xref: /linux/mm/gup.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_folio_refs(folio, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_folio_refs(folio, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in folio_try_share_anon_rmap_*().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_folio_refs(folio, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 
504 #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST)
505 static int record_subpages(struct page *page, unsigned long sz,
506 			   unsigned long addr, unsigned long end,
507 			   struct page **pages)
508 {
509 	struct page *start_page;
510 	int nr;
511 
512 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
513 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
514 		pages[nr] = nth_page(start_page, nr);
515 
516 	return nr;
517 }
518 #endif	/* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */
519 
520 #ifdef CONFIG_ARCH_HAS_HUGEPD
521 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522 				      unsigned long sz)
523 {
524 	unsigned long __boundary = (addr + sz) & ~(sz-1);
525 	return (__boundary - 1 < end - 1) ? __boundary : end;
526 }
527 
528 static int gup_fast_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
529 		unsigned long end, unsigned int flags, struct page **pages,
530 		int *nr)
531 {
532 	unsigned long pte_end;
533 	struct page *page;
534 	struct folio *folio;
535 	pte_t pte;
536 	int refs;
537 
538 	pte_end = (addr + sz) & ~(sz-1);
539 	if (pte_end < end)
540 		end = pte_end;
541 
542 	pte = huge_ptep_get(ptep);
543 
544 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
545 		return 0;
546 
547 	/* hugepages are never "special" */
548 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
549 
550 	page = pte_page(pte);
551 	refs = record_subpages(page, sz, addr, end, pages + *nr);
552 
553 	folio = try_grab_folio(page, refs, flags);
554 	if (!folio)
555 		return 0;
556 
557 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
558 		gup_put_folio(folio, refs, flags);
559 		return 0;
560 	}
561 
562 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
563 		gup_put_folio(folio, refs, flags);
564 		return 0;
565 	}
566 
567 	*nr += refs;
568 	folio_set_referenced(folio);
569 	return 1;
570 }
571 
572 /*
573  * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file
574  * systems on Power, which does not have issue with folio writeback against
575  * GUP updates.  When hugepd will be extended to support non-hugetlbfs or
576  * even anonymous memory, we need to do extra check as what we do with most
577  * of the other folios. See writable_file_mapping_allowed() and
578  * gup_fast_folio_allowed() for more information.
579  */
580 static int gup_fast_hugepd(hugepd_t hugepd, unsigned long addr,
581 		unsigned int pdshift, unsigned long end, unsigned int flags,
582 		struct page **pages, int *nr)
583 {
584 	pte_t *ptep;
585 	unsigned long sz = 1UL << hugepd_shift(hugepd);
586 	unsigned long next;
587 
588 	ptep = hugepte_offset(hugepd, addr, pdshift);
589 	do {
590 		next = hugepte_addr_end(addr, end, sz);
591 		if (!gup_fast_hugepte(ptep, sz, addr, end, flags, pages, nr))
592 			return 0;
593 	} while (ptep++, addr = next, addr != end);
594 
595 	return 1;
596 }
597 
598 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
599 				  unsigned long addr, unsigned int pdshift,
600 				  unsigned int flags,
601 				  struct follow_page_context *ctx)
602 {
603 	struct page *page;
604 	struct hstate *h;
605 	spinlock_t *ptl;
606 	int nr = 0, ret;
607 	pte_t *ptep;
608 
609 	/* Only hugetlb supports hugepd */
610 	if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma)))
611 		return ERR_PTR(-EFAULT);
612 
613 	h = hstate_vma(vma);
614 	ptep = hugepte_offset(hugepd, addr, pdshift);
615 	ptl = huge_pte_lock(h, vma->vm_mm, ptep);
616 	ret = gup_fast_hugepd(hugepd, addr, pdshift, addr + PAGE_SIZE,
617 			      flags, &page, &nr);
618 	spin_unlock(ptl);
619 
620 	if (ret) {
621 		WARN_ON_ONCE(nr != 1);
622 		ctx->page_mask = (1U << huge_page_order(h)) - 1;
623 		return page;
624 	}
625 
626 	return NULL;
627 }
628 #else /* CONFIG_ARCH_HAS_HUGEPD */
629 static inline int gup_fast_hugepd(hugepd_t hugepd, unsigned long addr,
630 		unsigned int pdshift, unsigned long end, unsigned int flags,
631 		struct page **pages, int *nr)
632 {
633 	return 0;
634 }
635 
636 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd,
637 				  unsigned long addr, unsigned int pdshift,
638 				  unsigned int flags,
639 				  struct follow_page_context *ctx)
640 {
641 	return NULL;
642 }
643 #endif /* CONFIG_ARCH_HAS_HUGEPD */
644 
645 
646 static struct page *no_page_table(struct vm_area_struct *vma,
647 				  unsigned int flags, unsigned long address)
648 {
649 	if (!(flags & FOLL_DUMP))
650 		return NULL;
651 
652 	/*
653 	 * When core dumping, we don't want to allocate unnecessary pages or
654 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
655 	 * then get_dump_page() will return NULL to leave a hole in the dump.
656 	 * But we can only make this optimization where a hole would surely
657 	 * be zero-filled if handle_mm_fault() actually did handle it.
658 	 */
659 	if (is_vm_hugetlb_page(vma)) {
660 		struct hstate *h = hstate_vma(vma);
661 
662 		if (!hugetlbfs_pagecache_present(h, vma, address))
663 			return ERR_PTR(-EFAULT);
664 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
665 		return ERR_PTR(-EFAULT);
666 	}
667 
668 	return NULL;
669 }
670 
671 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
672 static struct page *follow_huge_pud(struct vm_area_struct *vma,
673 				    unsigned long addr, pud_t *pudp,
674 				    int flags, struct follow_page_context *ctx)
675 {
676 	struct mm_struct *mm = vma->vm_mm;
677 	struct page *page;
678 	pud_t pud = *pudp;
679 	unsigned long pfn = pud_pfn(pud);
680 	int ret;
681 
682 	assert_spin_locked(pud_lockptr(mm, pudp));
683 
684 	if ((flags & FOLL_WRITE) && !pud_write(pud))
685 		return NULL;
686 
687 	if (!pud_present(pud))
688 		return NULL;
689 
690 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
691 
692 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
693 	    pud_devmap(pud)) {
694 		/*
695 		 * device mapped pages can only be returned if the caller
696 		 * will manage the page reference count.
697 		 *
698 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
699 		 * assert that here:
700 		 */
701 		if (!(flags & (FOLL_GET | FOLL_PIN)))
702 			return ERR_PTR(-EEXIST);
703 
704 		if (flags & FOLL_TOUCH)
705 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
706 
707 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
708 		if (!ctx->pgmap)
709 			return ERR_PTR(-EFAULT);
710 	}
711 
712 	page = pfn_to_page(pfn);
713 
714 	if (!pud_devmap(pud) && !pud_write(pud) &&
715 	    gup_must_unshare(vma, flags, page))
716 		return ERR_PTR(-EMLINK);
717 
718 	ret = try_grab_page(page, flags);
719 	if (ret)
720 		page = ERR_PTR(ret);
721 	else
722 		ctx->page_mask = HPAGE_PUD_NR - 1;
723 
724 	return page;
725 }
726 
727 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
728 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
729 					struct vm_area_struct *vma,
730 					unsigned int flags)
731 {
732 	/* If the pmd is writable, we can write to the page. */
733 	if (pmd_write(pmd))
734 		return true;
735 
736 	/* Maybe FOLL_FORCE is set to override it? */
737 	if (!(flags & FOLL_FORCE))
738 		return false;
739 
740 	/* But FOLL_FORCE has no effect on shared mappings */
741 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
742 		return false;
743 
744 	/* ... or read-only private ones */
745 	if (!(vma->vm_flags & VM_MAYWRITE))
746 		return false;
747 
748 	/* ... or already writable ones that just need to take a write fault */
749 	if (vma->vm_flags & VM_WRITE)
750 		return false;
751 
752 	/*
753 	 * See can_change_pte_writable(): we broke COW and could map the page
754 	 * writable if we have an exclusive anonymous page ...
755 	 */
756 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
757 		return false;
758 
759 	/* ... and a write-fault isn't required for other reasons. */
760 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
761 		return false;
762 	return !userfaultfd_huge_pmd_wp(vma, pmd);
763 }
764 
765 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
766 				    unsigned long addr, pmd_t *pmd,
767 				    unsigned int flags,
768 				    struct follow_page_context *ctx)
769 {
770 	struct mm_struct *mm = vma->vm_mm;
771 	pmd_t pmdval = *pmd;
772 	struct page *page;
773 	int ret;
774 
775 	assert_spin_locked(pmd_lockptr(mm, pmd));
776 
777 	page = pmd_page(pmdval);
778 	if ((flags & FOLL_WRITE) &&
779 	    !can_follow_write_pmd(pmdval, page, vma, flags))
780 		return NULL;
781 
782 	/* Avoid dumping huge zero page */
783 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
784 		return ERR_PTR(-EFAULT);
785 
786 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
787 		return NULL;
788 
789 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
790 		return ERR_PTR(-EMLINK);
791 
792 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
793 			!PageAnonExclusive(page), page);
794 
795 	ret = try_grab_page(page, flags);
796 	if (ret)
797 		return ERR_PTR(ret);
798 
799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
801 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
802 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
803 
804 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
805 	ctx->page_mask = HPAGE_PMD_NR - 1;
806 
807 	return page;
808 }
809 
810 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
811 static struct page *follow_huge_pud(struct vm_area_struct *vma,
812 				    unsigned long addr, pud_t *pudp,
813 				    int flags, struct follow_page_context *ctx)
814 {
815 	return NULL;
816 }
817 
818 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
819 				    unsigned long addr, pmd_t *pmd,
820 				    unsigned int flags,
821 				    struct follow_page_context *ctx)
822 {
823 	return NULL;
824 }
825 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
826 
827 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
828 		pte_t *pte, unsigned int flags)
829 {
830 	if (flags & FOLL_TOUCH) {
831 		pte_t orig_entry = ptep_get(pte);
832 		pte_t entry = orig_entry;
833 
834 		if (flags & FOLL_WRITE)
835 			entry = pte_mkdirty(entry);
836 		entry = pte_mkyoung(entry);
837 
838 		if (!pte_same(orig_entry, entry)) {
839 			set_pte_at(vma->vm_mm, address, pte, entry);
840 			update_mmu_cache(vma, address, pte);
841 		}
842 	}
843 
844 	/* Proper page table entry exists, but no corresponding struct page */
845 	return -EEXIST;
846 }
847 
848 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
849 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
850 					struct vm_area_struct *vma,
851 					unsigned int flags)
852 {
853 	/* If the pte is writable, we can write to the page. */
854 	if (pte_write(pte))
855 		return true;
856 
857 	/* Maybe FOLL_FORCE is set to override it? */
858 	if (!(flags & FOLL_FORCE))
859 		return false;
860 
861 	/* But FOLL_FORCE has no effect on shared mappings */
862 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
863 		return false;
864 
865 	/* ... or read-only private ones */
866 	if (!(vma->vm_flags & VM_MAYWRITE))
867 		return false;
868 
869 	/* ... or already writable ones that just need to take a write fault */
870 	if (vma->vm_flags & VM_WRITE)
871 		return false;
872 
873 	/*
874 	 * See can_change_pte_writable(): we broke COW and could map the page
875 	 * writable if we have an exclusive anonymous page ...
876 	 */
877 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
878 		return false;
879 
880 	/* ... and a write-fault isn't required for other reasons. */
881 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
882 		return false;
883 	return !userfaultfd_pte_wp(vma, pte);
884 }
885 
886 static struct page *follow_page_pte(struct vm_area_struct *vma,
887 		unsigned long address, pmd_t *pmd, unsigned int flags,
888 		struct dev_pagemap **pgmap)
889 {
890 	struct mm_struct *mm = vma->vm_mm;
891 	struct page *page;
892 	spinlock_t *ptl;
893 	pte_t *ptep, pte;
894 	int ret;
895 
896 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
897 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
898 			 (FOLL_PIN | FOLL_GET)))
899 		return ERR_PTR(-EINVAL);
900 
901 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
902 	if (!ptep)
903 		return no_page_table(vma, flags, address);
904 	pte = ptep_get(ptep);
905 	if (!pte_present(pte))
906 		goto no_page;
907 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
908 		goto no_page;
909 
910 	page = vm_normal_page(vma, address, pte);
911 
912 	/*
913 	 * We only care about anon pages in can_follow_write_pte() and don't
914 	 * have to worry about pte_devmap() because they are never anon.
915 	 */
916 	if ((flags & FOLL_WRITE) &&
917 	    !can_follow_write_pte(pte, page, vma, flags)) {
918 		page = NULL;
919 		goto out;
920 	}
921 
922 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
923 		/*
924 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
925 		 * case since they are only valid while holding the pgmap
926 		 * reference.
927 		 */
928 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
929 		if (*pgmap)
930 			page = pte_page(pte);
931 		else
932 			goto no_page;
933 	} else if (unlikely(!page)) {
934 		if (flags & FOLL_DUMP) {
935 			/* Avoid special (like zero) pages in core dumps */
936 			page = ERR_PTR(-EFAULT);
937 			goto out;
938 		}
939 
940 		if (is_zero_pfn(pte_pfn(pte))) {
941 			page = pte_page(pte);
942 		} else {
943 			ret = follow_pfn_pte(vma, address, ptep, flags);
944 			page = ERR_PTR(ret);
945 			goto out;
946 		}
947 	}
948 
949 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
950 		page = ERR_PTR(-EMLINK);
951 		goto out;
952 	}
953 
954 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
955 		       !PageAnonExclusive(page), page);
956 
957 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
958 	ret = try_grab_page(page, flags);
959 	if (unlikely(ret)) {
960 		page = ERR_PTR(ret);
961 		goto out;
962 	}
963 
964 	/*
965 	 * We need to make the page accessible if and only if we are going
966 	 * to access its content (the FOLL_PIN case).  Please see
967 	 * Documentation/core-api/pin_user_pages.rst for details.
968 	 */
969 	if (flags & FOLL_PIN) {
970 		ret = arch_make_page_accessible(page);
971 		if (ret) {
972 			unpin_user_page(page);
973 			page = ERR_PTR(ret);
974 			goto out;
975 		}
976 	}
977 	if (flags & FOLL_TOUCH) {
978 		if ((flags & FOLL_WRITE) &&
979 		    !pte_dirty(pte) && !PageDirty(page))
980 			set_page_dirty(page);
981 		/*
982 		 * pte_mkyoung() would be more correct here, but atomic care
983 		 * is needed to avoid losing the dirty bit: it is easier to use
984 		 * mark_page_accessed().
985 		 */
986 		mark_page_accessed(page);
987 	}
988 out:
989 	pte_unmap_unlock(ptep, ptl);
990 	return page;
991 no_page:
992 	pte_unmap_unlock(ptep, ptl);
993 	if (!pte_none(pte))
994 		return NULL;
995 	return no_page_table(vma, flags, address);
996 }
997 
998 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
999 				    unsigned long address, pud_t *pudp,
1000 				    unsigned int flags,
1001 				    struct follow_page_context *ctx)
1002 {
1003 	pmd_t *pmd, pmdval;
1004 	spinlock_t *ptl;
1005 	struct page *page;
1006 	struct mm_struct *mm = vma->vm_mm;
1007 
1008 	pmd = pmd_offset(pudp, address);
1009 	pmdval = pmdp_get_lockless(pmd);
1010 	if (pmd_none(pmdval))
1011 		return no_page_table(vma, flags, address);
1012 	if (!pmd_present(pmdval))
1013 		return no_page_table(vma, flags, address);
1014 	if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval)))))
1015 		return follow_hugepd(vma, __hugepd(pmd_val(pmdval)),
1016 				     address, PMD_SHIFT, flags, ctx);
1017 	if (pmd_devmap(pmdval)) {
1018 		ptl = pmd_lock(mm, pmd);
1019 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
1020 		spin_unlock(ptl);
1021 		if (page)
1022 			return page;
1023 		return no_page_table(vma, flags, address);
1024 	}
1025 	if (likely(!pmd_leaf(pmdval)))
1026 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1027 
1028 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
1029 		return no_page_table(vma, flags, address);
1030 
1031 	ptl = pmd_lock(mm, pmd);
1032 	pmdval = *pmd;
1033 	if (unlikely(!pmd_present(pmdval))) {
1034 		spin_unlock(ptl);
1035 		return no_page_table(vma, flags, address);
1036 	}
1037 	if (unlikely(!pmd_leaf(pmdval))) {
1038 		spin_unlock(ptl);
1039 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1040 	}
1041 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
1042 		spin_unlock(ptl);
1043 		split_huge_pmd(vma, pmd, address);
1044 		/* If pmd was left empty, stuff a page table in there quickly */
1045 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
1046 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1047 	}
1048 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
1049 	spin_unlock(ptl);
1050 	return page;
1051 }
1052 
1053 static struct page *follow_pud_mask(struct vm_area_struct *vma,
1054 				    unsigned long address, p4d_t *p4dp,
1055 				    unsigned int flags,
1056 				    struct follow_page_context *ctx)
1057 {
1058 	pud_t *pudp, pud;
1059 	spinlock_t *ptl;
1060 	struct page *page;
1061 	struct mm_struct *mm = vma->vm_mm;
1062 
1063 	pudp = pud_offset(p4dp, address);
1064 	pud = READ_ONCE(*pudp);
1065 	if (!pud_present(pud))
1066 		return no_page_table(vma, flags, address);
1067 	if (unlikely(is_hugepd(__hugepd(pud_val(pud)))))
1068 		return follow_hugepd(vma, __hugepd(pud_val(pud)),
1069 				     address, PUD_SHIFT, flags, ctx);
1070 	if (pud_leaf(pud)) {
1071 		ptl = pud_lock(mm, pudp);
1072 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1073 		spin_unlock(ptl);
1074 		if (page)
1075 			return page;
1076 		return no_page_table(vma, flags, address);
1077 	}
1078 	if (unlikely(pud_bad(pud)))
1079 		return no_page_table(vma, flags, address);
1080 
1081 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1082 }
1083 
1084 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1085 				    unsigned long address, pgd_t *pgdp,
1086 				    unsigned int flags,
1087 				    struct follow_page_context *ctx)
1088 {
1089 	p4d_t *p4dp, p4d;
1090 
1091 	p4dp = p4d_offset(pgdp, address);
1092 	p4d = READ_ONCE(*p4dp);
1093 	BUILD_BUG_ON(p4d_leaf(p4d));
1094 
1095 	if (unlikely(is_hugepd(__hugepd(p4d_val(p4d)))))
1096 		return follow_hugepd(vma, __hugepd(p4d_val(p4d)),
1097 				     address, P4D_SHIFT, flags, ctx);
1098 
1099 	if (!p4d_present(p4d) || p4d_bad(p4d))
1100 		return no_page_table(vma, flags, address);
1101 
1102 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1103 }
1104 
1105 /**
1106  * follow_page_mask - look up a page descriptor from a user-virtual address
1107  * @vma: vm_area_struct mapping @address
1108  * @address: virtual address to look up
1109  * @flags: flags modifying lookup behaviour
1110  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1111  *       pointer to output page_mask
1112  *
1113  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1114  *
1115  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1116  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1117  *
1118  * When getting an anonymous page and the caller has to trigger unsharing
1119  * of a shared anonymous page first, -EMLINK is returned. The caller should
1120  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1121  * relevant with FOLL_PIN and !FOLL_WRITE.
1122  *
1123  * On output, the @ctx->page_mask is set according to the size of the page.
1124  *
1125  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1126  * an error pointer if there is a mapping to something not represented
1127  * by a page descriptor (see also vm_normal_page()).
1128  */
1129 static struct page *follow_page_mask(struct vm_area_struct *vma,
1130 			      unsigned long address, unsigned int flags,
1131 			      struct follow_page_context *ctx)
1132 {
1133 	pgd_t *pgd;
1134 	struct mm_struct *mm = vma->vm_mm;
1135 	struct page *page;
1136 
1137 	vma_pgtable_walk_begin(vma);
1138 
1139 	ctx->page_mask = 0;
1140 	pgd = pgd_offset(mm, address);
1141 
1142 	if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd)))))
1143 		page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)),
1144 				     address, PGDIR_SHIFT, flags, ctx);
1145 	else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1146 		page = no_page_table(vma, flags, address);
1147 	else
1148 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1149 
1150 	vma_pgtable_walk_end(vma);
1151 
1152 	return page;
1153 }
1154 
1155 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1156 			 unsigned int foll_flags)
1157 {
1158 	struct follow_page_context ctx = { NULL };
1159 	struct page *page;
1160 
1161 	if (vma_is_secretmem(vma))
1162 		return NULL;
1163 
1164 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1165 		return NULL;
1166 
1167 	/*
1168 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1169 	 * to fail on PROT_NONE-mapped pages.
1170 	 */
1171 	page = follow_page_mask(vma, address, foll_flags, &ctx);
1172 	if (ctx.pgmap)
1173 		put_dev_pagemap(ctx.pgmap);
1174 	return page;
1175 }
1176 
1177 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1178 		unsigned int gup_flags, struct vm_area_struct **vma,
1179 		struct page **page)
1180 {
1181 	pgd_t *pgd;
1182 	p4d_t *p4d;
1183 	pud_t *pud;
1184 	pmd_t *pmd;
1185 	pte_t *pte;
1186 	pte_t entry;
1187 	int ret = -EFAULT;
1188 
1189 	/* user gate pages are read-only */
1190 	if (gup_flags & FOLL_WRITE)
1191 		return -EFAULT;
1192 	if (address > TASK_SIZE)
1193 		pgd = pgd_offset_k(address);
1194 	else
1195 		pgd = pgd_offset_gate(mm, address);
1196 	if (pgd_none(*pgd))
1197 		return -EFAULT;
1198 	p4d = p4d_offset(pgd, address);
1199 	if (p4d_none(*p4d))
1200 		return -EFAULT;
1201 	pud = pud_offset(p4d, address);
1202 	if (pud_none(*pud))
1203 		return -EFAULT;
1204 	pmd = pmd_offset(pud, address);
1205 	if (!pmd_present(*pmd))
1206 		return -EFAULT;
1207 	pte = pte_offset_map(pmd, address);
1208 	if (!pte)
1209 		return -EFAULT;
1210 	entry = ptep_get(pte);
1211 	if (pte_none(entry))
1212 		goto unmap;
1213 	*vma = get_gate_vma(mm);
1214 	if (!page)
1215 		goto out;
1216 	*page = vm_normal_page(*vma, address, entry);
1217 	if (!*page) {
1218 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1219 			goto unmap;
1220 		*page = pte_page(entry);
1221 	}
1222 	ret = try_grab_page(*page, gup_flags);
1223 	if (unlikely(ret))
1224 		goto unmap;
1225 out:
1226 	ret = 0;
1227 unmap:
1228 	pte_unmap(pte);
1229 	return ret;
1230 }
1231 
1232 /*
1233  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1234  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1235  * to 0 and -EBUSY returned.
1236  */
1237 static int faultin_page(struct vm_area_struct *vma,
1238 		unsigned long address, unsigned int *flags, bool unshare,
1239 		int *locked)
1240 {
1241 	unsigned int fault_flags = 0;
1242 	vm_fault_t ret;
1243 
1244 	if (*flags & FOLL_NOFAULT)
1245 		return -EFAULT;
1246 	if (*flags & FOLL_WRITE)
1247 		fault_flags |= FAULT_FLAG_WRITE;
1248 	if (*flags & FOLL_REMOTE)
1249 		fault_flags |= FAULT_FLAG_REMOTE;
1250 	if (*flags & FOLL_UNLOCKABLE) {
1251 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1252 		/*
1253 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1254 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1255 		 * That's because some callers may not be prepared to
1256 		 * handle early exits caused by non-fatal signals.
1257 		 */
1258 		if (*flags & FOLL_INTERRUPTIBLE)
1259 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1260 	}
1261 	if (*flags & FOLL_NOWAIT)
1262 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1263 	if (*flags & FOLL_TRIED) {
1264 		/*
1265 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1266 		 * can co-exist
1267 		 */
1268 		fault_flags |= FAULT_FLAG_TRIED;
1269 	}
1270 	if (unshare) {
1271 		fault_flags |= FAULT_FLAG_UNSHARE;
1272 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1273 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1274 	}
1275 
1276 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1277 
1278 	if (ret & VM_FAULT_COMPLETED) {
1279 		/*
1280 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1281 		 * mmap lock in the page fault handler. Sanity check this.
1282 		 */
1283 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1284 		*locked = 0;
1285 
1286 		/*
1287 		 * We should do the same as VM_FAULT_RETRY, but let's not
1288 		 * return -EBUSY since that's not reflecting the reality of
1289 		 * what has happened - we've just fully completed a page
1290 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1291 		 * that we want to take the mmap lock _again_.
1292 		 */
1293 		return -EAGAIN;
1294 	}
1295 
1296 	if (ret & VM_FAULT_ERROR) {
1297 		int err = vm_fault_to_errno(ret, *flags);
1298 
1299 		if (err)
1300 			return err;
1301 		BUG();
1302 	}
1303 
1304 	if (ret & VM_FAULT_RETRY) {
1305 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1306 			*locked = 0;
1307 		return -EBUSY;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * Writing to file-backed mappings which require folio dirty tracking using GUP
1315  * is a fundamentally broken operation, as kernel write access to GUP mappings
1316  * do not adhere to the semantics expected by a file system.
1317  *
1318  * Consider the following scenario:-
1319  *
1320  * 1. A folio is written to via GUP which write-faults the memory, notifying
1321  *    the file system and dirtying the folio.
1322  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1323  *    the PTE being marked read-only.
1324  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1325  *    direct mapping.
1326  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1327  *    (though it does not have to).
1328  *
1329  * This results in both data being written to a folio without writenotify, and
1330  * the folio being dirtied unexpectedly (if the caller decides to do so).
1331  */
1332 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1333 					  unsigned long gup_flags)
1334 {
1335 	/*
1336 	 * If we aren't pinning then no problematic write can occur. A long term
1337 	 * pin is the most egregious case so this is the case we disallow.
1338 	 */
1339 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1340 	    (FOLL_PIN | FOLL_LONGTERM))
1341 		return true;
1342 
1343 	/*
1344 	 * If the VMA does not require dirty tracking then no problematic write
1345 	 * can occur either.
1346 	 */
1347 	return !vma_needs_dirty_tracking(vma);
1348 }
1349 
1350 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1351 {
1352 	vm_flags_t vm_flags = vma->vm_flags;
1353 	int write = (gup_flags & FOLL_WRITE);
1354 	int foreign = (gup_flags & FOLL_REMOTE);
1355 	bool vma_anon = vma_is_anonymous(vma);
1356 
1357 	if (vm_flags & (VM_IO | VM_PFNMAP))
1358 		return -EFAULT;
1359 
1360 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1361 		return -EFAULT;
1362 
1363 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1364 		return -EOPNOTSUPP;
1365 
1366 	if (vma_is_secretmem(vma))
1367 		return -EFAULT;
1368 
1369 	if (write) {
1370 		if (!vma_anon &&
1371 		    !writable_file_mapping_allowed(vma, gup_flags))
1372 			return -EFAULT;
1373 
1374 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1375 			if (!(gup_flags & FOLL_FORCE))
1376 				return -EFAULT;
1377 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1378 			if (is_vm_hugetlb_page(vma))
1379 				return -EFAULT;
1380 			/*
1381 			 * We used to let the write,force case do COW in a
1382 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1383 			 * set a breakpoint in a read-only mapping of an
1384 			 * executable, without corrupting the file (yet only
1385 			 * when that file had been opened for writing!).
1386 			 * Anon pages in shared mappings are surprising: now
1387 			 * just reject it.
1388 			 */
1389 			if (!is_cow_mapping(vm_flags))
1390 				return -EFAULT;
1391 		}
1392 	} else if (!(vm_flags & VM_READ)) {
1393 		if (!(gup_flags & FOLL_FORCE))
1394 			return -EFAULT;
1395 		/*
1396 		 * Is there actually any vma we can reach here which does not
1397 		 * have VM_MAYREAD set?
1398 		 */
1399 		if (!(vm_flags & VM_MAYREAD))
1400 			return -EFAULT;
1401 	}
1402 	/*
1403 	 * gups are always data accesses, not instruction
1404 	 * fetches, so execute=false here
1405 	 */
1406 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1407 		return -EFAULT;
1408 	return 0;
1409 }
1410 
1411 /*
1412  * This is "vma_lookup()", but with a warning if we would have
1413  * historically expanded the stack in the GUP code.
1414  */
1415 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1416 	 unsigned long addr)
1417 {
1418 #ifdef CONFIG_STACK_GROWSUP
1419 	return vma_lookup(mm, addr);
1420 #else
1421 	static volatile unsigned long next_warn;
1422 	struct vm_area_struct *vma;
1423 	unsigned long now, next;
1424 
1425 	vma = find_vma(mm, addr);
1426 	if (!vma || (addr >= vma->vm_start))
1427 		return vma;
1428 
1429 	/* Only warn for half-way relevant accesses */
1430 	if (!(vma->vm_flags & VM_GROWSDOWN))
1431 		return NULL;
1432 	if (vma->vm_start - addr > 65536)
1433 		return NULL;
1434 
1435 	/* Let's not warn more than once an hour.. */
1436 	now = jiffies; next = next_warn;
1437 	if (next && time_before(now, next))
1438 		return NULL;
1439 	next_warn = now + 60*60*HZ;
1440 
1441 	/* Let people know things may have changed. */
1442 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1443 		current->comm, task_pid_nr(current),
1444 		vma->vm_start, vma->vm_end, addr);
1445 	dump_stack();
1446 	return NULL;
1447 #endif
1448 }
1449 
1450 /**
1451  * __get_user_pages() - pin user pages in memory
1452  * @mm:		mm_struct of target mm
1453  * @start:	starting user address
1454  * @nr_pages:	number of pages from start to pin
1455  * @gup_flags:	flags modifying pin behaviour
1456  * @pages:	array that receives pointers to the pages pinned.
1457  *		Should be at least nr_pages long. Or NULL, if caller
1458  *		only intends to ensure the pages are faulted in.
1459  * @locked:     whether we're still with the mmap_lock held
1460  *
1461  * Returns either number of pages pinned (which may be less than the
1462  * number requested), or an error. Details about the return value:
1463  *
1464  * -- If nr_pages is 0, returns 0.
1465  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1466  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1467  *    pages pinned. Again, this may be less than nr_pages.
1468  * -- 0 return value is possible when the fault would need to be retried.
1469  *
1470  * The caller is responsible for releasing returned @pages, via put_page().
1471  *
1472  * Must be called with mmap_lock held.  It may be released.  See below.
1473  *
1474  * __get_user_pages walks a process's page tables and takes a reference to
1475  * each struct page that each user address corresponds to at a given
1476  * instant. That is, it takes the page that would be accessed if a user
1477  * thread accesses the given user virtual address at that instant.
1478  *
1479  * This does not guarantee that the page exists in the user mappings when
1480  * __get_user_pages returns, and there may even be a completely different
1481  * page there in some cases (eg. if mmapped pagecache has been invalidated
1482  * and subsequently re-faulted). However it does guarantee that the page
1483  * won't be freed completely. And mostly callers simply care that the page
1484  * contains data that was valid *at some point in time*. Typically, an IO
1485  * or similar operation cannot guarantee anything stronger anyway because
1486  * locks can't be held over the syscall boundary.
1487  *
1488  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1489  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1490  * appropriate) must be called after the page is finished with, and
1491  * before put_page is called.
1492  *
1493  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1494  * be released. If this happens *@locked will be set to 0 on return.
1495  *
1496  * A caller using such a combination of @gup_flags must therefore hold the
1497  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1498  * it must be held for either reading or writing and will not be released.
1499  *
1500  * In most cases, get_user_pages or get_user_pages_fast should be used
1501  * instead of __get_user_pages. __get_user_pages should be used only if
1502  * you need some special @gup_flags.
1503  */
1504 static long __get_user_pages(struct mm_struct *mm,
1505 		unsigned long start, unsigned long nr_pages,
1506 		unsigned int gup_flags, struct page **pages,
1507 		int *locked)
1508 {
1509 	long ret = 0, i = 0;
1510 	struct vm_area_struct *vma = NULL;
1511 	struct follow_page_context ctx = { NULL };
1512 
1513 	if (!nr_pages)
1514 		return 0;
1515 
1516 	start = untagged_addr_remote(mm, start);
1517 
1518 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1519 
1520 	do {
1521 		struct page *page;
1522 		unsigned int foll_flags = gup_flags;
1523 		unsigned int page_increm;
1524 
1525 		/* first iteration or cross vma bound */
1526 		if (!vma || start >= vma->vm_end) {
1527 			/*
1528 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1529 			 * lookups+error reporting differently.
1530 			 */
1531 			if (gup_flags & FOLL_MADV_POPULATE) {
1532 				vma = vma_lookup(mm, start);
1533 				if (!vma) {
1534 					ret = -ENOMEM;
1535 					goto out;
1536 				}
1537 				if (check_vma_flags(vma, gup_flags)) {
1538 					ret = -EINVAL;
1539 					goto out;
1540 				}
1541 				goto retry;
1542 			}
1543 			vma = gup_vma_lookup(mm, start);
1544 			if (!vma && in_gate_area(mm, start)) {
1545 				ret = get_gate_page(mm, start & PAGE_MASK,
1546 						gup_flags, &vma,
1547 						pages ? &page : NULL);
1548 				if (ret)
1549 					goto out;
1550 				ctx.page_mask = 0;
1551 				goto next_page;
1552 			}
1553 
1554 			if (!vma) {
1555 				ret = -EFAULT;
1556 				goto out;
1557 			}
1558 			ret = check_vma_flags(vma, gup_flags);
1559 			if (ret)
1560 				goto out;
1561 		}
1562 retry:
1563 		/*
1564 		 * If we have a pending SIGKILL, don't keep faulting pages and
1565 		 * potentially allocating memory.
1566 		 */
1567 		if (fatal_signal_pending(current)) {
1568 			ret = -EINTR;
1569 			goto out;
1570 		}
1571 		cond_resched();
1572 
1573 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1574 		if (!page || PTR_ERR(page) == -EMLINK) {
1575 			ret = faultin_page(vma, start, &foll_flags,
1576 					   PTR_ERR(page) == -EMLINK, locked);
1577 			switch (ret) {
1578 			case 0:
1579 				goto retry;
1580 			case -EBUSY:
1581 			case -EAGAIN:
1582 				ret = 0;
1583 				fallthrough;
1584 			case -EFAULT:
1585 			case -ENOMEM:
1586 			case -EHWPOISON:
1587 				goto out;
1588 			}
1589 			BUG();
1590 		} else if (PTR_ERR(page) == -EEXIST) {
1591 			/*
1592 			 * Proper page table entry exists, but no corresponding
1593 			 * struct page. If the caller expects **pages to be
1594 			 * filled in, bail out now, because that can't be done
1595 			 * for this page.
1596 			 */
1597 			if (pages) {
1598 				ret = PTR_ERR(page);
1599 				goto out;
1600 			}
1601 		} else if (IS_ERR(page)) {
1602 			ret = PTR_ERR(page);
1603 			goto out;
1604 		}
1605 next_page:
1606 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1607 		if (page_increm > nr_pages)
1608 			page_increm = nr_pages;
1609 
1610 		if (pages) {
1611 			struct page *subpage;
1612 			unsigned int j;
1613 
1614 			/*
1615 			 * This must be a large folio (and doesn't need to
1616 			 * be the whole folio; it can be part of it), do
1617 			 * the refcount work for all the subpages too.
1618 			 *
1619 			 * NOTE: here the page may not be the head page
1620 			 * e.g. when start addr is not thp-size aligned.
1621 			 * try_grab_folio() should have taken care of tail
1622 			 * pages.
1623 			 */
1624 			if (page_increm > 1) {
1625 				struct folio *folio;
1626 
1627 				/*
1628 				 * Since we already hold refcount on the
1629 				 * large folio, this should never fail.
1630 				 */
1631 				folio = try_grab_folio(page, page_increm - 1,
1632 						       foll_flags);
1633 				if (WARN_ON_ONCE(!folio)) {
1634 					/*
1635 					 * Release the 1st page ref if the
1636 					 * folio is problematic, fail hard.
1637 					 */
1638 					gup_put_folio(page_folio(page), 1,
1639 						      foll_flags);
1640 					ret = -EFAULT;
1641 					goto out;
1642 				}
1643 			}
1644 
1645 			for (j = 0; j < page_increm; j++) {
1646 				subpage = nth_page(page, j);
1647 				pages[i + j] = subpage;
1648 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1649 				flush_dcache_page(subpage);
1650 			}
1651 		}
1652 
1653 		i += page_increm;
1654 		start += page_increm * PAGE_SIZE;
1655 		nr_pages -= page_increm;
1656 	} while (nr_pages);
1657 out:
1658 	if (ctx.pgmap)
1659 		put_dev_pagemap(ctx.pgmap);
1660 	return i ? i : ret;
1661 }
1662 
1663 static bool vma_permits_fault(struct vm_area_struct *vma,
1664 			      unsigned int fault_flags)
1665 {
1666 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1667 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1668 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1669 
1670 	if (!(vm_flags & vma->vm_flags))
1671 		return false;
1672 
1673 	/*
1674 	 * The architecture might have a hardware protection
1675 	 * mechanism other than read/write that can deny access.
1676 	 *
1677 	 * gup always represents data access, not instruction
1678 	 * fetches, so execute=false here:
1679 	 */
1680 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1681 		return false;
1682 
1683 	return true;
1684 }
1685 
1686 /**
1687  * fixup_user_fault() - manually resolve a user page fault
1688  * @mm:		mm_struct of target mm
1689  * @address:	user address
1690  * @fault_flags:flags to pass down to handle_mm_fault()
1691  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1692  *		does not allow retry. If NULL, the caller must guarantee
1693  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1694  *
1695  * This is meant to be called in the specific scenario where for locking reasons
1696  * we try to access user memory in atomic context (within a pagefault_disable()
1697  * section), this returns -EFAULT, and we want to resolve the user fault before
1698  * trying again.
1699  *
1700  * Typically this is meant to be used by the futex code.
1701  *
1702  * The main difference with get_user_pages() is that this function will
1703  * unconditionally call handle_mm_fault() which will in turn perform all the
1704  * necessary SW fixup of the dirty and young bits in the PTE, while
1705  * get_user_pages() only guarantees to update these in the struct page.
1706  *
1707  * This is important for some architectures where those bits also gate the
1708  * access permission to the page because they are maintained in software.  On
1709  * such architectures, gup() will not be enough to make a subsequent access
1710  * succeed.
1711  *
1712  * This function will not return with an unlocked mmap_lock. So it has not the
1713  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1714  */
1715 int fixup_user_fault(struct mm_struct *mm,
1716 		     unsigned long address, unsigned int fault_flags,
1717 		     bool *unlocked)
1718 {
1719 	struct vm_area_struct *vma;
1720 	vm_fault_t ret;
1721 
1722 	address = untagged_addr_remote(mm, address);
1723 
1724 	if (unlocked)
1725 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1726 
1727 retry:
1728 	vma = gup_vma_lookup(mm, address);
1729 	if (!vma)
1730 		return -EFAULT;
1731 
1732 	if (!vma_permits_fault(vma, fault_flags))
1733 		return -EFAULT;
1734 
1735 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1736 	    fatal_signal_pending(current))
1737 		return -EINTR;
1738 
1739 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1740 
1741 	if (ret & VM_FAULT_COMPLETED) {
1742 		/*
1743 		 * NOTE: it's a pity that we need to retake the lock here
1744 		 * to pair with the unlock() in the callers. Ideally we
1745 		 * could tell the callers so they do not need to unlock.
1746 		 */
1747 		mmap_read_lock(mm);
1748 		*unlocked = true;
1749 		return 0;
1750 	}
1751 
1752 	if (ret & VM_FAULT_ERROR) {
1753 		int err = vm_fault_to_errno(ret, 0);
1754 
1755 		if (err)
1756 			return err;
1757 		BUG();
1758 	}
1759 
1760 	if (ret & VM_FAULT_RETRY) {
1761 		mmap_read_lock(mm);
1762 		*unlocked = true;
1763 		fault_flags |= FAULT_FLAG_TRIED;
1764 		goto retry;
1765 	}
1766 
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(fixup_user_fault);
1770 
1771 /*
1772  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1773  * specified, it'll also respond to generic signals.  The caller of GUP
1774  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1775  */
1776 static bool gup_signal_pending(unsigned int flags)
1777 {
1778 	if (fatal_signal_pending(current))
1779 		return true;
1780 
1781 	if (!(flags & FOLL_INTERRUPTIBLE))
1782 		return false;
1783 
1784 	return signal_pending(current);
1785 }
1786 
1787 /*
1788  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1789  * the caller. This function may drop the mmap_lock. If it does so, then it will
1790  * set (*locked = 0).
1791  *
1792  * (*locked == 0) means that the caller expects this function to acquire and
1793  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1794  * the function returns, even though it may have changed temporarily during
1795  * function execution.
1796  *
1797  * Please note that this function, unlike __get_user_pages(), will not return 0
1798  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1799  */
1800 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1801 						unsigned long start,
1802 						unsigned long nr_pages,
1803 						struct page **pages,
1804 						int *locked,
1805 						unsigned int flags)
1806 {
1807 	long ret, pages_done;
1808 	bool must_unlock = false;
1809 
1810 	if (!nr_pages)
1811 		return 0;
1812 
1813 	/*
1814 	 * The internal caller expects GUP to manage the lock internally and the
1815 	 * lock must be released when this returns.
1816 	 */
1817 	if (!*locked) {
1818 		if (mmap_read_lock_killable(mm))
1819 			return -EAGAIN;
1820 		must_unlock = true;
1821 		*locked = 1;
1822 	}
1823 	else
1824 		mmap_assert_locked(mm);
1825 
1826 	if (flags & FOLL_PIN)
1827 		mm_set_has_pinned_flag(&mm->flags);
1828 
1829 	/*
1830 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1831 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1832 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1833 	 * for FOLL_GET, not for the newer FOLL_PIN.
1834 	 *
1835 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1836 	 * that here, as any failures will be obvious enough.
1837 	 */
1838 	if (pages && !(flags & FOLL_PIN))
1839 		flags |= FOLL_GET;
1840 
1841 	pages_done = 0;
1842 	for (;;) {
1843 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1844 				       locked);
1845 		if (!(flags & FOLL_UNLOCKABLE)) {
1846 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1847 			pages_done = ret;
1848 			break;
1849 		}
1850 
1851 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1852 		if (!*locked) {
1853 			BUG_ON(ret < 0);
1854 			BUG_ON(ret >= nr_pages);
1855 		}
1856 
1857 		if (ret > 0) {
1858 			nr_pages -= ret;
1859 			pages_done += ret;
1860 			if (!nr_pages)
1861 				break;
1862 		}
1863 		if (*locked) {
1864 			/*
1865 			 * VM_FAULT_RETRY didn't trigger or it was a
1866 			 * FOLL_NOWAIT.
1867 			 */
1868 			if (!pages_done)
1869 				pages_done = ret;
1870 			break;
1871 		}
1872 		/*
1873 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1874 		 * For the prefault case (!pages) we only update counts.
1875 		 */
1876 		if (likely(pages))
1877 			pages += ret;
1878 		start += ret << PAGE_SHIFT;
1879 
1880 		/* The lock was temporarily dropped, so we must unlock later */
1881 		must_unlock = true;
1882 
1883 retry:
1884 		/*
1885 		 * Repeat on the address that fired VM_FAULT_RETRY
1886 		 * with both FAULT_FLAG_ALLOW_RETRY and
1887 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1888 		 * by fatal signals of even common signals, depending on
1889 		 * the caller's request. So we need to check it before we
1890 		 * start trying again otherwise it can loop forever.
1891 		 */
1892 		if (gup_signal_pending(flags)) {
1893 			if (!pages_done)
1894 				pages_done = -EINTR;
1895 			break;
1896 		}
1897 
1898 		ret = mmap_read_lock_killable(mm);
1899 		if (ret) {
1900 			BUG_ON(ret > 0);
1901 			if (!pages_done)
1902 				pages_done = ret;
1903 			break;
1904 		}
1905 
1906 		*locked = 1;
1907 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1908 				       pages, locked);
1909 		if (!*locked) {
1910 			/* Continue to retry until we succeeded */
1911 			BUG_ON(ret != 0);
1912 			goto retry;
1913 		}
1914 		if (ret != 1) {
1915 			BUG_ON(ret > 1);
1916 			if (!pages_done)
1917 				pages_done = ret;
1918 			break;
1919 		}
1920 		nr_pages--;
1921 		pages_done++;
1922 		if (!nr_pages)
1923 			break;
1924 		if (likely(pages))
1925 			pages++;
1926 		start += PAGE_SIZE;
1927 	}
1928 	if (must_unlock && *locked) {
1929 		/*
1930 		 * We either temporarily dropped the lock, or the caller
1931 		 * requested that we both acquire and drop the lock. Either way,
1932 		 * we must now unlock, and notify the caller of that state.
1933 		 */
1934 		mmap_read_unlock(mm);
1935 		*locked = 0;
1936 	}
1937 
1938 	/*
1939 	 * Failing to pin anything implies something has gone wrong (except when
1940 	 * FOLL_NOWAIT is specified).
1941 	 */
1942 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1943 		return -EFAULT;
1944 
1945 	return pages_done;
1946 }
1947 
1948 /**
1949  * populate_vma_page_range() -  populate a range of pages in the vma.
1950  * @vma:   target vma
1951  * @start: start address
1952  * @end:   end address
1953  * @locked: whether the mmap_lock is still held
1954  *
1955  * This takes care of mlocking the pages too if VM_LOCKED is set.
1956  *
1957  * Return either number of pages pinned in the vma, or a negative error
1958  * code on error.
1959  *
1960  * vma->vm_mm->mmap_lock must be held.
1961  *
1962  * If @locked is NULL, it may be held for read or write and will
1963  * be unperturbed.
1964  *
1965  * If @locked is non-NULL, it must held for read only and may be
1966  * released.  If it's released, *@locked will be set to 0.
1967  */
1968 long populate_vma_page_range(struct vm_area_struct *vma,
1969 		unsigned long start, unsigned long end, int *locked)
1970 {
1971 	struct mm_struct *mm = vma->vm_mm;
1972 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1973 	int local_locked = 1;
1974 	int gup_flags;
1975 	long ret;
1976 
1977 	VM_BUG_ON(!PAGE_ALIGNED(start));
1978 	VM_BUG_ON(!PAGE_ALIGNED(end));
1979 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1980 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1981 	mmap_assert_locked(mm);
1982 
1983 	/*
1984 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1985 	 * faultin_page() to break COW, so it has no work to do here.
1986 	 */
1987 	if (vma->vm_flags & VM_LOCKONFAULT)
1988 		return nr_pages;
1989 
1990 	/* ... similarly, we've never faulted in PROT_NONE pages */
1991 	if (!vma_is_accessible(vma))
1992 		return -EFAULT;
1993 
1994 	gup_flags = FOLL_TOUCH;
1995 	/*
1996 	 * We want to touch writable mappings with a write fault in order
1997 	 * to break COW, except for shared mappings because these don't COW
1998 	 * and we would not want to dirty them for nothing.
1999 	 *
2000 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
2001 	 * readable (ie write-only or executable).
2002 	 */
2003 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
2004 		gup_flags |= FOLL_WRITE;
2005 	else
2006 		gup_flags |= FOLL_FORCE;
2007 
2008 	if (locked)
2009 		gup_flags |= FOLL_UNLOCKABLE;
2010 
2011 	/*
2012 	 * We made sure addr is within a VMA, so the following will
2013 	 * not result in a stack expansion that recurses back here.
2014 	 */
2015 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
2016 			       NULL, locked ? locked : &local_locked);
2017 	lru_add_drain();
2018 	return ret;
2019 }
2020 
2021 /*
2022  * faultin_page_range() - populate (prefault) page tables inside the
2023  *			  given range readable/writable
2024  *
2025  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
2026  *
2027  * @mm: the mm to populate page tables in
2028  * @start: start address
2029  * @end: end address
2030  * @write: whether to prefault readable or writable
2031  * @locked: whether the mmap_lock is still held
2032  *
2033  * Returns either number of processed pages in the MM, or a negative error
2034  * code on error (see __get_user_pages()). Note that this function reports
2035  * errors related to VMAs, such as incompatible mappings, as expected by
2036  * MADV_POPULATE_(READ|WRITE).
2037  *
2038  * The range must be page-aligned.
2039  *
2040  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
2041  */
2042 long faultin_page_range(struct mm_struct *mm, unsigned long start,
2043 			unsigned long end, bool write, int *locked)
2044 {
2045 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
2046 	int gup_flags;
2047 	long ret;
2048 
2049 	VM_BUG_ON(!PAGE_ALIGNED(start));
2050 	VM_BUG_ON(!PAGE_ALIGNED(end));
2051 	mmap_assert_locked(mm);
2052 
2053 	/*
2054 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
2055 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
2056 	 *	       difference with !FOLL_FORCE, because the page is writable
2057 	 *	       in the page table.
2058 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
2059 	 *		  a poisoned page.
2060 	 * !FOLL_FORCE: Require proper access permissions.
2061 	 */
2062 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
2063 		    FOLL_MADV_POPULATE;
2064 	if (write)
2065 		gup_flags |= FOLL_WRITE;
2066 
2067 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
2068 				      gup_flags);
2069 	lru_add_drain();
2070 	return ret;
2071 }
2072 
2073 /*
2074  * __mm_populate - populate and/or mlock pages within a range of address space.
2075  *
2076  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2077  * flags. VMAs must be already marked with the desired vm_flags, and
2078  * mmap_lock must not be held.
2079  */
2080 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2081 {
2082 	struct mm_struct *mm = current->mm;
2083 	unsigned long end, nstart, nend;
2084 	struct vm_area_struct *vma = NULL;
2085 	int locked = 0;
2086 	long ret = 0;
2087 
2088 	end = start + len;
2089 
2090 	for (nstart = start; nstart < end; nstart = nend) {
2091 		/*
2092 		 * We want to fault in pages for [nstart; end) address range.
2093 		 * Find first corresponding VMA.
2094 		 */
2095 		if (!locked) {
2096 			locked = 1;
2097 			mmap_read_lock(mm);
2098 			vma = find_vma_intersection(mm, nstart, end);
2099 		} else if (nstart >= vma->vm_end)
2100 			vma = find_vma_intersection(mm, vma->vm_end, end);
2101 
2102 		if (!vma)
2103 			break;
2104 		/*
2105 		 * Set [nstart; nend) to intersection of desired address
2106 		 * range with the first VMA. Also, skip undesirable VMA types.
2107 		 */
2108 		nend = min(end, vma->vm_end);
2109 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2110 			continue;
2111 		if (nstart < vma->vm_start)
2112 			nstart = vma->vm_start;
2113 		/*
2114 		 * Now fault in a range of pages. populate_vma_page_range()
2115 		 * double checks the vma flags, so that it won't mlock pages
2116 		 * if the vma was already munlocked.
2117 		 */
2118 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2119 		if (ret < 0) {
2120 			if (ignore_errors) {
2121 				ret = 0;
2122 				continue;	/* continue at next VMA */
2123 			}
2124 			break;
2125 		}
2126 		nend = nstart + ret * PAGE_SIZE;
2127 		ret = 0;
2128 	}
2129 	if (locked)
2130 		mmap_read_unlock(mm);
2131 	return ret;	/* 0 or negative error code */
2132 }
2133 #else /* CONFIG_MMU */
2134 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2135 		unsigned long nr_pages, struct page **pages,
2136 		int *locked, unsigned int foll_flags)
2137 {
2138 	struct vm_area_struct *vma;
2139 	bool must_unlock = false;
2140 	unsigned long vm_flags;
2141 	long i;
2142 
2143 	if (!nr_pages)
2144 		return 0;
2145 
2146 	/*
2147 	 * The internal caller expects GUP to manage the lock internally and the
2148 	 * lock must be released when this returns.
2149 	 */
2150 	if (!*locked) {
2151 		if (mmap_read_lock_killable(mm))
2152 			return -EAGAIN;
2153 		must_unlock = true;
2154 		*locked = 1;
2155 	}
2156 
2157 	/* calculate required read or write permissions.
2158 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2159 	 */
2160 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2161 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2162 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2163 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2164 
2165 	for (i = 0; i < nr_pages; i++) {
2166 		vma = find_vma(mm, start);
2167 		if (!vma)
2168 			break;
2169 
2170 		/* protect what we can, including chardevs */
2171 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2172 		    !(vm_flags & vma->vm_flags))
2173 			break;
2174 
2175 		if (pages) {
2176 			pages[i] = virt_to_page((void *)start);
2177 			if (pages[i])
2178 				get_page(pages[i]);
2179 		}
2180 
2181 		start = (start + PAGE_SIZE) & PAGE_MASK;
2182 	}
2183 
2184 	if (must_unlock && *locked) {
2185 		mmap_read_unlock(mm);
2186 		*locked = 0;
2187 	}
2188 
2189 	return i ? : -EFAULT;
2190 }
2191 #endif /* !CONFIG_MMU */
2192 
2193 /**
2194  * fault_in_writeable - fault in userspace address range for writing
2195  * @uaddr: start of address range
2196  * @size: size of address range
2197  *
2198  * Returns the number of bytes not faulted in (like copy_to_user() and
2199  * copy_from_user()).
2200  */
2201 size_t fault_in_writeable(char __user *uaddr, size_t size)
2202 {
2203 	char __user *start = uaddr, *end;
2204 
2205 	if (unlikely(size == 0))
2206 		return 0;
2207 	if (!user_write_access_begin(uaddr, size))
2208 		return size;
2209 	if (!PAGE_ALIGNED(uaddr)) {
2210 		unsafe_put_user(0, uaddr, out);
2211 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2212 	}
2213 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2214 	if (unlikely(end < start))
2215 		end = NULL;
2216 	while (uaddr != end) {
2217 		unsafe_put_user(0, uaddr, out);
2218 		uaddr += PAGE_SIZE;
2219 	}
2220 
2221 out:
2222 	user_write_access_end();
2223 	if (size > uaddr - start)
2224 		return size - (uaddr - start);
2225 	return 0;
2226 }
2227 EXPORT_SYMBOL(fault_in_writeable);
2228 
2229 /**
2230  * fault_in_subpage_writeable - fault in an address range for writing
2231  * @uaddr: start of address range
2232  * @size: size of address range
2233  *
2234  * Fault in a user address range for writing while checking for permissions at
2235  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2236  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2237  *
2238  * Returns the number of bytes not faulted in (like copy_to_user() and
2239  * copy_from_user()).
2240  */
2241 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2242 {
2243 	size_t faulted_in;
2244 
2245 	/*
2246 	 * Attempt faulting in at page granularity first for page table
2247 	 * permission checking. The arch-specific probe_subpage_writeable()
2248 	 * functions may not check for this.
2249 	 */
2250 	faulted_in = size - fault_in_writeable(uaddr, size);
2251 	if (faulted_in)
2252 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2253 
2254 	return size - faulted_in;
2255 }
2256 EXPORT_SYMBOL(fault_in_subpage_writeable);
2257 
2258 /*
2259  * fault_in_safe_writeable - fault in an address range for writing
2260  * @uaddr: start of address range
2261  * @size: length of address range
2262  *
2263  * Faults in an address range for writing.  This is primarily useful when we
2264  * already know that some or all of the pages in the address range aren't in
2265  * memory.
2266  *
2267  * Unlike fault_in_writeable(), this function is non-destructive.
2268  *
2269  * Note that we don't pin or otherwise hold the pages referenced that we fault
2270  * in.  There's no guarantee that they'll stay in memory for any duration of
2271  * time.
2272  *
2273  * Returns the number of bytes not faulted in, like copy_to_user() and
2274  * copy_from_user().
2275  */
2276 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2277 {
2278 	unsigned long start = (unsigned long)uaddr, end;
2279 	struct mm_struct *mm = current->mm;
2280 	bool unlocked = false;
2281 
2282 	if (unlikely(size == 0))
2283 		return 0;
2284 	end = PAGE_ALIGN(start + size);
2285 	if (end < start)
2286 		end = 0;
2287 
2288 	mmap_read_lock(mm);
2289 	do {
2290 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2291 			break;
2292 		start = (start + PAGE_SIZE) & PAGE_MASK;
2293 	} while (start != end);
2294 	mmap_read_unlock(mm);
2295 
2296 	if (size > (unsigned long)uaddr - start)
2297 		return size - ((unsigned long)uaddr - start);
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL(fault_in_safe_writeable);
2301 
2302 /**
2303  * fault_in_readable - fault in userspace address range for reading
2304  * @uaddr: start of user address range
2305  * @size: size of user address range
2306  *
2307  * Returns the number of bytes not faulted in (like copy_to_user() and
2308  * copy_from_user()).
2309  */
2310 size_t fault_in_readable(const char __user *uaddr, size_t size)
2311 {
2312 	const char __user *start = uaddr, *end;
2313 	volatile char c;
2314 
2315 	if (unlikely(size == 0))
2316 		return 0;
2317 	if (!user_read_access_begin(uaddr, size))
2318 		return size;
2319 	if (!PAGE_ALIGNED(uaddr)) {
2320 		unsafe_get_user(c, uaddr, out);
2321 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2322 	}
2323 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2324 	if (unlikely(end < start))
2325 		end = NULL;
2326 	while (uaddr != end) {
2327 		unsafe_get_user(c, uaddr, out);
2328 		uaddr += PAGE_SIZE;
2329 	}
2330 
2331 out:
2332 	user_read_access_end();
2333 	(void)c;
2334 	if (size > uaddr - start)
2335 		return size - (uaddr - start);
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL(fault_in_readable);
2339 
2340 /**
2341  * get_dump_page() - pin user page in memory while writing it to core dump
2342  * @addr: user address
2343  *
2344  * Returns struct page pointer of user page pinned for dump,
2345  * to be freed afterwards by put_page().
2346  *
2347  * Returns NULL on any kind of failure - a hole must then be inserted into
2348  * the corefile, to preserve alignment with its headers; and also returns
2349  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2350  * allowing a hole to be left in the corefile to save disk space.
2351  *
2352  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2353  */
2354 #ifdef CONFIG_ELF_CORE
2355 struct page *get_dump_page(unsigned long addr)
2356 {
2357 	struct page *page;
2358 	int locked = 0;
2359 	int ret;
2360 
2361 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2362 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2363 	return (ret == 1) ? page : NULL;
2364 }
2365 #endif /* CONFIG_ELF_CORE */
2366 
2367 #ifdef CONFIG_MIGRATION
2368 /*
2369  * Returns the number of collected pages. Return value is always >= 0.
2370  */
2371 static unsigned long collect_longterm_unpinnable_pages(
2372 					struct list_head *movable_page_list,
2373 					unsigned long nr_pages,
2374 					struct page **pages)
2375 {
2376 	unsigned long i, collected = 0;
2377 	struct folio *prev_folio = NULL;
2378 	bool drain_allow = true;
2379 
2380 	for (i = 0; i < nr_pages; i++) {
2381 		struct folio *folio = page_folio(pages[i]);
2382 
2383 		if (folio == prev_folio)
2384 			continue;
2385 		prev_folio = folio;
2386 
2387 		if (folio_is_longterm_pinnable(folio))
2388 			continue;
2389 
2390 		collected++;
2391 
2392 		if (folio_is_device_coherent(folio))
2393 			continue;
2394 
2395 		if (folio_test_hugetlb(folio)) {
2396 			isolate_hugetlb(folio, movable_page_list);
2397 			continue;
2398 		}
2399 
2400 		if (!folio_test_lru(folio) && drain_allow) {
2401 			lru_add_drain_all();
2402 			drain_allow = false;
2403 		}
2404 
2405 		if (!folio_isolate_lru(folio))
2406 			continue;
2407 
2408 		list_add_tail(&folio->lru, movable_page_list);
2409 		node_stat_mod_folio(folio,
2410 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2411 				    folio_nr_pages(folio));
2412 	}
2413 
2414 	return collected;
2415 }
2416 
2417 /*
2418  * Unpins all pages and migrates device coherent pages and movable_page_list.
2419  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2420  * (or partial success).
2421  */
2422 static int migrate_longterm_unpinnable_pages(
2423 					struct list_head *movable_page_list,
2424 					unsigned long nr_pages,
2425 					struct page **pages)
2426 {
2427 	int ret;
2428 	unsigned long i;
2429 
2430 	for (i = 0; i < nr_pages; i++) {
2431 		struct folio *folio = page_folio(pages[i]);
2432 
2433 		if (folio_is_device_coherent(folio)) {
2434 			/*
2435 			 * Migration will fail if the page is pinned, so convert
2436 			 * the pin on the source page to a normal reference.
2437 			 */
2438 			pages[i] = NULL;
2439 			folio_get(folio);
2440 			gup_put_folio(folio, 1, FOLL_PIN);
2441 
2442 			if (migrate_device_coherent_page(&folio->page)) {
2443 				ret = -EBUSY;
2444 				goto err;
2445 			}
2446 
2447 			continue;
2448 		}
2449 
2450 		/*
2451 		 * We can't migrate pages with unexpected references, so drop
2452 		 * the reference obtained by __get_user_pages_locked().
2453 		 * Migrating pages have been added to movable_page_list after
2454 		 * calling folio_isolate_lru() which takes a reference so the
2455 		 * page won't be freed if it's migrating.
2456 		 */
2457 		unpin_user_page(pages[i]);
2458 		pages[i] = NULL;
2459 	}
2460 
2461 	if (!list_empty(movable_page_list)) {
2462 		struct migration_target_control mtc = {
2463 			.nid = NUMA_NO_NODE,
2464 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2465 			.reason = MR_LONGTERM_PIN,
2466 		};
2467 
2468 		if (migrate_pages(movable_page_list, alloc_migration_target,
2469 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2470 				  MR_LONGTERM_PIN, NULL)) {
2471 			ret = -ENOMEM;
2472 			goto err;
2473 		}
2474 	}
2475 
2476 	putback_movable_pages(movable_page_list);
2477 
2478 	return -EAGAIN;
2479 
2480 err:
2481 	for (i = 0; i < nr_pages; i++)
2482 		if (pages[i])
2483 			unpin_user_page(pages[i]);
2484 	putback_movable_pages(movable_page_list);
2485 
2486 	return ret;
2487 }
2488 
2489 /*
2490  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2491  * pages in the range are required to be pinned via FOLL_PIN, before calling
2492  * this routine.
2493  *
2494  * If any pages in the range are not allowed to be pinned, then this routine
2495  * will migrate those pages away, unpin all the pages in the range and return
2496  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2497  * call this routine again.
2498  *
2499  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2500  * The caller should give up, and propagate the error back up the call stack.
2501  *
2502  * If everything is OK and all pages in the range are allowed to be pinned, then
2503  * this routine leaves all pages pinned and returns zero for success.
2504  */
2505 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2506 					    struct page **pages)
2507 {
2508 	unsigned long collected;
2509 	LIST_HEAD(movable_page_list);
2510 
2511 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2512 						nr_pages, pages);
2513 	if (!collected)
2514 		return 0;
2515 
2516 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2517 						pages);
2518 }
2519 #else
2520 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2521 					    struct page **pages)
2522 {
2523 	return 0;
2524 }
2525 #endif /* CONFIG_MIGRATION */
2526 
2527 /*
2528  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2529  * allows us to process the FOLL_LONGTERM flag.
2530  */
2531 static long __gup_longterm_locked(struct mm_struct *mm,
2532 				  unsigned long start,
2533 				  unsigned long nr_pages,
2534 				  struct page **pages,
2535 				  int *locked,
2536 				  unsigned int gup_flags)
2537 {
2538 	unsigned int flags;
2539 	long rc, nr_pinned_pages;
2540 
2541 	if (!(gup_flags & FOLL_LONGTERM))
2542 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2543 					       locked, gup_flags);
2544 
2545 	flags = memalloc_pin_save();
2546 	do {
2547 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2548 							  pages, locked,
2549 							  gup_flags);
2550 		if (nr_pinned_pages <= 0) {
2551 			rc = nr_pinned_pages;
2552 			break;
2553 		}
2554 
2555 		/* FOLL_LONGTERM implies FOLL_PIN */
2556 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2557 	} while (rc == -EAGAIN);
2558 	memalloc_pin_restore(flags);
2559 	return rc ? rc : nr_pinned_pages;
2560 }
2561 
2562 /*
2563  * Check that the given flags are valid for the exported gup/pup interface, and
2564  * update them with the required flags that the caller must have set.
2565  */
2566 static bool is_valid_gup_args(struct page **pages, int *locked,
2567 			      unsigned int *gup_flags_p, unsigned int to_set)
2568 {
2569 	unsigned int gup_flags = *gup_flags_p;
2570 
2571 	/*
2572 	 * These flags not allowed to be specified externally to the gup
2573 	 * interfaces:
2574 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2575 	 * - FOLL_REMOTE is internal only and used on follow_page()
2576 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2577 	 */
2578 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2579 		return false;
2580 
2581 	gup_flags |= to_set;
2582 	if (locked) {
2583 		/* At the external interface locked must be set */
2584 		if (WARN_ON_ONCE(*locked != 1))
2585 			return false;
2586 
2587 		gup_flags |= FOLL_UNLOCKABLE;
2588 	}
2589 
2590 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2591 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2592 			 (FOLL_PIN | FOLL_GET)))
2593 		return false;
2594 
2595 	/* LONGTERM can only be specified when pinning */
2596 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2597 		return false;
2598 
2599 	/* Pages input must be given if using GET/PIN */
2600 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2601 		return false;
2602 
2603 	/* We want to allow the pgmap to be hot-unplugged at all times */
2604 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2605 			 (gup_flags & FOLL_PCI_P2PDMA)))
2606 		return false;
2607 
2608 	*gup_flags_p = gup_flags;
2609 	return true;
2610 }
2611 
2612 #ifdef CONFIG_MMU
2613 /**
2614  * get_user_pages_remote() - pin user pages in memory
2615  * @mm:		mm_struct of target mm
2616  * @start:	starting user address
2617  * @nr_pages:	number of pages from start to pin
2618  * @gup_flags:	flags modifying lookup behaviour
2619  * @pages:	array that receives pointers to the pages pinned.
2620  *		Should be at least nr_pages long. Or NULL, if caller
2621  *		only intends to ensure the pages are faulted in.
2622  * @locked:	pointer to lock flag indicating whether lock is held and
2623  *		subsequently whether VM_FAULT_RETRY functionality can be
2624  *		utilised. Lock must initially be held.
2625  *
2626  * Returns either number of pages pinned (which may be less than the
2627  * number requested), or an error. Details about the return value:
2628  *
2629  * -- If nr_pages is 0, returns 0.
2630  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2631  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2632  *    pages pinned. Again, this may be less than nr_pages.
2633  *
2634  * The caller is responsible for releasing returned @pages, via put_page().
2635  *
2636  * Must be called with mmap_lock held for read or write.
2637  *
2638  * get_user_pages_remote walks a process's page tables and takes a reference
2639  * to each struct page that each user address corresponds to at a given
2640  * instant. That is, it takes the page that would be accessed if a user
2641  * thread accesses the given user virtual address at that instant.
2642  *
2643  * This does not guarantee that the page exists in the user mappings when
2644  * get_user_pages_remote returns, and there may even be a completely different
2645  * page there in some cases (eg. if mmapped pagecache has been invalidated
2646  * and subsequently re-faulted). However it does guarantee that the page
2647  * won't be freed completely. And mostly callers simply care that the page
2648  * contains data that was valid *at some point in time*. Typically, an IO
2649  * or similar operation cannot guarantee anything stronger anyway because
2650  * locks can't be held over the syscall boundary.
2651  *
2652  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2653  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2654  * be called after the page is finished with, and before put_page is called.
2655  *
2656  * get_user_pages_remote is typically used for fewer-copy IO operations,
2657  * to get a handle on the memory by some means other than accesses
2658  * via the user virtual addresses. The pages may be submitted for
2659  * DMA to devices or accessed via their kernel linear mapping (via the
2660  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2661  *
2662  * See also get_user_pages_fast, for performance critical applications.
2663  *
2664  * get_user_pages_remote should be phased out in favor of
2665  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2666  * should use get_user_pages_remote because it cannot pass
2667  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2668  */
2669 long get_user_pages_remote(struct mm_struct *mm,
2670 		unsigned long start, unsigned long nr_pages,
2671 		unsigned int gup_flags, struct page **pages,
2672 		int *locked)
2673 {
2674 	int local_locked = 1;
2675 
2676 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2677 			       FOLL_TOUCH | FOLL_REMOTE))
2678 		return -EINVAL;
2679 
2680 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2681 				       locked ? locked : &local_locked,
2682 				       gup_flags);
2683 }
2684 EXPORT_SYMBOL(get_user_pages_remote);
2685 
2686 #else /* CONFIG_MMU */
2687 long get_user_pages_remote(struct mm_struct *mm,
2688 			   unsigned long start, unsigned long nr_pages,
2689 			   unsigned int gup_flags, struct page **pages,
2690 			   int *locked)
2691 {
2692 	return 0;
2693 }
2694 #endif /* !CONFIG_MMU */
2695 
2696 /**
2697  * get_user_pages() - pin user pages in memory
2698  * @start:      starting user address
2699  * @nr_pages:   number of pages from start to pin
2700  * @gup_flags:  flags modifying lookup behaviour
2701  * @pages:      array that receives pointers to the pages pinned.
2702  *              Should be at least nr_pages long. Or NULL, if caller
2703  *              only intends to ensure the pages are faulted in.
2704  *
2705  * This is the same as get_user_pages_remote(), just with a less-flexible
2706  * calling convention where we assume that the mm being operated on belongs to
2707  * the current task, and doesn't allow passing of a locked parameter.  We also
2708  * obviously don't pass FOLL_REMOTE in here.
2709  */
2710 long get_user_pages(unsigned long start, unsigned long nr_pages,
2711 		    unsigned int gup_flags, struct page **pages)
2712 {
2713 	int locked = 1;
2714 
2715 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2716 		return -EINVAL;
2717 
2718 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2719 				       &locked, gup_flags);
2720 }
2721 EXPORT_SYMBOL(get_user_pages);
2722 
2723 /*
2724  * get_user_pages_unlocked() is suitable to replace the form:
2725  *
2726  *      mmap_read_lock(mm);
2727  *      get_user_pages(mm, ..., pages, NULL);
2728  *      mmap_read_unlock(mm);
2729  *
2730  *  with:
2731  *
2732  *      get_user_pages_unlocked(mm, ..., pages);
2733  *
2734  * It is functionally equivalent to get_user_pages_fast so
2735  * get_user_pages_fast should be used instead if specific gup_flags
2736  * (e.g. FOLL_FORCE) are not required.
2737  */
2738 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2739 			     struct page **pages, unsigned int gup_flags)
2740 {
2741 	int locked = 0;
2742 
2743 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2744 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2745 		return -EINVAL;
2746 
2747 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2748 				       &locked, gup_flags);
2749 }
2750 EXPORT_SYMBOL(get_user_pages_unlocked);
2751 
2752 /*
2753  * GUP-fast
2754  *
2755  * get_user_pages_fast attempts to pin user pages by walking the page
2756  * tables directly and avoids taking locks. Thus the walker needs to be
2757  * protected from page table pages being freed from under it, and should
2758  * block any THP splits.
2759  *
2760  * One way to achieve this is to have the walker disable interrupts, and
2761  * rely on IPIs from the TLB flushing code blocking before the page table
2762  * pages are freed. This is unsuitable for architectures that do not need
2763  * to broadcast an IPI when invalidating TLBs.
2764  *
2765  * Another way to achieve this is to batch up page table containing pages
2766  * belonging to more than one mm_user, then rcu_sched a callback to free those
2767  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2768  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2769  * (which is a relatively rare event). The code below adopts this strategy.
2770  *
2771  * Before activating this code, please be aware that the following assumptions
2772  * are currently made:
2773  *
2774  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2775  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2776  *
2777  *  *) ptes can be read atomically by the architecture.
2778  *
2779  *  *) access_ok is sufficient to validate userspace address ranges.
2780  *
2781  * The last two assumptions can be relaxed by the addition of helper functions.
2782  *
2783  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2784  */
2785 #ifdef CONFIG_HAVE_GUP_FAST
2786 
2787 /*
2788  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2789  * a specific folio.
2790  *
2791  * This call assumes the caller has pinned the folio, that the lowest page table
2792  * level still points to this folio, and that interrupts have been disabled.
2793  *
2794  * GUP-fast must reject all secretmem folios.
2795  *
2796  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2797  * (see comment describing the writable_file_mapping_allowed() function). We
2798  * therefore try to avoid the most egregious case of a long-term mapping doing
2799  * so.
2800  *
2801  * This function cannot be as thorough as that one as the VMA is not available
2802  * in the fast path, so instead we whitelist known good cases and if in doubt,
2803  * fall back to the slow path.
2804  */
2805 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2806 {
2807 	bool reject_file_backed = false;
2808 	struct address_space *mapping;
2809 	bool check_secretmem = false;
2810 	unsigned long mapping_flags;
2811 
2812 	/*
2813 	 * If we aren't pinning then no problematic write can occur. A long term
2814 	 * pin is the most egregious case so this is the one we disallow.
2815 	 */
2816 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2817 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2818 		reject_file_backed = true;
2819 
2820 	/* We hold a folio reference, so we can safely access folio fields. */
2821 
2822 	/* secretmem folios are always order-0 folios. */
2823 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2824 		check_secretmem = true;
2825 
2826 	if (!reject_file_backed && !check_secretmem)
2827 		return true;
2828 
2829 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2830 		return false;
2831 
2832 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2833 	if (folio_test_hugetlb(folio))
2834 		return true;
2835 
2836 	/*
2837 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2838 	 * cannot proceed, which means no actions performed under RCU can
2839 	 * proceed either.
2840 	 *
2841 	 * inodes and thus their mappings are freed under RCU, which means the
2842 	 * mapping cannot be freed beneath us and thus we can safely dereference
2843 	 * it.
2844 	 */
2845 	lockdep_assert_irqs_disabled();
2846 
2847 	/*
2848 	 * However, there may be operations which _alter_ the mapping, so ensure
2849 	 * we read it once and only once.
2850 	 */
2851 	mapping = READ_ONCE(folio->mapping);
2852 
2853 	/*
2854 	 * The mapping may have been truncated, in any case we cannot determine
2855 	 * if this mapping is safe - fall back to slow path to determine how to
2856 	 * proceed.
2857 	 */
2858 	if (!mapping)
2859 		return false;
2860 
2861 	/* Anonymous folios pose no problem. */
2862 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2863 	if (mapping_flags)
2864 		return mapping_flags & PAGE_MAPPING_ANON;
2865 
2866 	/*
2867 	 * At this point, we know the mapping is non-null and points to an
2868 	 * address_space object.
2869 	 */
2870 	if (check_secretmem && secretmem_mapping(mapping))
2871 		return false;
2872 	/* The only remaining allowed file system is shmem. */
2873 	return !reject_file_backed || shmem_mapping(mapping);
2874 }
2875 
2876 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2877 		unsigned int flags, struct page **pages)
2878 {
2879 	while ((*nr) - nr_start) {
2880 		struct folio *folio = page_folio(pages[--(*nr)]);
2881 
2882 		folio_clear_referenced(folio);
2883 		gup_put_folio(folio, 1, flags);
2884 	}
2885 }
2886 
2887 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2888 /*
2889  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2890  * operations.
2891  *
2892  * To pin the page, GUP-fast needs to do below in order:
2893  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2894  *
2895  * For the rest of pgtable operations where pgtable updates can be racy
2896  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2897  * is pinned.
2898  *
2899  * Above will work for all pte-level operations, including THP split.
2900  *
2901  * For THP collapse, it's a bit more complicated because GUP-fast may be
2902  * walking a pgtable page that is being freed (pte is still valid but pmd
2903  * can be cleared already).  To avoid race in such condition, we need to
2904  * also check pmd here to make sure pmd doesn't change (corresponds to
2905  * pmdp_collapse_flush() in the THP collapse code path).
2906  */
2907 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2908 		unsigned long end, unsigned int flags, struct page **pages,
2909 		int *nr)
2910 {
2911 	struct dev_pagemap *pgmap = NULL;
2912 	int nr_start = *nr, ret = 0;
2913 	pte_t *ptep, *ptem;
2914 
2915 	ptem = ptep = pte_offset_map(&pmd, addr);
2916 	if (!ptep)
2917 		return 0;
2918 	do {
2919 		pte_t pte = ptep_get_lockless(ptep);
2920 		struct page *page;
2921 		struct folio *folio;
2922 
2923 		/*
2924 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2925 		 * pte_access_permitted() better should reject these pages
2926 		 * either way: otherwise, GUP-fast might succeed in
2927 		 * cases where ordinary GUP would fail due to VMA access
2928 		 * permissions.
2929 		 */
2930 		if (pte_protnone(pte))
2931 			goto pte_unmap;
2932 
2933 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2934 			goto pte_unmap;
2935 
2936 		if (pte_devmap(pte)) {
2937 			if (unlikely(flags & FOLL_LONGTERM))
2938 				goto pte_unmap;
2939 
2940 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2941 			if (unlikely(!pgmap)) {
2942 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2943 				goto pte_unmap;
2944 			}
2945 		} else if (pte_special(pte))
2946 			goto pte_unmap;
2947 
2948 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2949 		page = pte_page(pte);
2950 
2951 		folio = try_grab_folio(page, 1, flags);
2952 		if (!folio)
2953 			goto pte_unmap;
2954 
2955 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2956 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2957 			gup_put_folio(folio, 1, flags);
2958 			goto pte_unmap;
2959 		}
2960 
2961 		if (!gup_fast_folio_allowed(folio, flags)) {
2962 			gup_put_folio(folio, 1, flags);
2963 			goto pte_unmap;
2964 		}
2965 
2966 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2967 			gup_put_folio(folio, 1, flags);
2968 			goto pte_unmap;
2969 		}
2970 
2971 		/*
2972 		 * We need to make the page accessible if and only if we are
2973 		 * going to access its content (the FOLL_PIN case).  Please
2974 		 * see Documentation/core-api/pin_user_pages.rst for
2975 		 * details.
2976 		 */
2977 		if (flags & FOLL_PIN) {
2978 			ret = arch_make_page_accessible(page);
2979 			if (ret) {
2980 				gup_put_folio(folio, 1, flags);
2981 				goto pte_unmap;
2982 			}
2983 		}
2984 		folio_set_referenced(folio);
2985 		pages[*nr] = page;
2986 		(*nr)++;
2987 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2988 
2989 	ret = 1;
2990 
2991 pte_unmap:
2992 	if (pgmap)
2993 		put_dev_pagemap(pgmap);
2994 	pte_unmap(ptem);
2995 	return ret;
2996 }
2997 #else
2998 
2999 /*
3000  * If we can't determine whether or not a pte is special, then fail immediately
3001  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
3002  * to be special.
3003  *
3004  * For a futex to be placed on a THP tail page, get_futex_key requires a
3005  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
3006  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
3007  */
3008 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
3009 		unsigned long end, unsigned int flags, struct page **pages,
3010 		int *nr)
3011 {
3012 	return 0;
3013 }
3014 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3015 
3016 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3017 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3018 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
3019 {
3020 	int nr_start = *nr;
3021 	struct dev_pagemap *pgmap = NULL;
3022 
3023 	do {
3024 		struct folio *folio;
3025 		struct page *page = pfn_to_page(pfn);
3026 
3027 		pgmap = get_dev_pagemap(pfn, pgmap);
3028 		if (unlikely(!pgmap)) {
3029 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3030 			break;
3031 		}
3032 
3033 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3034 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3035 			break;
3036 		}
3037 
3038 		folio = try_grab_folio(page, 1, flags);
3039 		if (!folio) {
3040 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3041 			break;
3042 		}
3043 		folio_set_referenced(folio);
3044 		pages[*nr] = page;
3045 		(*nr)++;
3046 		pfn++;
3047 	} while (addr += PAGE_SIZE, addr != end);
3048 
3049 	put_dev_pagemap(pgmap);
3050 	return addr == end;
3051 }
3052 
3053 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3054 		unsigned long end, unsigned int flags, struct page **pages,
3055 		int *nr)
3056 {
3057 	unsigned long fault_pfn;
3058 	int nr_start = *nr;
3059 
3060 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3061 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3062 		return 0;
3063 
3064 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3065 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3066 		return 0;
3067 	}
3068 	return 1;
3069 }
3070 
3071 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3072 		unsigned long end, unsigned int flags, struct page **pages,
3073 		int *nr)
3074 {
3075 	unsigned long fault_pfn;
3076 	int nr_start = *nr;
3077 
3078 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3079 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3080 		return 0;
3081 
3082 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3083 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3084 		return 0;
3085 	}
3086 	return 1;
3087 }
3088 #else
3089 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3090 		unsigned long end, unsigned int flags, struct page **pages,
3091 		int *nr)
3092 {
3093 	BUILD_BUG();
3094 	return 0;
3095 }
3096 
3097 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3098 		unsigned long end, unsigned int flags, struct page **pages,
3099 		int *nr)
3100 {
3101 	BUILD_BUG();
3102 	return 0;
3103 }
3104 #endif
3105 
3106 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3107 		unsigned long end, unsigned int flags, struct page **pages,
3108 		int *nr)
3109 {
3110 	struct page *page;
3111 	struct folio *folio;
3112 	int refs;
3113 
3114 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3115 		return 0;
3116 
3117 	if (pmd_devmap(orig)) {
3118 		if (unlikely(flags & FOLL_LONGTERM))
3119 			return 0;
3120 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3121 					        pages, nr);
3122 	}
3123 
3124 	page = pmd_page(orig);
3125 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3126 
3127 	folio = try_grab_folio(page, refs, flags);
3128 	if (!folio)
3129 		return 0;
3130 
3131 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3132 		gup_put_folio(folio, refs, flags);
3133 		return 0;
3134 	}
3135 
3136 	if (!gup_fast_folio_allowed(folio, flags)) {
3137 		gup_put_folio(folio, refs, flags);
3138 		return 0;
3139 	}
3140 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3141 		gup_put_folio(folio, refs, flags);
3142 		return 0;
3143 	}
3144 
3145 	*nr += refs;
3146 	folio_set_referenced(folio);
3147 	return 1;
3148 }
3149 
3150 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3151 		unsigned long end, unsigned int flags, struct page **pages,
3152 		int *nr)
3153 {
3154 	struct page *page;
3155 	struct folio *folio;
3156 	int refs;
3157 
3158 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3159 		return 0;
3160 
3161 	if (pud_devmap(orig)) {
3162 		if (unlikely(flags & FOLL_LONGTERM))
3163 			return 0;
3164 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3165 					        pages, nr);
3166 	}
3167 
3168 	page = pud_page(orig);
3169 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3170 
3171 	folio = try_grab_folio(page, refs, flags);
3172 	if (!folio)
3173 		return 0;
3174 
3175 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3176 		gup_put_folio(folio, refs, flags);
3177 		return 0;
3178 	}
3179 
3180 	if (!gup_fast_folio_allowed(folio, flags)) {
3181 		gup_put_folio(folio, refs, flags);
3182 		return 0;
3183 	}
3184 
3185 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3186 		gup_put_folio(folio, refs, flags);
3187 		return 0;
3188 	}
3189 
3190 	*nr += refs;
3191 	folio_set_referenced(folio);
3192 	return 1;
3193 }
3194 
3195 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3196 		unsigned long end, unsigned int flags, struct page **pages,
3197 		int *nr)
3198 {
3199 	int refs;
3200 	struct page *page;
3201 	struct folio *folio;
3202 
3203 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3204 		return 0;
3205 
3206 	BUILD_BUG_ON(pgd_devmap(orig));
3207 
3208 	page = pgd_page(orig);
3209 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3210 
3211 	folio = try_grab_folio(page, refs, flags);
3212 	if (!folio)
3213 		return 0;
3214 
3215 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3216 		gup_put_folio(folio, refs, flags);
3217 		return 0;
3218 	}
3219 
3220 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3221 		gup_put_folio(folio, refs, flags);
3222 		return 0;
3223 	}
3224 
3225 	if (!gup_fast_folio_allowed(folio, flags)) {
3226 		gup_put_folio(folio, refs, flags);
3227 		return 0;
3228 	}
3229 
3230 	*nr += refs;
3231 	folio_set_referenced(folio);
3232 	return 1;
3233 }
3234 
3235 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3236 		unsigned long end, unsigned int flags, struct page **pages,
3237 		int *nr)
3238 {
3239 	unsigned long next;
3240 	pmd_t *pmdp;
3241 
3242 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3243 	do {
3244 		pmd_t pmd = pmdp_get_lockless(pmdp);
3245 
3246 		next = pmd_addr_end(addr, end);
3247 		if (!pmd_present(pmd))
3248 			return 0;
3249 
3250 		if (unlikely(pmd_leaf(pmd))) {
3251 			/* See gup_fast_pte_range() */
3252 			if (pmd_protnone(pmd))
3253 				return 0;
3254 
3255 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3256 				pages, nr))
3257 				return 0;
3258 
3259 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3260 			/*
3261 			 * architecture have different format for hugetlbfs
3262 			 * pmd format and THP pmd format
3263 			 */
3264 			if (!gup_fast_hugepd(__hugepd(pmd_val(pmd)), addr,
3265 					     PMD_SHIFT, next, flags, pages, nr))
3266 				return 0;
3267 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3268 					       pages, nr))
3269 			return 0;
3270 	} while (pmdp++, addr = next, addr != end);
3271 
3272 	return 1;
3273 }
3274 
3275 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3276 		unsigned long end, unsigned int flags, struct page **pages,
3277 		int *nr)
3278 {
3279 	unsigned long next;
3280 	pud_t *pudp;
3281 
3282 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3283 	do {
3284 		pud_t pud = READ_ONCE(*pudp);
3285 
3286 		next = pud_addr_end(addr, end);
3287 		if (unlikely(!pud_present(pud)))
3288 			return 0;
3289 		if (unlikely(pud_leaf(pud))) {
3290 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3291 					       pages, nr))
3292 				return 0;
3293 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3294 			if (!gup_fast_hugepd(__hugepd(pud_val(pud)), addr,
3295 					     PUD_SHIFT, next, flags, pages, nr))
3296 				return 0;
3297 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3298 					       pages, nr))
3299 			return 0;
3300 	} while (pudp++, addr = next, addr != end);
3301 
3302 	return 1;
3303 }
3304 
3305 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3306 		unsigned long end, unsigned int flags, struct page **pages,
3307 		int *nr)
3308 {
3309 	unsigned long next;
3310 	p4d_t *p4dp;
3311 
3312 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3313 	do {
3314 		p4d_t p4d = READ_ONCE(*p4dp);
3315 
3316 		next = p4d_addr_end(addr, end);
3317 		if (!p4d_present(p4d))
3318 			return 0;
3319 		BUILD_BUG_ON(p4d_leaf(p4d));
3320 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3321 			if (!gup_fast_hugepd(__hugepd(p4d_val(p4d)), addr,
3322 					     P4D_SHIFT, next, flags, pages, nr))
3323 				return 0;
3324 		} else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3325 					       pages, nr))
3326 			return 0;
3327 	} while (p4dp++, addr = next, addr != end);
3328 
3329 	return 1;
3330 }
3331 
3332 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3333 		unsigned int flags, struct page **pages, int *nr)
3334 {
3335 	unsigned long next;
3336 	pgd_t *pgdp;
3337 
3338 	pgdp = pgd_offset(current->mm, addr);
3339 	do {
3340 		pgd_t pgd = READ_ONCE(*pgdp);
3341 
3342 		next = pgd_addr_end(addr, end);
3343 		if (pgd_none(pgd))
3344 			return;
3345 		if (unlikely(pgd_leaf(pgd))) {
3346 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3347 					       pages, nr))
3348 				return;
3349 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3350 			if (!gup_fast_hugepd(__hugepd(pgd_val(pgd)), addr,
3351 					      PGDIR_SHIFT, next, flags, pages, nr))
3352 				return;
3353 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3354 					       pages, nr))
3355 			return;
3356 	} while (pgdp++, addr = next, addr != end);
3357 }
3358 #else
3359 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3360 		unsigned int flags, struct page **pages, int *nr)
3361 {
3362 }
3363 #endif /* CONFIG_HAVE_GUP_FAST */
3364 
3365 #ifndef gup_fast_permitted
3366 /*
3367  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3368  * we need to fall back to the slow version:
3369  */
3370 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3371 {
3372 	return true;
3373 }
3374 #endif
3375 
3376 static unsigned long gup_fast(unsigned long start, unsigned long end,
3377 		unsigned int gup_flags, struct page **pages)
3378 {
3379 	unsigned long flags;
3380 	int nr_pinned = 0;
3381 	unsigned seq;
3382 
3383 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3384 	    !gup_fast_permitted(start, end))
3385 		return 0;
3386 
3387 	if (gup_flags & FOLL_PIN) {
3388 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3389 		if (seq & 1)
3390 			return 0;
3391 	}
3392 
3393 	/*
3394 	 * Disable interrupts. The nested form is used, in order to allow full,
3395 	 * general purpose use of this routine.
3396 	 *
3397 	 * With interrupts disabled, we block page table pages from being freed
3398 	 * from under us. See struct mmu_table_batch comments in
3399 	 * include/asm-generic/tlb.h for more details.
3400 	 *
3401 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3402 	 * that come from THPs splitting.
3403 	 */
3404 	local_irq_save(flags);
3405 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3406 	local_irq_restore(flags);
3407 
3408 	/*
3409 	 * When pinning pages for DMA there could be a concurrent write protect
3410 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3411 	 */
3412 	if (gup_flags & FOLL_PIN) {
3413 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3414 			gup_fast_unpin_user_pages(pages, nr_pinned);
3415 			return 0;
3416 		} else {
3417 			sanity_check_pinned_pages(pages, nr_pinned);
3418 		}
3419 	}
3420 	return nr_pinned;
3421 }
3422 
3423 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3424 		unsigned int gup_flags, struct page **pages)
3425 {
3426 	unsigned long len, end;
3427 	unsigned long nr_pinned;
3428 	int locked = 0;
3429 	int ret;
3430 
3431 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3432 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3433 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3434 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3435 		return -EINVAL;
3436 
3437 	if (gup_flags & FOLL_PIN)
3438 		mm_set_has_pinned_flag(&current->mm->flags);
3439 
3440 	if (!(gup_flags & FOLL_FAST_ONLY))
3441 		might_lock_read(&current->mm->mmap_lock);
3442 
3443 	start = untagged_addr(start) & PAGE_MASK;
3444 	len = nr_pages << PAGE_SHIFT;
3445 	if (check_add_overflow(start, len, &end))
3446 		return -EOVERFLOW;
3447 	if (end > TASK_SIZE_MAX)
3448 		return -EFAULT;
3449 	if (unlikely(!access_ok((void __user *)start, len)))
3450 		return -EFAULT;
3451 
3452 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3453 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3454 		return nr_pinned;
3455 
3456 	/* Slow path: try to get the remaining pages with get_user_pages */
3457 	start += nr_pinned << PAGE_SHIFT;
3458 	pages += nr_pinned;
3459 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3460 				    pages, &locked,
3461 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3462 	if (ret < 0) {
3463 		/*
3464 		 * The caller has to unpin the pages we already pinned so
3465 		 * returning -errno is not an option
3466 		 */
3467 		if (nr_pinned)
3468 			return nr_pinned;
3469 		return ret;
3470 	}
3471 	return ret + nr_pinned;
3472 }
3473 
3474 /**
3475  * get_user_pages_fast_only() - pin user pages in memory
3476  * @start:      starting user address
3477  * @nr_pages:   number of pages from start to pin
3478  * @gup_flags:  flags modifying pin behaviour
3479  * @pages:      array that receives pointers to the pages pinned.
3480  *              Should be at least nr_pages long.
3481  *
3482  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3483  * the regular GUP.
3484  *
3485  * If the architecture does not support this function, simply return with no
3486  * pages pinned.
3487  *
3488  * Careful, careful! COW breaking can go either way, so a non-write
3489  * access can get ambiguous page results. If you call this function without
3490  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3491  */
3492 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3493 			     unsigned int gup_flags, struct page **pages)
3494 {
3495 	/*
3496 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3497 	 * because gup fast is always a "pin with a +1 page refcount" request.
3498 	 *
3499 	 * FOLL_FAST_ONLY is required in order to match the API description of
3500 	 * this routine: no fall back to regular ("slow") GUP.
3501 	 */
3502 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3503 			       FOLL_GET | FOLL_FAST_ONLY))
3504 		return -EINVAL;
3505 
3506 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3507 }
3508 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3509 
3510 /**
3511  * get_user_pages_fast() - pin user pages in memory
3512  * @start:      starting user address
3513  * @nr_pages:   number of pages from start to pin
3514  * @gup_flags:  flags modifying pin behaviour
3515  * @pages:      array that receives pointers to the pages pinned.
3516  *              Should be at least nr_pages long.
3517  *
3518  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3519  * If not successful, it will fall back to taking the lock and
3520  * calling get_user_pages().
3521  *
3522  * Returns number of pages pinned. This may be fewer than the number requested.
3523  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3524  * -errno.
3525  */
3526 int get_user_pages_fast(unsigned long start, int nr_pages,
3527 			unsigned int gup_flags, struct page **pages)
3528 {
3529 	/*
3530 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3531 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3532 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3533 	 * request.
3534 	 */
3535 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3536 		return -EINVAL;
3537 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3538 }
3539 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3540 
3541 /**
3542  * pin_user_pages_fast() - pin user pages in memory without taking locks
3543  *
3544  * @start:      starting user address
3545  * @nr_pages:   number of pages from start to pin
3546  * @gup_flags:  flags modifying pin behaviour
3547  * @pages:      array that receives pointers to the pages pinned.
3548  *              Should be at least nr_pages long.
3549  *
3550  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3551  * get_user_pages_fast() for documentation on the function arguments, because
3552  * the arguments here are identical.
3553  *
3554  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3555  * see Documentation/core-api/pin_user_pages.rst for further details.
3556  *
3557  * Note that if a zero_page is amongst the returned pages, it will not have
3558  * pins in it and unpin_user_page() will not remove pins from it.
3559  */
3560 int pin_user_pages_fast(unsigned long start, int nr_pages,
3561 			unsigned int gup_flags, struct page **pages)
3562 {
3563 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3564 		return -EINVAL;
3565 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3566 }
3567 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3568 
3569 /**
3570  * pin_user_pages_remote() - pin pages of a remote process
3571  *
3572  * @mm:		mm_struct of target mm
3573  * @start:	starting user address
3574  * @nr_pages:	number of pages from start to pin
3575  * @gup_flags:	flags modifying lookup behaviour
3576  * @pages:	array that receives pointers to the pages pinned.
3577  *		Should be at least nr_pages long.
3578  * @locked:	pointer to lock flag indicating whether lock is held and
3579  *		subsequently whether VM_FAULT_RETRY functionality can be
3580  *		utilised. Lock must initially be held.
3581  *
3582  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3583  * get_user_pages_remote() for documentation on the function arguments, because
3584  * the arguments here are identical.
3585  *
3586  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3587  * see Documentation/core-api/pin_user_pages.rst for details.
3588  *
3589  * Note that if a zero_page is amongst the returned pages, it will not have
3590  * pins in it and unpin_user_page*() will not remove pins from it.
3591  */
3592 long pin_user_pages_remote(struct mm_struct *mm,
3593 			   unsigned long start, unsigned long nr_pages,
3594 			   unsigned int gup_flags, struct page **pages,
3595 			   int *locked)
3596 {
3597 	int local_locked = 1;
3598 
3599 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3600 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3601 		return 0;
3602 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3603 				     locked ? locked : &local_locked,
3604 				     gup_flags);
3605 }
3606 EXPORT_SYMBOL(pin_user_pages_remote);
3607 
3608 /**
3609  * pin_user_pages() - pin user pages in memory for use by other devices
3610  *
3611  * @start:	starting user address
3612  * @nr_pages:	number of pages from start to pin
3613  * @gup_flags:	flags modifying lookup behaviour
3614  * @pages:	array that receives pointers to the pages pinned.
3615  *		Should be at least nr_pages long.
3616  *
3617  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3618  * FOLL_PIN is set.
3619  *
3620  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3621  * see Documentation/core-api/pin_user_pages.rst for details.
3622  *
3623  * Note that if a zero_page is amongst the returned pages, it will not have
3624  * pins in it and unpin_user_page*() will not remove pins from it.
3625  */
3626 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3627 		    unsigned int gup_flags, struct page **pages)
3628 {
3629 	int locked = 1;
3630 
3631 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3632 		return 0;
3633 	return __gup_longterm_locked(current->mm, start, nr_pages,
3634 				     pages, &locked, gup_flags);
3635 }
3636 EXPORT_SYMBOL(pin_user_pages);
3637 
3638 /*
3639  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3640  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3641  * FOLL_PIN and rejects FOLL_GET.
3642  *
3643  * Note that if a zero_page is amongst the returned pages, it will not have
3644  * pins in it and unpin_user_page*() will not remove pins from it.
3645  */
3646 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3647 			     struct page **pages, unsigned int gup_flags)
3648 {
3649 	int locked = 0;
3650 
3651 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3652 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3653 		return 0;
3654 
3655 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3656 				     &locked, gup_flags);
3657 }
3658 EXPORT_SYMBOL(pin_user_pages_unlocked);
3659