xref: /linux/mm/gup.c (revision 8eecf1c9929aef24e9e75280a39ed1ba3c64fb71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 /*
33  * Return the folio with ref appropriately incremented,
34  * or NULL if that failed.
35  */
36 static inline struct folio *try_get_folio(struct page *page, int refs)
37 {
38 	struct folio *folio;
39 
40 retry:
41 	folio = page_folio(page);
42 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
43 		return NULL;
44 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
45 		return NULL;
46 
47 	/*
48 	 * At this point we have a stable reference to the folio; but it
49 	 * could be that between calling page_folio() and the refcount
50 	 * increment, the folio was split, in which case we'd end up
51 	 * holding a reference on a folio that has nothing to do with the page
52 	 * we were given anymore.
53 	 * So now that the folio is stable, recheck that the page still
54 	 * belongs to this folio.
55 	 */
56 	if (unlikely(page_folio(page) != folio)) {
57 		folio_put_refs(folio, refs);
58 		goto retry;
59 	}
60 
61 	return folio;
62 }
63 
64 /**
65  * try_grab_folio() - Attempt to get or pin a folio.
66  * @page:  pointer to page to be grabbed
67  * @refs:  the value to (effectively) add to the folio's refcount
68  * @flags: gup flags: these are the FOLL_* flag values.
69  *
70  * "grab" names in this file mean, "look at flags to decide whether to use
71  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
72  *
73  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
74  * same time. (That's true throughout the get_user_pages*() and
75  * pin_user_pages*() APIs.) Cases:
76  *
77  *    FOLL_GET: folio's refcount will be incremented by @refs.
78  *
79  *    FOLL_PIN on large folios: folio's refcount will be incremented by
80  *    @refs, and its compound_pincount will be incremented by @refs.
81  *
82  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
83  *    @refs * GUP_PIN_COUNTING_BIAS.
84  *
85  * Return: The folio containing @page (with refcount appropriately
86  * incremented) for success, or NULL upon failure. If neither FOLL_GET
87  * nor FOLL_PIN was set, that's considered failure, and furthermore,
88  * a likely bug in the caller, so a warning is also emitted.
89  */
90 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
91 {
92 	if (flags & FOLL_GET)
93 		return try_get_folio(page, refs);
94 	else if (flags & FOLL_PIN) {
95 		struct folio *folio;
96 
97 		/*
98 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
99 		 * right zone, so fail and let the caller fall back to the slow
100 		 * path.
101 		 */
102 		if (unlikely((flags & FOLL_LONGTERM) &&
103 			     !is_pinnable_page(page)))
104 			return NULL;
105 
106 		/*
107 		 * CAUTION: Don't use compound_head() on the page before this
108 		 * point, the result won't be stable.
109 		 */
110 		folio = try_get_folio(page, refs);
111 		if (!folio)
112 			return NULL;
113 
114 		/*
115 		 * When pinning a large folio, use an exact count to track it.
116 		 *
117 		 * However, be sure to *also* increment the normal folio
118 		 * refcount field at least once, so that the folio really
119 		 * is pinned.  That's why the refcount from the earlier
120 		 * try_get_folio() is left intact.
121 		 */
122 		if (folio_test_large(folio))
123 			atomic_add(refs, folio_pincount_ptr(folio));
124 		else
125 			folio_ref_add(folio,
126 					refs * (GUP_PIN_COUNTING_BIAS - 1));
127 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
128 
129 		return folio;
130 	}
131 
132 	WARN_ON_ONCE(1);
133 	return NULL;
134 }
135 
136 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
137 {
138 	if (flags & FOLL_PIN) {
139 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
140 		if (folio_test_large(folio))
141 			atomic_sub(refs, folio_pincount_ptr(folio));
142 		else
143 			refs *= GUP_PIN_COUNTING_BIAS;
144 	}
145 
146 	folio_put_refs(folio, refs);
147 }
148 
149 /**
150  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
151  * @page:    pointer to page to be grabbed
152  * @flags:   gup flags: these are the FOLL_* flag values.
153  *
154  * This might not do anything at all, depending on the flags argument.
155  *
156  * "grab" names in this file mean, "look at flags to decide whether to use
157  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
158  *
159  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
160  * time. Cases: please see the try_grab_folio() documentation, with
161  * "refs=1".
162  *
163  * Return: true for success, or if no action was required (if neither FOLL_PIN
164  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
165  * FOLL_PIN was set, but the page could not be grabbed.
166  */
167 bool __must_check try_grab_page(struct page *page, unsigned int flags)
168 {
169 	struct folio *folio = page_folio(page);
170 
171 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
172 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
173 		return false;
174 
175 	if (flags & FOLL_GET)
176 		folio_ref_inc(folio);
177 	else if (flags & FOLL_PIN) {
178 		/*
179 		 * Similar to try_grab_folio(): be sure to *also*
180 		 * increment the normal page refcount field at least once,
181 		 * so that the page really is pinned.
182 		 */
183 		if (folio_test_large(folio)) {
184 			folio_ref_add(folio, 1);
185 			atomic_add(1, folio_pincount_ptr(folio));
186 		} else {
187 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
188 		}
189 
190 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
191 	}
192 
193 	return true;
194 }
195 
196 /**
197  * unpin_user_page() - release a dma-pinned page
198  * @page:            pointer to page to be released
199  *
200  * Pages that were pinned via pin_user_pages*() must be released via either
201  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
202  * that such pages can be separately tracked and uniquely handled. In
203  * particular, interactions with RDMA and filesystems need special handling.
204  */
205 void unpin_user_page(struct page *page)
206 {
207 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
208 }
209 EXPORT_SYMBOL(unpin_user_page);
210 
211 static inline struct folio *gup_folio_range_next(struct page *start,
212 		unsigned long npages, unsigned long i, unsigned int *ntails)
213 {
214 	struct page *next = nth_page(start, i);
215 	struct folio *folio = page_folio(next);
216 	unsigned int nr = 1;
217 
218 	if (folio_test_large(folio))
219 		nr = min_t(unsigned int, npages - i,
220 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
221 
222 	*ntails = nr;
223 	return folio;
224 }
225 
226 static inline struct folio *gup_folio_next(struct page **list,
227 		unsigned long npages, unsigned long i, unsigned int *ntails)
228 {
229 	struct folio *folio = page_folio(list[i]);
230 	unsigned int nr;
231 
232 	for (nr = i + 1; nr < npages; nr++) {
233 		if (page_folio(list[nr]) != folio)
234 			break;
235 	}
236 
237 	*ntails = nr - i;
238 	return folio;
239 }
240 
241 /**
242  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
243  * @pages:  array of pages to be maybe marked dirty, and definitely released.
244  * @npages: number of pages in the @pages array.
245  * @make_dirty: whether to mark the pages dirty
246  *
247  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
248  * variants called on that page.
249  *
250  * For each page in the @pages array, make that page (or its head page, if a
251  * compound page) dirty, if @make_dirty is true, and if the page was previously
252  * listed as clean. In any case, releases all pages using unpin_user_page(),
253  * possibly via unpin_user_pages(), for the non-dirty case.
254  *
255  * Please see the unpin_user_page() documentation for details.
256  *
257  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
258  * required, then the caller should a) verify that this is really correct,
259  * because _lock() is usually required, and b) hand code it:
260  * set_page_dirty_lock(), unpin_user_page().
261  *
262  */
263 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
264 				 bool make_dirty)
265 {
266 	unsigned long i;
267 	struct folio *folio;
268 	unsigned int nr;
269 
270 	if (!make_dirty) {
271 		unpin_user_pages(pages, npages);
272 		return;
273 	}
274 
275 	for (i = 0; i < npages; i += nr) {
276 		folio = gup_folio_next(pages, npages, i, &nr);
277 		/*
278 		 * Checking PageDirty at this point may race with
279 		 * clear_page_dirty_for_io(), but that's OK. Two key
280 		 * cases:
281 		 *
282 		 * 1) This code sees the page as already dirty, so it
283 		 * skips the call to set_page_dirty(). That could happen
284 		 * because clear_page_dirty_for_io() called
285 		 * page_mkclean(), followed by set_page_dirty().
286 		 * However, now the page is going to get written back,
287 		 * which meets the original intention of setting it
288 		 * dirty, so all is well: clear_page_dirty_for_io() goes
289 		 * on to call TestClearPageDirty(), and write the page
290 		 * back.
291 		 *
292 		 * 2) This code sees the page as clean, so it calls
293 		 * set_page_dirty(). The page stays dirty, despite being
294 		 * written back, so it gets written back again in the
295 		 * next writeback cycle. This is harmless.
296 		 */
297 		if (!folio_test_dirty(folio)) {
298 			folio_lock(folio);
299 			folio_mark_dirty(folio);
300 			folio_unlock(folio);
301 		}
302 		gup_put_folio(folio, nr, FOLL_PIN);
303 	}
304 }
305 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
306 
307 /**
308  * unpin_user_page_range_dirty_lock() - release and optionally dirty
309  * gup-pinned page range
310  *
311  * @page:  the starting page of a range maybe marked dirty, and definitely released.
312  * @npages: number of consecutive pages to release.
313  * @make_dirty: whether to mark the pages dirty
314  *
315  * "gup-pinned page range" refers to a range of pages that has had one of the
316  * pin_user_pages() variants called on that page.
317  *
318  * For the page ranges defined by [page .. page+npages], make that range (or
319  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
320  * page range was previously listed as clean.
321  *
322  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
323  * required, then the caller should a) verify that this is really correct,
324  * because _lock() is usually required, and b) hand code it:
325  * set_page_dirty_lock(), unpin_user_page().
326  *
327  */
328 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
329 				      bool make_dirty)
330 {
331 	unsigned long i;
332 	struct folio *folio;
333 	unsigned int nr;
334 
335 	for (i = 0; i < npages; i += nr) {
336 		folio = gup_folio_range_next(page, npages, i, &nr);
337 		if (make_dirty && !folio_test_dirty(folio)) {
338 			folio_lock(folio);
339 			folio_mark_dirty(folio);
340 			folio_unlock(folio);
341 		}
342 		gup_put_folio(folio, nr, FOLL_PIN);
343 	}
344 }
345 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
346 
347 /**
348  * unpin_user_pages() - release an array of gup-pinned pages.
349  * @pages:  array of pages to be marked dirty and released.
350  * @npages: number of pages in the @pages array.
351  *
352  * For each page in the @pages array, release the page using unpin_user_page().
353  *
354  * Please see the unpin_user_page() documentation for details.
355  */
356 void unpin_user_pages(struct page **pages, unsigned long npages)
357 {
358 	unsigned long i;
359 	struct folio *folio;
360 	unsigned int nr;
361 
362 	/*
363 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
364 	 * leaving them pinned), but probably not. More likely, gup/pup returned
365 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
366 	 */
367 	if (WARN_ON(IS_ERR_VALUE(npages)))
368 		return;
369 
370 	for (i = 0; i < npages; i += nr) {
371 		folio = gup_folio_next(pages, npages, i, &nr);
372 		gup_put_folio(folio, nr, FOLL_PIN);
373 	}
374 }
375 EXPORT_SYMBOL(unpin_user_pages);
376 
377 /*
378  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
379  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
380  * cache bouncing on large SMP machines for concurrent pinned gups.
381  */
382 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
383 {
384 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
385 		set_bit(MMF_HAS_PINNED, mm_flags);
386 }
387 
388 #ifdef CONFIG_MMU
389 static struct page *no_page_table(struct vm_area_struct *vma,
390 		unsigned int flags)
391 {
392 	/*
393 	 * When core dumping an enormous anonymous area that nobody
394 	 * has touched so far, we don't want to allocate unnecessary pages or
395 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
396 	 * then get_dump_page() will return NULL to leave a hole in the dump.
397 	 * But we can only make this optimization where a hole would surely
398 	 * be zero-filled if handle_mm_fault() actually did handle it.
399 	 */
400 	if ((flags & FOLL_DUMP) &&
401 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
402 		return ERR_PTR(-EFAULT);
403 	return NULL;
404 }
405 
406 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
407 		pte_t *pte, unsigned int flags)
408 {
409 	if (flags & FOLL_TOUCH) {
410 		pte_t entry = *pte;
411 
412 		if (flags & FOLL_WRITE)
413 			entry = pte_mkdirty(entry);
414 		entry = pte_mkyoung(entry);
415 
416 		if (!pte_same(*pte, entry)) {
417 			set_pte_at(vma->vm_mm, address, pte, entry);
418 			update_mmu_cache(vma, address, pte);
419 		}
420 	}
421 
422 	/* Proper page table entry exists, but no corresponding struct page */
423 	return -EEXIST;
424 }
425 
426 /*
427  * FOLL_FORCE can write to even unwritable pte's, but only
428  * after we've gone through a COW cycle and they are dirty.
429  */
430 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
431 {
432 	return pte_write(pte) ||
433 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
434 }
435 
436 static struct page *follow_page_pte(struct vm_area_struct *vma,
437 		unsigned long address, pmd_t *pmd, unsigned int flags,
438 		struct dev_pagemap **pgmap)
439 {
440 	struct mm_struct *mm = vma->vm_mm;
441 	struct page *page;
442 	spinlock_t *ptl;
443 	pte_t *ptep, pte;
444 	int ret;
445 
446 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
447 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
448 			 (FOLL_PIN | FOLL_GET)))
449 		return ERR_PTR(-EINVAL);
450 retry:
451 	if (unlikely(pmd_bad(*pmd)))
452 		return no_page_table(vma, flags);
453 
454 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
455 	pte = *ptep;
456 	if (!pte_present(pte)) {
457 		swp_entry_t entry;
458 		/*
459 		 * KSM's break_ksm() relies upon recognizing a ksm page
460 		 * even while it is being migrated, so for that case we
461 		 * need migration_entry_wait().
462 		 */
463 		if (likely(!(flags & FOLL_MIGRATION)))
464 			goto no_page;
465 		if (pte_none(pte))
466 			goto no_page;
467 		entry = pte_to_swp_entry(pte);
468 		if (!is_migration_entry(entry))
469 			goto no_page;
470 		pte_unmap_unlock(ptep, ptl);
471 		migration_entry_wait(mm, pmd, address);
472 		goto retry;
473 	}
474 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
475 		goto no_page;
476 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
477 		pte_unmap_unlock(ptep, ptl);
478 		return NULL;
479 	}
480 
481 	page = vm_normal_page(vma, address, pte);
482 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
483 		/*
484 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
485 		 * case since they are only valid while holding the pgmap
486 		 * reference.
487 		 */
488 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
489 		if (*pgmap)
490 			page = pte_page(pte);
491 		else
492 			goto no_page;
493 	} else if (unlikely(!page)) {
494 		if (flags & FOLL_DUMP) {
495 			/* Avoid special (like zero) pages in core dumps */
496 			page = ERR_PTR(-EFAULT);
497 			goto out;
498 		}
499 
500 		if (is_zero_pfn(pte_pfn(pte))) {
501 			page = pte_page(pte);
502 		} else {
503 			ret = follow_pfn_pte(vma, address, ptep, flags);
504 			page = ERR_PTR(ret);
505 			goto out;
506 		}
507 	}
508 
509 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
510 	if (unlikely(!try_grab_page(page, flags))) {
511 		page = ERR_PTR(-ENOMEM);
512 		goto out;
513 	}
514 	/*
515 	 * We need to make the page accessible if and only if we are going
516 	 * to access its content (the FOLL_PIN case).  Please see
517 	 * Documentation/core-api/pin_user_pages.rst for details.
518 	 */
519 	if (flags & FOLL_PIN) {
520 		ret = arch_make_page_accessible(page);
521 		if (ret) {
522 			unpin_user_page(page);
523 			page = ERR_PTR(ret);
524 			goto out;
525 		}
526 	}
527 	if (flags & FOLL_TOUCH) {
528 		if ((flags & FOLL_WRITE) &&
529 		    !pte_dirty(pte) && !PageDirty(page))
530 			set_page_dirty(page);
531 		/*
532 		 * pte_mkyoung() would be more correct here, but atomic care
533 		 * is needed to avoid losing the dirty bit: it is easier to use
534 		 * mark_page_accessed().
535 		 */
536 		mark_page_accessed(page);
537 	}
538 out:
539 	pte_unmap_unlock(ptep, ptl);
540 	return page;
541 no_page:
542 	pte_unmap_unlock(ptep, ptl);
543 	if (!pte_none(pte))
544 		return NULL;
545 	return no_page_table(vma, flags);
546 }
547 
548 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
549 				    unsigned long address, pud_t *pudp,
550 				    unsigned int flags,
551 				    struct follow_page_context *ctx)
552 {
553 	pmd_t *pmd, pmdval;
554 	spinlock_t *ptl;
555 	struct page *page;
556 	struct mm_struct *mm = vma->vm_mm;
557 
558 	pmd = pmd_offset(pudp, address);
559 	/*
560 	 * The READ_ONCE() will stabilize the pmdval in a register or
561 	 * on the stack so that it will stop changing under the code.
562 	 */
563 	pmdval = READ_ONCE(*pmd);
564 	if (pmd_none(pmdval))
565 		return no_page_table(vma, flags);
566 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
567 		page = follow_huge_pmd(mm, address, pmd, flags);
568 		if (page)
569 			return page;
570 		return no_page_table(vma, flags);
571 	}
572 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
573 		page = follow_huge_pd(vma, address,
574 				      __hugepd(pmd_val(pmdval)), flags,
575 				      PMD_SHIFT);
576 		if (page)
577 			return page;
578 		return no_page_table(vma, flags);
579 	}
580 retry:
581 	if (!pmd_present(pmdval)) {
582 		/*
583 		 * Should never reach here, if thp migration is not supported;
584 		 * Otherwise, it must be a thp migration entry.
585 		 */
586 		VM_BUG_ON(!thp_migration_supported() ||
587 				  !is_pmd_migration_entry(pmdval));
588 
589 		if (likely(!(flags & FOLL_MIGRATION)))
590 			return no_page_table(vma, flags);
591 
592 		pmd_migration_entry_wait(mm, pmd);
593 		pmdval = READ_ONCE(*pmd);
594 		/*
595 		 * MADV_DONTNEED may convert the pmd to null because
596 		 * mmap_lock is held in read mode
597 		 */
598 		if (pmd_none(pmdval))
599 			return no_page_table(vma, flags);
600 		goto retry;
601 	}
602 	if (pmd_devmap(pmdval)) {
603 		ptl = pmd_lock(mm, pmd);
604 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 		spin_unlock(ptl);
606 		if (page)
607 			return page;
608 	}
609 	if (likely(!pmd_trans_huge(pmdval)))
610 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611 
612 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 		return no_page_table(vma, flags);
614 
615 retry_locked:
616 	ptl = pmd_lock(mm, pmd);
617 	if (unlikely(pmd_none(*pmd))) {
618 		spin_unlock(ptl);
619 		return no_page_table(vma, flags);
620 	}
621 	if (unlikely(!pmd_present(*pmd))) {
622 		spin_unlock(ptl);
623 		if (likely(!(flags & FOLL_MIGRATION)))
624 			return no_page_table(vma, flags);
625 		pmd_migration_entry_wait(mm, pmd);
626 		goto retry_locked;
627 	}
628 	if (unlikely(!pmd_trans_huge(*pmd))) {
629 		spin_unlock(ptl);
630 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631 	}
632 	if (flags & FOLL_SPLIT_PMD) {
633 		int ret;
634 		page = pmd_page(*pmd);
635 		if (is_huge_zero_page(page)) {
636 			spin_unlock(ptl);
637 			ret = 0;
638 			split_huge_pmd(vma, pmd, address);
639 			if (pmd_trans_unstable(pmd))
640 				ret = -EBUSY;
641 		} else {
642 			spin_unlock(ptl);
643 			split_huge_pmd(vma, pmd, address);
644 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
645 		}
646 
647 		return ret ? ERR_PTR(ret) :
648 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
649 	}
650 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
651 	spin_unlock(ptl);
652 	ctx->page_mask = HPAGE_PMD_NR - 1;
653 	return page;
654 }
655 
656 static struct page *follow_pud_mask(struct vm_area_struct *vma,
657 				    unsigned long address, p4d_t *p4dp,
658 				    unsigned int flags,
659 				    struct follow_page_context *ctx)
660 {
661 	pud_t *pud;
662 	spinlock_t *ptl;
663 	struct page *page;
664 	struct mm_struct *mm = vma->vm_mm;
665 
666 	pud = pud_offset(p4dp, address);
667 	if (pud_none(*pud))
668 		return no_page_table(vma, flags);
669 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
670 		page = follow_huge_pud(mm, address, pud, flags);
671 		if (page)
672 			return page;
673 		return no_page_table(vma, flags);
674 	}
675 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
676 		page = follow_huge_pd(vma, address,
677 				      __hugepd(pud_val(*pud)), flags,
678 				      PUD_SHIFT);
679 		if (page)
680 			return page;
681 		return no_page_table(vma, flags);
682 	}
683 	if (pud_devmap(*pud)) {
684 		ptl = pud_lock(mm, pud);
685 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
686 		spin_unlock(ptl);
687 		if (page)
688 			return page;
689 	}
690 	if (unlikely(pud_bad(*pud)))
691 		return no_page_table(vma, flags);
692 
693 	return follow_pmd_mask(vma, address, pud, flags, ctx);
694 }
695 
696 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
697 				    unsigned long address, pgd_t *pgdp,
698 				    unsigned int flags,
699 				    struct follow_page_context *ctx)
700 {
701 	p4d_t *p4d;
702 	struct page *page;
703 
704 	p4d = p4d_offset(pgdp, address);
705 	if (p4d_none(*p4d))
706 		return no_page_table(vma, flags);
707 	BUILD_BUG_ON(p4d_huge(*p4d));
708 	if (unlikely(p4d_bad(*p4d)))
709 		return no_page_table(vma, flags);
710 
711 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
712 		page = follow_huge_pd(vma, address,
713 				      __hugepd(p4d_val(*p4d)), flags,
714 				      P4D_SHIFT);
715 		if (page)
716 			return page;
717 		return no_page_table(vma, flags);
718 	}
719 	return follow_pud_mask(vma, address, p4d, flags, ctx);
720 }
721 
722 /**
723  * follow_page_mask - look up a page descriptor from a user-virtual address
724  * @vma: vm_area_struct mapping @address
725  * @address: virtual address to look up
726  * @flags: flags modifying lookup behaviour
727  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
728  *       pointer to output page_mask
729  *
730  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
731  *
732  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
733  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
734  *
735  * On output, the @ctx->page_mask is set according to the size of the page.
736  *
737  * Return: the mapped (struct page *), %NULL if no mapping exists, or
738  * an error pointer if there is a mapping to something not represented
739  * by a page descriptor (see also vm_normal_page()).
740  */
741 static struct page *follow_page_mask(struct vm_area_struct *vma,
742 			      unsigned long address, unsigned int flags,
743 			      struct follow_page_context *ctx)
744 {
745 	pgd_t *pgd;
746 	struct page *page;
747 	struct mm_struct *mm = vma->vm_mm;
748 
749 	ctx->page_mask = 0;
750 
751 	/* make this handle hugepd */
752 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
753 	if (!IS_ERR(page)) {
754 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
755 		return page;
756 	}
757 
758 	pgd = pgd_offset(mm, address);
759 
760 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
761 		return no_page_table(vma, flags);
762 
763 	if (pgd_huge(*pgd)) {
764 		page = follow_huge_pgd(mm, address, pgd, flags);
765 		if (page)
766 			return page;
767 		return no_page_table(vma, flags);
768 	}
769 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
770 		page = follow_huge_pd(vma, address,
771 				      __hugepd(pgd_val(*pgd)), flags,
772 				      PGDIR_SHIFT);
773 		if (page)
774 			return page;
775 		return no_page_table(vma, flags);
776 	}
777 
778 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
779 }
780 
781 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
782 			 unsigned int foll_flags)
783 {
784 	struct follow_page_context ctx = { NULL };
785 	struct page *page;
786 
787 	if (vma_is_secretmem(vma))
788 		return NULL;
789 
790 	page = follow_page_mask(vma, address, foll_flags, &ctx);
791 	if (ctx.pgmap)
792 		put_dev_pagemap(ctx.pgmap);
793 	return page;
794 }
795 
796 static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 		unsigned int gup_flags, struct vm_area_struct **vma,
798 		struct page **page)
799 {
800 	pgd_t *pgd;
801 	p4d_t *p4d;
802 	pud_t *pud;
803 	pmd_t *pmd;
804 	pte_t *pte;
805 	int ret = -EFAULT;
806 
807 	/* user gate pages are read-only */
808 	if (gup_flags & FOLL_WRITE)
809 		return -EFAULT;
810 	if (address > TASK_SIZE)
811 		pgd = pgd_offset_k(address);
812 	else
813 		pgd = pgd_offset_gate(mm, address);
814 	if (pgd_none(*pgd))
815 		return -EFAULT;
816 	p4d = p4d_offset(pgd, address);
817 	if (p4d_none(*p4d))
818 		return -EFAULT;
819 	pud = pud_offset(p4d, address);
820 	if (pud_none(*pud))
821 		return -EFAULT;
822 	pmd = pmd_offset(pud, address);
823 	if (!pmd_present(*pmd))
824 		return -EFAULT;
825 	VM_BUG_ON(pmd_trans_huge(*pmd));
826 	pte = pte_offset_map(pmd, address);
827 	if (pte_none(*pte))
828 		goto unmap;
829 	*vma = get_gate_vma(mm);
830 	if (!page)
831 		goto out;
832 	*page = vm_normal_page(*vma, address, *pte);
833 	if (!*page) {
834 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 			goto unmap;
836 		*page = pte_page(*pte);
837 	}
838 	if (unlikely(!try_grab_page(*page, gup_flags))) {
839 		ret = -ENOMEM;
840 		goto unmap;
841 	}
842 out:
843 	ret = 0;
844 unmap:
845 	pte_unmap(pte);
846 	return ret;
847 }
848 
849 /*
850  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
851  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
852  * is, *@locked will be set to 0 and -EBUSY returned.
853  */
854 static int faultin_page(struct vm_area_struct *vma,
855 		unsigned long address, unsigned int *flags, int *locked)
856 {
857 	unsigned int fault_flags = 0;
858 	vm_fault_t ret;
859 
860 	if (*flags & FOLL_NOFAULT)
861 		return -EFAULT;
862 	if (*flags & FOLL_WRITE)
863 		fault_flags |= FAULT_FLAG_WRITE;
864 	if (*flags & FOLL_REMOTE)
865 		fault_flags |= FAULT_FLAG_REMOTE;
866 	if (locked)
867 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 	if (*flags & FOLL_NOWAIT)
869 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870 	if (*flags & FOLL_TRIED) {
871 		/*
872 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 		 * can co-exist
874 		 */
875 		fault_flags |= FAULT_FLAG_TRIED;
876 	}
877 
878 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
879 	if (ret & VM_FAULT_ERROR) {
880 		int err = vm_fault_to_errno(ret, *flags);
881 
882 		if (err)
883 			return err;
884 		BUG();
885 	}
886 
887 	if (ret & VM_FAULT_RETRY) {
888 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
889 			*locked = 0;
890 		return -EBUSY;
891 	}
892 
893 	/*
894 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
895 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
896 	 * can thus safely do subsequent page lookups as if they were reads.
897 	 * But only do so when looping for pte_write is futile: in some cases
898 	 * userspace may also be wanting to write to the gotten user page,
899 	 * which a read fault here might prevent (a readonly page might get
900 	 * reCOWed by userspace write).
901 	 */
902 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
903 		*flags |= FOLL_COW;
904 	return 0;
905 }
906 
907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
908 {
909 	vm_flags_t vm_flags = vma->vm_flags;
910 	int write = (gup_flags & FOLL_WRITE);
911 	int foreign = (gup_flags & FOLL_REMOTE);
912 
913 	if (vm_flags & (VM_IO | VM_PFNMAP))
914 		return -EFAULT;
915 
916 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
917 		return -EFAULT;
918 
919 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
920 		return -EOPNOTSUPP;
921 
922 	if (vma_is_secretmem(vma))
923 		return -EFAULT;
924 
925 	if (write) {
926 		if (!(vm_flags & VM_WRITE)) {
927 			if (!(gup_flags & FOLL_FORCE))
928 				return -EFAULT;
929 			/*
930 			 * We used to let the write,force case do COW in a
931 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
932 			 * set a breakpoint in a read-only mapping of an
933 			 * executable, without corrupting the file (yet only
934 			 * when that file had been opened for writing!).
935 			 * Anon pages in shared mappings are surprising: now
936 			 * just reject it.
937 			 */
938 			if (!is_cow_mapping(vm_flags))
939 				return -EFAULT;
940 		}
941 	} else if (!(vm_flags & VM_READ)) {
942 		if (!(gup_flags & FOLL_FORCE))
943 			return -EFAULT;
944 		/*
945 		 * Is there actually any vma we can reach here which does not
946 		 * have VM_MAYREAD set?
947 		 */
948 		if (!(vm_flags & VM_MAYREAD))
949 			return -EFAULT;
950 	}
951 	/*
952 	 * gups are always data accesses, not instruction
953 	 * fetches, so execute=false here
954 	 */
955 	if (!arch_vma_access_permitted(vma, write, false, foreign))
956 		return -EFAULT;
957 	return 0;
958 }
959 
960 /**
961  * __get_user_pages() - pin user pages in memory
962  * @mm:		mm_struct of target mm
963  * @start:	starting user address
964  * @nr_pages:	number of pages from start to pin
965  * @gup_flags:	flags modifying pin behaviour
966  * @pages:	array that receives pointers to the pages pinned.
967  *		Should be at least nr_pages long. Or NULL, if caller
968  *		only intends to ensure the pages are faulted in.
969  * @vmas:	array of pointers to vmas corresponding to each page.
970  *		Or NULL if the caller does not require them.
971  * @locked:     whether we're still with the mmap_lock held
972  *
973  * Returns either number of pages pinned (which may be less than the
974  * number requested), or an error. Details about the return value:
975  *
976  * -- If nr_pages is 0, returns 0.
977  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
978  * -- If nr_pages is >0, and some pages were pinned, returns the number of
979  *    pages pinned. Again, this may be less than nr_pages.
980  * -- 0 return value is possible when the fault would need to be retried.
981  *
982  * The caller is responsible for releasing returned @pages, via put_page().
983  *
984  * @vmas are valid only as long as mmap_lock is held.
985  *
986  * Must be called with mmap_lock held.  It may be released.  See below.
987  *
988  * __get_user_pages walks a process's page tables and takes a reference to
989  * each struct page that each user address corresponds to at a given
990  * instant. That is, it takes the page that would be accessed if a user
991  * thread accesses the given user virtual address at that instant.
992  *
993  * This does not guarantee that the page exists in the user mappings when
994  * __get_user_pages returns, and there may even be a completely different
995  * page there in some cases (eg. if mmapped pagecache has been invalidated
996  * and subsequently re faulted). However it does guarantee that the page
997  * won't be freed completely. And mostly callers simply care that the page
998  * contains data that was valid *at some point in time*. Typically, an IO
999  * or similar operation cannot guarantee anything stronger anyway because
1000  * locks can't be held over the syscall boundary.
1001  *
1002  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1003  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1004  * appropriate) must be called after the page is finished with, and
1005  * before put_page is called.
1006  *
1007  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1008  * released by an up_read().  That can happen if @gup_flags does not
1009  * have FOLL_NOWAIT.
1010  *
1011  * A caller using such a combination of @locked and @gup_flags
1012  * must therefore hold the mmap_lock for reading only, and recognize
1013  * when it's been released.  Otherwise, it must be held for either
1014  * reading or writing and will not be released.
1015  *
1016  * In most cases, get_user_pages or get_user_pages_fast should be used
1017  * instead of __get_user_pages. __get_user_pages should be used only if
1018  * you need some special @gup_flags.
1019  */
1020 static long __get_user_pages(struct mm_struct *mm,
1021 		unsigned long start, unsigned long nr_pages,
1022 		unsigned int gup_flags, struct page **pages,
1023 		struct vm_area_struct **vmas, int *locked)
1024 {
1025 	long ret = 0, i = 0;
1026 	struct vm_area_struct *vma = NULL;
1027 	struct follow_page_context ctx = { NULL };
1028 
1029 	if (!nr_pages)
1030 		return 0;
1031 
1032 	start = untagged_addr(start);
1033 
1034 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1035 
1036 	/*
1037 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1038 	 * fault information is unrelated to the reference behaviour of a task
1039 	 * using the address space
1040 	 */
1041 	if (!(gup_flags & FOLL_FORCE))
1042 		gup_flags |= FOLL_NUMA;
1043 
1044 	do {
1045 		struct page *page;
1046 		unsigned int foll_flags = gup_flags;
1047 		unsigned int page_increm;
1048 
1049 		/* first iteration or cross vma bound */
1050 		if (!vma || start >= vma->vm_end) {
1051 			vma = find_extend_vma(mm, start);
1052 			if (!vma && in_gate_area(mm, start)) {
1053 				ret = get_gate_page(mm, start & PAGE_MASK,
1054 						gup_flags, &vma,
1055 						pages ? &pages[i] : NULL);
1056 				if (ret)
1057 					goto out;
1058 				ctx.page_mask = 0;
1059 				goto next_page;
1060 			}
1061 
1062 			if (!vma) {
1063 				ret = -EFAULT;
1064 				goto out;
1065 			}
1066 			ret = check_vma_flags(vma, gup_flags);
1067 			if (ret)
1068 				goto out;
1069 
1070 			if (is_vm_hugetlb_page(vma)) {
1071 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1072 						&start, &nr_pages, i,
1073 						gup_flags, locked);
1074 				if (locked && *locked == 0) {
1075 					/*
1076 					 * We've got a VM_FAULT_RETRY
1077 					 * and we've lost mmap_lock.
1078 					 * We must stop here.
1079 					 */
1080 					BUG_ON(gup_flags & FOLL_NOWAIT);
1081 					goto out;
1082 				}
1083 				continue;
1084 			}
1085 		}
1086 retry:
1087 		/*
1088 		 * If we have a pending SIGKILL, don't keep faulting pages and
1089 		 * potentially allocating memory.
1090 		 */
1091 		if (fatal_signal_pending(current)) {
1092 			ret = -EINTR;
1093 			goto out;
1094 		}
1095 		cond_resched();
1096 
1097 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1098 		if (!page) {
1099 			ret = faultin_page(vma, start, &foll_flags, locked);
1100 			switch (ret) {
1101 			case 0:
1102 				goto retry;
1103 			case -EBUSY:
1104 				ret = 0;
1105 				fallthrough;
1106 			case -EFAULT:
1107 			case -ENOMEM:
1108 			case -EHWPOISON:
1109 				goto out;
1110 			}
1111 			BUG();
1112 		} else if (PTR_ERR(page) == -EEXIST) {
1113 			/*
1114 			 * Proper page table entry exists, but no corresponding
1115 			 * struct page. If the caller expects **pages to be
1116 			 * filled in, bail out now, because that can't be done
1117 			 * for this page.
1118 			 */
1119 			if (pages) {
1120 				ret = PTR_ERR(page);
1121 				goto out;
1122 			}
1123 
1124 			goto next_page;
1125 		} else if (IS_ERR(page)) {
1126 			ret = PTR_ERR(page);
1127 			goto out;
1128 		}
1129 		if (pages) {
1130 			pages[i] = page;
1131 			flush_anon_page(vma, page, start);
1132 			flush_dcache_page(page);
1133 			ctx.page_mask = 0;
1134 		}
1135 next_page:
1136 		if (vmas) {
1137 			vmas[i] = vma;
1138 			ctx.page_mask = 0;
1139 		}
1140 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1141 		if (page_increm > nr_pages)
1142 			page_increm = nr_pages;
1143 		i += page_increm;
1144 		start += page_increm * PAGE_SIZE;
1145 		nr_pages -= page_increm;
1146 	} while (nr_pages);
1147 out:
1148 	if (ctx.pgmap)
1149 		put_dev_pagemap(ctx.pgmap);
1150 	return i ? i : ret;
1151 }
1152 
1153 static bool vma_permits_fault(struct vm_area_struct *vma,
1154 			      unsigned int fault_flags)
1155 {
1156 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1157 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1158 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1159 
1160 	if (!(vm_flags & vma->vm_flags))
1161 		return false;
1162 
1163 	/*
1164 	 * The architecture might have a hardware protection
1165 	 * mechanism other than read/write that can deny access.
1166 	 *
1167 	 * gup always represents data access, not instruction
1168 	 * fetches, so execute=false here:
1169 	 */
1170 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1171 		return false;
1172 
1173 	return true;
1174 }
1175 
1176 /**
1177  * fixup_user_fault() - manually resolve a user page fault
1178  * @mm:		mm_struct of target mm
1179  * @address:	user address
1180  * @fault_flags:flags to pass down to handle_mm_fault()
1181  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1182  *		does not allow retry. If NULL, the caller must guarantee
1183  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1184  *
1185  * This is meant to be called in the specific scenario where for locking reasons
1186  * we try to access user memory in atomic context (within a pagefault_disable()
1187  * section), this returns -EFAULT, and we want to resolve the user fault before
1188  * trying again.
1189  *
1190  * Typically this is meant to be used by the futex code.
1191  *
1192  * The main difference with get_user_pages() is that this function will
1193  * unconditionally call handle_mm_fault() which will in turn perform all the
1194  * necessary SW fixup of the dirty and young bits in the PTE, while
1195  * get_user_pages() only guarantees to update these in the struct page.
1196  *
1197  * This is important for some architectures where those bits also gate the
1198  * access permission to the page because they are maintained in software.  On
1199  * such architectures, gup() will not be enough to make a subsequent access
1200  * succeed.
1201  *
1202  * This function will not return with an unlocked mmap_lock. So it has not the
1203  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1204  */
1205 int fixup_user_fault(struct mm_struct *mm,
1206 		     unsigned long address, unsigned int fault_flags,
1207 		     bool *unlocked)
1208 {
1209 	struct vm_area_struct *vma;
1210 	vm_fault_t ret;
1211 
1212 	address = untagged_addr(address);
1213 
1214 	if (unlocked)
1215 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1216 
1217 retry:
1218 	vma = find_extend_vma(mm, address);
1219 	if (!vma || address < vma->vm_start)
1220 		return -EFAULT;
1221 
1222 	if (!vma_permits_fault(vma, fault_flags))
1223 		return -EFAULT;
1224 
1225 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1226 	    fatal_signal_pending(current))
1227 		return -EINTR;
1228 
1229 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1230 	if (ret & VM_FAULT_ERROR) {
1231 		int err = vm_fault_to_errno(ret, 0);
1232 
1233 		if (err)
1234 			return err;
1235 		BUG();
1236 	}
1237 
1238 	if (ret & VM_FAULT_RETRY) {
1239 		mmap_read_lock(mm);
1240 		*unlocked = true;
1241 		fault_flags |= FAULT_FLAG_TRIED;
1242 		goto retry;
1243 	}
1244 
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(fixup_user_fault);
1248 
1249 /*
1250  * Please note that this function, unlike __get_user_pages will not
1251  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1252  */
1253 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1254 						unsigned long start,
1255 						unsigned long nr_pages,
1256 						struct page **pages,
1257 						struct vm_area_struct **vmas,
1258 						int *locked,
1259 						unsigned int flags)
1260 {
1261 	long ret, pages_done;
1262 	bool lock_dropped;
1263 
1264 	if (locked) {
1265 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1266 		BUG_ON(vmas);
1267 		/* check caller initialized locked */
1268 		BUG_ON(*locked != 1);
1269 	}
1270 
1271 	if (flags & FOLL_PIN)
1272 		mm_set_has_pinned_flag(&mm->flags);
1273 
1274 	/*
1275 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1276 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1277 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1278 	 * for FOLL_GET, not for the newer FOLL_PIN.
1279 	 *
1280 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1281 	 * that here, as any failures will be obvious enough.
1282 	 */
1283 	if (pages && !(flags & FOLL_PIN))
1284 		flags |= FOLL_GET;
1285 
1286 	pages_done = 0;
1287 	lock_dropped = false;
1288 	for (;;) {
1289 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1290 				       vmas, locked);
1291 		if (!locked)
1292 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1293 			return ret;
1294 
1295 		/* VM_FAULT_RETRY cannot return errors */
1296 		if (!*locked) {
1297 			BUG_ON(ret < 0);
1298 			BUG_ON(ret >= nr_pages);
1299 		}
1300 
1301 		if (ret > 0) {
1302 			nr_pages -= ret;
1303 			pages_done += ret;
1304 			if (!nr_pages)
1305 				break;
1306 		}
1307 		if (*locked) {
1308 			/*
1309 			 * VM_FAULT_RETRY didn't trigger or it was a
1310 			 * FOLL_NOWAIT.
1311 			 */
1312 			if (!pages_done)
1313 				pages_done = ret;
1314 			break;
1315 		}
1316 		/*
1317 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1318 		 * For the prefault case (!pages) we only update counts.
1319 		 */
1320 		if (likely(pages))
1321 			pages += ret;
1322 		start += ret << PAGE_SHIFT;
1323 		lock_dropped = true;
1324 
1325 retry:
1326 		/*
1327 		 * Repeat on the address that fired VM_FAULT_RETRY
1328 		 * with both FAULT_FLAG_ALLOW_RETRY and
1329 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1330 		 * by fatal signals, so we need to check it before we
1331 		 * start trying again otherwise it can loop forever.
1332 		 */
1333 
1334 		if (fatal_signal_pending(current)) {
1335 			if (!pages_done)
1336 				pages_done = -EINTR;
1337 			break;
1338 		}
1339 
1340 		ret = mmap_read_lock_killable(mm);
1341 		if (ret) {
1342 			BUG_ON(ret > 0);
1343 			if (!pages_done)
1344 				pages_done = ret;
1345 			break;
1346 		}
1347 
1348 		*locked = 1;
1349 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1350 				       pages, NULL, locked);
1351 		if (!*locked) {
1352 			/* Continue to retry until we succeeded */
1353 			BUG_ON(ret != 0);
1354 			goto retry;
1355 		}
1356 		if (ret != 1) {
1357 			BUG_ON(ret > 1);
1358 			if (!pages_done)
1359 				pages_done = ret;
1360 			break;
1361 		}
1362 		nr_pages--;
1363 		pages_done++;
1364 		if (!nr_pages)
1365 			break;
1366 		if (likely(pages))
1367 			pages++;
1368 		start += PAGE_SIZE;
1369 	}
1370 	if (lock_dropped && *locked) {
1371 		/*
1372 		 * We must let the caller know we temporarily dropped the lock
1373 		 * and so the critical section protected by it was lost.
1374 		 */
1375 		mmap_read_unlock(mm);
1376 		*locked = 0;
1377 	}
1378 	return pages_done;
1379 }
1380 
1381 /**
1382  * populate_vma_page_range() -  populate a range of pages in the vma.
1383  * @vma:   target vma
1384  * @start: start address
1385  * @end:   end address
1386  * @locked: whether the mmap_lock is still held
1387  *
1388  * This takes care of mlocking the pages too if VM_LOCKED is set.
1389  *
1390  * Return either number of pages pinned in the vma, or a negative error
1391  * code on error.
1392  *
1393  * vma->vm_mm->mmap_lock must be held.
1394  *
1395  * If @locked is NULL, it may be held for read or write and will
1396  * be unperturbed.
1397  *
1398  * If @locked is non-NULL, it must held for read only and may be
1399  * released.  If it's released, *@locked will be set to 0.
1400  */
1401 long populate_vma_page_range(struct vm_area_struct *vma,
1402 		unsigned long start, unsigned long end, int *locked)
1403 {
1404 	struct mm_struct *mm = vma->vm_mm;
1405 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1406 	int gup_flags;
1407 	long ret;
1408 
1409 	VM_BUG_ON(!PAGE_ALIGNED(start));
1410 	VM_BUG_ON(!PAGE_ALIGNED(end));
1411 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1412 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1413 	mmap_assert_locked(mm);
1414 
1415 	/*
1416 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1417 	 * faultin_page() to break COW, so it has no work to do here.
1418 	 */
1419 	if (vma->vm_flags & VM_LOCKONFAULT)
1420 		return nr_pages;
1421 
1422 	gup_flags = FOLL_TOUCH;
1423 	/*
1424 	 * We want to touch writable mappings with a write fault in order
1425 	 * to break COW, except for shared mappings because these don't COW
1426 	 * and we would not want to dirty them for nothing.
1427 	 */
1428 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1429 		gup_flags |= FOLL_WRITE;
1430 
1431 	/*
1432 	 * We want mlock to succeed for regions that have any permissions
1433 	 * other than PROT_NONE.
1434 	 */
1435 	if (vma_is_accessible(vma))
1436 		gup_flags |= FOLL_FORCE;
1437 
1438 	/*
1439 	 * We made sure addr is within a VMA, so the following will
1440 	 * not result in a stack expansion that recurses back here.
1441 	 */
1442 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1443 				NULL, NULL, locked);
1444 	lru_add_drain();
1445 	return ret;
1446 }
1447 
1448 /*
1449  * faultin_vma_page_range() - populate (prefault) page tables inside the
1450  *			      given VMA range readable/writable
1451  *
1452  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1453  *
1454  * @vma: target vma
1455  * @start: start address
1456  * @end: end address
1457  * @write: whether to prefault readable or writable
1458  * @locked: whether the mmap_lock is still held
1459  *
1460  * Returns either number of processed pages in the vma, or a negative error
1461  * code on error (see __get_user_pages()).
1462  *
1463  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1464  * covered by the VMA.
1465  *
1466  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1467  *
1468  * If @locked is non-NULL, it must held for read only and may be released.  If
1469  * it's released, *@locked will be set to 0.
1470  */
1471 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1472 			    unsigned long end, bool write, int *locked)
1473 {
1474 	struct mm_struct *mm = vma->vm_mm;
1475 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1476 	int gup_flags;
1477 	long ret;
1478 
1479 	VM_BUG_ON(!PAGE_ALIGNED(start));
1480 	VM_BUG_ON(!PAGE_ALIGNED(end));
1481 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1482 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1483 	mmap_assert_locked(mm);
1484 
1485 	/*
1486 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1487 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1488 	 *	       difference with !FOLL_FORCE, because the page is writable
1489 	 *	       in the page table.
1490 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1491 	 *		  a poisoned page.
1492 	 * !FOLL_FORCE: Require proper access permissions.
1493 	 */
1494 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1495 	if (write)
1496 		gup_flags |= FOLL_WRITE;
1497 
1498 	/*
1499 	 * We want to report -EINVAL instead of -EFAULT for any permission
1500 	 * problems or incompatible mappings.
1501 	 */
1502 	if (check_vma_flags(vma, gup_flags))
1503 		return -EINVAL;
1504 
1505 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1506 				NULL, NULL, locked);
1507 	lru_add_drain();
1508 	return ret;
1509 }
1510 
1511 /*
1512  * __mm_populate - populate and/or mlock pages within a range of address space.
1513  *
1514  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1515  * flags. VMAs must be already marked with the desired vm_flags, and
1516  * mmap_lock must not be held.
1517  */
1518 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1519 {
1520 	struct mm_struct *mm = current->mm;
1521 	unsigned long end, nstart, nend;
1522 	struct vm_area_struct *vma = NULL;
1523 	int locked = 0;
1524 	long ret = 0;
1525 
1526 	end = start + len;
1527 
1528 	for (nstart = start; nstart < end; nstart = nend) {
1529 		/*
1530 		 * We want to fault in pages for [nstart; end) address range.
1531 		 * Find first corresponding VMA.
1532 		 */
1533 		if (!locked) {
1534 			locked = 1;
1535 			mmap_read_lock(mm);
1536 			vma = find_vma(mm, nstart);
1537 		} else if (nstart >= vma->vm_end)
1538 			vma = vma->vm_next;
1539 		if (!vma || vma->vm_start >= end)
1540 			break;
1541 		/*
1542 		 * Set [nstart; nend) to intersection of desired address
1543 		 * range with the first VMA. Also, skip undesirable VMA types.
1544 		 */
1545 		nend = min(end, vma->vm_end);
1546 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1547 			continue;
1548 		if (nstart < vma->vm_start)
1549 			nstart = vma->vm_start;
1550 		/*
1551 		 * Now fault in a range of pages. populate_vma_page_range()
1552 		 * double checks the vma flags, so that it won't mlock pages
1553 		 * if the vma was already munlocked.
1554 		 */
1555 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1556 		if (ret < 0) {
1557 			if (ignore_errors) {
1558 				ret = 0;
1559 				continue;	/* continue at next VMA */
1560 			}
1561 			break;
1562 		}
1563 		nend = nstart + ret * PAGE_SIZE;
1564 		ret = 0;
1565 	}
1566 	if (locked)
1567 		mmap_read_unlock(mm);
1568 	return ret;	/* 0 or negative error code */
1569 }
1570 #else /* CONFIG_MMU */
1571 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1572 		unsigned long nr_pages, struct page **pages,
1573 		struct vm_area_struct **vmas, int *locked,
1574 		unsigned int foll_flags)
1575 {
1576 	struct vm_area_struct *vma;
1577 	unsigned long vm_flags;
1578 	long i;
1579 
1580 	/* calculate required read or write permissions.
1581 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1582 	 */
1583 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1584 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1585 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1586 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1587 
1588 	for (i = 0; i < nr_pages; i++) {
1589 		vma = find_vma(mm, start);
1590 		if (!vma)
1591 			goto finish_or_fault;
1592 
1593 		/* protect what we can, including chardevs */
1594 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1595 		    !(vm_flags & vma->vm_flags))
1596 			goto finish_or_fault;
1597 
1598 		if (pages) {
1599 			pages[i] = virt_to_page(start);
1600 			if (pages[i])
1601 				get_page(pages[i]);
1602 		}
1603 		if (vmas)
1604 			vmas[i] = vma;
1605 		start = (start + PAGE_SIZE) & PAGE_MASK;
1606 	}
1607 
1608 	return i;
1609 
1610 finish_or_fault:
1611 	return i ? : -EFAULT;
1612 }
1613 #endif /* !CONFIG_MMU */
1614 
1615 /**
1616  * fault_in_writeable - fault in userspace address range for writing
1617  * @uaddr: start of address range
1618  * @size: size of address range
1619  *
1620  * Returns the number of bytes not faulted in (like copy_to_user() and
1621  * copy_from_user()).
1622  */
1623 size_t fault_in_writeable(char __user *uaddr, size_t size)
1624 {
1625 	char __user *start = uaddr, *end;
1626 
1627 	if (unlikely(size == 0))
1628 		return 0;
1629 	if (!user_write_access_begin(uaddr, size))
1630 		return size;
1631 	if (!PAGE_ALIGNED(uaddr)) {
1632 		unsafe_put_user(0, uaddr, out);
1633 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1634 	}
1635 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1636 	if (unlikely(end < start))
1637 		end = NULL;
1638 	while (uaddr != end) {
1639 		unsafe_put_user(0, uaddr, out);
1640 		uaddr += PAGE_SIZE;
1641 	}
1642 
1643 out:
1644 	user_write_access_end();
1645 	if (size > uaddr - start)
1646 		return size - (uaddr - start);
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL(fault_in_writeable);
1650 
1651 /**
1652  * fault_in_subpage_writeable - fault in an address range for writing
1653  * @uaddr: start of address range
1654  * @size: size of address range
1655  *
1656  * Fault in a user address range for writing while checking for permissions at
1657  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1658  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1659  *
1660  * Returns the number of bytes not faulted in (like copy_to_user() and
1661  * copy_from_user()).
1662  */
1663 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1664 {
1665 	size_t faulted_in;
1666 
1667 	/*
1668 	 * Attempt faulting in at page granularity first for page table
1669 	 * permission checking. The arch-specific probe_subpage_writeable()
1670 	 * functions may not check for this.
1671 	 */
1672 	faulted_in = size - fault_in_writeable(uaddr, size);
1673 	if (faulted_in)
1674 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1675 
1676 	return size - faulted_in;
1677 }
1678 EXPORT_SYMBOL(fault_in_subpage_writeable);
1679 
1680 /*
1681  * fault_in_safe_writeable - fault in an address range for writing
1682  * @uaddr: start of address range
1683  * @size: length of address range
1684  *
1685  * Faults in an address range for writing.  This is primarily useful when we
1686  * already know that some or all of the pages in the address range aren't in
1687  * memory.
1688  *
1689  * Unlike fault_in_writeable(), this function is non-destructive.
1690  *
1691  * Note that we don't pin or otherwise hold the pages referenced that we fault
1692  * in.  There's no guarantee that they'll stay in memory for any duration of
1693  * time.
1694  *
1695  * Returns the number of bytes not faulted in, like copy_to_user() and
1696  * copy_from_user().
1697  */
1698 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1699 {
1700 	unsigned long start = (unsigned long)uaddr, end;
1701 	struct mm_struct *mm = current->mm;
1702 	bool unlocked = false;
1703 
1704 	if (unlikely(size == 0))
1705 		return 0;
1706 	end = PAGE_ALIGN(start + size);
1707 	if (end < start)
1708 		end = 0;
1709 
1710 	mmap_read_lock(mm);
1711 	do {
1712 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1713 			break;
1714 		start = (start + PAGE_SIZE) & PAGE_MASK;
1715 	} while (start != end);
1716 	mmap_read_unlock(mm);
1717 
1718 	if (size > (unsigned long)uaddr - start)
1719 		return size - ((unsigned long)uaddr - start);
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL(fault_in_safe_writeable);
1723 
1724 /**
1725  * fault_in_readable - fault in userspace address range for reading
1726  * @uaddr: start of user address range
1727  * @size: size of user address range
1728  *
1729  * Returns the number of bytes not faulted in (like copy_to_user() and
1730  * copy_from_user()).
1731  */
1732 size_t fault_in_readable(const char __user *uaddr, size_t size)
1733 {
1734 	const char __user *start = uaddr, *end;
1735 	volatile char c;
1736 
1737 	if (unlikely(size == 0))
1738 		return 0;
1739 	if (!user_read_access_begin(uaddr, size))
1740 		return size;
1741 	if (!PAGE_ALIGNED(uaddr)) {
1742 		unsafe_get_user(c, uaddr, out);
1743 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1744 	}
1745 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1746 	if (unlikely(end < start))
1747 		end = NULL;
1748 	while (uaddr != end) {
1749 		unsafe_get_user(c, uaddr, out);
1750 		uaddr += PAGE_SIZE;
1751 	}
1752 
1753 out:
1754 	user_read_access_end();
1755 	(void)c;
1756 	if (size > uaddr - start)
1757 		return size - (uaddr - start);
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL(fault_in_readable);
1761 
1762 /**
1763  * get_dump_page() - pin user page in memory while writing it to core dump
1764  * @addr: user address
1765  *
1766  * Returns struct page pointer of user page pinned for dump,
1767  * to be freed afterwards by put_page().
1768  *
1769  * Returns NULL on any kind of failure - a hole must then be inserted into
1770  * the corefile, to preserve alignment with its headers; and also returns
1771  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1772  * allowing a hole to be left in the corefile to save disk space.
1773  *
1774  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1775  */
1776 #ifdef CONFIG_ELF_CORE
1777 struct page *get_dump_page(unsigned long addr)
1778 {
1779 	struct mm_struct *mm = current->mm;
1780 	struct page *page;
1781 	int locked = 1;
1782 	int ret;
1783 
1784 	if (mmap_read_lock_killable(mm))
1785 		return NULL;
1786 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1787 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1788 	if (locked)
1789 		mmap_read_unlock(mm);
1790 	return (ret == 1) ? page : NULL;
1791 }
1792 #endif /* CONFIG_ELF_CORE */
1793 
1794 #ifdef CONFIG_MIGRATION
1795 /*
1796  * Check whether all pages are pinnable, if so return number of pages.  If some
1797  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1798  * pages were migrated, or if some pages were not successfully isolated.
1799  * Return negative error if migration fails.
1800  */
1801 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1802 					    struct page **pages,
1803 					    unsigned int gup_flags)
1804 {
1805 	unsigned long isolation_error_count = 0, i;
1806 	struct folio *prev_folio = NULL;
1807 	LIST_HEAD(movable_page_list);
1808 	bool drain_allow = true;
1809 	int ret = 0;
1810 
1811 	for (i = 0; i < nr_pages; i++) {
1812 		struct folio *folio = page_folio(pages[i]);
1813 
1814 		if (folio == prev_folio)
1815 			continue;
1816 		prev_folio = folio;
1817 
1818 		if (folio_is_pinnable(folio))
1819 			continue;
1820 
1821 		/*
1822 		 * Try to move out any movable page before pinning the range.
1823 		 */
1824 		if (folio_test_hugetlb(folio)) {
1825 			if (!isolate_huge_page(&folio->page,
1826 						&movable_page_list))
1827 				isolation_error_count++;
1828 			continue;
1829 		}
1830 
1831 		if (!folio_test_lru(folio) && drain_allow) {
1832 			lru_add_drain_all();
1833 			drain_allow = false;
1834 		}
1835 
1836 		if (folio_isolate_lru(folio)) {
1837 			isolation_error_count++;
1838 			continue;
1839 		}
1840 		list_add_tail(&folio->lru, &movable_page_list);
1841 		node_stat_mod_folio(folio,
1842 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1843 				    folio_nr_pages(folio));
1844 	}
1845 
1846 	if (!list_empty(&movable_page_list) || isolation_error_count)
1847 		goto unpin_pages;
1848 
1849 	/*
1850 	 * If list is empty, and no isolation errors, means that all pages are
1851 	 * in the correct zone.
1852 	 */
1853 	return nr_pages;
1854 
1855 unpin_pages:
1856 	if (gup_flags & FOLL_PIN) {
1857 		unpin_user_pages(pages, nr_pages);
1858 	} else {
1859 		for (i = 0; i < nr_pages; i++)
1860 			put_page(pages[i]);
1861 	}
1862 
1863 	if (!list_empty(&movable_page_list)) {
1864 		struct migration_target_control mtc = {
1865 			.nid = NUMA_NO_NODE,
1866 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1867 		};
1868 
1869 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1870 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1871 				    MR_LONGTERM_PIN, NULL);
1872 		if (ret > 0) /* number of pages not migrated */
1873 			ret = -ENOMEM;
1874 	}
1875 
1876 	if (ret && !list_empty(&movable_page_list))
1877 		putback_movable_pages(&movable_page_list);
1878 	return ret;
1879 }
1880 #else
1881 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1882 					    struct page **pages,
1883 					    unsigned int gup_flags)
1884 {
1885 	return nr_pages;
1886 }
1887 #endif /* CONFIG_MIGRATION */
1888 
1889 /*
1890  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1891  * allows us to process the FOLL_LONGTERM flag.
1892  */
1893 static long __gup_longterm_locked(struct mm_struct *mm,
1894 				  unsigned long start,
1895 				  unsigned long nr_pages,
1896 				  struct page **pages,
1897 				  struct vm_area_struct **vmas,
1898 				  unsigned int gup_flags)
1899 {
1900 	unsigned int flags;
1901 	long rc;
1902 
1903 	if (!(gup_flags & FOLL_LONGTERM))
1904 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1905 					       NULL, gup_flags);
1906 	flags = memalloc_pin_save();
1907 	do {
1908 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1909 					     NULL, gup_flags);
1910 		if (rc <= 0)
1911 			break;
1912 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1913 	} while (!rc);
1914 	memalloc_pin_restore(flags);
1915 
1916 	return rc;
1917 }
1918 
1919 static bool is_valid_gup_flags(unsigned int gup_flags)
1920 {
1921 	/*
1922 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1923 	 * never directly by the caller, so enforce that with an assertion:
1924 	 */
1925 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1926 		return false;
1927 	/*
1928 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1929 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1930 	 * FOLL_PIN.
1931 	 */
1932 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1933 		return false;
1934 
1935 	return true;
1936 }
1937 
1938 #ifdef CONFIG_MMU
1939 static long __get_user_pages_remote(struct mm_struct *mm,
1940 				    unsigned long start, unsigned long nr_pages,
1941 				    unsigned int gup_flags, struct page **pages,
1942 				    struct vm_area_struct **vmas, int *locked)
1943 {
1944 	/*
1945 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1946 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1947 	 * vmas. However, this only comes up if locked is set, and there are
1948 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1949 	 * allow what we can.
1950 	 */
1951 	if (gup_flags & FOLL_LONGTERM) {
1952 		if (WARN_ON_ONCE(locked))
1953 			return -EINVAL;
1954 		/*
1955 		 * This will check the vmas (even if our vmas arg is NULL)
1956 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1957 		 */
1958 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1959 					     vmas, gup_flags | FOLL_TOUCH |
1960 					     FOLL_REMOTE);
1961 	}
1962 
1963 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1964 				       locked,
1965 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1966 }
1967 
1968 /**
1969  * get_user_pages_remote() - pin user pages in memory
1970  * @mm:		mm_struct of target mm
1971  * @start:	starting user address
1972  * @nr_pages:	number of pages from start to pin
1973  * @gup_flags:	flags modifying lookup behaviour
1974  * @pages:	array that receives pointers to the pages pinned.
1975  *		Should be at least nr_pages long. Or NULL, if caller
1976  *		only intends to ensure the pages are faulted in.
1977  * @vmas:	array of pointers to vmas corresponding to each page.
1978  *		Or NULL if the caller does not require them.
1979  * @locked:	pointer to lock flag indicating whether lock is held and
1980  *		subsequently whether VM_FAULT_RETRY functionality can be
1981  *		utilised. Lock must initially be held.
1982  *
1983  * Returns either number of pages pinned (which may be less than the
1984  * number requested), or an error. Details about the return value:
1985  *
1986  * -- If nr_pages is 0, returns 0.
1987  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1988  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1989  *    pages pinned. Again, this may be less than nr_pages.
1990  *
1991  * The caller is responsible for releasing returned @pages, via put_page().
1992  *
1993  * @vmas are valid only as long as mmap_lock is held.
1994  *
1995  * Must be called with mmap_lock held for read or write.
1996  *
1997  * get_user_pages_remote walks a process's page tables and takes a reference
1998  * to each struct page that each user address corresponds to at a given
1999  * instant. That is, it takes the page that would be accessed if a user
2000  * thread accesses the given user virtual address at that instant.
2001  *
2002  * This does not guarantee that the page exists in the user mappings when
2003  * get_user_pages_remote returns, and there may even be a completely different
2004  * page there in some cases (eg. if mmapped pagecache has been invalidated
2005  * and subsequently re faulted). However it does guarantee that the page
2006  * won't be freed completely. And mostly callers simply care that the page
2007  * contains data that was valid *at some point in time*. Typically, an IO
2008  * or similar operation cannot guarantee anything stronger anyway because
2009  * locks can't be held over the syscall boundary.
2010  *
2011  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2012  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2013  * be called after the page is finished with, and before put_page is called.
2014  *
2015  * get_user_pages_remote is typically used for fewer-copy IO operations,
2016  * to get a handle on the memory by some means other than accesses
2017  * via the user virtual addresses. The pages may be submitted for
2018  * DMA to devices or accessed via their kernel linear mapping (via the
2019  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2020  *
2021  * See also get_user_pages_fast, for performance critical applications.
2022  *
2023  * get_user_pages_remote should be phased out in favor of
2024  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2025  * should use get_user_pages_remote because it cannot pass
2026  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2027  */
2028 long get_user_pages_remote(struct mm_struct *mm,
2029 		unsigned long start, unsigned long nr_pages,
2030 		unsigned int gup_flags, struct page **pages,
2031 		struct vm_area_struct **vmas, int *locked)
2032 {
2033 	if (!is_valid_gup_flags(gup_flags))
2034 		return -EINVAL;
2035 
2036 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2037 				       pages, vmas, locked);
2038 }
2039 EXPORT_SYMBOL(get_user_pages_remote);
2040 
2041 #else /* CONFIG_MMU */
2042 long get_user_pages_remote(struct mm_struct *mm,
2043 			   unsigned long start, unsigned long nr_pages,
2044 			   unsigned int gup_flags, struct page **pages,
2045 			   struct vm_area_struct **vmas, int *locked)
2046 {
2047 	return 0;
2048 }
2049 
2050 static long __get_user_pages_remote(struct mm_struct *mm,
2051 				    unsigned long start, unsigned long nr_pages,
2052 				    unsigned int gup_flags, struct page **pages,
2053 				    struct vm_area_struct **vmas, int *locked)
2054 {
2055 	return 0;
2056 }
2057 #endif /* !CONFIG_MMU */
2058 
2059 /**
2060  * get_user_pages() - pin user pages in memory
2061  * @start:      starting user address
2062  * @nr_pages:   number of pages from start to pin
2063  * @gup_flags:  flags modifying lookup behaviour
2064  * @pages:      array that receives pointers to the pages pinned.
2065  *              Should be at least nr_pages long. Or NULL, if caller
2066  *              only intends to ensure the pages are faulted in.
2067  * @vmas:       array of pointers to vmas corresponding to each page.
2068  *              Or NULL if the caller does not require them.
2069  *
2070  * This is the same as get_user_pages_remote(), just with a less-flexible
2071  * calling convention where we assume that the mm being operated on belongs to
2072  * the current task, and doesn't allow passing of a locked parameter.  We also
2073  * obviously don't pass FOLL_REMOTE in here.
2074  */
2075 long get_user_pages(unsigned long start, unsigned long nr_pages,
2076 		unsigned int gup_flags, struct page **pages,
2077 		struct vm_area_struct **vmas)
2078 {
2079 	if (!is_valid_gup_flags(gup_flags))
2080 		return -EINVAL;
2081 
2082 	return __gup_longterm_locked(current->mm, start, nr_pages,
2083 				     pages, vmas, gup_flags | FOLL_TOUCH);
2084 }
2085 EXPORT_SYMBOL(get_user_pages);
2086 
2087 /*
2088  * get_user_pages_unlocked() is suitable to replace the form:
2089  *
2090  *      mmap_read_lock(mm);
2091  *      get_user_pages(mm, ..., pages, NULL);
2092  *      mmap_read_unlock(mm);
2093  *
2094  *  with:
2095  *
2096  *      get_user_pages_unlocked(mm, ..., pages);
2097  *
2098  * It is functionally equivalent to get_user_pages_fast so
2099  * get_user_pages_fast should be used instead if specific gup_flags
2100  * (e.g. FOLL_FORCE) are not required.
2101  */
2102 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2103 			     struct page **pages, unsigned int gup_flags)
2104 {
2105 	struct mm_struct *mm = current->mm;
2106 	int locked = 1;
2107 	long ret;
2108 
2109 	/*
2110 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2111 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2112 	 * vmas.  As there are no users of this flag in this call we simply
2113 	 * disallow this option for now.
2114 	 */
2115 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2116 		return -EINVAL;
2117 
2118 	mmap_read_lock(mm);
2119 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2120 				      &locked, gup_flags | FOLL_TOUCH);
2121 	if (locked)
2122 		mmap_read_unlock(mm);
2123 	return ret;
2124 }
2125 EXPORT_SYMBOL(get_user_pages_unlocked);
2126 
2127 /*
2128  * Fast GUP
2129  *
2130  * get_user_pages_fast attempts to pin user pages by walking the page
2131  * tables directly and avoids taking locks. Thus the walker needs to be
2132  * protected from page table pages being freed from under it, and should
2133  * block any THP splits.
2134  *
2135  * One way to achieve this is to have the walker disable interrupts, and
2136  * rely on IPIs from the TLB flushing code blocking before the page table
2137  * pages are freed. This is unsuitable for architectures that do not need
2138  * to broadcast an IPI when invalidating TLBs.
2139  *
2140  * Another way to achieve this is to batch up page table containing pages
2141  * belonging to more than one mm_user, then rcu_sched a callback to free those
2142  * pages. Disabling interrupts will allow the fast_gup walker to both block
2143  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2144  * (which is a relatively rare event). The code below adopts this strategy.
2145  *
2146  * Before activating this code, please be aware that the following assumptions
2147  * are currently made:
2148  *
2149  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2150  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2151  *
2152  *  *) ptes can be read atomically by the architecture.
2153  *
2154  *  *) access_ok is sufficient to validate userspace address ranges.
2155  *
2156  * The last two assumptions can be relaxed by the addition of helper functions.
2157  *
2158  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2159  */
2160 #ifdef CONFIG_HAVE_FAST_GUP
2161 
2162 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2163 					    unsigned int flags,
2164 					    struct page **pages)
2165 {
2166 	while ((*nr) - nr_start) {
2167 		struct page *page = pages[--(*nr)];
2168 
2169 		ClearPageReferenced(page);
2170 		if (flags & FOLL_PIN)
2171 			unpin_user_page(page);
2172 		else
2173 			put_page(page);
2174 	}
2175 }
2176 
2177 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2178 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2179 			 unsigned int flags, struct page **pages, int *nr)
2180 {
2181 	struct dev_pagemap *pgmap = NULL;
2182 	int nr_start = *nr, ret = 0;
2183 	pte_t *ptep, *ptem;
2184 
2185 	ptem = ptep = pte_offset_map(&pmd, addr);
2186 	do {
2187 		pte_t pte = ptep_get_lockless(ptep);
2188 		struct page *page;
2189 		struct folio *folio;
2190 
2191 		/*
2192 		 * Similar to the PMD case below, NUMA hinting must take slow
2193 		 * path using the pte_protnone check.
2194 		 */
2195 		if (pte_protnone(pte))
2196 			goto pte_unmap;
2197 
2198 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2199 			goto pte_unmap;
2200 
2201 		if (pte_devmap(pte)) {
2202 			if (unlikely(flags & FOLL_LONGTERM))
2203 				goto pte_unmap;
2204 
2205 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2206 			if (unlikely(!pgmap)) {
2207 				undo_dev_pagemap(nr, nr_start, flags, pages);
2208 				goto pte_unmap;
2209 			}
2210 		} else if (pte_special(pte))
2211 			goto pte_unmap;
2212 
2213 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2214 		page = pte_page(pte);
2215 
2216 		folio = try_grab_folio(page, 1, flags);
2217 		if (!folio)
2218 			goto pte_unmap;
2219 
2220 		if (unlikely(page_is_secretmem(page))) {
2221 			gup_put_folio(folio, 1, flags);
2222 			goto pte_unmap;
2223 		}
2224 
2225 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2226 			gup_put_folio(folio, 1, flags);
2227 			goto pte_unmap;
2228 		}
2229 
2230 		/*
2231 		 * We need to make the page accessible if and only if we are
2232 		 * going to access its content (the FOLL_PIN case).  Please
2233 		 * see Documentation/core-api/pin_user_pages.rst for
2234 		 * details.
2235 		 */
2236 		if (flags & FOLL_PIN) {
2237 			ret = arch_make_page_accessible(page);
2238 			if (ret) {
2239 				gup_put_folio(folio, 1, flags);
2240 				goto pte_unmap;
2241 			}
2242 		}
2243 		folio_set_referenced(folio);
2244 		pages[*nr] = page;
2245 		(*nr)++;
2246 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2247 
2248 	ret = 1;
2249 
2250 pte_unmap:
2251 	if (pgmap)
2252 		put_dev_pagemap(pgmap);
2253 	pte_unmap(ptem);
2254 	return ret;
2255 }
2256 #else
2257 
2258 /*
2259  * If we can't determine whether or not a pte is special, then fail immediately
2260  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2261  * to be special.
2262  *
2263  * For a futex to be placed on a THP tail page, get_futex_key requires a
2264  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2265  * useful to have gup_huge_pmd even if we can't operate on ptes.
2266  */
2267 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2268 			 unsigned int flags, struct page **pages, int *nr)
2269 {
2270 	return 0;
2271 }
2272 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2273 
2274 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2275 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2276 			     unsigned long end, unsigned int flags,
2277 			     struct page **pages, int *nr)
2278 {
2279 	int nr_start = *nr;
2280 	struct dev_pagemap *pgmap = NULL;
2281 
2282 	do {
2283 		struct page *page = pfn_to_page(pfn);
2284 
2285 		pgmap = get_dev_pagemap(pfn, pgmap);
2286 		if (unlikely(!pgmap)) {
2287 			undo_dev_pagemap(nr, nr_start, flags, pages);
2288 			break;
2289 		}
2290 		SetPageReferenced(page);
2291 		pages[*nr] = page;
2292 		if (unlikely(!try_grab_page(page, flags))) {
2293 			undo_dev_pagemap(nr, nr_start, flags, pages);
2294 			break;
2295 		}
2296 		(*nr)++;
2297 		pfn++;
2298 	} while (addr += PAGE_SIZE, addr != end);
2299 
2300 	put_dev_pagemap(pgmap);
2301 	return addr == end;
2302 }
2303 
2304 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2305 				 unsigned long end, unsigned int flags,
2306 				 struct page **pages, int *nr)
2307 {
2308 	unsigned long fault_pfn;
2309 	int nr_start = *nr;
2310 
2311 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2312 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2313 		return 0;
2314 
2315 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2316 		undo_dev_pagemap(nr, nr_start, flags, pages);
2317 		return 0;
2318 	}
2319 	return 1;
2320 }
2321 
2322 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2323 				 unsigned long end, unsigned int flags,
2324 				 struct page **pages, int *nr)
2325 {
2326 	unsigned long fault_pfn;
2327 	int nr_start = *nr;
2328 
2329 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2330 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2331 		return 0;
2332 
2333 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2334 		undo_dev_pagemap(nr, nr_start, flags, pages);
2335 		return 0;
2336 	}
2337 	return 1;
2338 }
2339 #else
2340 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2341 				 unsigned long end, unsigned int flags,
2342 				 struct page **pages, int *nr)
2343 {
2344 	BUILD_BUG();
2345 	return 0;
2346 }
2347 
2348 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2349 				 unsigned long end, unsigned int flags,
2350 				 struct page **pages, int *nr)
2351 {
2352 	BUILD_BUG();
2353 	return 0;
2354 }
2355 #endif
2356 
2357 static int record_subpages(struct page *page, unsigned long addr,
2358 			   unsigned long end, struct page **pages)
2359 {
2360 	int nr;
2361 
2362 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2363 		pages[nr] = nth_page(page, nr);
2364 
2365 	return nr;
2366 }
2367 
2368 #ifdef CONFIG_ARCH_HAS_HUGEPD
2369 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2370 				      unsigned long sz)
2371 {
2372 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2373 	return (__boundary - 1 < end - 1) ? __boundary : end;
2374 }
2375 
2376 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2377 		       unsigned long end, unsigned int flags,
2378 		       struct page **pages, int *nr)
2379 {
2380 	unsigned long pte_end;
2381 	struct page *page;
2382 	struct folio *folio;
2383 	pte_t pte;
2384 	int refs;
2385 
2386 	pte_end = (addr + sz) & ~(sz-1);
2387 	if (pte_end < end)
2388 		end = pte_end;
2389 
2390 	pte = huge_ptep_get(ptep);
2391 
2392 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2393 		return 0;
2394 
2395 	/* hugepages are never "special" */
2396 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2397 
2398 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2399 	refs = record_subpages(page, addr, end, pages + *nr);
2400 
2401 	folio = try_grab_folio(page, refs, flags);
2402 	if (!folio)
2403 		return 0;
2404 
2405 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2406 		gup_put_folio(folio, refs, flags);
2407 		return 0;
2408 	}
2409 
2410 	*nr += refs;
2411 	folio_set_referenced(folio);
2412 	return 1;
2413 }
2414 
2415 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2416 		unsigned int pdshift, unsigned long end, unsigned int flags,
2417 		struct page **pages, int *nr)
2418 {
2419 	pte_t *ptep;
2420 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2421 	unsigned long next;
2422 
2423 	ptep = hugepte_offset(hugepd, addr, pdshift);
2424 	do {
2425 		next = hugepte_addr_end(addr, end, sz);
2426 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2427 			return 0;
2428 	} while (ptep++, addr = next, addr != end);
2429 
2430 	return 1;
2431 }
2432 #else
2433 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2434 		unsigned int pdshift, unsigned long end, unsigned int flags,
2435 		struct page **pages, int *nr)
2436 {
2437 	return 0;
2438 }
2439 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2440 
2441 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2442 			unsigned long end, unsigned int flags,
2443 			struct page **pages, int *nr)
2444 {
2445 	struct page *page;
2446 	struct folio *folio;
2447 	int refs;
2448 
2449 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2450 		return 0;
2451 
2452 	if (pmd_devmap(orig)) {
2453 		if (unlikely(flags & FOLL_LONGTERM))
2454 			return 0;
2455 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2456 					     pages, nr);
2457 	}
2458 
2459 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2460 	refs = record_subpages(page, addr, end, pages + *nr);
2461 
2462 	folio = try_grab_folio(page, refs, flags);
2463 	if (!folio)
2464 		return 0;
2465 
2466 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2467 		gup_put_folio(folio, refs, flags);
2468 		return 0;
2469 	}
2470 
2471 	*nr += refs;
2472 	folio_set_referenced(folio);
2473 	return 1;
2474 }
2475 
2476 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2477 			unsigned long end, unsigned int flags,
2478 			struct page **pages, int *nr)
2479 {
2480 	struct page *page;
2481 	struct folio *folio;
2482 	int refs;
2483 
2484 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2485 		return 0;
2486 
2487 	if (pud_devmap(orig)) {
2488 		if (unlikely(flags & FOLL_LONGTERM))
2489 			return 0;
2490 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2491 					     pages, nr);
2492 	}
2493 
2494 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2495 	refs = record_subpages(page, addr, end, pages + *nr);
2496 
2497 	folio = try_grab_folio(page, refs, flags);
2498 	if (!folio)
2499 		return 0;
2500 
2501 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2502 		gup_put_folio(folio, refs, flags);
2503 		return 0;
2504 	}
2505 
2506 	*nr += refs;
2507 	folio_set_referenced(folio);
2508 	return 1;
2509 }
2510 
2511 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2512 			unsigned long end, unsigned int flags,
2513 			struct page **pages, int *nr)
2514 {
2515 	int refs;
2516 	struct page *page;
2517 	struct folio *folio;
2518 
2519 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2520 		return 0;
2521 
2522 	BUILD_BUG_ON(pgd_devmap(orig));
2523 
2524 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2525 	refs = record_subpages(page, addr, end, pages + *nr);
2526 
2527 	folio = try_grab_folio(page, refs, flags);
2528 	if (!folio)
2529 		return 0;
2530 
2531 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2532 		gup_put_folio(folio, refs, flags);
2533 		return 0;
2534 	}
2535 
2536 	*nr += refs;
2537 	folio_set_referenced(folio);
2538 	return 1;
2539 }
2540 
2541 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2542 		unsigned int flags, struct page **pages, int *nr)
2543 {
2544 	unsigned long next;
2545 	pmd_t *pmdp;
2546 
2547 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2548 	do {
2549 		pmd_t pmd = READ_ONCE(*pmdp);
2550 
2551 		next = pmd_addr_end(addr, end);
2552 		if (!pmd_present(pmd))
2553 			return 0;
2554 
2555 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2556 			     pmd_devmap(pmd))) {
2557 			/*
2558 			 * NUMA hinting faults need to be handled in the GUP
2559 			 * slowpath for accounting purposes and so that they
2560 			 * can be serialised against THP migration.
2561 			 */
2562 			if (pmd_protnone(pmd))
2563 				return 0;
2564 
2565 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2566 				pages, nr))
2567 				return 0;
2568 
2569 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2570 			/*
2571 			 * architecture have different format for hugetlbfs
2572 			 * pmd format and THP pmd format
2573 			 */
2574 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2575 					 PMD_SHIFT, next, flags, pages, nr))
2576 				return 0;
2577 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2578 			return 0;
2579 	} while (pmdp++, addr = next, addr != end);
2580 
2581 	return 1;
2582 }
2583 
2584 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2585 			 unsigned int flags, struct page **pages, int *nr)
2586 {
2587 	unsigned long next;
2588 	pud_t *pudp;
2589 
2590 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2591 	do {
2592 		pud_t pud = READ_ONCE(*pudp);
2593 
2594 		next = pud_addr_end(addr, end);
2595 		if (unlikely(!pud_present(pud)))
2596 			return 0;
2597 		if (unlikely(pud_huge(pud))) {
2598 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2599 					  pages, nr))
2600 				return 0;
2601 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2602 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2603 					 PUD_SHIFT, next, flags, pages, nr))
2604 				return 0;
2605 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2606 			return 0;
2607 	} while (pudp++, addr = next, addr != end);
2608 
2609 	return 1;
2610 }
2611 
2612 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2613 			 unsigned int flags, struct page **pages, int *nr)
2614 {
2615 	unsigned long next;
2616 	p4d_t *p4dp;
2617 
2618 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2619 	do {
2620 		p4d_t p4d = READ_ONCE(*p4dp);
2621 
2622 		next = p4d_addr_end(addr, end);
2623 		if (p4d_none(p4d))
2624 			return 0;
2625 		BUILD_BUG_ON(p4d_huge(p4d));
2626 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2627 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2628 					 P4D_SHIFT, next, flags, pages, nr))
2629 				return 0;
2630 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2631 			return 0;
2632 	} while (p4dp++, addr = next, addr != end);
2633 
2634 	return 1;
2635 }
2636 
2637 static void gup_pgd_range(unsigned long addr, unsigned long end,
2638 		unsigned int flags, struct page **pages, int *nr)
2639 {
2640 	unsigned long next;
2641 	pgd_t *pgdp;
2642 
2643 	pgdp = pgd_offset(current->mm, addr);
2644 	do {
2645 		pgd_t pgd = READ_ONCE(*pgdp);
2646 
2647 		next = pgd_addr_end(addr, end);
2648 		if (pgd_none(pgd))
2649 			return;
2650 		if (unlikely(pgd_huge(pgd))) {
2651 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2652 					  pages, nr))
2653 				return;
2654 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2655 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2656 					 PGDIR_SHIFT, next, flags, pages, nr))
2657 				return;
2658 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2659 			return;
2660 	} while (pgdp++, addr = next, addr != end);
2661 }
2662 #else
2663 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2664 		unsigned int flags, struct page **pages, int *nr)
2665 {
2666 }
2667 #endif /* CONFIG_HAVE_FAST_GUP */
2668 
2669 #ifndef gup_fast_permitted
2670 /*
2671  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2672  * we need to fall back to the slow version:
2673  */
2674 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2675 {
2676 	return true;
2677 }
2678 #endif
2679 
2680 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2681 				   unsigned int gup_flags, struct page **pages)
2682 {
2683 	int ret;
2684 
2685 	/*
2686 	 * FIXME: FOLL_LONGTERM does not work with
2687 	 * get_user_pages_unlocked() (see comments in that function)
2688 	 */
2689 	if (gup_flags & FOLL_LONGTERM) {
2690 		mmap_read_lock(current->mm);
2691 		ret = __gup_longterm_locked(current->mm,
2692 					    start, nr_pages,
2693 					    pages, NULL, gup_flags);
2694 		mmap_read_unlock(current->mm);
2695 	} else {
2696 		ret = get_user_pages_unlocked(start, nr_pages,
2697 					      pages, gup_flags);
2698 	}
2699 
2700 	return ret;
2701 }
2702 
2703 static unsigned long lockless_pages_from_mm(unsigned long start,
2704 					    unsigned long end,
2705 					    unsigned int gup_flags,
2706 					    struct page **pages)
2707 {
2708 	unsigned long flags;
2709 	int nr_pinned = 0;
2710 	unsigned seq;
2711 
2712 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2713 	    !gup_fast_permitted(start, end))
2714 		return 0;
2715 
2716 	if (gup_flags & FOLL_PIN) {
2717 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2718 		if (seq & 1)
2719 			return 0;
2720 	}
2721 
2722 	/*
2723 	 * Disable interrupts. The nested form is used, in order to allow full,
2724 	 * general purpose use of this routine.
2725 	 *
2726 	 * With interrupts disabled, we block page table pages from being freed
2727 	 * from under us. See struct mmu_table_batch comments in
2728 	 * include/asm-generic/tlb.h for more details.
2729 	 *
2730 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2731 	 * that come from THPs splitting.
2732 	 */
2733 	local_irq_save(flags);
2734 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2735 	local_irq_restore(flags);
2736 
2737 	/*
2738 	 * When pinning pages for DMA there could be a concurrent write protect
2739 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2740 	 */
2741 	if (gup_flags & FOLL_PIN) {
2742 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2743 			unpin_user_pages(pages, nr_pinned);
2744 			return 0;
2745 		}
2746 	}
2747 	return nr_pinned;
2748 }
2749 
2750 static int internal_get_user_pages_fast(unsigned long start,
2751 					unsigned long nr_pages,
2752 					unsigned int gup_flags,
2753 					struct page **pages)
2754 {
2755 	unsigned long len, end;
2756 	unsigned long nr_pinned;
2757 	int ret;
2758 
2759 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2760 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2761 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2762 		return -EINVAL;
2763 
2764 	if (gup_flags & FOLL_PIN)
2765 		mm_set_has_pinned_flag(&current->mm->flags);
2766 
2767 	if (!(gup_flags & FOLL_FAST_ONLY))
2768 		might_lock_read(&current->mm->mmap_lock);
2769 
2770 	start = untagged_addr(start) & PAGE_MASK;
2771 	len = nr_pages << PAGE_SHIFT;
2772 	if (check_add_overflow(start, len, &end))
2773 		return 0;
2774 	if (unlikely(!access_ok((void __user *)start, len)))
2775 		return -EFAULT;
2776 
2777 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2778 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2779 		return nr_pinned;
2780 
2781 	/* Slow path: try to get the remaining pages with get_user_pages */
2782 	start += nr_pinned << PAGE_SHIFT;
2783 	pages += nr_pinned;
2784 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2785 				      pages);
2786 	if (ret < 0) {
2787 		/*
2788 		 * The caller has to unpin the pages we already pinned so
2789 		 * returning -errno is not an option
2790 		 */
2791 		if (nr_pinned)
2792 			return nr_pinned;
2793 		return ret;
2794 	}
2795 	return ret + nr_pinned;
2796 }
2797 
2798 /**
2799  * get_user_pages_fast_only() - pin user pages in memory
2800  * @start:      starting user address
2801  * @nr_pages:   number of pages from start to pin
2802  * @gup_flags:  flags modifying pin behaviour
2803  * @pages:      array that receives pointers to the pages pinned.
2804  *              Should be at least nr_pages long.
2805  *
2806  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2807  * the regular GUP.
2808  * Note a difference with get_user_pages_fast: this always returns the
2809  * number of pages pinned, 0 if no pages were pinned.
2810  *
2811  * If the architecture does not support this function, simply return with no
2812  * pages pinned.
2813  *
2814  * Careful, careful! COW breaking can go either way, so a non-write
2815  * access can get ambiguous page results. If you call this function without
2816  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2817  */
2818 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2819 			     unsigned int gup_flags, struct page **pages)
2820 {
2821 	int nr_pinned;
2822 	/*
2823 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2824 	 * because gup fast is always a "pin with a +1 page refcount" request.
2825 	 *
2826 	 * FOLL_FAST_ONLY is required in order to match the API description of
2827 	 * this routine: no fall back to regular ("slow") GUP.
2828 	 */
2829 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2830 
2831 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2832 						 pages);
2833 
2834 	/*
2835 	 * As specified in the API description above, this routine is not
2836 	 * allowed to return negative values. However, the common core
2837 	 * routine internal_get_user_pages_fast() *can* return -errno.
2838 	 * Therefore, correct for that here:
2839 	 */
2840 	if (nr_pinned < 0)
2841 		nr_pinned = 0;
2842 
2843 	return nr_pinned;
2844 }
2845 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2846 
2847 /**
2848  * get_user_pages_fast() - pin user pages in memory
2849  * @start:      starting user address
2850  * @nr_pages:   number of pages from start to pin
2851  * @gup_flags:  flags modifying pin behaviour
2852  * @pages:      array that receives pointers to the pages pinned.
2853  *              Should be at least nr_pages long.
2854  *
2855  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2856  * If not successful, it will fall back to taking the lock and
2857  * calling get_user_pages().
2858  *
2859  * Returns number of pages pinned. This may be fewer than the number requested.
2860  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2861  * -errno.
2862  */
2863 int get_user_pages_fast(unsigned long start, int nr_pages,
2864 			unsigned int gup_flags, struct page **pages)
2865 {
2866 	if (!is_valid_gup_flags(gup_flags))
2867 		return -EINVAL;
2868 
2869 	/*
2870 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2871 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2872 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2873 	 * request.
2874 	 */
2875 	gup_flags |= FOLL_GET;
2876 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2877 }
2878 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2879 
2880 /**
2881  * pin_user_pages_fast() - pin user pages in memory without taking locks
2882  *
2883  * @start:      starting user address
2884  * @nr_pages:   number of pages from start to pin
2885  * @gup_flags:  flags modifying pin behaviour
2886  * @pages:      array that receives pointers to the pages pinned.
2887  *              Should be at least nr_pages long.
2888  *
2889  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2890  * get_user_pages_fast() for documentation on the function arguments, because
2891  * the arguments here are identical.
2892  *
2893  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2894  * see Documentation/core-api/pin_user_pages.rst for further details.
2895  */
2896 int pin_user_pages_fast(unsigned long start, int nr_pages,
2897 			unsigned int gup_flags, struct page **pages)
2898 {
2899 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2900 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2901 		return -EINVAL;
2902 
2903 	gup_flags |= FOLL_PIN;
2904 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2905 }
2906 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2907 
2908 /*
2909  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2910  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2911  *
2912  * The API rules are the same, too: no negative values may be returned.
2913  */
2914 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2915 			     unsigned int gup_flags, struct page **pages)
2916 {
2917 	int nr_pinned;
2918 
2919 	/*
2920 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2921 	 * rules require returning 0, rather than -errno:
2922 	 */
2923 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2924 		return 0;
2925 	/*
2926 	 * FOLL_FAST_ONLY is required in order to match the API description of
2927 	 * this routine: no fall back to regular ("slow") GUP.
2928 	 */
2929 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2930 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2931 						 pages);
2932 	/*
2933 	 * This routine is not allowed to return negative values. However,
2934 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2935 	 * correct for that here:
2936 	 */
2937 	if (nr_pinned < 0)
2938 		nr_pinned = 0;
2939 
2940 	return nr_pinned;
2941 }
2942 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2943 
2944 /**
2945  * pin_user_pages_remote() - pin pages of a remote process
2946  *
2947  * @mm:		mm_struct of target mm
2948  * @start:	starting user address
2949  * @nr_pages:	number of pages from start to pin
2950  * @gup_flags:	flags modifying lookup behaviour
2951  * @pages:	array that receives pointers to the pages pinned.
2952  *		Should be at least nr_pages long. Or NULL, if caller
2953  *		only intends to ensure the pages are faulted in.
2954  * @vmas:	array of pointers to vmas corresponding to each page.
2955  *		Or NULL if the caller does not require them.
2956  * @locked:	pointer to lock flag indicating whether lock is held and
2957  *		subsequently whether VM_FAULT_RETRY functionality can be
2958  *		utilised. Lock must initially be held.
2959  *
2960  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2961  * get_user_pages_remote() for documentation on the function arguments, because
2962  * the arguments here are identical.
2963  *
2964  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2965  * see Documentation/core-api/pin_user_pages.rst for details.
2966  */
2967 long pin_user_pages_remote(struct mm_struct *mm,
2968 			   unsigned long start, unsigned long nr_pages,
2969 			   unsigned int gup_flags, struct page **pages,
2970 			   struct vm_area_struct **vmas, int *locked)
2971 {
2972 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2973 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2974 		return -EINVAL;
2975 
2976 	gup_flags |= FOLL_PIN;
2977 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2978 				       pages, vmas, locked);
2979 }
2980 EXPORT_SYMBOL(pin_user_pages_remote);
2981 
2982 /**
2983  * pin_user_pages() - pin user pages in memory for use by other devices
2984  *
2985  * @start:	starting user address
2986  * @nr_pages:	number of pages from start to pin
2987  * @gup_flags:	flags modifying lookup behaviour
2988  * @pages:	array that receives pointers to the pages pinned.
2989  *		Should be at least nr_pages long. Or NULL, if caller
2990  *		only intends to ensure the pages are faulted in.
2991  * @vmas:	array of pointers to vmas corresponding to each page.
2992  *		Or NULL if the caller does not require them.
2993  *
2994  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2995  * FOLL_PIN is set.
2996  *
2997  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2998  * see Documentation/core-api/pin_user_pages.rst for details.
2999  */
3000 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3001 		    unsigned int gup_flags, struct page **pages,
3002 		    struct vm_area_struct **vmas)
3003 {
3004 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3005 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3006 		return -EINVAL;
3007 
3008 	gup_flags |= FOLL_PIN;
3009 	return __gup_longterm_locked(current->mm, start, nr_pages,
3010 				     pages, vmas, gup_flags);
3011 }
3012 EXPORT_SYMBOL(pin_user_pages);
3013 
3014 /*
3015  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3016  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3017  * FOLL_PIN and rejects FOLL_GET.
3018  */
3019 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3020 			     struct page **pages, unsigned int gup_flags)
3021 {
3022 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3023 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3024 		return -EINVAL;
3025 
3026 	gup_flags |= FOLL_PIN;
3027 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3028 }
3029 EXPORT_SYMBOL(pin_user_pages_unlocked);
3030