1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_folio_refs(folio, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_folio_refs(folio, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in folio_try_share_anon_rmap_*(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_folio_refs(folio, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 504 #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST) 505 static int record_subpages(struct page *page, unsigned long sz, 506 unsigned long addr, unsigned long end, 507 struct page **pages) 508 { 509 struct page *start_page; 510 int nr; 511 512 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 514 pages[nr] = nth_page(start_page, nr); 515 516 return nr; 517 } 518 #endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */ 519 520 #ifdef CONFIG_ARCH_HAS_HUGEPD 521 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 522 unsigned long sz) 523 { 524 unsigned long __boundary = (addr + sz) & ~(sz-1); 525 return (__boundary - 1 < end - 1) ? __boundary : end; 526 } 527 528 static int gup_fast_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 529 unsigned long end, unsigned int flags, struct page **pages, 530 int *nr) 531 { 532 unsigned long pte_end; 533 struct page *page; 534 struct folio *folio; 535 pte_t pte; 536 int refs; 537 538 pte_end = (addr + sz) & ~(sz-1); 539 if (pte_end < end) 540 end = pte_end; 541 542 pte = huge_ptep_get(ptep); 543 544 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 545 return 0; 546 547 /* hugepages are never "special" */ 548 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 549 550 page = pte_page(pte); 551 refs = record_subpages(page, sz, addr, end, pages + *nr); 552 553 folio = try_grab_folio(page, refs, flags); 554 if (!folio) 555 return 0; 556 557 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 558 gup_put_folio(folio, refs, flags); 559 return 0; 560 } 561 562 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 563 gup_put_folio(folio, refs, flags); 564 return 0; 565 } 566 567 *nr += refs; 568 folio_set_referenced(folio); 569 return 1; 570 } 571 572 /* 573 * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file 574 * systems on Power, which does not have issue with folio writeback against 575 * GUP updates. When hugepd will be extended to support non-hugetlbfs or 576 * even anonymous memory, we need to do extra check as what we do with most 577 * of the other folios. See writable_file_mapping_allowed() and 578 * gup_fast_folio_allowed() for more information. 579 */ 580 static int gup_fast_hugepd(hugepd_t hugepd, unsigned long addr, 581 unsigned int pdshift, unsigned long end, unsigned int flags, 582 struct page **pages, int *nr) 583 { 584 pte_t *ptep; 585 unsigned long sz = 1UL << hugepd_shift(hugepd); 586 unsigned long next; 587 588 ptep = hugepte_offset(hugepd, addr, pdshift); 589 do { 590 next = hugepte_addr_end(addr, end, sz); 591 if (!gup_fast_hugepte(ptep, sz, addr, end, flags, pages, nr)) 592 return 0; 593 } while (ptep++, addr = next, addr != end); 594 595 return 1; 596 } 597 598 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 599 unsigned long addr, unsigned int pdshift, 600 unsigned int flags, 601 struct follow_page_context *ctx) 602 { 603 struct page *page; 604 struct hstate *h; 605 spinlock_t *ptl; 606 int nr = 0, ret; 607 pte_t *ptep; 608 609 /* Only hugetlb supports hugepd */ 610 if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma))) 611 return ERR_PTR(-EFAULT); 612 613 h = hstate_vma(vma); 614 ptep = hugepte_offset(hugepd, addr, pdshift); 615 ptl = huge_pte_lock(h, vma->vm_mm, ptep); 616 ret = gup_fast_hugepd(hugepd, addr, pdshift, addr + PAGE_SIZE, 617 flags, &page, &nr); 618 spin_unlock(ptl); 619 620 if (ret) { 621 WARN_ON_ONCE(nr != 1); 622 ctx->page_mask = (1U << huge_page_order(h)) - 1; 623 return page; 624 } 625 626 return NULL; 627 } 628 #else /* CONFIG_ARCH_HAS_HUGEPD */ 629 static inline int gup_fast_hugepd(hugepd_t hugepd, unsigned long addr, 630 unsigned int pdshift, unsigned long end, unsigned int flags, 631 struct page **pages, int *nr) 632 { 633 return 0; 634 } 635 636 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 637 unsigned long addr, unsigned int pdshift, 638 unsigned int flags, 639 struct follow_page_context *ctx) 640 { 641 return NULL; 642 } 643 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 644 645 646 static struct page *no_page_table(struct vm_area_struct *vma, 647 unsigned int flags, unsigned long address) 648 { 649 if (!(flags & FOLL_DUMP)) 650 return NULL; 651 652 /* 653 * When core dumping, we don't want to allocate unnecessary pages or 654 * page tables. Return error instead of NULL to skip handle_mm_fault, 655 * then get_dump_page() will return NULL to leave a hole in the dump. 656 * But we can only make this optimization where a hole would surely 657 * be zero-filled if handle_mm_fault() actually did handle it. 658 */ 659 if (is_vm_hugetlb_page(vma)) { 660 struct hstate *h = hstate_vma(vma); 661 662 if (!hugetlbfs_pagecache_present(h, vma, address)) 663 return ERR_PTR(-EFAULT); 664 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 665 return ERR_PTR(-EFAULT); 666 } 667 668 return NULL; 669 } 670 671 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 672 static struct page *follow_huge_pud(struct vm_area_struct *vma, 673 unsigned long addr, pud_t *pudp, 674 int flags, struct follow_page_context *ctx) 675 { 676 struct mm_struct *mm = vma->vm_mm; 677 struct page *page; 678 pud_t pud = *pudp; 679 unsigned long pfn = pud_pfn(pud); 680 int ret; 681 682 assert_spin_locked(pud_lockptr(mm, pudp)); 683 684 if ((flags & FOLL_WRITE) && !pud_write(pud)) 685 return NULL; 686 687 if (!pud_present(pud)) 688 return NULL; 689 690 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 691 692 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 693 pud_devmap(pud)) { 694 /* 695 * device mapped pages can only be returned if the caller 696 * will manage the page reference count. 697 * 698 * At least one of FOLL_GET | FOLL_PIN must be set, so 699 * assert that here: 700 */ 701 if (!(flags & (FOLL_GET | FOLL_PIN))) 702 return ERR_PTR(-EEXIST); 703 704 if (flags & FOLL_TOUCH) 705 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 706 707 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 708 if (!ctx->pgmap) 709 return ERR_PTR(-EFAULT); 710 } 711 712 page = pfn_to_page(pfn); 713 714 if (!pud_devmap(pud) && !pud_write(pud) && 715 gup_must_unshare(vma, flags, page)) 716 return ERR_PTR(-EMLINK); 717 718 ret = try_grab_page(page, flags); 719 if (ret) 720 page = ERR_PTR(ret); 721 else 722 ctx->page_mask = HPAGE_PUD_NR - 1; 723 724 return page; 725 } 726 727 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 728 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 729 struct vm_area_struct *vma, 730 unsigned int flags) 731 { 732 /* If the pmd is writable, we can write to the page. */ 733 if (pmd_write(pmd)) 734 return true; 735 736 /* Maybe FOLL_FORCE is set to override it? */ 737 if (!(flags & FOLL_FORCE)) 738 return false; 739 740 /* But FOLL_FORCE has no effect on shared mappings */ 741 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 742 return false; 743 744 /* ... or read-only private ones */ 745 if (!(vma->vm_flags & VM_MAYWRITE)) 746 return false; 747 748 /* ... or already writable ones that just need to take a write fault */ 749 if (vma->vm_flags & VM_WRITE) 750 return false; 751 752 /* 753 * See can_change_pte_writable(): we broke COW and could map the page 754 * writable if we have an exclusive anonymous page ... 755 */ 756 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 757 return false; 758 759 /* ... and a write-fault isn't required for other reasons. */ 760 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 761 return false; 762 return !userfaultfd_huge_pmd_wp(vma, pmd); 763 } 764 765 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 766 unsigned long addr, pmd_t *pmd, 767 unsigned int flags, 768 struct follow_page_context *ctx) 769 { 770 struct mm_struct *mm = vma->vm_mm; 771 pmd_t pmdval = *pmd; 772 struct page *page; 773 int ret; 774 775 assert_spin_locked(pmd_lockptr(mm, pmd)); 776 777 page = pmd_page(pmdval); 778 if ((flags & FOLL_WRITE) && 779 !can_follow_write_pmd(pmdval, page, vma, flags)) 780 return NULL; 781 782 /* Avoid dumping huge zero page */ 783 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 784 return ERR_PTR(-EFAULT); 785 786 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 787 return NULL; 788 789 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 790 return ERR_PTR(-EMLINK); 791 792 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 793 !PageAnonExclusive(page), page); 794 795 ret = try_grab_page(page, flags); 796 if (ret) 797 return ERR_PTR(ret); 798 799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 800 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 801 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 802 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 803 804 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 805 ctx->page_mask = HPAGE_PMD_NR - 1; 806 807 return page; 808 } 809 810 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 811 static struct page *follow_huge_pud(struct vm_area_struct *vma, 812 unsigned long addr, pud_t *pudp, 813 int flags, struct follow_page_context *ctx) 814 { 815 return NULL; 816 } 817 818 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 819 unsigned long addr, pmd_t *pmd, 820 unsigned int flags, 821 struct follow_page_context *ctx) 822 { 823 return NULL; 824 } 825 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 826 827 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 828 pte_t *pte, unsigned int flags) 829 { 830 if (flags & FOLL_TOUCH) { 831 pte_t orig_entry = ptep_get(pte); 832 pte_t entry = orig_entry; 833 834 if (flags & FOLL_WRITE) 835 entry = pte_mkdirty(entry); 836 entry = pte_mkyoung(entry); 837 838 if (!pte_same(orig_entry, entry)) { 839 set_pte_at(vma->vm_mm, address, pte, entry); 840 update_mmu_cache(vma, address, pte); 841 } 842 } 843 844 /* Proper page table entry exists, but no corresponding struct page */ 845 return -EEXIST; 846 } 847 848 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 849 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 850 struct vm_area_struct *vma, 851 unsigned int flags) 852 { 853 /* If the pte is writable, we can write to the page. */ 854 if (pte_write(pte)) 855 return true; 856 857 /* Maybe FOLL_FORCE is set to override it? */ 858 if (!(flags & FOLL_FORCE)) 859 return false; 860 861 /* But FOLL_FORCE has no effect on shared mappings */ 862 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 863 return false; 864 865 /* ... or read-only private ones */ 866 if (!(vma->vm_flags & VM_MAYWRITE)) 867 return false; 868 869 /* ... or already writable ones that just need to take a write fault */ 870 if (vma->vm_flags & VM_WRITE) 871 return false; 872 873 /* 874 * See can_change_pte_writable(): we broke COW and could map the page 875 * writable if we have an exclusive anonymous page ... 876 */ 877 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 878 return false; 879 880 /* ... and a write-fault isn't required for other reasons. */ 881 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 882 return false; 883 return !userfaultfd_pte_wp(vma, pte); 884 } 885 886 static struct page *follow_page_pte(struct vm_area_struct *vma, 887 unsigned long address, pmd_t *pmd, unsigned int flags, 888 struct dev_pagemap **pgmap) 889 { 890 struct mm_struct *mm = vma->vm_mm; 891 struct page *page; 892 spinlock_t *ptl; 893 pte_t *ptep, pte; 894 int ret; 895 896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 897 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 898 (FOLL_PIN | FOLL_GET))) 899 return ERR_PTR(-EINVAL); 900 901 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 902 if (!ptep) 903 return no_page_table(vma, flags, address); 904 pte = ptep_get(ptep); 905 if (!pte_present(pte)) 906 goto no_page; 907 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 908 goto no_page; 909 910 page = vm_normal_page(vma, address, pte); 911 912 /* 913 * We only care about anon pages in can_follow_write_pte() and don't 914 * have to worry about pte_devmap() because they are never anon. 915 */ 916 if ((flags & FOLL_WRITE) && 917 !can_follow_write_pte(pte, page, vma, flags)) { 918 page = NULL; 919 goto out; 920 } 921 922 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 923 /* 924 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 925 * case since they are only valid while holding the pgmap 926 * reference. 927 */ 928 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 929 if (*pgmap) 930 page = pte_page(pte); 931 else 932 goto no_page; 933 } else if (unlikely(!page)) { 934 if (flags & FOLL_DUMP) { 935 /* Avoid special (like zero) pages in core dumps */ 936 page = ERR_PTR(-EFAULT); 937 goto out; 938 } 939 940 if (is_zero_pfn(pte_pfn(pte))) { 941 page = pte_page(pte); 942 } else { 943 ret = follow_pfn_pte(vma, address, ptep, flags); 944 page = ERR_PTR(ret); 945 goto out; 946 } 947 } 948 949 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 950 page = ERR_PTR(-EMLINK); 951 goto out; 952 } 953 954 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 955 !PageAnonExclusive(page), page); 956 957 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 958 ret = try_grab_page(page, flags); 959 if (unlikely(ret)) { 960 page = ERR_PTR(ret); 961 goto out; 962 } 963 964 /* 965 * We need to make the page accessible if and only if we are going 966 * to access its content (the FOLL_PIN case). Please see 967 * Documentation/core-api/pin_user_pages.rst for details. 968 */ 969 if (flags & FOLL_PIN) { 970 ret = arch_make_page_accessible(page); 971 if (ret) { 972 unpin_user_page(page); 973 page = ERR_PTR(ret); 974 goto out; 975 } 976 } 977 if (flags & FOLL_TOUCH) { 978 if ((flags & FOLL_WRITE) && 979 !pte_dirty(pte) && !PageDirty(page)) 980 set_page_dirty(page); 981 /* 982 * pte_mkyoung() would be more correct here, but atomic care 983 * is needed to avoid losing the dirty bit: it is easier to use 984 * mark_page_accessed(). 985 */ 986 mark_page_accessed(page); 987 } 988 out: 989 pte_unmap_unlock(ptep, ptl); 990 return page; 991 no_page: 992 pte_unmap_unlock(ptep, ptl); 993 if (!pte_none(pte)) 994 return NULL; 995 return no_page_table(vma, flags, address); 996 } 997 998 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 999 unsigned long address, pud_t *pudp, 1000 unsigned int flags, 1001 struct follow_page_context *ctx) 1002 { 1003 pmd_t *pmd, pmdval; 1004 spinlock_t *ptl; 1005 struct page *page; 1006 struct mm_struct *mm = vma->vm_mm; 1007 1008 pmd = pmd_offset(pudp, address); 1009 pmdval = pmdp_get_lockless(pmd); 1010 if (pmd_none(pmdval)) 1011 return no_page_table(vma, flags, address); 1012 if (!pmd_present(pmdval)) 1013 return no_page_table(vma, flags, address); 1014 if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval))))) 1015 return follow_hugepd(vma, __hugepd(pmd_val(pmdval)), 1016 address, PMD_SHIFT, flags, ctx); 1017 if (pmd_devmap(pmdval)) { 1018 ptl = pmd_lock(mm, pmd); 1019 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 1020 spin_unlock(ptl); 1021 if (page) 1022 return page; 1023 return no_page_table(vma, flags, address); 1024 } 1025 if (likely(!pmd_leaf(pmdval))) 1026 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1027 1028 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 1029 return no_page_table(vma, flags, address); 1030 1031 ptl = pmd_lock(mm, pmd); 1032 pmdval = *pmd; 1033 if (unlikely(!pmd_present(pmdval))) { 1034 spin_unlock(ptl); 1035 return no_page_table(vma, flags, address); 1036 } 1037 if (unlikely(!pmd_leaf(pmdval))) { 1038 spin_unlock(ptl); 1039 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1040 } 1041 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 1042 spin_unlock(ptl); 1043 split_huge_pmd(vma, pmd, address); 1044 /* If pmd was left empty, stuff a page table in there quickly */ 1045 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 1046 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1047 } 1048 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 1049 spin_unlock(ptl); 1050 return page; 1051 } 1052 1053 static struct page *follow_pud_mask(struct vm_area_struct *vma, 1054 unsigned long address, p4d_t *p4dp, 1055 unsigned int flags, 1056 struct follow_page_context *ctx) 1057 { 1058 pud_t *pudp, pud; 1059 spinlock_t *ptl; 1060 struct page *page; 1061 struct mm_struct *mm = vma->vm_mm; 1062 1063 pudp = pud_offset(p4dp, address); 1064 pud = READ_ONCE(*pudp); 1065 if (!pud_present(pud)) 1066 return no_page_table(vma, flags, address); 1067 if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) 1068 return follow_hugepd(vma, __hugepd(pud_val(pud)), 1069 address, PUD_SHIFT, flags, ctx); 1070 if (pud_leaf(pud)) { 1071 ptl = pud_lock(mm, pudp); 1072 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1073 spin_unlock(ptl); 1074 if (page) 1075 return page; 1076 return no_page_table(vma, flags, address); 1077 } 1078 if (unlikely(pud_bad(pud))) 1079 return no_page_table(vma, flags, address); 1080 1081 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1082 } 1083 1084 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1085 unsigned long address, pgd_t *pgdp, 1086 unsigned int flags, 1087 struct follow_page_context *ctx) 1088 { 1089 p4d_t *p4dp, p4d; 1090 1091 p4dp = p4d_offset(pgdp, address); 1092 p4d = READ_ONCE(*p4dp); 1093 BUILD_BUG_ON(p4d_leaf(p4d)); 1094 1095 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) 1096 return follow_hugepd(vma, __hugepd(p4d_val(p4d)), 1097 address, P4D_SHIFT, flags, ctx); 1098 1099 if (!p4d_present(p4d) || p4d_bad(p4d)) 1100 return no_page_table(vma, flags, address); 1101 1102 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1103 } 1104 1105 /** 1106 * follow_page_mask - look up a page descriptor from a user-virtual address 1107 * @vma: vm_area_struct mapping @address 1108 * @address: virtual address to look up 1109 * @flags: flags modifying lookup behaviour 1110 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1111 * pointer to output page_mask 1112 * 1113 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1114 * 1115 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1116 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1117 * 1118 * When getting an anonymous page and the caller has to trigger unsharing 1119 * of a shared anonymous page first, -EMLINK is returned. The caller should 1120 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1121 * relevant with FOLL_PIN and !FOLL_WRITE. 1122 * 1123 * On output, the @ctx->page_mask is set according to the size of the page. 1124 * 1125 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1126 * an error pointer if there is a mapping to something not represented 1127 * by a page descriptor (see also vm_normal_page()). 1128 */ 1129 static struct page *follow_page_mask(struct vm_area_struct *vma, 1130 unsigned long address, unsigned int flags, 1131 struct follow_page_context *ctx) 1132 { 1133 pgd_t *pgd; 1134 struct mm_struct *mm = vma->vm_mm; 1135 struct page *page; 1136 1137 vma_pgtable_walk_begin(vma); 1138 1139 ctx->page_mask = 0; 1140 pgd = pgd_offset(mm, address); 1141 1142 if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd))))) 1143 page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)), 1144 address, PGDIR_SHIFT, flags, ctx); 1145 else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1146 page = no_page_table(vma, flags, address); 1147 else 1148 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1149 1150 vma_pgtable_walk_end(vma); 1151 1152 return page; 1153 } 1154 1155 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1156 unsigned int foll_flags) 1157 { 1158 struct follow_page_context ctx = { NULL }; 1159 struct page *page; 1160 1161 if (vma_is_secretmem(vma)) 1162 return NULL; 1163 1164 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 1165 return NULL; 1166 1167 /* 1168 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 1169 * to fail on PROT_NONE-mapped pages. 1170 */ 1171 page = follow_page_mask(vma, address, foll_flags, &ctx); 1172 if (ctx.pgmap) 1173 put_dev_pagemap(ctx.pgmap); 1174 return page; 1175 } 1176 1177 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1178 unsigned int gup_flags, struct vm_area_struct **vma, 1179 struct page **page) 1180 { 1181 pgd_t *pgd; 1182 p4d_t *p4d; 1183 pud_t *pud; 1184 pmd_t *pmd; 1185 pte_t *pte; 1186 pte_t entry; 1187 int ret = -EFAULT; 1188 1189 /* user gate pages are read-only */ 1190 if (gup_flags & FOLL_WRITE) 1191 return -EFAULT; 1192 if (address > TASK_SIZE) 1193 pgd = pgd_offset_k(address); 1194 else 1195 pgd = pgd_offset_gate(mm, address); 1196 if (pgd_none(*pgd)) 1197 return -EFAULT; 1198 p4d = p4d_offset(pgd, address); 1199 if (p4d_none(*p4d)) 1200 return -EFAULT; 1201 pud = pud_offset(p4d, address); 1202 if (pud_none(*pud)) 1203 return -EFAULT; 1204 pmd = pmd_offset(pud, address); 1205 if (!pmd_present(*pmd)) 1206 return -EFAULT; 1207 pte = pte_offset_map(pmd, address); 1208 if (!pte) 1209 return -EFAULT; 1210 entry = ptep_get(pte); 1211 if (pte_none(entry)) 1212 goto unmap; 1213 *vma = get_gate_vma(mm); 1214 if (!page) 1215 goto out; 1216 *page = vm_normal_page(*vma, address, entry); 1217 if (!*page) { 1218 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1219 goto unmap; 1220 *page = pte_page(entry); 1221 } 1222 ret = try_grab_page(*page, gup_flags); 1223 if (unlikely(ret)) 1224 goto unmap; 1225 out: 1226 ret = 0; 1227 unmap: 1228 pte_unmap(pte); 1229 return ret; 1230 } 1231 1232 /* 1233 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1234 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1235 * to 0 and -EBUSY returned. 1236 */ 1237 static int faultin_page(struct vm_area_struct *vma, 1238 unsigned long address, unsigned int *flags, bool unshare, 1239 int *locked) 1240 { 1241 unsigned int fault_flags = 0; 1242 vm_fault_t ret; 1243 1244 if (*flags & FOLL_NOFAULT) 1245 return -EFAULT; 1246 if (*flags & FOLL_WRITE) 1247 fault_flags |= FAULT_FLAG_WRITE; 1248 if (*flags & FOLL_REMOTE) 1249 fault_flags |= FAULT_FLAG_REMOTE; 1250 if (*flags & FOLL_UNLOCKABLE) { 1251 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1252 /* 1253 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1254 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1255 * That's because some callers may not be prepared to 1256 * handle early exits caused by non-fatal signals. 1257 */ 1258 if (*flags & FOLL_INTERRUPTIBLE) 1259 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1260 } 1261 if (*flags & FOLL_NOWAIT) 1262 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1263 if (*flags & FOLL_TRIED) { 1264 /* 1265 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1266 * can co-exist 1267 */ 1268 fault_flags |= FAULT_FLAG_TRIED; 1269 } 1270 if (unshare) { 1271 fault_flags |= FAULT_FLAG_UNSHARE; 1272 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1273 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1274 } 1275 1276 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1277 1278 if (ret & VM_FAULT_COMPLETED) { 1279 /* 1280 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1281 * mmap lock in the page fault handler. Sanity check this. 1282 */ 1283 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1284 *locked = 0; 1285 1286 /* 1287 * We should do the same as VM_FAULT_RETRY, but let's not 1288 * return -EBUSY since that's not reflecting the reality of 1289 * what has happened - we've just fully completed a page 1290 * fault, with the mmap lock released. Use -EAGAIN to show 1291 * that we want to take the mmap lock _again_. 1292 */ 1293 return -EAGAIN; 1294 } 1295 1296 if (ret & VM_FAULT_ERROR) { 1297 int err = vm_fault_to_errno(ret, *flags); 1298 1299 if (err) 1300 return err; 1301 BUG(); 1302 } 1303 1304 if (ret & VM_FAULT_RETRY) { 1305 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1306 *locked = 0; 1307 return -EBUSY; 1308 } 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * Writing to file-backed mappings which require folio dirty tracking using GUP 1315 * is a fundamentally broken operation, as kernel write access to GUP mappings 1316 * do not adhere to the semantics expected by a file system. 1317 * 1318 * Consider the following scenario:- 1319 * 1320 * 1. A folio is written to via GUP which write-faults the memory, notifying 1321 * the file system and dirtying the folio. 1322 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1323 * the PTE being marked read-only. 1324 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1325 * direct mapping. 1326 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1327 * (though it does not have to). 1328 * 1329 * This results in both data being written to a folio without writenotify, and 1330 * the folio being dirtied unexpectedly (if the caller decides to do so). 1331 */ 1332 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1333 unsigned long gup_flags) 1334 { 1335 /* 1336 * If we aren't pinning then no problematic write can occur. A long term 1337 * pin is the most egregious case so this is the case we disallow. 1338 */ 1339 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1340 (FOLL_PIN | FOLL_LONGTERM)) 1341 return true; 1342 1343 /* 1344 * If the VMA does not require dirty tracking then no problematic write 1345 * can occur either. 1346 */ 1347 return !vma_needs_dirty_tracking(vma); 1348 } 1349 1350 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1351 { 1352 vm_flags_t vm_flags = vma->vm_flags; 1353 int write = (gup_flags & FOLL_WRITE); 1354 int foreign = (gup_flags & FOLL_REMOTE); 1355 bool vma_anon = vma_is_anonymous(vma); 1356 1357 if (vm_flags & (VM_IO | VM_PFNMAP)) 1358 return -EFAULT; 1359 1360 if ((gup_flags & FOLL_ANON) && !vma_anon) 1361 return -EFAULT; 1362 1363 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1364 return -EOPNOTSUPP; 1365 1366 if (vma_is_secretmem(vma)) 1367 return -EFAULT; 1368 1369 if (write) { 1370 if (!vma_anon && 1371 !writable_file_mapping_allowed(vma, gup_flags)) 1372 return -EFAULT; 1373 1374 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1375 if (!(gup_flags & FOLL_FORCE)) 1376 return -EFAULT; 1377 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1378 if (is_vm_hugetlb_page(vma)) 1379 return -EFAULT; 1380 /* 1381 * We used to let the write,force case do COW in a 1382 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1383 * set a breakpoint in a read-only mapping of an 1384 * executable, without corrupting the file (yet only 1385 * when that file had been opened for writing!). 1386 * Anon pages in shared mappings are surprising: now 1387 * just reject it. 1388 */ 1389 if (!is_cow_mapping(vm_flags)) 1390 return -EFAULT; 1391 } 1392 } else if (!(vm_flags & VM_READ)) { 1393 if (!(gup_flags & FOLL_FORCE)) 1394 return -EFAULT; 1395 /* 1396 * Is there actually any vma we can reach here which does not 1397 * have VM_MAYREAD set? 1398 */ 1399 if (!(vm_flags & VM_MAYREAD)) 1400 return -EFAULT; 1401 } 1402 /* 1403 * gups are always data accesses, not instruction 1404 * fetches, so execute=false here 1405 */ 1406 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1407 return -EFAULT; 1408 return 0; 1409 } 1410 1411 /* 1412 * This is "vma_lookup()", but with a warning if we would have 1413 * historically expanded the stack in the GUP code. 1414 */ 1415 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1416 unsigned long addr) 1417 { 1418 #ifdef CONFIG_STACK_GROWSUP 1419 return vma_lookup(mm, addr); 1420 #else 1421 static volatile unsigned long next_warn; 1422 struct vm_area_struct *vma; 1423 unsigned long now, next; 1424 1425 vma = find_vma(mm, addr); 1426 if (!vma || (addr >= vma->vm_start)) 1427 return vma; 1428 1429 /* Only warn for half-way relevant accesses */ 1430 if (!(vma->vm_flags & VM_GROWSDOWN)) 1431 return NULL; 1432 if (vma->vm_start - addr > 65536) 1433 return NULL; 1434 1435 /* Let's not warn more than once an hour.. */ 1436 now = jiffies; next = next_warn; 1437 if (next && time_before(now, next)) 1438 return NULL; 1439 next_warn = now + 60*60*HZ; 1440 1441 /* Let people know things may have changed. */ 1442 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1443 current->comm, task_pid_nr(current), 1444 vma->vm_start, vma->vm_end, addr); 1445 dump_stack(); 1446 return NULL; 1447 #endif 1448 } 1449 1450 /** 1451 * __get_user_pages() - pin user pages in memory 1452 * @mm: mm_struct of target mm 1453 * @start: starting user address 1454 * @nr_pages: number of pages from start to pin 1455 * @gup_flags: flags modifying pin behaviour 1456 * @pages: array that receives pointers to the pages pinned. 1457 * Should be at least nr_pages long. Or NULL, if caller 1458 * only intends to ensure the pages are faulted in. 1459 * @locked: whether we're still with the mmap_lock held 1460 * 1461 * Returns either number of pages pinned (which may be less than the 1462 * number requested), or an error. Details about the return value: 1463 * 1464 * -- If nr_pages is 0, returns 0. 1465 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1466 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1467 * pages pinned. Again, this may be less than nr_pages. 1468 * -- 0 return value is possible when the fault would need to be retried. 1469 * 1470 * The caller is responsible for releasing returned @pages, via put_page(). 1471 * 1472 * Must be called with mmap_lock held. It may be released. See below. 1473 * 1474 * __get_user_pages walks a process's page tables and takes a reference to 1475 * each struct page that each user address corresponds to at a given 1476 * instant. That is, it takes the page that would be accessed if a user 1477 * thread accesses the given user virtual address at that instant. 1478 * 1479 * This does not guarantee that the page exists in the user mappings when 1480 * __get_user_pages returns, and there may even be a completely different 1481 * page there in some cases (eg. if mmapped pagecache has been invalidated 1482 * and subsequently re-faulted). However it does guarantee that the page 1483 * won't be freed completely. And mostly callers simply care that the page 1484 * contains data that was valid *at some point in time*. Typically, an IO 1485 * or similar operation cannot guarantee anything stronger anyway because 1486 * locks can't be held over the syscall boundary. 1487 * 1488 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1489 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1490 * appropriate) must be called after the page is finished with, and 1491 * before put_page is called. 1492 * 1493 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1494 * be released. If this happens *@locked will be set to 0 on return. 1495 * 1496 * A caller using such a combination of @gup_flags must therefore hold the 1497 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1498 * it must be held for either reading or writing and will not be released. 1499 * 1500 * In most cases, get_user_pages or get_user_pages_fast should be used 1501 * instead of __get_user_pages. __get_user_pages should be used only if 1502 * you need some special @gup_flags. 1503 */ 1504 static long __get_user_pages(struct mm_struct *mm, 1505 unsigned long start, unsigned long nr_pages, 1506 unsigned int gup_flags, struct page **pages, 1507 int *locked) 1508 { 1509 long ret = 0, i = 0; 1510 struct vm_area_struct *vma = NULL; 1511 struct follow_page_context ctx = { NULL }; 1512 1513 if (!nr_pages) 1514 return 0; 1515 1516 start = untagged_addr_remote(mm, start); 1517 1518 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1519 1520 do { 1521 struct page *page; 1522 unsigned int foll_flags = gup_flags; 1523 unsigned int page_increm; 1524 1525 /* first iteration or cross vma bound */ 1526 if (!vma || start >= vma->vm_end) { 1527 /* 1528 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1529 * lookups+error reporting differently. 1530 */ 1531 if (gup_flags & FOLL_MADV_POPULATE) { 1532 vma = vma_lookup(mm, start); 1533 if (!vma) { 1534 ret = -ENOMEM; 1535 goto out; 1536 } 1537 if (check_vma_flags(vma, gup_flags)) { 1538 ret = -EINVAL; 1539 goto out; 1540 } 1541 goto retry; 1542 } 1543 vma = gup_vma_lookup(mm, start); 1544 if (!vma && in_gate_area(mm, start)) { 1545 ret = get_gate_page(mm, start & PAGE_MASK, 1546 gup_flags, &vma, 1547 pages ? &page : NULL); 1548 if (ret) 1549 goto out; 1550 ctx.page_mask = 0; 1551 goto next_page; 1552 } 1553 1554 if (!vma) { 1555 ret = -EFAULT; 1556 goto out; 1557 } 1558 ret = check_vma_flags(vma, gup_flags); 1559 if (ret) 1560 goto out; 1561 } 1562 retry: 1563 /* 1564 * If we have a pending SIGKILL, don't keep faulting pages and 1565 * potentially allocating memory. 1566 */ 1567 if (fatal_signal_pending(current)) { 1568 ret = -EINTR; 1569 goto out; 1570 } 1571 cond_resched(); 1572 1573 page = follow_page_mask(vma, start, foll_flags, &ctx); 1574 if (!page || PTR_ERR(page) == -EMLINK) { 1575 ret = faultin_page(vma, start, &foll_flags, 1576 PTR_ERR(page) == -EMLINK, locked); 1577 switch (ret) { 1578 case 0: 1579 goto retry; 1580 case -EBUSY: 1581 case -EAGAIN: 1582 ret = 0; 1583 fallthrough; 1584 case -EFAULT: 1585 case -ENOMEM: 1586 case -EHWPOISON: 1587 goto out; 1588 } 1589 BUG(); 1590 } else if (PTR_ERR(page) == -EEXIST) { 1591 /* 1592 * Proper page table entry exists, but no corresponding 1593 * struct page. If the caller expects **pages to be 1594 * filled in, bail out now, because that can't be done 1595 * for this page. 1596 */ 1597 if (pages) { 1598 ret = PTR_ERR(page); 1599 goto out; 1600 } 1601 } else if (IS_ERR(page)) { 1602 ret = PTR_ERR(page); 1603 goto out; 1604 } 1605 next_page: 1606 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1607 if (page_increm > nr_pages) 1608 page_increm = nr_pages; 1609 1610 if (pages) { 1611 struct page *subpage; 1612 unsigned int j; 1613 1614 /* 1615 * This must be a large folio (and doesn't need to 1616 * be the whole folio; it can be part of it), do 1617 * the refcount work for all the subpages too. 1618 * 1619 * NOTE: here the page may not be the head page 1620 * e.g. when start addr is not thp-size aligned. 1621 * try_grab_folio() should have taken care of tail 1622 * pages. 1623 */ 1624 if (page_increm > 1) { 1625 struct folio *folio; 1626 1627 /* 1628 * Since we already hold refcount on the 1629 * large folio, this should never fail. 1630 */ 1631 folio = try_grab_folio(page, page_increm - 1, 1632 foll_flags); 1633 if (WARN_ON_ONCE(!folio)) { 1634 /* 1635 * Release the 1st page ref if the 1636 * folio is problematic, fail hard. 1637 */ 1638 gup_put_folio(page_folio(page), 1, 1639 foll_flags); 1640 ret = -EFAULT; 1641 goto out; 1642 } 1643 } 1644 1645 for (j = 0; j < page_increm; j++) { 1646 subpage = nth_page(page, j); 1647 pages[i + j] = subpage; 1648 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1649 flush_dcache_page(subpage); 1650 } 1651 } 1652 1653 i += page_increm; 1654 start += page_increm * PAGE_SIZE; 1655 nr_pages -= page_increm; 1656 } while (nr_pages); 1657 out: 1658 if (ctx.pgmap) 1659 put_dev_pagemap(ctx.pgmap); 1660 return i ? i : ret; 1661 } 1662 1663 static bool vma_permits_fault(struct vm_area_struct *vma, 1664 unsigned int fault_flags) 1665 { 1666 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1667 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1668 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1669 1670 if (!(vm_flags & vma->vm_flags)) 1671 return false; 1672 1673 /* 1674 * The architecture might have a hardware protection 1675 * mechanism other than read/write that can deny access. 1676 * 1677 * gup always represents data access, not instruction 1678 * fetches, so execute=false here: 1679 */ 1680 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1681 return false; 1682 1683 return true; 1684 } 1685 1686 /** 1687 * fixup_user_fault() - manually resolve a user page fault 1688 * @mm: mm_struct of target mm 1689 * @address: user address 1690 * @fault_flags:flags to pass down to handle_mm_fault() 1691 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1692 * does not allow retry. If NULL, the caller must guarantee 1693 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1694 * 1695 * This is meant to be called in the specific scenario where for locking reasons 1696 * we try to access user memory in atomic context (within a pagefault_disable() 1697 * section), this returns -EFAULT, and we want to resolve the user fault before 1698 * trying again. 1699 * 1700 * Typically this is meant to be used by the futex code. 1701 * 1702 * The main difference with get_user_pages() is that this function will 1703 * unconditionally call handle_mm_fault() which will in turn perform all the 1704 * necessary SW fixup of the dirty and young bits in the PTE, while 1705 * get_user_pages() only guarantees to update these in the struct page. 1706 * 1707 * This is important for some architectures where those bits also gate the 1708 * access permission to the page because they are maintained in software. On 1709 * such architectures, gup() will not be enough to make a subsequent access 1710 * succeed. 1711 * 1712 * This function will not return with an unlocked mmap_lock. So it has not the 1713 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1714 */ 1715 int fixup_user_fault(struct mm_struct *mm, 1716 unsigned long address, unsigned int fault_flags, 1717 bool *unlocked) 1718 { 1719 struct vm_area_struct *vma; 1720 vm_fault_t ret; 1721 1722 address = untagged_addr_remote(mm, address); 1723 1724 if (unlocked) 1725 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1726 1727 retry: 1728 vma = gup_vma_lookup(mm, address); 1729 if (!vma) 1730 return -EFAULT; 1731 1732 if (!vma_permits_fault(vma, fault_flags)) 1733 return -EFAULT; 1734 1735 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1736 fatal_signal_pending(current)) 1737 return -EINTR; 1738 1739 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1740 1741 if (ret & VM_FAULT_COMPLETED) { 1742 /* 1743 * NOTE: it's a pity that we need to retake the lock here 1744 * to pair with the unlock() in the callers. Ideally we 1745 * could tell the callers so they do not need to unlock. 1746 */ 1747 mmap_read_lock(mm); 1748 *unlocked = true; 1749 return 0; 1750 } 1751 1752 if (ret & VM_FAULT_ERROR) { 1753 int err = vm_fault_to_errno(ret, 0); 1754 1755 if (err) 1756 return err; 1757 BUG(); 1758 } 1759 1760 if (ret & VM_FAULT_RETRY) { 1761 mmap_read_lock(mm); 1762 *unlocked = true; 1763 fault_flags |= FAULT_FLAG_TRIED; 1764 goto retry; 1765 } 1766 1767 return 0; 1768 } 1769 EXPORT_SYMBOL_GPL(fixup_user_fault); 1770 1771 /* 1772 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1773 * specified, it'll also respond to generic signals. The caller of GUP 1774 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1775 */ 1776 static bool gup_signal_pending(unsigned int flags) 1777 { 1778 if (fatal_signal_pending(current)) 1779 return true; 1780 1781 if (!(flags & FOLL_INTERRUPTIBLE)) 1782 return false; 1783 1784 return signal_pending(current); 1785 } 1786 1787 /* 1788 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1789 * the caller. This function may drop the mmap_lock. If it does so, then it will 1790 * set (*locked = 0). 1791 * 1792 * (*locked == 0) means that the caller expects this function to acquire and 1793 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1794 * the function returns, even though it may have changed temporarily during 1795 * function execution. 1796 * 1797 * Please note that this function, unlike __get_user_pages(), will not return 0 1798 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1799 */ 1800 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1801 unsigned long start, 1802 unsigned long nr_pages, 1803 struct page **pages, 1804 int *locked, 1805 unsigned int flags) 1806 { 1807 long ret, pages_done; 1808 bool must_unlock = false; 1809 1810 if (!nr_pages) 1811 return 0; 1812 1813 /* 1814 * The internal caller expects GUP to manage the lock internally and the 1815 * lock must be released when this returns. 1816 */ 1817 if (!*locked) { 1818 if (mmap_read_lock_killable(mm)) 1819 return -EAGAIN; 1820 must_unlock = true; 1821 *locked = 1; 1822 } 1823 else 1824 mmap_assert_locked(mm); 1825 1826 if (flags & FOLL_PIN) 1827 mm_set_has_pinned_flag(&mm->flags); 1828 1829 /* 1830 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1831 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1832 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1833 * for FOLL_GET, not for the newer FOLL_PIN. 1834 * 1835 * FOLL_PIN always expects pages to be non-null, but no need to assert 1836 * that here, as any failures will be obvious enough. 1837 */ 1838 if (pages && !(flags & FOLL_PIN)) 1839 flags |= FOLL_GET; 1840 1841 pages_done = 0; 1842 for (;;) { 1843 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1844 locked); 1845 if (!(flags & FOLL_UNLOCKABLE)) { 1846 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1847 pages_done = ret; 1848 break; 1849 } 1850 1851 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1852 if (!*locked) { 1853 BUG_ON(ret < 0); 1854 BUG_ON(ret >= nr_pages); 1855 } 1856 1857 if (ret > 0) { 1858 nr_pages -= ret; 1859 pages_done += ret; 1860 if (!nr_pages) 1861 break; 1862 } 1863 if (*locked) { 1864 /* 1865 * VM_FAULT_RETRY didn't trigger or it was a 1866 * FOLL_NOWAIT. 1867 */ 1868 if (!pages_done) 1869 pages_done = ret; 1870 break; 1871 } 1872 /* 1873 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1874 * For the prefault case (!pages) we only update counts. 1875 */ 1876 if (likely(pages)) 1877 pages += ret; 1878 start += ret << PAGE_SHIFT; 1879 1880 /* The lock was temporarily dropped, so we must unlock later */ 1881 must_unlock = true; 1882 1883 retry: 1884 /* 1885 * Repeat on the address that fired VM_FAULT_RETRY 1886 * with both FAULT_FLAG_ALLOW_RETRY and 1887 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1888 * by fatal signals of even common signals, depending on 1889 * the caller's request. So we need to check it before we 1890 * start trying again otherwise it can loop forever. 1891 */ 1892 if (gup_signal_pending(flags)) { 1893 if (!pages_done) 1894 pages_done = -EINTR; 1895 break; 1896 } 1897 1898 ret = mmap_read_lock_killable(mm); 1899 if (ret) { 1900 BUG_ON(ret > 0); 1901 if (!pages_done) 1902 pages_done = ret; 1903 break; 1904 } 1905 1906 *locked = 1; 1907 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1908 pages, locked); 1909 if (!*locked) { 1910 /* Continue to retry until we succeeded */ 1911 BUG_ON(ret != 0); 1912 goto retry; 1913 } 1914 if (ret != 1) { 1915 BUG_ON(ret > 1); 1916 if (!pages_done) 1917 pages_done = ret; 1918 break; 1919 } 1920 nr_pages--; 1921 pages_done++; 1922 if (!nr_pages) 1923 break; 1924 if (likely(pages)) 1925 pages++; 1926 start += PAGE_SIZE; 1927 } 1928 if (must_unlock && *locked) { 1929 /* 1930 * We either temporarily dropped the lock, or the caller 1931 * requested that we both acquire and drop the lock. Either way, 1932 * we must now unlock, and notify the caller of that state. 1933 */ 1934 mmap_read_unlock(mm); 1935 *locked = 0; 1936 } 1937 1938 /* 1939 * Failing to pin anything implies something has gone wrong (except when 1940 * FOLL_NOWAIT is specified). 1941 */ 1942 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1943 return -EFAULT; 1944 1945 return pages_done; 1946 } 1947 1948 /** 1949 * populate_vma_page_range() - populate a range of pages in the vma. 1950 * @vma: target vma 1951 * @start: start address 1952 * @end: end address 1953 * @locked: whether the mmap_lock is still held 1954 * 1955 * This takes care of mlocking the pages too if VM_LOCKED is set. 1956 * 1957 * Return either number of pages pinned in the vma, or a negative error 1958 * code on error. 1959 * 1960 * vma->vm_mm->mmap_lock must be held. 1961 * 1962 * If @locked is NULL, it may be held for read or write and will 1963 * be unperturbed. 1964 * 1965 * If @locked is non-NULL, it must held for read only and may be 1966 * released. If it's released, *@locked will be set to 0. 1967 */ 1968 long populate_vma_page_range(struct vm_area_struct *vma, 1969 unsigned long start, unsigned long end, int *locked) 1970 { 1971 struct mm_struct *mm = vma->vm_mm; 1972 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1973 int local_locked = 1; 1974 int gup_flags; 1975 long ret; 1976 1977 VM_BUG_ON(!PAGE_ALIGNED(start)); 1978 VM_BUG_ON(!PAGE_ALIGNED(end)); 1979 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1980 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1981 mmap_assert_locked(mm); 1982 1983 /* 1984 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1985 * faultin_page() to break COW, so it has no work to do here. 1986 */ 1987 if (vma->vm_flags & VM_LOCKONFAULT) 1988 return nr_pages; 1989 1990 /* ... similarly, we've never faulted in PROT_NONE pages */ 1991 if (!vma_is_accessible(vma)) 1992 return -EFAULT; 1993 1994 gup_flags = FOLL_TOUCH; 1995 /* 1996 * We want to touch writable mappings with a write fault in order 1997 * to break COW, except for shared mappings because these don't COW 1998 * and we would not want to dirty them for nothing. 1999 * 2000 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 2001 * readable (ie write-only or executable). 2002 */ 2003 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 2004 gup_flags |= FOLL_WRITE; 2005 else 2006 gup_flags |= FOLL_FORCE; 2007 2008 if (locked) 2009 gup_flags |= FOLL_UNLOCKABLE; 2010 2011 /* 2012 * We made sure addr is within a VMA, so the following will 2013 * not result in a stack expansion that recurses back here. 2014 */ 2015 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 2016 NULL, locked ? locked : &local_locked); 2017 lru_add_drain(); 2018 return ret; 2019 } 2020 2021 /* 2022 * faultin_page_range() - populate (prefault) page tables inside the 2023 * given range readable/writable 2024 * 2025 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 2026 * 2027 * @mm: the mm to populate page tables in 2028 * @start: start address 2029 * @end: end address 2030 * @write: whether to prefault readable or writable 2031 * @locked: whether the mmap_lock is still held 2032 * 2033 * Returns either number of processed pages in the MM, or a negative error 2034 * code on error (see __get_user_pages()). Note that this function reports 2035 * errors related to VMAs, such as incompatible mappings, as expected by 2036 * MADV_POPULATE_(READ|WRITE). 2037 * 2038 * The range must be page-aligned. 2039 * 2040 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 2041 */ 2042 long faultin_page_range(struct mm_struct *mm, unsigned long start, 2043 unsigned long end, bool write, int *locked) 2044 { 2045 unsigned long nr_pages = (end - start) / PAGE_SIZE; 2046 int gup_flags; 2047 long ret; 2048 2049 VM_BUG_ON(!PAGE_ALIGNED(start)); 2050 VM_BUG_ON(!PAGE_ALIGNED(end)); 2051 mmap_assert_locked(mm); 2052 2053 /* 2054 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 2055 * the page dirty with FOLL_WRITE -- which doesn't make a 2056 * difference with !FOLL_FORCE, because the page is writable 2057 * in the page table. 2058 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 2059 * a poisoned page. 2060 * !FOLL_FORCE: Require proper access permissions. 2061 */ 2062 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 2063 FOLL_MADV_POPULATE; 2064 if (write) 2065 gup_flags |= FOLL_WRITE; 2066 2067 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 2068 gup_flags); 2069 lru_add_drain(); 2070 return ret; 2071 } 2072 2073 /* 2074 * __mm_populate - populate and/or mlock pages within a range of address space. 2075 * 2076 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 2077 * flags. VMAs must be already marked with the desired vm_flags, and 2078 * mmap_lock must not be held. 2079 */ 2080 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 2081 { 2082 struct mm_struct *mm = current->mm; 2083 unsigned long end, nstart, nend; 2084 struct vm_area_struct *vma = NULL; 2085 int locked = 0; 2086 long ret = 0; 2087 2088 end = start + len; 2089 2090 for (nstart = start; nstart < end; nstart = nend) { 2091 /* 2092 * We want to fault in pages for [nstart; end) address range. 2093 * Find first corresponding VMA. 2094 */ 2095 if (!locked) { 2096 locked = 1; 2097 mmap_read_lock(mm); 2098 vma = find_vma_intersection(mm, nstart, end); 2099 } else if (nstart >= vma->vm_end) 2100 vma = find_vma_intersection(mm, vma->vm_end, end); 2101 2102 if (!vma) 2103 break; 2104 /* 2105 * Set [nstart; nend) to intersection of desired address 2106 * range with the first VMA. Also, skip undesirable VMA types. 2107 */ 2108 nend = min(end, vma->vm_end); 2109 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2110 continue; 2111 if (nstart < vma->vm_start) 2112 nstart = vma->vm_start; 2113 /* 2114 * Now fault in a range of pages. populate_vma_page_range() 2115 * double checks the vma flags, so that it won't mlock pages 2116 * if the vma was already munlocked. 2117 */ 2118 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2119 if (ret < 0) { 2120 if (ignore_errors) { 2121 ret = 0; 2122 continue; /* continue at next VMA */ 2123 } 2124 break; 2125 } 2126 nend = nstart + ret * PAGE_SIZE; 2127 ret = 0; 2128 } 2129 if (locked) 2130 mmap_read_unlock(mm); 2131 return ret; /* 0 or negative error code */ 2132 } 2133 #else /* CONFIG_MMU */ 2134 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2135 unsigned long nr_pages, struct page **pages, 2136 int *locked, unsigned int foll_flags) 2137 { 2138 struct vm_area_struct *vma; 2139 bool must_unlock = false; 2140 unsigned long vm_flags; 2141 long i; 2142 2143 if (!nr_pages) 2144 return 0; 2145 2146 /* 2147 * The internal caller expects GUP to manage the lock internally and the 2148 * lock must be released when this returns. 2149 */ 2150 if (!*locked) { 2151 if (mmap_read_lock_killable(mm)) 2152 return -EAGAIN; 2153 must_unlock = true; 2154 *locked = 1; 2155 } 2156 2157 /* calculate required read or write permissions. 2158 * If FOLL_FORCE is set, we only require the "MAY" flags. 2159 */ 2160 vm_flags = (foll_flags & FOLL_WRITE) ? 2161 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2162 vm_flags &= (foll_flags & FOLL_FORCE) ? 2163 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2164 2165 for (i = 0; i < nr_pages; i++) { 2166 vma = find_vma(mm, start); 2167 if (!vma) 2168 break; 2169 2170 /* protect what we can, including chardevs */ 2171 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2172 !(vm_flags & vma->vm_flags)) 2173 break; 2174 2175 if (pages) { 2176 pages[i] = virt_to_page((void *)start); 2177 if (pages[i]) 2178 get_page(pages[i]); 2179 } 2180 2181 start = (start + PAGE_SIZE) & PAGE_MASK; 2182 } 2183 2184 if (must_unlock && *locked) { 2185 mmap_read_unlock(mm); 2186 *locked = 0; 2187 } 2188 2189 return i ? : -EFAULT; 2190 } 2191 #endif /* !CONFIG_MMU */ 2192 2193 /** 2194 * fault_in_writeable - fault in userspace address range for writing 2195 * @uaddr: start of address range 2196 * @size: size of address range 2197 * 2198 * Returns the number of bytes not faulted in (like copy_to_user() and 2199 * copy_from_user()). 2200 */ 2201 size_t fault_in_writeable(char __user *uaddr, size_t size) 2202 { 2203 char __user *start = uaddr, *end; 2204 2205 if (unlikely(size == 0)) 2206 return 0; 2207 if (!user_write_access_begin(uaddr, size)) 2208 return size; 2209 if (!PAGE_ALIGNED(uaddr)) { 2210 unsafe_put_user(0, uaddr, out); 2211 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2212 } 2213 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2214 if (unlikely(end < start)) 2215 end = NULL; 2216 while (uaddr != end) { 2217 unsafe_put_user(0, uaddr, out); 2218 uaddr += PAGE_SIZE; 2219 } 2220 2221 out: 2222 user_write_access_end(); 2223 if (size > uaddr - start) 2224 return size - (uaddr - start); 2225 return 0; 2226 } 2227 EXPORT_SYMBOL(fault_in_writeable); 2228 2229 /** 2230 * fault_in_subpage_writeable - fault in an address range for writing 2231 * @uaddr: start of address range 2232 * @size: size of address range 2233 * 2234 * Fault in a user address range for writing while checking for permissions at 2235 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2236 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2237 * 2238 * Returns the number of bytes not faulted in (like copy_to_user() and 2239 * copy_from_user()). 2240 */ 2241 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2242 { 2243 size_t faulted_in; 2244 2245 /* 2246 * Attempt faulting in at page granularity first for page table 2247 * permission checking. The arch-specific probe_subpage_writeable() 2248 * functions may not check for this. 2249 */ 2250 faulted_in = size - fault_in_writeable(uaddr, size); 2251 if (faulted_in) 2252 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2253 2254 return size - faulted_in; 2255 } 2256 EXPORT_SYMBOL(fault_in_subpage_writeable); 2257 2258 /* 2259 * fault_in_safe_writeable - fault in an address range for writing 2260 * @uaddr: start of address range 2261 * @size: length of address range 2262 * 2263 * Faults in an address range for writing. This is primarily useful when we 2264 * already know that some or all of the pages in the address range aren't in 2265 * memory. 2266 * 2267 * Unlike fault_in_writeable(), this function is non-destructive. 2268 * 2269 * Note that we don't pin or otherwise hold the pages referenced that we fault 2270 * in. There's no guarantee that they'll stay in memory for any duration of 2271 * time. 2272 * 2273 * Returns the number of bytes not faulted in, like copy_to_user() and 2274 * copy_from_user(). 2275 */ 2276 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2277 { 2278 unsigned long start = (unsigned long)uaddr, end; 2279 struct mm_struct *mm = current->mm; 2280 bool unlocked = false; 2281 2282 if (unlikely(size == 0)) 2283 return 0; 2284 end = PAGE_ALIGN(start + size); 2285 if (end < start) 2286 end = 0; 2287 2288 mmap_read_lock(mm); 2289 do { 2290 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2291 break; 2292 start = (start + PAGE_SIZE) & PAGE_MASK; 2293 } while (start != end); 2294 mmap_read_unlock(mm); 2295 2296 if (size > (unsigned long)uaddr - start) 2297 return size - ((unsigned long)uaddr - start); 2298 return 0; 2299 } 2300 EXPORT_SYMBOL(fault_in_safe_writeable); 2301 2302 /** 2303 * fault_in_readable - fault in userspace address range for reading 2304 * @uaddr: start of user address range 2305 * @size: size of user address range 2306 * 2307 * Returns the number of bytes not faulted in (like copy_to_user() and 2308 * copy_from_user()). 2309 */ 2310 size_t fault_in_readable(const char __user *uaddr, size_t size) 2311 { 2312 const char __user *start = uaddr, *end; 2313 volatile char c; 2314 2315 if (unlikely(size == 0)) 2316 return 0; 2317 if (!user_read_access_begin(uaddr, size)) 2318 return size; 2319 if (!PAGE_ALIGNED(uaddr)) { 2320 unsafe_get_user(c, uaddr, out); 2321 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2322 } 2323 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2324 if (unlikely(end < start)) 2325 end = NULL; 2326 while (uaddr != end) { 2327 unsafe_get_user(c, uaddr, out); 2328 uaddr += PAGE_SIZE; 2329 } 2330 2331 out: 2332 user_read_access_end(); 2333 (void)c; 2334 if (size > uaddr - start) 2335 return size - (uaddr - start); 2336 return 0; 2337 } 2338 EXPORT_SYMBOL(fault_in_readable); 2339 2340 /** 2341 * get_dump_page() - pin user page in memory while writing it to core dump 2342 * @addr: user address 2343 * 2344 * Returns struct page pointer of user page pinned for dump, 2345 * to be freed afterwards by put_page(). 2346 * 2347 * Returns NULL on any kind of failure - a hole must then be inserted into 2348 * the corefile, to preserve alignment with its headers; and also returns 2349 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2350 * allowing a hole to be left in the corefile to save disk space. 2351 * 2352 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2353 */ 2354 #ifdef CONFIG_ELF_CORE 2355 struct page *get_dump_page(unsigned long addr) 2356 { 2357 struct page *page; 2358 int locked = 0; 2359 int ret; 2360 2361 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2362 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2363 return (ret == 1) ? page : NULL; 2364 } 2365 #endif /* CONFIG_ELF_CORE */ 2366 2367 #ifdef CONFIG_MIGRATION 2368 /* 2369 * Returns the number of collected pages. Return value is always >= 0. 2370 */ 2371 static unsigned long collect_longterm_unpinnable_pages( 2372 struct list_head *movable_page_list, 2373 unsigned long nr_pages, 2374 struct page **pages) 2375 { 2376 unsigned long i, collected = 0; 2377 struct folio *prev_folio = NULL; 2378 bool drain_allow = true; 2379 2380 for (i = 0; i < nr_pages; i++) { 2381 struct folio *folio = page_folio(pages[i]); 2382 2383 if (folio == prev_folio) 2384 continue; 2385 prev_folio = folio; 2386 2387 if (folio_is_longterm_pinnable(folio)) 2388 continue; 2389 2390 collected++; 2391 2392 if (folio_is_device_coherent(folio)) 2393 continue; 2394 2395 if (folio_test_hugetlb(folio)) { 2396 isolate_hugetlb(folio, movable_page_list); 2397 continue; 2398 } 2399 2400 if (!folio_test_lru(folio) && drain_allow) { 2401 lru_add_drain_all(); 2402 drain_allow = false; 2403 } 2404 2405 if (!folio_isolate_lru(folio)) 2406 continue; 2407 2408 list_add_tail(&folio->lru, movable_page_list); 2409 node_stat_mod_folio(folio, 2410 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2411 folio_nr_pages(folio)); 2412 } 2413 2414 return collected; 2415 } 2416 2417 /* 2418 * Unpins all pages and migrates device coherent pages and movable_page_list. 2419 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2420 * (or partial success). 2421 */ 2422 static int migrate_longterm_unpinnable_pages( 2423 struct list_head *movable_page_list, 2424 unsigned long nr_pages, 2425 struct page **pages) 2426 { 2427 int ret; 2428 unsigned long i; 2429 2430 for (i = 0; i < nr_pages; i++) { 2431 struct folio *folio = page_folio(pages[i]); 2432 2433 if (folio_is_device_coherent(folio)) { 2434 /* 2435 * Migration will fail if the page is pinned, so convert 2436 * the pin on the source page to a normal reference. 2437 */ 2438 pages[i] = NULL; 2439 folio_get(folio); 2440 gup_put_folio(folio, 1, FOLL_PIN); 2441 2442 if (migrate_device_coherent_page(&folio->page)) { 2443 ret = -EBUSY; 2444 goto err; 2445 } 2446 2447 continue; 2448 } 2449 2450 /* 2451 * We can't migrate pages with unexpected references, so drop 2452 * the reference obtained by __get_user_pages_locked(). 2453 * Migrating pages have been added to movable_page_list after 2454 * calling folio_isolate_lru() which takes a reference so the 2455 * page won't be freed if it's migrating. 2456 */ 2457 unpin_user_page(pages[i]); 2458 pages[i] = NULL; 2459 } 2460 2461 if (!list_empty(movable_page_list)) { 2462 struct migration_target_control mtc = { 2463 .nid = NUMA_NO_NODE, 2464 .gfp_mask = GFP_USER | __GFP_NOWARN, 2465 .reason = MR_LONGTERM_PIN, 2466 }; 2467 2468 if (migrate_pages(movable_page_list, alloc_migration_target, 2469 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2470 MR_LONGTERM_PIN, NULL)) { 2471 ret = -ENOMEM; 2472 goto err; 2473 } 2474 } 2475 2476 putback_movable_pages(movable_page_list); 2477 2478 return -EAGAIN; 2479 2480 err: 2481 for (i = 0; i < nr_pages; i++) 2482 if (pages[i]) 2483 unpin_user_page(pages[i]); 2484 putback_movable_pages(movable_page_list); 2485 2486 return ret; 2487 } 2488 2489 /* 2490 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2491 * pages in the range are required to be pinned via FOLL_PIN, before calling 2492 * this routine. 2493 * 2494 * If any pages in the range are not allowed to be pinned, then this routine 2495 * will migrate those pages away, unpin all the pages in the range and return 2496 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2497 * call this routine again. 2498 * 2499 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2500 * The caller should give up, and propagate the error back up the call stack. 2501 * 2502 * If everything is OK and all pages in the range are allowed to be pinned, then 2503 * this routine leaves all pages pinned and returns zero for success. 2504 */ 2505 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2506 struct page **pages) 2507 { 2508 unsigned long collected; 2509 LIST_HEAD(movable_page_list); 2510 2511 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2512 nr_pages, pages); 2513 if (!collected) 2514 return 0; 2515 2516 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2517 pages); 2518 } 2519 #else 2520 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2521 struct page **pages) 2522 { 2523 return 0; 2524 } 2525 #endif /* CONFIG_MIGRATION */ 2526 2527 /* 2528 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2529 * allows us to process the FOLL_LONGTERM flag. 2530 */ 2531 static long __gup_longterm_locked(struct mm_struct *mm, 2532 unsigned long start, 2533 unsigned long nr_pages, 2534 struct page **pages, 2535 int *locked, 2536 unsigned int gup_flags) 2537 { 2538 unsigned int flags; 2539 long rc, nr_pinned_pages; 2540 2541 if (!(gup_flags & FOLL_LONGTERM)) 2542 return __get_user_pages_locked(mm, start, nr_pages, pages, 2543 locked, gup_flags); 2544 2545 flags = memalloc_pin_save(); 2546 do { 2547 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2548 pages, locked, 2549 gup_flags); 2550 if (nr_pinned_pages <= 0) { 2551 rc = nr_pinned_pages; 2552 break; 2553 } 2554 2555 /* FOLL_LONGTERM implies FOLL_PIN */ 2556 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2557 } while (rc == -EAGAIN); 2558 memalloc_pin_restore(flags); 2559 return rc ? rc : nr_pinned_pages; 2560 } 2561 2562 /* 2563 * Check that the given flags are valid for the exported gup/pup interface, and 2564 * update them with the required flags that the caller must have set. 2565 */ 2566 static bool is_valid_gup_args(struct page **pages, int *locked, 2567 unsigned int *gup_flags_p, unsigned int to_set) 2568 { 2569 unsigned int gup_flags = *gup_flags_p; 2570 2571 /* 2572 * These flags not allowed to be specified externally to the gup 2573 * interfaces: 2574 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2575 * - FOLL_REMOTE is internal only and used on follow_page() 2576 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2577 */ 2578 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2579 return false; 2580 2581 gup_flags |= to_set; 2582 if (locked) { 2583 /* At the external interface locked must be set */ 2584 if (WARN_ON_ONCE(*locked != 1)) 2585 return false; 2586 2587 gup_flags |= FOLL_UNLOCKABLE; 2588 } 2589 2590 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2591 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2592 (FOLL_PIN | FOLL_GET))) 2593 return false; 2594 2595 /* LONGTERM can only be specified when pinning */ 2596 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2597 return false; 2598 2599 /* Pages input must be given if using GET/PIN */ 2600 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2601 return false; 2602 2603 /* We want to allow the pgmap to be hot-unplugged at all times */ 2604 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2605 (gup_flags & FOLL_PCI_P2PDMA))) 2606 return false; 2607 2608 *gup_flags_p = gup_flags; 2609 return true; 2610 } 2611 2612 #ifdef CONFIG_MMU 2613 /** 2614 * get_user_pages_remote() - pin user pages in memory 2615 * @mm: mm_struct of target mm 2616 * @start: starting user address 2617 * @nr_pages: number of pages from start to pin 2618 * @gup_flags: flags modifying lookup behaviour 2619 * @pages: array that receives pointers to the pages pinned. 2620 * Should be at least nr_pages long. Or NULL, if caller 2621 * only intends to ensure the pages are faulted in. 2622 * @locked: pointer to lock flag indicating whether lock is held and 2623 * subsequently whether VM_FAULT_RETRY functionality can be 2624 * utilised. Lock must initially be held. 2625 * 2626 * Returns either number of pages pinned (which may be less than the 2627 * number requested), or an error. Details about the return value: 2628 * 2629 * -- If nr_pages is 0, returns 0. 2630 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2631 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2632 * pages pinned. Again, this may be less than nr_pages. 2633 * 2634 * The caller is responsible for releasing returned @pages, via put_page(). 2635 * 2636 * Must be called with mmap_lock held for read or write. 2637 * 2638 * get_user_pages_remote walks a process's page tables and takes a reference 2639 * to each struct page that each user address corresponds to at a given 2640 * instant. That is, it takes the page that would be accessed if a user 2641 * thread accesses the given user virtual address at that instant. 2642 * 2643 * This does not guarantee that the page exists in the user mappings when 2644 * get_user_pages_remote returns, and there may even be a completely different 2645 * page there in some cases (eg. if mmapped pagecache has been invalidated 2646 * and subsequently re-faulted). However it does guarantee that the page 2647 * won't be freed completely. And mostly callers simply care that the page 2648 * contains data that was valid *at some point in time*. Typically, an IO 2649 * or similar operation cannot guarantee anything stronger anyway because 2650 * locks can't be held over the syscall boundary. 2651 * 2652 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2653 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2654 * be called after the page is finished with, and before put_page is called. 2655 * 2656 * get_user_pages_remote is typically used for fewer-copy IO operations, 2657 * to get a handle on the memory by some means other than accesses 2658 * via the user virtual addresses. The pages may be submitted for 2659 * DMA to devices or accessed via their kernel linear mapping (via the 2660 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2661 * 2662 * See also get_user_pages_fast, for performance critical applications. 2663 * 2664 * get_user_pages_remote should be phased out in favor of 2665 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2666 * should use get_user_pages_remote because it cannot pass 2667 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2668 */ 2669 long get_user_pages_remote(struct mm_struct *mm, 2670 unsigned long start, unsigned long nr_pages, 2671 unsigned int gup_flags, struct page **pages, 2672 int *locked) 2673 { 2674 int local_locked = 1; 2675 2676 if (!is_valid_gup_args(pages, locked, &gup_flags, 2677 FOLL_TOUCH | FOLL_REMOTE)) 2678 return -EINVAL; 2679 2680 return __get_user_pages_locked(mm, start, nr_pages, pages, 2681 locked ? locked : &local_locked, 2682 gup_flags); 2683 } 2684 EXPORT_SYMBOL(get_user_pages_remote); 2685 2686 #else /* CONFIG_MMU */ 2687 long get_user_pages_remote(struct mm_struct *mm, 2688 unsigned long start, unsigned long nr_pages, 2689 unsigned int gup_flags, struct page **pages, 2690 int *locked) 2691 { 2692 return 0; 2693 } 2694 #endif /* !CONFIG_MMU */ 2695 2696 /** 2697 * get_user_pages() - pin user pages in memory 2698 * @start: starting user address 2699 * @nr_pages: number of pages from start to pin 2700 * @gup_flags: flags modifying lookup behaviour 2701 * @pages: array that receives pointers to the pages pinned. 2702 * Should be at least nr_pages long. Or NULL, if caller 2703 * only intends to ensure the pages are faulted in. 2704 * 2705 * This is the same as get_user_pages_remote(), just with a less-flexible 2706 * calling convention where we assume that the mm being operated on belongs to 2707 * the current task, and doesn't allow passing of a locked parameter. We also 2708 * obviously don't pass FOLL_REMOTE in here. 2709 */ 2710 long get_user_pages(unsigned long start, unsigned long nr_pages, 2711 unsigned int gup_flags, struct page **pages) 2712 { 2713 int locked = 1; 2714 2715 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2716 return -EINVAL; 2717 2718 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2719 &locked, gup_flags); 2720 } 2721 EXPORT_SYMBOL(get_user_pages); 2722 2723 /* 2724 * get_user_pages_unlocked() is suitable to replace the form: 2725 * 2726 * mmap_read_lock(mm); 2727 * get_user_pages(mm, ..., pages, NULL); 2728 * mmap_read_unlock(mm); 2729 * 2730 * with: 2731 * 2732 * get_user_pages_unlocked(mm, ..., pages); 2733 * 2734 * It is functionally equivalent to get_user_pages_fast so 2735 * get_user_pages_fast should be used instead if specific gup_flags 2736 * (e.g. FOLL_FORCE) are not required. 2737 */ 2738 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2739 struct page **pages, unsigned int gup_flags) 2740 { 2741 int locked = 0; 2742 2743 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2744 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2745 return -EINVAL; 2746 2747 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2748 &locked, gup_flags); 2749 } 2750 EXPORT_SYMBOL(get_user_pages_unlocked); 2751 2752 /* 2753 * GUP-fast 2754 * 2755 * get_user_pages_fast attempts to pin user pages by walking the page 2756 * tables directly and avoids taking locks. Thus the walker needs to be 2757 * protected from page table pages being freed from under it, and should 2758 * block any THP splits. 2759 * 2760 * One way to achieve this is to have the walker disable interrupts, and 2761 * rely on IPIs from the TLB flushing code blocking before the page table 2762 * pages are freed. This is unsuitable for architectures that do not need 2763 * to broadcast an IPI when invalidating TLBs. 2764 * 2765 * Another way to achieve this is to batch up page table containing pages 2766 * belonging to more than one mm_user, then rcu_sched a callback to free those 2767 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2768 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2769 * (which is a relatively rare event). The code below adopts this strategy. 2770 * 2771 * Before activating this code, please be aware that the following assumptions 2772 * are currently made: 2773 * 2774 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2775 * free pages containing page tables or TLB flushing requires IPI broadcast. 2776 * 2777 * *) ptes can be read atomically by the architecture. 2778 * 2779 * *) access_ok is sufficient to validate userspace address ranges. 2780 * 2781 * The last two assumptions can be relaxed by the addition of helper functions. 2782 * 2783 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2784 */ 2785 #ifdef CONFIG_HAVE_GUP_FAST 2786 2787 /* 2788 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2789 * a specific folio. 2790 * 2791 * This call assumes the caller has pinned the folio, that the lowest page table 2792 * level still points to this folio, and that interrupts have been disabled. 2793 * 2794 * GUP-fast must reject all secretmem folios. 2795 * 2796 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2797 * (see comment describing the writable_file_mapping_allowed() function). We 2798 * therefore try to avoid the most egregious case of a long-term mapping doing 2799 * so. 2800 * 2801 * This function cannot be as thorough as that one as the VMA is not available 2802 * in the fast path, so instead we whitelist known good cases and if in doubt, 2803 * fall back to the slow path. 2804 */ 2805 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2806 { 2807 bool reject_file_backed = false; 2808 struct address_space *mapping; 2809 bool check_secretmem = false; 2810 unsigned long mapping_flags; 2811 2812 /* 2813 * If we aren't pinning then no problematic write can occur. A long term 2814 * pin is the most egregious case so this is the one we disallow. 2815 */ 2816 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2817 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2818 reject_file_backed = true; 2819 2820 /* We hold a folio reference, so we can safely access folio fields. */ 2821 2822 /* secretmem folios are always order-0 folios. */ 2823 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2824 check_secretmem = true; 2825 2826 if (!reject_file_backed && !check_secretmem) 2827 return true; 2828 2829 if (WARN_ON_ONCE(folio_test_slab(folio))) 2830 return false; 2831 2832 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2833 if (folio_test_hugetlb(folio)) 2834 return true; 2835 2836 /* 2837 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2838 * cannot proceed, which means no actions performed under RCU can 2839 * proceed either. 2840 * 2841 * inodes and thus their mappings are freed under RCU, which means the 2842 * mapping cannot be freed beneath us and thus we can safely dereference 2843 * it. 2844 */ 2845 lockdep_assert_irqs_disabled(); 2846 2847 /* 2848 * However, there may be operations which _alter_ the mapping, so ensure 2849 * we read it once and only once. 2850 */ 2851 mapping = READ_ONCE(folio->mapping); 2852 2853 /* 2854 * The mapping may have been truncated, in any case we cannot determine 2855 * if this mapping is safe - fall back to slow path to determine how to 2856 * proceed. 2857 */ 2858 if (!mapping) 2859 return false; 2860 2861 /* Anonymous folios pose no problem. */ 2862 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2863 if (mapping_flags) 2864 return mapping_flags & PAGE_MAPPING_ANON; 2865 2866 /* 2867 * At this point, we know the mapping is non-null and points to an 2868 * address_space object. 2869 */ 2870 if (check_secretmem && secretmem_mapping(mapping)) 2871 return false; 2872 /* The only remaining allowed file system is shmem. */ 2873 return !reject_file_backed || shmem_mapping(mapping); 2874 } 2875 2876 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2877 unsigned int flags, struct page **pages) 2878 { 2879 while ((*nr) - nr_start) { 2880 struct folio *folio = page_folio(pages[--(*nr)]); 2881 2882 folio_clear_referenced(folio); 2883 gup_put_folio(folio, 1, flags); 2884 } 2885 } 2886 2887 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2888 /* 2889 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2890 * operations. 2891 * 2892 * To pin the page, GUP-fast needs to do below in order: 2893 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2894 * 2895 * For the rest of pgtable operations where pgtable updates can be racy 2896 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2897 * is pinned. 2898 * 2899 * Above will work for all pte-level operations, including THP split. 2900 * 2901 * For THP collapse, it's a bit more complicated because GUP-fast may be 2902 * walking a pgtable page that is being freed (pte is still valid but pmd 2903 * can be cleared already). To avoid race in such condition, we need to 2904 * also check pmd here to make sure pmd doesn't change (corresponds to 2905 * pmdp_collapse_flush() in the THP collapse code path). 2906 */ 2907 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2908 unsigned long end, unsigned int flags, struct page **pages, 2909 int *nr) 2910 { 2911 struct dev_pagemap *pgmap = NULL; 2912 int nr_start = *nr, ret = 0; 2913 pte_t *ptep, *ptem; 2914 2915 ptem = ptep = pte_offset_map(&pmd, addr); 2916 if (!ptep) 2917 return 0; 2918 do { 2919 pte_t pte = ptep_get_lockless(ptep); 2920 struct page *page; 2921 struct folio *folio; 2922 2923 /* 2924 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2925 * pte_access_permitted() better should reject these pages 2926 * either way: otherwise, GUP-fast might succeed in 2927 * cases where ordinary GUP would fail due to VMA access 2928 * permissions. 2929 */ 2930 if (pte_protnone(pte)) 2931 goto pte_unmap; 2932 2933 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2934 goto pte_unmap; 2935 2936 if (pte_devmap(pte)) { 2937 if (unlikely(flags & FOLL_LONGTERM)) 2938 goto pte_unmap; 2939 2940 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2941 if (unlikely(!pgmap)) { 2942 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2943 goto pte_unmap; 2944 } 2945 } else if (pte_special(pte)) 2946 goto pte_unmap; 2947 2948 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2949 page = pte_page(pte); 2950 2951 folio = try_grab_folio(page, 1, flags); 2952 if (!folio) 2953 goto pte_unmap; 2954 2955 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2956 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2957 gup_put_folio(folio, 1, flags); 2958 goto pte_unmap; 2959 } 2960 2961 if (!gup_fast_folio_allowed(folio, flags)) { 2962 gup_put_folio(folio, 1, flags); 2963 goto pte_unmap; 2964 } 2965 2966 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2967 gup_put_folio(folio, 1, flags); 2968 goto pte_unmap; 2969 } 2970 2971 /* 2972 * We need to make the page accessible if and only if we are 2973 * going to access its content (the FOLL_PIN case). Please 2974 * see Documentation/core-api/pin_user_pages.rst for 2975 * details. 2976 */ 2977 if (flags & FOLL_PIN) { 2978 ret = arch_make_page_accessible(page); 2979 if (ret) { 2980 gup_put_folio(folio, 1, flags); 2981 goto pte_unmap; 2982 } 2983 } 2984 folio_set_referenced(folio); 2985 pages[*nr] = page; 2986 (*nr)++; 2987 } while (ptep++, addr += PAGE_SIZE, addr != end); 2988 2989 ret = 1; 2990 2991 pte_unmap: 2992 if (pgmap) 2993 put_dev_pagemap(pgmap); 2994 pte_unmap(ptem); 2995 return ret; 2996 } 2997 #else 2998 2999 /* 3000 * If we can't determine whether or not a pte is special, then fail immediately 3001 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 3002 * to be special. 3003 * 3004 * For a futex to be placed on a THP tail page, get_futex_key requires a 3005 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 3006 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 3007 */ 3008 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 3009 unsigned long end, unsigned int flags, struct page **pages, 3010 int *nr) 3011 { 3012 return 0; 3013 } 3014 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 3015 3016 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 3017 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 3018 unsigned long end, unsigned int flags, struct page **pages, int *nr) 3019 { 3020 int nr_start = *nr; 3021 struct dev_pagemap *pgmap = NULL; 3022 3023 do { 3024 struct folio *folio; 3025 struct page *page = pfn_to_page(pfn); 3026 3027 pgmap = get_dev_pagemap(pfn, pgmap); 3028 if (unlikely(!pgmap)) { 3029 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3030 break; 3031 } 3032 3033 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 3034 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3035 break; 3036 } 3037 3038 folio = try_grab_folio(page, 1, flags); 3039 if (!folio) { 3040 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3041 break; 3042 } 3043 folio_set_referenced(folio); 3044 pages[*nr] = page; 3045 (*nr)++; 3046 pfn++; 3047 } while (addr += PAGE_SIZE, addr != end); 3048 3049 put_dev_pagemap(pgmap); 3050 return addr == end; 3051 } 3052 3053 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3054 unsigned long end, unsigned int flags, struct page **pages, 3055 int *nr) 3056 { 3057 unsigned long fault_pfn; 3058 int nr_start = *nr; 3059 3060 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3061 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3062 return 0; 3063 3064 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3065 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3066 return 0; 3067 } 3068 return 1; 3069 } 3070 3071 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3072 unsigned long end, unsigned int flags, struct page **pages, 3073 int *nr) 3074 { 3075 unsigned long fault_pfn; 3076 int nr_start = *nr; 3077 3078 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3079 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3080 return 0; 3081 3082 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3083 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3084 return 0; 3085 } 3086 return 1; 3087 } 3088 #else 3089 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3090 unsigned long end, unsigned int flags, struct page **pages, 3091 int *nr) 3092 { 3093 BUILD_BUG(); 3094 return 0; 3095 } 3096 3097 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3098 unsigned long end, unsigned int flags, struct page **pages, 3099 int *nr) 3100 { 3101 BUILD_BUG(); 3102 return 0; 3103 } 3104 #endif 3105 3106 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3107 unsigned long end, unsigned int flags, struct page **pages, 3108 int *nr) 3109 { 3110 struct page *page; 3111 struct folio *folio; 3112 int refs; 3113 3114 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3115 return 0; 3116 3117 if (pmd_devmap(orig)) { 3118 if (unlikely(flags & FOLL_LONGTERM)) 3119 return 0; 3120 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3121 pages, nr); 3122 } 3123 3124 page = pmd_page(orig); 3125 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3126 3127 folio = try_grab_folio(page, refs, flags); 3128 if (!folio) 3129 return 0; 3130 3131 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3132 gup_put_folio(folio, refs, flags); 3133 return 0; 3134 } 3135 3136 if (!gup_fast_folio_allowed(folio, flags)) { 3137 gup_put_folio(folio, refs, flags); 3138 return 0; 3139 } 3140 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3141 gup_put_folio(folio, refs, flags); 3142 return 0; 3143 } 3144 3145 *nr += refs; 3146 folio_set_referenced(folio); 3147 return 1; 3148 } 3149 3150 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3151 unsigned long end, unsigned int flags, struct page **pages, 3152 int *nr) 3153 { 3154 struct page *page; 3155 struct folio *folio; 3156 int refs; 3157 3158 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3159 return 0; 3160 3161 if (pud_devmap(orig)) { 3162 if (unlikely(flags & FOLL_LONGTERM)) 3163 return 0; 3164 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3165 pages, nr); 3166 } 3167 3168 page = pud_page(orig); 3169 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3170 3171 folio = try_grab_folio(page, refs, flags); 3172 if (!folio) 3173 return 0; 3174 3175 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3176 gup_put_folio(folio, refs, flags); 3177 return 0; 3178 } 3179 3180 if (!gup_fast_folio_allowed(folio, flags)) { 3181 gup_put_folio(folio, refs, flags); 3182 return 0; 3183 } 3184 3185 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3186 gup_put_folio(folio, refs, flags); 3187 return 0; 3188 } 3189 3190 *nr += refs; 3191 folio_set_referenced(folio); 3192 return 1; 3193 } 3194 3195 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3196 unsigned long end, unsigned int flags, struct page **pages, 3197 int *nr) 3198 { 3199 int refs; 3200 struct page *page; 3201 struct folio *folio; 3202 3203 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3204 return 0; 3205 3206 BUILD_BUG_ON(pgd_devmap(orig)); 3207 3208 page = pgd_page(orig); 3209 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3210 3211 folio = try_grab_folio(page, refs, flags); 3212 if (!folio) 3213 return 0; 3214 3215 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3216 gup_put_folio(folio, refs, flags); 3217 return 0; 3218 } 3219 3220 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3221 gup_put_folio(folio, refs, flags); 3222 return 0; 3223 } 3224 3225 if (!gup_fast_folio_allowed(folio, flags)) { 3226 gup_put_folio(folio, refs, flags); 3227 return 0; 3228 } 3229 3230 *nr += refs; 3231 folio_set_referenced(folio); 3232 return 1; 3233 } 3234 3235 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3236 unsigned long end, unsigned int flags, struct page **pages, 3237 int *nr) 3238 { 3239 unsigned long next; 3240 pmd_t *pmdp; 3241 3242 pmdp = pmd_offset_lockless(pudp, pud, addr); 3243 do { 3244 pmd_t pmd = pmdp_get_lockless(pmdp); 3245 3246 next = pmd_addr_end(addr, end); 3247 if (!pmd_present(pmd)) 3248 return 0; 3249 3250 if (unlikely(pmd_leaf(pmd))) { 3251 /* See gup_fast_pte_range() */ 3252 if (pmd_protnone(pmd)) 3253 return 0; 3254 3255 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3256 pages, nr)) 3257 return 0; 3258 3259 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3260 /* 3261 * architecture have different format for hugetlbfs 3262 * pmd format and THP pmd format 3263 */ 3264 if (!gup_fast_hugepd(__hugepd(pmd_val(pmd)), addr, 3265 PMD_SHIFT, next, flags, pages, nr)) 3266 return 0; 3267 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3268 pages, nr)) 3269 return 0; 3270 } while (pmdp++, addr = next, addr != end); 3271 3272 return 1; 3273 } 3274 3275 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3276 unsigned long end, unsigned int flags, struct page **pages, 3277 int *nr) 3278 { 3279 unsigned long next; 3280 pud_t *pudp; 3281 3282 pudp = pud_offset_lockless(p4dp, p4d, addr); 3283 do { 3284 pud_t pud = READ_ONCE(*pudp); 3285 3286 next = pud_addr_end(addr, end); 3287 if (unlikely(!pud_present(pud))) 3288 return 0; 3289 if (unlikely(pud_leaf(pud))) { 3290 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3291 pages, nr)) 3292 return 0; 3293 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3294 if (!gup_fast_hugepd(__hugepd(pud_val(pud)), addr, 3295 PUD_SHIFT, next, flags, pages, nr)) 3296 return 0; 3297 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3298 pages, nr)) 3299 return 0; 3300 } while (pudp++, addr = next, addr != end); 3301 3302 return 1; 3303 } 3304 3305 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3306 unsigned long end, unsigned int flags, struct page **pages, 3307 int *nr) 3308 { 3309 unsigned long next; 3310 p4d_t *p4dp; 3311 3312 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3313 do { 3314 p4d_t p4d = READ_ONCE(*p4dp); 3315 3316 next = p4d_addr_end(addr, end); 3317 if (!p4d_present(p4d)) 3318 return 0; 3319 BUILD_BUG_ON(p4d_leaf(p4d)); 3320 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3321 if (!gup_fast_hugepd(__hugepd(p4d_val(p4d)), addr, 3322 P4D_SHIFT, next, flags, pages, nr)) 3323 return 0; 3324 } else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3325 pages, nr)) 3326 return 0; 3327 } while (p4dp++, addr = next, addr != end); 3328 3329 return 1; 3330 } 3331 3332 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3333 unsigned int flags, struct page **pages, int *nr) 3334 { 3335 unsigned long next; 3336 pgd_t *pgdp; 3337 3338 pgdp = pgd_offset(current->mm, addr); 3339 do { 3340 pgd_t pgd = READ_ONCE(*pgdp); 3341 3342 next = pgd_addr_end(addr, end); 3343 if (pgd_none(pgd)) 3344 return; 3345 if (unlikely(pgd_leaf(pgd))) { 3346 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3347 pages, nr)) 3348 return; 3349 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3350 if (!gup_fast_hugepd(__hugepd(pgd_val(pgd)), addr, 3351 PGDIR_SHIFT, next, flags, pages, nr)) 3352 return; 3353 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3354 pages, nr)) 3355 return; 3356 } while (pgdp++, addr = next, addr != end); 3357 } 3358 #else 3359 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3360 unsigned int flags, struct page **pages, int *nr) 3361 { 3362 } 3363 #endif /* CONFIG_HAVE_GUP_FAST */ 3364 3365 #ifndef gup_fast_permitted 3366 /* 3367 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3368 * we need to fall back to the slow version: 3369 */ 3370 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3371 { 3372 return true; 3373 } 3374 #endif 3375 3376 static unsigned long gup_fast(unsigned long start, unsigned long end, 3377 unsigned int gup_flags, struct page **pages) 3378 { 3379 unsigned long flags; 3380 int nr_pinned = 0; 3381 unsigned seq; 3382 3383 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3384 !gup_fast_permitted(start, end)) 3385 return 0; 3386 3387 if (gup_flags & FOLL_PIN) { 3388 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3389 if (seq & 1) 3390 return 0; 3391 } 3392 3393 /* 3394 * Disable interrupts. The nested form is used, in order to allow full, 3395 * general purpose use of this routine. 3396 * 3397 * With interrupts disabled, we block page table pages from being freed 3398 * from under us. See struct mmu_table_batch comments in 3399 * include/asm-generic/tlb.h for more details. 3400 * 3401 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3402 * that come from THPs splitting. 3403 */ 3404 local_irq_save(flags); 3405 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3406 local_irq_restore(flags); 3407 3408 /* 3409 * When pinning pages for DMA there could be a concurrent write protect 3410 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3411 */ 3412 if (gup_flags & FOLL_PIN) { 3413 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3414 gup_fast_unpin_user_pages(pages, nr_pinned); 3415 return 0; 3416 } else { 3417 sanity_check_pinned_pages(pages, nr_pinned); 3418 } 3419 } 3420 return nr_pinned; 3421 } 3422 3423 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3424 unsigned int gup_flags, struct page **pages) 3425 { 3426 unsigned long len, end; 3427 unsigned long nr_pinned; 3428 int locked = 0; 3429 int ret; 3430 3431 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3432 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3433 FOLL_FAST_ONLY | FOLL_NOFAULT | 3434 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3435 return -EINVAL; 3436 3437 if (gup_flags & FOLL_PIN) 3438 mm_set_has_pinned_flag(¤t->mm->flags); 3439 3440 if (!(gup_flags & FOLL_FAST_ONLY)) 3441 might_lock_read(¤t->mm->mmap_lock); 3442 3443 start = untagged_addr(start) & PAGE_MASK; 3444 len = nr_pages << PAGE_SHIFT; 3445 if (check_add_overflow(start, len, &end)) 3446 return -EOVERFLOW; 3447 if (end > TASK_SIZE_MAX) 3448 return -EFAULT; 3449 if (unlikely(!access_ok((void __user *)start, len))) 3450 return -EFAULT; 3451 3452 nr_pinned = gup_fast(start, end, gup_flags, pages); 3453 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3454 return nr_pinned; 3455 3456 /* Slow path: try to get the remaining pages with get_user_pages */ 3457 start += nr_pinned << PAGE_SHIFT; 3458 pages += nr_pinned; 3459 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3460 pages, &locked, 3461 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3462 if (ret < 0) { 3463 /* 3464 * The caller has to unpin the pages we already pinned so 3465 * returning -errno is not an option 3466 */ 3467 if (nr_pinned) 3468 return nr_pinned; 3469 return ret; 3470 } 3471 return ret + nr_pinned; 3472 } 3473 3474 /** 3475 * get_user_pages_fast_only() - pin user pages in memory 3476 * @start: starting user address 3477 * @nr_pages: number of pages from start to pin 3478 * @gup_flags: flags modifying pin behaviour 3479 * @pages: array that receives pointers to the pages pinned. 3480 * Should be at least nr_pages long. 3481 * 3482 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3483 * the regular GUP. 3484 * 3485 * If the architecture does not support this function, simply return with no 3486 * pages pinned. 3487 * 3488 * Careful, careful! COW breaking can go either way, so a non-write 3489 * access can get ambiguous page results. If you call this function without 3490 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3491 */ 3492 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3493 unsigned int gup_flags, struct page **pages) 3494 { 3495 /* 3496 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3497 * because gup fast is always a "pin with a +1 page refcount" request. 3498 * 3499 * FOLL_FAST_ONLY is required in order to match the API description of 3500 * this routine: no fall back to regular ("slow") GUP. 3501 */ 3502 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3503 FOLL_GET | FOLL_FAST_ONLY)) 3504 return -EINVAL; 3505 3506 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3507 } 3508 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3509 3510 /** 3511 * get_user_pages_fast() - pin user pages in memory 3512 * @start: starting user address 3513 * @nr_pages: number of pages from start to pin 3514 * @gup_flags: flags modifying pin behaviour 3515 * @pages: array that receives pointers to the pages pinned. 3516 * Should be at least nr_pages long. 3517 * 3518 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3519 * If not successful, it will fall back to taking the lock and 3520 * calling get_user_pages(). 3521 * 3522 * Returns number of pages pinned. This may be fewer than the number requested. 3523 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3524 * -errno. 3525 */ 3526 int get_user_pages_fast(unsigned long start, int nr_pages, 3527 unsigned int gup_flags, struct page **pages) 3528 { 3529 /* 3530 * The caller may or may not have explicitly set FOLL_GET; either way is 3531 * OK. However, internally (within mm/gup.c), gup fast variants must set 3532 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3533 * request. 3534 */ 3535 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3536 return -EINVAL; 3537 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3538 } 3539 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3540 3541 /** 3542 * pin_user_pages_fast() - pin user pages in memory without taking locks 3543 * 3544 * @start: starting user address 3545 * @nr_pages: number of pages from start to pin 3546 * @gup_flags: flags modifying pin behaviour 3547 * @pages: array that receives pointers to the pages pinned. 3548 * Should be at least nr_pages long. 3549 * 3550 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3551 * get_user_pages_fast() for documentation on the function arguments, because 3552 * the arguments here are identical. 3553 * 3554 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3555 * see Documentation/core-api/pin_user_pages.rst for further details. 3556 * 3557 * Note that if a zero_page is amongst the returned pages, it will not have 3558 * pins in it and unpin_user_page() will not remove pins from it. 3559 */ 3560 int pin_user_pages_fast(unsigned long start, int nr_pages, 3561 unsigned int gup_flags, struct page **pages) 3562 { 3563 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3564 return -EINVAL; 3565 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3566 } 3567 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3568 3569 /** 3570 * pin_user_pages_remote() - pin pages of a remote process 3571 * 3572 * @mm: mm_struct of target mm 3573 * @start: starting user address 3574 * @nr_pages: number of pages from start to pin 3575 * @gup_flags: flags modifying lookup behaviour 3576 * @pages: array that receives pointers to the pages pinned. 3577 * Should be at least nr_pages long. 3578 * @locked: pointer to lock flag indicating whether lock is held and 3579 * subsequently whether VM_FAULT_RETRY functionality can be 3580 * utilised. Lock must initially be held. 3581 * 3582 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3583 * get_user_pages_remote() for documentation on the function arguments, because 3584 * the arguments here are identical. 3585 * 3586 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3587 * see Documentation/core-api/pin_user_pages.rst for details. 3588 * 3589 * Note that if a zero_page is amongst the returned pages, it will not have 3590 * pins in it and unpin_user_page*() will not remove pins from it. 3591 */ 3592 long pin_user_pages_remote(struct mm_struct *mm, 3593 unsigned long start, unsigned long nr_pages, 3594 unsigned int gup_flags, struct page **pages, 3595 int *locked) 3596 { 3597 int local_locked = 1; 3598 3599 if (!is_valid_gup_args(pages, locked, &gup_flags, 3600 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3601 return 0; 3602 return __gup_longterm_locked(mm, start, nr_pages, pages, 3603 locked ? locked : &local_locked, 3604 gup_flags); 3605 } 3606 EXPORT_SYMBOL(pin_user_pages_remote); 3607 3608 /** 3609 * pin_user_pages() - pin user pages in memory for use by other devices 3610 * 3611 * @start: starting user address 3612 * @nr_pages: number of pages from start to pin 3613 * @gup_flags: flags modifying lookup behaviour 3614 * @pages: array that receives pointers to the pages pinned. 3615 * Should be at least nr_pages long. 3616 * 3617 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3618 * FOLL_PIN is set. 3619 * 3620 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3621 * see Documentation/core-api/pin_user_pages.rst for details. 3622 * 3623 * Note that if a zero_page is amongst the returned pages, it will not have 3624 * pins in it and unpin_user_page*() will not remove pins from it. 3625 */ 3626 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3627 unsigned int gup_flags, struct page **pages) 3628 { 3629 int locked = 1; 3630 3631 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3632 return 0; 3633 return __gup_longterm_locked(current->mm, start, nr_pages, 3634 pages, &locked, gup_flags); 3635 } 3636 EXPORT_SYMBOL(pin_user_pages); 3637 3638 /* 3639 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3640 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3641 * FOLL_PIN and rejects FOLL_GET. 3642 * 3643 * Note that if a zero_page is amongst the returned pages, it will not have 3644 * pins in it and unpin_user_page*() will not remove pins from it. 3645 */ 3646 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3647 struct page **pages, unsigned int gup_flags) 3648 { 3649 int locked = 0; 3650 3651 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3652 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3653 return 0; 3654 3655 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3656 &locked, gup_flags); 3657 } 3658 EXPORT_SYMBOL(pin_user_pages_unlocked); 3659