xref: /linux/mm/gup.c (revision 75a41826e2c5dc1dc0fd5195fc29b031c97337af)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/hugetlb.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include "internal.h"
14 
15 static struct page *no_page_table(struct vm_area_struct *vma,
16 		unsigned int flags)
17 {
18 	/*
19 	 * When core dumping an enormous anonymous area that nobody
20 	 * has touched so far, we don't want to allocate unnecessary pages or
21 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
22 	 * then get_dump_page() will return NULL to leave a hole in the dump.
23 	 * But we can only make this optimization where a hole would surely
24 	 * be zero-filled if handle_mm_fault() actually did handle it.
25 	 */
26 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
27 		return ERR_PTR(-EFAULT);
28 	return NULL;
29 }
30 
31 static struct page *follow_page_pte(struct vm_area_struct *vma,
32 		unsigned long address, pmd_t *pmd, unsigned int flags)
33 {
34 	struct mm_struct *mm = vma->vm_mm;
35 	struct page *page;
36 	spinlock_t *ptl;
37 	pte_t *ptep, pte;
38 
39 retry:
40 	if (unlikely(pmd_bad(*pmd)))
41 		return no_page_table(vma, flags);
42 
43 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
44 	pte = *ptep;
45 	if (!pte_present(pte)) {
46 		swp_entry_t entry;
47 		/*
48 		 * KSM's break_ksm() relies upon recognizing a ksm page
49 		 * even while it is being migrated, so for that case we
50 		 * need migration_entry_wait().
51 		 */
52 		if (likely(!(flags & FOLL_MIGRATION)))
53 			goto no_page;
54 		if (pte_none(pte) || pte_file(pte))
55 			goto no_page;
56 		entry = pte_to_swp_entry(pte);
57 		if (!is_migration_entry(entry))
58 			goto no_page;
59 		pte_unmap_unlock(ptep, ptl);
60 		migration_entry_wait(mm, pmd, address);
61 		goto retry;
62 	}
63 	if ((flags & FOLL_NUMA) && pte_numa(pte))
64 		goto no_page;
65 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
66 		pte_unmap_unlock(ptep, ptl);
67 		return NULL;
68 	}
69 
70 	page = vm_normal_page(vma, address, pte);
71 	if (unlikely(!page)) {
72 		if ((flags & FOLL_DUMP) ||
73 		    !is_zero_pfn(pte_pfn(pte)))
74 			goto bad_page;
75 		page = pte_page(pte);
76 	}
77 
78 	if (flags & FOLL_GET)
79 		get_page_foll(page);
80 	if (flags & FOLL_TOUCH) {
81 		if ((flags & FOLL_WRITE) &&
82 		    !pte_dirty(pte) && !PageDirty(page))
83 			set_page_dirty(page);
84 		/*
85 		 * pte_mkyoung() would be more correct here, but atomic care
86 		 * is needed to avoid losing the dirty bit: it is easier to use
87 		 * mark_page_accessed().
88 		 */
89 		mark_page_accessed(page);
90 	}
91 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
92 		/*
93 		 * The preliminary mapping check is mainly to avoid the
94 		 * pointless overhead of lock_page on the ZERO_PAGE
95 		 * which might bounce very badly if there is contention.
96 		 *
97 		 * If the page is already locked, we don't need to
98 		 * handle it now - vmscan will handle it later if and
99 		 * when it attempts to reclaim the page.
100 		 */
101 		if (page->mapping && trylock_page(page)) {
102 			lru_add_drain();  /* push cached pages to LRU */
103 			/*
104 			 * Because we lock page here, and migration is
105 			 * blocked by the pte's page reference, and we
106 			 * know the page is still mapped, we don't even
107 			 * need to check for file-cache page truncation.
108 			 */
109 			mlock_vma_page(page);
110 			unlock_page(page);
111 		}
112 	}
113 	pte_unmap_unlock(ptep, ptl);
114 	return page;
115 bad_page:
116 	pte_unmap_unlock(ptep, ptl);
117 	return ERR_PTR(-EFAULT);
118 
119 no_page:
120 	pte_unmap_unlock(ptep, ptl);
121 	if (!pte_none(pte))
122 		return NULL;
123 	return no_page_table(vma, flags);
124 }
125 
126 /**
127  * follow_page_mask - look up a page descriptor from a user-virtual address
128  * @vma: vm_area_struct mapping @address
129  * @address: virtual address to look up
130  * @flags: flags modifying lookup behaviour
131  * @page_mask: on output, *page_mask is set according to the size of the page
132  *
133  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
134  *
135  * Returns the mapped (struct page *), %NULL if no mapping exists, or
136  * an error pointer if there is a mapping to something not represented
137  * by a page descriptor (see also vm_normal_page()).
138  */
139 struct page *follow_page_mask(struct vm_area_struct *vma,
140 			      unsigned long address, unsigned int flags,
141 			      unsigned int *page_mask)
142 {
143 	pgd_t *pgd;
144 	pud_t *pud;
145 	pmd_t *pmd;
146 	spinlock_t *ptl;
147 	struct page *page;
148 	struct mm_struct *mm = vma->vm_mm;
149 
150 	*page_mask = 0;
151 
152 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
153 	if (!IS_ERR(page)) {
154 		BUG_ON(flags & FOLL_GET);
155 		return page;
156 	}
157 
158 	pgd = pgd_offset(mm, address);
159 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
160 		return no_page_table(vma, flags);
161 
162 	pud = pud_offset(pgd, address);
163 	if (pud_none(*pud))
164 		return no_page_table(vma, flags);
165 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
166 		if (flags & FOLL_GET)
167 			return NULL;
168 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
169 		return page;
170 	}
171 	if (unlikely(pud_bad(*pud)))
172 		return no_page_table(vma, flags);
173 
174 	pmd = pmd_offset(pud, address);
175 	if (pmd_none(*pmd))
176 		return no_page_table(vma, flags);
177 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
178 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
179 		if (flags & FOLL_GET) {
180 			/*
181 			 * Refcount on tail pages are not well-defined and
182 			 * shouldn't be taken. The caller should handle a NULL
183 			 * return when trying to follow tail pages.
184 			 */
185 			if (PageHead(page))
186 				get_page(page);
187 			else
188 				page = NULL;
189 		}
190 		return page;
191 	}
192 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
193 		return no_page_table(vma, flags);
194 	if (pmd_trans_huge(*pmd)) {
195 		if (flags & FOLL_SPLIT) {
196 			split_huge_page_pmd(vma, address, pmd);
197 			return follow_page_pte(vma, address, pmd, flags);
198 		}
199 		ptl = pmd_lock(mm, pmd);
200 		if (likely(pmd_trans_huge(*pmd))) {
201 			if (unlikely(pmd_trans_splitting(*pmd))) {
202 				spin_unlock(ptl);
203 				wait_split_huge_page(vma->anon_vma, pmd);
204 			} else {
205 				page = follow_trans_huge_pmd(vma, address,
206 							     pmd, flags);
207 				spin_unlock(ptl);
208 				*page_mask = HPAGE_PMD_NR - 1;
209 				return page;
210 			}
211 		} else
212 			spin_unlock(ptl);
213 	}
214 	return follow_page_pte(vma, address, pmd, flags);
215 }
216 
217 static int get_gate_page(struct mm_struct *mm, unsigned long address,
218 		unsigned int gup_flags, struct vm_area_struct **vma,
219 		struct page **page)
220 {
221 	pgd_t *pgd;
222 	pud_t *pud;
223 	pmd_t *pmd;
224 	pte_t *pte;
225 	int ret = -EFAULT;
226 
227 	/* user gate pages are read-only */
228 	if (gup_flags & FOLL_WRITE)
229 		return -EFAULT;
230 	if (address > TASK_SIZE)
231 		pgd = pgd_offset_k(address);
232 	else
233 		pgd = pgd_offset_gate(mm, address);
234 	BUG_ON(pgd_none(*pgd));
235 	pud = pud_offset(pgd, address);
236 	BUG_ON(pud_none(*pud));
237 	pmd = pmd_offset(pud, address);
238 	if (pmd_none(*pmd))
239 		return -EFAULT;
240 	VM_BUG_ON(pmd_trans_huge(*pmd));
241 	pte = pte_offset_map(pmd, address);
242 	if (pte_none(*pte))
243 		goto unmap;
244 	*vma = get_gate_vma(mm);
245 	if (!page)
246 		goto out;
247 	*page = vm_normal_page(*vma, address, *pte);
248 	if (!*page) {
249 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
250 			goto unmap;
251 		*page = pte_page(*pte);
252 	}
253 	get_page(*page);
254 out:
255 	ret = 0;
256 unmap:
257 	pte_unmap(pte);
258 	return ret;
259 }
260 
261 /*
262  * mmap_sem must be held on entry.  If @nonblocking != NULL and
263  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
264  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
265  */
266 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
267 		unsigned long address, unsigned int *flags, int *nonblocking)
268 {
269 	struct mm_struct *mm = vma->vm_mm;
270 	unsigned int fault_flags = 0;
271 	int ret;
272 
273 	/* For mlock, just skip the stack guard page. */
274 	if ((*flags & FOLL_MLOCK) &&
275 			(stack_guard_page_start(vma, address) ||
276 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
277 		return -ENOENT;
278 	if (*flags & FOLL_WRITE)
279 		fault_flags |= FAULT_FLAG_WRITE;
280 	if (nonblocking)
281 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
282 	if (*flags & FOLL_NOWAIT)
283 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
284 
285 	ret = handle_mm_fault(mm, vma, address, fault_flags);
286 	if (ret & VM_FAULT_ERROR) {
287 		if (ret & VM_FAULT_OOM)
288 			return -ENOMEM;
289 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
290 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
291 		if (ret & VM_FAULT_SIGBUS)
292 			return -EFAULT;
293 		BUG();
294 	}
295 
296 	if (tsk) {
297 		if (ret & VM_FAULT_MAJOR)
298 			tsk->maj_flt++;
299 		else
300 			tsk->min_flt++;
301 	}
302 
303 	if (ret & VM_FAULT_RETRY) {
304 		if (nonblocking)
305 			*nonblocking = 0;
306 		return -EBUSY;
307 	}
308 
309 	/*
310 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
311 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
312 	 * can thus safely do subsequent page lookups as if they were reads.
313 	 * But only do so when looping for pte_write is futile: in some cases
314 	 * userspace may also be wanting to write to the gotten user page,
315 	 * which a read fault here might prevent (a readonly page might get
316 	 * reCOWed by userspace write).
317 	 */
318 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
319 		*flags &= ~FOLL_WRITE;
320 	return 0;
321 }
322 
323 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
324 {
325 	vm_flags_t vm_flags = vma->vm_flags;
326 
327 	if (vm_flags & (VM_IO | VM_PFNMAP))
328 		return -EFAULT;
329 
330 	if (gup_flags & FOLL_WRITE) {
331 		if (!(vm_flags & VM_WRITE)) {
332 			if (!(gup_flags & FOLL_FORCE))
333 				return -EFAULT;
334 			/*
335 			 * We used to let the write,force case do COW in a
336 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
337 			 * set a breakpoint in a read-only mapping of an
338 			 * executable, without corrupting the file (yet only
339 			 * when that file had been opened for writing!).
340 			 * Anon pages in shared mappings are surprising: now
341 			 * just reject it.
342 			 */
343 			if (!is_cow_mapping(vm_flags)) {
344 				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
345 				return -EFAULT;
346 			}
347 		}
348 	} else if (!(vm_flags & VM_READ)) {
349 		if (!(gup_flags & FOLL_FORCE))
350 			return -EFAULT;
351 		/*
352 		 * Is there actually any vma we can reach here which does not
353 		 * have VM_MAYREAD set?
354 		 */
355 		if (!(vm_flags & VM_MAYREAD))
356 			return -EFAULT;
357 	}
358 	return 0;
359 }
360 
361 /**
362  * __get_user_pages() - pin user pages in memory
363  * @tsk:	task_struct of target task
364  * @mm:		mm_struct of target mm
365  * @start:	starting user address
366  * @nr_pages:	number of pages from start to pin
367  * @gup_flags:	flags modifying pin behaviour
368  * @pages:	array that receives pointers to the pages pinned.
369  *		Should be at least nr_pages long. Or NULL, if caller
370  *		only intends to ensure the pages are faulted in.
371  * @vmas:	array of pointers to vmas corresponding to each page.
372  *		Or NULL if the caller does not require them.
373  * @nonblocking: whether waiting for disk IO or mmap_sem contention
374  *
375  * Returns number of pages pinned. This may be fewer than the number
376  * requested. If nr_pages is 0 or negative, returns 0. If no pages
377  * were pinned, returns -errno. Each page returned must be released
378  * with a put_page() call when it is finished with. vmas will only
379  * remain valid while mmap_sem is held.
380  *
381  * Must be called with mmap_sem held.  It may be released.  See below.
382  *
383  * __get_user_pages walks a process's page tables and takes a reference to
384  * each struct page that each user address corresponds to at a given
385  * instant. That is, it takes the page that would be accessed if a user
386  * thread accesses the given user virtual address at that instant.
387  *
388  * This does not guarantee that the page exists in the user mappings when
389  * __get_user_pages returns, and there may even be a completely different
390  * page there in some cases (eg. if mmapped pagecache has been invalidated
391  * and subsequently re faulted). However it does guarantee that the page
392  * won't be freed completely. And mostly callers simply care that the page
393  * contains data that was valid *at some point in time*. Typically, an IO
394  * or similar operation cannot guarantee anything stronger anyway because
395  * locks can't be held over the syscall boundary.
396  *
397  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
398  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
399  * appropriate) must be called after the page is finished with, and
400  * before put_page is called.
401  *
402  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
403  * or mmap_sem contention, and if waiting is needed to pin all pages,
404  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
405  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
406  * this case.
407  *
408  * A caller using such a combination of @nonblocking and @gup_flags
409  * must therefore hold the mmap_sem for reading only, and recognize
410  * when it's been released.  Otherwise, it must be held for either
411  * reading or writing and will not be released.
412  *
413  * In most cases, get_user_pages or get_user_pages_fast should be used
414  * instead of __get_user_pages. __get_user_pages should be used only if
415  * you need some special @gup_flags.
416  */
417 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
418 		unsigned long start, unsigned long nr_pages,
419 		unsigned int gup_flags, struct page **pages,
420 		struct vm_area_struct **vmas, int *nonblocking)
421 {
422 	long i = 0;
423 	unsigned int page_mask;
424 	struct vm_area_struct *vma = NULL;
425 
426 	if (!nr_pages)
427 		return 0;
428 
429 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
430 
431 	/*
432 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
433 	 * fault information is unrelated to the reference behaviour of a task
434 	 * using the address space
435 	 */
436 	if (!(gup_flags & FOLL_FORCE))
437 		gup_flags |= FOLL_NUMA;
438 
439 	do {
440 		struct page *page;
441 		unsigned int foll_flags = gup_flags;
442 		unsigned int page_increm;
443 
444 		/* first iteration or cross vma bound */
445 		if (!vma || start >= vma->vm_end) {
446 			vma = find_extend_vma(mm, start);
447 			if (!vma && in_gate_area(mm, start)) {
448 				int ret;
449 				ret = get_gate_page(mm, start & PAGE_MASK,
450 						gup_flags, &vma,
451 						pages ? &pages[i] : NULL);
452 				if (ret)
453 					return i ? : ret;
454 				page_mask = 0;
455 				goto next_page;
456 			}
457 
458 			if (!vma || check_vma_flags(vma, gup_flags))
459 				return i ? : -EFAULT;
460 			if (is_vm_hugetlb_page(vma)) {
461 				i = follow_hugetlb_page(mm, vma, pages, vmas,
462 						&start, &nr_pages, i,
463 						gup_flags);
464 				continue;
465 			}
466 		}
467 retry:
468 		/*
469 		 * If we have a pending SIGKILL, don't keep faulting pages and
470 		 * potentially allocating memory.
471 		 */
472 		if (unlikely(fatal_signal_pending(current)))
473 			return i ? i : -ERESTARTSYS;
474 		cond_resched();
475 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
476 		if (!page) {
477 			int ret;
478 			ret = faultin_page(tsk, vma, start, &foll_flags,
479 					nonblocking);
480 			switch (ret) {
481 			case 0:
482 				goto retry;
483 			case -EFAULT:
484 			case -ENOMEM:
485 			case -EHWPOISON:
486 				return i ? i : ret;
487 			case -EBUSY:
488 				return i;
489 			case -ENOENT:
490 				goto next_page;
491 			}
492 			BUG();
493 		}
494 		if (IS_ERR(page))
495 			return i ? i : PTR_ERR(page);
496 		if (pages) {
497 			pages[i] = page;
498 			flush_anon_page(vma, page, start);
499 			flush_dcache_page(page);
500 			page_mask = 0;
501 		}
502 next_page:
503 		if (vmas) {
504 			vmas[i] = vma;
505 			page_mask = 0;
506 		}
507 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
508 		if (page_increm > nr_pages)
509 			page_increm = nr_pages;
510 		i += page_increm;
511 		start += page_increm * PAGE_SIZE;
512 		nr_pages -= page_increm;
513 	} while (nr_pages);
514 	return i;
515 }
516 EXPORT_SYMBOL(__get_user_pages);
517 
518 /*
519  * fixup_user_fault() - manually resolve a user page fault
520  * @tsk:	the task_struct to use for page fault accounting, or
521  *		NULL if faults are not to be recorded.
522  * @mm:		mm_struct of target mm
523  * @address:	user address
524  * @fault_flags:flags to pass down to handle_mm_fault()
525  *
526  * This is meant to be called in the specific scenario where for locking reasons
527  * we try to access user memory in atomic context (within a pagefault_disable()
528  * section), this returns -EFAULT, and we want to resolve the user fault before
529  * trying again.
530  *
531  * Typically this is meant to be used by the futex code.
532  *
533  * The main difference with get_user_pages() is that this function will
534  * unconditionally call handle_mm_fault() which will in turn perform all the
535  * necessary SW fixup of the dirty and young bits in the PTE, while
536  * handle_mm_fault() only guarantees to update these in the struct page.
537  *
538  * This is important for some architectures where those bits also gate the
539  * access permission to the page because they are maintained in software.  On
540  * such architectures, gup() will not be enough to make a subsequent access
541  * succeed.
542  *
543  * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
544  */
545 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
546 		     unsigned long address, unsigned int fault_flags)
547 {
548 	struct vm_area_struct *vma;
549 	vm_flags_t vm_flags;
550 	int ret;
551 
552 	vma = find_extend_vma(mm, address);
553 	if (!vma || address < vma->vm_start)
554 		return -EFAULT;
555 
556 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
557 	if (!(vm_flags & vma->vm_flags))
558 		return -EFAULT;
559 
560 	ret = handle_mm_fault(mm, vma, address, fault_flags);
561 	if (ret & VM_FAULT_ERROR) {
562 		if (ret & VM_FAULT_OOM)
563 			return -ENOMEM;
564 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
565 			return -EHWPOISON;
566 		if (ret & VM_FAULT_SIGBUS)
567 			return -EFAULT;
568 		BUG();
569 	}
570 	if (tsk) {
571 		if (ret & VM_FAULT_MAJOR)
572 			tsk->maj_flt++;
573 		else
574 			tsk->min_flt++;
575 	}
576 	return 0;
577 }
578 
579 /*
580  * get_user_pages() - pin user pages in memory
581  * @tsk:	the task_struct to use for page fault accounting, or
582  *		NULL if faults are not to be recorded.
583  * @mm:		mm_struct of target mm
584  * @start:	starting user address
585  * @nr_pages:	number of pages from start to pin
586  * @write:	whether pages will be written to by the caller
587  * @force:	whether to force access even when user mapping is currently
588  *		protected (but never forces write access to shared mapping).
589  * @pages:	array that receives pointers to the pages pinned.
590  *		Should be at least nr_pages long. Or NULL, if caller
591  *		only intends to ensure the pages are faulted in.
592  * @vmas:	array of pointers to vmas corresponding to each page.
593  *		Or NULL if the caller does not require them.
594  *
595  * Returns number of pages pinned. This may be fewer than the number
596  * requested. If nr_pages is 0 or negative, returns 0. If no pages
597  * were pinned, returns -errno. Each page returned must be released
598  * with a put_page() call when it is finished with. vmas will only
599  * remain valid while mmap_sem is held.
600  *
601  * Must be called with mmap_sem held for read or write.
602  *
603  * get_user_pages walks a process's page tables and takes a reference to
604  * each struct page that each user address corresponds to at a given
605  * instant. That is, it takes the page that would be accessed if a user
606  * thread accesses the given user virtual address at that instant.
607  *
608  * This does not guarantee that the page exists in the user mappings when
609  * get_user_pages returns, and there may even be a completely different
610  * page there in some cases (eg. if mmapped pagecache has been invalidated
611  * and subsequently re faulted). However it does guarantee that the page
612  * won't be freed completely. And mostly callers simply care that the page
613  * contains data that was valid *at some point in time*. Typically, an IO
614  * or similar operation cannot guarantee anything stronger anyway because
615  * locks can't be held over the syscall boundary.
616  *
617  * If write=0, the page must not be written to. If the page is written to,
618  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
619  * after the page is finished with, and before put_page is called.
620  *
621  * get_user_pages is typically used for fewer-copy IO operations, to get a
622  * handle on the memory by some means other than accesses via the user virtual
623  * addresses. The pages may be submitted for DMA to devices or accessed via
624  * their kernel linear mapping (via the kmap APIs). Care should be taken to
625  * use the correct cache flushing APIs.
626  *
627  * See also get_user_pages_fast, for performance critical applications.
628  */
629 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
630 		unsigned long start, unsigned long nr_pages, int write,
631 		int force, struct page **pages, struct vm_area_struct **vmas)
632 {
633 	int flags = FOLL_TOUCH;
634 
635 	if (pages)
636 		flags |= FOLL_GET;
637 	if (write)
638 		flags |= FOLL_WRITE;
639 	if (force)
640 		flags |= FOLL_FORCE;
641 
642 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
643 				NULL);
644 }
645 EXPORT_SYMBOL(get_user_pages);
646 
647 /**
648  * get_dump_page() - pin user page in memory while writing it to core dump
649  * @addr: user address
650  *
651  * Returns struct page pointer of user page pinned for dump,
652  * to be freed afterwards by page_cache_release() or put_page().
653  *
654  * Returns NULL on any kind of failure - a hole must then be inserted into
655  * the corefile, to preserve alignment with its headers; and also returns
656  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
657  * allowing a hole to be left in the corefile to save diskspace.
658  *
659  * Called without mmap_sem, but after all other threads have been killed.
660  */
661 #ifdef CONFIG_ELF_CORE
662 struct page *get_dump_page(unsigned long addr)
663 {
664 	struct vm_area_struct *vma;
665 	struct page *page;
666 
667 	if (__get_user_pages(current, current->mm, addr, 1,
668 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
669 			     NULL) < 1)
670 		return NULL;
671 	flush_cache_page(vma, addr, page_to_pfn(page));
672 	return page;
673 }
674 #endif /* CONFIG_ELF_CORE */
675