1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 12 #include <linux/sched.h> 13 #include <linux/rwsem.h> 14 #include <linux/hugetlb.h> 15 #include <asm/pgtable.h> 16 17 #include "internal.h" 18 19 static struct page *no_page_table(struct vm_area_struct *vma, 20 unsigned int flags) 21 { 22 /* 23 * When core dumping an enormous anonymous area that nobody 24 * has touched so far, we don't want to allocate unnecessary pages or 25 * page tables. Return error instead of NULL to skip handle_mm_fault, 26 * then get_dump_page() will return NULL to leave a hole in the dump. 27 * But we can only make this optimization where a hole would surely 28 * be zero-filled if handle_mm_fault() actually did handle it. 29 */ 30 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 31 return ERR_PTR(-EFAULT); 32 return NULL; 33 } 34 35 static struct page *follow_page_pte(struct vm_area_struct *vma, 36 unsigned long address, pmd_t *pmd, unsigned int flags) 37 { 38 struct mm_struct *mm = vma->vm_mm; 39 struct page *page; 40 spinlock_t *ptl; 41 pte_t *ptep, pte; 42 43 retry: 44 if (unlikely(pmd_bad(*pmd))) 45 return no_page_table(vma, flags); 46 47 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 48 pte = *ptep; 49 if (!pte_present(pte)) { 50 swp_entry_t entry; 51 /* 52 * KSM's break_ksm() relies upon recognizing a ksm page 53 * even while it is being migrated, so for that case we 54 * need migration_entry_wait(). 55 */ 56 if (likely(!(flags & FOLL_MIGRATION))) 57 goto no_page; 58 if (pte_none(pte)) 59 goto no_page; 60 entry = pte_to_swp_entry(pte); 61 if (!is_migration_entry(entry)) 62 goto no_page; 63 pte_unmap_unlock(ptep, ptl); 64 migration_entry_wait(mm, pmd, address); 65 goto retry; 66 } 67 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 68 goto no_page; 69 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 70 pte_unmap_unlock(ptep, ptl); 71 return NULL; 72 } 73 74 page = vm_normal_page(vma, address, pte); 75 if (unlikely(!page)) { 76 if ((flags & FOLL_DUMP) || 77 !is_zero_pfn(pte_pfn(pte))) 78 goto bad_page; 79 page = pte_page(pte); 80 } 81 82 if (flags & FOLL_GET) 83 get_page_foll(page); 84 if (flags & FOLL_TOUCH) { 85 if ((flags & FOLL_WRITE) && 86 !pte_dirty(pte) && !PageDirty(page)) 87 set_page_dirty(page); 88 /* 89 * pte_mkyoung() would be more correct here, but atomic care 90 * is needed to avoid losing the dirty bit: it is easier to use 91 * mark_page_accessed(). 92 */ 93 mark_page_accessed(page); 94 } 95 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) { 96 /* 97 * The preliminary mapping check is mainly to avoid the 98 * pointless overhead of lock_page on the ZERO_PAGE 99 * which might bounce very badly if there is contention. 100 * 101 * If the page is already locked, we don't need to 102 * handle it now - vmscan will handle it later if and 103 * when it attempts to reclaim the page. 104 */ 105 if (page->mapping && trylock_page(page)) { 106 lru_add_drain(); /* push cached pages to LRU */ 107 /* 108 * Because we lock page here, and migration is 109 * blocked by the pte's page reference, and we 110 * know the page is still mapped, we don't even 111 * need to check for file-cache page truncation. 112 */ 113 mlock_vma_page(page); 114 unlock_page(page); 115 } 116 } 117 pte_unmap_unlock(ptep, ptl); 118 return page; 119 bad_page: 120 pte_unmap_unlock(ptep, ptl); 121 return ERR_PTR(-EFAULT); 122 123 no_page: 124 pte_unmap_unlock(ptep, ptl); 125 if (!pte_none(pte)) 126 return NULL; 127 return no_page_table(vma, flags); 128 } 129 130 /** 131 * follow_page_mask - look up a page descriptor from a user-virtual address 132 * @vma: vm_area_struct mapping @address 133 * @address: virtual address to look up 134 * @flags: flags modifying lookup behaviour 135 * @page_mask: on output, *page_mask is set according to the size of the page 136 * 137 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 138 * 139 * Returns the mapped (struct page *), %NULL if no mapping exists, or 140 * an error pointer if there is a mapping to something not represented 141 * by a page descriptor (see also vm_normal_page()). 142 */ 143 struct page *follow_page_mask(struct vm_area_struct *vma, 144 unsigned long address, unsigned int flags, 145 unsigned int *page_mask) 146 { 147 pgd_t *pgd; 148 pud_t *pud; 149 pmd_t *pmd; 150 spinlock_t *ptl; 151 struct page *page; 152 struct mm_struct *mm = vma->vm_mm; 153 154 *page_mask = 0; 155 156 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 157 if (!IS_ERR(page)) { 158 BUG_ON(flags & FOLL_GET); 159 return page; 160 } 161 162 pgd = pgd_offset(mm, address); 163 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 164 return no_page_table(vma, flags); 165 166 pud = pud_offset(pgd, address); 167 if (pud_none(*pud)) 168 return no_page_table(vma, flags); 169 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 170 page = follow_huge_pud(mm, address, pud, flags); 171 if (page) 172 return page; 173 return no_page_table(vma, flags); 174 } 175 if (unlikely(pud_bad(*pud))) 176 return no_page_table(vma, flags); 177 178 pmd = pmd_offset(pud, address); 179 if (pmd_none(*pmd)) 180 return no_page_table(vma, flags); 181 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 182 page = follow_huge_pmd(mm, address, pmd, flags); 183 if (page) 184 return page; 185 return no_page_table(vma, flags); 186 } 187 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 188 return no_page_table(vma, flags); 189 if (pmd_trans_huge(*pmd)) { 190 if (flags & FOLL_SPLIT) { 191 split_huge_page_pmd(vma, address, pmd); 192 return follow_page_pte(vma, address, pmd, flags); 193 } 194 ptl = pmd_lock(mm, pmd); 195 if (likely(pmd_trans_huge(*pmd))) { 196 if (unlikely(pmd_trans_splitting(*pmd))) { 197 spin_unlock(ptl); 198 wait_split_huge_page(vma->anon_vma, pmd); 199 } else { 200 page = follow_trans_huge_pmd(vma, address, 201 pmd, flags); 202 spin_unlock(ptl); 203 *page_mask = HPAGE_PMD_NR - 1; 204 return page; 205 } 206 } else 207 spin_unlock(ptl); 208 } 209 return follow_page_pte(vma, address, pmd, flags); 210 } 211 212 static int get_gate_page(struct mm_struct *mm, unsigned long address, 213 unsigned int gup_flags, struct vm_area_struct **vma, 214 struct page **page) 215 { 216 pgd_t *pgd; 217 pud_t *pud; 218 pmd_t *pmd; 219 pte_t *pte; 220 int ret = -EFAULT; 221 222 /* user gate pages are read-only */ 223 if (gup_flags & FOLL_WRITE) 224 return -EFAULT; 225 if (address > TASK_SIZE) 226 pgd = pgd_offset_k(address); 227 else 228 pgd = pgd_offset_gate(mm, address); 229 BUG_ON(pgd_none(*pgd)); 230 pud = pud_offset(pgd, address); 231 BUG_ON(pud_none(*pud)); 232 pmd = pmd_offset(pud, address); 233 if (pmd_none(*pmd)) 234 return -EFAULT; 235 VM_BUG_ON(pmd_trans_huge(*pmd)); 236 pte = pte_offset_map(pmd, address); 237 if (pte_none(*pte)) 238 goto unmap; 239 *vma = get_gate_vma(mm); 240 if (!page) 241 goto out; 242 *page = vm_normal_page(*vma, address, *pte); 243 if (!*page) { 244 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 245 goto unmap; 246 *page = pte_page(*pte); 247 } 248 get_page(*page); 249 out: 250 ret = 0; 251 unmap: 252 pte_unmap(pte); 253 return ret; 254 } 255 256 /* 257 * mmap_sem must be held on entry. If @nonblocking != NULL and 258 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 259 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 260 */ 261 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 262 unsigned long address, unsigned int *flags, int *nonblocking) 263 { 264 struct mm_struct *mm = vma->vm_mm; 265 unsigned int fault_flags = 0; 266 int ret; 267 268 /* For mm_populate(), just skip the stack guard page. */ 269 if ((*flags & FOLL_POPULATE) && 270 (stack_guard_page_start(vma, address) || 271 stack_guard_page_end(vma, address + PAGE_SIZE))) 272 return -ENOENT; 273 if (*flags & FOLL_WRITE) 274 fault_flags |= FAULT_FLAG_WRITE; 275 if (nonblocking) 276 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 277 if (*flags & FOLL_NOWAIT) 278 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 279 if (*flags & FOLL_TRIED) { 280 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 281 fault_flags |= FAULT_FLAG_TRIED; 282 } 283 284 ret = handle_mm_fault(mm, vma, address, fault_flags); 285 if (ret & VM_FAULT_ERROR) { 286 if (ret & VM_FAULT_OOM) 287 return -ENOMEM; 288 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 289 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 290 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 291 return -EFAULT; 292 BUG(); 293 } 294 295 if (tsk) { 296 if (ret & VM_FAULT_MAJOR) 297 tsk->maj_flt++; 298 else 299 tsk->min_flt++; 300 } 301 302 if (ret & VM_FAULT_RETRY) { 303 if (nonblocking) 304 *nonblocking = 0; 305 return -EBUSY; 306 } 307 308 /* 309 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 310 * necessary, even if maybe_mkwrite decided not to set pte_write. We 311 * can thus safely do subsequent page lookups as if they were reads. 312 * But only do so when looping for pte_write is futile: in some cases 313 * userspace may also be wanting to write to the gotten user page, 314 * which a read fault here might prevent (a readonly page might get 315 * reCOWed by userspace write). 316 */ 317 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 318 *flags &= ~FOLL_WRITE; 319 return 0; 320 } 321 322 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 323 { 324 vm_flags_t vm_flags = vma->vm_flags; 325 326 if (vm_flags & (VM_IO | VM_PFNMAP)) 327 return -EFAULT; 328 329 if (gup_flags & FOLL_WRITE) { 330 if (!(vm_flags & VM_WRITE)) { 331 if (!(gup_flags & FOLL_FORCE)) 332 return -EFAULT; 333 /* 334 * We used to let the write,force case do COW in a 335 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 336 * set a breakpoint in a read-only mapping of an 337 * executable, without corrupting the file (yet only 338 * when that file had been opened for writing!). 339 * Anon pages in shared mappings are surprising: now 340 * just reject it. 341 */ 342 if (!is_cow_mapping(vm_flags)) { 343 WARN_ON_ONCE(vm_flags & VM_MAYWRITE); 344 return -EFAULT; 345 } 346 } 347 } else if (!(vm_flags & VM_READ)) { 348 if (!(gup_flags & FOLL_FORCE)) 349 return -EFAULT; 350 /* 351 * Is there actually any vma we can reach here which does not 352 * have VM_MAYREAD set? 353 */ 354 if (!(vm_flags & VM_MAYREAD)) 355 return -EFAULT; 356 } 357 return 0; 358 } 359 360 /** 361 * __get_user_pages() - pin user pages in memory 362 * @tsk: task_struct of target task 363 * @mm: mm_struct of target mm 364 * @start: starting user address 365 * @nr_pages: number of pages from start to pin 366 * @gup_flags: flags modifying pin behaviour 367 * @pages: array that receives pointers to the pages pinned. 368 * Should be at least nr_pages long. Or NULL, if caller 369 * only intends to ensure the pages are faulted in. 370 * @vmas: array of pointers to vmas corresponding to each page. 371 * Or NULL if the caller does not require them. 372 * @nonblocking: whether waiting for disk IO or mmap_sem contention 373 * 374 * Returns number of pages pinned. This may be fewer than the number 375 * requested. If nr_pages is 0 or negative, returns 0. If no pages 376 * were pinned, returns -errno. Each page returned must be released 377 * with a put_page() call when it is finished with. vmas will only 378 * remain valid while mmap_sem is held. 379 * 380 * Must be called with mmap_sem held. It may be released. See below. 381 * 382 * __get_user_pages walks a process's page tables and takes a reference to 383 * each struct page that each user address corresponds to at a given 384 * instant. That is, it takes the page that would be accessed if a user 385 * thread accesses the given user virtual address at that instant. 386 * 387 * This does not guarantee that the page exists in the user mappings when 388 * __get_user_pages returns, and there may even be a completely different 389 * page there in some cases (eg. if mmapped pagecache has been invalidated 390 * and subsequently re faulted). However it does guarantee that the page 391 * won't be freed completely. And mostly callers simply care that the page 392 * contains data that was valid *at some point in time*. Typically, an IO 393 * or similar operation cannot guarantee anything stronger anyway because 394 * locks can't be held over the syscall boundary. 395 * 396 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 397 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 398 * appropriate) must be called after the page is finished with, and 399 * before put_page is called. 400 * 401 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 402 * or mmap_sem contention, and if waiting is needed to pin all pages, 403 * *@nonblocking will be set to 0. Further, if @gup_flags does not 404 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 405 * this case. 406 * 407 * A caller using such a combination of @nonblocking and @gup_flags 408 * must therefore hold the mmap_sem for reading only, and recognize 409 * when it's been released. Otherwise, it must be held for either 410 * reading or writing and will not be released. 411 * 412 * In most cases, get_user_pages or get_user_pages_fast should be used 413 * instead of __get_user_pages. __get_user_pages should be used only if 414 * you need some special @gup_flags. 415 */ 416 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 417 unsigned long start, unsigned long nr_pages, 418 unsigned int gup_flags, struct page **pages, 419 struct vm_area_struct **vmas, int *nonblocking) 420 { 421 long i = 0; 422 unsigned int page_mask; 423 struct vm_area_struct *vma = NULL; 424 425 if (!nr_pages) 426 return 0; 427 428 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 429 430 /* 431 * If FOLL_FORCE is set then do not force a full fault as the hinting 432 * fault information is unrelated to the reference behaviour of a task 433 * using the address space 434 */ 435 if (!(gup_flags & FOLL_FORCE)) 436 gup_flags |= FOLL_NUMA; 437 438 do { 439 struct page *page; 440 unsigned int foll_flags = gup_flags; 441 unsigned int page_increm; 442 443 /* first iteration or cross vma bound */ 444 if (!vma || start >= vma->vm_end) { 445 vma = find_extend_vma(mm, start); 446 if (!vma && in_gate_area(mm, start)) { 447 int ret; 448 ret = get_gate_page(mm, start & PAGE_MASK, 449 gup_flags, &vma, 450 pages ? &pages[i] : NULL); 451 if (ret) 452 return i ? : ret; 453 page_mask = 0; 454 goto next_page; 455 } 456 457 if (!vma || check_vma_flags(vma, gup_flags)) 458 return i ? : -EFAULT; 459 if (is_vm_hugetlb_page(vma)) { 460 i = follow_hugetlb_page(mm, vma, pages, vmas, 461 &start, &nr_pages, i, 462 gup_flags); 463 continue; 464 } 465 } 466 retry: 467 /* 468 * If we have a pending SIGKILL, don't keep faulting pages and 469 * potentially allocating memory. 470 */ 471 if (unlikely(fatal_signal_pending(current))) 472 return i ? i : -ERESTARTSYS; 473 cond_resched(); 474 page = follow_page_mask(vma, start, foll_flags, &page_mask); 475 if (!page) { 476 int ret; 477 ret = faultin_page(tsk, vma, start, &foll_flags, 478 nonblocking); 479 switch (ret) { 480 case 0: 481 goto retry; 482 case -EFAULT: 483 case -ENOMEM: 484 case -EHWPOISON: 485 return i ? i : ret; 486 case -EBUSY: 487 return i; 488 case -ENOENT: 489 goto next_page; 490 } 491 BUG(); 492 } 493 if (IS_ERR(page)) 494 return i ? i : PTR_ERR(page); 495 if (pages) { 496 pages[i] = page; 497 flush_anon_page(vma, page, start); 498 flush_dcache_page(page); 499 page_mask = 0; 500 } 501 next_page: 502 if (vmas) { 503 vmas[i] = vma; 504 page_mask = 0; 505 } 506 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 507 if (page_increm > nr_pages) 508 page_increm = nr_pages; 509 i += page_increm; 510 start += page_increm * PAGE_SIZE; 511 nr_pages -= page_increm; 512 } while (nr_pages); 513 return i; 514 } 515 EXPORT_SYMBOL(__get_user_pages); 516 517 /* 518 * fixup_user_fault() - manually resolve a user page fault 519 * @tsk: the task_struct to use for page fault accounting, or 520 * NULL if faults are not to be recorded. 521 * @mm: mm_struct of target mm 522 * @address: user address 523 * @fault_flags:flags to pass down to handle_mm_fault() 524 * 525 * This is meant to be called in the specific scenario where for locking reasons 526 * we try to access user memory in atomic context (within a pagefault_disable() 527 * section), this returns -EFAULT, and we want to resolve the user fault before 528 * trying again. 529 * 530 * Typically this is meant to be used by the futex code. 531 * 532 * The main difference with get_user_pages() is that this function will 533 * unconditionally call handle_mm_fault() which will in turn perform all the 534 * necessary SW fixup of the dirty and young bits in the PTE, while 535 * handle_mm_fault() only guarantees to update these in the struct page. 536 * 537 * This is important for some architectures where those bits also gate the 538 * access permission to the page because they are maintained in software. On 539 * such architectures, gup() will not be enough to make a subsequent access 540 * succeed. 541 * 542 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault(). 543 */ 544 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 545 unsigned long address, unsigned int fault_flags) 546 { 547 struct vm_area_struct *vma; 548 vm_flags_t vm_flags; 549 int ret; 550 551 vma = find_extend_vma(mm, address); 552 if (!vma || address < vma->vm_start) 553 return -EFAULT; 554 555 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; 556 if (!(vm_flags & vma->vm_flags)) 557 return -EFAULT; 558 559 ret = handle_mm_fault(mm, vma, address, fault_flags); 560 if (ret & VM_FAULT_ERROR) { 561 if (ret & VM_FAULT_OOM) 562 return -ENOMEM; 563 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 564 return -EHWPOISON; 565 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 566 return -EFAULT; 567 BUG(); 568 } 569 if (tsk) { 570 if (ret & VM_FAULT_MAJOR) 571 tsk->maj_flt++; 572 else 573 tsk->min_flt++; 574 } 575 return 0; 576 } 577 578 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 579 struct mm_struct *mm, 580 unsigned long start, 581 unsigned long nr_pages, 582 int write, int force, 583 struct page **pages, 584 struct vm_area_struct **vmas, 585 int *locked, bool notify_drop, 586 unsigned int flags) 587 { 588 long ret, pages_done; 589 bool lock_dropped; 590 591 if (locked) { 592 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 593 BUG_ON(vmas); 594 /* check caller initialized locked */ 595 BUG_ON(*locked != 1); 596 } 597 598 if (pages) 599 flags |= FOLL_GET; 600 if (write) 601 flags |= FOLL_WRITE; 602 if (force) 603 flags |= FOLL_FORCE; 604 605 pages_done = 0; 606 lock_dropped = false; 607 for (;;) { 608 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 609 vmas, locked); 610 if (!locked) 611 /* VM_FAULT_RETRY couldn't trigger, bypass */ 612 return ret; 613 614 /* VM_FAULT_RETRY cannot return errors */ 615 if (!*locked) { 616 BUG_ON(ret < 0); 617 BUG_ON(ret >= nr_pages); 618 } 619 620 if (!pages) 621 /* If it's a prefault don't insist harder */ 622 return ret; 623 624 if (ret > 0) { 625 nr_pages -= ret; 626 pages_done += ret; 627 if (!nr_pages) 628 break; 629 } 630 if (*locked) { 631 /* VM_FAULT_RETRY didn't trigger */ 632 if (!pages_done) 633 pages_done = ret; 634 break; 635 } 636 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 637 pages += ret; 638 start += ret << PAGE_SHIFT; 639 640 /* 641 * Repeat on the address that fired VM_FAULT_RETRY 642 * without FAULT_FLAG_ALLOW_RETRY but with 643 * FAULT_FLAG_TRIED. 644 */ 645 *locked = 1; 646 lock_dropped = true; 647 down_read(&mm->mmap_sem); 648 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 649 pages, NULL, NULL); 650 if (ret != 1) { 651 BUG_ON(ret > 1); 652 if (!pages_done) 653 pages_done = ret; 654 break; 655 } 656 nr_pages--; 657 pages_done++; 658 if (!nr_pages) 659 break; 660 pages++; 661 start += PAGE_SIZE; 662 } 663 if (notify_drop && lock_dropped && *locked) { 664 /* 665 * We must let the caller know we temporarily dropped the lock 666 * and so the critical section protected by it was lost. 667 */ 668 up_read(&mm->mmap_sem); 669 *locked = 0; 670 } 671 return pages_done; 672 } 673 674 /* 675 * We can leverage the VM_FAULT_RETRY functionality in the page fault 676 * paths better by using either get_user_pages_locked() or 677 * get_user_pages_unlocked(). 678 * 679 * get_user_pages_locked() is suitable to replace the form: 680 * 681 * down_read(&mm->mmap_sem); 682 * do_something() 683 * get_user_pages(tsk, mm, ..., pages, NULL); 684 * up_read(&mm->mmap_sem); 685 * 686 * to: 687 * 688 * int locked = 1; 689 * down_read(&mm->mmap_sem); 690 * do_something() 691 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 692 * if (locked) 693 * up_read(&mm->mmap_sem); 694 */ 695 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 696 unsigned long start, unsigned long nr_pages, 697 int write, int force, struct page **pages, 698 int *locked) 699 { 700 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 701 pages, NULL, locked, true, FOLL_TOUCH); 702 } 703 EXPORT_SYMBOL(get_user_pages_locked); 704 705 /* 706 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to 707 * pass additional gup_flags as last parameter (like FOLL_HWPOISON). 708 * 709 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 710 * caller if required (just like with __get_user_pages). "FOLL_GET", 711 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed 712 * according to the parameters "pages", "write", "force" 713 * respectively. 714 */ 715 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 716 unsigned long start, unsigned long nr_pages, 717 int write, int force, struct page **pages, 718 unsigned int gup_flags) 719 { 720 long ret; 721 int locked = 1; 722 down_read(&mm->mmap_sem); 723 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 724 pages, NULL, &locked, false, gup_flags); 725 if (locked) 726 up_read(&mm->mmap_sem); 727 return ret; 728 } 729 EXPORT_SYMBOL(__get_user_pages_unlocked); 730 731 /* 732 * get_user_pages_unlocked() is suitable to replace the form: 733 * 734 * down_read(&mm->mmap_sem); 735 * get_user_pages(tsk, mm, ..., pages, NULL); 736 * up_read(&mm->mmap_sem); 737 * 738 * with: 739 * 740 * get_user_pages_unlocked(tsk, mm, ..., pages); 741 * 742 * It is functionally equivalent to get_user_pages_fast so 743 * get_user_pages_fast should be used instead, if the two parameters 744 * "tsk" and "mm" are respectively equal to current and current->mm, 745 * or if "force" shall be set to 1 (get_user_pages_fast misses the 746 * "force" parameter). 747 */ 748 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 749 unsigned long start, unsigned long nr_pages, 750 int write, int force, struct page **pages) 751 { 752 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write, 753 force, pages, FOLL_TOUCH); 754 } 755 EXPORT_SYMBOL(get_user_pages_unlocked); 756 757 /* 758 * get_user_pages() - pin user pages in memory 759 * @tsk: the task_struct to use for page fault accounting, or 760 * NULL if faults are not to be recorded. 761 * @mm: mm_struct of target mm 762 * @start: starting user address 763 * @nr_pages: number of pages from start to pin 764 * @write: whether pages will be written to by the caller 765 * @force: whether to force access even when user mapping is currently 766 * protected (but never forces write access to shared mapping). 767 * @pages: array that receives pointers to the pages pinned. 768 * Should be at least nr_pages long. Or NULL, if caller 769 * only intends to ensure the pages are faulted in. 770 * @vmas: array of pointers to vmas corresponding to each page. 771 * Or NULL if the caller does not require them. 772 * 773 * Returns number of pages pinned. This may be fewer than the number 774 * requested. If nr_pages is 0 or negative, returns 0. If no pages 775 * were pinned, returns -errno. Each page returned must be released 776 * with a put_page() call when it is finished with. vmas will only 777 * remain valid while mmap_sem is held. 778 * 779 * Must be called with mmap_sem held for read or write. 780 * 781 * get_user_pages walks a process's page tables and takes a reference to 782 * each struct page that each user address corresponds to at a given 783 * instant. That is, it takes the page that would be accessed if a user 784 * thread accesses the given user virtual address at that instant. 785 * 786 * This does not guarantee that the page exists in the user mappings when 787 * get_user_pages returns, and there may even be a completely different 788 * page there in some cases (eg. if mmapped pagecache has been invalidated 789 * and subsequently re faulted). However it does guarantee that the page 790 * won't be freed completely. And mostly callers simply care that the page 791 * contains data that was valid *at some point in time*. Typically, an IO 792 * or similar operation cannot guarantee anything stronger anyway because 793 * locks can't be held over the syscall boundary. 794 * 795 * If write=0, the page must not be written to. If the page is written to, 796 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 797 * after the page is finished with, and before put_page is called. 798 * 799 * get_user_pages is typically used for fewer-copy IO operations, to get a 800 * handle on the memory by some means other than accesses via the user virtual 801 * addresses. The pages may be submitted for DMA to devices or accessed via 802 * their kernel linear mapping (via the kmap APIs). Care should be taken to 803 * use the correct cache flushing APIs. 804 * 805 * See also get_user_pages_fast, for performance critical applications. 806 * 807 * get_user_pages should be phased out in favor of 808 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 809 * should use get_user_pages because it cannot pass 810 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 811 */ 812 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 813 unsigned long start, unsigned long nr_pages, int write, 814 int force, struct page **pages, struct vm_area_struct **vmas) 815 { 816 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 817 pages, vmas, NULL, false, FOLL_TOUCH); 818 } 819 EXPORT_SYMBOL(get_user_pages); 820 821 /** 822 * populate_vma_page_range() - populate a range of pages in the vma. 823 * @vma: target vma 824 * @start: start address 825 * @end: end address 826 * @nonblocking: 827 * 828 * This takes care of mlocking the pages too if VM_LOCKED is set. 829 * 830 * return 0 on success, negative error code on error. 831 * 832 * vma->vm_mm->mmap_sem must be held. 833 * 834 * If @nonblocking is NULL, it may be held for read or write and will 835 * be unperturbed. 836 * 837 * If @nonblocking is non-NULL, it must held for read only and may be 838 * released. If it's released, *@nonblocking will be set to 0. 839 */ 840 long populate_vma_page_range(struct vm_area_struct *vma, 841 unsigned long start, unsigned long end, int *nonblocking) 842 { 843 struct mm_struct *mm = vma->vm_mm; 844 unsigned long nr_pages = (end - start) / PAGE_SIZE; 845 int gup_flags; 846 847 VM_BUG_ON(start & ~PAGE_MASK); 848 VM_BUG_ON(end & ~PAGE_MASK); 849 VM_BUG_ON_VMA(start < vma->vm_start, vma); 850 VM_BUG_ON_VMA(end > vma->vm_end, vma); 851 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 852 853 gup_flags = FOLL_TOUCH | FOLL_POPULATE; 854 /* 855 * We want to touch writable mappings with a write fault in order 856 * to break COW, except for shared mappings because these don't COW 857 * and we would not want to dirty them for nothing. 858 */ 859 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 860 gup_flags |= FOLL_WRITE; 861 862 /* 863 * We want mlock to succeed for regions that have any permissions 864 * other than PROT_NONE. 865 */ 866 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 867 gup_flags |= FOLL_FORCE; 868 869 /* 870 * We made sure addr is within a VMA, so the following will 871 * not result in a stack expansion that recurses back here. 872 */ 873 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 874 NULL, NULL, nonblocking); 875 } 876 877 /* 878 * __mm_populate - populate and/or mlock pages within a range of address space. 879 * 880 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 881 * flags. VMAs must be already marked with the desired vm_flags, and 882 * mmap_sem must not be held. 883 */ 884 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 885 { 886 struct mm_struct *mm = current->mm; 887 unsigned long end, nstart, nend; 888 struct vm_area_struct *vma = NULL; 889 int locked = 0; 890 long ret = 0; 891 892 VM_BUG_ON(start & ~PAGE_MASK); 893 VM_BUG_ON(len != PAGE_ALIGN(len)); 894 end = start + len; 895 896 for (nstart = start; nstart < end; nstart = nend) { 897 /* 898 * We want to fault in pages for [nstart; end) address range. 899 * Find first corresponding VMA. 900 */ 901 if (!locked) { 902 locked = 1; 903 down_read(&mm->mmap_sem); 904 vma = find_vma(mm, nstart); 905 } else if (nstart >= vma->vm_end) 906 vma = vma->vm_next; 907 if (!vma || vma->vm_start >= end) 908 break; 909 /* 910 * Set [nstart; nend) to intersection of desired address 911 * range with the first VMA. Also, skip undesirable VMA types. 912 */ 913 nend = min(end, vma->vm_end); 914 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 915 continue; 916 if (nstart < vma->vm_start) 917 nstart = vma->vm_start; 918 /* 919 * Now fault in a range of pages. populate_vma_page_range() 920 * double checks the vma flags, so that it won't mlock pages 921 * if the vma was already munlocked. 922 */ 923 ret = populate_vma_page_range(vma, nstart, nend, &locked); 924 if (ret < 0) { 925 if (ignore_errors) { 926 ret = 0; 927 continue; /* continue at next VMA */ 928 } 929 break; 930 } 931 nend = nstart + ret * PAGE_SIZE; 932 ret = 0; 933 } 934 if (locked) 935 up_read(&mm->mmap_sem); 936 return ret; /* 0 or negative error code */ 937 } 938 939 /** 940 * get_dump_page() - pin user page in memory while writing it to core dump 941 * @addr: user address 942 * 943 * Returns struct page pointer of user page pinned for dump, 944 * to be freed afterwards by page_cache_release() or put_page(). 945 * 946 * Returns NULL on any kind of failure - a hole must then be inserted into 947 * the corefile, to preserve alignment with its headers; and also returns 948 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 949 * allowing a hole to be left in the corefile to save diskspace. 950 * 951 * Called without mmap_sem, but after all other threads have been killed. 952 */ 953 #ifdef CONFIG_ELF_CORE 954 struct page *get_dump_page(unsigned long addr) 955 { 956 struct vm_area_struct *vma; 957 struct page *page; 958 959 if (__get_user_pages(current, current->mm, addr, 1, 960 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 961 NULL) < 1) 962 return NULL; 963 flush_cache_page(vma, addr, page_to_pfn(page)); 964 return page; 965 } 966 #endif /* CONFIG_ELF_CORE */ 967 968 /* 969 * Generic RCU Fast GUP 970 * 971 * get_user_pages_fast attempts to pin user pages by walking the page 972 * tables directly and avoids taking locks. Thus the walker needs to be 973 * protected from page table pages being freed from under it, and should 974 * block any THP splits. 975 * 976 * One way to achieve this is to have the walker disable interrupts, and 977 * rely on IPIs from the TLB flushing code blocking before the page table 978 * pages are freed. This is unsuitable for architectures that do not need 979 * to broadcast an IPI when invalidating TLBs. 980 * 981 * Another way to achieve this is to batch up page table containing pages 982 * belonging to more than one mm_user, then rcu_sched a callback to free those 983 * pages. Disabling interrupts will allow the fast_gup walker to both block 984 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 985 * (which is a relatively rare event). The code below adopts this strategy. 986 * 987 * Before activating this code, please be aware that the following assumptions 988 * are currently made: 989 * 990 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 991 * pages containing page tables. 992 * 993 * *) THP splits will broadcast an IPI, this can be achieved by overriding 994 * pmdp_splitting_flush. 995 * 996 * *) ptes can be read atomically by the architecture. 997 * 998 * *) access_ok is sufficient to validate userspace address ranges. 999 * 1000 * The last two assumptions can be relaxed by the addition of helper functions. 1001 * 1002 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1003 */ 1004 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1005 1006 #ifdef __HAVE_ARCH_PTE_SPECIAL 1007 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1008 int write, struct page **pages, int *nr) 1009 { 1010 pte_t *ptep, *ptem; 1011 int ret = 0; 1012 1013 ptem = ptep = pte_offset_map(&pmd, addr); 1014 do { 1015 /* 1016 * In the line below we are assuming that the pte can be read 1017 * atomically. If this is not the case for your architecture, 1018 * please wrap this in a helper function! 1019 * 1020 * for an example see gup_get_pte in arch/x86/mm/gup.c 1021 */ 1022 pte_t pte = READ_ONCE(*ptep); 1023 struct page *page; 1024 1025 /* 1026 * Similar to the PMD case below, NUMA hinting must take slow 1027 * path using the pte_protnone check. 1028 */ 1029 if (!pte_present(pte) || pte_special(pte) || 1030 pte_protnone(pte) || (write && !pte_write(pte))) 1031 goto pte_unmap; 1032 1033 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1034 page = pte_page(pte); 1035 1036 if (!page_cache_get_speculative(page)) 1037 goto pte_unmap; 1038 1039 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1040 put_page(page); 1041 goto pte_unmap; 1042 } 1043 1044 pages[*nr] = page; 1045 (*nr)++; 1046 1047 } while (ptep++, addr += PAGE_SIZE, addr != end); 1048 1049 ret = 1; 1050 1051 pte_unmap: 1052 pte_unmap(ptem); 1053 return ret; 1054 } 1055 #else 1056 1057 /* 1058 * If we can't determine whether or not a pte is special, then fail immediately 1059 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1060 * to be special. 1061 * 1062 * For a futex to be placed on a THP tail page, get_futex_key requires a 1063 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1064 * useful to have gup_huge_pmd even if we can't operate on ptes. 1065 */ 1066 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1067 int write, struct page **pages, int *nr) 1068 { 1069 return 0; 1070 } 1071 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1072 1073 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1074 unsigned long end, int write, struct page **pages, int *nr) 1075 { 1076 struct page *head, *page, *tail; 1077 int refs; 1078 1079 if (write && !pmd_write(orig)) 1080 return 0; 1081 1082 refs = 0; 1083 head = pmd_page(orig); 1084 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1085 tail = page; 1086 do { 1087 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1088 pages[*nr] = page; 1089 (*nr)++; 1090 page++; 1091 refs++; 1092 } while (addr += PAGE_SIZE, addr != end); 1093 1094 if (!page_cache_add_speculative(head, refs)) { 1095 *nr -= refs; 1096 return 0; 1097 } 1098 1099 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1100 *nr -= refs; 1101 while (refs--) 1102 put_page(head); 1103 return 0; 1104 } 1105 1106 /* 1107 * Any tail pages need their mapcount reference taken before we 1108 * return. (This allows the THP code to bump their ref count when 1109 * they are split into base pages). 1110 */ 1111 while (refs--) { 1112 if (PageTail(tail)) 1113 get_huge_page_tail(tail); 1114 tail++; 1115 } 1116 1117 return 1; 1118 } 1119 1120 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1121 unsigned long end, int write, struct page **pages, int *nr) 1122 { 1123 struct page *head, *page, *tail; 1124 int refs; 1125 1126 if (write && !pud_write(orig)) 1127 return 0; 1128 1129 refs = 0; 1130 head = pud_page(orig); 1131 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1132 tail = page; 1133 do { 1134 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1135 pages[*nr] = page; 1136 (*nr)++; 1137 page++; 1138 refs++; 1139 } while (addr += PAGE_SIZE, addr != end); 1140 1141 if (!page_cache_add_speculative(head, refs)) { 1142 *nr -= refs; 1143 return 0; 1144 } 1145 1146 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1147 *nr -= refs; 1148 while (refs--) 1149 put_page(head); 1150 return 0; 1151 } 1152 1153 while (refs--) { 1154 if (PageTail(tail)) 1155 get_huge_page_tail(tail); 1156 tail++; 1157 } 1158 1159 return 1; 1160 } 1161 1162 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1163 unsigned long end, int write, 1164 struct page **pages, int *nr) 1165 { 1166 int refs; 1167 struct page *head, *page, *tail; 1168 1169 if (write && !pgd_write(orig)) 1170 return 0; 1171 1172 refs = 0; 1173 head = pgd_page(orig); 1174 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1175 tail = page; 1176 do { 1177 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1178 pages[*nr] = page; 1179 (*nr)++; 1180 page++; 1181 refs++; 1182 } while (addr += PAGE_SIZE, addr != end); 1183 1184 if (!page_cache_add_speculative(head, refs)) { 1185 *nr -= refs; 1186 return 0; 1187 } 1188 1189 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1190 *nr -= refs; 1191 while (refs--) 1192 put_page(head); 1193 return 0; 1194 } 1195 1196 while (refs--) { 1197 if (PageTail(tail)) 1198 get_huge_page_tail(tail); 1199 tail++; 1200 } 1201 1202 return 1; 1203 } 1204 1205 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1206 int write, struct page **pages, int *nr) 1207 { 1208 unsigned long next; 1209 pmd_t *pmdp; 1210 1211 pmdp = pmd_offset(&pud, addr); 1212 do { 1213 pmd_t pmd = READ_ONCE(*pmdp); 1214 1215 next = pmd_addr_end(addr, end); 1216 if (pmd_none(pmd) || pmd_trans_splitting(pmd)) 1217 return 0; 1218 1219 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1220 /* 1221 * NUMA hinting faults need to be handled in the GUP 1222 * slowpath for accounting purposes and so that they 1223 * can be serialised against THP migration. 1224 */ 1225 if (pmd_protnone(pmd)) 1226 return 0; 1227 1228 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1229 pages, nr)) 1230 return 0; 1231 1232 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1233 /* 1234 * architecture have different format for hugetlbfs 1235 * pmd format and THP pmd format 1236 */ 1237 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1238 PMD_SHIFT, next, write, pages, nr)) 1239 return 0; 1240 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1241 return 0; 1242 } while (pmdp++, addr = next, addr != end); 1243 1244 return 1; 1245 } 1246 1247 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, 1248 int write, struct page **pages, int *nr) 1249 { 1250 unsigned long next; 1251 pud_t *pudp; 1252 1253 pudp = pud_offset(&pgd, addr); 1254 do { 1255 pud_t pud = READ_ONCE(*pudp); 1256 1257 next = pud_addr_end(addr, end); 1258 if (pud_none(pud)) 1259 return 0; 1260 if (unlikely(pud_huge(pud))) { 1261 if (!gup_huge_pud(pud, pudp, addr, next, write, 1262 pages, nr)) 1263 return 0; 1264 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1265 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1266 PUD_SHIFT, next, write, pages, nr)) 1267 return 0; 1268 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1269 return 0; 1270 } while (pudp++, addr = next, addr != end); 1271 1272 return 1; 1273 } 1274 1275 /* 1276 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1277 * the regular GUP. It will only return non-negative values. 1278 */ 1279 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1280 struct page **pages) 1281 { 1282 struct mm_struct *mm = current->mm; 1283 unsigned long addr, len, end; 1284 unsigned long next, flags; 1285 pgd_t *pgdp; 1286 int nr = 0; 1287 1288 start &= PAGE_MASK; 1289 addr = start; 1290 len = (unsigned long) nr_pages << PAGE_SHIFT; 1291 end = start + len; 1292 1293 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1294 start, len))) 1295 return 0; 1296 1297 /* 1298 * Disable interrupts. We use the nested form as we can already have 1299 * interrupts disabled by get_futex_key. 1300 * 1301 * With interrupts disabled, we block page table pages from being 1302 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1303 * for more details. 1304 * 1305 * We do not adopt an rcu_read_lock(.) here as we also want to 1306 * block IPIs that come from THPs splitting. 1307 */ 1308 1309 local_irq_save(flags); 1310 pgdp = pgd_offset(mm, addr); 1311 do { 1312 pgd_t pgd = READ_ONCE(*pgdp); 1313 1314 next = pgd_addr_end(addr, end); 1315 if (pgd_none(pgd)) 1316 break; 1317 if (unlikely(pgd_huge(pgd))) { 1318 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1319 pages, &nr)) 1320 break; 1321 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1322 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1323 PGDIR_SHIFT, next, write, pages, &nr)) 1324 break; 1325 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) 1326 break; 1327 } while (pgdp++, addr = next, addr != end); 1328 local_irq_restore(flags); 1329 1330 return nr; 1331 } 1332 1333 /** 1334 * get_user_pages_fast() - pin user pages in memory 1335 * @start: starting user address 1336 * @nr_pages: number of pages from start to pin 1337 * @write: whether pages will be written to 1338 * @pages: array that receives pointers to the pages pinned. 1339 * Should be at least nr_pages long. 1340 * 1341 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1342 * If not successful, it will fall back to taking the lock and 1343 * calling get_user_pages(). 1344 * 1345 * Returns number of pages pinned. This may be fewer than the number 1346 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1347 * were pinned, returns -errno. 1348 */ 1349 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1350 struct page **pages) 1351 { 1352 struct mm_struct *mm = current->mm; 1353 int nr, ret; 1354 1355 start &= PAGE_MASK; 1356 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1357 ret = nr; 1358 1359 if (nr < nr_pages) { 1360 /* Try to get the remaining pages with get_user_pages */ 1361 start += nr << PAGE_SHIFT; 1362 pages += nr; 1363 1364 ret = get_user_pages_unlocked(current, mm, start, 1365 nr_pages - nr, write, 0, pages); 1366 1367 /* Have to be a bit careful with return values */ 1368 if (nr > 0) { 1369 if (ret < 0) 1370 ret = nr; 1371 else 1372 ret += nr; 1373 } 1374 } 1375 1376 return ret; 1377 } 1378 1379 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1380