1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio; 56 57 if (!page) 58 continue; 59 60 folio = page_folio(page); 61 62 if (is_zero_page(page) || 63 !folio_test_anon(folio)) 64 continue; 65 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 66 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 67 else 68 /* Either a PTE-mapped or a PMD-mapped THP. */ 69 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 70 !PageAnonExclusive(page), page); 71 } 72 } 73 74 /* 75 * Return the folio with ref appropriately incremented, 76 * or NULL if that failed. 77 */ 78 static inline struct folio *try_get_folio(struct page *page, int refs) 79 { 80 struct folio *folio; 81 82 retry: 83 folio = page_folio(page); 84 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 85 return NULL; 86 if (unlikely(!folio_ref_try_add(folio, refs))) 87 return NULL; 88 89 /* 90 * At this point we have a stable reference to the folio; but it 91 * could be that between calling page_folio() and the refcount 92 * increment, the folio was split, in which case we'd end up 93 * holding a reference on a folio that has nothing to do with the page 94 * we were given anymore. 95 * So now that the folio is stable, recheck that the page still 96 * belongs to this folio. 97 */ 98 if (unlikely(page_folio(page) != folio)) { 99 if (!put_devmap_managed_folio_refs(folio, refs)) 100 folio_put_refs(folio, refs); 101 goto retry; 102 } 103 104 return folio; 105 } 106 107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 108 { 109 if (flags & FOLL_PIN) { 110 if (is_zero_folio(folio)) 111 return; 112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 113 if (folio_test_large(folio)) 114 atomic_sub(refs, &folio->_pincount); 115 else 116 refs *= GUP_PIN_COUNTING_BIAS; 117 } 118 119 if (!put_devmap_managed_folio_refs(folio, refs)) 120 folio_put_refs(folio, refs); 121 } 122 123 /** 124 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 125 * @folio: pointer to folio to be grabbed 126 * @refs: the value to (effectively) add to the folio's refcount 127 * @flags: gup flags: these are the FOLL_* flag values 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 133 * 134 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 135 * time. 136 * 137 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 138 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 139 * 140 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 141 * be grabbed. 142 * 143 * It is called when we have a stable reference for the folio, typically in 144 * GUP slow path. 145 */ 146 int __must_check try_grab_folio(struct folio *folio, int refs, 147 unsigned int flags) 148 { 149 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 150 return -ENOMEM; 151 152 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 153 return -EREMOTEIO; 154 155 if (flags & FOLL_GET) 156 folio_ref_add(folio, refs); 157 else if (flags & FOLL_PIN) { 158 /* 159 * Don't take a pin on the zero page - it's not going anywhere 160 * and it is used in a *lot* of places. 161 */ 162 if (is_zero_folio(folio)) 163 return 0; 164 165 /* 166 * Increment the normal page refcount field at least once, 167 * so that the page really is pinned. 168 */ 169 if (folio_test_large(folio)) { 170 folio_ref_add(folio, refs); 171 atomic_add(refs, &folio->_pincount); 172 } else { 173 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 174 } 175 176 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 177 } 178 179 return 0; 180 } 181 182 /** 183 * unpin_user_page() - release a dma-pinned page 184 * @page: pointer to page to be released 185 * 186 * Pages that were pinned via pin_user_pages*() must be released via either 187 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 188 * that such pages can be separately tracked and uniquely handled. In 189 * particular, interactions with RDMA and filesystems need special handling. 190 */ 191 void unpin_user_page(struct page *page) 192 { 193 sanity_check_pinned_pages(&page, 1); 194 gup_put_folio(page_folio(page), 1, FOLL_PIN); 195 } 196 EXPORT_SYMBOL(unpin_user_page); 197 198 /** 199 * unpin_folio() - release a dma-pinned folio 200 * @folio: pointer to folio to be released 201 * 202 * Folios that were pinned via memfd_pin_folios() or other similar routines 203 * must be released either using unpin_folio() or unpin_folios(). 204 */ 205 void unpin_folio(struct folio *folio) 206 { 207 gup_put_folio(folio, 1, FOLL_PIN); 208 } 209 EXPORT_SYMBOL_GPL(unpin_folio); 210 211 /** 212 * folio_add_pin - Try to get an additional pin on a pinned folio 213 * @folio: The folio to be pinned 214 * 215 * Get an additional pin on a folio we already have a pin on. Makes no change 216 * if the folio is a zero_page. 217 */ 218 void folio_add_pin(struct folio *folio) 219 { 220 if (is_zero_folio(folio)) 221 return; 222 223 /* 224 * Similar to try_grab_folio(): be sure to *also* increment the normal 225 * page refcount field at least once, so that the page really is 226 * pinned. 227 */ 228 if (folio_test_large(folio)) { 229 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 230 folio_ref_inc(folio); 231 atomic_inc(&folio->_pincount); 232 } else { 233 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 234 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 235 } 236 } 237 238 static inline struct folio *gup_folio_range_next(struct page *start, 239 unsigned long npages, unsigned long i, unsigned int *ntails) 240 { 241 struct page *next = nth_page(start, i); 242 struct folio *folio = page_folio(next); 243 unsigned int nr = 1; 244 245 if (folio_test_large(folio)) 246 nr = min_t(unsigned int, npages - i, 247 folio_nr_pages(folio) - folio_page_idx(folio, next)); 248 249 *ntails = nr; 250 return folio; 251 } 252 253 static inline struct folio *gup_folio_next(struct page **list, 254 unsigned long npages, unsigned long i, unsigned int *ntails) 255 { 256 struct folio *folio = page_folio(list[i]); 257 unsigned int nr; 258 259 for (nr = i + 1; nr < npages; nr++) { 260 if (page_folio(list[nr]) != folio) 261 break; 262 } 263 264 *ntails = nr - i; 265 return folio; 266 } 267 268 /** 269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 270 * @pages: array of pages to be maybe marked dirty, and definitely released. 271 * @npages: number of pages in the @pages array. 272 * @make_dirty: whether to mark the pages dirty 273 * 274 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 275 * variants called on that page. 276 * 277 * For each page in the @pages array, make that page (or its head page, if a 278 * compound page) dirty, if @make_dirty is true, and if the page was previously 279 * listed as clean. In any case, releases all pages using unpin_user_page(), 280 * possibly via unpin_user_pages(), for the non-dirty case. 281 * 282 * Please see the unpin_user_page() documentation for details. 283 * 284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 285 * required, then the caller should a) verify that this is really correct, 286 * because _lock() is usually required, and b) hand code it: 287 * set_page_dirty_lock(), unpin_user_page(). 288 * 289 */ 290 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 291 bool make_dirty) 292 { 293 unsigned long i; 294 struct folio *folio; 295 unsigned int nr; 296 297 if (!make_dirty) { 298 unpin_user_pages(pages, npages); 299 return; 300 } 301 302 sanity_check_pinned_pages(pages, npages); 303 for (i = 0; i < npages; i += nr) { 304 folio = gup_folio_next(pages, npages, i, &nr); 305 /* 306 * Checking PageDirty at this point may race with 307 * clear_page_dirty_for_io(), but that's OK. Two key 308 * cases: 309 * 310 * 1) This code sees the page as already dirty, so it 311 * skips the call to set_page_dirty(). That could happen 312 * because clear_page_dirty_for_io() called 313 * folio_mkclean(), followed by set_page_dirty(). 314 * However, now the page is going to get written back, 315 * which meets the original intention of setting it 316 * dirty, so all is well: clear_page_dirty_for_io() goes 317 * on to call TestClearPageDirty(), and write the page 318 * back. 319 * 320 * 2) This code sees the page as clean, so it calls 321 * set_page_dirty(). The page stays dirty, despite being 322 * written back, so it gets written back again in the 323 * next writeback cycle. This is harmless. 324 */ 325 if (!folio_test_dirty(folio)) { 326 folio_lock(folio); 327 folio_mark_dirty(folio); 328 folio_unlock(folio); 329 } 330 gup_put_folio(folio, nr, FOLL_PIN); 331 } 332 } 333 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 334 335 /** 336 * unpin_user_page_range_dirty_lock() - release and optionally dirty 337 * gup-pinned page range 338 * 339 * @page: the starting page of a range maybe marked dirty, and definitely released. 340 * @npages: number of consecutive pages to release. 341 * @make_dirty: whether to mark the pages dirty 342 * 343 * "gup-pinned page range" refers to a range of pages that has had one of the 344 * pin_user_pages() variants called on that page. 345 * 346 * For the page ranges defined by [page .. page+npages], make that range (or 347 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 348 * page range was previously listed as clean. 349 * 350 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 351 * required, then the caller should a) verify that this is really correct, 352 * because _lock() is usually required, and b) hand code it: 353 * set_page_dirty_lock(), unpin_user_page(). 354 * 355 */ 356 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 357 bool make_dirty) 358 { 359 unsigned long i; 360 struct folio *folio; 361 unsigned int nr; 362 363 for (i = 0; i < npages; i += nr) { 364 folio = gup_folio_range_next(page, npages, i, &nr); 365 if (make_dirty && !folio_test_dirty(folio)) { 366 folio_lock(folio); 367 folio_mark_dirty(folio); 368 folio_unlock(folio); 369 } 370 gup_put_folio(folio, nr, FOLL_PIN); 371 } 372 } 373 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 374 375 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 376 { 377 unsigned long i; 378 struct folio *folio; 379 unsigned int nr; 380 381 /* 382 * Don't perform any sanity checks because we might have raced with 383 * fork() and some anonymous pages might now actually be shared -- 384 * which is why we're unpinning after all. 385 */ 386 for (i = 0; i < npages; i += nr) { 387 folio = gup_folio_next(pages, npages, i, &nr); 388 gup_put_folio(folio, nr, FOLL_PIN); 389 } 390 } 391 392 /** 393 * unpin_user_pages() - release an array of gup-pinned pages. 394 * @pages: array of pages to be marked dirty and released. 395 * @npages: number of pages in the @pages array. 396 * 397 * For each page in the @pages array, release the page using unpin_user_page(). 398 * 399 * Please see the unpin_user_page() documentation for details. 400 */ 401 void unpin_user_pages(struct page **pages, unsigned long npages) 402 { 403 unsigned long i; 404 struct folio *folio; 405 unsigned int nr; 406 407 /* 408 * If this WARN_ON() fires, then the system *might* be leaking pages (by 409 * leaving them pinned), but probably not. More likely, gup/pup returned 410 * a hard -ERRNO error to the caller, who erroneously passed it here. 411 */ 412 if (WARN_ON(IS_ERR_VALUE(npages))) 413 return; 414 415 sanity_check_pinned_pages(pages, npages); 416 for (i = 0; i < npages; i += nr) { 417 if (!pages[i]) { 418 nr = 1; 419 continue; 420 } 421 folio = gup_folio_next(pages, npages, i, &nr); 422 gup_put_folio(folio, nr, FOLL_PIN); 423 } 424 } 425 EXPORT_SYMBOL(unpin_user_pages); 426 427 /** 428 * unpin_user_folio() - release pages of a folio 429 * @folio: pointer to folio to be released 430 * @npages: number of pages of same folio 431 * 432 * Release npages of the folio 433 */ 434 void unpin_user_folio(struct folio *folio, unsigned long npages) 435 { 436 gup_put_folio(folio, npages, FOLL_PIN); 437 } 438 EXPORT_SYMBOL(unpin_user_folio); 439 440 /** 441 * unpin_folios() - release an array of gup-pinned folios. 442 * @folios: array of folios to be marked dirty and released. 443 * @nfolios: number of folios in the @folios array. 444 * 445 * For each folio in the @folios array, release the folio using gup_put_folio. 446 * 447 * Please see the unpin_folio() documentation for details. 448 */ 449 void unpin_folios(struct folio **folios, unsigned long nfolios) 450 { 451 unsigned long i = 0, j; 452 453 /* 454 * If this WARN_ON() fires, then the system *might* be leaking folios 455 * (by leaving them pinned), but probably not. More likely, gup/pup 456 * returned a hard -ERRNO error to the caller, who erroneously passed 457 * it here. 458 */ 459 if (WARN_ON(IS_ERR_VALUE(nfolios))) 460 return; 461 462 while (i < nfolios) { 463 for (j = i + 1; j < nfolios; j++) 464 if (folios[i] != folios[j]) 465 break; 466 467 if (folios[i]) 468 gup_put_folio(folios[i], j - i, FOLL_PIN); 469 i = j; 470 } 471 } 472 EXPORT_SYMBOL_GPL(unpin_folios); 473 474 /* 475 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 476 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 477 * cache bouncing on large SMP machines for concurrent pinned gups. 478 */ 479 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 480 { 481 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 482 set_bit(MMF_HAS_PINNED, mm_flags); 483 } 484 485 #ifdef CONFIG_MMU 486 487 #ifdef CONFIG_HAVE_GUP_FAST 488 static int record_subpages(struct page *page, unsigned long sz, 489 unsigned long addr, unsigned long end, 490 struct page **pages) 491 { 492 struct page *start_page; 493 int nr; 494 495 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 496 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 497 pages[nr] = nth_page(start_page, nr); 498 499 return nr; 500 } 501 502 /** 503 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 504 * @page: pointer to page to be grabbed 505 * @refs: the value to (effectively) add to the folio's refcount 506 * @flags: gup flags: these are the FOLL_* flag values. 507 * 508 * "grab" names in this file mean, "look at flags to decide whether to use 509 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 510 * 511 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 512 * same time. (That's true throughout the get_user_pages*() and 513 * pin_user_pages*() APIs.) Cases: 514 * 515 * FOLL_GET: folio's refcount will be incremented by @refs. 516 * 517 * FOLL_PIN on large folios: folio's refcount will be incremented by 518 * @refs, and its pincount will be incremented by @refs. 519 * 520 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 521 * @refs * GUP_PIN_COUNTING_BIAS. 522 * 523 * Return: The folio containing @page (with refcount appropriately 524 * incremented) for success, or NULL upon failure. If neither FOLL_GET 525 * nor FOLL_PIN was set, that's considered failure, and furthermore, 526 * a likely bug in the caller, so a warning is also emitted. 527 * 528 * It uses add ref unless zero to elevate the folio refcount and must be called 529 * in fast path only. 530 */ 531 static struct folio *try_grab_folio_fast(struct page *page, int refs, 532 unsigned int flags) 533 { 534 struct folio *folio; 535 536 /* Raise warn if it is not called in fast GUP */ 537 VM_WARN_ON_ONCE(!irqs_disabled()); 538 539 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 540 return NULL; 541 542 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 543 return NULL; 544 545 if (flags & FOLL_GET) 546 return try_get_folio(page, refs); 547 548 /* FOLL_PIN is set */ 549 550 /* 551 * Don't take a pin on the zero page - it's not going anywhere 552 * and it is used in a *lot* of places. 553 */ 554 if (is_zero_page(page)) 555 return page_folio(page); 556 557 folio = try_get_folio(page, refs); 558 if (!folio) 559 return NULL; 560 561 /* 562 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 563 * right zone, so fail and let the caller fall back to the slow 564 * path. 565 */ 566 if (unlikely((flags & FOLL_LONGTERM) && 567 !folio_is_longterm_pinnable(folio))) { 568 if (!put_devmap_managed_folio_refs(folio, refs)) 569 folio_put_refs(folio, refs); 570 return NULL; 571 } 572 573 /* 574 * When pinning a large folio, use an exact count to track it. 575 * 576 * However, be sure to *also* increment the normal folio 577 * refcount field at least once, so that the folio really 578 * is pinned. That's why the refcount from the earlier 579 * try_get_folio() is left intact. 580 */ 581 if (folio_test_large(folio)) 582 atomic_add(refs, &folio->_pincount); 583 else 584 folio_ref_add(folio, 585 refs * (GUP_PIN_COUNTING_BIAS - 1)); 586 /* 587 * Adjust the pincount before re-checking the PTE for changes. 588 * This is essentially a smp_mb() and is paired with a memory 589 * barrier in folio_try_share_anon_rmap_*(). 590 */ 591 smp_mb__after_atomic(); 592 593 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 594 595 return folio; 596 } 597 #endif /* CONFIG_HAVE_GUP_FAST */ 598 599 static struct page *no_page_table(struct vm_area_struct *vma, 600 unsigned int flags, unsigned long address) 601 { 602 if (!(flags & FOLL_DUMP)) 603 return NULL; 604 605 /* 606 * When core dumping, we don't want to allocate unnecessary pages or 607 * page tables. Return error instead of NULL to skip handle_mm_fault, 608 * then get_dump_page() will return NULL to leave a hole in the dump. 609 * But we can only make this optimization where a hole would surely 610 * be zero-filled if handle_mm_fault() actually did handle it. 611 */ 612 if (is_vm_hugetlb_page(vma)) { 613 struct hstate *h = hstate_vma(vma); 614 615 if (!hugetlbfs_pagecache_present(h, vma, address)) 616 return ERR_PTR(-EFAULT); 617 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 618 return ERR_PTR(-EFAULT); 619 } 620 621 return NULL; 622 } 623 624 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 625 static struct page *follow_huge_pud(struct vm_area_struct *vma, 626 unsigned long addr, pud_t *pudp, 627 int flags, struct follow_page_context *ctx) 628 { 629 struct mm_struct *mm = vma->vm_mm; 630 struct page *page; 631 pud_t pud = *pudp; 632 unsigned long pfn = pud_pfn(pud); 633 int ret; 634 635 assert_spin_locked(pud_lockptr(mm, pudp)); 636 637 if ((flags & FOLL_WRITE) && !pud_write(pud)) 638 return NULL; 639 640 if (!pud_present(pud)) 641 return NULL; 642 643 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 644 645 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 646 pud_devmap(pud)) { 647 /* 648 * device mapped pages can only be returned if the caller 649 * will manage the page reference count. 650 * 651 * At least one of FOLL_GET | FOLL_PIN must be set, so 652 * assert that here: 653 */ 654 if (!(flags & (FOLL_GET | FOLL_PIN))) 655 return ERR_PTR(-EEXIST); 656 657 if (flags & FOLL_TOUCH) 658 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 659 660 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 661 if (!ctx->pgmap) 662 return ERR_PTR(-EFAULT); 663 } 664 665 page = pfn_to_page(pfn); 666 667 if (!pud_devmap(pud) && !pud_write(pud) && 668 gup_must_unshare(vma, flags, page)) 669 return ERR_PTR(-EMLINK); 670 671 ret = try_grab_folio(page_folio(page), 1, flags); 672 if (ret) 673 page = ERR_PTR(ret); 674 else 675 ctx->page_mask = HPAGE_PUD_NR - 1; 676 677 return page; 678 } 679 680 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 681 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 682 struct vm_area_struct *vma, 683 unsigned int flags) 684 { 685 /* If the pmd is writable, we can write to the page. */ 686 if (pmd_write(pmd)) 687 return true; 688 689 /* Maybe FOLL_FORCE is set to override it? */ 690 if (!(flags & FOLL_FORCE)) 691 return false; 692 693 /* But FOLL_FORCE has no effect on shared mappings */ 694 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 695 return false; 696 697 /* ... or read-only private ones */ 698 if (!(vma->vm_flags & VM_MAYWRITE)) 699 return false; 700 701 /* ... or already writable ones that just need to take a write fault */ 702 if (vma->vm_flags & VM_WRITE) 703 return false; 704 705 /* 706 * See can_change_pte_writable(): we broke COW and could map the page 707 * writable if we have an exclusive anonymous page ... 708 */ 709 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 710 return false; 711 712 /* ... and a write-fault isn't required for other reasons. */ 713 if (pmd_needs_soft_dirty_wp(vma, pmd)) 714 return false; 715 return !userfaultfd_huge_pmd_wp(vma, pmd); 716 } 717 718 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 719 unsigned long addr, pmd_t *pmd, 720 unsigned int flags, 721 struct follow_page_context *ctx) 722 { 723 struct mm_struct *mm = vma->vm_mm; 724 pmd_t pmdval = *pmd; 725 struct page *page; 726 int ret; 727 728 assert_spin_locked(pmd_lockptr(mm, pmd)); 729 730 page = pmd_page(pmdval); 731 if ((flags & FOLL_WRITE) && 732 !can_follow_write_pmd(pmdval, page, vma, flags)) 733 return NULL; 734 735 /* Avoid dumping huge zero page */ 736 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 737 return ERR_PTR(-EFAULT); 738 739 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 740 return NULL; 741 742 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 743 return ERR_PTR(-EMLINK); 744 745 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 746 !PageAnonExclusive(page), page); 747 748 ret = try_grab_folio(page_folio(page), 1, flags); 749 if (ret) 750 return ERR_PTR(ret); 751 752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 753 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 754 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 756 757 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 758 ctx->page_mask = HPAGE_PMD_NR - 1; 759 760 return page; 761 } 762 763 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 764 static struct page *follow_huge_pud(struct vm_area_struct *vma, 765 unsigned long addr, pud_t *pudp, 766 int flags, struct follow_page_context *ctx) 767 { 768 return NULL; 769 } 770 771 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 772 unsigned long addr, pmd_t *pmd, 773 unsigned int flags, 774 struct follow_page_context *ctx) 775 { 776 return NULL; 777 } 778 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 779 780 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 781 pte_t *pte, unsigned int flags) 782 { 783 if (flags & FOLL_TOUCH) { 784 pte_t orig_entry = ptep_get(pte); 785 pte_t entry = orig_entry; 786 787 if (flags & FOLL_WRITE) 788 entry = pte_mkdirty(entry); 789 entry = pte_mkyoung(entry); 790 791 if (!pte_same(orig_entry, entry)) { 792 set_pte_at(vma->vm_mm, address, pte, entry); 793 update_mmu_cache(vma, address, pte); 794 } 795 } 796 797 /* Proper page table entry exists, but no corresponding struct page */ 798 return -EEXIST; 799 } 800 801 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 802 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 803 struct vm_area_struct *vma, 804 unsigned int flags) 805 { 806 /* If the pte is writable, we can write to the page. */ 807 if (pte_write(pte)) 808 return true; 809 810 /* Maybe FOLL_FORCE is set to override it? */ 811 if (!(flags & FOLL_FORCE)) 812 return false; 813 814 /* But FOLL_FORCE has no effect on shared mappings */ 815 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 816 return false; 817 818 /* ... or read-only private ones */ 819 if (!(vma->vm_flags & VM_MAYWRITE)) 820 return false; 821 822 /* ... or already writable ones that just need to take a write fault */ 823 if (vma->vm_flags & VM_WRITE) 824 return false; 825 826 /* 827 * See can_change_pte_writable(): we broke COW and could map the page 828 * writable if we have an exclusive anonymous page ... 829 */ 830 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 831 return false; 832 833 /* ... and a write-fault isn't required for other reasons. */ 834 if (pte_needs_soft_dirty_wp(vma, pte)) 835 return false; 836 return !userfaultfd_pte_wp(vma, pte); 837 } 838 839 static struct page *follow_page_pte(struct vm_area_struct *vma, 840 unsigned long address, pmd_t *pmd, unsigned int flags, 841 struct dev_pagemap **pgmap) 842 { 843 struct mm_struct *mm = vma->vm_mm; 844 struct folio *folio; 845 struct page *page; 846 spinlock_t *ptl; 847 pte_t *ptep, pte; 848 int ret; 849 850 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 851 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 852 (FOLL_PIN | FOLL_GET))) 853 return ERR_PTR(-EINVAL); 854 855 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 856 if (!ptep) 857 return no_page_table(vma, flags, address); 858 pte = ptep_get(ptep); 859 if (!pte_present(pte)) 860 goto no_page; 861 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 862 goto no_page; 863 864 page = vm_normal_page(vma, address, pte); 865 866 /* 867 * We only care about anon pages in can_follow_write_pte() and don't 868 * have to worry about pte_devmap() because they are never anon. 869 */ 870 if ((flags & FOLL_WRITE) && 871 !can_follow_write_pte(pte, page, vma, flags)) { 872 page = NULL; 873 goto out; 874 } 875 876 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 877 /* 878 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 879 * case since they are only valid while holding the pgmap 880 * reference. 881 */ 882 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 883 if (*pgmap) 884 page = pte_page(pte); 885 else 886 goto no_page; 887 } else if (unlikely(!page)) { 888 if (flags & FOLL_DUMP) { 889 /* Avoid special (like zero) pages in core dumps */ 890 page = ERR_PTR(-EFAULT); 891 goto out; 892 } 893 894 if (is_zero_pfn(pte_pfn(pte))) { 895 page = pte_page(pte); 896 } else { 897 ret = follow_pfn_pte(vma, address, ptep, flags); 898 page = ERR_PTR(ret); 899 goto out; 900 } 901 } 902 folio = page_folio(page); 903 904 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 905 page = ERR_PTR(-EMLINK); 906 goto out; 907 } 908 909 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 910 !PageAnonExclusive(page), page); 911 912 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 913 ret = try_grab_folio(folio, 1, flags); 914 if (unlikely(ret)) { 915 page = ERR_PTR(ret); 916 goto out; 917 } 918 919 /* 920 * We need to make the page accessible if and only if we are going 921 * to access its content (the FOLL_PIN case). Please see 922 * Documentation/core-api/pin_user_pages.rst for details. 923 */ 924 if (flags & FOLL_PIN) { 925 ret = arch_make_folio_accessible(folio); 926 if (ret) { 927 unpin_user_page(page); 928 page = ERR_PTR(ret); 929 goto out; 930 } 931 } 932 if (flags & FOLL_TOUCH) { 933 if ((flags & FOLL_WRITE) && 934 !pte_dirty(pte) && !folio_test_dirty(folio)) 935 folio_mark_dirty(folio); 936 /* 937 * pte_mkyoung() would be more correct here, but atomic care 938 * is needed to avoid losing the dirty bit: it is easier to use 939 * folio_mark_accessed(). 940 */ 941 folio_mark_accessed(folio); 942 } 943 out: 944 pte_unmap_unlock(ptep, ptl); 945 return page; 946 no_page: 947 pte_unmap_unlock(ptep, ptl); 948 if (!pte_none(pte)) 949 return NULL; 950 return no_page_table(vma, flags, address); 951 } 952 953 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 954 unsigned long address, pud_t *pudp, 955 unsigned int flags, 956 struct follow_page_context *ctx) 957 { 958 pmd_t *pmd, pmdval; 959 spinlock_t *ptl; 960 struct page *page; 961 struct mm_struct *mm = vma->vm_mm; 962 963 pmd = pmd_offset(pudp, address); 964 pmdval = pmdp_get_lockless(pmd); 965 if (pmd_none(pmdval)) 966 return no_page_table(vma, flags, address); 967 if (!pmd_present(pmdval)) 968 return no_page_table(vma, flags, address); 969 if (pmd_devmap(pmdval)) { 970 ptl = pmd_lock(mm, pmd); 971 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 972 spin_unlock(ptl); 973 if (page) 974 return page; 975 return no_page_table(vma, flags, address); 976 } 977 if (likely(!pmd_leaf(pmdval))) 978 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 979 980 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 981 return no_page_table(vma, flags, address); 982 983 ptl = pmd_lock(mm, pmd); 984 pmdval = *pmd; 985 if (unlikely(!pmd_present(pmdval))) { 986 spin_unlock(ptl); 987 return no_page_table(vma, flags, address); 988 } 989 if (unlikely(!pmd_leaf(pmdval))) { 990 spin_unlock(ptl); 991 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 992 } 993 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 994 spin_unlock(ptl); 995 split_huge_pmd(vma, pmd, address); 996 /* If pmd was left empty, stuff a page table in there quickly */ 997 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 998 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 999 } 1000 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 1001 spin_unlock(ptl); 1002 return page; 1003 } 1004 1005 static struct page *follow_pud_mask(struct vm_area_struct *vma, 1006 unsigned long address, p4d_t *p4dp, 1007 unsigned int flags, 1008 struct follow_page_context *ctx) 1009 { 1010 pud_t *pudp, pud; 1011 spinlock_t *ptl; 1012 struct page *page; 1013 struct mm_struct *mm = vma->vm_mm; 1014 1015 pudp = pud_offset(p4dp, address); 1016 pud = READ_ONCE(*pudp); 1017 if (!pud_present(pud)) 1018 return no_page_table(vma, flags, address); 1019 if (pud_leaf(pud)) { 1020 ptl = pud_lock(mm, pudp); 1021 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1022 spin_unlock(ptl); 1023 if (page) 1024 return page; 1025 return no_page_table(vma, flags, address); 1026 } 1027 if (unlikely(pud_bad(pud))) 1028 return no_page_table(vma, flags, address); 1029 1030 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1031 } 1032 1033 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1034 unsigned long address, pgd_t *pgdp, 1035 unsigned int flags, 1036 struct follow_page_context *ctx) 1037 { 1038 p4d_t *p4dp, p4d; 1039 1040 p4dp = p4d_offset(pgdp, address); 1041 p4d = READ_ONCE(*p4dp); 1042 BUILD_BUG_ON(p4d_leaf(p4d)); 1043 1044 if (!p4d_present(p4d) || p4d_bad(p4d)) 1045 return no_page_table(vma, flags, address); 1046 1047 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1048 } 1049 1050 /** 1051 * follow_page_mask - look up a page descriptor from a user-virtual address 1052 * @vma: vm_area_struct mapping @address 1053 * @address: virtual address to look up 1054 * @flags: flags modifying lookup behaviour 1055 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1056 * pointer to output page_mask 1057 * 1058 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1059 * 1060 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1061 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1062 * 1063 * When getting an anonymous page and the caller has to trigger unsharing 1064 * of a shared anonymous page first, -EMLINK is returned. The caller should 1065 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1066 * relevant with FOLL_PIN and !FOLL_WRITE. 1067 * 1068 * On output, the @ctx->page_mask is set according to the size of the page. 1069 * 1070 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1071 * an error pointer if there is a mapping to something not represented 1072 * by a page descriptor (see also vm_normal_page()). 1073 */ 1074 static struct page *follow_page_mask(struct vm_area_struct *vma, 1075 unsigned long address, unsigned int flags, 1076 struct follow_page_context *ctx) 1077 { 1078 pgd_t *pgd; 1079 struct mm_struct *mm = vma->vm_mm; 1080 struct page *page; 1081 1082 vma_pgtable_walk_begin(vma); 1083 1084 ctx->page_mask = 0; 1085 pgd = pgd_offset(mm, address); 1086 1087 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1088 page = no_page_table(vma, flags, address); 1089 else 1090 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1091 1092 vma_pgtable_walk_end(vma); 1093 1094 return page; 1095 } 1096 1097 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1098 unsigned int gup_flags, struct vm_area_struct **vma, 1099 struct page **page) 1100 { 1101 pgd_t *pgd; 1102 p4d_t *p4d; 1103 pud_t *pud; 1104 pmd_t *pmd; 1105 pte_t *pte; 1106 pte_t entry; 1107 int ret = -EFAULT; 1108 1109 /* user gate pages are read-only */ 1110 if (gup_flags & FOLL_WRITE) 1111 return -EFAULT; 1112 if (address > TASK_SIZE) 1113 pgd = pgd_offset_k(address); 1114 else 1115 pgd = pgd_offset_gate(mm, address); 1116 if (pgd_none(*pgd)) 1117 return -EFAULT; 1118 p4d = p4d_offset(pgd, address); 1119 if (p4d_none(*p4d)) 1120 return -EFAULT; 1121 pud = pud_offset(p4d, address); 1122 if (pud_none(*pud)) 1123 return -EFAULT; 1124 pmd = pmd_offset(pud, address); 1125 if (!pmd_present(*pmd)) 1126 return -EFAULT; 1127 pte = pte_offset_map(pmd, address); 1128 if (!pte) 1129 return -EFAULT; 1130 entry = ptep_get(pte); 1131 if (pte_none(entry)) 1132 goto unmap; 1133 *vma = get_gate_vma(mm); 1134 if (!page) 1135 goto out; 1136 *page = vm_normal_page(*vma, address, entry); 1137 if (!*page) { 1138 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1139 goto unmap; 1140 *page = pte_page(entry); 1141 } 1142 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1143 if (unlikely(ret)) 1144 goto unmap; 1145 out: 1146 ret = 0; 1147 unmap: 1148 pte_unmap(pte); 1149 return ret; 1150 } 1151 1152 /* 1153 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1154 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1155 * to 0 and -EBUSY returned. 1156 */ 1157 static int faultin_page(struct vm_area_struct *vma, 1158 unsigned long address, unsigned int flags, bool unshare, 1159 int *locked) 1160 { 1161 unsigned int fault_flags = 0; 1162 vm_fault_t ret; 1163 1164 if (flags & FOLL_NOFAULT) 1165 return -EFAULT; 1166 if (flags & FOLL_WRITE) 1167 fault_flags |= FAULT_FLAG_WRITE; 1168 if (flags & FOLL_REMOTE) 1169 fault_flags |= FAULT_FLAG_REMOTE; 1170 if (flags & FOLL_UNLOCKABLE) { 1171 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1172 /* 1173 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1174 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1175 * That's because some callers may not be prepared to 1176 * handle early exits caused by non-fatal signals. 1177 */ 1178 if (flags & FOLL_INTERRUPTIBLE) 1179 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1180 } 1181 if (flags & FOLL_NOWAIT) 1182 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1183 if (flags & FOLL_TRIED) { 1184 /* 1185 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1186 * can co-exist 1187 */ 1188 fault_flags |= FAULT_FLAG_TRIED; 1189 } 1190 if (unshare) { 1191 fault_flags |= FAULT_FLAG_UNSHARE; 1192 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1193 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1194 } 1195 1196 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1197 1198 if (ret & VM_FAULT_COMPLETED) { 1199 /* 1200 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1201 * mmap lock in the page fault handler. Sanity check this. 1202 */ 1203 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1204 *locked = 0; 1205 1206 /* 1207 * We should do the same as VM_FAULT_RETRY, but let's not 1208 * return -EBUSY since that's not reflecting the reality of 1209 * what has happened - we've just fully completed a page 1210 * fault, with the mmap lock released. Use -EAGAIN to show 1211 * that we want to take the mmap lock _again_. 1212 */ 1213 return -EAGAIN; 1214 } 1215 1216 if (ret & VM_FAULT_ERROR) { 1217 int err = vm_fault_to_errno(ret, flags); 1218 1219 if (err) 1220 return err; 1221 BUG(); 1222 } 1223 1224 if (ret & VM_FAULT_RETRY) { 1225 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1226 *locked = 0; 1227 return -EBUSY; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /* 1234 * Writing to file-backed mappings which require folio dirty tracking using GUP 1235 * is a fundamentally broken operation, as kernel write access to GUP mappings 1236 * do not adhere to the semantics expected by a file system. 1237 * 1238 * Consider the following scenario:- 1239 * 1240 * 1. A folio is written to via GUP which write-faults the memory, notifying 1241 * the file system and dirtying the folio. 1242 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1243 * the PTE being marked read-only. 1244 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1245 * direct mapping. 1246 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1247 * (though it does not have to). 1248 * 1249 * This results in both data being written to a folio without writenotify, and 1250 * the folio being dirtied unexpectedly (if the caller decides to do so). 1251 */ 1252 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1253 unsigned long gup_flags) 1254 { 1255 /* 1256 * If we aren't pinning then no problematic write can occur. A long term 1257 * pin is the most egregious case so this is the case we disallow. 1258 */ 1259 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1260 (FOLL_PIN | FOLL_LONGTERM)) 1261 return true; 1262 1263 /* 1264 * If the VMA does not require dirty tracking then no problematic write 1265 * can occur either. 1266 */ 1267 return !vma_needs_dirty_tracking(vma); 1268 } 1269 1270 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1271 { 1272 vm_flags_t vm_flags = vma->vm_flags; 1273 int write = (gup_flags & FOLL_WRITE); 1274 int foreign = (gup_flags & FOLL_REMOTE); 1275 bool vma_anon = vma_is_anonymous(vma); 1276 1277 if (vm_flags & (VM_IO | VM_PFNMAP)) 1278 return -EFAULT; 1279 1280 if ((gup_flags & FOLL_ANON) && !vma_anon) 1281 return -EFAULT; 1282 1283 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1284 return -EOPNOTSUPP; 1285 1286 if (vma_is_secretmem(vma)) 1287 return -EFAULT; 1288 1289 if (write) { 1290 if (!vma_anon && 1291 !writable_file_mapping_allowed(vma, gup_flags)) 1292 return -EFAULT; 1293 1294 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1295 if (!(gup_flags & FOLL_FORCE)) 1296 return -EFAULT; 1297 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1298 if (is_vm_hugetlb_page(vma)) 1299 return -EFAULT; 1300 /* 1301 * We used to let the write,force case do COW in a 1302 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1303 * set a breakpoint in a read-only mapping of an 1304 * executable, without corrupting the file (yet only 1305 * when that file had been opened for writing!). 1306 * Anon pages in shared mappings are surprising: now 1307 * just reject it. 1308 */ 1309 if (!is_cow_mapping(vm_flags)) 1310 return -EFAULT; 1311 } 1312 } else if (!(vm_flags & VM_READ)) { 1313 if (!(gup_flags & FOLL_FORCE)) 1314 return -EFAULT; 1315 /* 1316 * Is there actually any vma we can reach here which does not 1317 * have VM_MAYREAD set? 1318 */ 1319 if (!(vm_flags & VM_MAYREAD)) 1320 return -EFAULT; 1321 } 1322 /* 1323 * gups are always data accesses, not instruction 1324 * fetches, so execute=false here 1325 */ 1326 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1327 return -EFAULT; 1328 return 0; 1329 } 1330 1331 /* 1332 * This is "vma_lookup()", but with a warning if we would have 1333 * historically expanded the stack in the GUP code. 1334 */ 1335 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1336 unsigned long addr) 1337 { 1338 #ifdef CONFIG_STACK_GROWSUP 1339 return vma_lookup(mm, addr); 1340 #else 1341 static volatile unsigned long next_warn; 1342 struct vm_area_struct *vma; 1343 unsigned long now, next; 1344 1345 vma = find_vma(mm, addr); 1346 if (!vma || (addr >= vma->vm_start)) 1347 return vma; 1348 1349 /* Only warn for half-way relevant accesses */ 1350 if (!(vma->vm_flags & VM_GROWSDOWN)) 1351 return NULL; 1352 if (vma->vm_start - addr > 65536) 1353 return NULL; 1354 1355 /* Let's not warn more than once an hour.. */ 1356 now = jiffies; next = next_warn; 1357 if (next && time_before(now, next)) 1358 return NULL; 1359 next_warn = now + 60*60*HZ; 1360 1361 /* Let people know things may have changed. */ 1362 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1363 current->comm, task_pid_nr(current), 1364 vma->vm_start, vma->vm_end, addr); 1365 dump_stack(); 1366 return NULL; 1367 #endif 1368 } 1369 1370 /** 1371 * __get_user_pages() - pin user pages in memory 1372 * @mm: mm_struct of target mm 1373 * @start: starting user address 1374 * @nr_pages: number of pages from start to pin 1375 * @gup_flags: flags modifying pin behaviour 1376 * @pages: array that receives pointers to the pages pinned. 1377 * Should be at least nr_pages long. Or NULL, if caller 1378 * only intends to ensure the pages are faulted in. 1379 * @locked: whether we're still with the mmap_lock held 1380 * 1381 * Returns either number of pages pinned (which may be less than the 1382 * number requested), or an error. Details about the return value: 1383 * 1384 * -- If nr_pages is 0, returns 0. 1385 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1386 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1387 * pages pinned. Again, this may be less than nr_pages. 1388 * -- 0 return value is possible when the fault would need to be retried. 1389 * 1390 * The caller is responsible for releasing returned @pages, via put_page(). 1391 * 1392 * Must be called with mmap_lock held. It may be released. See below. 1393 * 1394 * __get_user_pages walks a process's page tables and takes a reference to 1395 * each struct page that each user address corresponds to at a given 1396 * instant. That is, it takes the page that would be accessed if a user 1397 * thread accesses the given user virtual address at that instant. 1398 * 1399 * This does not guarantee that the page exists in the user mappings when 1400 * __get_user_pages returns, and there may even be a completely different 1401 * page there in some cases (eg. if mmapped pagecache has been invalidated 1402 * and subsequently re-faulted). However it does guarantee that the page 1403 * won't be freed completely. And mostly callers simply care that the page 1404 * contains data that was valid *at some point in time*. Typically, an IO 1405 * or similar operation cannot guarantee anything stronger anyway because 1406 * locks can't be held over the syscall boundary. 1407 * 1408 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1409 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1410 * appropriate) must be called after the page is finished with, and 1411 * before put_page is called. 1412 * 1413 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1414 * be released. If this happens *@locked will be set to 0 on return. 1415 * 1416 * A caller using such a combination of @gup_flags must therefore hold the 1417 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1418 * it must be held for either reading or writing and will not be released. 1419 * 1420 * In most cases, get_user_pages or get_user_pages_fast should be used 1421 * instead of __get_user_pages. __get_user_pages should be used only if 1422 * you need some special @gup_flags. 1423 */ 1424 static long __get_user_pages(struct mm_struct *mm, 1425 unsigned long start, unsigned long nr_pages, 1426 unsigned int gup_flags, struct page **pages, 1427 int *locked) 1428 { 1429 long ret = 0, i = 0; 1430 struct vm_area_struct *vma = NULL; 1431 struct follow_page_context ctx = { NULL }; 1432 1433 if (!nr_pages) 1434 return 0; 1435 1436 start = untagged_addr_remote(mm, start); 1437 1438 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1439 1440 do { 1441 struct page *page; 1442 unsigned int page_increm; 1443 1444 /* first iteration or cross vma bound */ 1445 if (!vma || start >= vma->vm_end) { 1446 /* 1447 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1448 * lookups+error reporting differently. 1449 */ 1450 if (gup_flags & FOLL_MADV_POPULATE) { 1451 vma = vma_lookup(mm, start); 1452 if (!vma) { 1453 ret = -ENOMEM; 1454 goto out; 1455 } 1456 if (check_vma_flags(vma, gup_flags)) { 1457 ret = -EINVAL; 1458 goto out; 1459 } 1460 goto retry; 1461 } 1462 vma = gup_vma_lookup(mm, start); 1463 if (!vma && in_gate_area(mm, start)) { 1464 ret = get_gate_page(mm, start & PAGE_MASK, 1465 gup_flags, &vma, 1466 pages ? &page : NULL); 1467 if (ret) 1468 goto out; 1469 ctx.page_mask = 0; 1470 goto next_page; 1471 } 1472 1473 if (!vma) { 1474 ret = -EFAULT; 1475 goto out; 1476 } 1477 ret = check_vma_flags(vma, gup_flags); 1478 if (ret) 1479 goto out; 1480 } 1481 retry: 1482 /* 1483 * If we have a pending SIGKILL, don't keep faulting pages and 1484 * potentially allocating memory. 1485 */ 1486 if (fatal_signal_pending(current)) { 1487 ret = -EINTR; 1488 goto out; 1489 } 1490 cond_resched(); 1491 1492 page = follow_page_mask(vma, start, gup_flags, &ctx); 1493 if (!page || PTR_ERR(page) == -EMLINK) { 1494 ret = faultin_page(vma, start, gup_flags, 1495 PTR_ERR(page) == -EMLINK, locked); 1496 switch (ret) { 1497 case 0: 1498 goto retry; 1499 case -EBUSY: 1500 case -EAGAIN: 1501 ret = 0; 1502 fallthrough; 1503 case -EFAULT: 1504 case -ENOMEM: 1505 case -EHWPOISON: 1506 goto out; 1507 } 1508 BUG(); 1509 } else if (PTR_ERR(page) == -EEXIST) { 1510 /* 1511 * Proper page table entry exists, but no corresponding 1512 * struct page. If the caller expects **pages to be 1513 * filled in, bail out now, because that can't be done 1514 * for this page. 1515 */ 1516 if (pages) { 1517 ret = PTR_ERR(page); 1518 goto out; 1519 } 1520 } else if (IS_ERR(page)) { 1521 ret = PTR_ERR(page); 1522 goto out; 1523 } 1524 next_page: 1525 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1526 if (page_increm > nr_pages) 1527 page_increm = nr_pages; 1528 1529 if (pages) { 1530 struct page *subpage; 1531 unsigned int j; 1532 1533 /* 1534 * This must be a large folio (and doesn't need to 1535 * be the whole folio; it can be part of it), do 1536 * the refcount work for all the subpages too. 1537 * 1538 * NOTE: here the page may not be the head page 1539 * e.g. when start addr is not thp-size aligned. 1540 * try_grab_folio() should have taken care of tail 1541 * pages. 1542 */ 1543 if (page_increm > 1) { 1544 struct folio *folio = page_folio(page); 1545 1546 /* 1547 * Since we already hold refcount on the 1548 * large folio, this should never fail. 1549 */ 1550 if (try_grab_folio(folio, page_increm - 1, 1551 gup_flags)) { 1552 /* 1553 * Release the 1st page ref if the 1554 * folio is problematic, fail hard. 1555 */ 1556 gup_put_folio(folio, 1, gup_flags); 1557 ret = -EFAULT; 1558 goto out; 1559 } 1560 } 1561 1562 for (j = 0; j < page_increm; j++) { 1563 subpage = nth_page(page, j); 1564 pages[i + j] = subpage; 1565 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1566 flush_dcache_page(subpage); 1567 } 1568 } 1569 1570 i += page_increm; 1571 start += page_increm * PAGE_SIZE; 1572 nr_pages -= page_increm; 1573 } while (nr_pages); 1574 out: 1575 if (ctx.pgmap) 1576 put_dev_pagemap(ctx.pgmap); 1577 return i ? i : ret; 1578 } 1579 1580 static bool vma_permits_fault(struct vm_area_struct *vma, 1581 unsigned int fault_flags) 1582 { 1583 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1584 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1585 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1586 1587 if (!(vm_flags & vma->vm_flags)) 1588 return false; 1589 1590 /* 1591 * The architecture might have a hardware protection 1592 * mechanism other than read/write that can deny access. 1593 * 1594 * gup always represents data access, not instruction 1595 * fetches, so execute=false here: 1596 */ 1597 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1598 return false; 1599 1600 return true; 1601 } 1602 1603 /** 1604 * fixup_user_fault() - manually resolve a user page fault 1605 * @mm: mm_struct of target mm 1606 * @address: user address 1607 * @fault_flags:flags to pass down to handle_mm_fault() 1608 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1609 * does not allow retry. If NULL, the caller must guarantee 1610 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1611 * 1612 * This is meant to be called in the specific scenario where for locking reasons 1613 * we try to access user memory in atomic context (within a pagefault_disable() 1614 * section), this returns -EFAULT, and we want to resolve the user fault before 1615 * trying again. 1616 * 1617 * Typically this is meant to be used by the futex code. 1618 * 1619 * The main difference with get_user_pages() is that this function will 1620 * unconditionally call handle_mm_fault() which will in turn perform all the 1621 * necessary SW fixup of the dirty and young bits in the PTE, while 1622 * get_user_pages() only guarantees to update these in the struct page. 1623 * 1624 * This is important for some architectures where those bits also gate the 1625 * access permission to the page because they are maintained in software. On 1626 * such architectures, gup() will not be enough to make a subsequent access 1627 * succeed. 1628 * 1629 * This function will not return with an unlocked mmap_lock. So it has not the 1630 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1631 */ 1632 int fixup_user_fault(struct mm_struct *mm, 1633 unsigned long address, unsigned int fault_flags, 1634 bool *unlocked) 1635 { 1636 struct vm_area_struct *vma; 1637 vm_fault_t ret; 1638 1639 address = untagged_addr_remote(mm, address); 1640 1641 if (unlocked) 1642 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1643 1644 retry: 1645 vma = gup_vma_lookup(mm, address); 1646 if (!vma) 1647 return -EFAULT; 1648 1649 if (!vma_permits_fault(vma, fault_flags)) 1650 return -EFAULT; 1651 1652 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1653 fatal_signal_pending(current)) 1654 return -EINTR; 1655 1656 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1657 1658 if (ret & VM_FAULT_COMPLETED) { 1659 /* 1660 * NOTE: it's a pity that we need to retake the lock here 1661 * to pair with the unlock() in the callers. Ideally we 1662 * could tell the callers so they do not need to unlock. 1663 */ 1664 mmap_read_lock(mm); 1665 *unlocked = true; 1666 return 0; 1667 } 1668 1669 if (ret & VM_FAULT_ERROR) { 1670 int err = vm_fault_to_errno(ret, 0); 1671 1672 if (err) 1673 return err; 1674 BUG(); 1675 } 1676 1677 if (ret & VM_FAULT_RETRY) { 1678 mmap_read_lock(mm); 1679 *unlocked = true; 1680 fault_flags |= FAULT_FLAG_TRIED; 1681 goto retry; 1682 } 1683 1684 return 0; 1685 } 1686 EXPORT_SYMBOL_GPL(fixup_user_fault); 1687 1688 /* 1689 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1690 * specified, it'll also respond to generic signals. The caller of GUP 1691 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1692 */ 1693 static bool gup_signal_pending(unsigned int flags) 1694 { 1695 if (fatal_signal_pending(current)) 1696 return true; 1697 1698 if (!(flags & FOLL_INTERRUPTIBLE)) 1699 return false; 1700 1701 return signal_pending(current); 1702 } 1703 1704 /* 1705 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1706 * the caller. This function may drop the mmap_lock. If it does so, then it will 1707 * set (*locked = 0). 1708 * 1709 * (*locked == 0) means that the caller expects this function to acquire and 1710 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1711 * the function returns, even though it may have changed temporarily during 1712 * function execution. 1713 * 1714 * Please note that this function, unlike __get_user_pages(), will not return 0 1715 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1716 */ 1717 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1718 unsigned long start, 1719 unsigned long nr_pages, 1720 struct page **pages, 1721 int *locked, 1722 unsigned int flags) 1723 { 1724 long ret, pages_done; 1725 bool must_unlock = false; 1726 1727 if (!nr_pages) 1728 return 0; 1729 1730 /* 1731 * The internal caller expects GUP to manage the lock internally and the 1732 * lock must be released when this returns. 1733 */ 1734 if (!*locked) { 1735 if (mmap_read_lock_killable(mm)) 1736 return -EAGAIN; 1737 must_unlock = true; 1738 *locked = 1; 1739 } 1740 else 1741 mmap_assert_locked(mm); 1742 1743 if (flags & FOLL_PIN) 1744 mm_set_has_pinned_flag(&mm->flags); 1745 1746 /* 1747 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1748 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1749 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1750 * for FOLL_GET, not for the newer FOLL_PIN. 1751 * 1752 * FOLL_PIN always expects pages to be non-null, but no need to assert 1753 * that here, as any failures will be obvious enough. 1754 */ 1755 if (pages && !(flags & FOLL_PIN)) 1756 flags |= FOLL_GET; 1757 1758 pages_done = 0; 1759 for (;;) { 1760 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1761 locked); 1762 if (!(flags & FOLL_UNLOCKABLE)) { 1763 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1764 pages_done = ret; 1765 break; 1766 } 1767 1768 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1769 if (!*locked) { 1770 BUG_ON(ret < 0); 1771 BUG_ON(ret >= nr_pages); 1772 } 1773 1774 if (ret > 0) { 1775 nr_pages -= ret; 1776 pages_done += ret; 1777 if (!nr_pages) 1778 break; 1779 } 1780 if (*locked) { 1781 /* 1782 * VM_FAULT_RETRY didn't trigger or it was a 1783 * FOLL_NOWAIT. 1784 */ 1785 if (!pages_done) 1786 pages_done = ret; 1787 break; 1788 } 1789 /* 1790 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1791 * For the prefault case (!pages) we only update counts. 1792 */ 1793 if (likely(pages)) 1794 pages += ret; 1795 start += ret << PAGE_SHIFT; 1796 1797 /* The lock was temporarily dropped, so we must unlock later */ 1798 must_unlock = true; 1799 1800 retry: 1801 /* 1802 * Repeat on the address that fired VM_FAULT_RETRY 1803 * with both FAULT_FLAG_ALLOW_RETRY and 1804 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1805 * by fatal signals of even common signals, depending on 1806 * the caller's request. So we need to check it before we 1807 * start trying again otherwise it can loop forever. 1808 */ 1809 if (gup_signal_pending(flags)) { 1810 if (!pages_done) 1811 pages_done = -EINTR; 1812 break; 1813 } 1814 1815 ret = mmap_read_lock_killable(mm); 1816 if (ret) { 1817 BUG_ON(ret > 0); 1818 if (!pages_done) 1819 pages_done = ret; 1820 break; 1821 } 1822 1823 *locked = 1; 1824 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1825 pages, locked); 1826 if (!*locked) { 1827 /* Continue to retry until we succeeded */ 1828 BUG_ON(ret != 0); 1829 goto retry; 1830 } 1831 if (ret != 1) { 1832 BUG_ON(ret > 1); 1833 if (!pages_done) 1834 pages_done = ret; 1835 break; 1836 } 1837 nr_pages--; 1838 pages_done++; 1839 if (!nr_pages) 1840 break; 1841 if (likely(pages)) 1842 pages++; 1843 start += PAGE_SIZE; 1844 } 1845 if (must_unlock && *locked) { 1846 /* 1847 * We either temporarily dropped the lock, or the caller 1848 * requested that we both acquire and drop the lock. Either way, 1849 * we must now unlock, and notify the caller of that state. 1850 */ 1851 mmap_read_unlock(mm); 1852 *locked = 0; 1853 } 1854 1855 /* 1856 * Failing to pin anything implies something has gone wrong (except when 1857 * FOLL_NOWAIT is specified). 1858 */ 1859 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1860 return -EFAULT; 1861 1862 return pages_done; 1863 } 1864 1865 /** 1866 * populate_vma_page_range() - populate a range of pages in the vma. 1867 * @vma: target vma 1868 * @start: start address 1869 * @end: end address 1870 * @locked: whether the mmap_lock is still held 1871 * 1872 * This takes care of mlocking the pages too if VM_LOCKED is set. 1873 * 1874 * Return either number of pages pinned in the vma, or a negative error 1875 * code on error. 1876 * 1877 * vma->vm_mm->mmap_lock must be held. 1878 * 1879 * If @locked is NULL, it may be held for read or write and will 1880 * be unperturbed. 1881 * 1882 * If @locked is non-NULL, it must held for read only and may be 1883 * released. If it's released, *@locked will be set to 0. 1884 */ 1885 long populate_vma_page_range(struct vm_area_struct *vma, 1886 unsigned long start, unsigned long end, int *locked) 1887 { 1888 struct mm_struct *mm = vma->vm_mm; 1889 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1890 int local_locked = 1; 1891 int gup_flags; 1892 long ret; 1893 1894 VM_BUG_ON(!PAGE_ALIGNED(start)); 1895 VM_BUG_ON(!PAGE_ALIGNED(end)); 1896 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1897 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1898 mmap_assert_locked(mm); 1899 1900 /* 1901 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1902 * faultin_page() to break COW, so it has no work to do here. 1903 */ 1904 if (vma->vm_flags & VM_LOCKONFAULT) 1905 return nr_pages; 1906 1907 /* ... similarly, we've never faulted in PROT_NONE pages */ 1908 if (!vma_is_accessible(vma)) 1909 return -EFAULT; 1910 1911 gup_flags = FOLL_TOUCH; 1912 /* 1913 * We want to touch writable mappings with a write fault in order 1914 * to break COW, except for shared mappings because these don't COW 1915 * and we would not want to dirty them for nothing. 1916 * 1917 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1918 * readable (ie write-only or executable). 1919 */ 1920 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1921 gup_flags |= FOLL_WRITE; 1922 else 1923 gup_flags |= FOLL_FORCE; 1924 1925 if (locked) 1926 gup_flags |= FOLL_UNLOCKABLE; 1927 1928 /* 1929 * We made sure addr is within a VMA, so the following will 1930 * not result in a stack expansion that recurses back here. 1931 */ 1932 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1933 NULL, locked ? locked : &local_locked); 1934 lru_add_drain(); 1935 return ret; 1936 } 1937 1938 /* 1939 * faultin_page_range() - populate (prefault) page tables inside the 1940 * given range readable/writable 1941 * 1942 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1943 * 1944 * @mm: the mm to populate page tables in 1945 * @start: start address 1946 * @end: end address 1947 * @write: whether to prefault readable or writable 1948 * @locked: whether the mmap_lock is still held 1949 * 1950 * Returns either number of processed pages in the MM, or a negative error 1951 * code on error (see __get_user_pages()). Note that this function reports 1952 * errors related to VMAs, such as incompatible mappings, as expected by 1953 * MADV_POPULATE_(READ|WRITE). 1954 * 1955 * The range must be page-aligned. 1956 * 1957 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1958 */ 1959 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1960 unsigned long end, bool write, int *locked) 1961 { 1962 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1963 int gup_flags; 1964 long ret; 1965 1966 VM_BUG_ON(!PAGE_ALIGNED(start)); 1967 VM_BUG_ON(!PAGE_ALIGNED(end)); 1968 mmap_assert_locked(mm); 1969 1970 /* 1971 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1972 * the page dirty with FOLL_WRITE -- which doesn't make a 1973 * difference with !FOLL_FORCE, because the page is writable 1974 * in the page table. 1975 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1976 * a poisoned page. 1977 * !FOLL_FORCE: Require proper access permissions. 1978 */ 1979 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1980 FOLL_MADV_POPULATE; 1981 if (write) 1982 gup_flags |= FOLL_WRITE; 1983 1984 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1985 gup_flags); 1986 lru_add_drain(); 1987 return ret; 1988 } 1989 1990 /* 1991 * __mm_populate - populate and/or mlock pages within a range of address space. 1992 * 1993 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1994 * flags. VMAs must be already marked with the desired vm_flags, and 1995 * mmap_lock must not be held. 1996 */ 1997 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1998 { 1999 struct mm_struct *mm = current->mm; 2000 unsigned long end, nstart, nend; 2001 struct vm_area_struct *vma = NULL; 2002 int locked = 0; 2003 long ret = 0; 2004 2005 end = start + len; 2006 2007 for (nstart = start; nstart < end; nstart = nend) { 2008 /* 2009 * We want to fault in pages for [nstart; end) address range. 2010 * Find first corresponding VMA. 2011 */ 2012 if (!locked) { 2013 locked = 1; 2014 mmap_read_lock(mm); 2015 vma = find_vma_intersection(mm, nstart, end); 2016 } else if (nstart >= vma->vm_end) 2017 vma = find_vma_intersection(mm, vma->vm_end, end); 2018 2019 if (!vma) 2020 break; 2021 /* 2022 * Set [nstart; nend) to intersection of desired address 2023 * range with the first VMA. Also, skip undesirable VMA types. 2024 */ 2025 nend = min(end, vma->vm_end); 2026 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2027 continue; 2028 if (nstart < vma->vm_start) 2029 nstart = vma->vm_start; 2030 /* 2031 * Now fault in a range of pages. populate_vma_page_range() 2032 * double checks the vma flags, so that it won't mlock pages 2033 * if the vma was already munlocked. 2034 */ 2035 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2036 if (ret < 0) { 2037 if (ignore_errors) { 2038 ret = 0; 2039 continue; /* continue at next VMA */ 2040 } 2041 break; 2042 } 2043 nend = nstart + ret * PAGE_SIZE; 2044 ret = 0; 2045 } 2046 if (locked) 2047 mmap_read_unlock(mm); 2048 return ret; /* 0 or negative error code */ 2049 } 2050 #else /* CONFIG_MMU */ 2051 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2052 unsigned long nr_pages, struct page **pages, 2053 int *locked, unsigned int foll_flags) 2054 { 2055 struct vm_area_struct *vma; 2056 bool must_unlock = false; 2057 unsigned long vm_flags; 2058 long i; 2059 2060 if (!nr_pages) 2061 return 0; 2062 2063 /* 2064 * The internal caller expects GUP to manage the lock internally and the 2065 * lock must be released when this returns. 2066 */ 2067 if (!*locked) { 2068 if (mmap_read_lock_killable(mm)) 2069 return -EAGAIN; 2070 must_unlock = true; 2071 *locked = 1; 2072 } 2073 2074 /* calculate required read or write permissions. 2075 * If FOLL_FORCE is set, we only require the "MAY" flags. 2076 */ 2077 vm_flags = (foll_flags & FOLL_WRITE) ? 2078 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2079 vm_flags &= (foll_flags & FOLL_FORCE) ? 2080 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2081 2082 for (i = 0; i < nr_pages; i++) { 2083 vma = find_vma(mm, start); 2084 if (!vma) 2085 break; 2086 2087 /* protect what we can, including chardevs */ 2088 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2089 !(vm_flags & vma->vm_flags)) 2090 break; 2091 2092 if (pages) { 2093 pages[i] = virt_to_page((void *)start); 2094 if (pages[i]) 2095 get_page(pages[i]); 2096 } 2097 2098 start = (start + PAGE_SIZE) & PAGE_MASK; 2099 } 2100 2101 if (must_unlock && *locked) { 2102 mmap_read_unlock(mm); 2103 *locked = 0; 2104 } 2105 2106 return i ? : -EFAULT; 2107 } 2108 #endif /* !CONFIG_MMU */ 2109 2110 /** 2111 * fault_in_writeable - fault in userspace address range for writing 2112 * @uaddr: start of address range 2113 * @size: size of address range 2114 * 2115 * Returns the number of bytes not faulted in (like copy_to_user() and 2116 * copy_from_user()). 2117 */ 2118 size_t fault_in_writeable(char __user *uaddr, size_t size) 2119 { 2120 char __user *start = uaddr, *end; 2121 2122 if (unlikely(size == 0)) 2123 return 0; 2124 if (!user_write_access_begin(uaddr, size)) 2125 return size; 2126 if (!PAGE_ALIGNED(uaddr)) { 2127 unsafe_put_user(0, uaddr, out); 2128 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2129 } 2130 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2131 if (unlikely(end < start)) 2132 end = NULL; 2133 while (uaddr != end) { 2134 unsafe_put_user(0, uaddr, out); 2135 uaddr += PAGE_SIZE; 2136 } 2137 2138 out: 2139 user_write_access_end(); 2140 if (size > uaddr - start) 2141 return size - (uaddr - start); 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(fault_in_writeable); 2145 2146 /** 2147 * fault_in_subpage_writeable - fault in an address range for writing 2148 * @uaddr: start of address range 2149 * @size: size of address range 2150 * 2151 * Fault in a user address range for writing while checking for permissions at 2152 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2153 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2154 * 2155 * Returns the number of bytes not faulted in (like copy_to_user() and 2156 * copy_from_user()). 2157 */ 2158 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2159 { 2160 size_t faulted_in; 2161 2162 /* 2163 * Attempt faulting in at page granularity first for page table 2164 * permission checking. The arch-specific probe_subpage_writeable() 2165 * functions may not check for this. 2166 */ 2167 faulted_in = size - fault_in_writeable(uaddr, size); 2168 if (faulted_in) 2169 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2170 2171 return size - faulted_in; 2172 } 2173 EXPORT_SYMBOL(fault_in_subpage_writeable); 2174 2175 /* 2176 * fault_in_safe_writeable - fault in an address range for writing 2177 * @uaddr: start of address range 2178 * @size: length of address range 2179 * 2180 * Faults in an address range for writing. This is primarily useful when we 2181 * already know that some or all of the pages in the address range aren't in 2182 * memory. 2183 * 2184 * Unlike fault_in_writeable(), this function is non-destructive. 2185 * 2186 * Note that we don't pin or otherwise hold the pages referenced that we fault 2187 * in. There's no guarantee that they'll stay in memory for any duration of 2188 * time. 2189 * 2190 * Returns the number of bytes not faulted in, like copy_to_user() and 2191 * copy_from_user(). 2192 */ 2193 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2194 { 2195 unsigned long start = (unsigned long)uaddr, end; 2196 struct mm_struct *mm = current->mm; 2197 bool unlocked = false; 2198 2199 if (unlikely(size == 0)) 2200 return 0; 2201 end = PAGE_ALIGN(start + size); 2202 if (end < start) 2203 end = 0; 2204 2205 mmap_read_lock(mm); 2206 do { 2207 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2208 break; 2209 start = (start + PAGE_SIZE) & PAGE_MASK; 2210 } while (start != end); 2211 mmap_read_unlock(mm); 2212 2213 if (size > (unsigned long)uaddr - start) 2214 return size - ((unsigned long)uaddr - start); 2215 return 0; 2216 } 2217 EXPORT_SYMBOL(fault_in_safe_writeable); 2218 2219 /** 2220 * fault_in_readable - fault in userspace address range for reading 2221 * @uaddr: start of user address range 2222 * @size: size of user address range 2223 * 2224 * Returns the number of bytes not faulted in (like copy_to_user() and 2225 * copy_from_user()). 2226 */ 2227 size_t fault_in_readable(const char __user *uaddr, size_t size) 2228 { 2229 const char __user *start = uaddr, *end; 2230 volatile char c; 2231 2232 if (unlikely(size == 0)) 2233 return 0; 2234 if (!user_read_access_begin(uaddr, size)) 2235 return size; 2236 if (!PAGE_ALIGNED(uaddr)) { 2237 unsafe_get_user(c, uaddr, out); 2238 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2239 } 2240 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2241 if (unlikely(end < start)) 2242 end = NULL; 2243 while (uaddr != end) { 2244 unsafe_get_user(c, uaddr, out); 2245 uaddr += PAGE_SIZE; 2246 } 2247 2248 out: 2249 user_read_access_end(); 2250 (void)c; 2251 if (size > uaddr - start) 2252 return size - (uaddr - start); 2253 return 0; 2254 } 2255 EXPORT_SYMBOL(fault_in_readable); 2256 2257 /** 2258 * get_dump_page() - pin user page in memory while writing it to core dump 2259 * @addr: user address 2260 * 2261 * Returns struct page pointer of user page pinned for dump, 2262 * to be freed afterwards by put_page(). 2263 * 2264 * Returns NULL on any kind of failure - a hole must then be inserted into 2265 * the corefile, to preserve alignment with its headers; and also returns 2266 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2267 * allowing a hole to be left in the corefile to save disk space. 2268 * 2269 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2270 */ 2271 #ifdef CONFIG_ELF_CORE 2272 struct page *get_dump_page(unsigned long addr) 2273 { 2274 struct page *page; 2275 int locked = 0; 2276 int ret; 2277 2278 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2279 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2280 return (ret == 1) ? page : NULL; 2281 } 2282 #endif /* CONFIG_ELF_CORE */ 2283 2284 #ifdef CONFIG_MIGRATION 2285 2286 /* 2287 * An array of either pages or folios ("pofs"). Although it may seem tempting to 2288 * avoid this complication, by simply interpreting a list of folios as a list of 2289 * pages, that approach won't work in the longer term, because eventually the 2290 * layouts of struct page and struct folio will become completely different. 2291 * Furthermore, this pof approach avoids excessive page_folio() calls. 2292 */ 2293 struct pages_or_folios { 2294 union { 2295 struct page **pages; 2296 struct folio **folios; 2297 void **entries; 2298 }; 2299 bool has_folios; 2300 long nr_entries; 2301 }; 2302 2303 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) 2304 { 2305 if (pofs->has_folios) 2306 return pofs->folios[i]; 2307 return page_folio(pofs->pages[i]); 2308 } 2309 2310 static void pofs_clear_entry(struct pages_or_folios *pofs, long i) 2311 { 2312 pofs->entries[i] = NULL; 2313 } 2314 2315 static void pofs_unpin(struct pages_or_folios *pofs) 2316 { 2317 if (pofs->has_folios) 2318 unpin_folios(pofs->folios, pofs->nr_entries); 2319 else 2320 unpin_user_pages(pofs->pages, pofs->nr_entries); 2321 } 2322 2323 /* 2324 * Returns the number of collected folios. Return value is always >= 0. 2325 */ 2326 static unsigned long collect_longterm_unpinnable_folios( 2327 struct list_head *movable_folio_list, 2328 struct pages_or_folios *pofs) 2329 { 2330 unsigned long i, collected = 0; 2331 struct folio *prev_folio = NULL; 2332 bool drain_allow = true; 2333 2334 for (i = 0; i < pofs->nr_entries; i++) { 2335 struct folio *folio = pofs_get_folio(pofs, i); 2336 2337 if (folio == prev_folio) 2338 continue; 2339 prev_folio = folio; 2340 2341 if (folio_is_longterm_pinnable(folio)) 2342 continue; 2343 2344 collected++; 2345 2346 if (folio_is_device_coherent(folio)) 2347 continue; 2348 2349 if (folio_test_hugetlb(folio)) { 2350 isolate_hugetlb(folio, movable_folio_list); 2351 continue; 2352 } 2353 2354 if (!folio_test_lru(folio) && drain_allow) { 2355 lru_add_drain_all(); 2356 drain_allow = false; 2357 } 2358 2359 if (!folio_isolate_lru(folio)) 2360 continue; 2361 2362 list_add_tail(&folio->lru, movable_folio_list); 2363 node_stat_mod_folio(folio, 2364 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2365 folio_nr_pages(folio)); 2366 } 2367 2368 return collected; 2369 } 2370 2371 /* 2372 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2373 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2374 * failure (or partial success). 2375 */ 2376 static int 2377 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, 2378 struct pages_or_folios *pofs) 2379 { 2380 int ret; 2381 unsigned long i; 2382 2383 for (i = 0; i < pofs->nr_entries; i++) { 2384 struct folio *folio = pofs_get_folio(pofs, i); 2385 2386 if (folio_is_device_coherent(folio)) { 2387 /* 2388 * Migration will fail if the folio is pinned, so 2389 * convert the pin on the source folio to a normal 2390 * reference. 2391 */ 2392 pofs_clear_entry(pofs, i); 2393 folio_get(folio); 2394 gup_put_folio(folio, 1, FOLL_PIN); 2395 2396 if (migrate_device_coherent_folio(folio)) { 2397 ret = -EBUSY; 2398 goto err; 2399 } 2400 2401 continue; 2402 } 2403 2404 /* 2405 * We can't migrate folios with unexpected references, so drop 2406 * the reference obtained by __get_user_pages_locked(). 2407 * Migrating folios have been added to movable_folio_list after 2408 * calling folio_isolate_lru() which takes a reference so the 2409 * folio won't be freed if it's migrating. 2410 */ 2411 unpin_folio(folio); 2412 pofs_clear_entry(pofs, i); 2413 } 2414 2415 if (!list_empty(movable_folio_list)) { 2416 struct migration_target_control mtc = { 2417 .nid = NUMA_NO_NODE, 2418 .gfp_mask = GFP_USER | __GFP_NOWARN, 2419 .reason = MR_LONGTERM_PIN, 2420 }; 2421 2422 if (migrate_pages(movable_folio_list, alloc_migration_target, 2423 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2424 MR_LONGTERM_PIN, NULL)) { 2425 ret = -ENOMEM; 2426 goto err; 2427 } 2428 } 2429 2430 putback_movable_pages(movable_folio_list); 2431 2432 return -EAGAIN; 2433 2434 err: 2435 pofs_unpin(pofs); 2436 putback_movable_pages(movable_folio_list); 2437 2438 return ret; 2439 } 2440 2441 static long 2442 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) 2443 { 2444 LIST_HEAD(movable_folio_list); 2445 unsigned long collected; 2446 2447 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2448 pofs); 2449 if (!collected) 2450 return 0; 2451 2452 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); 2453 } 2454 2455 /* 2456 * Check whether all folios are *allowed* to be pinned indefinitely (long term). 2457 * Rather confusingly, all folios in the range are required to be pinned via 2458 * FOLL_PIN, before calling this routine. 2459 * 2460 * Return values: 2461 * 2462 * 0: if everything is OK and all folios in the range are allowed to be pinned, 2463 * then this routine leaves all folios pinned and returns zero for success. 2464 * 2465 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this 2466 * routine will migrate those folios away, unpin all the folios in the range. If 2467 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The 2468 * caller should re-pin the entire range with FOLL_PIN and then call this 2469 * routine again. 2470 * 2471 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this 2472 * indicates a migration failure. The caller should give up, and propagate the 2473 * error back up the call stack. The caller does not need to unpin any folios in 2474 * that case, because this routine will do the unpinning. 2475 */ 2476 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2477 struct folio **folios) 2478 { 2479 struct pages_or_folios pofs = { 2480 .folios = folios, 2481 .has_folios = true, 2482 .nr_entries = nr_folios, 2483 }; 2484 2485 return check_and_migrate_movable_pages_or_folios(&pofs); 2486 } 2487 2488 /* 2489 * Return values and behavior are the same as those for 2490 * check_and_migrate_movable_folios(). 2491 */ 2492 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2493 struct page **pages) 2494 { 2495 struct pages_or_folios pofs = { 2496 .pages = pages, 2497 .has_folios = false, 2498 .nr_entries = nr_pages, 2499 }; 2500 2501 return check_and_migrate_movable_pages_or_folios(&pofs); 2502 } 2503 #else 2504 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2505 struct page **pages) 2506 { 2507 return 0; 2508 } 2509 2510 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2511 struct folio **folios) 2512 { 2513 return 0; 2514 } 2515 #endif /* CONFIG_MIGRATION */ 2516 2517 /* 2518 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2519 * allows us to process the FOLL_LONGTERM flag. 2520 */ 2521 static long __gup_longterm_locked(struct mm_struct *mm, 2522 unsigned long start, 2523 unsigned long nr_pages, 2524 struct page **pages, 2525 int *locked, 2526 unsigned int gup_flags) 2527 { 2528 unsigned int flags; 2529 long rc, nr_pinned_pages; 2530 2531 if (!(gup_flags & FOLL_LONGTERM)) 2532 return __get_user_pages_locked(mm, start, nr_pages, pages, 2533 locked, gup_flags); 2534 2535 flags = memalloc_pin_save(); 2536 do { 2537 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2538 pages, locked, 2539 gup_flags); 2540 if (nr_pinned_pages <= 0) { 2541 rc = nr_pinned_pages; 2542 break; 2543 } 2544 2545 /* FOLL_LONGTERM implies FOLL_PIN */ 2546 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2547 } while (rc == -EAGAIN); 2548 memalloc_pin_restore(flags); 2549 return rc ? rc : nr_pinned_pages; 2550 } 2551 2552 /* 2553 * Check that the given flags are valid for the exported gup/pup interface, and 2554 * update them with the required flags that the caller must have set. 2555 */ 2556 static bool is_valid_gup_args(struct page **pages, int *locked, 2557 unsigned int *gup_flags_p, unsigned int to_set) 2558 { 2559 unsigned int gup_flags = *gup_flags_p; 2560 2561 /* 2562 * These flags not allowed to be specified externally to the gup 2563 * interfaces: 2564 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2565 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2566 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2567 */ 2568 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2569 return false; 2570 2571 gup_flags |= to_set; 2572 if (locked) { 2573 /* At the external interface locked must be set */ 2574 if (WARN_ON_ONCE(*locked != 1)) 2575 return false; 2576 2577 gup_flags |= FOLL_UNLOCKABLE; 2578 } 2579 2580 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2581 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2582 (FOLL_PIN | FOLL_GET))) 2583 return false; 2584 2585 /* LONGTERM can only be specified when pinning */ 2586 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2587 return false; 2588 2589 /* Pages input must be given if using GET/PIN */ 2590 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2591 return false; 2592 2593 /* We want to allow the pgmap to be hot-unplugged at all times */ 2594 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2595 (gup_flags & FOLL_PCI_P2PDMA))) 2596 return false; 2597 2598 *gup_flags_p = gup_flags; 2599 return true; 2600 } 2601 2602 #ifdef CONFIG_MMU 2603 /** 2604 * get_user_pages_remote() - pin user pages in memory 2605 * @mm: mm_struct of target mm 2606 * @start: starting user address 2607 * @nr_pages: number of pages from start to pin 2608 * @gup_flags: flags modifying lookup behaviour 2609 * @pages: array that receives pointers to the pages pinned. 2610 * Should be at least nr_pages long. Or NULL, if caller 2611 * only intends to ensure the pages are faulted in. 2612 * @locked: pointer to lock flag indicating whether lock is held and 2613 * subsequently whether VM_FAULT_RETRY functionality can be 2614 * utilised. Lock must initially be held. 2615 * 2616 * Returns either number of pages pinned (which may be less than the 2617 * number requested), or an error. Details about the return value: 2618 * 2619 * -- If nr_pages is 0, returns 0. 2620 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2621 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2622 * pages pinned. Again, this may be less than nr_pages. 2623 * 2624 * The caller is responsible for releasing returned @pages, via put_page(). 2625 * 2626 * Must be called with mmap_lock held for read or write. 2627 * 2628 * get_user_pages_remote walks a process's page tables and takes a reference 2629 * to each struct page that each user address corresponds to at a given 2630 * instant. That is, it takes the page that would be accessed if a user 2631 * thread accesses the given user virtual address at that instant. 2632 * 2633 * This does not guarantee that the page exists in the user mappings when 2634 * get_user_pages_remote returns, and there may even be a completely different 2635 * page there in some cases (eg. if mmapped pagecache has been invalidated 2636 * and subsequently re-faulted). However it does guarantee that the page 2637 * won't be freed completely. And mostly callers simply care that the page 2638 * contains data that was valid *at some point in time*. Typically, an IO 2639 * or similar operation cannot guarantee anything stronger anyway because 2640 * locks can't be held over the syscall boundary. 2641 * 2642 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2643 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2644 * be called after the page is finished with, and before put_page is called. 2645 * 2646 * get_user_pages_remote is typically used for fewer-copy IO operations, 2647 * to get a handle on the memory by some means other than accesses 2648 * via the user virtual addresses. The pages may be submitted for 2649 * DMA to devices or accessed via their kernel linear mapping (via the 2650 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2651 * 2652 * See also get_user_pages_fast, for performance critical applications. 2653 * 2654 * get_user_pages_remote should be phased out in favor of 2655 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2656 * should use get_user_pages_remote because it cannot pass 2657 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2658 */ 2659 long get_user_pages_remote(struct mm_struct *mm, 2660 unsigned long start, unsigned long nr_pages, 2661 unsigned int gup_flags, struct page **pages, 2662 int *locked) 2663 { 2664 int local_locked = 1; 2665 2666 if (!is_valid_gup_args(pages, locked, &gup_flags, 2667 FOLL_TOUCH | FOLL_REMOTE)) 2668 return -EINVAL; 2669 2670 return __get_user_pages_locked(mm, start, nr_pages, pages, 2671 locked ? locked : &local_locked, 2672 gup_flags); 2673 } 2674 EXPORT_SYMBOL(get_user_pages_remote); 2675 2676 #else /* CONFIG_MMU */ 2677 long get_user_pages_remote(struct mm_struct *mm, 2678 unsigned long start, unsigned long nr_pages, 2679 unsigned int gup_flags, struct page **pages, 2680 int *locked) 2681 { 2682 return 0; 2683 } 2684 #endif /* !CONFIG_MMU */ 2685 2686 /** 2687 * get_user_pages() - pin user pages in memory 2688 * @start: starting user address 2689 * @nr_pages: number of pages from start to pin 2690 * @gup_flags: flags modifying lookup behaviour 2691 * @pages: array that receives pointers to the pages pinned. 2692 * Should be at least nr_pages long. Or NULL, if caller 2693 * only intends to ensure the pages are faulted in. 2694 * 2695 * This is the same as get_user_pages_remote(), just with a less-flexible 2696 * calling convention where we assume that the mm being operated on belongs to 2697 * the current task, and doesn't allow passing of a locked parameter. We also 2698 * obviously don't pass FOLL_REMOTE in here. 2699 */ 2700 long get_user_pages(unsigned long start, unsigned long nr_pages, 2701 unsigned int gup_flags, struct page **pages) 2702 { 2703 int locked = 1; 2704 2705 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2706 return -EINVAL; 2707 2708 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2709 &locked, gup_flags); 2710 } 2711 EXPORT_SYMBOL(get_user_pages); 2712 2713 /* 2714 * get_user_pages_unlocked() is suitable to replace the form: 2715 * 2716 * mmap_read_lock(mm); 2717 * get_user_pages(mm, ..., pages, NULL); 2718 * mmap_read_unlock(mm); 2719 * 2720 * with: 2721 * 2722 * get_user_pages_unlocked(mm, ..., pages); 2723 * 2724 * It is functionally equivalent to get_user_pages_fast so 2725 * get_user_pages_fast should be used instead if specific gup_flags 2726 * (e.g. FOLL_FORCE) are not required. 2727 */ 2728 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2729 struct page **pages, unsigned int gup_flags) 2730 { 2731 int locked = 0; 2732 2733 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2734 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2735 return -EINVAL; 2736 2737 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2738 &locked, gup_flags); 2739 } 2740 EXPORT_SYMBOL(get_user_pages_unlocked); 2741 2742 /* 2743 * GUP-fast 2744 * 2745 * get_user_pages_fast attempts to pin user pages by walking the page 2746 * tables directly and avoids taking locks. Thus the walker needs to be 2747 * protected from page table pages being freed from under it, and should 2748 * block any THP splits. 2749 * 2750 * One way to achieve this is to have the walker disable interrupts, and 2751 * rely on IPIs from the TLB flushing code blocking before the page table 2752 * pages are freed. This is unsuitable for architectures that do not need 2753 * to broadcast an IPI when invalidating TLBs. 2754 * 2755 * Another way to achieve this is to batch up page table containing pages 2756 * belonging to more than one mm_user, then rcu_sched a callback to free those 2757 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2758 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2759 * (which is a relatively rare event). The code below adopts this strategy. 2760 * 2761 * Before activating this code, please be aware that the following assumptions 2762 * are currently made: 2763 * 2764 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2765 * free pages containing page tables or TLB flushing requires IPI broadcast. 2766 * 2767 * *) ptes can be read atomically by the architecture. 2768 * 2769 * *) access_ok is sufficient to validate userspace address ranges. 2770 * 2771 * The last two assumptions can be relaxed by the addition of helper functions. 2772 * 2773 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2774 */ 2775 #ifdef CONFIG_HAVE_GUP_FAST 2776 /* 2777 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2778 * a specific folio. 2779 * 2780 * This call assumes the caller has pinned the folio, that the lowest page table 2781 * level still points to this folio, and that interrupts have been disabled. 2782 * 2783 * GUP-fast must reject all secretmem folios. 2784 * 2785 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2786 * (see comment describing the writable_file_mapping_allowed() function). We 2787 * therefore try to avoid the most egregious case of a long-term mapping doing 2788 * so. 2789 * 2790 * This function cannot be as thorough as that one as the VMA is not available 2791 * in the fast path, so instead we whitelist known good cases and if in doubt, 2792 * fall back to the slow path. 2793 */ 2794 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2795 { 2796 bool reject_file_backed = false; 2797 struct address_space *mapping; 2798 bool check_secretmem = false; 2799 unsigned long mapping_flags; 2800 2801 /* 2802 * If we aren't pinning then no problematic write can occur. A long term 2803 * pin is the most egregious case so this is the one we disallow. 2804 */ 2805 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2806 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2807 reject_file_backed = true; 2808 2809 /* We hold a folio reference, so we can safely access folio fields. */ 2810 2811 /* secretmem folios are always order-0 folios. */ 2812 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2813 check_secretmem = true; 2814 2815 if (!reject_file_backed && !check_secretmem) 2816 return true; 2817 2818 if (WARN_ON_ONCE(folio_test_slab(folio))) 2819 return false; 2820 2821 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2822 if (folio_test_hugetlb(folio)) 2823 return true; 2824 2825 /* 2826 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2827 * cannot proceed, which means no actions performed under RCU can 2828 * proceed either. 2829 * 2830 * inodes and thus their mappings are freed under RCU, which means the 2831 * mapping cannot be freed beneath us and thus we can safely dereference 2832 * it. 2833 */ 2834 lockdep_assert_irqs_disabled(); 2835 2836 /* 2837 * However, there may be operations which _alter_ the mapping, so ensure 2838 * we read it once and only once. 2839 */ 2840 mapping = READ_ONCE(folio->mapping); 2841 2842 /* 2843 * The mapping may have been truncated, in any case we cannot determine 2844 * if this mapping is safe - fall back to slow path to determine how to 2845 * proceed. 2846 */ 2847 if (!mapping) 2848 return false; 2849 2850 /* Anonymous folios pose no problem. */ 2851 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2852 if (mapping_flags) 2853 return mapping_flags & PAGE_MAPPING_ANON; 2854 2855 /* 2856 * At this point, we know the mapping is non-null and points to an 2857 * address_space object. 2858 */ 2859 if (check_secretmem && secretmem_mapping(mapping)) 2860 return false; 2861 /* The only remaining allowed file system is shmem. */ 2862 return !reject_file_backed || shmem_mapping(mapping); 2863 } 2864 2865 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2866 unsigned int flags, struct page **pages) 2867 { 2868 while ((*nr) - nr_start) { 2869 struct folio *folio = page_folio(pages[--(*nr)]); 2870 2871 folio_clear_referenced(folio); 2872 gup_put_folio(folio, 1, flags); 2873 } 2874 } 2875 2876 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2877 /* 2878 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2879 * operations. 2880 * 2881 * To pin the page, GUP-fast needs to do below in order: 2882 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2883 * 2884 * For the rest of pgtable operations where pgtable updates can be racy 2885 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2886 * is pinned. 2887 * 2888 * Above will work for all pte-level operations, including THP split. 2889 * 2890 * For THP collapse, it's a bit more complicated because GUP-fast may be 2891 * walking a pgtable page that is being freed (pte is still valid but pmd 2892 * can be cleared already). To avoid race in such condition, we need to 2893 * also check pmd here to make sure pmd doesn't change (corresponds to 2894 * pmdp_collapse_flush() in the THP collapse code path). 2895 */ 2896 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2897 unsigned long end, unsigned int flags, struct page **pages, 2898 int *nr) 2899 { 2900 struct dev_pagemap *pgmap = NULL; 2901 int nr_start = *nr, ret = 0; 2902 pte_t *ptep, *ptem; 2903 2904 ptem = ptep = pte_offset_map(&pmd, addr); 2905 if (!ptep) 2906 return 0; 2907 do { 2908 pte_t pte = ptep_get_lockless(ptep); 2909 struct page *page; 2910 struct folio *folio; 2911 2912 /* 2913 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2914 * pte_access_permitted() better should reject these pages 2915 * either way: otherwise, GUP-fast might succeed in 2916 * cases where ordinary GUP would fail due to VMA access 2917 * permissions. 2918 */ 2919 if (pte_protnone(pte)) 2920 goto pte_unmap; 2921 2922 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2923 goto pte_unmap; 2924 2925 if (pte_devmap(pte)) { 2926 if (unlikely(flags & FOLL_LONGTERM)) 2927 goto pte_unmap; 2928 2929 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2930 if (unlikely(!pgmap)) { 2931 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2932 goto pte_unmap; 2933 } 2934 } else if (pte_special(pte)) 2935 goto pte_unmap; 2936 2937 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2938 page = pte_page(pte); 2939 2940 folio = try_grab_folio_fast(page, 1, flags); 2941 if (!folio) 2942 goto pte_unmap; 2943 2944 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2945 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2946 gup_put_folio(folio, 1, flags); 2947 goto pte_unmap; 2948 } 2949 2950 if (!gup_fast_folio_allowed(folio, flags)) { 2951 gup_put_folio(folio, 1, flags); 2952 goto pte_unmap; 2953 } 2954 2955 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2956 gup_put_folio(folio, 1, flags); 2957 goto pte_unmap; 2958 } 2959 2960 /* 2961 * We need to make the page accessible if and only if we are 2962 * going to access its content (the FOLL_PIN case). Please 2963 * see Documentation/core-api/pin_user_pages.rst for 2964 * details. 2965 */ 2966 if (flags & FOLL_PIN) { 2967 ret = arch_make_folio_accessible(folio); 2968 if (ret) { 2969 gup_put_folio(folio, 1, flags); 2970 goto pte_unmap; 2971 } 2972 } 2973 folio_set_referenced(folio); 2974 pages[*nr] = page; 2975 (*nr)++; 2976 } while (ptep++, addr += PAGE_SIZE, addr != end); 2977 2978 ret = 1; 2979 2980 pte_unmap: 2981 if (pgmap) 2982 put_dev_pagemap(pgmap); 2983 pte_unmap(ptem); 2984 return ret; 2985 } 2986 #else 2987 2988 /* 2989 * If we can't determine whether or not a pte is special, then fail immediately 2990 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2991 * to be special. 2992 * 2993 * For a futex to be placed on a THP tail page, get_futex_key requires a 2994 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2995 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2996 */ 2997 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2998 unsigned long end, unsigned int flags, struct page **pages, 2999 int *nr) 3000 { 3001 return 0; 3002 } 3003 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 3004 3005 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 3006 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 3007 unsigned long end, unsigned int flags, struct page **pages, int *nr) 3008 { 3009 int nr_start = *nr; 3010 struct dev_pagemap *pgmap = NULL; 3011 3012 do { 3013 struct folio *folio; 3014 struct page *page = pfn_to_page(pfn); 3015 3016 pgmap = get_dev_pagemap(pfn, pgmap); 3017 if (unlikely(!pgmap)) { 3018 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3019 break; 3020 } 3021 3022 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 3023 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3024 break; 3025 } 3026 3027 folio = try_grab_folio_fast(page, 1, flags); 3028 if (!folio) { 3029 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3030 break; 3031 } 3032 folio_set_referenced(folio); 3033 pages[*nr] = page; 3034 (*nr)++; 3035 pfn++; 3036 } while (addr += PAGE_SIZE, addr != end); 3037 3038 put_dev_pagemap(pgmap); 3039 return addr == end; 3040 } 3041 3042 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3043 unsigned long end, unsigned int flags, struct page **pages, 3044 int *nr) 3045 { 3046 unsigned long fault_pfn; 3047 int nr_start = *nr; 3048 3049 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3050 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3051 return 0; 3052 3053 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3054 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3055 return 0; 3056 } 3057 return 1; 3058 } 3059 3060 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3061 unsigned long end, unsigned int flags, struct page **pages, 3062 int *nr) 3063 { 3064 unsigned long fault_pfn; 3065 int nr_start = *nr; 3066 3067 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3068 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3069 return 0; 3070 3071 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3072 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3073 return 0; 3074 } 3075 return 1; 3076 } 3077 #else 3078 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3079 unsigned long end, unsigned int flags, struct page **pages, 3080 int *nr) 3081 { 3082 BUILD_BUG(); 3083 return 0; 3084 } 3085 3086 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3087 unsigned long end, unsigned int flags, struct page **pages, 3088 int *nr) 3089 { 3090 BUILD_BUG(); 3091 return 0; 3092 } 3093 #endif 3094 3095 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3096 unsigned long end, unsigned int flags, struct page **pages, 3097 int *nr) 3098 { 3099 struct page *page; 3100 struct folio *folio; 3101 int refs; 3102 3103 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3104 return 0; 3105 3106 if (pmd_special(orig)) 3107 return 0; 3108 3109 if (pmd_devmap(orig)) { 3110 if (unlikely(flags & FOLL_LONGTERM)) 3111 return 0; 3112 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3113 pages, nr); 3114 } 3115 3116 page = pmd_page(orig); 3117 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3118 3119 folio = try_grab_folio_fast(page, refs, flags); 3120 if (!folio) 3121 return 0; 3122 3123 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3124 gup_put_folio(folio, refs, flags); 3125 return 0; 3126 } 3127 3128 if (!gup_fast_folio_allowed(folio, flags)) { 3129 gup_put_folio(folio, refs, flags); 3130 return 0; 3131 } 3132 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3133 gup_put_folio(folio, refs, flags); 3134 return 0; 3135 } 3136 3137 *nr += refs; 3138 folio_set_referenced(folio); 3139 return 1; 3140 } 3141 3142 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3143 unsigned long end, unsigned int flags, struct page **pages, 3144 int *nr) 3145 { 3146 struct page *page; 3147 struct folio *folio; 3148 int refs; 3149 3150 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3151 return 0; 3152 3153 if (pud_special(orig)) 3154 return 0; 3155 3156 if (pud_devmap(orig)) { 3157 if (unlikely(flags & FOLL_LONGTERM)) 3158 return 0; 3159 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3160 pages, nr); 3161 } 3162 3163 page = pud_page(orig); 3164 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3165 3166 folio = try_grab_folio_fast(page, refs, flags); 3167 if (!folio) 3168 return 0; 3169 3170 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3171 gup_put_folio(folio, refs, flags); 3172 return 0; 3173 } 3174 3175 if (!gup_fast_folio_allowed(folio, flags)) { 3176 gup_put_folio(folio, refs, flags); 3177 return 0; 3178 } 3179 3180 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3181 gup_put_folio(folio, refs, flags); 3182 return 0; 3183 } 3184 3185 *nr += refs; 3186 folio_set_referenced(folio); 3187 return 1; 3188 } 3189 3190 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3191 unsigned long end, unsigned int flags, struct page **pages, 3192 int *nr) 3193 { 3194 int refs; 3195 struct page *page; 3196 struct folio *folio; 3197 3198 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3199 return 0; 3200 3201 BUILD_BUG_ON(pgd_devmap(orig)); 3202 3203 page = pgd_page(orig); 3204 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3205 3206 folio = try_grab_folio_fast(page, refs, flags); 3207 if (!folio) 3208 return 0; 3209 3210 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3211 gup_put_folio(folio, refs, flags); 3212 return 0; 3213 } 3214 3215 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3216 gup_put_folio(folio, refs, flags); 3217 return 0; 3218 } 3219 3220 if (!gup_fast_folio_allowed(folio, flags)) { 3221 gup_put_folio(folio, refs, flags); 3222 return 0; 3223 } 3224 3225 *nr += refs; 3226 folio_set_referenced(folio); 3227 return 1; 3228 } 3229 3230 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3231 unsigned long end, unsigned int flags, struct page **pages, 3232 int *nr) 3233 { 3234 unsigned long next; 3235 pmd_t *pmdp; 3236 3237 pmdp = pmd_offset_lockless(pudp, pud, addr); 3238 do { 3239 pmd_t pmd = pmdp_get_lockless(pmdp); 3240 3241 next = pmd_addr_end(addr, end); 3242 if (!pmd_present(pmd)) 3243 return 0; 3244 3245 if (unlikely(pmd_leaf(pmd))) { 3246 /* See gup_fast_pte_range() */ 3247 if (pmd_protnone(pmd)) 3248 return 0; 3249 3250 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3251 pages, nr)) 3252 return 0; 3253 3254 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3255 pages, nr)) 3256 return 0; 3257 } while (pmdp++, addr = next, addr != end); 3258 3259 return 1; 3260 } 3261 3262 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3263 unsigned long end, unsigned int flags, struct page **pages, 3264 int *nr) 3265 { 3266 unsigned long next; 3267 pud_t *pudp; 3268 3269 pudp = pud_offset_lockless(p4dp, p4d, addr); 3270 do { 3271 pud_t pud = READ_ONCE(*pudp); 3272 3273 next = pud_addr_end(addr, end); 3274 if (unlikely(!pud_present(pud))) 3275 return 0; 3276 if (unlikely(pud_leaf(pud))) { 3277 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3278 pages, nr)) 3279 return 0; 3280 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3281 pages, nr)) 3282 return 0; 3283 } while (pudp++, addr = next, addr != end); 3284 3285 return 1; 3286 } 3287 3288 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3289 unsigned long end, unsigned int flags, struct page **pages, 3290 int *nr) 3291 { 3292 unsigned long next; 3293 p4d_t *p4dp; 3294 3295 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3296 do { 3297 p4d_t p4d = READ_ONCE(*p4dp); 3298 3299 next = p4d_addr_end(addr, end); 3300 if (!p4d_present(p4d)) 3301 return 0; 3302 BUILD_BUG_ON(p4d_leaf(p4d)); 3303 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3304 pages, nr)) 3305 return 0; 3306 } while (p4dp++, addr = next, addr != end); 3307 3308 return 1; 3309 } 3310 3311 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3312 unsigned int flags, struct page **pages, int *nr) 3313 { 3314 unsigned long next; 3315 pgd_t *pgdp; 3316 3317 pgdp = pgd_offset(current->mm, addr); 3318 do { 3319 pgd_t pgd = READ_ONCE(*pgdp); 3320 3321 next = pgd_addr_end(addr, end); 3322 if (pgd_none(pgd)) 3323 return; 3324 if (unlikely(pgd_leaf(pgd))) { 3325 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3326 pages, nr)) 3327 return; 3328 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3329 pages, nr)) 3330 return; 3331 } while (pgdp++, addr = next, addr != end); 3332 } 3333 #else 3334 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3335 unsigned int flags, struct page **pages, int *nr) 3336 { 3337 } 3338 #endif /* CONFIG_HAVE_GUP_FAST */ 3339 3340 #ifndef gup_fast_permitted 3341 /* 3342 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3343 * we need to fall back to the slow version: 3344 */ 3345 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3346 { 3347 return true; 3348 } 3349 #endif 3350 3351 static unsigned long gup_fast(unsigned long start, unsigned long end, 3352 unsigned int gup_flags, struct page **pages) 3353 { 3354 unsigned long flags; 3355 int nr_pinned = 0; 3356 unsigned seq; 3357 3358 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3359 !gup_fast_permitted(start, end)) 3360 return 0; 3361 3362 if (gup_flags & FOLL_PIN) { 3363 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3364 if (seq & 1) 3365 return 0; 3366 } 3367 3368 /* 3369 * Disable interrupts. The nested form is used, in order to allow full, 3370 * general purpose use of this routine. 3371 * 3372 * With interrupts disabled, we block page table pages from being freed 3373 * from under us. See struct mmu_table_batch comments in 3374 * include/asm-generic/tlb.h for more details. 3375 * 3376 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3377 * that come from THPs splitting. 3378 */ 3379 local_irq_save(flags); 3380 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3381 local_irq_restore(flags); 3382 3383 /* 3384 * When pinning pages for DMA there could be a concurrent write protect 3385 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3386 */ 3387 if (gup_flags & FOLL_PIN) { 3388 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3389 gup_fast_unpin_user_pages(pages, nr_pinned); 3390 return 0; 3391 } else { 3392 sanity_check_pinned_pages(pages, nr_pinned); 3393 } 3394 } 3395 return nr_pinned; 3396 } 3397 3398 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3399 unsigned int gup_flags, struct page **pages) 3400 { 3401 unsigned long len, end; 3402 unsigned long nr_pinned; 3403 int locked = 0; 3404 int ret; 3405 3406 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3407 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3408 FOLL_FAST_ONLY | FOLL_NOFAULT | 3409 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3410 return -EINVAL; 3411 3412 if (gup_flags & FOLL_PIN) 3413 mm_set_has_pinned_flag(¤t->mm->flags); 3414 3415 if (!(gup_flags & FOLL_FAST_ONLY)) 3416 might_lock_read(¤t->mm->mmap_lock); 3417 3418 start = untagged_addr(start) & PAGE_MASK; 3419 len = nr_pages << PAGE_SHIFT; 3420 if (check_add_overflow(start, len, &end)) 3421 return -EOVERFLOW; 3422 if (end > TASK_SIZE_MAX) 3423 return -EFAULT; 3424 if (unlikely(!access_ok((void __user *)start, len))) 3425 return -EFAULT; 3426 3427 nr_pinned = gup_fast(start, end, gup_flags, pages); 3428 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3429 return nr_pinned; 3430 3431 /* Slow path: try to get the remaining pages with get_user_pages */ 3432 start += nr_pinned << PAGE_SHIFT; 3433 pages += nr_pinned; 3434 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3435 pages, &locked, 3436 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3437 if (ret < 0) { 3438 /* 3439 * The caller has to unpin the pages we already pinned so 3440 * returning -errno is not an option 3441 */ 3442 if (nr_pinned) 3443 return nr_pinned; 3444 return ret; 3445 } 3446 return ret + nr_pinned; 3447 } 3448 3449 /** 3450 * get_user_pages_fast_only() - pin user pages in memory 3451 * @start: starting user address 3452 * @nr_pages: number of pages from start to pin 3453 * @gup_flags: flags modifying pin behaviour 3454 * @pages: array that receives pointers to the pages pinned. 3455 * Should be at least nr_pages long. 3456 * 3457 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3458 * the regular GUP. 3459 * 3460 * If the architecture does not support this function, simply return with no 3461 * pages pinned. 3462 * 3463 * Careful, careful! COW breaking can go either way, so a non-write 3464 * access can get ambiguous page results. If you call this function without 3465 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3466 */ 3467 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3468 unsigned int gup_flags, struct page **pages) 3469 { 3470 /* 3471 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3472 * because gup fast is always a "pin with a +1 page refcount" request. 3473 * 3474 * FOLL_FAST_ONLY is required in order to match the API description of 3475 * this routine: no fall back to regular ("slow") GUP. 3476 */ 3477 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3478 FOLL_GET | FOLL_FAST_ONLY)) 3479 return -EINVAL; 3480 3481 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3482 } 3483 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3484 3485 /** 3486 * get_user_pages_fast() - pin user pages in memory 3487 * @start: starting user address 3488 * @nr_pages: number of pages from start to pin 3489 * @gup_flags: flags modifying pin behaviour 3490 * @pages: array that receives pointers to the pages pinned. 3491 * Should be at least nr_pages long. 3492 * 3493 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3494 * If not successful, it will fall back to taking the lock and 3495 * calling get_user_pages(). 3496 * 3497 * Returns number of pages pinned. This may be fewer than the number requested. 3498 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3499 * -errno. 3500 */ 3501 int get_user_pages_fast(unsigned long start, int nr_pages, 3502 unsigned int gup_flags, struct page **pages) 3503 { 3504 /* 3505 * The caller may or may not have explicitly set FOLL_GET; either way is 3506 * OK. However, internally (within mm/gup.c), gup fast variants must set 3507 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3508 * request. 3509 */ 3510 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3511 return -EINVAL; 3512 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3513 } 3514 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3515 3516 /** 3517 * pin_user_pages_fast() - pin user pages in memory without taking locks 3518 * 3519 * @start: starting user address 3520 * @nr_pages: number of pages from start to pin 3521 * @gup_flags: flags modifying pin behaviour 3522 * @pages: array that receives pointers to the pages pinned. 3523 * Should be at least nr_pages long. 3524 * 3525 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3526 * get_user_pages_fast() for documentation on the function arguments, because 3527 * the arguments here are identical. 3528 * 3529 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3530 * see Documentation/core-api/pin_user_pages.rst for further details. 3531 * 3532 * Note that if a zero_page is amongst the returned pages, it will not have 3533 * pins in it and unpin_user_page() will not remove pins from it. 3534 */ 3535 int pin_user_pages_fast(unsigned long start, int nr_pages, 3536 unsigned int gup_flags, struct page **pages) 3537 { 3538 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3539 return -EINVAL; 3540 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3541 } 3542 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3543 3544 /** 3545 * pin_user_pages_remote() - pin pages of a remote process 3546 * 3547 * @mm: mm_struct of target mm 3548 * @start: starting user address 3549 * @nr_pages: number of pages from start to pin 3550 * @gup_flags: flags modifying lookup behaviour 3551 * @pages: array that receives pointers to the pages pinned. 3552 * Should be at least nr_pages long. 3553 * @locked: pointer to lock flag indicating whether lock is held and 3554 * subsequently whether VM_FAULT_RETRY functionality can be 3555 * utilised. Lock must initially be held. 3556 * 3557 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3558 * get_user_pages_remote() for documentation on the function arguments, because 3559 * the arguments here are identical. 3560 * 3561 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3562 * see Documentation/core-api/pin_user_pages.rst for details. 3563 * 3564 * Note that if a zero_page is amongst the returned pages, it will not have 3565 * pins in it and unpin_user_page*() will not remove pins from it. 3566 */ 3567 long pin_user_pages_remote(struct mm_struct *mm, 3568 unsigned long start, unsigned long nr_pages, 3569 unsigned int gup_flags, struct page **pages, 3570 int *locked) 3571 { 3572 int local_locked = 1; 3573 3574 if (!is_valid_gup_args(pages, locked, &gup_flags, 3575 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3576 return 0; 3577 return __gup_longterm_locked(mm, start, nr_pages, pages, 3578 locked ? locked : &local_locked, 3579 gup_flags); 3580 } 3581 EXPORT_SYMBOL(pin_user_pages_remote); 3582 3583 /** 3584 * pin_user_pages() - pin user pages in memory for use by other devices 3585 * 3586 * @start: starting user address 3587 * @nr_pages: number of pages from start to pin 3588 * @gup_flags: flags modifying lookup behaviour 3589 * @pages: array that receives pointers to the pages pinned. 3590 * Should be at least nr_pages long. 3591 * 3592 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3593 * FOLL_PIN is set. 3594 * 3595 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3596 * see Documentation/core-api/pin_user_pages.rst for details. 3597 * 3598 * Note that if a zero_page is amongst the returned pages, it will not have 3599 * pins in it and unpin_user_page*() will not remove pins from it. 3600 */ 3601 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3602 unsigned int gup_flags, struct page **pages) 3603 { 3604 int locked = 1; 3605 3606 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3607 return 0; 3608 return __gup_longterm_locked(current->mm, start, nr_pages, 3609 pages, &locked, gup_flags); 3610 } 3611 EXPORT_SYMBOL(pin_user_pages); 3612 3613 /* 3614 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3615 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3616 * FOLL_PIN and rejects FOLL_GET. 3617 * 3618 * Note that if a zero_page is amongst the returned pages, it will not have 3619 * pins in it and unpin_user_page*() will not remove pins from it. 3620 */ 3621 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3622 struct page **pages, unsigned int gup_flags) 3623 { 3624 int locked = 0; 3625 3626 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3627 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3628 return 0; 3629 3630 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3631 &locked, gup_flags); 3632 } 3633 EXPORT_SYMBOL(pin_user_pages_unlocked); 3634 3635 /** 3636 * memfd_pin_folios() - pin folios associated with a memfd 3637 * @memfd: the memfd whose folios are to be pinned 3638 * @start: the first memfd offset 3639 * @end: the last memfd offset (inclusive) 3640 * @folios: array that receives pointers to the folios pinned 3641 * @max_folios: maximum number of entries in @folios 3642 * @offset: the offset into the first folio 3643 * 3644 * Attempt to pin folios associated with a memfd in the contiguous range 3645 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3646 * the folios can either be found in the page cache or need to be allocated 3647 * if necessary. Once the folios are located, they are all pinned via 3648 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3649 * And, eventually, these pinned folios must be released either using 3650 * unpin_folios() or unpin_folio(). 3651 * 3652 * It must be noted that the folios may be pinned for an indefinite amount 3653 * of time. And, in most cases, the duration of time they may stay pinned 3654 * would be controlled by the userspace. This behavior is effectively the 3655 * same as using FOLL_LONGTERM with other GUP APIs. 3656 * 3657 * Returns number of folios pinned, which could be less than @max_folios 3658 * as it depends on the folio sizes that cover the range [start, end]. 3659 * If no folios were pinned, it returns -errno. 3660 */ 3661 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3662 struct folio **folios, unsigned int max_folios, 3663 pgoff_t *offset) 3664 { 3665 unsigned int flags, nr_folios, nr_found; 3666 unsigned int i, pgshift = PAGE_SHIFT; 3667 pgoff_t start_idx, end_idx, next_idx; 3668 struct folio *folio = NULL; 3669 struct folio_batch fbatch; 3670 struct hstate *h; 3671 long ret = -EINVAL; 3672 3673 if (start < 0 || start > end || !max_folios) 3674 return -EINVAL; 3675 3676 if (!memfd) 3677 return -EINVAL; 3678 3679 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3680 return -EINVAL; 3681 3682 if (end >= i_size_read(file_inode(memfd))) 3683 return -EINVAL; 3684 3685 if (is_file_hugepages(memfd)) { 3686 h = hstate_file(memfd); 3687 pgshift = huge_page_shift(h); 3688 } 3689 3690 flags = memalloc_pin_save(); 3691 do { 3692 nr_folios = 0; 3693 start_idx = start >> pgshift; 3694 end_idx = end >> pgshift; 3695 if (is_file_hugepages(memfd)) { 3696 start_idx <<= huge_page_order(h); 3697 end_idx <<= huge_page_order(h); 3698 } 3699 3700 folio_batch_init(&fbatch); 3701 while (start_idx <= end_idx && nr_folios < max_folios) { 3702 /* 3703 * In most cases, we should be able to find the folios 3704 * in the page cache. If we cannot find them for some 3705 * reason, we try to allocate them and add them to the 3706 * page cache. 3707 */ 3708 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3709 &start_idx, 3710 end_idx, 3711 &fbatch); 3712 if (folio) { 3713 folio_put(folio); 3714 folio = NULL; 3715 } 3716 3717 next_idx = 0; 3718 for (i = 0; i < nr_found; i++) { 3719 /* 3720 * As there can be multiple entries for a 3721 * given folio in the batch returned by 3722 * filemap_get_folios_contig(), the below 3723 * check is to ensure that we pin and return a 3724 * unique set of folios between start and end. 3725 */ 3726 if (next_idx && 3727 next_idx != folio_index(fbatch.folios[i])) 3728 continue; 3729 3730 folio = page_folio(&fbatch.folios[i]->page); 3731 3732 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3733 folio_batch_release(&fbatch); 3734 ret = -EINVAL; 3735 goto err; 3736 } 3737 3738 if (nr_folios == 0) 3739 *offset = offset_in_folio(folio, start); 3740 3741 folios[nr_folios] = folio; 3742 next_idx = folio_next_index(folio); 3743 if (++nr_folios == max_folios) 3744 break; 3745 } 3746 3747 folio = NULL; 3748 folio_batch_release(&fbatch); 3749 if (!nr_found) { 3750 folio = memfd_alloc_folio(memfd, start_idx); 3751 if (IS_ERR(folio)) { 3752 ret = PTR_ERR(folio); 3753 if (ret != -EEXIST) 3754 goto err; 3755 folio = NULL; 3756 } 3757 } 3758 } 3759 3760 ret = check_and_migrate_movable_folios(nr_folios, folios); 3761 } while (ret == -EAGAIN); 3762 3763 memalloc_pin_restore(flags); 3764 return ret ? ret : nr_folios; 3765 err: 3766 memalloc_pin_restore(flags); 3767 unpin_folios(folios, nr_folios); 3768 3769 return ret; 3770 } 3771 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3772 3773 /** 3774 * folio_add_pins() - add pins to an already-pinned folio 3775 * @folio: the folio to add more pins to 3776 * @pins: number of pins to add 3777 * 3778 * Try to add more pins to an already-pinned folio. The semantics 3779 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot 3780 * be changed. 3781 * 3782 * This function is helpful when having obtained a pin on a large folio 3783 * using memfd_pin_folios(), but wanting to logically unpin parts 3784 * (e.g., individual pages) of the folio later, for example, using 3785 * unpin_user_page_range_dirty_lock(). 3786 * 3787 * This is not the right interface to initially pin a folio. 3788 */ 3789 int folio_add_pins(struct folio *folio, unsigned int pins) 3790 { 3791 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); 3792 3793 return try_grab_folio(folio, pins, FOLL_PIN); 3794 } 3795 EXPORT_SYMBOL_GPL(folio_add_pins); 3796