unmap_unlock(ptep, ptl);
71 		return NULL;
72 	}
73 
74 	page = vm_normal_page(vma, address, pte);
75 	if (unlikely(!page)) {
76 		if ((flags & FOLL_DUMP) ||
77 		    !is_zero_pfn(pte_pfn(pte)))
78 			goto bad_page;
79 		page = pte_page(pte);
80 	}
81 
82 	if (flags & FOLL_GET)
83 		get_page_foll(page);
84 	if (flags & FOLL_TOUCH) {
85 		if ((flags & FOLL_WRITE) &&
86 		    !pte_dirty(pte) && !PageDirty(page))
87 			set_page_dirty(page);
88 		/*
89 		 * pte_mkyoung() would be more correct here, but atomic care
90 		 * is needed to avoid losing the dirty bit: it is easier to use
91 		 * mark_page_accessed().
92 		 */
93 		mark_page_accessed(page);
94 	}
95 	if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
96 		/*
97 		 * The preliminary mapping check is mainly to avoid the
98 		 * pointless overhead of lock_page on the ZERO_PAGE
99 		 * which might bounce very badly if there is contention.
100 		 *
101 		 * If the page is already locked, we don't need to
102 		 * handle it now - vmscan will handle it later if and
103 		 * when it attempts to reclaim the page.
104 		 */
105 		if (page->mapping && trylock_page(page)) {
106 			lru_add_drain();  /* push cached pages to LRU */
107 			/*
108 			 * Because we lock page here, and migration is
109 			 * blocked by the pte's page reference, and we
110 			 * know the page is still mapped, we don't even
111 			 * need to check for file-cache page truncation.
112 			 */
113 			mlock_vma_page(page);
114 			unlock_page(page);
115 		}
116 	}
117 	pte_unmap_unlock(ptep, ptl);
118 	return page;
119 bad_page:
120 	pte_unmap_unlock(ptep, ptl);
121 	return ERR_PTR(-EFAULT);
122 
123 no_page:
124 	pte_unmap_unlock(ptep, ptl);
125 	if (!pte_none(pte))
126 		return NULL;
127 	return no_page_table(vma, flags);
128 }
129 
130 /**
131  * follow_page_mask - look up a page descriptor from a user-virtual address
132  * @vma: vm_area_struct mapping @address
133  * @address: virtual address to look up
134  * @flags: flags modifying lookup behaviour
135  * @page_mask: on output, *page_mask is set according to the size of the page
136  *
137  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
138  *
139  * Returns the mapped (struct page *), %NULL if no mapping exists, or
140  * an error pointer if there is a mapping to something not represented
141  * by a page descriptor (see also vm_normal_page()).
142  */
143 struct page *follow_page_mask(struct vm_area_struct *vma,
144 			      unsigned long address, unsigned int flags,
145 			      unsigned int *page_mask)
146 {
147 	pgd_t *pgd;
148 	pud_t *pud;
149 	pmd_t *pmd;
150 	spinlock_t *ptl;
151 	struct page *page;
152 	struct mm_struct *mm = vma->vm_mm;
153 
154 	*page_mask = 0;
155 
156 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
157 	if (!IS_ERR(page)) {
158 		BUG_ON(flags & FOLL_GET);
159 		return page;
160 	}
161 
162 	pgd = pgd_offset(mm, address);
163 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
164 		return no_page_table(vma, flags);
165 
166 	pud = pud_offset(pgd, address);
167 	if (pud_none(*pud))
168 		return no_page_table(vma, flags);
169 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
170 		page = follow_huge_pud(mm, address, pud, flags);
171 		if (page)
172 			return page;
173 		return no_page_table(vma, flags);
174 	}
175 	if (unlikely(pud_bad(*pud)))
176 		return no_page_table(vma, flags);
177 
178 	pmd = pmd_offset(pud, address);
179 	if (pmd_none(*pmd))
180 		return no_page_table(vma, flags);
181 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
182 		page = follow_huge_pmd(mm, address, pmd, flags);
183 		if (page)
184 			return page;
185 		return no_page_table(vma, flags);
186 	}
187 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
188 		return no_page_table(vma, flags);
189 	if (pmd_trans_huge(*pmd)) {
190 		if (flags & FOLL_SPLIT) {
191 			split_huge_page_pmd(vma, address, pmd);
192 			return follow_page_pte(vma, address, pmd, flags);
193 		}
194 		ptl = pmd_lock(mm, pmd);
195 		if (likely(pmd_trans_huge(*pmd))) {
196 			if (unlikely(pmd_trans_splitting(*pmd))) {
197 				spin_unlock(ptl);
198 				wait_split_huge_page(vma->anon_vma, pmd);
199 			} else {
200 				page = follow_trans_huge_pmd(vma, address,
201 							     pmd, flags);
202 				spin_unlock(ptl);
203 				*page_mask = HPAGE_PMD_NR - 1;
204 				return page;
205 			}
206 		} else
207 			spin_unlock(ptl);
208 	}
209 	return follow_page_pte(vma, address, pmd, flags);
210 }
211 
212 static int get_gate_page(struct mm_struct *mm, unsigned long address,
213 		unsigned int gup_flags, struct vm_area_struct **vma,
214 		struct page **page)
215 {
216 	pgd_t *pgd;
217 	pud_t *pud;
218 	pmd_t *pmd;
219 	pte_t *pte;
220 	int ret = -EFAULT;
221 
222 	/* user gate pages are read-only */
223 	if (gup_flags & FOLL_WRITE)
224 		return -EFAULT;
225 	if (address > TASK_SIZE)
226 		pgd = pgd_offset_k(address);
227 	else
228 		pgd = pgd_offset_gate(mm, address);
229 	BUG_ON(pgd_none(*pgd));
230 	pud = pud_offset(pgd, address);
231 	BUG_ON(pud_none(*pud));
232 	pmd = pmd_offset(pud, address);
233 	if (pmd_none(*pmd))
234 		return -EFAULT;
235 	VM_BUG_ON(pmd_trans_huge(*pmd));
236 	pte = pte_offset_map(pmd, address);
237 	if (pte_none(*pte))
238 		goto unmap;
239 	*vma = get_gate_vma(mm);
240 	if (!page)
241 		goto out;
242 	*page = vm_normal_page(*vma, address, *pte);
243 	if (!*page) {
244 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
245 			goto unmap;
246 		*page = pte_page(*pte);
247 	}
248 	get_page(*page);
249 out:
250 	ret = 0;
251 unmap:
252 	pte_unmap(pte);
253 	return ret;
254 }
255 
256 /*
257  * mmap_sem must be held on entry.  If @nonblocking != NULL and
258  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
259  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
260  */
261 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
262 		unsigned long address, unsigned int *flags, int *nonblocking)
263 {
264 	struct mm_struct *mm = vma->vm_mm;
265 	unsigned int fault_flags = 0;
266 	int ret;
267 
268 	/* For mm_populate(), just skip the stack guard page. */
269 	if ((*flags & FOLL_POPULATE) &&
270 			(stack_guard_page_start(vma, address) ||
271 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
272 		return -ENOENT;
273 	if (*flags & FOLL_WRITE)
274 		fault_flags |= FAULT_FLAG_WRITE;
275 	if (nonblocking)
276 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
277 	if (*flags & FOLL_NOWAIT)
278 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
279 	if (*flags & FOLL_TRIED) {
280 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
281 		fault_flags |= FAULT_FLAG_TRIED;
282 	}
283 
284 	ret = handle_mm_fault(mm, vma, address, fault_flags);
285 	if (ret & VM_FAULT_ERROR) {
286 		if (ret & VM_FAULT_OOM)
287 			return -ENOMEM;
288 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
289 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
290 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
291 			return -EFAULT;
292 		BUG();
293 	}
294 
295 	if (tsk) {
296 		if (ret & VM_FAULT_MAJOR)
297 			tsk->maj_flt++;
298 		else
299 			tsk->min_flt++;
300 	}
301 
302 	if (ret & VM_FAULT_RETRY) {
303 		if (nonblocking)
304 			*nonblocking = 0;
305 		return -EBUSY;
306 	}
307 
308 	/*
309 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
310 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
311 	 * can thus safely do subsequent page lookups as if they were reads.
312 	 * But only do so when looping for pte_write is futile: in some cases
313 	 * userspace may also be wanting to write to the gotten user page,
314 	 * which a read fault here might prevent (a readonly page might get
315 	 * reCOWed by userspace write).
316 	 */
317 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
318 		*flags &= ~FOLL_WRITE;
319 	return 0;
320 }
321 
322 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
323 {
324 	vm_flags_t vm_flags = vma->vm_flags;
325 
326 	if (vm_flags & (VM_IO | VM_PFNMAP))
327 		return -EFAULT;
328 
329 	if (gup_flags & FOLL_WRITE) {
330 		if (!(vm_flags & VM_WRITE)) {
331 			if (!(gup_flags & FOLL_FORCE))
332 				return -EFAULT;
333 			/*
334 			 * We used to let the write,force case do COW in a
335 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
336 			 * set a breakpoint in a read-only mapping of an
337 			 * executable, without corrupting the file (yet only
338 			 * when that file had been opened for writing!).
339 			 * Anon pages in shared mappings are surprising: now
340 			 * just reject it.
341 			 */
342 			if (!is_cow_mapping(vm_flags)) {
343 				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
344 				return -EFAULT;
345 			}
346 		}
347 	} else if (!(vm_flags & VM_READ)) {
348 		if (!(gup_flags & FOLL_FORCE))
349 			return -EFAULT;
350 		/*
351 		 * Is there actually any vma we can reach here which does not
352 		 * have VM_MAYREAD set?
353 		 */
354 		if (!(vm_flags & VM_MAYREAD))
355 			return -EFAULT;
356 	}
357 	return 0;
358 }
359 
360 /**
361  * __get_user_pages() - pin user pages in memory
362  * @tsk:	task_struct of target task
363  * @mm:		mm_struct of target mm
364  * @start:	starting user address
365  * @nr_pages:	number of pages from start to pin
366  * @gup_flags:	flags modifying pin behaviour
367  * @pages:	array that receives pointers to the pages pinned.
368  *		Should be at least nr_pages long. Or NULL, if caller
369  *		only intends to ensure the pages are faulted in.
370  * @vmas:	array of pointers to vmas corresponding to each page.
371  *		Or NULL if the caller does not require them.
372  * @nonblocking: whether waiting for disk IO or mmap_sem contention
373  *
374  * Returns number of pages pinned. This may be fewer than the number
375  * requested. If nr_pages is 0 or negative, returns 0. If no pages
376  * were pinned, returns -errno. Each page returned must be released
377  * with a put_page() call when it is finished with. vmas will only
378  * remain valid while mmap_sem is held.
379  *
380  * Must be called with mmap_sem held.  It may be released.  See below.
381  *
382  * __get_user_pages walks a process's page tables and takes a reference to
383  * each struct page that each user address corresponds to at a given
384  * instant. That is, it takes the page that would be accessed if a user
385  * thread accesses the given user virtual address at that instant.
386  *
387  * This does not guarantee that the page exists in the user mappings when
388  * __get_user_pages returns, and there may even be a completely different
389  * page there in some cases (eg. if mmapped pagecache has been invalidated
390  * and subsequently re faulted). However it does guarantee that the page
391  * won't be freed completely. And mostly callers simply care that the page
392  * contains data that was valid *at some point in time*. Typically, an IO
393  * or similar operation cannot guarantee anything stronger anyway because
394  * locks can't be held over the syscall boundary.
395  *
396  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
397  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
398  * appropriate) must be called after the page is finished with, and
399  * before put_page is called.
400  *
401  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
402  * or mmap_sem contention, and if waiting is needed to pin all pages,
403  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
404  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
405  * this case.
406  *
407  * A caller using such a combination of @nonblocking and @gup_flags
408  * must therefore hold the mmap_sem for reading only, and recognize
409  * when it's been released.  Otherwise, it must be held for either
410  * reading or writing and will not be released.
411  *
412  * In most cases, get_user_pages or get_user_pages_fast should be used
413  * instead of __get_user_pages. __get_user_pages should be used only if
414  * you need some special @gup_flags.
415  */
416 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
417 		unsigned long start, unsigned long nr_pages,
418 		unsigned int gup_flags, struct page **pages,
419 		struct vm_area_struct **vmas, int *nonblocking)
420 {
421 	long i = 0;
422 	unsigned int page_mask;
423 	struct vm_area_struct *vma = NULL;
424 
425 	if (!nr_pages)
426 		return 0;
427 
428 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
429 
430 	/*
431 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
432 	 * fault information is unrelated to the reference behaviour of a task
433 	 * using the address space
434 	 */
435 	if (!(gup_flags & FOLL_FORCE))
436 		gup_flags |= FOLL_NUMA;
437 
438 	do {
439 		struct page *page;
440 		unsigned int foll_flags = gup_flags;
441 		unsigned int page_increm;
442 
443 		/* first iteration or cross vma bound */
444 		if (!vma || start >= vma->vm_end) {
445 			vma = find_extend_vma(mm, start);
446 			if (!vma && in_gate_area(mm, start)) {
447 				int ret;
448 				ret = get_gate_page(mm, start & PAGE_MASK,
449 						gup_flags, &vma,
450 						pages ? &pages[i] : NULL);
451 				if (ret)
452 					return i ? : ret;
453 				page_mask = 0;
454 				goto next_page;
455 			}
456 
457 			if (!vma || check_vma_flags(vma, gup_flags))
458 				return i ? : -EFAULT;
459 			if (is_vm_hugetlb_page(vma)) {
460 				i = follow_hugetlb_page(mm, vma, pages, vmas,
461 						&start, &nr_pages, i,
462 						gup_flags);
463 				continue;
464 			}
465 		}
466 retry:
467 		/*
468 		 * If we have a pending SIGKILL, don't keep faulting pages and
469 		 * potentially allocating memory.
470 		 */
471 		if (unlikely(fatal_signal_pending(current)))
472 			return i ? i : -ERESTARTSYS;
473 		cond_resched();
474 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
475 		if (!page) {
476 			int ret;
477 			ret = faultin_page(tsk, vma, start, &foll_flags,
478 					nonblocking);
479 			switch (ret) {
480 			case 0:
481 				goto retry;
482 			case -EFAULT:
483 			case -ENOMEM:
484 			case -EHWPOISON:
485 				return i ? i : ret;
486 			case -EBUSY:
487 				return i;
488 			case -ENOENT:
489 				goto next_page;
490 			}
491 			BUG();
492 		}
493 		if (IS_ERR(page))
494 			return i ? i : PTR_ERR(page);
495 		if (pages) {
496 			pages[i] = page;
497 			flush_anon_page(vma, page, start);
498 			flush_dcache_page(page);
499 			page_mask = 0;
500 		}
501 next_page:
502 		if (vmas) {
503 			vmas[i] = vma;
504 			page_mask = 0;
505 		}
506 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
507 		if (page_increm > nr_pages)
508 			page_increm = nr_pages;
509 		i += page_increm;
510 		start += page_increm * PAGE_SIZE;
511 		nr_pages -= page_increm;
512 	} while (nr_pages);
513 	return i;
514 }
515 EXPORT_SYMBOL(__get_user_pages);
516 
517 /*
518  * fixup_user_fault() - manually resolve a user page fault
519  * @tsk:	the task_struct to use for page fault accounting, or
520  *		NULL if faults are not to be recorded.
521  * @mm:		mm_struct of target mm
522  * @address:	user address
523  * @fault_flags:flags to pass down to handle_mm_fault()
524  *
525  * This is meant to be called in the specific scenario where for locking reasons
526  * we try to access user memory in atomic context (within a pagefault_disable()
527  * section), this returns -EFAULT, and we want to resolve the user fault before
528  * trying again.
529  *
530  * Typically this is meant to be used by the futex code.
531  *
532  * The main difference with get_user_pages() is that this function will
533  * unconditionally call handle_mm_fault() which will in turn perform all the
534  * necessary SW fixup of the dirty and young bits in the PTE, while
535  * handle_mm_fault() only guarantees to update these in the struct page.
536  *
537  * This is important for some architectures where those bits also gate the
538  * access permission to the page because they are maintained in software.  On
539  * such architectures, gup() will not be enough to make a subsequent access
540  * succeed.
541  *
542  * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
543  */
544 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
545 		     unsigned long address, unsigned int fault_flags)
546 {
547 	struct vm_area_struct *vma;
548 	vm_flags_t vm_flags;
549 	int ret;
550 
551 	vma = find_extend_vma(mm, address);
552 	if (!vma || address < vma->vm_start)
553 		return -EFAULT;
554 
555 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
556 	if (!(vm_flags & vma->vm_flags))
557 		return -EFAULT;
558 
559 	ret = handle_mm_fault(mm, vma, address, fault_flags);
560 	if (ret & VM_FAULT_ERROR) {
561 		if (ret & VM_FAULT_OOM)
562 			return -ENOMEM;
563 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
564 			return -EHWPOISON;
565 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
566 			return -EFAULT;
567 		BUG();
568 	}
569 	if (tsk) {
570 		if (ret & VM_FAULT_MAJOR)
571 			tsk->maj_flt++;
572 		else
573 			tsk->min_flt++;
574 	}
575 	return 0;
576 }
577 
578 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
579 						struct mm_struct *mm,
580 						unsigned long start,
581 						unsigned long nr_pages,
582 						int write, int force,
583 						struct page **pages,
584 						struct vm_area_struct **vmas,
585 						int *locked, bool notify_drop,
586 						unsigned int flags)
587 {
588 	long ret, pages_done;
589 	bool lock_dropped;
590 
591 	if (locked) {
592 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
593 		BUG_ON(vmas);
594 		/* check caller initialized locked */
595 		BUG_ON(*locked != 1);
596 	}
597 
598 	if (pages)
599 		flags |= FOLL_GET;
600 	if (write)
601 		flags |= FOLL_WRITE;
602 	if (force)
603 		flags |= FOLL_FORCE;
604 
605 	pages_done = 0;
606 	lock_dropped = false;
607 	for (;;) {
608 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
609 				       vmas, locked);
610 		if (!locked)
611 			/* VM_FAULT_RETRY couldn't trigger, bypass */
612 			return ret;
613 
614 		/* VM_FAULT_RETRY cannot return errors */
615 		if (!*locked) {
616 			BUG_ON(ret < 0);
617 			BUG_ON(ret >= nr_pages);
618 		}
619 
620 		if (!pages)
621 			/* If it's a prefault don't insist harder */
622 			return ret;
623 
624 		if (ret > 0) {
625 			nr_pages -= ret;
626 			pages_done += ret;
627 			if (!nr_pages)
628 				break;
629 		}
630 		if (*locked) {
631 			/* VM_FAULT_RETRY didn't trigger */
632 			if (!pages_done)
633 				pages_done = ret;
634 			break;
635 		}
636 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
637 		pages += ret;
638 		start += ret << PAGE_SHIFT;
639 
640 		/*
641 		 * Repeat on the address that fired VM_FAULT_RETRY
642 		 * without FAULT_FLAG_ALLOW_RETRY but with
643 		 * FAULT_FLAG_TRIED.
644 		 */
645 		*locked = 1;
646 		lock_dropped = true;
647 		down_read(&mm->mmap_sem);
648 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
649 				       pages, NULL, NULL);
650 		if (ret != 1) {
651 			BUG_ON(ret > 1);
652 			if (!pages_done)
653 				pages_done = ret;
654 			break;
655 		}
656 		nr_pages--;
657 		pages_done++;
658 		if (!nr_pages)
659 			break;
660 		pages++;
661 		start += PAGE_SIZE;
662 	}
663 	if (notify_drop && lock_dropped && *locked) {
664 		/*
665 		 * We must let the caller know we temporarily dropped the lock
666 		 * and so the critical section protected by it was lost.
667 		 */
668 		up_read(&mm->mmap_sem);
669 		*locked = 0;
670 	}
671 	return pages_done;
672 }
673 
674 /*
675  * We can leverage the VM_FAULT_RETRY functionality in the page fault
676  * paths better by using either get_user_pages_locked() or
677  * get_user_pages_unlocked().
678  *
679  * get_user_pages_locked() is suitable to replace the form:
680  *
681  *      down_read(&mm->mmap_sem);
682  *      do_something()
683  *      get_user_pages(tsk, mm, ..., pages, NULL);
684  *      up_read(&mm->mmap_sem);
685  *
686  *  to:
687  *
688  *      int locked = 1;
689  *      down_read(&mm->mmap_sem);
690  *      do_something()
691  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
692  *      if (locked)
693  *          up_read(&mm->mmap_sem);
694  */
695 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
696 			   unsigned long start, unsigned long nr_pages,
697 			   int write, int force, struct page **pages,
698 			   int *locked)
699 {
700 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
701 				       pages, NULL, locked, true, FOLL_TOUCH);
702 }
703 EXPORT_SYMBOL(get_user_pages_locked);
704 
705 /*
706  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
707  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
708  *
709  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
710  * caller if required (just like with __get_user_pages). "FOLL_GET",
711  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
712  * according to the parameters "pages", "write", "force"
713  * respectively.
714  */
715 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
716 					       unsigned long start, unsigned long nr_pages,
717 					       int write, int force, struct page **pages,
718 					       unsigned int gup_flags)
719 {
720 	long ret;
721 	int locked = 1;
722 	down_read(&mm->mmap_sem);
723 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
724 				      pages, NULL, &locked, false, gup_flags);
725 	if (locked)
726 		up_read(&mm->mmap_sem);
727 	return ret;
728 }
729 EXPORT_SYMBOL(__get_user_pages_unlocked);
730 
731 /*
732  * get_user_pages_unlocked() is suitable to replace the form:
733  *
734  *      down_read(&mm->mmap_sem);
735  *      get_user_pages(tsk, mm, ..., pages, NULL);
736  *      up_read(&mm->mmap_sem);
737  *
738  *  with:
739  *
740  *      get_user_pages_unlocked(tsk, mm, ..., pages);
741  *
742  * It is functionally equivalent to get_user_pages_fast so
743  * get_user_pages_fast should be used instead, if the two parameters
744  * "tsk" and "mm" are respectively equal to current and current->mm,
745  * or if "force" shall be set to 1 (get_user_pages_fast misses the
746  * "force" parameter).
747  */
748 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
749 			     unsigned long start, unsigned long nr_pages,
750 			     int write, int force, struct page **pages)
751 {
752 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
753 					 force, pages, FOLL_TOUCH);
754 }
755 EXPORT_SYMBOL(get_user_pages_unlocked);
756 
757 /*
758  * get_user_pages() - pin user pages in memory
759  * @tsk:	the task_struct to use for page fault accounting, or
760  *		NULL if faults are not to be recorded.
761  * @mm:		mm_struct of target mm
762  * @start:	starting user address
763  * @nr_pages:	number of pages from start to pin
764  * @write:	whether pages will be written to by the caller
765  * @force:	whether to force access even when user mapping is currently
766  *		protected (but never forces write access to shared mapping).
767  * @pages:	array that receives pointers to the pages pinned.
768  *		Should be at least nr_pages long. Or NULL, if caller
769  *		only intends to ensure the pages are faulted in.
770  * @vmas:	array of pointers to vmas corresponding to each page.
771  *		Or NULL if the caller does not require them.
772  *
773  * Returns number of pages pinned. This may be fewer than the number
774  * requested. If nr_pages is 0 or negative, returns 0. If no pages
775  * were pinned, returns -errno. Each page returned must be released
776  * with a put_page() call when it is finished with. vmas will only
777  * remain valid while mmap_sem is held.
778  *
779  * Must be called with mmap_sem held for read or write.
780  *
781  * get_user_pages walks a process's page tables and takes a reference to
782  * each struct page that each user address corresponds to at a given
783  * instant. That is, it takes the page that would be accessed if a user
784  * thread accesses the given user virtual address at that instant.
785  *
786  * This does not guarantee that the page exists in the user mappings when
787  * get_user_pages returns, and there may even be a completely different
788  * page there in some cases (eg. if mmapped pagecache has been invalidated
789  * and subsequently re faulted). However it does guarantee that the page
790  * won't be freed completely. And mostly callers simply care that the page
791  * contains data that was valid *at some point in time*. Typically, an IO
792  * or similar operation cannot guarantee anything stronger anyway because
793  * locks can't be held over the syscall boundary.
794  *
795  * If write=0, the page must not be written to. If the page is written to,
796  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
797  * after the page is finished with, and before put_page is called.
798  *
799  * get_user_pages is typically used for fewer-copy IO operations, to get a
800  * handle on the memory by some means other than accesses via the user virtual
801  * addresses. The pages may be submitted for DMA to devices or accessed via
802  * their kernel linear mapping (via the kmap APIs). Care should be taken to
803  * use the correct cache flushing APIs.
804  *
805  * See also get_user_pages_fast, for performance critical applications.
806  *
807  * get_user_pages should be phased out in favor of
808  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
809  * should use get_user_pages because it cannot pass
810  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
811  */
812 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
813 		unsigned long start, unsigned long nr_pages, int write,
814 		int force, struct page **pages, struct vm_area_struct **vmas)
815 {
816 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
817 				       pages, vmas, NULL, false, FOLL_TOUCH);
818 }
819 EXPORT_SYMBOL(get_user_pages);
820 
821 /**
822  * populate_vma_page_range() -  populate a range of pages in the vma.
823  * @vma:   target vma
824  * @start: start address
825  * @end:   end address
826  * @nonblocking:
827  *
828  * This takes care of mlocking the pages too if VM_LOCKED is set.
829  *
830  * return 0 on success, negative error code on error.
831  *
832  * vma->vm_mm->mmap_sem must be held.
833  *
834  * If @nonblocking is NULL, it may be held for read or write and will
835  * be unperturbed.
836  *
837  * If @nonblocking is non-NULL, it must held for read only and may be
838  * released.  If it's released, *@nonblocking will be set to 0.
839  */
840 long populate_vma_page_range(struct vm_area_struct *vma,
841 		unsigned long start, unsigned long end, int *nonblocking)
842 {
843 	struct mm_struct *mm = vma->vm_mm;
844 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
845 	int gup_flags;
846 
847 	VM_BUG_ON(start & ~PAGE_MASK);
848 	VM_BUG_ON(end   & ~PAGE_MASK);
849 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
850 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
851 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
852 
853 	gup_flags = FOLL_TOUCH | FOLL_POPULATE;
854 	/*
855 	 * We want to touch writable mappings with a write fault in order
856 	 * to break COW, except for shared mappings because these don't COW
857 	 * and we would not want to dirty them for nothing.
858 	 */
859 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
860 		gup_flags |= FOLL_WRITE;
861 
862 	/*
863 	 * We want mlock to succeed for regions that have any permissions
864 	 * other than PROT_NONE.
865 	 */
866 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
867 		gup_flags |= FOLL_FORCE;
868 
869 	/*
870 	 * We made sure addr is within a VMA, so the following will
871 	 * not result in a stack expansion that recurses back here.
872 	 */
873 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
874 				NULL, NULL, nonblocking);
875 }
876 
877 /*
878  * __mm_populate - populate and/or mlock pages within a range of address space.
879  *
880  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
881  * flags. VMAs must be already marked with the desired vm_flags, and
882  * mmap_sem must not be held.
883  */
884 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
885 {
886 	struct mm_struct *mm = current->mm;
887 	unsigned long end, nstart, nend;
888 	struct vm_area_struct *vma = NULL;
889 	int locked = 0;
890 	long ret = 0;
891 
892 	VM_BUG_ON(start & ~PAGE_MASK);
893 	VM_BUG_ON(len != PAGE_ALIGN(len));
894 	end = start + len;
895 
896 	for (nstart = start; nstart < end; nstart = nend) {
897 		/*
898 		 * We want to fault in pages for [nstart; end) address range.
899 		 * Find first corresponding VMA.
900 		 */
901 		if (!locked) {
902 			locked = 1;
903 			down_read(&mm->mmap_sem);
904 			vma = find_vma(mm, nstart);
905 		} else if (nstart >= vma->vm_end)
906 			vma = vma->vm_next;
907 		if (!vma || vma->vm_start >= end)
908 			break;
909 		/*
910 		 * Set [nstart; nend) to intersection of desired address
911 		 * range with the first VMA. Also, skip undesirable VMA types.
912 		 */
913 		nend = min(end, vma->vm_end);
914 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
915 			continue;
916 		if (nstart < vma->vm_start)
917 			nstart = vma->vm_start;
918 		/*
919 		 * Now fault in a range of pages. populate_vma_page_range()
920 		 * double checks the vma flags, so that it won't mlock pages
921 		 * if the vma was already munlocked.
922 		 */
923 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
924 		if (ret < 0) {
925 			if (ignore_errors) {
926 				ret = 0;
927 				continue;	/* continue at next VMA */
928 			}
929 			break;
930 		}
931 		nend = nstart + ret * PAGE_SIZE;
932 		ret = 0;
933 	}
934 	if (locked)
935 		up_read(&mm->mmap_sem);
936 	return ret;	/* 0 or negative error code */
937 }
938 
939 /**
940  * get_dump_page() - pin user page in memory while writing it to core dump
941  * @addr: user address
942  *
943  * Returns struct page pointer of user page pinned for dump,
944  * to be freed afterwards by page_cache_release() or put_page().
945  *
946  * Returns NULL on any kind of failure - a hole must then be inserted into
947  * the corefile, to preserve alignment with its headers; and also returns
948  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
949  * allowing a hole to be left in the corefile to save diskspace.
950  *
951  * Called without mmap_sem, but after all other threads have been killed.
952  */
953 #ifdef CONFIG_ELF_CORE
954 struct page *get_dump_page(unsigned long addr)
955 {
956 	struct vm_area_struct *vma;
957 	struct page *page;
958 
959 	if (__get_user_pages(current, current->mm, addr, 1,
960 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
961 			     NULL) < 1)
962 		return NULL;
963 	flush_cache_page(vma, addr, page_to_pfn(page));
964 	return page;
965 }
966 #endif /* CONFIG_ELF_CORE */
967 
968 /*
969  * Generic RCU Fast GUP
970  *
971  * get_user_pages_fast attempts to pin user pages by walking the page
972  * tables directly and avoids taking locks. Thus the walker needs to be
973  * protected from page table pages being freed from under it, and should
974  * block any THP splits.
975  *
976  * One way to achieve this is to have the walker disable interrupts, and
977  * rely on IPIs from the TLB flushing code blocking before the page table
978  * pages are freed. This is unsuitable for architectures that do not need
979  * to broadcast an IPI when invalidating TLBs.
980  *
981  * Another way to achieve this is to batch up page table containing pages
982  * belonging to more than one mm_user, then rcu_sched a callback to free those
983  * pages. Disabling interrupts will allow the fast_gup walker to both block
984  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
985  * (which is a relatively rare event). The code below adopts this strategy.
986  *
987  * Before activating this code, please be aware that the following assumptions
988  * are currently made:
989  *
990  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
991  *      pages containing page tables.
992  *
993  *  *) THP splits will broadcast an IPI, this can be achieved by overriding
994  *      pmdp_splitting_flush.
995  *
996  *  *) ptes can be read atomically by the architecture.
997  *
998  *  *) access_ok is sufficient to validate userspace address ranges.
999  *
1000  * The last two assumptions can be relaxed by the addition of helper functions.
1001  *
1002  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1003  */
1004 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1005 
1006 #ifdef __HAVE_ARCH_PTE_SPECIAL
1007 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1008 			 int write, struct page **pages, int *nr)
1009 {
1010 	pte_t *ptep, *ptem;
1011 	int ret = 0;
1012 
1013 	ptem = ptep = pte_offset_map(&pmd, addr);
1014 	do {
1015 		/*
1016 		 * In the line below we are assuming that the pte can be read
1017 		 * atomically. If this is not the case for your architecture,
1018 		 * please wrap this in a helper function!
1019 		 *
1020 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1021 		 */
1022 		pte_t pte = READ_ONCE(*ptep);
1023 		struct page *page;
1024 
1025 		/*
1026 		 * Similar to the PMD case below, NUMA hinting must take slow
1027 		 * path using the pte_protnone check.
1028 		 */
1029 		if (!pte_present(pte) || pte_special(pte) ||
1030 			pte_protnone(pte) || (write && !pte_write(pte)))
1031 			goto pte_unmap;
1032 
1033 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1034 		page = pte_page(pte);
1035 
1036 		if (!page_cache_get_speculative(page))
1037 			goto pte_unmap;
1038 
1039 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1040 			put_page(page);
1041 			goto pte_unmap;
1042 		}
1043 
1044 		pages[*nr] = page;
1045 		(*nr)++;
1046 
1047 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1048 
1049 	ret = 1;
1050 
1051 pte_unmap:
1052 	pte_unmap(ptem);
1053 	return ret;
1054 }
1055 #else
1056 
1057 /*
1058  * If we can't determine whether or not a pte is special, then fail immediately
1059  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1060  * to be special.
1061  *
1062  * For a futex to be placed on a THP tail page, get_futex_key requires a
1063  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1064  * useful to have gup_huge_pmd even if we can't operate on ptes.
1065  */
1066 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1067 			 int write, struct page **pages, int *nr)
1068 {
1069 	return 0;
1070 }
1071 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1072 
1073 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1074 		unsigned long end, int write, struct page **pages, int *nr)
1075 {
1076 	struct page *head, *page, *tail;
1077 	int refs;
1078 
1079 	if (write && !pmd_write(orig))
1080 		return 0;
1081 
1082 	refs = 0;
1083 	head = pmd_page(orig);
1084 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1085 	tail = page;
1086 	do {
1087 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1088 		pages[*nr] = page;
1089 		(*nr)++;
1090 		page++;
1091 		refs++;
1092 	} while (addr += PAGE_SIZE, addr != end);
1093 
1094 	if (!page_cache_add_speculative(head, refs)) {
1095 		*nr -= refs;
1096 		return 0;
1097 	}
1098 
1099 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1100 		*nr -= refs;
1101 		while (refs--)
1102 			put_page(head);
1103 		return 0;
1104 	}
1105 
1106 	/*
1107 	 * Any tail pages need their mapcount reference taken before we
1108 	 * return. (This allows the THP code to bump their ref count when
1109 	 * they are split into base pages).
1110 	 */
1111 	while (refs--) {
1112 		if (PageTail(tail))
1113 			get_huge_page_tail(tail);
1114 		tail++;
1115 	}
1116 
1117 	return 1;
1118 }
1119 
1120 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1121 		unsigned long end, int write, struct page **pages, int *nr)
1122 {
1123 	struct page *head, *page, *tail;
1124 	int refs;
1125 
1126 	if (write && !pud_write(orig))
1127 		return 0;
1128 
1129 	refs = 0;
1130 	head = pud_page(orig);
1131 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1132 	tail = page;
1133 	do {
1134 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1135 		pages[*nr] = page;
1136 		(*nr)++;
1137 		page++;
1138 		refs++;
1139 	} while (addr += PAGE_SIZE, addr != end);
1140 
1141 	if (!page_cache_add_speculative(head, refs)) {
1142 		*nr -= refs;
1143 		return 0;
1144 	}
1145 
1146 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1147 		*nr -= refs;
1148 		while (refs--)
1149 			put_page(head);
1150 		return 0;
1151 	}
1152 
1153 	while (refs--) {
1154 		if (PageTail(tail))
1155 			get_huge_page_tail(tail);
1156 		tail++;
1157 	}
1158 
1159 	return 1;
1160 }
1161 
1162 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1163 			unsigned long end, int write,
1164 			struct page **pages, int *nr)
1165 {
1166 	int refs;
1167 	struct page *head, *page, *tail;
1168 
1169 	if (write && !pgd_write(orig))
1170 		return 0;
1171 
1172 	refs = 0;
1173 	head = pgd_page(orig);
1174 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1175 	tail = page;
1176 	do {
1177 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1178 		pages[*nr] = page;
1179 		(*nr)++;
1180 		page++;
1181 		refs++;
1182 	} while (addr += PAGE_SIZE, addr != end);
1183 
1184 	if (!page_cache_add_speculative(head, refs)) {
1185 		*nr -= refs;
1186 		return 0;
1187 	}
1188 
1189 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1190 		*nr -= refs;
1191 		while (refs--)
1192 			put_page(head);
1193 		return 0;
1194 	}
1195 
1196 	while (refs--) {
1197 		if (PageTail(tail))
1198 			get_huge_page_tail(tail);
1199 		tail++;
1200 	}
1201 
1202 	return 1;
1203 }
1204 
1205 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1206 		int write, struct page **pages, int *nr)
1207 {
1208 	unsigned long next;
1209 	pmd_t *pmdp;
1210 
1211 	pmdp = pmd_offset(&pud, addr);
1212 	do {
1213 		pmd_t pmd = READ_ONCE(*pmdp);
1214 
1215 		next = pmd_addr_end(addr, end);
1216 		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1217 			return 0;
1218 
1219 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1220 			/*
1221 			 * NUMA hinting faults need to be handled in the GUP
1222 			 * slowpath for accounting purposes and so that they
1223 			 * can be serialised against THP migration.
1224 			 */
1225 			if (pmd_protnone(pmd))
1226 				return 0;
1227 
1228 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1229 				pages, nr))
1230 				return 0;
1231 
1232 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1233 			/*
1234 			 * architecture have different format for hugetlbfs
1235 			 * pmd format and THP pmd format
1236 			 */
1237 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1238 					 PMD_SHIFT, next, write, pages, nr))
1239 				return 0;
1240 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1241 				return 0;
1242 	} while (pmdp++, addr = next, addr != end);
1243 
1244 	return 1;
1245 }
1246 
1247 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1248 			 int write, struct page **pages, int *nr)
1249 {
1250 	unsigned long next;
1251 	pud_t *pudp;
1252 
1253 	pudp = pud_offset(&pgd, addr);
1254 	do {
1255 		pud_t pud = READ_ONCE(*pudp);
1256 
1257 		next = pud_addr_end(addr, end);
1258 		if (pud_none(pud))
1259 			return 0;
1260 		if (unlikely(pud_huge(pud))) {
1261 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1262 					  pages, nr))
1263 				return 0;
1264 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1265 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1266 					 PUD_SHIFT, next, write, pages, nr))
1267 				return 0;
1268 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1269 			return 0;
1270 	} while (pudp++, addr = next, addr != end);
1271 
1272 	return 1;
1273 }
1274 
1275 /*
1276  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1277  * the regular GUP. It will only return non-negative values.
1278  */
1279 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1280 			  struct page **pages)
1281 {
1282 	struct mm_struct *mm = current->mm;
1283 	unsigned long addr, len, end;
1284 	unsigned long next, flags;
1285 	pgd_t *pgdp;
1286 	int nr = 0;
1287 
1288 	start &= PAGE_MASK;
1289 	addr = start;
1290 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1291 	end = start + len;
1292 
1293 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1294 					start, len)))
1295 		return 0;
1296 
1297 	/*
1298 	 * Disable interrupts.  We use the nested form as we can already have
1299 	 * interrupts disabled by get_futex_key.
1300 	 *
1301 	 * With interrupts disabled, we block page table pages from being
1302 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1303 	 * for more details.
1304 	 *
1305 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1306 	 * block IPIs that come from THPs splitting.
1307 	 */
1308 
1309 	local_irq_save(flags);
1310 	pgdp = pgd_offset(mm, addr);
1311 	do {
1312 		pgd_t pgd = READ_ONCE(*pgdp);
1313 
1314 		next = pgd_addr_end(addr, end);
1315 		if (pgd_none(pgd))
1316 			break;
1317 		if (unlikely(pgd_huge(pgd))) {
1318 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1319 					  pages, &nr))
1320 				break;
1321 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1322 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1323 					 PGDIR_SHIFT, next, write, pages, &nr))
1324 				break;
1325 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1326 			break;
1327 	} while (pgdp++, addr = next, addr != end);
1328 	local_irq_restore(flags);
1329 
1330 	return nr;
1331 }
1332 
1333 /**
1334  * get_user_pages_fast() - pin user pages in memory
1335  * @start:	starting user address
1336  * @nr_pages:	number of pages from start to pin
1337  * @write:	whether pages will be written to
1338  * @pages:	array that receives pointers to the pages pinned.
1339  *		Should be at least nr_pages long.
1340  *
1341  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1342  * If not successful, it will fall back to taking the lock and
1343  * calling get_user_pages().
1344  *
1345  * Returns number of pages pinned. This may be fewer than the number
1346  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1347  * were pinned, returns -errno.
1348  */
1349 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1350 			struct page **pages)
1351 {
1352 	struct mm_struct *mm = current->mm;
1353 	int nr, ret;
1354 
1355 	start &= PAGE_MASK;
1356 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1357 	ret = nr;
1358 
1359 	if (nr < nr_pages) {
1360 		/* Try to get the remaining pages with get_user_pages */
1361 		start += nr << PAGE_SHIFT;
1362 		pages += nr;
1363 
1364 		ret = get_user_pages_unlocked(current, mm, start,
1365 					      nr_pages - nr, write, 0, pages);
1366 
1367 		/* Have to be a bit careful with return values */
1368 		if (nr > 0) {
1369 			if (ret < 0)
1370 				ret = nr;
1371 			else
1372 				ret += nr;
1373 		}
1374 	}
1375 
1376 	return ret;
1377 }
1378 
1379 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1380