1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/hugetlb.h> 7 #include <linux/mm.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include "internal.h" 14 15 static struct page *no_page_table(struct vm_area_struct *vma, 16 unsigned int flags) 17 { 18 /* 19 * When core dumping an enormous anonymous area that nobody 20 * has touched so far, we don't want to allocate unnecessary pages or 21 * page tables. Return error instead of NULL to skip handle_mm_fault, 22 * then get_dump_page() will return NULL to leave a hole in the dump. 23 * But we can only make this optimization where a hole would surely 24 * be zero-filled if handle_mm_fault() actually did handle it. 25 */ 26 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 27 return ERR_PTR(-EFAULT); 28 return NULL; 29 } 30 31 static struct page *follow_page_pte(struct vm_area_struct *vma, 32 unsigned long address, pmd_t *pmd, unsigned int flags) 33 { 34 struct mm_struct *mm = vma->vm_mm; 35 struct page *page; 36 spinlock_t *ptl; 37 pte_t *ptep, pte; 38 39 retry: 40 if (unlikely(pmd_bad(*pmd))) 41 return no_page_table(vma, flags); 42 43 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 44 pte = *ptep; 45 if (!pte_present(pte)) { 46 swp_entry_t entry; 47 /* 48 * KSM's break_ksm() relies upon recognizing a ksm page 49 * even while it is being migrated, so for that case we 50 * need migration_entry_wait(). 51 */ 52 if (likely(!(flags & FOLL_MIGRATION))) 53 goto no_page; 54 if (pte_none(pte) || pte_file(pte)) 55 goto no_page; 56 entry = pte_to_swp_entry(pte); 57 if (!is_migration_entry(entry)) 58 goto no_page; 59 pte_unmap_unlock(ptep, ptl); 60 migration_entry_wait(mm, pmd, address); 61 goto retry; 62 } 63 if ((flags & FOLL_NUMA) && pte_numa(pte)) 64 goto no_page; 65 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 66 pte_unmap_unlock(ptep, ptl); 67 return NULL; 68 } 69 70 page = vm_normal_page(vma, address, pte); 71 if (unlikely(!page)) { 72 if ((flags & FOLL_DUMP) || 73 !is_zero_pfn(pte_pfn(pte))) 74 goto bad_page; 75 page = pte_page(pte); 76 } 77 78 if (flags & FOLL_GET) 79 get_page_foll(page); 80 if (flags & FOLL_TOUCH) { 81 if ((flags & FOLL_WRITE) && 82 !pte_dirty(pte) && !PageDirty(page)) 83 set_page_dirty(page); 84 /* 85 * pte_mkyoung() would be more correct here, but atomic care 86 * is needed to avoid losing the dirty bit: it is easier to use 87 * mark_page_accessed(). 88 */ 89 mark_page_accessed(page); 90 } 91 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 92 /* 93 * The preliminary mapping check is mainly to avoid the 94 * pointless overhead of lock_page on the ZERO_PAGE 95 * which might bounce very badly if there is contention. 96 * 97 * If the page is already locked, we don't need to 98 * handle it now - vmscan will handle it later if and 99 * when it attempts to reclaim the page. 100 */ 101 if (page->mapping && trylock_page(page)) { 102 lru_add_drain(); /* push cached pages to LRU */ 103 /* 104 * Because we lock page here, and migration is 105 * blocked by the pte's page reference, and we 106 * know the page is still mapped, we don't even 107 * need to check for file-cache page truncation. 108 */ 109 mlock_vma_page(page); 110 unlock_page(page); 111 } 112 } 113 pte_unmap_unlock(ptep, ptl); 114 return page; 115 bad_page: 116 pte_unmap_unlock(ptep, ptl); 117 return ERR_PTR(-EFAULT); 118 119 no_page: 120 pte_unmap_unlock(ptep, ptl); 121 if (!pte_none(pte)) 122 return NULL; 123 return no_page_table(vma, flags); 124 } 125 126 /** 127 * follow_page_mask - look up a page descriptor from a user-virtual address 128 * @vma: vm_area_struct mapping @address 129 * @address: virtual address to look up 130 * @flags: flags modifying lookup behaviour 131 * @page_mask: on output, *page_mask is set according to the size of the page 132 * 133 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 134 * 135 * Returns the mapped (struct page *), %NULL if no mapping exists, or 136 * an error pointer if there is a mapping to something not represented 137 * by a page descriptor (see also vm_normal_page()). 138 */ 139 struct page *follow_page_mask(struct vm_area_struct *vma, 140 unsigned long address, unsigned int flags, 141 unsigned int *page_mask) 142 { 143 pgd_t *pgd; 144 pud_t *pud; 145 pmd_t *pmd; 146 spinlock_t *ptl; 147 struct page *page; 148 struct mm_struct *mm = vma->vm_mm; 149 150 *page_mask = 0; 151 152 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 153 if (!IS_ERR(page)) { 154 BUG_ON(flags & FOLL_GET); 155 return page; 156 } 157 158 pgd = pgd_offset(mm, address); 159 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 160 return no_page_table(vma, flags); 161 162 pud = pud_offset(pgd, address); 163 if (pud_none(*pud)) 164 return no_page_table(vma, flags); 165 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 166 if (flags & FOLL_GET) 167 return NULL; 168 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 169 return page; 170 } 171 if (unlikely(pud_bad(*pud))) 172 return no_page_table(vma, flags); 173 174 pmd = pmd_offset(pud, address); 175 if (pmd_none(*pmd)) 176 return no_page_table(vma, flags); 177 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 178 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 179 if (flags & FOLL_GET) { 180 /* 181 * Refcount on tail pages are not well-defined and 182 * shouldn't be taken. The caller should handle a NULL 183 * return when trying to follow tail pages. 184 */ 185 if (PageHead(page)) 186 get_page(page); 187 else 188 page = NULL; 189 } 190 return page; 191 } 192 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 193 return no_page_table(vma, flags); 194 if (pmd_trans_huge(*pmd)) { 195 if (flags & FOLL_SPLIT) { 196 split_huge_page_pmd(vma, address, pmd); 197 return follow_page_pte(vma, address, pmd, flags); 198 } 199 ptl = pmd_lock(mm, pmd); 200 if (likely(pmd_trans_huge(*pmd))) { 201 if (unlikely(pmd_trans_splitting(*pmd))) { 202 spin_unlock(ptl); 203 wait_split_huge_page(vma->anon_vma, pmd); 204 } else { 205 page = follow_trans_huge_pmd(vma, address, 206 pmd, flags); 207 spin_unlock(ptl); 208 *page_mask = HPAGE_PMD_NR - 1; 209 return page; 210 } 211 } else 212 spin_unlock(ptl); 213 } 214 return follow_page_pte(vma, address, pmd, flags); 215 } 216 217 static int get_gate_page(struct mm_struct *mm, unsigned long address, 218 unsigned int gup_flags, struct vm_area_struct **vma, 219 struct page **page) 220 { 221 pgd_t *pgd; 222 pud_t *pud; 223 pmd_t *pmd; 224 pte_t *pte; 225 int ret = -EFAULT; 226 227 /* user gate pages are read-only */ 228 if (gup_flags & FOLL_WRITE) 229 return -EFAULT; 230 if (address > TASK_SIZE) 231 pgd = pgd_offset_k(address); 232 else 233 pgd = pgd_offset_gate(mm, address); 234 BUG_ON(pgd_none(*pgd)); 235 pud = pud_offset(pgd, address); 236 BUG_ON(pud_none(*pud)); 237 pmd = pmd_offset(pud, address); 238 if (pmd_none(*pmd)) 239 return -EFAULT; 240 VM_BUG_ON(pmd_trans_huge(*pmd)); 241 pte = pte_offset_map(pmd, address); 242 if (pte_none(*pte)) 243 goto unmap; 244 *vma = get_gate_vma(mm); 245 if (!page) 246 goto out; 247 *page = vm_normal_page(*vma, address, *pte); 248 if (!*page) { 249 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 250 goto unmap; 251 *page = pte_page(*pte); 252 } 253 get_page(*page); 254 out: 255 ret = 0; 256 unmap: 257 pte_unmap(pte); 258 return ret; 259 } 260 261 /* 262 * mmap_sem must be held on entry. If @nonblocking != NULL and 263 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 264 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 265 */ 266 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 267 unsigned long address, unsigned int *flags, int *nonblocking) 268 { 269 struct mm_struct *mm = vma->vm_mm; 270 unsigned int fault_flags = 0; 271 int ret; 272 273 /* For mlock, just skip the stack guard page. */ 274 if ((*flags & FOLL_MLOCK) && 275 (stack_guard_page_start(vma, address) || 276 stack_guard_page_end(vma, address + PAGE_SIZE))) 277 return -ENOENT; 278 if (*flags & FOLL_WRITE) 279 fault_flags |= FAULT_FLAG_WRITE; 280 if (nonblocking) 281 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 282 if (*flags & FOLL_NOWAIT) 283 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 284 285 ret = handle_mm_fault(mm, vma, address, fault_flags); 286 if (ret & VM_FAULT_ERROR) { 287 if (ret & VM_FAULT_OOM) 288 return -ENOMEM; 289 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 290 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 291 if (ret & VM_FAULT_SIGBUS) 292 return -EFAULT; 293 BUG(); 294 } 295 296 if (tsk) { 297 if (ret & VM_FAULT_MAJOR) 298 tsk->maj_flt++; 299 else 300 tsk->min_flt++; 301 } 302 303 if (ret & VM_FAULT_RETRY) { 304 if (nonblocking) 305 *nonblocking = 0; 306 return -EBUSY; 307 } 308 309 /* 310 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 311 * necessary, even if maybe_mkwrite decided not to set pte_write. We 312 * can thus safely do subsequent page lookups as if they were reads. 313 * But only do so when looping for pte_write is futile: in some cases 314 * userspace may also be wanting to write to the gotten user page, 315 * which a read fault here might prevent (a readonly page might get 316 * reCOWed by userspace write). 317 */ 318 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 319 *flags &= ~FOLL_WRITE; 320 return 0; 321 } 322 323 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 324 { 325 vm_flags_t vm_flags = vma->vm_flags; 326 327 if (vm_flags & (VM_IO | VM_PFNMAP)) 328 return -EFAULT; 329 330 if (gup_flags & FOLL_WRITE) { 331 if (!(vm_flags & VM_WRITE)) { 332 if (!(gup_flags & FOLL_FORCE)) 333 return -EFAULT; 334 /* 335 * We used to let the write,force case do COW in a 336 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 337 * set a breakpoint in a read-only mapping of an 338 * executable, without corrupting the file (yet only 339 * when that file had been opened for writing!). 340 * Anon pages in shared mappings are surprising: now 341 * just reject it. 342 */ 343 if (!is_cow_mapping(vm_flags)) { 344 WARN_ON_ONCE(vm_flags & VM_MAYWRITE); 345 return -EFAULT; 346 } 347 } 348 } else if (!(vm_flags & VM_READ)) { 349 if (!(gup_flags & FOLL_FORCE)) 350 return -EFAULT; 351 /* 352 * Is there actually any vma we can reach here which does not 353 * have VM_MAYREAD set? 354 */ 355 if (!(vm_flags & VM_MAYREAD)) 356 return -EFAULT; 357 } 358 return 0; 359 } 360 361 /** 362 * __get_user_pages() - pin user pages in memory 363 * @tsk: task_struct of target task 364 * @mm: mm_struct of target mm 365 * @start: starting user address 366 * @nr_pages: number of pages from start to pin 367 * @gup_flags: flags modifying pin behaviour 368 * @pages: array that receives pointers to the pages pinned. 369 * Should be at least nr_pages long. Or NULL, if caller 370 * only intends to ensure the pages are faulted in. 371 * @vmas: array of pointers to vmas corresponding to each page. 372 * Or NULL if the caller does not require them. 373 * @nonblocking: whether waiting for disk IO or mmap_sem contention 374 * 375 * Returns number of pages pinned. This may be fewer than the number 376 * requested. If nr_pages is 0 or negative, returns 0. If no pages 377 * were pinned, returns -errno. Each page returned must be released 378 * with a put_page() call when it is finished with. vmas will only 379 * remain valid while mmap_sem is held. 380 * 381 * Must be called with mmap_sem held. It may be released. See below. 382 * 383 * __get_user_pages walks a process's page tables and takes a reference to 384 * each struct page that each user address corresponds to at a given 385 * instant. That is, it takes the page that would be accessed if a user 386 * thread accesses the given user virtual address at that instant. 387 * 388 * This does not guarantee that the page exists in the user mappings when 389 * __get_user_pages returns, and there may even be a completely different 390 * page there in some cases (eg. if mmapped pagecache has been invalidated 391 * and subsequently re faulted). However it does guarantee that the page 392 * won't be freed completely. And mostly callers simply care that the page 393 * contains data that was valid *at some point in time*. Typically, an IO 394 * or similar operation cannot guarantee anything stronger anyway because 395 * locks can't be held over the syscall boundary. 396 * 397 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 398 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 399 * appropriate) must be called after the page is finished with, and 400 * before put_page is called. 401 * 402 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 403 * or mmap_sem contention, and if waiting is needed to pin all pages, 404 * *@nonblocking will be set to 0. Further, if @gup_flags does not 405 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 406 * this case. 407 * 408 * A caller using such a combination of @nonblocking and @gup_flags 409 * must therefore hold the mmap_sem for reading only, and recognize 410 * when it's been released. Otherwise, it must be held for either 411 * reading or writing and will not be released. 412 * 413 * In most cases, get_user_pages or get_user_pages_fast should be used 414 * instead of __get_user_pages. __get_user_pages should be used only if 415 * you need some special @gup_flags. 416 */ 417 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 418 unsigned long start, unsigned long nr_pages, 419 unsigned int gup_flags, struct page **pages, 420 struct vm_area_struct **vmas, int *nonblocking) 421 { 422 long i = 0; 423 unsigned int page_mask; 424 struct vm_area_struct *vma = NULL; 425 426 if (!nr_pages) 427 return 0; 428 429 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 430 431 /* 432 * If FOLL_FORCE is set then do not force a full fault as the hinting 433 * fault information is unrelated to the reference behaviour of a task 434 * using the address space 435 */ 436 if (!(gup_flags & FOLL_FORCE)) 437 gup_flags |= FOLL_NUMA; 438 439 do { 440 struct page *page; 441 unsigned int foll_flags = gup_flags; 442 unsigned int page_increm; 443 444 /* first iteration or cross vma bound */ 445 if (!vma || start >= vma->vm_end) { 446 vma = find_extend_vma(mm, start); 447 if (!vma && in_gate_area(mm, start)) { 448 int ret; 449 ret = get_gate_page(mm, start & PAGE_MASK, 450 gup_flags, &vma, 451 pages ? &pages[i] : NULL); 452 if (ret) 453 return i ? : ret; 454 page_mask = 0; 455 goto next_page; 456 } 457 458 if (!vma || check_vma_flags(vma, gup_flags)) 459 return i ? : -EFAULT; 460 if (is_vm_hugetlb_page(vma)) { 461 i = follow_hugetlb_page(mm, vma, pages, vmas, 462 &start, &nr_pages, i, 463 gup_flags); 464 continue; 465 } 466 } 467 retry: 468 /* 469 * If we have a pending SIGKILL, don't keep faulting pages and 470 * potentially allocating memory. 471 */ 472 if (unlikely(fatal_signal_pending(current))) 473 return i ? i : -ERESTARTSYS; 474 cond_resched(); 475 page = follow_page_mask(vma, start, foll_flags, &page_mask); 476 if (!page) { 477 int ret; 478 ret = faultin_page(tsk, vma, start, &foll_flags, 479 nonblocking); 480 switch (ret) { 481 case 0: 482 goto retry; 483 case -EFAULT: 484 case -ENOMEM: 485 case -EHWPOISON: 486 return i ? i : ret; 487 case -EBUSY: 488 return i; 489 case -ENOENT: 490 goto next_page; 491 } 492 BUG(); 493 } 494 if (IS_ERR(page)) 495 return i ? i : PTR_ERR(page); 496 if (pages) { 497 pages[i] = page; 498 flush_anon_page(vma, page, start); 499 flush_dcache_page(page); 500 page_mask = 0; 501 } 502 next_page: 503 if (vmas) { 504 vmas[i] = vma; 505 page_mask = 0; 506 } 507 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 508 if (page_increm > nr_pages) 509 page_increm = nr_pages; 510 i += page_increm; 511 start += page_increm * PAGE_SIZE; 512 nr_pages -= page_increm; 513 } while (nr_pages); 514 return i; 515 } 516 EXPORT_SYMBOL(__get_user_pages); 517 518 /* 519 * fixup_user_fault() - manually resolve a user page fault 520 * @tsk: the task_struct to use for page fault accounting, or 521 * NULL if faults are not to be recorded. 522 * @mm: mm_struct of target mm 523 * @address: user address 524 * @fault_flags:flags to pass down to handle_mm_fault() 525 * 526 * This is meant to be called in the specific scenario where for locking reasons 527 * we try to access user memory in atomic context (within a pagefault_disable() 528 * section), this returns -EFAULT, and we want to resolve the user fault before 529 * trying again. 530 * 531 * Typically this is meant to be used by the futex code. 532 * 533 * The main difference with get_user_pages() is that this function will 534 * unconditionally call handle_mm_fault() which will in turn perform all the 535 * necessary SW fixup of the dirty and young bits in the PTE, while 536 * handle_mm_fault() only guarantees to update these in the struct page. 537 * 538 * This is important for some architectures where those bits also gate the 539 * access permission to the page because they are maintained in software. On 540 * such architectures, gup() will not be enough to make a subsequent access 541 * succeed. 542 * 543 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault(). 544 */ 545 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 546 unsigned long address, unsigned int fault_flags) 547 { 548 struct vm_area_struct *vma; 549 vm_flags_t vm_flags; 550 int ret; 551 552 vma = find_extend_vma(mm, address); 553 if (!vma || address < vma->vm_start) 554 return -EFAULT; 555 556 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; 557 if (!(vm_flags & vma->vm_flags)) 558 return -EFAULT; 559 560 ret = handle_mm_fault(mm, vma, address, fault_flags); 561 if (ret & VM_FAULT_ERROR) { 562 if (ret & VM_FAULT_OOM) 563 return -ENOMEM; 564 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 565 return -EHWPOISON; 566 if (ret & VM_FAULT_SIGBUS) 567 return -EFAULT; 568 BUG(); 569 } 570 if (tsk) { 571 if (ret & VM_FAULT_MAJOR) 572 tsk->maj_flt++; 573 else 574 tsk->min_flt++; 575 } 576 return 0; 577 } 578 579 /* 580 * get_user_pages() - pin user pages in memory 581 * @tsk: the task_struct to use for page fault accounting, or 582 * NULL if faults are not to be recorded. 583 * @mm: mm_struct of target mm 584 * @start: starting user address 585 * @nr_pages: number of pages from start to pin 586 * @write: whether pages will be written to by the caller 587 * @force: whether to force access even when user mapping is currently 588 * protected (but never forces write access to shared mapping). 589 * @pages: array that receives pointers to the pages pinned. 590 * Should be at least nr_pages long. Or NULL, if caller 591 * only intends to ensure the pages are faulted in. 592 * @vmas: array of pointers to vmas corresponding to each page. 593 * Or NULL if the caller does not require them. 594 * 595 * Returns number of pages pinned. This may be fewer than the number 596 * requested. If nr_pages is 0 or negative, returns 0. If no pages 597 * were pinned, returns -errno. Each page returned must be released 598 * with a put_page() call when it is finished with. vmas will only 599 * remain valid while mmap_sem is held. 600 * 601 * Must be called with mmap_sem held for read or write. 602 * 603 * get_user_pages walks a process's page tables and takes a reference to 604 * each struct page that each user address corresponds to at a given 605 * instant. That is, it takes the page that would be accessed if a user 606 * thread accesses the given user virtual address at that instant. 607 * 608 * This does not guarantee that the page exists in the user mappings when 609 * get_user_pages returns, and there may even be a completely different 610 * page there in some cases (eg. if mmapped pagecache has been invalidated 611 * and subsequently re faulted). However it does guarantee that the page 612 * won't be freed completely. And mostly callers simply care that the page 613 * contains data that was valid *at some point in time*. Typically, an IO 614 * or similar operation cannot guarantee anything stronger anyway because 615 * locks can't be held over the syscall boundary. 616 * 617 * If write=0, the page must not be written to. If the page is written to, 618 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 619 * after the page is finished with, and before put_page is called. 620 * 621 * get_user_pages is typically used for fewer-copy IO operations, to get a 622 * handle on the memory by some means other than accesses via the user virtual 623 * addresses. The pages may be submitted for DMA to devices or accessed via 624 * their kernel linear mapping (via the kmap APIs). Care should be taken to 625 * use the correct cache flushing APIs. 626 * 627 * See also get_user_pages_fast, for performance critical applications. 628 */ 629 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 630 unsigned long start, unsigned long nr_pages, int write, 631 int force, struct page **pages, struct vm_area_struct **vmas) 632 { 633 int flags = FOLL_TOUCH; 634 635 if (pages) 636 flags |= FOLL_GET; 637 if (write) 638 flags |= FOLL_WRITE; 639 if (force) 640 flags |= FOLL_FORCE; 641 642 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 643 NULL); 644 } 645 EXPORT_SYMBOL(get_user_pages); 646 647 /** 648 * get_dump_page() - pin user page in memory while writing it to core dump 649 * @addr: user address 650 * 651 * Returns struct page pointer of user page pinned for dump, 652 * to be freed afterwards by page_cache_release() or put_page(). 653 * 654 * Returns NULL on any kind of failure - a hole must then be inserted into 655 * the corefile, to preserve alignment with its headers; and also returns 656 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 657 * allowing a hole to be left in the corefile to save diskspace. 658 * 659 * Called without mmap_sem, but after all other threads have been killed. 660 */ 661 #ifdef CONFIG_ELF_CORE 662 struct page *get_dump_page(unsigned long addr) 663 { 664 struct vm_area_struct *vma; 665 struct page *page; 666 667 if (__get_user_pages(current, current->mm, addr, 1, 668 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 669 NULL) < 1) 670 return NULL; 671 flush_cache_page(vma, addr, page_to_pfn(page)); 672 return page; 673 } 674 #endif /* CONFIG_ELF_CORE */ 675