1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio = page_folio(page); 56 57 if (is_zero_page(page) || 58 !folio_test_anon(folio)) 59 continue; 60 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 62 else 63 /* Either a PTE-mapped or a PMD-mapped THP. */ 64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 65 !PageAnonExclusive(page), page); 66 } 67 } 68 69 /* 70 * Return the folio with ref appropriately incremented, 71 * or NULL if that failed. 72 */ 73 static inline struct folio *try_get_folio(struct page *page, int refs) 74 { 75 struct folio *folio; 76 77 retry: 78 folio = page_folio(page); 79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 80 return NULL; 81 if (unlikely(!folio_ref_try_add(folio, refs))) 82 return NULL; 83 84 /* 85 * At this point we have a stable reference to the folio; but it 86 * could be that between calling page_folio() and the refcount 87 * increment, the folio was split, in which case we'd end up 88 * holding a reference on a folio that has nothing to do with the page 89 * we were given anymore. 90 * So now that the folio is stable, recheck that the page still 91 * belongs to this folio. 92 */ 93 if (unlikely(page_folio(page) != folio)) { 94 if (!put_devmap_managed_folio_refs(folio, refs)) 95 folio_put_refs(folio, refs); 96 goto retry; 97 } 98 99 return folio; 100 } 101 102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 103 { 104 if (flags & FOLL_PIN) { 105 if (is_zero_folio(folio)) 106 return; 107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 108 if (folio_test_large(folio)) 109 atomic_sub(refs, &folio->_pincount); 110 else 111 refs *= GUP_PIN_COUNTING_BIAS; 112 } 113 114 if (!put_devmap_managed_folio_refs(folio, refs)) 115 folio_put_refs(folio, refs); 116 } 117 118 /** 119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 120 * @folio: pointer to folio to be grabbed 121 * @refs: the value to (effectively) add to the folio's refcount 122 * @flags: gup flags: these are the FOLL_* flag values 123 * 124 * This might not do anything at all, depending on the flags argument. 125 * 126 * "grab" names in this file mean, "look at flags to decide whether to use 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 128 * 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 130 * time. 131 * 132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 133 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 134 * 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 136 * be grabbed. 137 * 138 * It is called when we have a stable reference for the folio, typically in 139 * GUP slow path. 140 */ 141 int __must_check try_grab_folio(struct folio *folio, int refs, 142 unsigned int flags) 143 { 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 145 return -ENOMEM; 146 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 148 return -EREMOTEIO; 149 150 if (flags & FOLL_GET) 151 folio_ref_add(folio, refs); 152 else if (flags & FOLL_PIN) { 153 /* 154 * Don't take a pin on the zero page - it's not going anywhere 155 * and it is used in a *lot* of places. 156 */ 157 if (is_zero_folio(folio)) 158 return 0; 159 160 /* 161 * Increment the normal page refcount field at least once, 162 * so that the page really is pinned. 163 */ 164 if (folio_test_large(folio)) { 165 folio_ref_add(folio, refs); 166 atomic_add(refs, &folio->_pincount); 167 } else { 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 169 } 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 } 173 174 return 0; 175 } 176 177 /** 178 * unpin_user_page() - release a dma-pinned page 179 * @page: pointer to page to be released 180 * 181 * Pages that were pinned via pin_user_pages*() must be released via either 182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 183 * that such pages can be separately tracked and uniquely handled. In 184 * particular, interactions with RDMA and filesystems need special handling. 185 */ 186 void unpin_user_page(struct page *page) 187 { 188 sanity_check_pinned_pages(&page, 1); 189 gup_put_folio(page_folio(page), 1, FOLL_PIN); 190 } 191 EXPORT_SYMBOL(unpin_user_page); 192 193 /** 194 * unpin_folio() - release a dma-pinned folio 195 * @folio: pointer to folio to be released 196 * 197 * Folios that were pinned via memfd_pin_folios() or other similar routines 198 * must be released either using unpin_folio() or unpin_folios(). 199 */ 200 void unpin_folio(struct folio *folio) 201 { 202 gup_put_folio(folio, 1, FOLL_PIN); 203 } 204 EXPORT_SYMBOL_GPL(unpin_folio); 205 206 /** 207 * folio_add_pin - Try to get an additional pin on a pinned folio 208 * @folio: The folio to be pinned 209 * 210 * Get an additional pin on a folio we already have a pin on. Makes no change 211 * if the folio is a zero_page. 212 */ 213 void folio_add_pin(struct folio *folio) 214 { 215 if (is_zero_folio(folio)) 216 return; 217 218 /* 219 * Similar to try_grab_folio(): be sure to *also* increment the normal 220 * page refcount field at least once, so that the page really is 221 * pinned. 222 */ 223 if (folio_test_large(folio)) { 224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 225 folio_ref_inc(folio); 226 atomic_inc(&folio->_pincount); 227 } else { 228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 } 232 233 static inline struct folio *gup_folio_range_next(struct page *start, 234 unsigned long npages, unsigned long i, unsigned int *ntails) 235 { 236 struct page *next = nth_page(start, i); 237 struct folio *folio = page_folio(next); 238 unsigned int nr = 1; 239 240 if (folio_test_large(folio)) 241 nr = min_t(unsigned int, npages - i, 242 folio_nr_pages(folio) - folio_page_idx(folio, next)); 243 244 *ntails = nr; 245 return folio; 246 } 247 248 static inline struct folio *gup_folio_next(struct page **list, 249 unsigned long npages, unsigned long i, unsigned int *ntails) 250 { 251 struct folio *folio = page_folio(list[i]); 252 unsigned int nr; 253 254 for (nr = i + 1; nr < npages; nr++) { 255 if (page_folio(list[nr]) != folio) 256 break; 257 } 258 259 *ntails = nr - i; 260 return folio; 261 } 262 263 /** 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 265 * @pages: array of pages to be maybe marked dirty, and definitely released. 266 * @npages: number of pages in the @pages array. 267 * @make_dirty: whether to mark the pages dirty 268 * 269 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 270 * variants called on that page. 271 * 272 * For each page in the @pages array, make that page (or its head page, if a 273 * compound page) dirty, if @make_dirty is true, and if the page was previously 274 * listed as clean. In any case, releases all pages using unpin_user_page(), 275 * possibly via unpin_user_pages(), for the non-dirty case. 276 * 277 * Please see the unpin_user_page() documentation for details. 278 * 279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 280 * required, then the caller should a) verify that this is really correct, 281 * because _lock() is usually required, and b) hand code it: 282 * set_page_dirty_lock(), unpin_user_page(). 283 * 284 */ 285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 286 bool make_dirty) 287 { 288 unsigned long i; 289 struct folio *folio; 290 unsigned int nr; 291 292 if (!make_dirty) { 293 unpin_user_pages(pages, npages); 294 return; 295 } 296 297 sanity_check_pinned_pages(pages, npages); 298 for (i = 0; i < npages; i += nr) { 299 folio = gup_folio_next(pages, npages, i, &nr); 300 /* 301 * Checking PageDirty at this point may race with 302 * clear_page_dirty_for_io(), but that's OK. Two key 303 * cases: 304 * 305 * 1) This code sees the page as already dirty, so it 306 * skips the call to set_page_dirty(). That could happen 307 * because clear_page_dirty_for_io() called 308 * folio_mkclean(), followed by set_page_dirty(). 309 * However, now the page is going to get written back, 310 * which meets the original intention of setting it 311 * dirty, so all is well: clear_page_dirty_for_io() goes 312 * on to call TestClearPageDirty(), and write the page 313 * back. 314 * 315 * 2) This code sees the page as clean, so it calls 316 * set_page_dirty(). The page stays dirty, despite being 317 * written back, so it gets written back again in the 318 * next writeback cycle. This is harmless. 319 */ 320 if (!folio_test_dirty(folio)) { 321 folio_lock(folio); 322 folio_mark_dirty(folio); 323 folio_unlock(folio); 324 } 325 gup_put_folio(folio, nr, FOLL_PIN); 326 } 327 } 328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 329 330 /** 331 * unpin_user_page_range_dirty_lock() - release and optionally dirty 332 * gup-pinned page range 333 * 334 * @page: the starting page of a range maybe marked dirty, and definitely released. 335 * @npages: number of consecutive pages to release. 336 * @make_dirty: whether to mark the pages dirty 337 * 338 * "gup-pinned page range" refers to a range of pages that has had one of the 339 * pin_user_pages() variants called on that page. 340 * 341 * For the page ranges defined by [page .. page+npages], make that range (or 342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 343 * page range was previously listed as clean. 344 * 345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 346 * required, then the caller should a) verify that this is really correct, 347 * because _lock() is usually required, and b) hand code it: 348 * set_page_dirty_lock(), unpin_user_page(). 349 * 350 */ 351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 352 bool make_dirty) 353 { 354 unsigned long i; 355 struct folio *folio; 356 unsigned int nr; 357 358 for (i = 0; i < npages; i += nr) { 359 folio = gup_folio_range_next(page, npages, i, &nr); 360 if (make_dirty && !folio_test_dirty(folio)) { 361 folio_lock(folio); 362 folio_mark_dirty(folio); 363 folio_unlock(folio); 364 } 365 gup_put_folio(folio, nr, FOLL_PIN); 366 } 367 } 368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 369 370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 371 { 372 unsigned long i; 373 struct folio *folio; 374 unsigned int nr; 375 376 /* 377 * Don't perform any sanity checks because we might have raced with 378 * fork() and some anonymous pages might now actually be shared -- 379 * which is why we're unpinning after all. 380 */ 381 for (i = 0; i < npages; i += nr) { 382 folio = gup_folio_next(pages, npages, i, &nr); 383 gup_put_folio(folio, nr, FOLL_PIN); 384 } 385 } 386 387 /** 388 * unpin_user_pages() - release an array of gup-pinned pages. 389 * @pages: array of pages to be marked dirty and released. 390 * @npages: number of pages in the @pages array. 391 * 392 * For each page in the @pages array, release the page using unpin_user_page(). 393 * 394 * Please see the unpin_user_page() documentation for details. 395 */ 396 void unpin_user_pages(struct page **pages, unsigned long npages) 397 { 398 unsigned long i; 399 struct folio *folio; 400 unsigned int nr; 401 402 /* 403 * If this WARN_ON() fires, then the system *might* be leaking pages (by 404 * leaving them pinned), but probably not. More likely, gup/pup returned 405 * a hard -ERRNO error to the caller, who erroneously passed it here. 406 */ 407 if (WARN_ON(IS_ERR_VALUE(npages))) 408 return; 409 410 sanity_check_pinned_pages(pages, npages); 411 for (i = 0; i < npages; i += nr) { 412 folio = gup_folio_next(pages, npages, i, &nr); 413 gup_put_folio(folio, nr, FOLL_PIN); 414 } 415 } 416 EXPORT_SYMBOL(unpin_user_pages); 417 418 /** 419 * unpin_user_folio() - release pages of a folio 420 * @folio: pointer to folio to be released 421 * @npages: number of pages of same folio 422 * 423 * Release npages of the folio 424 */ 425 void unpin_user_folio(struct folio *folio, unsigned long npages) 426 { 427 gup_put_folio(folio, npages, FOLL_PIN); 428 } 429 EXPORT_SYMBOL(unpin_user_folio); 430 431 /** 432 * unpin_folios() - release an array of gup-pinned folios. 433 * @folios: array of folios to be marked dirty and released. 434 * @nfolios: number of folios in the @folios array. 435 * 436 * For each folio in the @folios array, release the folio using gup_put_folio. 437 * 438 * Please see the unpin_folio() documentation for details. 439 */ 440 void unpin_folios(struct folio **folios, unsigned long nfolios) 441 { 442 unsigned long i = 0, j; 443 444 /* 445 * If this WARN_ON() fires, then the system *might* be leaking folios 446 * (by leaving them pinned), but probably not. More likely, gup/pup 447 * returned a hard -ERRNO error to the caller, who erroneously passed 448 * it here. 449 */ 450 if (WARN_ON(IS_ERR_VALUE(nfolios))) 451 return; 452 453 while (i < nfolios) { 454 for (j = i + 1; j < nfolios; j++) 455 if (folios[i] != folios[j]) 456 break; 457 458 if (folios[i]) 459 gup_put_folio(folios[i], j - i, FOLL_PIN); 460 i = j; 461 } 462 } 463 EXPORT_SYMBOL_GPL(unpin_folios); 464 465 /* 466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 468 * cache bouncing on large SMP machines for concurrent pinned gups. 469 */ 470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 471 { 472 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 473 set_bit(MMF_HAS_PINNED, mm_flags); 474 } 475 476 #ifdef CONFIG_MMU 477 478 #ifdef CONFIG_HAVE_GUP_FAST 479 static int record_subpages(struct page *page, unsigned long sz, 480 unsigned long addr, unsigned long end, 481 struct page **pages) 482 { 483 struct page *start_page; 484 int nr; 485 486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 488 pages[nr] = nth_page(start_page, nr); 489 490 return nr; 491 } 492 493 /** 494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 495 * @page: pointer to page to be grabbed 496 * @refs: the value to (effectively) add to the folio's refcount 497 * @flags: gup flags: these are the FOLL_* flag values. 498 * 499 * "grab" names in this file mean, "look at flags to decide whether to use 500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 501 * 502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 503 * same time. (That's true throughout the get_user_pages*() and 504 * pin_user_pages*() APIs.) Cases: 505 * 506 * FOLL_GET: folio's refcount will be incremented by @refs. 507 * 508 * FOLL_PIN on large folios: folio's refcount will be incremented by 509 * @refs, and its pincount will be incremented by @refs. 510 * 511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 512 * @refs * GUP_PIN_COUNTING_BIAS. 513 * 514 * Return: The folio containing @page (with refcount appropriately 515 * incremented) for success, or NULL upon failure. If neither FOLL_GET 516 * nor FOLL_PIN was set, that's considered failure, and furthermore, 517 * a likely bug in the caller, so a warning is also emitted. 518 * 519 * It uses add ref unless zero to elevate the folio refcount and must be called 520 * in fast path only. 521 */ 522 static struct folio *try_grab_folio_fast(struct page *page, int refs, 523 unsigned int flags) 524 { 525 struct folio *folio; 526 527 /* Raise warn if it is not called in fast GUP */ 528 VM_WARN_ON_ONCE(!irqs_disabled()); 529 530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 531 return NULL; 532 533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 534 return NULL; 535 536 if (flags & FOLL_GET) 537 return try_get_folio(page, refs); 538 539 /* FOLL_PIN is set */ 540 541 /* 542 * Don't take a pin on the zero page - it's not going anywhere 543 * and it is used in a *lot* of places. 544 */ 545 if (is_zero_page(page)) 546 return page_folio(page); 547 548 folio = try_get_folio(page, refs); 549 if (!folio) 550 return NULL; 551 552 /* 553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 554 * right zone, so fail and let the caller fall back to the slow 555 * path. 556 */ 557 if (unlikely((flags & FOLL_LONGTERM) && 558 !folio_is_longterm_pinnable(folio))) { 559 if (!put_devmap_managed_folio_refs(folio, refs)) 560 folio_put_refs(folio, refs); 561 return NULL; 562 } 563 564 /* 565 * When pinning a large folio, use an exact count to track it. 566 * 567 * However, be sure to *also* increment the normal folio 568 * refcount field at least once, so that the folio really 569 * is pinned. That's why the refcount from the earlier 570 * try_get_folio() is left intact. 571 */ 572 if (folio_test_large(folio)) 573 atomic_add(refs, &folio->_pincount); 574 else 575 folio_ref_add(folio, 576 refs * (GUP_PIN_COUNTING_BIAS - 1)); 577 /* 578 * Adjust the pincount before re-checking the PTE for changes. 579 * This is essentially a smp_mb() and is paired with a memory 580 * barrier in folio_try_share_anon_rmap_*(). 581 */ 582 smp_mb__after_atomic(); 583 584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 585 586 return folio; 587 } 588 #endif /* CONFIG_HAVE_GUP_FAST */ 589 590 static struct page *no_page_table(struct vm_area_struct *vma, 591 unsigned int flags, unsigned long address) 592 { 593 if (!(flags & FOLL_DUMP)) 594 return NULL; 595 596 /* 597 * When core dumping, we don't want to allocate unnecessary pages or 598 * page tables. Return error instead of NULL to skip handle_mm_fault, 599 * then get_dump_page() will return NULL to leave a hole in the dump. 600 * But we can only make this optimization where a hole would surely 601 * be zero-filled if handle_mm_fault() actually did handle it. 602 */ 603 if (is_vm_hugetlb_page(vma)) { 604 struct hstate *h = hstate_vma(vma); 605 606 if (!hugetlbfs_pagecache_present(h, vma, address)) 607 return ERR_PTR(-EFAULT); 608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 609 return ERR_PTR(-EFAULT); 610 } 611 612 return NULL; 613 } 614 615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 616 static struct page *follow_huge_pud(struct vm_area_struct *vma, 617 unsigned long addr, pud_t *pudp, 618 int flags, struct follow_page_context *ctx) 619 { 620 struct mm_struct *mm = vma->vm_mm; 621 struct page *page; 622 pud_t pud = *pudp; 623 unsigned long pfn = pud_pfn(pud); 624 int ret; 625 626 assert_spin_locked(pud_lockptr(mm, pudp)); 627 628 if ((flags & FOLL_WRITE) && !pud_write(pud)) 629 return NULL; 630 631 if (!pud_present(pud)) 632 return NULL; 633 634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 635 636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 637 pud_devmap(pud)) { 638 /* 639 * device mapped pages can only be returned if the caller 640 * will manage the page reference count. 641 * 642 * At least one of FOLL_GET | FOLL_PIN must be set, so 643 * assert that here: 644 */ 645 if (!(flags & (FOLL_GET | FOLL_PIN))) 646 return ERR_PTR(-EEXIST); 647 648 if (flags & FOLL_TOUCH) 649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 650 651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 652 if (!ctx->pgmap) 653 return ERR_PTR(-EFAULT); 654 } 655 656 page = pfn_to_page(pfn); 657 658 if (!pud_devmap(pud) && !pud_write(pud) && 659 gup_must_unshare(vma, flags, page)) 660 return ERR_PTR(-EMLINK); 661 662 ret = try_grab_folio(page_folio(page), 1, flags); 663 if (ret) 664 page = ERR_PTR(ret); 665 else 666 ctx->page_mask = HPAGE_PUD_NR - 1; 667 668 return page; 669 } 670 671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 673 struct vm_area_struct *vma, 674 unsigned int flags) 675 { 676 /* If the pmd is writable, we can write to the page. */ 677 if (pmd_write(pmd)) 678 return true; 679 680 /* Maybe FOLL_FORCE is set to override it? */ 681 if (!(flags & FOLL_FORCE)) 682 return false; 683 684 /* But FOLL_FORCE has no effect on shared mappings */ 685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 686 return false; 687 688 /* ... or read-only private ones */ 689 if (!(vma->vm_flags & VM_MAYWRITE)) 690 return false; 691 692 /* ... or already writable ones that just need to take a write fault */ 693 if (vma->vm_flags & VM_WRITE) 694 return false; 695 696 /* 697 * See can_change_pte_writable(): we broke COW and could map the page 698 * writable if we have an exclusive anonymous page ... 699 */ 700 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 701 return false; 702 703 /* ... and a write-fault isn't required for other reasons. */ 704 if (pmd_needs_soft_dirty_wp(vma, pmd)) 705 return false; 706 return !userfaultfd_huge_pmd_wp(vma, pmd); 707 } 708 709 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 710 unsigned long addr, pmd_t *pmd, 711 unsigned int flags, 712 struct follow_page_context *ctx) 713 { 714 struct mm_struct *mm = vma->vm_mm; 715 pmd_t pmdval = *pmd; 716 struct page *page; 717 int ret; 718 719 assert_spin_locked(pmd_lockptr(mm, pmd)); 720 721 page = pmd_page(pmdval); 722 if ((flags & FOLL_WRITE) && 723 !can_follow_write_pmd(pmdval, page, vma, flags)) 724 return NULL; 725 726 /* Avoid dumping huge zero page */ 727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 728 return ERR_PTR(-EFAULT); 729 730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 731 return NULL; 732 733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 734 return ERR_PTR(-EMLINK); 735 736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 737 !PageAnonExclusive(page), page); 738 739 ret = try_grab_folio(page_folio(page), 1, flags); 740 if (ret) 741 return ERR_PTR(ret); 742 743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 747 748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 749 ctx->page_mask = HPAGE_PMD_NR - 1; 750 751 return page; 752 } 753 754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 755 static struct page *follow_huge_pud(struct vm_area_struct *vma, 756 unsigned long addr, pud_t *pudp, 757 int flags, struct follow_page_context *ctx) 758 { 759 return NULL; 760 } 761 762 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 763 unsigned long addr, pmd_t *pmd, 764 unsigned int flags, 765 struct follow_page_context *ctx) 766 { 767 return NULL; 768 } 769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 770 771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 772 pte_t *pte, unsigned int flags) 773 { 774 if (flags & FOLL_TOUCH) { 775 pte_t orig_entry = ptep_get(pte); 776 pte_t entry = orig_entry; 777 778 if (flags & FOLL_WRITE) 779 entry = pte_mkdirty(entry); 780 entry = pte_mkyoung(entry); 781 782 if (!pte_same(orig_entry, entry)) { 783 set_pte_at(vma->vm_mm, address, pte, entry); 784 update_mmu_cache(vma, address, pte); 785 } 786 } 787 788 /* Proper page table entry exists, but no corresponding struct page */ 789 return -EEXIST; 790 } 791 792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 793 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 794 struct vm_area_struct *vma, 795 unsigned int flags) 796 { 797 /* If the pte is writable, we can write to the page. */ 798 if (pte_write(pte)) 799 return true; 800 801 /* Maybe FOLL_FORCE is set to override it? */ 802 if (!(flags & FOLL_FORCE)) 803 return false; 804 805 /* But FOLL_FORCE has no effect on shared mappings */ 806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 807 return false; 808 809 /* ... or read-only private ones */ 810 if (!(vma->vm_flags & VM_MAYWRITE)) 811 return false; 812 813 /* ... or already writable ones that just need to take a write fault */ 814 if (vma->vm_flags & VM_WRITE) 815 return false; 816 817 /* 818 * See can_change_pte_writable(): we broke COW and could map the page 819 * writable if we have an exclusive anonymous page ... 820 */ 821 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 822 return false; 823 824 /* ... and a write-fault isn't required for other reasons. */ 825 if (pte_needs_soft_dirty_wp(vma, pte)) 826 return false; 827 return !userfaultfd_pte_wp(vma, pte); 828 } 829 830 static struct page *follow_page_pte(struct vm_area_struct *vma, 831 unsigned long address, pmd_t *pmd, unsigned int flags, 832 struct dev_pagemap **pgmap) 833 { 834 struct mm_struct *mm = vma->vm_mm; 835 struct folio *folio; 836 struct page *page; 837 spinlock_t *ptl; 838 pte_t *ptep, pte; 839 int ret; 840 841 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 842 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 843 (FOLL_PIN | FOLL_GET))) 844 return ERR_PTR(-EINVAL); 845 846 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 847 if (!ptep) 848 return no_page_table(vma, flags, address); 849 pte = ptep_get(ptep); 850 if (!pte_present(pte)) 851 goto no_page; 852 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 853 goto no_page; 854 855 page = vm_normal_page(vma, address, pte); 856 857 /* 858 * We only care about anon pages in can_follow_write_pte() and don't 859 * have to worry about pte_devmap() because they are never anon. 860 */ 861 if ((flags & FOLL_WRITE) && 862 !can_follow_write_pte(pte, page, vma, flags)) { 863 page = NULL; 864 goto out; 865 } 866 867 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 868 /* 869 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 870 * case since they are only valid while holding the pgmap 871 * reference. 872 */ 873 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 874 if (*pgmap) 875 page = pte_page(pte); 876 else 877 goto no_page; 878 } else if (unlikely(!page)) { 879 if (flags & FOLL_DUMP) { 880 /* Avoid special (like zero) pages in core dumps */ 881 page = ERR_PTR(-EFAULT); 882 goto out; 883 } 884 885 if (is_zero_pfn(pte_pfn(pte))) { 886 page = pte_page(pte); 887 } else { 888 ret = follow_pfn_pte(vma, address, ptep, flags); 889 page = ERR_PTR(ret); 890 goto out; 891 } 892 } 893 folio = page_folio(page); 894 895 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 896 page = ERR_PTR(-EMLINK); 897 goto out; 898 } 899 900 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 901 !PageAnonExclusive(page), page); 902 903 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 904 ret = try_grab_folio(folio, 1, flags); 905 if (unlikely(ret)) { 906 page = ERR_PTR(ret); 907 goto out; 908 } 909 910 /* 911 * We need to make the page accessible if and only if we are going 912 * to access its content (the FOLL_PIN case). Please see 913 * Documentation/core-api/pin_user_pages.rst for details. 914 */ 915 if (flags & FOLL_PIN) { 916 ret = arch_make_folio_accessible(folio); 917 if (ret) { 918 unpin_user_page(page); 919 page = ERR_PTR(ret); 920 goto out; 921 } 922 } 923 if (flags & FOLL_TOUCH) { 924 if ((flags & FOLL_WRITE) && 925 !pte_dirty(pte) && !folio_test_dirty(folio)) 926 folio_mark_dirty(folio); 927 /* 928 * pte_mkyoung() would be more correct here, but atomic care 929 * is needed to avoid losing the dirty bit: it is easier to use 930 * folio_mark_accessed(). 931 */ 932 folio_mark_accessed(folio); 933 } 934 out: 935 pte_unmap_unlock(ptep, ptl); 936 return page; 937 no_page: 938 pte_unmap_unlock(ptep, ptl); 939 if (!pte_none(pte)) 940 return NULL; 941 return no_page_table(vma, flags, address); 942 } 943 944 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 945 unsigned long address, pud_t *pudp, 946 unsigned int flags, 947 struct follow_page_context *ctx) 948 { 949 pmd_t *pmd, pmdval; 950 spinlock_t *ptl; 951 struct page *page; 952 struct mm_struct *mm = vma->vm_mm; 953 954 pmd = pmd_offset(pudp, address); 955 pmdval = pmdp_get_lockless(pmd); 956 if (pmd_none(pmdval)) 957 return no_page_table(vma, flags, address); 958 if (!pmd_present(pmdval)) 959 return no_page_table(vma, flags, address); 960 if (pmd_devmap(pmdval)) { 961 ptl = pmd_lock(mm, pmd); 962 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 963 spin_unlock(ptl); 964 if (page) 965 return page; 966 return no_page_table(vma, flags, address); 967 } 968 if (likely(!pmd_leaf(pmdval))) 969 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 970 971 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 972 return no_page_table(vma, flags, address); 973 974 ptl = pmd_lock(mm, pmd); 975 pmdval = *pmd; 976 if (unlikely(!pmd_present(pmdval))) { 977 spin_unlock(ptl); 978 return no_page_table(vma, flags, address); 979 } 980 if (unlikely(!pmd_leaf(pmdval))) { 981 spin_unlock(ptl); 982 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 983 } 984 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 985 spin_unlock(ptl); 986 split_huge_pmd(vma, pmd, address); 987 /* If pmd was left empty, stuff a page table in there quickly */ 988 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 989 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 990 } 991 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 992 spin_unlock(ptl); 993 return page; 994 } 995 996 static struct page *follow_pud_mask(struct vm_area_struct *vma, 997 unsigned long address, p4d_t *p4dp, 998 unsigned int flags, 999 struct follow_page_context *ctx) 1000 { 1001 pud_t *pudp, pud; 1002 spinlock_t *ptl; 1003 struct page *page; 1004 struct mm_struct *mm = vma->vm_mm; 1005 1006 pudp = pud_offset(p4dp, address); 1007 pud = READ_ONCE(*pudp); 1008 if (!pud_present(pud)) 1009 return no_page_table(vma, flags, address); 1010 if (pud_leaf(pud)) { 1011 ptl = pud_lock(mm, pudp); 1012 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1013 spin_unlock(ptl); 1014 if (page) 1015 return page; 1016 return no_page_table(vma, flags, address); 1017 } 1018 if (unlikely(pud_bad(pud))) 1019 return no_page_table(vma, flags, address); 1020 1021 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1022 } 1023 1024 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1025 unsigned long address, pgd_t *pgdp, 1026 unsigned int flags, 1027 struct follow_page_context *ctx) 1028 { 1029 p4d_t *p4dp, p4d; 1030 1031 p4dp = p4d_offset(pgdp, address); 1032 p4d = READ_ONCE(*p4dp); 1033 BUILD_BUG_ON(p4d_leaf(p4d)); 1034 1035 if (!p4d_present(p4d) || p4d_bad(p4d)) 1036 return no_page_table(vma, flags, address); 1037 1038 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1039 } 1040 1041 /** 1042 * follow_page_mask - look up a page descriptor from a user-virtual address 1043 * @vma: vm_area_struct mapping @address 1044 * @address: virtual address to look up 1045 * @flags: flags modifying lookup behaviour 1046 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1047 * pointer to output page_mask 1048 * 1049 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1050 * 1051 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1052 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1053 * 1054 * When getting an anonymous page and the caller has to trigger unsharing 1055 * of a shared anonymous page first, -EMLINK is returned. The caller should 1056 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1057 * relevant with FOLL_PIN and !FOLL_WRITE. 1058 * 1059 * On output, the @ctx->page_mask is set according to the size of the page. 1060 * 1061 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1062 * an error pointer if there is a mapping to something not represented 1063 * by a page descriptor (see also vm_normal_page()). 1064 */ 1065 static struct page *follow_page_mask(struct vm_area_struct *vma, 1066 unsigned long address, unsigned int flags, 1067 struct follow_page_context *ctx) 1068 { 1069 pgd_t *pgd; 1070 struct mm_struct *mm = vma->vm_mm; 1071 struct page *page; 1072 1073 vma_pgtable_walk_begin(vma); 1074 1075 ctx->page_mask = 0; 1076 pgd = pgd_offset(mm, address); 1077 1078 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1079 page = no_page_table(vma, flags, address); 1080 else 1081 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1082 1083 vma_pgtable_walk_end(vma); 1084 1085 return page; 1086 } 1087 1088 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1089 unsigned int gup_flags, struct vm_area_struct **vma, 1090 struct page **page) 1091 { 1092 pgd_t *pgd; 1093 p4d_t *p4d; 1094 pud_t *pud; 1095 pmd_t *pmd; 1096 pte_t *pte; 1097 pte_t entry; 1098 int ret = -EFAULT; 1099 1100 /* user gate pages are read-only */ 1101 if (gup_flags & FOLL_WRITE) 1102 return -EFAULT; 1103 if (address > TASK_SIZE) 1104 pgd = pgd_offset_k(address); 1105 else 1106 pgd = pgd_offset_gate(mm, address); 1107 if (pgd_none(*pgd)) 1108 return -EFAULT; 1109 p4d = p4d_offset(pgd, address); 1110 if (p4d_none(*p4d)) 1111 return -EFAULT; 1112 pud = pud_offset(p4d, address); 1113 if (pud_none(*pud)) 1114 return -EFAULT; 1115 pmd = pmd_offset(pud, address); 1116 if (!pmd_present(*pmd)) 1117 return -EFAULT; 1118 pte = pte_offset_map(pmd, address); 1119 if (!pte) 1120 return -EFAULT; 1121 entry = ptep_get(pte); 1122 if (pte_none(entry)) 1123 goto unmap; 1124 *vma = get_gate_vma(mm); 1125 if (!page) 1126 goto out; 1127 *page = vm_normal_page(*vma, address, entry); 1128 if (!*page) { 1129 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1130 goto unmap; 1131 *page = pte_page(entry); 1132 } 1133 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1134 if (unlikely(ret)) 1135 goto unmap; 1136 out: 1137 ret = 0; 1138 unmap: 1139 pte_unmap(pte); 1140 return ret; 1141 } 1142 1143 /* 1144 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1145 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1146 * to 0 and -EBUSY returned. 1147 */ 1148 static int faultin_page(struct vm_area_struct *vma, 1149 unsigned long address, unsigned int flags, bool unshare, 1150 int *locked) 1151 { 1152 unsigned int fault_flags = 0; 1153 vm_fault_t ret; 1154 1155 if (flags & FOLL_NOFAULT) 1156 return -EFAULT; 1157 if (flags & FOLL_WRITE) 1158 fault_flags |= FAULT_FLAG_WRITE; 1159 if (flags & FOLL_REMOTE) 1160 fault_flags |= FAULT_FLAG_REMOTE; 1161 if (flags & FOLL_UNLOCKABLE) { 1162 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1163 /* 1164 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1165 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1166 * That's because some callers may not be prepared to 1167 * handle early exits caused by non-fatal signals. 1168 */ 1169 if (flags & FOLL_INTERRUPTIBLE) 1170 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1171 } 1172 if (flags & FOLL_NOWAIT) 1173 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1174 if (flags & FOLL_TRIED) { 1175 /* 1176 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1177 * can co-exist 1178 */ 1179 fault_flags |= FAULT_FLAG_TRIED; 1180 } 1181 if (unshare) { 1182 fault_flags |= FAULT_FLAG_UNSHARE; 1183 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1184 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1185 } 1186 1187 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1188 1189 if (ret & VM_FAULT_COMPLETED) { 1190 /* 1191 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1192 * mmap lock in the page fault handler. Sanity check this. 1193 */ 1194 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1195 *locked = 0; 1196 1197 /* 1198 * We should do the same as VM_FAULT_RETRY, but let's not 1199 * return -EBUSY since that's not reflecting the reality of 1200 * what has happened - we've just fully completed a page 1201 * fault, with the mmap lock released. Use -EAGAIN to show 1202 * that we want to take the mmap lock _again_. 1203 */ 1204 return -EAGAIN; 1205 } 1206 1207 if (ret & VM_FAULT_ERROR) { 1208 int err = vm_fault_to_errno(ret, flags); 1209 1210 if (err) 1211 return err; 1212 BUG(); 1213 } 1214 1215 if (ret & VM_FAULT_RETRY) { 1216 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1217 *locked = 0; 1218 return -EBUSY; 1219 } 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * Writing to file-backed mappings which require folio dirty tracking using GUP 1226 * is a fundamentally broken operation, as kernel write access to GUP mappings 1227 * do not adhere to the semantics expected by a file system. 1228 * 1229 * Consider the following scenario:- 1230 * 1231 * 1. A folio is written to via GUP which write-faults the memory, notifying 1232 * the file system and dirtying the folio. 1233 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1234 * the PTE being marked read-only. 1235 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1236 * direct mapping. 1237 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1238 * (though it does not have to). 1239 * 1240 * This results in both data being written to a folio without writenotify, and 1241 * the folio being dirtied unexpectedly (if the caller decides to do so). 1242 */ 1243 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1244 unsigned long gup_flags) 1245 { 1246 /* 1247 * If we aren't pinning then no problematic write can occur. A long term 1248 * pin is the most egregious case so this is the case we disallow. 1249 */ 1250 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1251 (FOLL_PIN | FOLL_LONGTERM)) 1252 return true; 1253 1254 /* 1255 * If the VMA does not require dirty tracking then no problematic write 1256 * can occur either. 1257 */ 1258 return !vma_needs_dirty_tracking(vma); 1259 } 1260 1261 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1262 { 1263 vm_flags_t vm_flags = vma->vm_flags; 1264 int write = (gup_flags & FOLL_WRITE); 1265 int foreign = (gup_flags & FOLL_REMOTE); 1266 bool vma_anon = vma_is_anonymous(vma); 1267 1268 if (vm_flags & (VM_IO | VM_PFNMAP)) 1269 return -EFAULT; 1270 1271 if ((gup_flags & FOLL_ANON) && !vma_anon) 1272 return -EFAULT; 1273 1274 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1275 return -EOPNOTSUPP; 1276 1277 if (vma_is_secretmem(vma)) 1278 return -EFAULT; 1279 1280 if (write) { 1281 if (!vma_anon && 1282 !writable_file_mapping_allowed(vma, gup_flags)) 1283 return -EFAULT; 1284 1285 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1286 if (!(gup_flags & FOLL_FORCE)) 1287 return -EFAULT; 1288 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1289 if (is_vm_hugetlb_page(vma)) 1290 return -EFAULT; 1291 /* 1292 * We used to let the write,force case do COW in a 1293 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1294 * set a breakpoint in a read-only mapping of an 1295 * executable, without corrupting the file (yet only 1296 * when that file had been opened for writing!). 1297 * Anon pages in shared mappings are surprising: now 1298 * just reject it. 1299 */ 1300 if (!is_cow_mapping(vm_flags)) 1301 return -EFAULT; 1302 } 1303 } else if (!(vm_flags & VM_READ)) { 1304 if (!(gup_flags & FOLL_FORCE)) 1305 return -EFAULT; 1306 /* 1307 * Is there actually any vma we can reach here which does not 1308 * have VM_MAYREAD set? 1309 */ 1310 if (!(vm_flags & VM_MAYREAD)) 1311 return -EFAULT; 1312 } 1313 /* 1314 * gups are always data accesses, not instruction 1315 * fetches, so execute=false here 1316 */ 1317 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1318 return -EFAULT; 1319 return 0; 1320 } 1321 1322 /* 1323 * This is "vma_lookup()", but with a warning if we would have 1324 * historically expanded the stack in the GUP code. 1325 */ 1326 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1327 unsigned long addr) 1328 { 1329 #ifdef CONFIG_STACK_GROWSUP 1330 return vma_lookup(mm, addr); 1331 #else 1332 static volatile unsigned long next_warn; 1333 struct vm_area_struct *vma; 1334 unsigned long now, next; 1335 1336 vma = find_vma(mm, addr); 1337 if (!vma || (addr >= vma->vm_start)) 1338 return vma; 1339 1340 /* Only warn for half-way relevant accesses */ 1341 if (!(vma->vm_flags & VM_GROWSDOWN)) 1342 return NULL; 1343 if (vma->vm_start - addr > 65536) 1344 return NULL; 1345 1346 /* Let's not warn more than once an hour.. */ 1347 now = jiffies; next = next_warn; 1348 if (next && time_before(now, next)) 1349 return NULL; 1350 next_warn = now + 60*60*HZ; 1351 1352 /* Let people know things may have changed. */ 1353 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1354 current->comm, task_pid_nr(current), 1355 vma->vm_start, vma->vm_end, addr); 1356 dump_stack(); 1357 return NULL; 1358 #endif 1359 } 1360 1361 /** 1362 * __get_user_pages() - pin user pages in memory 1363 * @mm: mm_struct of target mm 1364 * @start: starting user address 1365 * @nr_pages: number of pages from start to pin 1366 * @gup_flags: flags modifying pin behaviour 1367 * @pages: array that receives pointers to the pages pinned. 1368 * Should be at least nr_pages long. Or NULL, if caller 1369 * only intends to ensure the pages are faulted in. 1370 * @locked: whether we're still with the mmap_lock held 1371 * 1372 * Returns either number of pages pinned (which may be less than the 1373 * number requested), or an error. Details about the return value: 1374 * 1375 * -- If nr_pages is 0, returns 0. 1376 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1377 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1378 * pages pinned. Again, this may be less than nr_pages. 1379 * -- 0 return value is possible when the fault would need to be retried. 1380 * 1381 * The caller is responsible for releasing returned @pages, via put_page(). 1382 * 1383 * Must be called with mmap_lock held. It may be released. See below. 1384 * 1385 * __get_user_pages walks a process's page tables and takes a reference to 1386 * each struct page that each user address corresponds to at a given 1387 * instant. That is, it takes the page that would be accessed if a user 1388 * thread accesses the given user virtual address at that instant. 1389 * 1390 * This does not guarantee that the page exists in the user mappings when 1391 * __get_user_pages returns, and there may even be a completely different 1392 * page there in some cases (eg. if mmapped pagecache has been invalidated 1393 * and subsequently re-faulted). However it does guarantee that the page 1394 * won't be freed completely. And mostly callers simply care that the page 1395 * contains data that was valid *at some point in time*. Typically, an IO 1396 * or similar operation cannot guarantee anything stronger anyway because 1397 * locks can't be held over the syscall boundary. 1398 * 1399 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1400 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1401 * appropriate) must be called after the page is finished with, and 1402 * before put_page is called. 1403 * 1404 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1405 * be released. If this happens *@locked will be set to 0 on return. 1406 * 1407 * A caller using such a combination of @gup_flags must therefore hold the 1408 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1409 * it must be held for either reading or writing and will not be released. 1410 * 1411 * In most cases, get_user_pages or get_user_pages_fast should be used 1412 * instead of __get_user_pages. __get_user_pages should be used only if 1413 * you need some special @gup_flags. 1414 */ 1415 static long __get_user_pages(struct mm_struct *mm, 1416 unsigned long start, unsigned long nr_pages, 1417 unsigned int gup_flags, struct page **pages, 1418 int *locked) 1419 { 1420 long ret = 0, i = 0; 1421 struct vm_area_struct *vma = NULL; 1422 struct follow_page_context ctx = { NULL }; 1423 1424 if (!nr_pages) 1425 return 0; 1426 1427 start = untagged_addr_remote(mm, start); 1428 1429 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1430 1431 do { 1432 struct page *page; 1433 unsigned int page_increm; 1434 1435 /* first iteration or cross vma bound */ 1436 if (!vma || start >= vma->vm_end) { 1437 /* 1438 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1439 * lookups+error reporting differently. 1440 */ 1441 if (gup_flags & FOLL_MADV_POPULATE) { 1442 vma = vma_lookup(mm, start); 1443 if (!vma) { 1444 ret = -ENOMEM; 1445 goto out; 1446 } 1447 if (check_vma_flags(vma, gup_flags)) { 1448 ret = -EINVAL; 1449 goto out; 1450 } 1451 goto retry; 1452 } 1453 vma = gup_vma_lookup(mm, start); 1454 if (!vma && in_gate_area(mm, start)) { 1455 ret = get_gate_page(mm, start & PAGE_MASK, 1456 gup_flags, &vma, 1457 pages ? &page : NULL); 1458 if (ret) 1459 goto out; 1460 ctx.page_mask = 0; 1461 goto next_page; 1462 } 1463 1464 if (!vma) { 1465 ret = -EFAULT; 1466 goto out; 1467 } 1468 ret = check_vma_flags(vma, gup_flags); 1469 if (ret) 1470 goto out; 1471 } 1472 retry: 1473 /* 1474 * If we have a pending SIGKILL, don't keep faulting pages and 1475 * potentially allocating memory. 1476 */ 1477 if (fatal_signal_pending(current)) { 1478 ret = -EINTR; 1479 goto out; 1480 } 1481 cond_resched(); 1482 1483 page = follow_page_mask(vma, start, gup_flags, &ctx); 1484 if (!page || PTR_ERR(page) == -EMLINK) { 1485 ret = faultin_page(vma, start, gup_flags, 1486 PTR_ERR(page) == -EMLINK, locked); 1487 switch (ret) { 1488 case 0: 1489 goto retry; 1490 case -EBUSY: 1491 case -EAGAIN: 1492 ret = 0; 1493 fallthrough; 1494 case -EFAULT: 1495 case -ENOMEM: 1496 case -EHWPOISON: 1497 goto out; 1498 } 1499 BUG(); 1500 } else if (PTR_ERR(page) == -EEXIST) { 1501 /* 1502 * Proper page table entry exists, but no corresponding 1503 * struct page. If the caller expects **pages to be 1504 * filled in, bail out now, because that can't be done 1505 * for this page. 1506 */ 1507 if (pages) { 1508 ret = PTR_ERR(page); 1509 goto out; 1510 } 1511 } else if (IS_ERR(page)) { 1512 ret = PTR_ERR(page); 1513 goto out; 1514 } 1515 next_page: 1516 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1517 if (page_increm > nr_pages) 1518 page_increm = nr_pages; 1519 1520 if (pages) { 1521 struct page *subpage; 1522 unsigned int j; 1523 1524 /* 1525 * This must be a large folio (and doesn't need to 1526 * be the whole folio; it can be part of it), do 1527 * the refcount work for all the subpages too. 1528 * 1529 * NOTE: here the page may not be the head page 1530 * e.g. when start addr is not thp-size aligned. 1531 * try_grab_folio() should have taken care of tail 1532 * pages. 1533 */ 1534 if (page_increm > 1) { 1535 struct folio *folio = page_folio(page); 1536 1537 /* 1538 * Since we already hold refcount on the 1539 * large folio, this should never fail. 1540 */ 1541 if (try_grab_folio(folio, page_increm - 1, 1542 gup_flags)) { 1543 /* 1544 * Release the 1st page ref if the 1545 * folio is problematic, fail hard. 1546 */ 1547 gup_put_folio(folio, 1, gup_flags); 1548 ret = -EFAULT; 1549 goto out; 1550 } 1551 } 1552 1553 for (j = 0; j < page_increm; j++) { 1554 subpage = nth_page(page, j); 1555 pages[i + j] = subpage; 1556 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1557 flush_dcache_page(subpage); 1558 } 1559 } 1560 1561 i += page_increm; 1562 start += page_increm * PAGE_SIZE; 1563 nr_pages -= page_increm; 1564 } while (nr_pages); 1565 out: 1566 if (ctx.pgmap) 1567 put_dev_pagemap(ctx.pgmap); 1568 return i ? i : ret; 1569 } 1570 1571 static bool vma_permits_fault(struct vm_area_struct *vma, 1572 unsigned int fault_flags) 1573 { 1574 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1575 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1576 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1577 1578 if (!(vm_flags & vma->vm_flags)) 1579 return false; 1580 1581 /* 1582 * The architecture might have a hardware protection 1583 * mechanism other than read/write that can deny access. 1584 * 1585 * gup always represents data access, not instruction 1586 * fetches, so execute=false here: 1587 */ 1588 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1589 return false; 1590 1591 return true; 1592 } 1593 1594 /** 1595 * fixup_user_fault() - manually resolve a user page fault 1596 * @mm: mm_struct of target mm 1597 * @address: user address 1598 * @fault_flags:flags to pass down to handle_mm_fault() 1599 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1600 * does not allow retry. If NULL, the caller must guarantee 1601 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1602 * 1603 * This is meant to be called in the specific scenario where for locking reasons 1604 * we try to access user memory in atomic context (within a pagefault_disable() 1605 * section), this returns -EFAULT, and we want to resolve the user fault before 1606 * trying again. 1607 * 1608 * Typically this is meant to be used by the futex code. 1609 * 1610 * The main difference with get_user_pages() is that this function will 1611 * unconditionally call handle_mm_fault() which will in turn perform all the 1612 * necessary SW fixup of the dirty and young bits in the PTE, while 1613 * get_user_pages() only guarantees to update these in the struct page. 1614 * 1615 * This is important for some architectures where those bits also gate the 1616 * access permission to the page because they are maintained in software. On 1617 * such architectures, gup() will not be enough to make a subsequent access 1618 * succeed. 1619 * 1620 * This function will not return with an unlocked mmap_lock. So it has not the 1621 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1622 */ 1623 int fixup_user_fault(struct mm_struct *mm, 1624 unsigned long address, unsigned int fault_flags, 1625 bool *unlocked) 1626 { 1627 struct vm_area_struct *vma; 1628 vm_fault_t ret; 1629 1630 address = untagged_addr_remote(mm, address); 1631 1632 if (unlocked) 1633 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1634 1635 retry: 1636 vma = gup_vma_lookup(mm, address); 1637 if (!vma) 1638 return -EFAULT; 1639 1640 if (!vma_permits_fault(vma, fault_flags)) 1641 return -EFAULT; 1642 1643 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1644 fatal_signal_pending(current)) 1645 return -EINTR; 1646 1647 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1648 1649 if (ret & VM_FAULT_COMPLETED) { 1650 /* 1651 * NOTE: it's a pity that we need to retake the lock here 1652 * to pair with the unlock() in the callers. Ideally we 1653 * could tell the callers so they do not need to unlock. 1654 */ 1655 mmap_read_lock(mm); 1656 *unlocked = true; 1657 return 0; 1658 } 1659 1660 if (ret & VM_FAULT_ERROR) { 1661 int err = vm_fault_to_errno(ret, 0); 1662 1663 if (err) 1664 return err; 1665 BUG(); 1666 } 1667 1668 if (ret & VM_FAULT_RETRY) { 1669 mmap_read_lock(mm); 1670 *unlocked = true; 1671 fault_flags |= FAULT_FLAG_TRIED; 1672 goto retry; 1673 } 1674 1675 return 0; 1676 } 1677 EXPORT_SYMBOL_GPL(fixup_user_fault); 1678 1679 /* 1680 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1681 * specified, it'll also respond to generic signals. The caller of GUP 1682 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1683 */ 1684 static bool gup_signal_pending(unsigned int flags) 1685 { 1686 if (fatal_signal_pending(current)) 1687 return true; 1688 1689 if (!(flags & FOLL_INTERRUPTIBLE)) 1690 return false; 1691 1692 return signal_pending(current); 1693 } 1694 1695 /* 1696 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1697 * the caller. This function may drop the mmap_lock. If it does so, then it will 1698 * set (*locked = 0). 1699 * 1700 * (*locked == 0) means that the caller expects this function to acquire and 1701 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1702 * the function returns, even though it may have changed temporarily during 1703 * function execution. 1704 * 1705 * Please note that this function, unlike __get_user_pages(), will not return 0 1706 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1707 */ 1708 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1709 unsigned long start, 1710 unsigned long nr_pages, 1711 struct page **pages, 1712 int *locked, 1713 unsigned int flags) 1714 { 1715 long ret, pages_done; 1716 bool must_unlock = false; 1717 1718 if (!nr_pages) 1719 return 0; 1720 1721 /* 1722 * The internal caller expects GUP to manage the lock internally and the 1723 * lock must be released when this returns. 1724 */ 1725 if (!*locked) { 1726 if (mmap_read_lock_killable(mm)) 1727 return -EAGAIN; 1728 must_unlock = true; 1729 *locked = 1; 1730 } 1731 else 1732 mmap_assert_locked(mm); 1733 1734 if (flags & FOLL_PIN) 1735 mm_set_has_pinned_flag(&mm->flags); 1736 1737 /* 1738 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1739 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1740 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1741 * for FOLL_GET, not for the newer FOLL_PIN. 1742 * 1743 * FOLL_PIN always expects pages to be non-null, but no need to assert 1744 * that here, as any failures will be obvious enough. 1745 */ 1746 if (pages && !(flags & FOLL_PIN)) 1747 flags |= FOLL_GET; 1748 1749 pages_done = 0; 1750 for (;;) { 1751 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1752 locked); 1753 if (!(flags & FOLL_UNLOCKABLE)) { 1754 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1755 pages_done = ret; 1756 break; 1757 } 1758 1759 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1760 if (!*locked) { 1761 BUG_ON(ret < 0); 1762 BUG_ON(ret >= nr_pages); 1763 } 1764 1765 if (ret > 0) { 1766 nr_pages -= ret; 1767 pages_done += ret; 1768 if (!nr_pages) 1769 break; 1770 } 1771 if (*locked) { 1772 /* 1773 * VM_FAULT_RETRY didn't trigger or it was a 1774 * FOLL_NOWAIT. 1775 */ 1776 if (!pages_done) 1777 pages_done = ret; 1778 break; 1779 } 1780 /* 1781 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1782 * For the prefault case (!pages) we only update counts. 1783 */ 1784 if (likely(pages)) 1785 pages += ret; 1786 start += ret << PAGE_SHIFT; 1787 1788 /* The lock was temporarily dropped, so we must unlock later */ 1789 must_unlock = true; 1790 1791 retry: 1792 /* 1793 * Repeat on the address that fired VM_FAULT_RETRY 1794 * with both FAULT_FLAG_ALLOW_RETRY and 1795 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1796 * by fatal signals of even common signals, depending on 1797 * the caller's request. So we need to check it before we 1798 * start trying again otherwise it can loop forever. 1799 */ 1800 if (gup_signal_pending(flags)) { 1801 if (!pages_done) 1802 pages_done = -EINTR; 1803 break; 1804 } 1805 1806 ret = mmap_read_lock_killable(mm); 1807 if (ret) { 1808 BUG_ON(ret > 0); 1809 if (!pages_done) 1810 pages_done = ret; 1811 break; 1812 } 1813 1814 *locked = 1; 1815 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1816 pages, locked); 1817 if (!*locked) { 1818 /* Continue to retry until we succeeded */ 1819 BUG_ON(ret != 0); 1820 goto retry; 1821 } 1822 if (ret != 1) { 1823 BUG_ON(ret > 1); 1824 if (!pages_done) 1825 pages_done = ret; 1826 break; 1827 } 1828 nr_pages--; 1829 pages_done++; 1830 if (!nr_pages) 1831 break; 1832 if (likely(pages)) 1833 pages++; 1834 start += PAGE_SIZE; 1835 } 1836 if (must_unlock && *locked) { 1837 /* 1838 * We either temporarily dropped the lock, or the caller 1839 * requested that we both acquire and drop the lock. Either way, 1840 * we must now unlock, and notify the caller of that state. 1841 */ 1842 mmap_read_unlock(mm); 1843 *locked = 0; 1844 } 1845 1846 /* 1847 * Failing to pin anything implies something has gone wrong (except when 1848 * FOLL_NOWAIT is specified). 1849 */ 1850 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1851 return -EFAULT; 1852 1853 return pages_done; 1854 } 1855 1856 /** 1857 * populate_vma_page_range() - populate a range of pages in the vma. 1858 * @vma: target vma 1859 * @start: start address 1860 * @end: end address 1861 * @locked: whether the mmap_lock is still held 1862 * 1863 * This takes care of mlocking the pages too if VM_LOCKED is set. 1864 * 1865 * Return either number of pages pinned in the vma, or a negative error 1866 * code on error. 1867 * 1868 * vma->vm_mm->mmap_lock must be held. 1869 * 1870 * If @locked is NULL, it may be held for read or write and will 1871 * be unperturbed. 1872 * 1873 * If @locked is non-NULL, it must held for read only and may be 1874 * released. If it's released, *@locked will be set to 0. 1875 */ 1876 long populate_vma_page_range(struct vm_area_struct *vma, 1877 unsigned long start, unsigned long end, int *locked) 1878 { 1879 struct mm_struct *mm = vma->vm_mm; 1880 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1881 int local_locked = 1; 1882 int gup_flags; 1883 long ret; 1884 1885 VM_BUG_ON(!PAGE_ALIGNED(start)); 1886 VM_BUG_ON(!PAGE_ALIGNED(end)); 1887 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1888 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1889 mmap_assert_locked(mm); 1890 1891 /* 1892 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1893 * faultin_page() to break COW, so it has no work to do here. 1894 */ 1895 if (vma->vm_flags & VM_LOCKONFAULT) 1896 return nr_pages; 1897 1898 /* ... similarly, we've never faulted in PROT_NONE pages */ 1899 if (!vma_is_accessible(vma)) 1900 return -EFAULT; 1901 1902 gup_flags = FOLL_TOUCH; 1903 /* 1904 * We want to touch writable mappings with a write fault in order 1905 * to break COW, except for shared mappings because these don't COW 1906 * and we would not want to dirty them for nothing. 1907 * 1908 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1909 * readable (ie write-only or executable). 1910 */ 1911 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1912 gup_flags |= FOLL_WRITE; 1913 else 1914 gup_flags |= FOLL_FORCE; 1915 1916 if (locked) 1917 gup_flags |= FOLL_UNLOCKABLE; 1918 1919 /* 1920 * We made sure addr is within a VMA, so the following will 1921 * not result in a stack expansion that recurses back here. 1922 */ 1923 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1924 NULL, locked ? locked : &local_locked); 1925 lru_add_drain(); 1926 return ret; 1927 } 1928 1929 /* 1930 * faultin_page_range() - populate (prefault) page tables inside the 1931 * given range readable/writable 1932 * 1933 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1934 * 1935 * @mm: the mm to populate page tables in 1936 * @start: start address 1937 * @end: end address 1938 * @write: whether to prefault readable or writable 1939 * @locked: whether the mmap_lock is still held 1940 * 1941 * Returns either number of processed pages in the MM, or a negative error 1942 * code on error (see __get_user_pages()). Note that this function reports 1943 * errors related to VMAs, such as incompatible mappings, as expected by 1944 * MADV_POPULATE_(READ|WRITE). 1945 * 1946 * The range must be page-aligned. 1947 * 1948 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1949 */ 1950 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1951 unsigned long end, bool write, int *locked) 1952 { 1953 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1954 int gup_flags; 1955 long ret; 1956 1957 VM_BUG_ON(!PAGE_ALIGNED(start)); 1958 VM_BUG_ON(!PAGE_ALIGNED(end)); 1959 mmap_assert_locked(mm); 1960 1961 /* 1962 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1963 * the page dirty with FOLL_WRITE -- which doesn't make a 1964 * difference with !FOLL_FORCE, because the page is writable 1965 * in the page table. 1966 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1967 * a poisoned page. 1968 * !FOLL_FORCE: Require proper access permissions. 1969 */ 1970 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1971 FOLL_MADV_POPULATE; 1972 if (write) 1973 gup_flags |= FOLL_WRITE; 1974 1975 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1976 gup_flags); 1977 lru_add_drain(); 1978 return ret; 1979 } 1980 1981 /* 1982 * __mm_populate - populate and/or mlock pages within a range of address space. 1983 * 1984 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1985 * flags. VMAs must be already marked with the desired vm_flags, and 1986 * mmap_lock must not be held. 1987 */ 1988 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1989 { 1990 struct mm_struct *mm = current->mm; 1991 unsigned long end, nstart, nend; 1992 struct vm_area_struct *vma = NULL; 1993 int locked = 0; 1994 long ret = 0; 1995 1996 end = start + len; 1997 1998 for (nstart = start; nstart < end; nstart = nend) { 1999 /* 2000 * We want to fault in pages for [nstart; end) address range. 2001 * Find first corresponding VMA. 2002 */ 2003 if (!locked) { 2004 locked = 1; 2005 mmap_read_lock(mm); 2006 vma = find_vma_intersection(mm, nstart, end); 2007 } else if (nstart >= vma->vm_end) 2008 vma = find_vma_intersection(mm, vma->vm_end, end); 2009 2010 if (!vma) 2011 break; 2012 /* 2013 * Set [nstart; nend) to intersection of desired address 2014 * range with the first VMA. Also, skip undesirable VMA types. 2015 */ 2016 nend = min(end, vma->vm_end); 2017 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2018 continue; 2019 if (nstart < vma->vm_start) 2020 nstart = vma->vm_start; 2021 /* 2022 * Now fault in a range of pages. populate_vma_page_range() 2023 * double checks the vma flags, so that it won't mlock pages 2024 * if the vma was already munlocked. 2025 */ 2026 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2027 if (ret < 0) { 2028 if (ignore_errors) { 2029 ret = 0; 2030 continue; /* continue at next VMA */ 2031 } 2032 break; 2033 } 2034 nend = nstart + ret * PAGE_SIZE; 2035 ret = 0; 2036 } 2037 if (locked) 2038 mmap_read_unlock(mm); 2039 return ret; /* 0 or negative error code */ 2040 } 2041 #else /* CONFIG_MMU */ 2042 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2043 unsigned long nr_pages, struct page **pages, 2044 int *locked, unsigned int foll_flags) 2045 { 2046 struct vm_area_struct *vma; 2047 bool must_unlock = false; 2048 unsigned long vm_flags; 2049 long i; 2050 2051 if (!nr_pages) 2052 return 0; 2053 2054 /* 2055 * The internal caller expects GUP to manage the lock internally and the 2056 * lock must be released when this returns. 2057 */ 2058 if (!*locked) { 2059 if (mmap_read_lock_killable(mm)) 2060 return -EAGAIN; 2061 must_unlock = true; 2062 *locked = 1; 2063 } 2064 2065 /* calculate required read or write permissions. 2066 * If FOLL_FORCE is set, we only require the "MAY" flags. 2067 */ 2068 vm_flags = (foll_flags & FOLL_WRITE) ? 2069 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2070 vm_flags &= (foll_flags & FOLL_FORCE) ? 2071 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2072 2073 for (i = 0; i < nr_pages; i++) { 2074 vma = find_vma(mm, start); 2075 if (!vma) 2076 break; 2077 2078 /* protect what we can, including chardevs */ 2079 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2080 !(vm_flags & vma->vm_flags)) 2081 break; 2082 2083 if (pages) { 2084 pages[i] = virt_to_page((void *)start); 2085 if (pages[i]) 2086 get_page(pages[i]); 2087 } 2088 2089 start = (start + PAGE_SIZE) & PAGE_MASK; 2090 } 2091 2092 if (must_unlock && *locked) { 2093 mmap_read_unlock(mm); 2094 *locked = 0; 2095 } 2096 2097 return i ? : -EFAULT; 2098 } 2099 #endif /* !CONFIG_MMU */ 2100 2101 /** 2102 * fault_in_writeable - fault in userspace address range for writing 2103 * @uaddr: start of address range 2104 * @size: size of address range 2105 * 2106 * Returns the number of bytes not faulted in (like copy_to_user() and 2107 * copy_from_user()). 2108 */ 2109 size_t fault_in_writeable(char __user *uaddr, size_t size) 2110 { 2111 char __user *start = uaddr, *end; 2112 2113 if (unlikely(size == 0)) 2114 return 0; 2115 if (!user_write_access_begin(uaddr, size)) 2116 return size; 2117 if (!PAGE_ALIGNED(uaddr)) { 2118 unsafe_put_user(0, uaddr, out); 2119 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2120 } 2121 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2122 if (unlikely(end < start)) 2123 end = NULL; 2124 while (uaddr != end) { 2125 unsafe_put_user(0, uaddr, out); 2126 uaddr += PAGE_SIZE; 2127 } 2128 2129 out: 2130 user_write_access_end(); 2131 if (size > uaddr - start) 2132 return size - (uaddr - start); 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(fault_in_writeable); 2136 2137 /** 2138 * fault_in_subpage_writeable - fault in an address range for writing 2139 * @uaddr: start of address range 2140 * @size: size of address range 2141 * 2142 * Fault in a user address range for writing while checking for permissions at 2143 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2144 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2145 * 2146 * Returns the number of bytes not faulted in (like copy_to_user() and 2147 * copy_from_user()). 2148 */ 2149 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2150 { 2151 size_t faulted_in; 2152 2153 /* 2154 * Attempt faulting in at page granularity first for page table 2155 * permission checking. The arch-specific probe_subpage_writeable() 2156 * functions may not check for this. 2157 */ 2158 faulted_in = size - fault_in_writeable(uaddr, size); 2159 if (faulted_in) 2160 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2161 2162 return size - faulted_in; 2163 } 2164 EXPORT_SYMBOL(fault_in_subpage_writeable); 2165 2166 /* 2167 * fault_in_safe_writeable - fault in an address range for writing 2168 * @uaddr: start of address range 2169 * @size: length of address range 2170 * 2171 * Faults in an address range for writing. This is primarily useful when we 2172 * already know that some or all of the pages in the address range aren't in 2173 * memory. 2174 * 2175 * Unlike fault_in_writeable(), this function is non-destructive. 2176 * 2177 * Note that we don't pin or otherwise hold the pages referenced that we fault 2178 * in. There's no guarantee that they'll stay in memory for any duration of 2179 * time. 2180 * 2181 * Returns the number of bytes not faulted in, like copy_to_user() and 2182 * copy_from_user(). 2183 */ 2184 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2185 { 2186 unsigned long start = (unsigned long)uaddr, end; 2187 struct mm_struct *mm = current->mm; 2188 bool unlocked = false; 2189 2190 if (unlikely(size == 0)) 2191 return 0; 2192 end = PAGE_ALIGN(start + size); 2193 if (end < start) 2194 end = 0; 2195 2196 mmap_read_lock(mm); 2197 do { 2198 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2199 break; 2200 start = (start + PAGE_SIZE) & PAGE_MASK; 2201 } while (start != end); 2202 mmap_read_unlock(mm); 2203 2204 if (size > (unsigned long)uaddr - start) 2205 return size - ((unsigned long)uaddr - start); 2206 return 0; 2207 } 2208 EXPORT_SYMBOL(fault_in_safe_writeable); 2209 2210 /** 2211 * fault_in_readable - fault in userspace address range for reading 2212 * @uaddr: start of user address range 2213 * @size: size of user address range 2214 * 2215 * Returns the number of bytes not faulted in (like copy_to_user() and 2216 * copy_from_user()). 2217 */ 2218 size_t fault_in_readable(const char __user *uaddr, size_t size) 2219 { 2220 const char __user *start = uaddr, *end; 2221 volatile char c; 2222 2223 if (unlikely(size == 0)) 2224 return 0; 2225 if (!user_read_access_begin(uaddr, size)) 2226 return size; 2227 if (!PAGE_ALIGNED(uaddr)) { 2228 unsafe_get_user(c, uaddr, out); 2229 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2230 } 2231 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2232 if (unlikely(end < start)) 2233 end = NULL; 2234 while (uaddr != end) { 2235 unsafe_get_user(c, uaddr, out); 2236 uaddr += PAGE_SIZE; 2237 } 2238 2239 out: 2240 user_read_access_end(); 2241 (void)c; 2242 if (size > uaddr - start) 2243 return size - (uaddr - start); 2244 return 0; 2245 } 2246 EXPORT_SYMBOL(fault_in_readable); 2247 2248 /** 2249 * get_dump_page() - pin user page in memory while writing it to core dump 2250 * @addr: user address 2251 * 2252 * Returns struct page pointer of user page pinned for dump, 2253 * to be freed afterwards by put_page(). 2254 * 2255 * Returns NULL on any kind of failure - a hole must then be inserted into 2256 * the corefile, to preserve alignment with its headers; and also returns 2257 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2258 * allowing a hole to be left in the corefile to save disk space. 2259 * 2260 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2261 */ 2262 #ifdef CONFIG_ELF_CORE 2263 struct page *get_dump_page(unsigned long addr) 2264 { 2265 struct page *page; 2266 int locked = 0; 2267 int ret; 2268 2269 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2270 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2271 return (ret == 1) ? page : NULL; 2272 } 2273 #endif /* CONFIG_ELF_CORE */ 2274 2275 #ifdef CONFIG_MIGRATION 2276 2277 /* 2278 * An array of either pages or folios ("pofs"). Although it may seem tempting to 2279 * avoid this complication, by simply interpreting a list of folios as a list of 2280 * pages, that approach won't work in the longer term, because eventually the 2281 * layouts of struct page and struct folio will become completely different. 2282 * Furthermore, this pof approach avoids excessive page_folio() calls. 2283 */ 2284 struct pages_or_folios { 2285 union { 2286 struct page **pages; 2287 struct folio **folios; 2288 void **entries; 2289 }; 2290 bool has_folios; 2291 long nr_entries; 2292 }; 2293 2294 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) 2295 { 2296 if (pofs->has_folios) 2297 return pofs->folios[i]; 2298 return page_folio(pofs->pages[i]); 2299 } 2300 2301 static void pofs_clear_entry(struct pages_or_folios *pofs, long i) 2302 { 2303 pofs->entries[i] = NULL; 2304 } 2305 2306 static void pofs_unpin(struct pages_or_folios *pofs) 2307 { 2308 if (pofs->has_folios) 2309 unpin_folios(pofs->folios, pofs->nr_entries); 2310 else 2311 unpin_user_pages(pofs->pages, pofs->nr_entries); 2312 } 2313 2314 /* 2315 * Returns the number of collected folios. Return value is always >= 0. 2316 */ 2317 static unsigned long collect_longterm_unpinnable_folios( 2318 struct list_head *movable_folio_list, 2319 struct pages_or_folios *pofs) 2320 { 2321 unsigned long i, collected = 0; 2322 struct folio *prev_folio = NULL; 2323 bool drain_allow = true; 2324 2325 for (i = 0; i < pofs->nr_entries; i++) { 2326 struct folio *folio = pofs_get_folio(pofs, i); 2327 2328 if (folio == prev_folio) 2329 continue; 2330 prev_folio = folio; 2331 2332 if (folio_is_longterm_pinnable(folio)) 2333 continue; 2334 2335 collected++; 2336 2337 if (folio_is_device_coherent(folio)) 2338 continue; 2339 2340 if (folio_test_hugetlb(folio)) { 2341 isolate_hugetlb(folio, movable_folio_list); 2342 continue; 2343 } 2344 2345 if (!folio_test_lru(folio) && drain_allow) { 2346 lru_add_drain_all(); 2347 drain_allow = false; 2348 } 2349 2350 if (!folio_isolate_lru(folio)) 2351 continue; 2352 2353 list_add_tail(&folio->lru, movable_folio_list); 2354 node_stat_mod_folio(folio, 2355 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2356 folio_nr_pages(folio)); 2357 } 2358 2359 return collected; 2360 } 2361 2362 /* 2363 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2364 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2365 * failure (or partial success). 2366 */ 2367 static int 2368 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, 2369 struct pages_or_folios *pofs) 2370 { 2371 int ret; 2372 unsigned long i; 2373 2374 for (i = 0; i < pofs->nr_entries; i++) { 2375 struct folio *folio = pofs_get_folio(pofs, i); 2376 2377 if (folio_is_device_coherent(folio)) { 2378 /* 2379 * Migration will fail if the folio is pinned, so 2380 * convert the pin on the source folio to a normal 2381 * reference. 2382 */ 2383 pofs_clear_entry(pofs, i); 2384 folio_get(folio); 2385 gup_put_folio(folio, 1, FOLL_PIN); 2386 2387 if (migrate_device_coherent_folio(folio)) { 2388 ret = -EBUSY; 2389 goto err; 2390 } 2391 2392 continue; 2393 } 2394 2395 /* 2396 * We can't migrate folios with unexpected references, so drop 2397 * the reference obtained by __get_user_pages_locked(). 2398 * Migrating folios have been added to movable_folio_list after 2399 * calling folio_isolate_lru() which takes a reference so the 2400 * folio won't be freed if it's migrating. 2401 */ 2402 unpin_folio(folio); 2403 pofs_clear_entry(pofs, i); 2404 } 2405 2406 if (!list_empty(movable_folio_list)) { 2407 struct migration_target_control mtc = { 2408 .nid = NUMA_NO_NODE, 2409 .gfp_mask = GFP_USER | __GFP_NOWARN, 2410 .reason = MR_LONGTERM_PIN, 2411 }; 2412 2413 if (migrate_pages(movable_folio_list, alloc_migration_target, 2414 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2415 MR_LONGTERM_PIN, NULL)) { 2416 ret = -ENOMEM; 2417 goto err; 2418 } 2419 } 2420 2421 putback_movable_pages(movable_folio_list); 2422 2423 return -EAGAIN; 2424 2425 err: 2426 pofs_unpin(pofs); 2427 putback_movable_pages(movable_folio_list); 2428 2429 return ret; 2430 } 2431 2432 static long 2433 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) 2434 { 2435 LIST_HEAD(movable_folio_list); 2436 unsigned long collected; 2437 2438 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2439 pofs); 2440 if (!collected) 2441 return 0; 2442 2443 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); 2444 } 2445 2446 /* 2447 * Check whether all folios are *allowed* to be pinned indefinitely (long term). 2448 * Rather confusingly, all folios in the range are required to be pinned via 2449 * FOLL_PIN, before calling this routine. 2450 * 2451 * Return values: 2452 * 2453 * 0: if everything is OK and all folios in the range are allowed to be pinned, 2454 * then this routine leaves all folios pinned and returns zero for success. 2455 * 2456 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this 2457 * routine will migrate those folios away, unpin all the folios in the range. If 2458 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The 2459 * caller should re-pin the entire range with FOLL_PIN and then call this 2460 * routine again. 2461 * 2462 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this 2463 * indicates a migration failure. The caller should give up, and propagate the 2464 * error back up the call stack. The caller does not need to unpin any folios in 2465 * that case, because this routine will do the unpinning. 2466 */ 2467 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2468 struct folio **folios) 2469 { 2470 struct pages_or_folios pofs = { 2471 .folios = folios, 2472 .has_folios = true, 2473 .nr_entries = nr_folios, 2474 }; 2475 2476 return check_and_migrate_movable_pages_or_folios(&pofs); 2477 } 2478 2479 /* 2480 * Return values and behavior are the same as those for 2481 * check_and_migrate_movable_folios(). 2482 */ 2483 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2484 struct page **pages) 2485 { 2486 struct pages_or_folios pofs = { 2487 .pages = pages, 2488 .has_folios = false, 2489 .nr_entries = nr_pages, 2490 }; 2491 2492 return check_and_migrate_movable_pages_or_folios(&pofs); 2493 } 2494 #else 2495 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2496 struct page **pages) 2497 { 2498 return 0; 2499 } 2500 2501 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2502 struct folio **folios) 2503 { 2504 return 0; 2505 } 2506 #endif /* CONFIG_MIGRATION */ 2507 2508 /* 2509 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2510 * allows us to process the FOLL_LONGTERM flag. 2511 */ 2512 static long __gup_longterm_locked(struct mm_struct *mm, 2513 unsigned long start, 2514 unsigned long nr_pages, 2515 struct page **pages, 2516 int *locked, 2517 unsigned int gup_flags) 2518 { 2519 unsigned int flags; 2520 long rc, nr_pinned_pages; 2521 2522 if (!(gup_flags & FOLL_LONGTERM)) 2523 return __get_user_pages_locked(mm, start, nr_pages, pages, 2524 locked, gup_flags); 2525 2526 flags = memalloc_pin_save(); 2527 do { 2528 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2529 pages, locked, 2530 gup_flags); 2531 if (nr_pinned_pages <= 0) { 2532 rc = nr_pinned_pages; 2533 break; 2534 } 2535 2536 /* FOLL_LONGTERM implies FOLL_PIN */ 2537 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2538 } while (rc == -EAGAIN); 2539 memalloc_pin_restore(flags); 2540 return rc ? rc : nr_pinned_pages; 2541 } 2542 2543 /* 2544 * Check that the given flags are valid for the exported gup/pup interface, and 2545 * update them with the required flags that the caller must have set. 2546 */ 2547 static bool is_valid_gup_args(struct page **pages, int *locked, 2548 unsigned int *gup_flags_p, unsigned int to_set) 2549 { 2550 unsigned int gup_flags = *gup_flags_p; 2551 2552 /* 2553 * These flags not allowed to be specified externally to the gup 2554 * interfaces: 2555 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2556 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2557 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2558 */ 2559 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2560 return false; 2561 2562 gup_flags |= to_set; 2563 if (locked) { 2564 /* At the external interface locked must be set */ 2565 if (WARN_ON_ONCE(*locked != 1)) 2566 return false; 2567 2568 gup_flags |= FOLL_UNLOCKABLE; 2569 } 2570 2571 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2572 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2573 (FOLL_PIN | FOLL_GET))) 2574 return false; 2575 2576 /* LONGTERM can only be specified when pinning */ 2577 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2578 return false; 2579 2580 /* Pages input must be given if using GET/PIN */ 2581 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2582 return false; 2583 2584 /* We want to allow the pgmap to be hot-unplugged at all times */ 2585 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2586 (gup_flags & FOLL_PCI_P2PDMA))) 2587 return false; 2588 2589 *gup_flags_p = gup_flags; 2590 return true; 2591 } 2592 2593 #ifdef CONFIG_MMU 2594 /** 2595 * get_user_pages_remote() - pin user pages in memory 2596 * @mm: mm_struct of target mm 2597 * @start: starting user address 2598 * @nr_pages: number of pages from start to pin 2599 * @gup_flags: flags modifying lookup behaviour 2600 * @pages: array that receives pointers to the pages pinned. 2601 * Should be at least nr_pages long. Or NULL, if caller 2602 * only intends to ensure the pages are faulted in. 2603 * @locked: pointer to lock flag indicating whether lock is held and 2604 * subsequently whether VM_FAULT_RETRY functionality can be 2605 * utilised. Lock must initially be held. 2606 * 2607 * Returns either number of pages pinned (which may be less than the 2608 * number requested), or an error. Details about the return value: 2609 * 2610 * -- If nr_pages is 0, returns 0. 2611 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2612 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2613 * pages pinned. Again, this may be less than nr_pages. 2614 * 2615 * The caller is responsible for releasing returned @pages, via put_page(). 2616 * 2617 * Must be called with mmap_lock held for read or write. 2618 * 2619 * get_user_pages_remote walks a process's page tables and takes a reference 2620 * to each struct page that each user address corresponds to at a given 2621 * instant. That is, it takes the page that would be accessed if a user 2622 * thread accesses the given user virtual address at that instant. 2623 * 2624 * This does not guarantee that the page exists in the user mappings when 2625 * get_user_pages_remote returns, and there may even be a completely different 2626 * page there in some cases (eg. if mmapped pagecache has been invalidated 2627 * and subsequently re-faulted). However it does guarantee that the page 2628 * won't be freed completely. And mostly callers simply care that the page 2629 * contains data that was valid *at some point in time*. Typically, an IO 2630 * or similar operation cannot guarantee anything stronger anyway because 2631 * locks can't be held over the syscall boundary. 2632 * 2633 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2634 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2635 * be called after the page is finished with, and before put_page is called. 2636 * 2637 * get_user_pages_remote is typically used for fewer-copy IO operations, 2638 * to get a handle on the memory by some means other than accesses 2639 * via the user virtual addresses. The pages may be submitted for 2640 * DMA to devices or accessed via their kernel linear mapping (via the 2641 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2642 * 2643 * See also get_user_pages_fast, for performance critical applications. 2644 * 2645 * get_user_pages_remote should be phased out in favor of 2646 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2647 * should use get_user_pages_remote because it cannot pass 2648 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2649 */ 2650 long get_user_pages_remote(struct mm_struct *mm, 2651 unsigned long start, unsigned long nr_pages, 2652 unsigned int gup_flags, struct page **pages, 2653 int *locked) 2654 { 2655 int local_locked = 1; 2656 2657 if (!is_valid_gup_args(pages, locked, &gup_flags, 2658 FOLL_TOUCH | FOLL_REMOTE)) 2659 return -EINVAL; 2660 2661 return __get_user_pages_locked(mm, start, nr_pages, pages, 2662 locked ? locked : &local_locked, 2663 gup_flags); 2664 } 2665 EXPORT_SYMBOL(get_user_pages_remote); 2666 2667 #else /* CONFIG_MMU */ 2668 long get_user_pages_remote(struct mm_struct *mm, 2669 unsigned long start, unsigned long nr_pages, 2670 unsigned int gup_flags, struct page **pages, 2671 int *locked) 2672 { 2673 return 0; 2674 } 2675 #endif /* !CONFIG_MMU */ 2676 2677 /** 2678 * get_user_pages() - pin user pages in memory 2679 * @start: starting user address 2680 * @nr_pages: number of pages from start to pin 2681 * @gup_flags: flags modifying lookup behaviour 2682 * @pages: array that receives pointers to the pages pinned. 2683 * Should be at least nr_pages long. Or NULL, if caller 2684 * only intends to ensure the pages are faulted in. 2685 * 2686 * This is the same as get_user_pages_remote(), just with a less-flexible 2687 * calling convention where we assume that the mm being operated on belongs to 2688 * the current task, and doesn't allow passing of a locked parameter. We also 2689 * obviously don't pass FOLL_REMOTE in here. 2690 */ 2691 long get_user_pages(unsigned long start, unsigned long nr_pages, 2692 unsigned int gup_flags, struct page **pages) 2693 { 2694 int locked = 1; 2695 2696 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2697 return -EINVAL; 2698 2699 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2700 &locked, gup_flags); 2701 } 2702 EXPORT_SYMBOL(get_user_pages); 2703 2704 /* 2705 * get_user_pages_unlocked() is suitable to replace the form: 2706 * 2707 * mmap_read_lock(mm); 2708 * get_user_pages(mm, ..., pages, NULL); 2709 * mmap_read_unlock(mm); 2710 * 2711 * with: 2712 * 2713 * get_user_pages_unlocked(mm, ..., pages); 2714 * 2715 * It is functionally equivalent to get_user_pages_fast so 2716 * get_user_pages_fast should be used instead if specific gup_flags 2717 * (e.g. FOLL_FORCE) are not required. 2718 */ 2719 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2720 struct page **pages, unsigned int gup_flags) 2721 { 2722 int locked = 0; 2723 2724 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2725 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2726 return -EINVAL; 2727 2728 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2729 &locked, gup_flags); 2730 } 2731 EXPORT_SYMBOL(get_user_pages_unlocked); 2732 2733 /* 2734 * GUP-fast 2735 * 2736 * get_user_pages_fast attempts to pin user pages by walking the page 2737 * tables directly and avoids taking locks. Thus the walker needs to be 2738 * protected from page table pages being freed from under it, and should 2739 * block any THP splits. 2740 * 2741 * One way to achieve this is to have the walker disable interrupts, and 2742 * rely on IPIs from the TLB flushing code blocking before the page table 2743 * pages are freed. This is unsuitable for architectures that do not need 2744 * to broadcast an IPI when invalidating TLBs. 2745 * 2746 * Another way to achieve this is to batch up page table containing pages 2747 * belonging to more than one mm_user, then rcu_sched a callback to free those 2748 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2749 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2750 * (which is a relatively rare event). The code below adopts this strategy. 2751 * 2752 * Before activating this code, please be aware that the following assumptions 2753 * are currently made: 2754 * 2755 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2756 * free pages containing page tables or TLB flushing requires IPI broadcast. 2757 * 2758 * *) ptes can be read atomically by the architecture. 2759 * 2760 * *) access_ok is sufficient to validate userspace address ranges. 2761 * 2762 * The last two assumptions can be relaxed by the addition of helper functions. 2763 * 2764 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2765 */ 2766 #ifdef CONFIG_HAVE_GUP_FAST 2767 /* 2768 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2769 * a specific folio. 2770 * 2771 * This call assumes the caller has pinned the folio, that the lowest page table 2772 * level still points to this folio, and that interrupts have been disabled. 2773 * 2774 * GUP-fast must reject all secretmem folios. 2775 * 2776 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2777 * (see comment describing the writable_file_mapping_allowed() function). We 2778 * therefore try to avoid the most egregious case of a long-term mapping doing 2779 * so. 2780 * 2781 * This function cannot be as thorough as that one as the VMA is not available 2782 * in the fast path, so instead we whitelist known good cases and if in doubt, 2783 * fall back to the slow path. 2784 */ 2785 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2786 { 2787 bool reject_file_backed = false; 2788 struct address_space *mapping; 2789 bool check_secretmem = false; 2790 unsigned long mapping_flags; 2791 2792 /* 2793 * If we aren't pinning then no problematic write can occur. A long term 2794 * pin is the most egregious case so this is the one we disallow. 2795 */ 2796 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2797 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2798 reject_file_backed = true; 2799 2800 /* We hold a folio reference, so we can safely access folio fields. */ 2801 2802 /* secretmem folios are always order-0 folios. */ 2803 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2804 check_secretmem = true; 2805 2806 if (!reject_file_backed && !check_secretmem) 2807 return true; 2808 2809 if (WARN_ON_ONCE(folio_test_slab(folio))) 2810 return false; 2811 2812 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2813 if (folio_test_hugetlb(folio)) 2814 return true; 2815 2816 /* 2817 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2818 * cannot proceed, which means no actions performed under RCU can 2819 * proceed either. 2820 * 2821 * inodes and thus their mappings are freed under RCU, which means the 2822 * mapping cannot be freed beneath us and thus we can safely dereference 2823 * it. 2824 */ 2825 lockdep_assert_irqs_disabled(); 2826 2827 /* 2828 * However, there may be operations which _alter_ the mapping, so ensure 2829 * we read it once and only once. 2830 */ 2831 mapping = READ_ONCE(folio->mapping); 2832 2833 /* 2834 * The mapping may have been truncated, in any case we cannot determine 2835 * if this mapping is safe - fall back to slow path to determine how to 2836 * proceed. 2837 */ 2838 if (!mapping) 2839 return false; 2840 2841 /* Anonymous folios pose no problem. */ 2842 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2843 if (mapping_flags) 2844 return mapping_flags & PAGE_MAPPING_ANON; 2845 2846 /* 2847 * At this point, we know the mapping is non-null and points to an 2848 * address_space object. 2849 */ 2850 if (check_secretmem && secretmem_mapping(mapping)) 2851 return false; 2852 /* The only remaining allowed file system is shmem. */ 2853 return !reject_file_backed || shmem_mapping(mapping); 2854 } 2855 2856 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2857 unsigned int flags, struct page **pages) 2858 { 2859 while ((*nr) - nr_start) { 2860 struct folio *folio = page_folio(pages[--(*nr)]); 2861 2862 folio_clear_referenced(folio); 2863 gup_put_folio(folio, 1, flags); 2864 } 2865 } 2866 2867 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2868 /* 2869 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2870 * operations. 2871 * 2872 * To pin the page, GUP-fast needs to do below in order: 2873 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2874 * 2875 * For the rest of pgtable operations where pgtable updates can be racy 2876 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2877 * is pinned. 2878 * 2879 * Above will work for all pte-level operations, including THP split. 2880 * 2881 * For THP collapse, it's a bit more complicated because GUP-fast may be 2882 * walking a pgtable page that is being freed (pte is still valid but pmd 2883 * can be cleared already). To avoid race in such condition, we need to 2884 * also check pmd here to make sure pmd doesn't change (corresponds to 2885 * pmdp_collapse_flush() in the THP collapse code path). 2886 */ 2887 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2888 unsigned long end, unsigned int flags, struct page **pages, 2889 int *nr) 2890 { 2891 struct dev_pagemap *pgmap = NULL; 2892 int nr_start = *nr, ret = 0; 2893 pte_t *ptep, *ptem; 2894 2895 ptem = ptep = pte_offset_map(&pmd, addr); 2896 if (!ptep) 2897 return 0; 2898 do { 2899 pte_t pte = ptep_get_lockless(ptep); 2900 struct page *page; 2901 struct folio *folio; 2902 2903 /* 2904 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2905 * pte_access_permitted() better should reject these pages 2906 * either way: otherwise, GUP-fast might succeed in 2907 * cases where ordinary GUP would fail due to VMA access 2908 * permissions. 2909 */ 2910 if (pte_protnone(pte)) 2911 goto pte_unmap; 2912 2913 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2914 goto pte_unmap; 2915 2916 if (pte_devmap(pte)) { 2917 if (unlikely(flags & FOLL_LONGTERM)) 2918 goto pte_unmap; 2919 2920 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2921 if (unlikely(!pgmap)) { 2922 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2923 goto pte_unmap; 2924 } 2925 } else if (pte_special(pte)) 2926 goto pte_unmap; 2927 2928 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2929 page = pte_page(pte); 2930 2931 folio = try_grab_folio_fast(page, 1, flags); 2932 if (!folio) 2933 goto pte_unmap; 2934 2935 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2936 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2937 gup_put_folio(folio, 1, flags); 2938 goto pte_unmap; 2939 } 2940 2941 if (!gup_fast_folio_allowed(folio, flags)) { 2942 gup_put_folio(folio, 1, flags); 2943 goto pte_unmap; 2944 } 2945 2946 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2947 gup_put_folio(folio, 1, flags); 2948 goto pte_unmap; 2949 } 2950 2951 /* 2952 * We need to make the page accessible if and only if we are 2953 * going to access its content (the FOLL_PIN case). Please 2954 * see Documentation/core-api/pin_user_pages.rst for 2955 * details. 2956 */ 2957 if (flags & FOLL_PIN) { 2958 ret = arch_make_folio_accessible(folio); 2959 if (ret) { 2960 gup_put_folio(folio, 1, flags); 2961 goto pte_unmap; 2962 } 2963 } 2964 folio_set_referenced(folio); 2965 pages[*nr] = page; 2966 (*nr)++; 2967 } while (ptep++, addr += PAGE_SIZE, addr != end); 2968 2969 ret = 1; 2970 2971 pte_unmap: 2972 if (pgmap) 2973 put_dev_pagemap(pgmap); 2974 pte_unmap(ptem); 2975 return ret; 2976 } 2977 #else 2978 2979 /* 2980 * If we can't determine whether or not a pte is special, then fail immediately 2981 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2982 * to be special. 2983 * 2984 * For a futex to be placed on a THP tail page, get_futex_key requires a 2985 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2986 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2987 */ 2988 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2989 unsigned long end, unsigned int flags, struct page **pages, 2990 int *nr) 2991 { 2992 return 0; 2993 } 2994 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2995 2996 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2997 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2998 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2999 { 3000 int nr_start = *nr; 3001 struct dev_pagemap *pgmap = NULL; 3002 3003 do { 3004 struct folio *folio; 3005 struct page *page = pfn_to_page(pfn); 3006 3007 pgmap = get_dev_pagemap(pfn, pgmap); 3008 if (unlikely(!pgmap)) { 3009 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3010 break; 3011 } 3012 3013 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 3014 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3015 break; 3016 } 3017 3018 folio = try_grab_folio_fast(page, 1, flags); 3019 if (!folio) { 3020 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3021 break; 3022 } 3023 folio_set_referenced(folio); 3024 pages[*nr] = page; 3025 (*nr)++; 3026 pfn++; 3027 } while (addr += PAGE_SIZE, addr != end); 3028 3029 put_dev_pagemap(pgmap); 3030 return addr == end; 3031 } 3032 3033 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3034 unsigned long end, unsigned int flags, struct page **pages, 3035 int *nr) 3036 { 3037 unsigned long fault_pfn; 3038 int nr_start = *nr; 3039 3040 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3041 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3042 return 0; 3043 3044 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3045 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3046 return 0; 3047 } 3048 return 1; 3049 } 3050 3051 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3052 unsigned long end, unsigned int flags, struct page **pages, 3053 int *nr) 3054 { 3055 unsigned long fault_pfn; 3056 int nr_start = *nr; 3057 3058 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3059 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3060 return 0; 3061 3062 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3063 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3064 return 0; 3065 } 3066 return 1; 3067 } 3068 #else 3069 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3070 unsigned long end, unsigned int flags, struct page **pages, 3071 int *nr) 3072 { 3073 BUILD_BUG(); 3074 return 0; 3075 } 3076 3077 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3078 unsigned long end, unsigned int flags, struct page **pages, 3079 int *nr) 3080 { 3081 BUILD_BUG(); 3082 return 0; 3083 } 3084 #endif 3085 3086 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3087 unsigned long end, unsigned int flags, struct page **pages, 3088 int *nr) 3089 { 3090 struct page *page; 3091 struct folio *folio; 3092 int refs; 3093 3094 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3095 return 0; 3096 3097 if (pmd_special(orig)) 3098 return 0; 3099 3100 if (pmd_devmap(orig)) { 3101 if (unlikely(flags & FOLL_LONGTERM)) 3102 return 0; 3103 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3104 pages, nr); 3105 } 3106 3107 page = pmd_page(orig); 3108 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3109 3110 folio = try_grab_folio_fast(page, refs, flags); 3111 if (!folio) 3112 return 0; 3113 3114 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3115 gup_put_folio(folio, refs, flags); 3116 return 0; 3117 } 3118 3119 if (!gup_fast_folio_allowed(folio, flags)) { 3120 gup_put_folio(folio, refs, flags); 3121 return 0; 3122 } 3123 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3124 gup_put_folio(folio, refs, flags); 3125 return 0; 3126 } 3127 3128 *nr += refs; 3129 folio_set_referenced(folio); 3130 return 1; 3131 } 3132 3133 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3134 unsigned long end, unsigned int flags, struct page **pages, 3135 int *nr) 3136 { 3137 struct page *page; 3138 struct folio *folio; 3139 int refs; 3140 3141 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3142 return 0; 3143 3144 if (pud_special(orig)) 3145 return 0; 3146 3147 if (pud_devmap(orig)) { 3148 if (unlikely(flags & FOLL_LONGTERM)) 3149 return 0; 3150 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3151 pages, nr); 3152 } 3153 3154 page = pud_page(orig); 3155 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3156 3157 folio = try_grab_folio_fast(page, refs, flags); 3158 if (!folio) 3159 return 0; 3160 3161 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3162 gup_put_folio(folio, refs, flags); 3163 return 0; 3164 } 3165 3166 if (!gup_fast_folio_allowed(folio, flags)) { 3167 gup_put_folio(folio, refs, flags); 3168 return 0; 3169 } 3170 3171 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3172 gup_put_folio(folio, refs, flags); 3173 return 0; 3174 } 3175 3176 *nr += refs; 3177 folio_set_referenced(folio); 3178 return 1; 3179 } 3180 3181 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3182 unsigned long end, unsigned int flags, struct page **pages, 3183 int *nr) 3184 { 3185 int refs; 3186 struct page *page; 3187 struct folio *folio; 3188 3189 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3190 return 0; 3191 3192 BUILD_BUG_ON(pgd_devmap(orig)); 3193 3194 page = pgd_page(orig); 3195 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3196 3197 folio = try_grab_folio_fast(page, refs, flags); 3198 if (!folio) 3199 return 0; 3200 3201 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3202 gup_put_folio(folio, refs, flags); 3203 return 0; 3204 } 3205 3206 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3207 gup_put_folio(folio, refs, flags); 3208 return 0; 3209 } 3210 3211 if (!gup_fast_folio_allowed(folio, flags)) { 3212 gup_put_folio(folio, refs, flags); 3213 return 0; 3214 } 3215 3216 *nr += refs; 3217 folio_set_referenced(folio); 3218 return 1; 3219 } 3220 3221 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3222 unsigned long end, unsigned int flags, struct page **pages, 3223 int *nr) 3224 { 3225 unsigned long next; 3226 pmd_t *pmdp; 3227 3228 pmdp = pmd_offset_lockless(pudp, pud, addr); 3229 do { 3230 pmd_t pmd = pmdp_get_lockless(pmdp); 3231 3232 next = pmd_addr_end(addr, end); 3233 if (!pmd_present(pmd)) 3234 return 0; 3235 3236 if (unlikely(pmd_leaf(pmd))) { 3237 /* See gup_fast_pte_range() */ 3238 if (pmd_protnone(pmd)) 3239 return 0; 3240 3241 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3242 pages, nr)) 3243 return 0; 3244 3245 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3246 pages, nr)) 3247 return 0; 3248 } while (pmdp++, addr = next, addr != end); 3249 3250 return 1; 3251 } 3252 3253 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3254 unsigned long end, unsigned int flags, struct page **pages, 3255 int *nr) 3256 { 3257 unsigned long next; 3258 pud_t *pudp; 3259 3260 pudp = pud_offset_lockless(p4dp, p4d, addr); 3261 do { 3262 pud_t pud = READ_ONCE(*pudp); 3263 3264 next = pud_addr_end(addr, end); 3265 if (unlikely(!pud_present(pud))) 3266 return 0; 3267 if (unlikely(pud_leaf(pud))) { 3268 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3269 pages, nr)) 3270 return 0; 3271 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3272 pages, nr)) 3273 return 0; 3274 } while (pudp++, addr = next, addr != end); 3275 3276 return 1; 3277 } 3278 3279 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3280 unsigned long end, unsigned int flags, struct page **pages, 3281 int *nr) 3282 { 3283 unsigned long next; 3284 p4d_t *p4dp; 3285 3286 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3287 do { 3288 p4d_t p4d = READ_ONCE(*p4dp); 3289 3290 next = p4d_addr_end(addr, end); 3291 if (!p4d_present(p4d)) 3292 return 0; 3293 BUILD_BUG_ON(p4d_leaf(p4d)); 3294 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3295 pages, nr)) 3296 return 0; 3297 } while (p4dp++, addr = next, addr != end); 3298 3299 return 1; 3300 } 3301 3302 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3303 unsigned int flags, struct page **pages, int *nr) 3304 { 3305 unsigned long next; 3306 pgd_t *pgdp; 3307 3308 pgdp = pgd_offset(current->mm, addr); 3309 do { 3310 pgd_t pgd = READ_ONCE(*pgdp); 3311 3312 next = pgd_addr_end(addr, end); 3313 if (pgd_none(pgd)) 3314 return; 3315 if (unlikely(pgd_leaf(pgd))) { 3316 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3317 pages, nr)) 3318 return; 3319 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3320 pages, nr)) 3321 return; 3322 } while (pgdp++, addr = next, addr != end); 3323 } 3324 #else 3325 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3326 unsigned int flags, struct page **pages, int *nr) 3327 { 3328 } 3329 #endif /* CONFIG_HAVE_GUP_FAST */ 3330 3331 #ifndef gup_fast_permitted 3332 /* 3333 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3334 * we need to fall back to the slow version: 3335 */ 3336 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3337 { 3338 return true; 3339 } 3340 #endif 3341 3342 static unsigned long gup_fast(unsigned long start, unsigned long end, 3343 unsigned int gup_flags, struct page **pages) 3344 { 3345 unsigned long flags; 3346 int nr_pinned = 0; 3347 unsigned seq; 3348 3349 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3350 !gup_fast_permitted(start, end)) 3351 return 0; 3352 3353 if (gup_flags & FOLL_PIN) { 3354 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3355 if (seq & 1) 3356 return 0; 3357 } 3358 3359 /* 3360 * Disable interrupts. The nested form is used, in order to allow full, 3361 * general purpose use of this routine. 3362 * 3363 * With interrupts disabled, we block page table pages from being freed 3364 * from under us. See struct mmu_table_batch comments in 3365 * include/asm-generic/tlb.h for more details. 3366 * 3367 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3368 * that come from THPs splitting. 3369 */ 3370 local_irq_save(flags); 3371 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3372 local_irq_restore(flags); 3373 3374 /* 3375 * When pinning pages for DMA there could be a concurrent write protect 3376 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3377 */ 3378 if (gup_flags & FOLL_PIN) { 3379 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3380 gup_fast_unpin_user_pages(pages, nr_pinned); 3381 return 0; 3382 } else { 3383 sanity_check_pinned_pages(pages, nr_pinned); 3384 } 3385 } 3386 return nr_pinned; 3387 } 3388 3389 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3390 unsigned int gup_flags, struct page **pages) 3391 { 3392 unsigned long len, end; 3393 unsigned long nr_pinned; 3394 int locked = 0; 3395 int ret; 3396 3397 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3398 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3399 FOLL_FAST_ONLY | FOLL_NOFAULT | 3400 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3401 return -EINVAL; 3402 3403 if (gup_flags & FOLL_PIN) 3404 mm_set_has_pinned_flag(¤t->mm->flags); 3405 3406 if (!(gup_flags & FOLL_FAST_ONLY)) 3407 might_lock_read(¤t->mm->mmap_lock); 3408 3409 start = untagged_addr(start) & PAGE_MASK; 3410 len = nr_pages << PAGE_SHIFT; 3411 if (check_add_overflow(start, len, &end)) 3412 return -EOVERFLOW; 3413 if (end > TASK_SIZE_MAX) 3414 return -EFAULT; 3415 if (unlikely(!access_ok((void __user *)start, len))) 3416 return -EFAULT; 3417 3418 nr_pinned = gup_fast(start, end, gup_flags, pages); 3419 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3420 return nr_pinned; 3421 3422 /* Slow path: try to get the remaining pages with get_user_pages */ 3423 start += nr_pinned << PAGE_SHIFT; 3424 pages += nr_pinned; 3425 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3426 pages, &locked, 3427 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3428 if (ret < 0) { 3429 /* 3430 * The caller has to unpin the pages we already pinned so 3431 * returning -errno is not an option 3432 */ 3433 if (nr_pinned) 3434 return nr_pinned; 3435 return ret; 3436 } 3437 return ret + nr_pinned; 3438 } 3439 3440 /** 3441 * get_user_pages_fast_only() - pin user pages in memory 3442 * @start: starting user address 3443 * @nr_pages: number of pages from start to pin 3444 * @gup_flags: flags modifying pin behaviour 3445 * @pages: array that receives pointers to the pages pinned. 3446 * Should be at least nr_pages long. 3447 * 3448 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3449 * the regular GUP. 3450 * 3451 * If the architecture does not support this function, simply return with no 3452 * pages pinned. 3453 * 3454 * Careful, careful! COW breaking can go either way, so a non-write 3455 * access can get ambiguous page results. If you call this function without 3456 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3457 */ 3458 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3459 unsigned int gup_flags, struct page **pages) 3460 { 3461 /* 3462 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3463 * because gup fast is always a "pin with a +1 page refcount" request. 3464 * 3465 * FOLL_FAST_ONLY is required in order to match the API description of 3466 * this routine: no fall back to regular ("slow") GUP. 3467 */ 3468 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3469 FOLL_GET | FOLL_FAST_ONLY)) 3470 return -EINVAL; 3471 3472 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3473 } 3474 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3475 3476 /** 3477 * get_user_pages_fast() - pin user pages in memory 3478 * @start: starting user address 3479 * @nr_pages: number of pages from start to pin 3480 * @gup_flags: flags modifying pin behaviour 3481 * @pages: array that receives pointers to the pages pinned. 3482 * Should be at least nr_pages long. 3483 * 3484 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3485 * If not successful, it will fall back to taking the lock and 3486 * calling get_user_pages(). 3487 * 3488 * Returns number of pages pinned. This may be fewer than the number requested. 3489 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3490 * -errno. 3491 */ 3492 int get_user_pages_fast(unsigned long start, int nr_pages, 3493 unsigned int gup_flags, struct page **pages) 3494 { 3495 /* 3496 * The caller may or may not have explicitly set FOLL_GET; either way is 3497 * OK. However, internally (within mm/gup.c), gup fast variants must set 3498 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3499 * request. 3500 */ 3501 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3502 return -EINVAL; 3503 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3504 } 3505 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3506 3507 /** 3508 * pin_user_pages_fast() - pin user pages in memory without taking locks 3509 * 3510 * @start: starting user address 3511 * @nr_pages: number of pages from start to pin 3512 * @gup_flags: flags modifying pin behaviour 3513 * @pages: array that receives pointers to the pages pinned. 3514 * Should be at least nr_pages long. 3515 * 3516 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3517 * get_user_pages_fast() for documentation on the function arguments, because 3518 * the arguments here are identical. 3519 * 3520 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3521 * see Documentation/core-api/pin_user_pages.rst for further details. 3522 * 3523 * Note that if a zero_page is amongst the returned pages, it will not have 3524 * pins in it and unpin_user_page() will not remove pins from it. 3525 */ 3526 int pin_user_pages_fast(unsigned long start, int nr_pages, 3527 unsigned int gup_flags, struct page **pages) 3528 { 3529 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3530 return -EINVAL; 3531 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3532 } 3533 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3534 3535 /** 3536 * pin_user_pages_remote() - pin pages of a remote process 3537 * 3538 * @mm: mm_struct of target mm 3539 * @start: starting user address 3540 * @nr_pages: number of pages from start to pin 3541 * @gup_flags: flags modifying lookup behaviour 3542 * @pages: array that receives pointers to the pages pinned. 3543 * Should be at least nr_pages long. 3544 * @locked: pointer to lock flag indicating whether lock is held and 3545 * subsequently whether VM_FAULT_RETRY functionality can be 3546 * utilised. Lock must initially be held. 3547 * 3548 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3549 * get_user_pages_remote() for documentation on the function arguments, because 3550 * the arguments here are identical. 3551 * 3552 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3553 * see Documentation/core-api/pin_user_pages.rst for details. 3554 * 3555 * Note that if a zero_page is amongst the returned pages, it will not have 3556 * pins in it and unpin_user_page*() will not remove pins from it. 3557 */ 3558 long pin_user_pages_remote(struct mm_struct *mm, 3559 unsigned long start, unsigned long nr_pages, 3560 unsigned int gup_flags, struct page **pages, 3561 int *locked) 3562 { 3563 int local_locked = 1; 3564 3565 if (!is_valid_gup_args(pages, locked, &gup_flags, 3566 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3567 return 0; 3568 return __gup_longterm_locked(mm, start, nr_pages, pages, 3569 locked ? locked : &local_locked, 3570 gup_flags); 3571 } 3572 EXPORT_SYMBOL(pin_user_pages_remote); 3573 3574 /** 3575 * pin_user_pages() - pin user pages in memory for use by other devices 3576 * 3577 * @start: starting user address 3578 * @nr_pages: number of pages from start to pin 3579 * @gup_flags: flags modifying lookup behaviour 3580 * @pages: array that receives pointers to the pages pinned. 3581 * Should be at least nr_pages long. 3582 * 3583 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3584 * FOLL_PIN is set. 3585 * 3586 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3587 * see Documentation/core-api/pin_user_pages.rst for details. 3588 * 3589 * Note that if a zero_page is amongst the returned pages, it will not have 3590 * pins in it and unpin_user_page*() will not remove pins from it. 3591 */ 3592 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3593 unsigned int gup_flags, struct page **pages) 3594 { 3595 int locked = 1; 3596 3597 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3598 return 0; 3599 return __gup_longterm_locked(current->mm, start, nr_pages, 3600 pages, &locked, gup_flags); 3601 } 3602 EXPORT_SYMBOL(pin_user_pages); 3603 3604 /* 3605 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3606 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3607 * FOLL_PIN and rejects FOLL_GET. 3608 * 3609 * Note that if a zero_page is amongst the returned pages, it will not have 3610 * pins in it and unpin_user_page*() will not remove pins from it. 3611 */ 3612 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3613 struct page **pages, unsigned int gup_flags) 3614 { 3615 int locked = 0; 3616 3617 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3618 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3619 return 0; 3620 3621 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3622 &locked, gup_flags); 3623 } 3624 EXPORT_SYMBOL(pin_user_pages_unlocked); 3625 3626 /** 3627 * memfd_pin_folios() - pin folios associated with a memfd 3628 * @memfd: the memfd whose folios are to be pinned 3629 * @start: the first memfd offset 3630 * @end: the last memfd offset (inclusive) 3631 * @folios: array that receives pointers to the folios pinned 3632 * @max_folios: maximum number of entries in @folios 3633 * @offset: the offset into the first folio 3634 * 3635 * Attempt to pin folios associated with a memfd in the contiguous range 3636 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3637 * the folios can either be found in the page cache or need to be allocated 3638 * if necessary. Once the folios are located, they are all pinned via 3639 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3640 * And, eventually, these pinned folios must be released either using 3641 * unpin_folios() or unpin_folio(). 3642 * 3643 * It must be noted that the folios may be pinned for an indefinite amount 3644 * of time. And, in most cases, the duration of time they may stay pinned 3645 * would be controlled by the userspace. This behavior is effectively the 3646 * same as using FOLL_LONGTERM with other GUP APIs. 3647 * 3648 * Returns number of folios pinned, which could be less than @max_folios 3649 * as it depends on the folio sizes that cover the range [start, end]. 3650 * If no folios were pinned, it returns -errno. 3651 */ 3652 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3653 struct folio **folios, unsigned int max_folios, 3654 pgoff_t *offset) 3655 { 3656 unsigned int flags, nr_folios, nr_found; 3657 unsigned int i, pgshift = PAGE_SHIFT; 3658 pgoff_t start_idx, end_idx, next_idx; 3659 struct folio *folio = NULL; 3660 struct folio_batch fbatch; 3661 struct hstate *h; 3662 long ret = -EINVAL; 3663 3664 if (start < 0 || start > end || !max_folios) 3665 return -EINVAL; 3666 3667 if (!memfd) 3668 return -EINVAL; 3669 3670 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3671 return -EINVAL; 3672 3673 if (end >= i_size_read(file_inode(memfd))) 3674 return -EINVAL; 3675 3676 if (is_file_hugepages(memfd)) { 3677 h = hstate_file(memfd); 3678 pgshift = huge_page_shift(h); 3679 } 3680 3681 flags = memalloc_pin_save(); 3682 do { 3683 nr_folios = 0; 3684 start_idx = start >> pgshift; 3685 end_idx = end >> pgshift; 3686 if (is_file_hugepages(memfd)) { 3687 start_idx <<= huge_page_order(h); 3688 end_idx <<= huge_page_order(h); 3689 } 3690 3691 folio_batch_init(&fbatch); 3692 while (start_idx <= end_idx && nr_folios < max_folios) { 3693 /* 3694 * In most cases, we should be able to find the folios 3695 * in the page cache. If we cannot find them for some 3696 * reason, we try to allocate them and add them to the 3697 * page cache. 3698 */ 3699 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3700 &start_idx, 3701 end_idx, 3702 &fbatch); 3703 if (folio) { 3704 folio_put(folio); 3705 folio = NULL; 3706 } 3707 3708 next_idx = 0; 3709 for (i = 0; i < nr_found; i++) { 3710 /* 3711 * As there can be multiple entries for a 3712 * given folio in the batch returned by 3713 * filemap_get_folios_contig(), the below 3714 * check is to ensure that we pin and return a 3715 * unique set of folios between start and end. 3716 */ 3717 if (next_idx && 3718 next_idx != folio_index(fbatch.folios[i])) 3719 continue; 3720 3721 folio = page_folio(&fbatch.folios[i]->page); 3722 3723 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3724 folio_batch_release(&fbatch); 3725 ret = -EINVAL; 3726 goto err; 3727 } 3728 3729 if (nr_folios == 0) 3730 *offset = offset_in_folio(folio, start); 3731 3732 folios[nr_folios] = folio; 3733 next_idx = folio_next_index(folio); 3734 if (++nr_folios == max_folios) 3735 break; 3736 } 3737 3738 folio = NULL; 3739 folio_batch_release(&fbatch); 3740 if (!nr_found) { 3741 folio = memfd_alloc_folio(memfd, start_idx); 3742 if (IS_ERR(folio)) { 3743 ret = PTR_ERR(folio); 3744 if (ret != -EEXIST) 3745 goto err; 3746 folio = NULL; 3747 } 3748 } 3749 } 3750 3751 ret = check_and_migrate_movable_folios(nr_folios, folios); 3752 } while (ret == -EAGAIN); 3753 3754 memalloc_pin_restore(flags); 3755 return ret ? ret : nr_folios; 3756 err: 3757 memalloc_pin_restore(flags); 3758 unpin_folios(folios, nr_folios); 3759 3760 return ret; 3761 } 3762 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3763 3764 /** 3765 * folio_add_pins() - add pins to an already-pinned folio 3766 * @folio: the folio to add more pins to 3767 * @pins: number of pins to add 3768 * 3769 * Try to add more pins to an already-pinned folio. The semantics 3770 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot 3771 * be changed. 3772 * 3773 * This function is helpful when having obtained a pin on a large folio 3774 * using memfd_pin_folios(), but wanting to logically unpin parts 3775 * (e.g., individual pages) of the folio later, for example, using 3776 * unpin_user_page_range_dirty_lock(). 3777 * 3778 * This is not the right interface to initially pin a folio. 3779 */ 3780 int folio_add_pins(struct folio *folio, unsigned int pins) 3781 { 3782 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); 3783 3784 return try_grab_folio(folio, pins, FOLL_PIN); 3785 } 3786 EXPORT_SYMBOL_GPL(folio_add_pins); 3787