1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* Equivalent to calling put_page() @refs times. */ 49 static void put_page_refs(struct page *page, int refs) 50 { 51 #ifdef CONFIG_DEBUG_VM 52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) 53 return; 54 #endif 55 56 /* 57 * Calling put_page() for each ref is unnecessarily slow. Only the last 58 * ref needs a put_page(). 59 */ 60 if (refs > 1) 61 page_ref_sub(page, refs - 1); 62 put_page(page); 63 } 64 65 /* 66 * Return the compound head page with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct page *try_get_compound_head(struct page *page, int refs) 70 { 71 struct page *head = compound_head(page); 72 73 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 74 return NULL; 75 if (unlikely(!page_cache_add_speculative(head, refs))) 76 return NULL; 77 78 /* 79 * At this point we have a stable reference to the head page; but it 80 * could be that between the compound_head() lookup and the refcount 81 * increment, the compound page was split, in which case we'd end up 82 * holding a reference on a page that has nothing to do with the page 83 * we were given anymore. 84 * So now that the head page is stable, recheck that the pages still 85 * belong together. 86 */ 87 if (unlikely(compound_head(page) != head)) { 88 put_page_refs(head, refs); 89 return NULL; 90 } 91 92 return head; 93 } 94 95 /* 96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 97 * flags-dependent amount. 98 * 99 * "grab" names in this file mean, "look at flags to decide whether to use 100 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 101 * 102 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 103 * same time. (That's true throughout the get_user_pages*() and 104 * pin_user_pages*() APIs.) Cases: 105 * 106 * FOLL_GET: page's refcount will be incremented by 1. 107 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 108 * 109 * Return: head page (with refcount appropriately incremented) for success, or 110 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 111 * considered failure, and furthermore, a likely bug in the caller, so a warning 112 * is also emitted. 113 */ 114 __maybe_unused struct page *try_grab_compound_head(struct page *page, 115 int refs, unsigned int flags) 116 { 117 if (flags & FOLL_GET) 118 return try_get_compound_head(page, refs); 119 else if (flags & FOLL_PIN) { 120 int orig_refs = refs; 121 122 /* 123 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 124 * right zone, so fail and let the caller fall back to the slow 125 * path. 126 */ 127 if (unlikely((flags & FOLL_LONGTERM) && 128 !is_pinnable_page(page))) 129 return NULL; 130 131 /* 132 * CAUTION: Don't use compound_head() on the page before this 133 * point, the result won't be stable. 134 */ 135 page = try_get_compound_head(page, refs); 136 if (!page) 137 return NULL; 138 139 /* 140 * When pinning a compound page of order > 1 (which is what 141 * hpage_pincount_available() checks for), use an exact count to 142 * track it, via hpage_pincount_add/_sub(). 143 * 144 * However, be sure to *also* increment the normal page refcount 145 * field at least once, so that the page really is pinned. 146 */ 147 if (hpage_pincount_available(page)) 148 hpage_pincount_add(page, refs); 149 else 150 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); 151 152 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 153 orig_refs); 154 155 return page; 156 } 157 158 WARN_ON_ONCE(1); 159 return NULL; 160 } 161 162 static void put_compound_head(struct page *page, int refs, unsigned int flags) 163 { 164 if (flags & FOLL_PIN) { 165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 166 refs); 167 168 if (hpage_pincount_available(page)) 169 hpage_pincount_sub(page, refs); 170 else 171 refs *= GUP_PIN_COUNTING_BIAS; 172 } 173 174 put_page_refs(page, refs); 175 } 176 177 /** 178 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 179 * 180 * This might not do anything at all, depending on the flags argument. 181 * 182 * "grab" names in this file mean, "look at flags to decide whether to use 183 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 184 * 185 * @page: pointer to page to be grabbed 186 * @flags: gup flags: these are the FOLL_* flag values. 187 * 188 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 189 * time. Cases: 190 * 191 * FOLL_GET: page's refcount will be incremented by 1. 192 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 193 * 194 * Return: true for success, or if no action was required (if neither FOLL_PIN 195 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 196 * FOLL_PIN was set, but the page could not be grabbed. 197 */ 198 bool __must_check try_grab_page(struct page *page, unsigned int flags) 199 { 200 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 201 202 if (flags & FOLL_GET) 203 return try_get_page(page); 204 else if (flags & FOLL_PIN) { 205 int refs = 1; 206 207 page = compound_head(page); 208 209 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 210 return false; 211 212 if (hpage_pincount_available(page)) 213 hpage_pincount_add(page, 1); 214 else 215 refs = GUP_PIN_COUNTING_BIAS; 216 217 /* 218 * Similar to try_grab_compound_head(): even if using the 219 * hpage_pincount_add/_sub() routines, be sure to 220 * *also* increment the normal page refcount field at least 221 * once, so that the page really is pinned. 222 */ 223 page_ref_add(page, refs); 224 225 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 226 } 227 228 return true; 229 } 230 231 /** 232 * unpin_user_page() - release a dma-pinned page 233 * @page: pointer to page to be released 234 * 235 * Pages that were pinned via pin_user_pages*() must be released via either 236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 237 * that such pages can be separately tracked and uniquely handled. In 238 * particular, interactions with RDMA and filesystems need special handling. 239 */ 240 void unpin_user_page(struct page *page) 241 { 242 put_compound_head(compound_head(page), 1, FOLL_PIN); 243 } 244 EXPORT_SYMBOL(unpin_user_page); 245 246 static inline void compound_range_next(unsigned long i, unsigned long npages, 247 struct page **list, struct page **head, 248 unsigned int *ntails) 249 { 250 struct page *next, *page; 251 unsigned int nr = 1; 252 253 if (i >= npages) 254 return; 255 256 next = *list + i; 257 page = compound_head(next); 258 if (PageCompound(page) && compound_order(page) >= 1) 259 nr = min_t(unsigned int, 260 page + compound_nr(page) - next, npages - i); 261 262 *head = page; 263 *ntails = nr; 264 } 265 266 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 267 for (__i = 0, \ 268 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 269 __i < __npages; __i += __ntails, \ 270 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 271 272 static inline void compound_next(unsigned long i, unsigned long npages, 273 struct page **list, struct page **head, 274 unsigned int *ntails) 275 { 276 struct page *page; 277 unsigned int nr; 278 279 if (i >= npages) 280 return; 281 282 page = compound_head(list[i]); 283 for (nr = i + 1; nr < npages; nr++) { 284 if (compound_head(list[nr]) != page) 285 break; 286 } 287 288 *head = page; 289 *ntails = nr - i; 290 } 291 292 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 293 for (__i = 0, \ 294 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 295 __i < __npages; __i += __ntails, \ 296 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 297 298 /** 299 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 300 * @pages: array of pages to be maybe marked dirty, and definitely released. 301 * @npages: number of pages in the @pages array. 302 * @make_dirty: whether to mark the pages dirty 303 * 304 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 305 * variants called on that page. 306 * 307 * For each page in the @pages array, make that page (or its head page, if a 308 * compound page) dirty, if @make_dirty is true, and if the page was previously 309 * listed as clean. In any case, releases all pages using unpin_user_page(), 310 * possibly via unpin_user_pages(), for the non-dirty case. 311 * 312 * Please see the unpin_user_page() documentation for details. 313 * 314 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 315 * required, then the caller should a) verify that this is really correct, 316 * because _lock() is usually required, and b) hand code it: 317 * set_page_dirty_lock(), unpin_user_page(). 318 * 319 */ 320 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 321 bool make_dirty) 322 { 323 unsigned long index; 324 struct page *head; 325 unsigned int ntails; 326 327 if (!make_dirty) { 328 unpin_user_pages(pages, npages); 329 return; 330 } 331 332 for_each_compound_head(index, pages, npages, head, ntails) { 333 /* 334 * Checking PageDirty at this point may race with 335 * clear_page_dirty_for_io(), but that's OK. Two key 336 * cases: 337 * 338 * 1) This code sees the page as already dirty, so it 339 * skips the call to set_page_dirty(). That could happen 340 * because clear_page_dirty_for_io() called 341 * page_mkclean(), followed by set_page_dirty(). 342 * However, now the page is going to get written back, 343 * which meets the original intention of setting it 344 * dirty, so all is well: clear_page_dirty_for_io() goes 345 * on to call TestClearPageDirty(), and write the page 346 * back. 347 * 348 * 2) This code sees the page as clean, so it calls 349 * set_page_dirty(). The page stays dirty, despite being 350 * written back, so it gets written back again in the 351 * next writeback cycle. This is harmless. 352 */ 353 if (!PageDirty(head)) 354 set_page_dirty_lock(head); 355 put_compound_head(head, ntails, FOLL_PIN); 356 } 357 } 358 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 359 360 /** 361 * unpin_user_page_range_dirty_lock() - release and optionally dirty 362 * gup-pinned page range 363 * 364 * @page: the starting page of a range maybe marked dirty, and definitely released. 365 * @npages: number of consecutive pages to release. 366 * @make_dirty: whether to mark the pages dirty 367 * 368 * "gup-pinned page range" refers to a range of pages that has had one of the 369 * pin_user_pages() variants called on that page. 370 * 371 * For the page ranges defined by [page .. page+npages], make that range (or 372 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 373 * page range was previously listed as clean. 374 * 375 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 376 * required, then the caller should a) verify that this is really correct, 377 * because _lock() is usually required, and b) hand code it: 378 * set_page_dirty_lock(), unpin_user_page(). 379 * 380 */ 381 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 382 bool make_dirty) 383 { 384 unsigned long index; 385 struct page *head; 386 unsigned int ntails; 387 388 for_each_compound_range(index, &page, npages, head, ntails) { 389 if (make_dirty && !PageDirty(head)) 390 set_page_dirty_lock(head); 391 put_compound_head(head, ntails, FOLL_PIN); 392 } 393 } 394 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 395 396 /** 397 * unpin_user_pages() - release an array of gup-pinned pages. 398 * @pages: array of pages to be marked dirty and released. 399 * @npages: number of pages in the @pages array. 400 * 401 * For each page in the @pages array, release the page using unpin_user_page(). 402 * 403 * Please see the unpin_user_page() documentation for details. 404 */ 405 void unpin_user_pages(struct page **pages, unsigned long npages) 406 { 407 unsigned long index; 408 struct page *head; 409 unsigned int ntails; 410 411 /* 412 * If this WARN_ON() fires, then the system *might* be leaking pages (by 413 * leaving them pinned), but probably not. More likely, gup/pup returned 414 * a hard -ERRNO error to the caller, who erroneously passed it here. 415 */ 416 if (WARN_ON(IS_ERR_VALUE(npages))) 417 return; 418 419 for_each_compound_head(index, pages, npages, head, ntails) 420 put_compound_head(head, ntails, FOLL_PIN); 421 } 422 EXPORT_SYMBOL(unpin_user_pages); 423 424 /* 425 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 426 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 427 * cache bouncing on large SMP machines for concurrent pinned gups. 428 */ 429 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 430 { 431 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 432 set_bit(MMF_HAS_PINNED, mm_flags); 433 } 434 435 #ifdef CONFIG_MMU 436 static struct page *no_page_table(struct vm_area_struct *vma, 437 unsigned int flags) 438 { 439 /* 440 * When core dumping an enormous anonymous area that nobody 441 * has touched so far, we don't want to allocate unnecessary pages or 442 * page tables. Return error instead of NULL to skip handle_mm_fault, 443 * then get_dump_page() will return NULL to leave a hole in the dump. 444 * But we can only make this optimization where a hole would surely 445 * be zero-filled if handle_mm_fault() actually did handle it. 446 */ 447 if ((flags & FOLL_DUMP) && 448 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 449 return ERR_PTR(-EFAULT); 450 return NULL; 451 } 452 453 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 454 pte_t *pte, unsigned int flags) 455 { 456 /* No page to get reference */ 457 if (flags & FOLL_GET) 458 return -EFAULT; 459 460 if (flags & FOLL_TOUCH) { 461 pte_t entry = *pte; 462 463 if (flags & FOLL_WRITE) 464 entry = pte_mkdirty(entry); 465 entry = pte_mkyoung(entry); 466 467 if (!pte_same(*pte, entry)) { 468 set_pte_at(vma->vm_mm, address, pte, entry); 469 update_mmu_cache(vma, address, pte); 470 } 471 } 472 473 /* Proper page table entry exists, but no corresponding struct page */ 474 return -EEXIST; 475 } 476 477 /* 478 * FOLL_FORCE can write to even unwritable pte's, but only 479 * after we've gone through a COW cycle and they are dirty. 480 */ 481 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 482 { 483 return pte_write(pte) || 484 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 485 } 486 487 static struct page *follow_page_pte(struct vm_area_struct *vma, 488 unsigned long address, pmd_t *pmd, unsigned int flags, 489 struct dev_pagemap **pgmap) 490 { 491 struct mm_struct *mm = vma->vm_mm; 492 struct page *page; 493 spinlock_t *ptl; 494 pte_t *ptep, pte; 495 int ret; 496 497 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 498 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 499 (FOLL_PIN | FOLL_GET))) 500 return ERR_PTR(-EINVAL); 501 retry: 502 if (unlikely(pmd_bad(*pmd))) 503 return no_page_table(vma, flags); 504 505 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 506 pte = *ptep; 507 if (!pte_present(pte)) { 508 swp_entry_t entry; 509 /* 510 * KSM's break_ksm() relies upon recognizing a ksm page 511 * even while it is being migrated, so for that case we 512 * need migration_entry_wait(). 513 */ 514 if (likely(!(flags & FOLL_MIGRATION))) 515 goto no_page; 516 if (pte_none(pte)) 517 goto no_page; 518 entry = pte_to_swp_entry(pte); 519 if (!is_migration_entry(entry)) 520 goto no_page; 521 pte_unmap_unlock(ptep, ptl); 522 migration_entry_wait(mm, pmd, address); 523 goto retry; 524 } 525 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 526 goto no_page; 527 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 528 pte_unmap_unlock(ptep, ptl); 529 return NULL; 530 } 531 532 page = vm_normal_page(vma, address, pte); 533 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 534 /* 535 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 536 * case since they are only valid while holding the pgmap 537 * reference. 538 */ 539 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 540 if (*pgmap) 541 page = pte_page(pte); 542 else 543 goto no_page; 544 } else if (unlikely(!page)) { 545 if (flags & FOLL_DUMP) { 546 /* Avoid special (like zero) pages in core dumps */ 547 page = ERR_PTR(-EFAULT); 548 goto out; 549 } 550 551 if (is_zero_pfn(pte_pfn(pte))) { 552 page = pte_page(pte); 553 } else { 554 ret = follow_pfn_pte(vma, address, ptep, flags); 555 page = ERR_PTR(ret); 556 goto out; 557 } 558 } 559 560 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 561 if (unlikely(!try_grab_page(page, flags))) { 562 page = ERR_PTR(-ENOMEM); 563 goto out; 564 } 565 /* 566 * We need to make the page accessible if and only if we are going 567 * to access its content (the FOLL_PIN case). Please see 568 * Documentation/core-api/pin_user_pages.rst for details. 569 */ 570 if (flags & FOLL_PIN) { 571 ret = arch_make_page_accessible(page); 572 if (ret) { 573 unpin_user_page(page); 574 page = ERR_PTR(ret); 575 goto out; 576 } 577 } 578 if (flags & FOLL_TOUCH) { 579 if ((flags & FOLL_WRITE) && 580 !pte_dirty(pte) && !PageDirty(page)) 581 set_page_dirty(page); 582 /* 583 * pte_mkyoung() would be more correct here, but atomic care 584 * is needed to avoid losing the dirty bit: it is easier to use 585 * mark_page_accessed(). 586 */ 587 mark_page_accessed(page); 588 } 589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 590 /* Do not mlock pte-mapped THP */ 591 if (PageTransCompound(page)) 592 goto out; 593 594 /* 595 * The preliminary mapping check is mainly to avoid the 596 * pointless overhead of lock_page on the ZERO_PAGE 597 * which might bounce very badly if there is contention. 598 * 599 * If the page is already locked, we don't need to 600 * handle it now - vmscan will handle it later if and 601 * when it attempts to reclaim the page. 602 */ 603 if (page->mapping && trylock_page(page)) { 604 lru_add_drain(); /* push cached pages to LRU */ 605 /* 606 * Because we lock page here, and migration is 607 * blocked by the pte's page reference, and we 608 * know the page is still mapped, we don't even 609 * need to check for file-cache page truncation. 610 */ 611 mlock_vma_page(page); 612 unlock_page(page); 613 } 614 } 615 out: 616 pte_unmap_unlock(ptep, ptl); 617 return page; 618 no_page: 619 pte_unmap_unlock(ptep, ptl); 620 if (!pte_none(pte)) 621 return NULL; 622 return no_page_table(vma, flags); 623 } 624 625 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 626 unsigned long address, pud_t *pudp, 627 unsigned int flags, 628 struct follow_page_context *ctx) 629 { 630 pmd_t *pmd, pmdval; 631 spinlock_t *ptl; 632 struct page *page; 633 struct mm_struct *mm = vma->vm_mm; 634 635 pmd = pmd_offset(pudp, address); 636 /* 637 * The READ_ONCE() will stabilize the pmdval in a register or 638 * on the stack so that it will stop changing under the code. 639 */ 640 pmdval = READ_ONCE(*pmd); 641 if (pmd_none(pmdval)) 642 return no_page_table(vma, flags); 643 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 644 page = follow_huge_pmd(mm, address, pmd, flags); 645 if (page) 646 return page; 647 return no_page_table(vma, flags); 648 } 649 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 650 page = follow_huge_pd(vma, address, 651 __hugepd(pmd_val(pmdval)), flags, 652 PMD_SHIFT); 653 if (page) 654 return page; 655 return no_page_table(vma, flags); 656 } 657 retry: 658 if (!pmd_present(pmdval)) { 659 if (likely(!(flags & FOLL_MIGRATION))) 660 return no_page_table(vma, flags); 661 VM_BUG_ON(thp_migration_supported() && 662 !is_pmd_migration_entry(pmdval)); 663 if (is_pmd_migration_entry(pmdval)) 664 pmd_migration_entry_wait(mm, pmd); 665 pmdval = READ_ONCE(*pmd); 666 /* 667 * MADV_DONTNEED may convert the pmd to null because 668 * mmap_lock is held in read mode 669 */ 670 if (pmd_none(pmdval)) 671 return no_page_table(vma, flags); 672 goto retry; 673 } 674 if (pmd_devmap(pmdval)) { 675 ptl = pmd_lock(mm, pmd); 676 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 677 spin_unlock(ptl); 678 if (page) 679 return page; 680 } 681 if (likely(!pmd_trans_huge(pmdval))) 682 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 683 684 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 685 return no_page_table(vma, flags); 686 687 retry_locked: 688 ptl = pmd_lock(mm, pmd); 689 if (unlikely(pmd_none(*pmd))) { 690 spin_unlock(ptl); 691 return no_page_table(vma, flags); 692 } 693 if (unlikely(!pmd_present(*pmd))) { 694 spin_unlock(ptl); 695 if (likely(!(flags & FOLL_MIGRATION))) 696 return no_page_table(vma, flags); 697 pmd_migration_entry_wait(mm, pmd); 698 goto retry_locked; 699 } 700 if (unlikely(!pmd_trans_huge(*pmd))) { 701 spin_unlock(ptl); 702 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 703 } 704 if (flags & FOLL_SPLIT_PMD) { 705 int ret; 706 page = pmd_page(*pmd); 707 if (is_huge_zero_page(page)) { 708 spin_unlock(ptl); 709 ret = 0; 710 split_huge_pmd(vma, pmd, address); 711 if (pmd_trans_unstable(pmd)) 712 ret = -EBUSY; 713 } else { 714 spin_unlock(ptl); 715 split_huge_pmd(vma, pmd, address); 716 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 717 } 718 719 return ret ? ERR_PTR(ret) : 720 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 721 } 722 page = follow_trans_huge_pmd(vma, address, pmd, flags); 723 spin_unlock(ptl); 724 ctx->page_mask = HPAGE_PMD_NR - 1; 725 return page; 726 } 727 728 static struct page *follow_pud_mask(struct vm_area_struct *vma, 729 unsigned long address, p4d_t *p4dp, 730 unsigned int flags, 731 struct follow_page_context *ctx) 732 { 733 pud_t *pud; 734 spinlock_t *ptl; 735 struct page *page; 736 struct mm_struct *mm = vma->vm_mm; 737 738 pud = pud_offset(p4dp, address); 739 if (pud_none(*pud)) 740 return no_page_table(vma, flags); 741 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 742 page = follow_huge_pud(mm, address, pud, flags); 743 if (page) 744 return page; 745 return no_page_table(vma, flags); 746 } 747 if (is_hugepd(__hugepd(pud_val(*pud)))) { 748 page = follow_huge_pd(vma, address, 749 __hugepd(pud_val(*pud)), flags, 750 PUD_SHIFT); 751 if (page) 752 return page; 753 return no_page_table(vma, flags); 754 } 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 struct page *page; 775 776 p4d = p4d_offset(pgdp, address); 777 if (p4d_none(*p4d)) 778 return no_page_table(vma, flags); 779 BUILD_BUG_ON(p4d_huge(*p4d)); 780 if (unlikely(p4d_bad(*p4d))) 781 return no_page_table(vma, flags); 782 783 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 784 page = follow_huge_pd(vma, address, 785 __hugepd(p4d_val(*p4d)), flags, 786 P4D_SHIFT); 787 if (page) 788 return page; 789 return no_page_table(vma, flags); 790 } 791 return follow_pud_mask(vma, address, p4d, flags, ctx); 792 } 793 794 /** 795 * follow_page_mask - look up a page descriptor from a user-virtual address 796 * @vma: vm_area_struct mapping @address 797 * @address: virtual address to look up 798 * @flags: flags modifying lookup behaviour 799 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 800 * pointer to output page_mask 801 * 802 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 803 * 804 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 805 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 806 * 807 * On output, the @ctx->page_mask is set according to the size of the page. 808 * 809 * Return: the mapped (struct page *), %NULL if no mapping exists, or 810 * an error pointer if there is a mapping to something not represented 811 * by a page descriptor (see also vm_normal_page()). 812 */ 813 static struct page *follow_page_mask(struct vm_area_struct *vma, 814 unsigned long address, unsigned int flags, 815 struct follow_page_context *ctx) 816 { 817 pgd_t *pgd; 818 struct page *page; 819 struct mm_struct *mm = vma->vm_mm; 820 821 ctx->page_mask = 0; 822 823 /* make this handle hugepd */ 824 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 825 if (!IS_ERR(page)) { 826 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 827 return page; 828 } 829 830 pgd = pgd_offset(mm, address); 831 832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 833 return no_page_table(vma, flags); 834 835 if (pgd_huge(*pgd)) { 836 page = follow_huge_pgd(mm, address, pgd, flags); 837 if (page) 838 return page; 839 return no_page_table(vma, flags); 840 } 841 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 842 page = follow_huge_pd(vma, address, 843 __hugepd(pgd_val(*pgd)), flags, 844 PGDIR_SHIFT); 845 if (page) 846 return page; 847 return no_page_table(vma, flags); 848 } 849 850 return follow_p4d_mask(vma, address, pgd, flags, ctx); 851 } 852 853 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 854 unsigned int foll_flags) 855 { 856 struct follow_page_context ctx = { NULL }; 857 struct page *page; 858 859 if (vma_is_secretmem(vma)) 860 return NULL; 861 862 page = follow_page_mask(vma, address, foll_flags, &ctx); 863 if (ctx.pgmap) 864 put_dev_pagemap(ctx.pgmap); 865 return page; 866 } 867 868 static int get_gate_page(struct mm_struct *mm, unsigned long address, 869 unsigned int gup_flags, struct vm_area_struct **vma, 870 struct page **page) 871 { 872 pgd_t *pgd; 873 p4d_t *p4d; 874 pud_t *pud; 875 pmd_t *pmd; 876 pte_t *pte; 877 int ret = -EFAULT; 878 879 /* user gate pages are read-only */ 880 if (gup_flags & FOLL_WRITE) 881 return -EFAULT; 882 if (address > TASK_SIZE) 883 pgd = pgd_offset_k(address); 884 else 885 pgd = pgd_offset_gate(mm, address); 886 if (pgd_none(*pgd)) 887 return -EFAULT; 888 p4d = p4d_offset(pgd, address); 889 if (p4d_none(*p4d)) 890 return -EFAULT; 891 pud = pud_offset(p4d, address); 892 if (pud_none(*pud)) 893 return -EFAULT; 894 pmd = pmd_offset(pud, address); 895 if (!pmd_present(*pmd)) 896 return -EFAULT; 897 VM_BUG_ON(pmd_trans_huge(*pmd)); 898 pte = pte_offset_map(pmd, address); 899 if (pte_none(*pte)) 900 goto unmap; 901 *vma = get_gate_vma(mm); 902 if (!page) 903 goto out; 904 *page = vm_normal_page(*vma, address, *pte); 905 if (!*page) { 906 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 907 goto unmap; 908 *page = pte_page(*pte); 909 } 910 if (unlikely(!try_grab_page(*page, gup_flags))) { 911 ret = -ENOMEM; 912 goto unmap; 913 } 914 out: 915 ret = 0; 916 unmap: 917 pte_unmap(pte); 918 return ret; 919 } 920 921 /* 922 * mmap_lock must be held on entry. If @locked != NULL and *@flags 923 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 924 * is, *@locked will be set to 0 and -EBUSY returned. 925 */ 926 static int faultin_page(struct vm_area_struct *vma, 927 unsigned long address, unsigned int *flags, int *locked) 928 { 929 unsigned int fault_flags = 0; 930 vm_fault_t ret; 931 932 /* mlock all present pages, but do not fault in new pages */ 933 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 934 return -ENOENT; 935 if (*flags & FOLL_WRITE) 936 fault_flags |= FAULT_FLAG_WRITE; 937 if (*flags & FOLL_REMOTE) 938 fault_flags |= FAULT_FLAG_REMOTE; 939 if (locked) 940 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 941 if (*flags & FOLL_NOWAIT) 942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 943 if (*flags & FOLL_TRIED) { 944 /* 945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 946 * can co-exist 947 */ 948 fault_flags |= FAULT_FLAG_TRIED; 949 } 950 951 ret = handle_mm_fault(vma, address, fault_flags, NULL); 952 if (ret & VM_FAULT_ERROR) { 953 int err = vm_fault_to_errno(ret, *flags); 954 955 if (err) 956 return err; 957 BUG(); 958 } 959 960 if (ret & VM_FAULT_RETRY) { 961 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 962 *locked = 0; 963 return -EBUSY; 964 } 965 966 /* 967 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 968 * necessary, even if maybe_mkwrite decided not to set pte_write. We 969 * can thus safely do subsequent page lookups as if they were reads. 970 * But only do so when looping for pte_write is futile: in some cases 971 * userspace may also be wanting to write to the gotten user page, 972 * which a read fault here might prevent (a readonly page might get 973 * reCOWed by userspace write). 974 */ 975 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 976 *flags |= FOLL_COW; 977 return 0; 978 } 979 980 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 981 { 982 vm_flags_t vm_flags = vma->vm_flags; 983 int write = (gup_flags & FOLL_WRITE); 984 int foreign = (gup_flags & FOLL_REMOTE); 985 986 if (vm_flags & (VM_IO | VM_PFNMAP)) 987 return -EFAULT; 988 989 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 990 return -EFAULT; 991 992 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 993 return -EOPNOTSUPP; 994 995 if (vma_is_secretmem(vma)) 996 return -EFAULT; 997 998 if (write) { 999 if (!(vm_flags & VM_WRITE)) { 1000 if (!(gup_flags & FOLL_FORCE)) 1001 return -EFAULT; 1002 /* 1003 * We used to let the write,force case do COW in a 1004 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1005 * set a breakpoint in a read-only mapping of an 1006 * executable, without corrupting the file (yet only 1007 * when that file had been opened for writing!). 1008 * Anon pages in shared mappings are surprising: now 1009 * just reject it. 1010 */ 1011 if (!is_cow_mapping(vm_flags)) 1012 return -EFAULT; 1013 } 1014 } else if (!(vm_flags & VM_READ)) { 1015 if (!(gup_flags & FOLL_FORCE)) 1016 return -EFAULT; 1017 /* 1018 * Is there actually any vma we can reach here which does not 1019 * have VM_MAYREAD set? 1020 */ 1021 if (!(vm_flags & VM_MAYREAD)) 1022 return -EFAULT; 1023 } 1024 /* 1025 * gups are always data accesses, not instruction 1026 * fetches, so execute=false here 1027 */ 1028 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1029 return -EFAULT; 1030 return 0; 1031 } 1032 1033 /** 1034 * __get_user_pages() - pin user pages in memory 1035 * @mm: mm_struct of target mm 1036 * @start: starting user address 1037 * @nr_pages: number of pages from start to pin 1038 * @gup_flags: flags modifying pin behaviour 1039 * @pages: array that receives pointers to the pages pinned. 1040 * Should be at least nr_pages long. Or NULL, if caller 1041 * only intends to ensure the pages are faulted in. 1042 * @vmas: array of pointers to vmas corresponding to each page. 1043 * Or NULL if the caller does not require them. 1044 * @locked: whether we're still with the mmap_lock held 1045 * 1046 * Returns either number of pages pinned (which may be less than the 1047 * number requested), or an error. Details about the return value: 1048 * 1049 * -- If nr_pages is 0, returns 0. 1050 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1051 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1052 * pages pinned. Again, this may be less than nr_pages. 1053 * -- 0 return value is possible when the fault would need to be retried. 1054 * 1055 * The caller is responsible for releasing returned @pages, via put_page(). 1056 * 1057 * @vmas are valid only as long as mmap_lock is held. 1058 * 1059 * Must be called with mmap_lock held. It may be released. See below. 1060 * 1061 * __get_user_pages walks a process's page tables and takes a reference to 1062 * each struct page that each user address corresponds to at a given 1063 * instant. That is, it takes the page that would be accessed if a user 1064 * thread accesses the given user virtual address at that instant. 1065 * 1066 * This does not guarantee that the page exists in the user mappings when 1067 * __get_user_pages returns, and there may even be a completely different 1068 * page there in some cases (eg. if mmapped pagecache has been invalidated 1069 * and subsequently re faulted). However it does guarantee that the page 1070 * won't be freed completely. And mostly callers simply care that the page 1071 * contains data that was valid *at some point in time*. Typically, an IO 1072 * or similar operation cannot guarantee anything stronger anyway because 1073 * locks can't be held over the syscall boundary. 1074 * 1075 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1076 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1077 * appropriate) must be called after the page is finished with, and 1078 * before put_page is called. 1079 * 1080 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1081 * released by an up_read(). That can happen if @gup_flags does not 1082 * have FOLL_NOWAIT. 1083 * 1084 * A caller using such a combination of @locked and @gup_flags 1085 * must therefore hold the mmap_lock for reading only, and recognize 1086 * when it's been released. Otherwise, it must be held for either 1087 * reading or writing and will not be released. 1088 * 1089 * In most cases, get_user_pages or get_user_pages_fast should be used 1090 * instead of __get_user_pages. __get_user_pages should be used only if 1091 * you need some special @gup_flags. 1092 */ 1093 static long __get_user_pages(struct mm_struct *mm, 1094 unsigned long start, unsigned long nr_pages, 1095 unsigned int gup_flags, struct page **pages, 1096 struct vm_area_struct **vmas, int *locked) 1097 { 1098 long ret = 0, i = 0; 1099 struct vm_area_struct *vma = NULL; 1100 struct follow_page_context ctx = { NULL }; 1101 1102 if (!nr_pages) 1103 return 0; 1104 1105 start = untagged_addr(start); 1106 1107 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1108 1109 /* 1110 * If FOLL_FORCE is set then do not force a full fault as the hinting 1111 * fault information is unrelated to the reference behaviour of a task 1112 * using the address space 1113 */ 1114 if (!(gup_flags & FOLL_FORCE)) 1115 gup_flags |= FOLL_NUMA; 1116 1117 do { 1118 struct page *page; 1119 unsigned int foll_flags = gup_flags; 1120 unsigned int page_increm; 1121 1122 /* first iteration or cross vma bound */ 1123 if (!vma || start >= vma->vm_end) { 1124 vma = find_extend_vma(mm, start); 1125 if (!vma && in_gate_area(mm, start)) { 1126 ret = get_gate_page(mm, start & PAGE_MASK, 1127 gup_flags, &vma, 1128 pages ? &pages[i] : NULL); 1129 if (ret) 1130 goto out; 1131 ctx.page_mask = 0; 1132 goto next_page; 1133 } 1134 1135 if (!vma) { 1136 ret = -EFAULT; 1137 goto out; 1138 } 1139 ret = check_vma_flags(vma, gup_flags); 1140 if (ret) 1141 goto out; 1142 1143 if (is_vm_hugetlb_page(vma)) { 1144 i = follow_hugetlb_page(mm, vma, pages, vmas, 1145 &start, &nr_pages, i, 1146 gup_flags, locked); 1147 if (locked && *locked == 0) { 1148 /* 1149 * We've got a VM_FAULT_RETRY 1150 * and we've lost mmap_lock. 1151 * We must stop here. 1152 */ 1153 BUG_ON(gup_flags & FOLL_NOWAIT); 1154 BUG_ON(ret != 0); 1155 goto out; 1156 } 1157 continue; 1158 } 1159 } 1160 retry: 1161 /* 1162 * If we have a pending SIGKILL, don't keep faulting pages and 1163 * potentially allocating memory. 1164 */ 1165 if (fatal_signal_pending(current)) { 1166 ret = -EINTR; 1167 goto out; 1168 } 1169 cond_resched(); 1170 1171 page = follow_page_mask(vma, start, foll_flags, &ctx); 1172 if (!page) { 1173 ret = faultin_page(vma, start, &foll_flags, locked); 1174 switch (ret) { 1175 case 0: 1176 goto retry; 1177 case -EBUSY: 1178 ret = 0; 1179 fallthrough; 1180 case -EFAULT: 1181 case -ENOMEM: 1182 case -EHWPOISON: 1183 goto out; 1184 case -ENOENT: 1185 goto next_page; 1186 } 1187 BUG(); 1188 } else if (PTR_ERR(page) == -EEXIST) { 1189 /* 1190 * Proper page table entry exists, but no corresponding 1191 * struct page. 1192 */ 1193 goto next_page; 1194 } else if (IS_ERR(page)) { 1195 ret = PTR_ERR(page); 1196 goto out; 1197 } 1198 if (pages) { 1199 pages[i] = page; 1200 flush_anon_page(vma, page, start); 1201 flush_dcache_page(page); 1202 ctx.page_mask = 0; 1203 } 1204 next_page: 1205 if (vmas) { 1206 vmas[i] = vma; 1207 ctx.page_mask = 0; 1208 } 1209 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1210 if (page_increm > nr_pages) 1211 page_increm = nr_pages; 1212 i += page_increm; 1213 start += page_increm * PAGE_SIZE; 1214 nr_pages -= page_increm; 1215 } while (nr_pages); 1216 out: 1217 if (ctx.pgmap) 1218 put_dev_pagemap(ctx.pgmap); 1219 return i ? i : ret; 1220 } 1221 1222 static bool vma_permits_fault(struct vm_area_struct *vma, 1223 unsigned int fault_flags) 1224 { 1225 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1226 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1227 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1228 1229 if (!(vm_flags & vma->vm_flags)) 1230 return false; 1231 1232 /* 1233 * The architecture might have a hardware protection 1234 * mechanism other than read/write that can deny access. 1235 * 1236 * gup always represents data access, not instruction 1237 * fetches, so execute=false here: 1238 */ 1239 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1240 return false; 1241 1242 return true; 1243 } 1244 1245 /** 1246 * fixup_user_fault() - manually resolve a user page fault 1247 * @mm: mm_struct of target mm 1248 * @address: user address 1249 * @fault_flags:flags to pass down to handle_mm_fault() 1250 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1251 * does not allow retry. If NULL, the caller must guarantee 1252 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1253 * 1254 * This is meant to be called in the specific scenario where for locking reasons 1255 * we try to access user memory in atomic context (within a pagefault_disable() 1256 * section), this returns -EFAULT, and we want to resolve the user fault before 1257 * trying again. 1258 * 1259 * Typically this is meant to be used by the futex code. 1260 * 1261 * The main difference with get_user_pages() is that this function will 1262 * unconditionally call handle_mm_fault() which will in turn perform all the 1263 * necessary SW fixup of the dirty and young bits in the PTE, while 1264 * get_user_pages() only guarantees to update these in the struct page. 1265 * 1266 * This is important for some architectures where those bits also gate the 1267 * access permission to the page because they are maintained in software. On 1268 * such architectures, gup() will not be enough to make a subsequent access 1269 * succeed. 1270 * 1271 * This function will not return with an unlocked mmap_lock. So it has not the 1272 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1273 */ 1274 int fixup_user_fault(struct mm_struct *mm, 1275 unsigned long address, unsigned int fault_flags, 1276 bool *unlocked) 1277 { 1278 struct vm_area_struct *vma; 1279 vm_fault_t ret, major = 0; 1280 1281 address = untagged_addr(address); 1282 1283 if (unlocked) 1284 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1285 1286 retry: 1287 vma = find_extend_vma(mm, address); 1288 if (!vma || address < vma->vm_start) 1289 return -EFAULT; 1290 1291 if (!vma_permits_fault(vma, fault_flags)) 1292 return -EFAULT; 1293 1294 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1295 fatal_signal_pending(current)) 1296 return -EINTR; 1297 1298 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1299 major |= ret & VM_FAULT_MAJOR; 1300 if (ret & VM_FAULT_ERROR) { 1301 int err = vm_fault_to_errno(ret, 0); 1302 1303 if (err) 1304 return err; 1305 BUG(); 1306 } 1307 1308 if (ret & VM_FAULT_RETRY) { 1309 mmap_read_lock(mm); 1310 *unlocked = true; 1311 fault_flags |= FAULT_FLAG_TRIED; 1312 goto retry; 1313 } 1314 1315 return 0; 1316 } 1317 EXPORT_SYMBOL_GPL(fixup_user_fault); 1318 1319 /* 1320 * Please note that this function, unlike __get_user_pages will not 1321 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1322 */ 1323 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1324 unsigned long start, 1325 unsigned long nr_pages, 1326 struct page **pages, 1327 struct vm_area_struct **vmas, 1328 int *locked, 1329 unsigned int flags) 1330 { 1331 long ret, pages_done; 1332 bool lock_dropped; 1333 1334 if (locked) { 1335 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1336 BUG_ON(vmas); 1337 /* check caller initialized locked */ 1338 BUG_ON(*locked != 1); 1339 } 1340 1341 if (flags & FOLL_PIN) 1342 mm_set_has_pinned_flag(&mm->flags); 1343 1344 /* 1345 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1346 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1347 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1348 * for FOLL_GET, not for the newer FOLL_PIN. 1349 * 1350 * FOLL_PIN always expects pages to be non-null, but no need to assert 1351 * that here, as any failures will be obvious enough. 1352 */ 1353 if (pages && !(flags & FOLL_PIN)) 1354 flags |= FOLL_GET; 1355 1356 pages_done = 0; 1357 lock_dropped = false; 1358 for (;;) { 1359 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1360 vmas, locked); 1361 if (!locked) 1362 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1363 return ret; 1364 1365 /* VM_FAULT_RETRY cannot return errors */ 1366 if (!*locked) { 1367 BUG_ON(ret < 0); 1368 BUG_ON(ret >= nr_pages); 1369 } 1370 1371 if (ret > 0) { 1372 nr_pages -= ret; 1373 pages_done += ret; 1374 if (!nr_pages) 1375 break; 1376 } 1377 if (*locked) { 1378 /* 1379 * VM_FAULT_RETRY didn't trigger or it was a 1380 * FOLL_NOWAIT. 1381 */ 1382 if (!pages_done) 1383 pages_done = ret; 1384 break; 1385 } 1386 /* 1387 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1388 * For the prefault case (!pages) we only update counts. 1389 */ 1390 if (likely(pages)) 1391 pages += ret; 1392 start += ret << PAGE_SHIFT; 1393 lock_dropped = true; 1394 1395 retry: 1396 /* 1397 * Repeat on the address that fired VM_FAULT_RETRY 1398 * with both FAULT_FLAG_ALLOW_RETRY and 1399 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1400 * by fatal signals, so we need to check it before we 1401 * start trying again otherwise it can loop forever. 1402 */ 1403 1404 if (fatal_signal_pending(current)) { 1405 if (!pages_done) 1406 pages_done = -EINTR; 1407 break; 1408 } 1409 1410 ret = mmap_read_lock_killable(mm); 1411 if (ret) { 1412 BUG_ON(ret > 0); 1413 if (!pages_done) 1414 pages_done = ret; 1415 break; 1416 } 1417 1418 *locked = 1; 1419 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1420 pages, NULL, locked); 1421 if (!*locked) { 1422 /* Continue to retry until we succeeded */ 1423 BUG_ON(ret != 0); 1424 goto retry; 1425 } 1426 if (ret != 1) { 1427 BUG_ON(ret > 1); 1428 if (!pages_done) 1429 pages_done = ret; 1430 break; 1431 } 1432 nr_pages--; 1433 pages_done++; 1434 if (!nr_pages) 1435 break; 1436 if (likely(pages)) 1437 pages++; 1438 start += PAGE_SIZE; 1439 } 1440 if (lock_dropped && *locked) { 1441 /* 1442 * We must let the caller know we temporarily dropped the lock 1443 * and so the critical section protected by it was lost. 1444 */ 1445 mmap_read_unlock(mm); 1446 *locked = 0; 1447 } 1448 return pages_done; 1449 } 1450 1451 /** 1452 * populate_vma_page_range() - populate a range of pages in the vma. 1453 * @vma: target vma 1454 * @start: start address 1455 * @end: end address 1456 * @locked: whether the mmap_lock is still held 1457 * 1458 * This takes care of mlocking the pages too if VM_LOCKED is set. 1459 * 1460 * Return either number of pages pinned in the vma, or a negative error 1461 * code on error. 1462 * 1463 * vma->vm_mm->mmap_lock must be held. 1464 * 1465 * If @locked is NULL, it may be held for read or write and will 1466 * be unperturbed. 1467 * 1468 * If @locked is non-NULL, it must held for read only and may be 1469 * released. If it's released, *@locked will be set to 0. 1470 */ 1471 long populate_vma_page_range(struct vm_area_struct *vma, 1472 unsigned long start, unsigned long end, int *locked) 1473 { 1474 struct mm_struct *mm = vma->vm_mm; 1475 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1476 int gup_flags; 1477 1478 VM_BUG_ON(start & ~PAGE_MASK); 1479 VM_BUG_ON(end & ~PAGE_MASK); 1480 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1481 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1482 mmap_assert_locked(mm); 1483 1484 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1485 if (vma->vm_flags & VM_LOCKONFAULT) 1486 gup_flags &= ~FOLL_POPULATE; 1487 /* 1488 * We want to touch writable mappings with a write fault in order 1489 * to break COW, except for shared mappings because these don't COW 1490 * and we would not want to dirty them for nothing. 1491 */ 1492 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1493 gup_flags |= FOLL_WRITE; 1494 1495 /* 1496 * We want mlock to succeed for regions that have any permissions 1497 * other than PROT_NONE. 1498 */ 1499 if (vma_is_accessible(vma)) 1500 gup_flags |= FOLL_FORCE; 1501 1502 /* 1503 * We made sure addr is within a VMA, so the following will 1504 * not result in a stack expansion that recurses back here. 1505 */ 1506 return __get_user_pages(mm, start, nr_pages, gup_flags, 1507 NULL, NULL, locked); 1508 } 1509 1510 /* 1511 * faultin_vma_page_range() - populate (prefault) page tables inside the 1512 * given VMA range readable/writable 1513 * 1514 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1515 * 1516 * @vma: target vma 1517 * @start: start address 1518 * @end: end address 1519 * @write: whether to prefault readable or writable 1520 * @locked: whether the mmap_lock is still held 1521 * 1522 * Returns either number of processed pages in the vma, or a negative error 1523 * code on error (see __get_user_pages()). 1524 * 1525 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1526 * covered by the VMA. 1527 * 1528 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1529 * 1530 * If @locked is non-NULL, it must held for read only and may be released. If 1531 * it's released, *@locked will be set to 0. 1532 */ 1533 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1534 unsigned long end, bool write, int *locked) 1535 { 1536 struct mm_struct *mm = vma->vm_mm; 1537 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1538 int gup_flags; 1539 1540 VM_BUG_ON(!PAGE_ALIGNED(start)); 1541 VM_BUG_ON(!PAGE_ALIGNED(end)); 1542 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1543 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1544 mmap_assert_locked(mm); 1545 1546 /* 1547 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1548 * the page dirty with FOLL_WRITE -- which doesn't make a 1549 * difference with !FOLL_FORCE, because the page is writable 1550 * in the page table. 1551 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1552 * a poisoned page. 1553 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. 1554 * !FOLL_FORCE: Require proper access permissions. 1555 */ 1556 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; 1557 if (write) 1558 gup_flags |= FOLL_WRITE; 1559 1560 /* 1561 * See check_vma_flags(): Will return -EFAULT on incompatible mappings 1562 * or with insufficient permissions. 1563 */ 1564 return __get_user_pages(mm, start, nr_pages, gup_flags, 1565 NULL, NULL, locked); 1566 } 1567 1568 /* 1569 * __mm_populate - populate and/or mlock pages within a range of address space. 1570 * 1571 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1572 * flags. VMAs must be already marked with the desired vm_flags, and 1573 * mmap_lock must not be held. 1574 */ 1575 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1576 { 1577 struct mm_struct *mm = current->mm; 1578 unsigned long end, nstart, nend; 1579 struct vm_area_struct *vma = NULL; 1580 int locked = 0; 1581 long ret = 0; 1582 1583 end = start + len; 1584 1585 for (nstart = start; nstart < end; nstart = nend) { 1586 /* 1587 * We want to fault in pages for [nstart; end) address range. 1588 * Find first corresponding VMA. 1589 */ 1590 if (!locked) { 1591 locked = 1; 1592 mmap_read_lock(mm); 1593 vma = find_vma(mm, nstart); 1594 } else if (nstart >= vma->vm_end) 1595 vma = vma->vm_next; 1596 if (!vma || vma->vm_start >= end) 1597 break; 1598 /* 1599 * Set [nstart; nend) to intersection of desired address 1600 * range with the first VMA. Also, skip undesirable VMA types. 1601 */ 1602 nend = min(end, vma->vm_end); 1603 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1604 continue; 1605 if (nstart < vma->vm_start) 1606 nstart = vma->vm_start; 1607 /* 1608 * Now fault in a range of pages. populate_vma_page_range() 1609 * double checks the vma flags, so that it won't mlock pages 1610 * if the vma was already munlocked. 1611 */ 1612 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1613 if (ret < 0) { 1614 if (ignore_errors) { 1615 ret = 0; 1616 continue; /* continue at next VMA */ 1617 } 1618 break; 1619 } 1620 nend = nstart + ret * PAGE_SIZE; 1621 ret = 0; 1622 } 1623 if (locked) 1624 mmap_read_unlock(mm); 1625 return ret; /* 0 or negative error code */ 1626 } 1627 #else /* CONFIG_MMU */ 1628 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1629 unsigned long nr_pages, struct page **pages, 1630 struct vm_area_struct **vmas, int *locked, 1631 unsigned int foll_flags) 1632 { 1633 struct vm_area_struct *vma; 1634 unsigned long vm_flags; 1635 long i; 1636 1637 /* calculate required read or write permissions. 1638 * If FOLL_FORCE is set, we only require the "MAY" flags. 1639 */ 1640 vm_flags = (foll_flags & FOLL_WRITE) ? 1641 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1642 vm_flags &= (foll_flags & FOLL_FORCE) ? 1643 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1644 1645 for (i = 0; i < nr_pages; i++) { 1646 vma = find_vma(mm, start); 1647 if (!vma) 1648 goto finish_or_fault; 1649 1650 /* protect what we can, including chardevs */ 1651 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1652 !(vm_flags & vma->vm_flags)) 1653 goto finish_or_fault; 1654 1655 if (pages) { 1656 pages[i] = virt_to_page(start); 1657 if (pages[i]) 1658 get_page(pages[i]); 1659 } 1660 if (vmas) 1661 vmas[i] = vma; 1662 start = (start + PAGE_SIZE) & PAGE_MASK; 1663 } 1664 1665 return i; 1666 1667 finish_or_fault: 1668 return i ? : -EFAULT; 1669 } 1670 #endif /* !CONFIG_MMU */ 1671 1672 /** 1673 * get_dump_page() - pin user page in memory while writing it to core dump 1674 * @addr: user address 1675 * 1676 * Returns struct page pointer of user page pinned for dump, 1677 * to be freed afterwards by put_page(). 1678 * 1679 * Returns NULL on any kind of failure - a hole must then be inserted into 1680 * the corefile, to preserve alignment with its headers; and also returns 1681 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1682 * allowing a hole to be left in the corefile to save disk space. 1683 * 1684 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1685 */ 1686 #ifdef CONFIG_ELF_CORE 1687 struct page *get_dump_page(unsigned long addr) 1688 { 1689 struct mm_struct *mm = current->mm; 1690 struct page *page; 1691 int locked = 1; 1692 int ret; 1693 1694 if (mmap_read_lock_killable(mm)) 1695 return NULL; 1696 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1697 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1698 if (locked) 1699 mmap_read_unlock(mm); 1700 return (ret == 1) ? page : NULL; 1701 } 1702 #endif /* CONFIG_ELF_CORE */ 1703 1704 #ifdef CONFIG_MIGRATION 1705 /* 1706 * Check whether all pages are pinnable, if so return number of pages. If some 1707 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1708 * pages were migrated, or if some pages were not successfully isolated. 1709 * Return negative error if migration fails. 1710 */ 1711 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1712 struct page **pages, 1713 unsigned int gup_flags) 1714 { 1715 unsigned long i; 1716 unsigned long isolation_error_count = 0; 1717 bool drain_allow = true; 1718 LIST_HEAD(movable_page_list); 1719 long ret = 0; 1720 struct page *prev_head = NULL; 1721 struct page *head; 1722 struct migration_target_control mtc = { 1723 .nid = NUMA_NO_NODE, 1724 .gfp_mask = GFP_USER | __GFP_NOWARN, 1725 }; 1726 1727 for (i = 0; i < nr_pages; i++) { 1728 head = compound_head(pages[i]); 1729 if (head == prev_head) 1730 continue; 1731 prev_head = head; 1732 /* 1733 * If we get a movable page, since we are going to be pinning 1734 * these entries, try to move them out if possible. 1735 */ 1736 if (!is_pinnable_page(head)) { 1737 if (PageHuge(head)) { 1738 if (!isolate_huge_page(head, &movable_page_list)) 1739 isolation_error_count++; 1740 } else { 1741 if (!PageLRU(head) && drain_allow) { 1742 lru_add_drain_all(); 1743 drain_allow = false; 1744 } 1745 1746 if (isolate_lru_page(head)) { 1747 isolation_error_count++; 1748 continue; 1749 } 1750 list_add_tail(&head->lru, &movable_page_list); 1751 mod_node_page_state(page_pgdat(head), 1752 NR_ISOLATED_ANON + 1753 page_is_file_lru(head), 1754 thp_nr_pages(head)); 1755 } 1756 } 1757 } 1758 1759 /* 1760 * If list is empty, and no isolation errors, means that all pages are 1761 * in the correct zone. 1762 */ 1763 if (list_empty(&movable_page_list) && !isolation_error_count) 1764 return nr_pages; 1765 1766 if (gup_flags & FOLL_PIN) { 1767 unpin_user_pages(pages, nr_pages); 1768 } else { 1769 for (i = 0; i < nr_pages; i++) 1770 put_page(pages[i]); 1771 } 1772 if (!list_empty(&movable_page_list)) { 1773 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1774 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1775 MR_LONGTERM_PIN); 1776 if (ret && !list_empty(&movable_page_list)) 1777 putback_movable_pages(&movable_page_list); 1778 } 1779 1780 return ret > 0 ? -ENOMEM : ret; 1781 } 1782 #else 1783 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1784 struct page **pages, 1785 unsigned int gup_flags) 1786 { 1787 return nr_pages; 1788 } 1789 #endif /* CONFIG_MIGRATION */ 1790 1791 /* 1792 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1793 * allows us to process the FOLL_LONGTERM flag. 1794 */ 1795 static long __gup_longterm_locked(struct mm_struct *mm, 1796 unsigned long start, 1797 unsigned long nr_pages, 1798 struct page **pages, 1799 struct vm_area_struct **vmas, 1800 unsigned int gup_flags) 1801 { 1802 unsigned int flags; 1803 long rc; 1804 1805 if (!(gup_flags & FOLL_LONGTERM)) 1806 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1807 NULL, gup_flags); 1808 flags = memalloc_pin_save(); 1809 do { 1810 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1811 NULL, gup_flags); 1812 if (rc <= 0) 1813 break; 1814 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1815 } while (!rc); 1816 memalloc_pin_restore(flags); 1817 1818 return rc; 1819 } 1820 1821 static bool is_valid_gup_flags(unsigned int gup_flags) 1822 { 1823 /* 1824 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1825 * never directly by the caller, so enforce that with an assertion: 1826 */ 1827 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1828 return false; 1829 /* 1830 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1831 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1832 * FOLL_PIN. 1833 */ 1834 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1835 return false; 1836 1837 return true; 1838 } 1839 1840 #ifdef CONFIG_MMU 1841 static long __get_user_pages_remote(struct mm_struct *mm, 1842 unsigned long start, unsigned long nr_pages, 1843 unsigned int gup_flags, struct page **pages, 1844 struct vm_area_struct **vmas, int *locked) 1845 { 1846 /* 1847 * Parts of FOLL_LONGTERM behavior are incompatible with 1848 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1849 * vmas. However, this only comes up if locked is set, and there are 1850 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1851 * allow what we can. 1852 */ 1853 if (gup_flags & FOLL_LONGTERM) { 1854 if (WARN_ON_ONCE(locked)) 1855 return -EINVAL; 1856 /* 1857 * This will check the vmas (even if our vmas arg is NULL) 1858 * and return -ENOTSUPP if DAX isn't allowed in this case: 1859 */ 1860 return __gup_longterm_locked(mm, start, nr_pages, pages, 1861 vmas, gup_flags | FOLL_TOUCH | 1862 FOLL_REMOTE); 1863 } 1864 1865 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1866 locked, 1867 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1868 } 1869 1870 /** 1871 * get_user_pages_remote() - pin user pages in memory 1872 * @mm: mm_struct of target mm 1873 * @start: starting user address 1874 * @nr_pages: number of pages from start to pin 1875 * @gup_flags: flags modifying lookup behaviour 1876 * @pages: array that receives pointers to the pages pinned. 1877 * Should be at least nr_pages long. Or NULL, if caller 1878 * only intends to ensure the pages are faulted in. 1879 * @vmas: array of pointers to vmas corresponding to each page. 1880 * Or NULL if the caller does not require them. 1881 * @locked: pointer to lock flag indicating whether lock is held and 1882 * subsequently whether VM_FAULT_RETRY functionality can be 1883 * utilised. Lock must initially be held. 1884 * 1885 * Returns either number of pages pinned (which may be less than the 1886 * number requested), or an error. Details about the return value: 1887 * 1888 * -- If nr_pages is 0, returns 0. 1889 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1890 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1891 * pages pinned. Again, this may be less than nr_pages. 1892 * 1893 * The caller is responsible for releasing returned @pages, via put_page(). 1894 * 1895 * @vmas are valid only as long as mmap_lock is held. 1896 * 1897 * Must be called with mmap_lock held for read or write. 1898 * 1899 * get_user_pages_remote walks a process's page tables and takes a reference 1900 * to each struct page that each user address corresponds to at a given 1901 * instant. That is, it takes the page that would be accessed if a user 1902 * thread accesses the given user virtual address at that instant. 1903 * 1904 * This does not guarantee that the page exists in the user mappings when 1905 * get_user_pages_remote returns, and there may even be a completely different 1906 * page there in some cases (eg. if mmapped pagecache has been invalidated 1907 * and subsequently re faulted). However it does guarantee that the page 1908 * won't be freed completely. And mostly callers simply care that the page 1909 * contains data that was valid *at some point in time*. Typically, an IO 1910 * or similar operation cannot guarantee anything stronger anyway because 1911 * locks can't be held over the syscall boundary. 1912 * 1913 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1914 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1915 * be called after the page is finished with, and before put_page is called. 1916 * 1917 * get_user_pages_remote is typically used for fewer-copy IO operations, 1918 * to get a handle on the memory by some means other than accesses 1919 * via the user virtual addresses. The pages may be submitted for 1920 * DMA to devices or accessed via their kernel linear mapping (via the 1921 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1922 * 1923 * See also get_user_pages_fast, for performance critical applications. 1924 * 1925 * get_user_pages_remote should be phased out in favor of 1926 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1927 * should use get_user_pages_remote because it cannot pass 1928 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1929 */ 1930 long get_user_pages_remote(struct mm_struct *mm, 1931 unsigned long start, unsigned long nr_pages, 1932 unsigned int gup_flags, struct page **pages, 1933 struct vm_area_struct **vmas, int *locked) 1934 { 1935 if (!is_valid_gup_flags(gup_flags)) 1936 return -EINVAL; 1937 1938 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1939 pages, vmas, locked); 1940 } 1941 EXPORT_SYMBOL(get_user_pages_remote); 1942 1943 #else /* CONFIG_MMU */ 1944 long get_user_pages_remote(struct mm_struct *mm, 1945 unsigned long start, unsigned long nr_pages, 1946 unsigned int gup_flags, struct page **pages, 1947 struct vm_area_struct **vmas, int *locked) 1948 { 1949 return 0; 1950 } 1951 1952 static long __get_user_pages_remote(struct mm_struct *mm, 1953 unsigned long start, unsigned long nr_pages, 1954 unsigned int gup_flags, struct page **pages, 1955 struct vm_area_struct **vmas, int *locked) 1956 { 1957 return 0; 1958 } 1959 #endif /* !CONFIG_MMU */ 1960 1961 /** 1962 * get_user_pages() - pin user pages in memory 1963 * @start: starting user address 1964 * @nr_pages: number of pages from start to pin 1965 * @gup_flags: flags modifying lookup behaviour 1966 * @pages: array that receives pointers to the pages pinned. 1967 * Should be at least nr_pages long. Or NULL, if caller 1968 * only intends to ensure the pages are faulted in. 1969 * @vmas: array of pointers to vmas corresponding to each page. 1970 * Or NULL if the caller does not require them. 1971 * 1972 * This is the same as get_user_pages_remote(), just with a less-flexible 1973 * calling convention where we assume that the mm being operated on belongs to 1974 * the current task, and doesn't allow passing of a locked parameter. We also 1975 * obviously don't pass FOLL_REMOTE in here. 1976 */ 1977 long get_user_pages(unsigned long start, unsigned long nr_pages, 1978 unsigned int gup_flags, struct page **pages, 1979 struct vm_area_struct **vmas) 1980 { 1981 if (!is_valid_gup_flags(gup_flags)) 1982 return -EINVAL; 1983 1984 return __gup_longterm_locked(current->mm, start, nr_pages, 1985 pages, vmas, gup_flags | FOLL_TOUCH); 1986 } 1987 EXPORT_SYMBOL(get_user_pages); 1988 1989 /** 1990 * get_user_pages_locked() - variant of get_user_pages() 1991 * 1992 * @start: starting user address 1993 * @nr_pages: number of pages from start to pin 1994 * @gup_flags: flags modifying lookup behaviour 1995 * @pages: array that receives pointers to the pages pinned. 1996 * Should be at least nr_pages long. Or NULL, if caller 1997 * only intends to ensure the pages are faulted in. 1998 * @locked: pointer to lock flag indicating whether lock is held and 1999 * subsequently whether VM_FAULT_RETRY functionality can be 2000 * utilised. Lock must initially be held. 2001 * 2002 * It is suitable to replace the form: 2003 * 2004 * mmap_read_lock(mm); 2005 * do_something() 2006 * get_user_pages(mm, ..., pages, NULL); 2007 * mmap_read_unlock(mm); 2008 * 2009 * to: 2010 * 2011 * int locked = 1; 2012 * mmap_read_lock(mm); 2013 * do_something() 2014 * get_user_pages_locked(mm, ..., pages, &locked); 2015 * if (locked) 2016 * mmap_read_unlock(mm); 2017 * 2018 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2019 * paths better by using either get_user_pages_locked() or 2020 * get_user_pages_unlocked(). 2021 * 2022 */ 2023 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2024 unsigned int gup_flags, struct page **pages, 2025 int *locked) 2026 { 2027 /* 2028 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2029 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2030 * vmas. As there are no users of this flag in this call we simply 2031 * disallow this option for now. 2032 */ 2033 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2034 return -EINVAL; 2035 /* 2036 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2037 * never directly by the caller, so enforce that: 2038 */ 2039 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2040 return -EINVAL; 2041 2042 return __get_user_pages_locked(current->mm, start, nr_pages, 2043 pages, NULL, locked, 2044 gup_flags | FOLL_TOUCH); 2045 } 2046 EXPORT_SYMBOL(get_user_pages_locked); 2047 2048 /* 2049 * get_user_pages_unlocked() is suitable to replace the form: 2050 * 2051 * mmap_read_lock(mm); 2052 * get_user_pages(mm, ..., pages, NULL); 2053 * mmap_read_unlock(mm); 2054 * 2055 * with: 2056 * 2057 * get_user_pages_unlocked(mm, ..., pages); 2058 * 2059 * It is functionally equivalent to get_user_pages_fast so 2060 * get_user_pages_fast should be used instead if specific gup_flags 2061 * (e.g. FOLL_FORCE) are not required. 2062 */ 2063 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2064 struct page **pages, unsigned int gup_flags) 2065 { 2066 struct mm_struct *mm = current->mm; 2067 int locked = 1; 2068 long ret; 2069 2070 /* 2071 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2072 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2073 * vmas. As there are no users of this flag in this call we simply 2074 * disallow this option for now. 2075 */ 2076 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2077 return -EINVAL; 2078 2079 mmap_read_lock(mm); 2080 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2081 &locked, gup_flags | FOLL_TOUCH); 2082 if (locked) 2083 mmap_read_unlock(mm); 2084 return ret; 2085 } 2086 EXPORT_SYMBOL(get_user_pages_unlocked); 2087 2088 /* 2089 * Fast GUP 2090 * 2091 * get_user_pages_fast attempts to pin user pages by walking the page 2092 * tables directly and avoids taking locks. Thus the walker needs to be 2093 * protected from page table pages being freed from under it, and should 2094 * block any THP splits. 2095 * 2096 * One way to achieve this is to have the walker disable interrupts, and 2097 * rely on IPIs from the TLB flushing code blocking before the page table 2098 * pages are freed. This is unsuitable for architectures that do not need 2099 * to broadcast an IPI when invalidating TLBs. 2100 * 2101 * Another way to achieve this is to batch up page table containing pages 2102 * belonging to more than one mm_user, then rcu_sched a callback to free those 2103 * pages. Disabling interrupts will allow the fast_gup walker to both block 2104 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2105 * (which is a relatively rare event). The code below adopts this strategy. 2106 * 2107 * Before activating this code, please be aware that the following assumptions 2108 * are currently made: 2109 * 2110 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2111 * free pages containing page tables or TLB flushing requires IPI broadcast. 2112 * 2113 * *) ptes can be read atomically by the architecture. 2114 * 2115 * *) access_ok is sufficient to validate userspace address ranges. 2116 * 2117 * The last two assumptions can be relaxed by the addition of helper functions. 2118 * 2119 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2120 */ 2121 #ifdef CONFIG_HAVE_FAST_GUP 2122 2123 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2124 unsigned int flags, 2125 struct page **pages) 2126 { 2127 while ((*nr) - nr_start) { 2128 struct page *page = pages[--(*nr)]; 2129 2130 ClearPageReferenced(page); 2131 if (flags & FOLL_PIN) 2132 unpin_user_page(page); 2133 else 2134 put_page(page); 2135 } 2136 } 2137 2138 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2139 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2140 unsigned int flags, struct page **pages, int *nr) 2141 { 2142 struct dev_pagemap *pgmap = NULL; 2143 int nr_start = *nr, ret = 0; 2144 pte_t *ptep, *ptem; 2145 2146 ptem = ptep = pte_offset_map(&pmd, addr); 2147 do { 2148 pte_t pte = ptep_get_lockless(ptep); 2149 struct page *head, *page; 2150 2151 /* 2152 * Similar to the PMD case below, NUMA hinting must take slow 2153 * path using the pte_protnone check. 2154 */ 2155 if (pte_protnone(pte)) 2156 goto pte_unmap; 2157 2158 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2159 goto pte_unmap; 2160 2161 if (pte_devmap(pte)) { 2162 if (unlikely(flags & FOLL_LONGTERM)) 2163 goto pte_unmap; 2164 2165 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2166 if (unlikely(!pgmap)) { 2167 undo_dev_pagemap(nr, nr_start, flags, pages); 2168 goto pte_unmap; 2169 } 2170 } else if (pte_special(pte)) 2171 goto pte_unmap; 2172 2173 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2174 page = pte_page(pte); 2175 2176 head = try_grab_compound_head(page, 1, flags); 2177 if (!head) 2178 goto pte_unmap; 2179 2180 if (unlikely(page_is_secretmem(page))) { 2181 put_compound_head(head, 1, flags); 2182 goto pte_unmap; 2183 } 2184 2185 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2186 put_compound_head(head, 1, flags); 2187 goto pte_unmap; 2188 } 2189 2190 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2191 2192 /* 2193 * We need to make the page accessible if and only if we are 2194 * going to access its content (the FOLL_PIN case). Please 2195 * see Documentation/core-api/pin_user_pages.rst for 2196 * details. 2197 */ 2198 if (flags & FOLL_PIN) { 2199 ret = arch_make_page_accessible(page); 2200 if (ret) { 2201 unpin_user_page(page); 2202 goto pte_unmap; 2203 } 2204 } 2205 SetPageReferenced(page); 2206 pages[*nr] = page; 2207 (*nr)++; 2208 2209 } while (ptep++, addr += PAGE_SIZE, addr != end); 2210 2211 ret = 1; 2212 2213 pte_unmap: 2214 if (pgmap) 2215 put_dev_pagemap(pgmap); 2216 pte_unmap(ptem); 2217 return ret; 2218 } 2219 #else 2220 2221 /* 2222 * If we can't determine whether or not a pte is special, then fail immediately 2223 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2224 * to be special. 2225 * 2226 * For a futex to be placed on a THP tail page, get_futex_key requires a 2227 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2228 * useful to have gup_huge_pmd even if we can't operate on ptes. 2229 */ 2230 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2231 unsigned int flags, struct page **pages, int *nr) 2232 { 2233 return 0; 2234 } 2235 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2236 2237 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2238 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2239 unsigned long end, unsigned int flags, 2240 struct page **pages, int *nr) 2241 { 2242 int nr_start = *nr; 2243 struct dev_pagemap *pgmap = NULL; 2244 2245 do { 2246 struct page *page = pfn_to_page(pfn); 2247 2248 pgmap = get_dev_pagemap(pfn, pgmap); 2249 if (unlikely(!pgmap)) { 2250 undo_dev_pagemap(nr, nr_start, flags, pages); 2251 return 0; 2252 } 2253 SetPageReferenced(page); 2254 pages[*nr] = page; 2255 if (unlikely(!try_grab_page(page, flags))) { 2256 undo_dev_pagemap(nr, nr_start, flags, pages); 2257 return 0; 2258 } 2259 (*nr)++; 2260 pfn++; 2261 } while (addr += PAGE_SIZE, addr != end); 2262 2263 if (pgmap) 2264 put_dev_pagemap(pgmap); 2265 return 1; 2266 } 2267 2268 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2269 unsigned long end, unsigned int flags, 2270 struct page **pages, int *nr) 2271 { 2272 unsigned long fault_pfn; 2273 int nr_start = *nr; 2274 2275 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2276 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2277 return 0; 2278 2279 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2280 undo_dev_pagemap(nr, nr_start, flags, pages); 2281 return 0; 2282 } 2283 return 1; 2284 } 2285 2286 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2287 unsigned long end, unsigned int flags, 2288 struct page **pages, int *nr) 2289 { 2290 unsigned long fault_pfn; 2291 int nr_start = *nr; 2292 2293 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2294 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2295 return 0; 2296 2297 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2298 undo_dev_pagemap(nr, nr_start, flags, pages); 2299 return 0; 2300 } 2301 return 1; 2302 } 2303 #else 2304 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2305 unsigned long end, unsigned int flags, 2306 struct page **pages, int *nr) 2307 { 2308 BUILD_BUG(); 2309 return 0; 2310 } 2311 2312 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2313 unsigned long end, unsigned int flags, 2314 struct page **pages, int *nr) 2315 { 2316 BUILD_BUG(); 2317 return 0; 2318 } 2319 #endif 2320 2321 static int record_subpages(struct page *page, unsigned long addr, 2322 unsigned long end, struct page **pages) 2323 { 2324 int nr; 2325 2326 for (nr = 0; addr != end; addr += PAGE_SIZE) 2327 pages[nr++] = page++; 2328 2329 return nr; 2330 } 2331 2332 #ifdef CONFIG_ARCH_HAS_HUGEPD 2333 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2334 unsigned long sz) 2335 { 2336 unsigned long __boundary = (addr + sz) & ~(sz-1); 2337 return (__boundary - 1 < end - 1) ? __boundary : end; 2338 } 2339 2340 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2341 unsigned long end, unsigned int flags, 2342 struct page **pages, int *nr) 2343 { 2344 unsigned long pte_end; 2345 struct page *head, *page; 2346 pte_t pte; 2347 int refs; 2348 2349 pte_end = (addr + sz) & ~(sz-1); 2350 if (pte_end < end) 2351 end = pte_end; 2352 2353 pte = huge_ptep_get(ptep); 2354 2355 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2356 return 0; 2357 2358 /* hugepages are never "special" */ 2359 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2360 2361 head = pte_page(pte); 2362 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2363 refs = record_subpages(page, addr, end, pages + *nr); 2364 2365 head = try_grab_compound_head(head, refs, flags); 2366 if (!head) 2367 return 0; 2368 2369 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2370 put_compound_head(head, refs, flags); 2371 return 0; 2372 } 2373 2374 *nr += refs; 2375 SetPageReferenced(head); 2376 return 1; 2377 } 2378 2379 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2380 unsigned int pdshift, unsigned long end, unsigned int flags, 2381 struct page **pages, int *nr) 2382 { 2383 pte_t *ptep; 2384 unsigned long sz = 1UL << hugepd_shift(hugepd); 2385 unsigned long next; 2386 2387 ptep = hugepte_offset(hugepd, addr, pdshift); 2388 do { 2389 next = hugepte_addr_end(addr, end, sz); 2390 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2391 return 0; 2392 } while (ptep++, addr = next, addr != end); 2393 2394 return 1; 2395 } 2396 #else 2397 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2398 unsigned int pdshift, unsigned long end, unsigned int flags, 2399 struct page **pages, int *nr) 2400 { 2401 return 0; 2402 } 2403 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2404 2405 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2406 unsigned long end, unsigned int flags, 2407 struct page **pages, int *nr) 2408 { 2409 struct page *head, *page; 2410 int refs; 2411 2412 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2413 return 0; 2414 2415 if (pmd_devmap(orig)) { 2416 if (unlikely(flags & FOLL_LONGTERM)) 2417 return 0; 2418 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2419 pages, nr); 2420 } 2421 2422 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2423 refs = record_subpages(page, addr, end, pages + *nr); 2424 2425 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2426 if (!head) 2427 return 0; 2428 2429 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2430 put_compound_head(head, refs, flags); 2431 return 0; 2432 } 2433 2434 *nr += refs; 2435 SetPageReferenced(head); 2436 return 1; 2437 } 2438 2439 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2440 unsigned long end, unsigned int flags, 2441 struct page **pages, int *nr) 2442 { 2443 struct page *head, *page; 2444 int refs; 2445 2446 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2447 return 0; 2448 2449 if (pud_devmap(orig)) { 2450 if (unlikely(flags & FOLL_LONGTERM)) 2451 return 0; 2452 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2453 pages, nr); 2454 } 2455 2456 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2457 refs = record_subpages(page, addr, end, pages + *nr); 2458 2459 head = try_grab_compound_head(pud_page(orig), refs, flags); 2460 if (!head) 2461 return 0; 2462 2463 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2464 put_compound_head(head, refs, flags); 2465 return 0; 2466 } 2467 2468 *nr += refs; 2469 SetPageReferenced(head); 2470 return 1; 2471 } 2472 2473 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2474 unsigned long end, unsigned int flags, 2475 struct page **pages, int *nr) 2476 { 2477 int refs; 2478 struct page *head, *page; 2479 2480 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2481 return 0; 2482 2483 BUILD_BUG_ON(pgd_devmap(orig)); 2484 2485 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2486 refs = record_subpages(page, addr, end, pages + *nr); 2487 2488 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2489 if (!head) 2490 return 0; 2491 2492 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2493 put_compound_head(head, refs, flags); 2494 return 0; 2495 } 2496 2497 *nr += refs; 2498 SetPageReferenced(head); 2499 return 1; 2500 } 2501 2502 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2503 unsigned int flags, struct page **pages, int *nr) 2504 { 2505 unsigned long next; 2506 pmd_t *pmdp; 2507 2508 pmdp = pmd_offset_lockless(pudp, pud, addr); 2509 do { 2510 pmd_t pmd = READ_ONCE(*pmdp); 2511 2512 next = pmd_addr_end(addr, end); 2513 if (!pmd_present(pmd)) 2514 return 0; 2515 2516 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2517 pmd_devmap(pmd))) { 2518 /* 2519 * NUMA hinting faults need to be handled in the GUP 2520 * slowpath for accounting purposes and so that they 2521 * can be serialised against THP migration. 2522 */ 2523 if (pmd_protnone(pmd)) 2524 return 0; 2525 2526 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2527 pages, nr)) 2528 return 0; 2529 2530 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2531 /* 2532 * architecture have different format for hugetlbfs 2533 * pmd format and THP pmd format 2534 */ 2535 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2536 PMD_SHIFT, next, flags, pages, nr)) 2537 return 0; 2538 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2539 return 0; 2540 } while (pmdp++, addr = next, addr != end); 2541 2542 return 1; 2543 } 2544 2545 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2546 unsigned int flags, struct page **pages, int *nr) 2547 { 2548 unsigned long next; 2549 pud_t *pudp; 2550 2551 pudp = pud_offset_lockless(p4dp, p4d, addr); 2552 do { 2553 pud_t pud = READ_ONCE(*pudp); 2554 2555 next = pud_addr_end(addr, end); 2556 if (unlikely(!pud_present(pud))) 2557 return 0; 2558 if (unlikely(pud_huge(pud))) { 2559 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2560 pages, nr)) 2561 return 0; 2562 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2563 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2564 PUD_SHIFT, next, flags, pages, nr)) 2565 return 0; 2566 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2567 return 0; 2568 } while (pudp++, addr = next, addr != end); 2569 2570 return 1; 2571 } 2572 2573 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2574 unsigned int flags, struct page **pages, int *nr) 2575 { 2576 unsigned long next; 2577 p4d_t *p4dp; 2578 2579 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2580 do { 2581 p4d_t p4d = READ_ONCE(*p4dp); 2582 2583 next = p4d_addr_end(addr, end); 2584 if (p4d_none(p4d)) 2585 return 0; 2586 BUILD_BUG_ON(p4d_huge(p4d)); 2587 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2588 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2589 P4D_SHIFT, next, flags, pages, nr)) 2590 return 0; 2591 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2592 return 0; 2593 } while (p4dp++, addr = next, addr != end); 2594 2595 return 1; 2596 } 2597 2598 static void gup_pgd_range(unsigned long addr, unsigned long end, 2599 unsigned int flags, struct page **pages, int *nr) 2600 { 2601 unsigned long next; 2602 pgd_t *pgdp; 2603 2604 pgdp = pgd_offset(current->mm, addr); 2605 do { 2606 pgd_t pgd = READ_ONCE(*pgdp); 2607 2608 next = pgd_addr_end(addr, end); 2609 if (pgd_none(pgd)) 2610 return; 2611 if (unlikely(pgd_huge(pgd))) { 2612 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2613 pages, nr)) 2614 return; 2615 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2616 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2617 PGDIR_SHIFT, next, flags, pages, nr)) 2618 return; 2619 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2620 return; 2621 } while (pgdp++, addr = next, addr != end); 2622 } 2623 #else 2624 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2625 unsigned int flags, struct page **pages, int *nr) 2626 { 2627 } 2628 #endif /* CONFIG_HAVE_FAST_GUP */ 2629 2630 #ifndef gup_fast_permitted 2631 /* 2632 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2633 * we need to fall back to the slow version: 2634 */ 2635 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2636 { 2637 return true; 2638 } 2639 #endif 2640 2641 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2642 unsigned int gup_flags, struct page **pages) 2643 { 2644 int ret; 2645 2646 /* 2647 * FIXME: FOLL_LONGTERM does not work with 2648 * get_user_pages_unlocked() (see comments in that function) 2649 */ 2650 if (gup_flags & FOLL_LONGTERM) { 2651 mmap_read_lock(current->mm); 2652 ret = __gup_longterm_locked(current->mm, 2653 start, nr_pages, 2654 pages, NULL, gup_flags); 2655 mmap_read_unlock(current->mm); 2656 } else { 2657 ret = get_user_pages_unlocked(start, nr_pages, 2658 pages, gup_flags); 2659 } 2660 2661 return ret; 2662 } 2663 2664 static unsigned long lockless_pages_from_mm(unsigned long start, 2665 unsigned long end, 2666 unsigned int gup_flags, 2667 struct page **pages) 2668 { 2669 unsigned long flags; 2670 int nr_pinned = 0; 2671 unsigned seq; 2672 2673 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2674 !gup_fast_permitted(start, end)) 2675 return 0; 2676 2677 if (gup_flags & FOLL_PIN) { 2678 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2679 if (seq & 1) 2680 return 0; 2681 } 2682 2683 /* 2684 * Disable interrupts. The nested form is used, in order to allow full, 2685 * general purpose use of this routine. 2686 * 2687 * With interrupts disabled, we block page table pages from being freed 2688 * from under us. See struct mmu_table_batch comments in 2689 * include/asm-generic/tlb.h for more details. 2690 * 2691 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2692 * that come from THPs splitting. 2693 */ 2694 local_irq_save(flags); 2695 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2696 local_irq_restore(flags); 2697 2698 /* 2699 * When pinning pages for DMA there could be a concurrent write protect 2700 * from fork() via copy_page_range(), in this case always fail fast GUP. 2701 */ 2702 if (gup_flags & FOLL_PIN) { 2703 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2704 unpin_user_pages(pages, nr_pinned); 2705 return 0; 2706 } 2707 } 2708 return nr_pinned; 2709 } 2710 2711 static int internal_get_user_pages_fast(unsigned long start, 2712 unsigned long nr_pages, 2713 unsigned int gup_flags, 2714 struct page **pages) 2715 { 2716 unsigned long len, end; 2717 unsigned long nr_pinned; 2718 int ret; 2719 2720 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2721 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2722 FOLL_FAST_ONLY))) 2723 return -EINVAL; 2724 2725 if (gup_flags & FOLL_PIN) 2726 mm_set_has_pinned_flag(¤t->mm->flags); 2727 2728 if (!(gup_flags & FOLL_FAST_ONLY)) 2729 might_lock_read(¤t->mm->mmap_lock); 2730 2731 start = untagged_addr(start) & PAGE_MASK; 2732 len = nr_pages << PAGE_SHIFT; 2733 if (check_add_overflow(start, len, &end)) 2734 return 0; 2735 if (unlikely(!access_ok((void __user *)start, len))) 2736 return -EFAULT; 2737 2738 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2739 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2740 return nr_pinned; 2741 2742 /* Slow path: try to get the remaining pages with get_user_pages */ 2743 start += nr_pinned << PAGE_SHIFT; 2744 pages += nr_pinned; 2745 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2746 pages); 2747 if (ret < 0) { 2748 /* 2749 * The caller has to unpin the pages we already pinned so 2750 * returning -errno is not an option 2751 */ 2752 if (nr_pinned) 2753 return nr_pinned; 2754 return ret; 2755 } 2756 return ret + nr_pinned; 2757 } 2758 2759 /** 2760 * get_user_pages_fast_only() - pin user pages in memory 2761 * @start: starting user address 2762 * @nr_pages: number of pages from start to pin 2763 * @gup_flags: flags modifying pin behaviour 2764 * @pages: array that receives pointers to the pages pinned. 2765 * Should be at least nr_pages long. 2766 * 2767 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2768 * the regular GUP. 2769 * Note a difference with get_user_pages_fast: this always returns the 2770 * number of pages pinned, 0 if no pages were pinned. 2771 * 2772 * If the architecture does not support this function, simply return with no 2773 * pages pinned. 2774 * 2775 * Careful, careful! COW breaking can go either way, so a non-write 2776 * access can get ambiguous page results. If you call this function without 2777 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2778 */ 2779 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2780 unsigned int gup_flags, struct page **pages) 2781 { 2782 int nr_pinned; 2783 /* 2784 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2785 * because gup fast is always a "pin with a +1 page refcount" request. 2786 * 2787 * FOLL_FAST_ONLY is required in order to match the API description of 2788 * this routine: no fall back to regular ("slow") GUP. 2789 */ 2790 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2791 2792 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2793 pages); 2794 2795 /* 2796 * As specified in the API description above, this routine is not 2797 * allowed to return negative values. However, the common core 2798 * routine internal_get_user_pages_fast() *can* return -errno. 2799 * Therefore, correct for that here: 2800 */ 2801 if (nr_pinned < 0) 2802 nr_pinned = 0; 2803 2804 return nr_pinned; 2805 } 2806 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2807 2808 /** 2809 * get_user_pages_fast() - pin user pages in memory 2810 * @start: starting user address 2811 * @nr_pages: number of pages from start to pin 2812 * @gup_flags: flags modifying pin behaviour 2813 * @pages: array that receives pointers to the pages pinned. 2814 * Should be at least nr_pages long. 2815 * 2816 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2817 * If not successful, it will fall back to taking the lock and 2818 * calling get_user_pages(). 2819 * 2820 * Returns number of pages pinned. This may be fewer than the number requested. 2821 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2822 * -errno. 2823 */ 2824 int get_user_pages_fast(unsigned long start, int nr_pages, 2825 unsigned int gup_flags, struct page **pages) 2826 { 2827 if (!is_valid_gup_flags(gup_flags)) 2828 return -EINVAL; 2829 2830 /* 2831 * The caller may or may not have explicitly set FOLL_GET; either way is 2832 * OK. However, internally (within mm/gup.c), gup fast variants must set 2833 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2834 * request. 2835 */ 2836 gup_flags |= FOLL_GET; 2837 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2838 } 2839 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2840 2841 /** 2842 * pin_user_pages_fast() - pin user pages in memory without taking locks 2843 * 2844 * @start: starting user address 2845 * @nr_pages: number of pages from start to pin 2846 * @gup_flags: flags modifying pin behaviour 2847 * @pages: array that receives pointers to the pages pinned. 2848 * Should be at least nr_pages long. 2849 * 2850 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2851 * get_user_pages_fast() for documentation on the function arguments, because 2852 * the arguments here are identical. 2853 * 2854 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2855 * see Documentation/core-api/pin_user_pages.rst for further details. 2856 */ 2857 int pin_user_pages_fast(unsigned long start, int nr_pages, 2858 unsigned int gup_flags, struct page **pages) 2859 { 2860 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2861 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2862 return -EINVAL; 2863 2864 gup_flags |= FOLL_PIN; 2865 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2866 } 2867 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2868 2869 /* 2870 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2871 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2872 * 2873 * The API rules are the same, too: no negative values may be returned. 2874 */ 2875 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2876 unsigned int gup_flags, struct page **pages) 2877 { 2878 int nr_pinned; 2879 2880 /* 2881 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2882 * rules require returning 0, rather than -errno: 2883 */ 2884 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2885 return 0; 2886 /* 2887 * FOLL_FAST_ONLY is required in order to match the API description of 2888 * this routine: no fall back to regular ("slow") GUP. 2889 */ 2890 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2891 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2892 pages); 2893 /* 2894 * This routine is not allowed to return negative values. However, 2895 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2896 * correct for that here: 2897 */ 2898 if (nr_pinned < 0) 2899 nr_pinned = 0; 2900 2901 return nr_pinned; 2902 } 2903 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2904 2905 /** 2906 * pin_user_pages_remote() - pin pages of a remote process 2907 * 2908 * @mm: mm_struct of target mm 2909 * @start: starting user address 2910 * @nr_pages: number of pages from start to pin 2911 * @gup_flags: flags modifying lookup behaviour 2912 * @pages: array that receives pointers to the pages pinned. 2913 * Should be at least nr_pages long. Or NULL, if caller 2914 * only intends to ensure the pages are faulted in. 2915 * @vmas: array of pointers to vmas corresponding to each page. 2916 * Or NULL if the caller does not require them. 2917 * @locked: pointer to lock flag indicating whether lock is held and 2918 * subsequently whether VM_FAULT_RETRY functionality can be 2919 * utilised. Lock must initially be held. 2920 * 2921 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2922 * get_user_pages_remote() for documentation on the function arguments, because 2923 * the arguments here are identical. 2924 * 2925 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2926 * see Documentation/core-api/pin_user_pages.rst for details. 2927 */ 2928 long pin_user_pages_remote(struct mm_struct *mm, 2929 unsigned long start, unsigned long nr_pages, 2930 unsigned int gup_flags, struct page **pages, 2931 struct vm_area_struct **vmas, int *locked) 2932 { 2933 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2934 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2935 return -EINVAL; 2936 2937 gup_flags |= FOLL_PIN; 2938 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2939 pages, vmas, locked); 2940 } 2941 EXPORT_SYMBOL(pin_user_pages_remote); 2942 2943 /** 2944 * pin_user_pages() - pin user pages in memory for use by other devices 2945 * 2946 * @start: starting user address 2947 * @nr_pages: number of pages from start to pin 2948 * @gup_flags: flags modifying lookup behaviour 2949 * @pages: array that receives pointers to the pages pinned. 2950 * Should be at least nr_pages long. Or NULL, if caller 2951 * only intends to ensure the pages are faulted in. 2952 * @vmas: array of pointers to vmas corresponding to each page. 2953 * Or NULL if the caller does not require them. 2954 * 2955 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2956 * FOLL_PIN is set. 2957 * 2958 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2959 * see Documentation/core-api/pin_user_pages.rst for details. 2960 */ 2961 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2962 unsigned int gup_flags, struct page **pages, 2963 struct vm_area_struct **vmas) 2964 { 2965 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2966 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2967 return -EINVAL; 2968 2969 gup_flags |= FOLL_PIN; 2970 return __gup_longterm_locked(current->mm, start, nr_pages, 2971 pages, vmas, gup_flags); 2972 } 2973 EXPORT_SYMBOL(pin_user_pages); 2974 2975 /* 2976 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2977 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2978 * FOLL_PIN and rejects FOLL_GET. 2979 */ 2980 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2981 struct page **pages, unsigned int gup_flags) 2982 { 2983 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2984 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2985 return -EINVAL; 2986 2987 gup_flags |= FOLL_PIN; 2988 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2989 } 2990 EXPORT_SYMBOL(pin_user_pages_unlocked); 2991 2992 /* 2993 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2994 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2995 * FOLL_GET. 2996 */ 2997 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2998 unsigned int gup_flags, struct page **pages, 2999 int *locked) 3000 { 3001 /* 3002 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 3003 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 3004 * vmas. As there are no users of this flag in this call we simply 3005 * disallow this option for now. 3006 */ 3007 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 3008 return -EINVAL; 3009 3010 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3011 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3012 return -EINVAL; 3013 3014 gup_flags |= FOLL_PIN; 3015 return __get_user_pages_locked(current->mm, start, nr_pages, 3016 pages, NULL, locked, 3017 gup_flags | FOLL_TOUCH); 3018 } 3019 EXPORT_SYMBOL(pin_user_pages_locked); 3020