1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* 49 * Return the compound head page with ref appropriately incremented, 50 * or NULL if that failed. 51 */ 52 static inline struct page *try_get_compound_head(struct page *page, int refs) 53 { 54 struct page *head = compound_head(page); 55 56 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 57 return NULL; 58 if (unlikely(!page_cache_add_speculative(head, refs))) 59 return NULL; 60 return head; 61 } 62 63 /* 64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 65 * flags-dependent amount. 66 * 67 * "grab" names in this file mean, "look at flags to decide whether to use 68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 69 * 70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 71 * same time. (That's true throughout the get_user_pages*() and 72 * pin_user_pages*() APIs.) Cases: 73 * 74 * FOLL_GET: page's refcount will be incremented by 1. 75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 76 * 77 * Return: head page (with refcount appropriately incremented) for success, or 78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 79 * considered failure, and furthermore, a likely bug in the caller, so a warning 80 * is also emitted. 81 */ 82 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 83 int refs, 84 unsigned int flags) 85 { 86 if (flags & FOLL_GET) 87 return try_get_compound_head(page, refs); 88 else if (flags & FOLL_PIN) { 89 int orig_refs = refs; 90 91 /* 92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 93 * path, so fail and let the caller fall back to the slow path. 94 */ 95 if (unlikely(flags & FOLL_LONGTERM) && 96 is_migrate_cma_page(page)) 97 return NULL; 98 99 /* 100 * When pinning a compound page of order > 1 (which is what 101 * hpage_pincount_available() checks for), use an exact count to 102 * track it, via hpage_pincount_add/_sub(). 103 * 104 * However, be sure to *also* increment the normal page refcount 105 * field at least once, so that the page really is pinned. 106 */ 107 if (!hpage_pincount_available(page)) 108 refs *= GUP_PIN_COUNTING_BIAS; 109 110 page = try_get_compound_head(page, refs); 111 if (!page) 112 return NULL; 113 114 if (hpage_pincount_available(page)) 115 hpage_pincount_add(page, refs); 116 117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 118 orig_refs); 119 120 return page; 121 } 122 123 WARN_ON_ONCE(1); 124 return NULL; 125 } 126 127 /** 128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 129 * 130 * This might not do anything at all, depending on the flags argument. 131 * 132 * "grab" names in this file mean, "look at flags to decide whether to use 133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 134 * 135 * @page: pointer to page to be grabbed 136 * @flags: gup flags: these are the FOLL_* flag values. 137 * 138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 139 * time. Cases: 140 * 141 * FOLL_GET: page's refcount will be incremented by 1. 142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 143 * 144 * Return: true for success, or if no action was required (if neither FOLL_PIN 145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 146 * FOLL_PIN was set, but the page could not be grabbed. 147 */ 148 bool __must_check try_grab_page(struct page *page, unsigned int flags) 149 { 150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 151 152 if (flags & FOLL_GET) 153 return try_get_page(page); 154 else if (flags & FOLL_PIN) { 155 int refs = 1; 156 157 page = compound_head(page); 158 159 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 160 return false; 161 162 if (hpage_pincount_available(page)) 163 hpage_pincount_add(page, 1); 164 else 165 refs = GUP_PIN_COUNTING_BIAS; 166 167 /* 168 * Similar to try_grab_compound_head(): even if using the 169 * hpage_pincount_add/_sub() routines, be sure to 170 * *also* increment the normal page refcount field at least 171 * once, so that the page really is pinned. 172 */ 173 page_ref_add(page, refs); 174 175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 176 } 177 178 return true; 179 } 180 181 #ifdef CONFIG_DEV_PAGEMAP_OPS 182 static bool __unpin_devmap_managed_user_page(struct page *page) 183 { 184 int count, refs = 1; 185 186 if (!page_is_devmap_managed(page)) 187 return false; 188 189 if (hpage_pincount_available(page)) 190 hpage_pincount_sub(page, 1); 191 else 192 refs = GUP_PIN_COUNTING_BIAS; 193 194 count = page_ref_sub_return(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 197 /* 198 * devmap page refcounts are 1-based, rather than 0-based: if 199 * refcount is 1, then the page is free and the refcount is 200 * stable because nobody holds a reference on the page. 201 */ 202 if (count == 1) 203 free_devmap_managed_page(page); 204 else if (!count) 205 __put_page(page); 206 207 return true; 208 } 209 #else 210 static bool __unpin_devmap_managed_user_page(struct page *page) 211 { 212 return false; 213 } 214 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 215 216 /** 217 * unpin_user_page() - release a dma-pinned page 218 * @page: pointer to page to be released 219 * 220 * Pages that were pinned via pin_user_pages*() must be released via either 221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 222 * that such pages can be separately tracked and uniquely handled. In 223 * particular, interactions with RDMA and filesystems need special handling. 224 */ 225 void unpin_user_page(struct page *page) 226 { 227 int refs = 1; 228 229 page = compound_head(page); 230 231 /* 232 * For devmap managed pages we need to catch refcount transition from 233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 234 * page is free and we need to inform the device driver through 235 * callback. See include/linux/memremap.h and HMM for details. 236 */ 237 if (__unpin_devmap_managed_user_page(page)) 238 return; 239 240 if (hpage_pincount_available(page)) 241 hpage_pincount_sub(page, 1); 242 else 243 refs = GUP_PIN_COUNTING_BIAS; 244 245 if (page_ref_sub_and_test(page, refs)) 246 __put_page(page); 247 248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 249 } 250 EXPORT_SYMBOL(unpin_user_page); 251 252 /** 253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 254 * @pages: array of pages to be maybe marked dirty, and definitely released. 255 * @npages: number of pages in the @pages array. 256 * @make_dirty: whether to mark the pages dirty 257 * 258 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 259 * variants called on that page. 260 * 261 * For each page in the @pages array, make that page (or its head page, if a 262 * compound page) dirty, if @make_dirty is true, and if the page was previously 263 * listed as clean. In any case, releases all pages using unpin_user_page(), 264 * possibly via unpin_user_pages(), for the non-dirty case. 265 * 266 * Please see the unpin_user_page() documentation for details. 267 * 268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 269 * required, then the caller should a) verify that this is really correct, 270 * because _lock() is usually required, and b) hand code it: 271 * set_page_dirty_lock(), unpin_user_page(). 272 * 273 */ 274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 275 bool make_dirty) 276 { 277 unsigned long index; 278 279 /* 280 * TODO: this can be optimized for huge pages: if a series of pages is 281 * physically contiguous and part of the same compound page, then a 282 * single operation to the head page should suffice. 283 */ 284 285 if (!make_dirty) { 286 unpin_user_pages(pages, npages); 287 return; 288 } 289 290 for (index = 0; index < npages; index++) { 291 struct page *page = compound_head(pages[index]); 292 /* 293 * Checking PageDirty at this point may race with 294 * clear_page_dirty_for_io(), but that's OK. Two key 295 * cases: 296 * 297 * 1) This code sees the page as already dirty, so it 298 * skips the call to set_page_dirty(). That could happen 299 * because clear_page_dirty_for_io() called 300 * page_mkclean(), followed by set_page_dirty(). 301 * However, now the page is going to get written back, 302 * which meets the original intention of setting it 303 * dirty, so all is well: clear_page_dirty_for_io() goes 304 * on to call TestClearPageDirty(), and write the page 305 * back. 306 * 307 * 2) This code sees the page as clean, so it calls 308 * set_page_dirty(). The page stays dirty, despite being 309 * written back, so it gets written back again in the 310 * next writeback cycle. This is harmless. 311 */ 312 if (!PageDirty(page)) 313 set_page_dirty_lock(page); 314 unpin_user_page(page); 315 } 316 } 317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 318 319 /** 320 * unpin_user_pages() - release an array of gup-pinned pages. 321 * @pages: array of pages to be marked dirty and released. 322 * @npages: number of pages in the @pages array. 323 * 324 * For each page in the @pages array, release the page using unpin_user_page(). 325 * 326 * Please see the unpin_user_page() documentation for details. 327 */ 328 void unpin_user_pages(struct page **pages, unsigned long npages) 329 { 330 unsigned long index; 331 332 /* 333 * TODO: this can be optimized for huge pages: if a series of pages is 334 * physically contiguous and part of the same compound page, then a 335 * single operation to the head page should suffice. 336 */ 337 for (index = 0; index < npages; index++) 338 unpin_user_page(pages[index]); 339 } 340 EXPORT_SYMBOL(unpin_user_pages); 341 342 #ifdef CONFIG_MMU 343 static struct page *no_page_table(struct vm_area_struct *vma, 344 unsigned int flags) 345 { 346 /* 347 * When core dumping an enormous anonymous area that nobody 348 * has touched so far, we don't want to allocate unnecessary pages or 349 * page tables. Return error instead of NULL to skip handle_mm_fault, 350 * then get_dump_page() will return NULL to leave a hole in the dump. 351 * But we can only make this optimization where a hole would surely 352 * be zero-filled if handle_mm_fault() actually did handle it. 353 */ 354 if ((flags & FOLL_DUMP) && 355 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 356 return ERR_PTR(-EFAULT); 357 return NULL; 358 } 359 360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 361 pte_t *pte, unsigned int flags) 362 { 363 /* No page to get reference */ 364 if (flags & FOLL_GET) 365 return -EFAULT; 366 367 if (flags & FOLL_TOUCH) { 368 pte_t entry = *pte; 369 370 if (flags & FOLL_WRITE) 371 entry = pte_mkdirty(entry); 372 entry = pte_mkyoung(entry); 373 374 if (!pte_same(*pte, entry)) { 375 set_pte_at(vma->vm_mm, address, pte, entry); 376 update_mmu_cache(vma, address, pte); 377 } 378 } 379 380 /* Proper page table entry exists, but no corresponding struct page */ 381 return -EEXIST; 382 } 383 384 /* 385 * FOLL_FORCE can write to even unwritable pte's, but only 386 * after we've gone through a COW cycle and they are dirty. 387 */ 388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 389 { 390 return pte_write(pte) || 391 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 392 } 393 394 static struct page *follow_page_pte(struct vm_area_struct *vma, 395 unsigned long address, pmd_t *pmd, unsigned int flags, 396 struct dev_pagemap **pgmap) 397 { 398 struct mm_struct *mm = vma->vm_mm; 399 struct page *page; 400 spinlock_t *ptl; 401 pte_t *ptep, pte; 402 int ret; 403 404 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 405 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 406 (FOLL_PIN | FOLL_GET))) 407 return ERR_PTR(-EINVAL); 408 retry: 409 if (unlikely(pmd_bad(*pmd))) 410 return no_page_table(vma, flags); 411 412 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 413 pte = *ptep; 414 if (!pte_present(pte)) { 415 swp_entry_t entry; 416 /* 417 * KSM's break_ksm() relies upon recognizing a ksm page 418 * even while it is being migrated, so for that case we 419 * need migration_entry_wait(). 420 */ 421 if (likely(!(flags & FOLL_MIGRATION))) 422 goto no_page; 423 if (pte_none(pte)) 424 goto no_page; 425 entry = pte_to_swp_entry(pte); 426 if (!is_migration_entry(entry)) 427 goto no_page; 428 pte_unmap_unlock(ptep, ptl); 429 migration_entry_wait(mm, pmd, address); 430 goto retry; 431 } 432 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 433 goto no_page; 434 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 435 pte_unmap_unlock(ptep, ptl); 436 return NULL; 437 } 438 439 page = vm_normal_page(vma, address, pte); 440 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 441 /* 442 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 443 * case since they are only valid while holding the pgmap 444 * reference. 445 */ 446 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 447 if (*pgmap) 448 page = pte_page(pte); 449 else 450 goto no_page; 451 } else if (unlikely(!page)) { 452 if (flags & FOLL_DUMP) { 453 /* Avoid special (like zero) pages in core dumps */ 454 page = ERR_PTR(-EFAULT); 455 goto out; 456 } 457 458 if (is_zero_pfn(pte_pfn(pte))) { 459 page = pte_page(pte); 460 } else { 461 ret = follow_pfn_pte(vma, address, ptep, flags); 462 page = ERR_PTR(ret); 463 goto out; 464 } 465 } 466 467 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 468 get_page(page); 469 pte_unmap_unlock(ptep, ptl); 470 lock_page(page); 471 ret = split_huge_page(page); 472 unlock_page(page); 473 put_page(page); 474 if (ret) 475 return ERR_PTR(ret); 476 goto retry; 477 } 478 479 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 480 if (unlikely(!try_grab_page(page, flags))) { 481 page = ERR_PTR(-ENOMEM); 482 goto out; 483 } 484 /* 485 * We need to make the page accessible if and only if we are going 486 * to access its content (the FOLL_PIN case). Please see 487 * Documentation/core-api/pin_user_pages.rst for details. 488 */ 489 if (flags & FOLL_PIN) { 490 ret = arch_make_page_accessible(page); 491 if (ret) { 492 unpin_user_page(page); 493 page = ERR_PTR(ret); 494 goto out; 495 } 496 } 497 if (flags & FOLL_TOUCH) { 498 if ((flags & FOLL_WRITE) && 499 !pte_dirty(pte) && !PageDirty(page)) 500 set_page_dirty(page); 501 /* 502 * pte_mkyoung() would be more correct here, but atomic care 503 * is needed to avoid losing the dirty bit: it is easier to use 504 * mark_page_accessed(). 505 */ 506 mark_page_accessed(page); 507 } 508 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 509 /* Do not mlock pte-mapped THP */ 510 if (PageTransCompound(page)) 511 goto out; 512 513 /* 514 * The preliminary mapping check is mainly to avoid the 515 * pointless overhead of lock_page on the ZERO_PAGE 516 * which might bounce very badly if there is contention. 517 * 518 * If the page is already locked, we don't need to 519 * handle it now - vmscan will handle it later if and 520 * when it attempts to reclaim the page. 521 */ 522 if (page->mapping && trylock_page(page)) { 523 lru_add_drain(); /* push cached pages to LRU */ 524 /* 525 * Because we lock page here, and migration is 526 * blocked by the pte's page reference, and we 527 * know the page is still mapped, we don't even 528 * need to check for file-cache page truncation. 529 */ 530 mlock_vma_page(page); 531 unlock_page(page); 532 } 533 } 534 out: 535 pte_unmap_unlock(ptep, ptl); 536 return page; 537 no_page: 538 pte_unmap_unlock(ptep, ptl); 539 if (!pte_none(pte)) 540 return NULL; 541 return no_page_table(vma, flags); 542 } 543 544 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 545 unsigned long address, pud_t *pudp, 546 unsigned int flags, 547 struct follow_page_context *ctx) 548 { 549 pmd_t *pmd, pmdval; 550 spinlock_t *ptl; 551 struct page *page; 552 struct mm_struct *mm = vma->vm_mm; 553 554 pmd = pmd_offset(pudp, address); 555 /* 556 * The READ_ONCE() will stabilize the pmdval in a register or 557 * on the stack so that it will stop changing under the code. 558 */ 559 pmdval = READ_ONCE(*pmd); 560 if (pmd_none(pmdval)) 561 return no_page_table(vma, flags); 562 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 563 page = follow_huge_pmd(mm, address, pmd, flags); 564 if (page) 565 return page; 566 return no_page_table(vma, flags); 567 } 568 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 569 page = follow_huge_pd(vma, address, 570 __hugepd(pmd_val(pmdval)), flags, 571 PMD_SHIFT); 572 if (page) 573 return page; 574 return no_page_table(vma, flags); 575 } 576 retry: 577 if (!pmd_present(pmdval)) { 578 if (likely(!(flags & FOLL_MIGRATION))) 579 return no_page_table(vma, flags); 580 VM_BUG_ON(thp_migration_supported() && 581 !is_pmd_migration_entry(pmdval)); 582 if (is_pmd_migration_entry(pmdval)) 583 pmd_migration_entry_wait(mm, pmd); 584 pmdval = READ_ONCE(*pmd); 585 /* 586 * MADV_DONTNEED may convert the pmd to null because 587 * mmap_sem is held in read mode 588 */ 589 if (pmd_none(pmdval)) 590 return no_page_table(vma, flags); 591 goto retry; 592 } 593 if (pmd_devmap(pmdval)) { 594 ptl = pmd_lock(mm, pmd); 595 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 596 spin_unlock(ptl); 597 if (page) 598 return page; 599 } 600 if (likely(!pmd_trans_huge(pmdval))) 601 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 602 603 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 604 return no_page_table(vma, flags); 605 606 retry_locked: 607 ptl = pmd_lock(mm, pmd); 608 if (unlikely(pmd_none(*pmd))) { 609 spin_unlock(ptl); 610 return no_page_table(vma, flags); 611 } 612 if (unlikely(!pmd_present(*pmd))) { 613 spin_unlock(ptl); 614 if (likely(!(flags & FOLL_MIGRATION))) 615 return no_page_table(vma, flags); 616 pmd_migration_entry_wait(mm, pmd); 617 goto retry_locked; 618 } 619 if (unlikely(!pmd_trans_huge(*pmd))) { 620 spin_unlock(ptl); 621 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 622 } 623 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 624 int ret; 625 page = pmd_page(*pmd); 626 if (is_huge_zero_page(page)) { 627 spin_unlock(ptl); 628 ret = 0; 629 split_huge_pmd(vma, pmd, address); 630 if (pmd_trans_unstable(pmd)) 631 ret = -EBUSY; 632 } else if (flags & FOLL_SPLIT) { 633 if (unlikely(!try_get_page(page))) { 634 spin_unlock(ptl); 635 return ERR_PTR(-ENOMEM); 636 } 637 spin_unlock(ptl); 638 lock_page(page); 639 ret = split_huge_page(page); 640 unlock_page(page); 641 put_page(page); 642 if (pmd_none(*pmd)) 643 return no_page_table(vma, flags); 644 } else { /* flags & FOLL_SPLIT_PMD */ 645 spin_unlock(ptl); 646 split_huge_pmd(vma, pmd, address); 647 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 648 } 649 650 return ret ? ERR_PTR(ret) : 651 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 652 } 653 page = follow_trans_huge_pmd(vma, address, pmd, flags); 654 spin_unlock(ptl); 655 ctx->page_mask = HPAGE_PMD_NR - 1; 656 return page; 657 } 658 659 static struct page *follow_pud_mask(struct vm_area_struct *vma, 660 unsigned long address, p4d_t *p4dp, 661 unsigned int flags, 662 struct follow_page_context *ctx) 663 { 664 pud_t *pud; 665 spinlock_t *ptl; 666 struct page *page; 667 struct mm_struct *mm = vma->vm_mm; 668 669 pud = pud_offset(p4dp, address); 670 if (pud_none(*pud)) 671 return no_page_table(vma, flags); 672 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 673 page = follow_huge_pud(mm, address, pud, flags); 674 if (page) 675 return page; 676 return no_page_table(vma, flags); 677 } 678 if (is_hugepd(__hugepd(pud_val(*pud)))) { 679 page = follow_huge_pd(vma, address, 680 __hugepd(pud_val(*pud)), flags, 681 PUD_SHIFT); 682 if (page) 683 return page; 684 return no_page_table(vma, flags); 685 } 686 if (pud_devmap(*pud)) { 687 ptl = pud_lock(mm, pud); 688 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 689 spin_unlock(ptl); 690 if (page) 691 return page; 692 } 693 if (unlikely(pud_bad(*pud))) 694 return no_page_table(vma, flags); 695 696 return follow_pmd_mask(vma, address, pud, flags, ctx); 697 } 698 699 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 700 unsigned long address, pgd_t *pgdp, 701 unsigned int flags, 702 struct follow_page_context *ctx) 703 { 704 p4d_t *p4d; 705 struct page *page; 706 707 p4d = p4d_offset(pgdp, address); 708 if (p4d_none(*p4d)) 709 return no_page_table(vma, flags); 710 BUILD_BUG_ON(p4d_huge(*p4d)); 711 if (unlikely(p4d_bad(*p4d))) 712 return no_page_table(vma, flags); 713 714 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 715 page = follow_huge_pd(vma, address, 716 __hugepd(p4d_val(*p4d)), flags, 717 P4D_SHIFT); 718 if (page) 719 return page; 720 return no_page_table(vma, flags); 721 } 722 return follow_pud_mask(vma, address, p4d, flags, ctx); 723 } 724 725 /** 726 * follow_page_mask - look up a page descriptor from a user-virtual address 727 * @vma: vm_area_struct mapping @address 728 * @address: virtual address to look up 729 * @flags: flags modifying lookup behaviour 730 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 731 * pointer to output page_mask 732 * 733 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 734 * 735 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 736 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 737 * 738 * On output, the @ctx->page_mask is set according to the size of the page. 739 * 740 * Return: the mapped (struct page *), %NULL if no mapping exists, or 741 * an error pointer if there is a mapping to something not represented 742 * by a page descriptor (see also vm_normal_page()). 743 */ 744 static struct page *follow_page_mask(struct vm_area_struct *vma, 745 unsigned long address, unsigned int flags, 746 struct follow_page_context *ctx) 747 { 748 pgd_t *pgd; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 ctx->page_mask = 0; 753 754 /* make this handle hugepd */ 755 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 756 if (!IS_ERR(page)) { 757 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 758 return page; 759 } 760 761 pgd = pgd_offset(mm, address); 762 763 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 764 return no_page_table(vma, flags); 765 766 if (pgd_huge(*pgd)) { 767 page = follow_huge_pgd(mm, address, pgd, flags); 768 if (page) 769 return page; 770 return no_page_table(vma, flags); 771 } 772 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 773 page = follow_huge_pd(vma, address, 774 __hugepd(pgd_val(*pgd)), flags, 775 PGDIR_SHIFT); 776 if (page) 777 return page; 778 return no_page_table(vma, flags); 779 } 780 781 return follow_p4d_mask(vma, address, pgd, flags, ctx); 782 } 783 784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 785 unsigned int foll_flags) 786 { 787 struct follow_page_context ctx = { NULL }; 788 struct page *page; 789 790 page = follow_page_mask(vma, address, foll_flags, &ctx); 791 if (ctx.pgmap) 792 put_dev_pagemap(ctx.pgmap); 793 return page; 794 } 795 796 static int get_gate_page(struct mm_struct *mm, unsigned long address, 797 unsigned int gup_flags, struct vm_area_struct **vma, 798 struct page **page) 799 { 800 pgd_t *pgd; 801 p4d_t *p4d; 802 pud_t *pud; 803 pmd_t *pmd; 804 pte_t *pte; 805 int ret = -EFAULT; 806 807 /* user gate pages are read-only */ 808 if (gup_flags & FOLL_WRITE) 809 return -EFAULT; 810 if (address > TASK_SIZE) 811 pgd = pgd_offset_k(address); 812 else 813 pgd = pgd_offset_gate(mm, address); 814 if (pgd_none(*pgd)) 815 return -EFAULT; 816 p4d = p4d_offset(pgd, address); 817 if (p4d_none(*p4d)) 818 return -EFAULT; 819 pud = pud_offset(p4d, address); 820 if (pud_none(*pud)) 821 return -EFAULT; 822 pmd = pmd_offset(pud, address); 823 if (!pmd_present(*pmd)) 824 return -EFAULT; 825 VM_BUG_ON(pmd_trans_huge(*pmd)); 826 pte = pte_offset_map(pmd, address); 827 if (pte_none(*pte)) 828 goto unmap; 829 *vma = get_gate_vma(mm); 830 if (!page) 831 goto out; 832 *page = vm_normal_page(*vma, address, *pte); 833 if (!*page) { 834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 835 goto unmap; 836 *page = pte_page(*pte); 837 } 838 if (unlikely(!try_get_page(*page))) { 839 ret = -ENOMEM; 840 goto unmap; 841 } 842 out: 843 ret = 0; 844 unmap: 845 pte_unmap(pte); 846 return ret; 847 } 848 849 /* 850 * mmap_sem must be held on entry. If @locked != NULL and *@flags 851 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it 852 * is, *@locked will be set to 0 and -EBUSY returned. 853 */ 854 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 855 unsigned long address, unsigned int *flags, int *locked) 856 { 857 unsigned int fault_flags = 0; 858 vm_fault_t ret; 859 860 /* mlock all present pages, but do not fault in new pages */ 861 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 862 return -ENOENT; 863 if (*flags & FOLL_WRITE) 864 fault_flags |= FAULT_FLAG_WRITE; 865 if (*flags & FOLL_REMOTE) 866 fault_flags |= FAULT_FLAG_REMOTE; 867 if (locked) 868 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 869 if (*flags & FOLL_NOWAIT) 870 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 871 if (*flags & FOLL_TRIED) { 872 /* 873 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 874 * can co-exist 875 */ 876 fault_flags |= FAULT_FLAG_TRIED; 877 } 878 879 ret = handle_mm_fault(vma, address, fault_flags); 880 if (ret & VM_FAULT_ERROR) { 881 int err = vm_fault_to_errno(ret, *flags); 882 883 if (err) 884 return err; 885 BUG(); 886 } 887 888 if (tsk) { 889 if (ret & VM_FAULT_MAJOR) 890 tsk->maj_flt++; 891 else 892 tsk->min_flt++; 893 } 894 895 if (ret & VM_FAULT_RETRY) { 896 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 897 *locked = 0; 898 return -EBUSY; 899 } 900 901 /* 902 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 903 * necessary, even if maybe_mkwrite decided not to set pte_write. We 904 * can thus safely do subsequent page lookups as if they were reads. 905 * But only do so when looping for pte_write is futile: in some cases 906 * userspace may also be wanting to write to the gotten user page, 907 * which a read fault here might prevent (a readonly page might get 908 * reCOWed by userspace write). 909 */ 910 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 911 *flags |= FOLL_COW; 912 return 0; 913 } 914 915 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 916 { 917 vm_flags_t vm_flags = vma->vm_flags; 918 int write = (gup_flags & FOLL_WRITE); 919 int foreign = (gup_flags & FOLL_REMOTE); 920 921 if (vm_flags & (VM_IO | VM_PFNMAP)) 922 return -EFAULT; 923 924 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 925 return -EFAULT; 926 927 if (write) { 928 if (!(vm_flags & VM_WRITE)) { 929 if (!(gup_flags & FOLL_FORCE)) 930 return -EFAULT; 931 /* 932 * We used to let the write,force case do COW in a 933 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 934 * set a breakpoint in a read-only mapping of an 935 * executable, without corrupting the file (yet only 936 * when that file had been opened for writing!). 937 * Anon pages in shared mappings are surprising: now 938 * just reject it. 939 */ 940 if (!is_cow_mapping(vm_flags)) 941 return -EFAULT; 942 } 943 } else if (!(vm_flags & VM_READ)) { 944 if (!(gup_flags & FOLL_FORCE)) 945 return -EFAULT; 946 /* 947 * Is there actually any vma we can reach here which does not 948 * have VM_MAYREAD set? 949 */ 950 if (!(vm_flags & VM_MAYREAD)) 951 return -EFAULT; 952 } 953 /* 954 * gups are always data accesses, not instruction 955 * fetches, so execute=false here 956 */ 957 if (!arch_vma_access_permitted(vma, write, false, foreign)) 958 return -EFAULT; 959 return 0; 960 } 961 962 /** 963 * __get_user_pages() - pin user pages in memory 964 * @tsk: task_struct of target task 965 * @mm: mm_struct of target mm 966 * @start: starting user address 967 * @nr_pages: number of pages from start to pin 968 * @gup_flags: flags modifying pin behaviour 969 * @pages: array that receives pointers to the pages pinned. 970 * Should be at least nr_pages long. Or NULL, if caller 971 * only intends to ensure the pages are faulted in. 972 * @vmas: array of pointers to vmas corresponding to each page. 973 * Or NULL if the caller does not require them. 974 * @locked: whether we're still with the mmap_sem held 975 * 976 * Returns either number of pages pinned (which may be less than the 977 * number requested), or an error. Details about the return value: 978 * 979 * -- If nr_pages is 0, returns 0. 980 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 981 * -- If nr_pages is >0, and some pages were pinned, returns the number of 982 * pages pinned. Again, this may be less than nr_pages. 983 * 984 * The caller is responsible for releasing returned @pages, via put_page(). 985 * 986 * @vmas are valid only as long as mmap_sem is held. 987 * 988 * Must be called with mmap_sem held. It may be released. See below. 989 * 990 * __get_user_pages walks a process's page tables and takes a reference to 991 * each struct page that each user address corresponds to at a given 992 * instant. That is, it takes the page that would be accessed if a user 993 * thread accesses the given user virtual address at that instant. 994 * 995 * This does not guarantee that the page exists in the user mappings when 996 * __get_user_pages returns, and there may even be a completely different 997 * page there in some cases (eg. if mmapped pagecache has been invalidated 998 * and subsequently re faulted). However it does guarantee that the page 999 * won't be freed completely. And mostly callers simply care that the page 1000 * contains data that was valid *at some point in time*. Typically, an IO 1001 * or similar operation cannot guarantee anything stronger anyway because 1002 * locks can't be held over the syscall boundary. 1003 * 1004 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1005 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1006 * appropriate) must be called after the page is finished with, and 1007 * before put_page is called. 1008 * 1009 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is 1010 * released by an up_read(). That can happen if @gup_flags does not 1011 * have FOLL_NOWAIT. 1012 * 1013 * A caller using such a combination of @locked and @gup_flags 1014 * must therefore hold the mmap_sem for reading only, and recognize 1015 * when it's been released. Otherwise, it must be held for either 1016 * reading or writing and will not be released. 1017 * 1018 * In most cases, get_user_pages or get_user_pages_fast should be used 1019 * instead of __get_user_pages. __get_user_pages should be used only if 1020 * you need some special @gup_flags. 1021 */ 1022 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1023 unsigned long start, unsigned long nr_pages, 1024 unsigned int gup_flags, struct page **pages, 1025 struct vm_area_struct **vmas, int *locked) 1026 { 1027 long ret = 0, i = 0; 1028 struct vm_area_struct *vma = NULL; 1029 struct follow_page_context ctx = { NULL }; 1030 1031 if (!nr_pages) 1032 return 0; 1033 1034 start = untagged_addr(start); 1035 1036 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1037 1038 /* 1039 * If FOLL_FORCE is set then do not force a full fault as the hinting 1040 * fault information is unrelated to the reference behaviour of a task 1041 * using the address space 1042 */ 1043 if (!(gup_flags & FOLL_FORCE)) 1044 gup_flags |= FOLL_NUMA; 1045 1046 do { 1047 struct page *page; 1048 unsigned int foll_flags = gup_flags; 1049 unsigned int page_increm; 1050 1051 /* first iteration or cross vma bound */ 1052 if (!vma || start >= vma->vm_end) { 1053 vma = find_extend_vma(mm, start); 1054 if (!vma && in_gate_area(mm, start)) { 1055 ret = get_gate_page(mm, start & PAGE_MASK, 1056 gup_flags, &vma, 1057 pages ? &pages[i] : NULL); 1058 if (ret) 1059 goto out; 1060 ctx.page_mask = 0; 1061 goto next_page; 1062 } 1063 1064 if (!vma || check_vma_flags(vma, gup_flags)) { 1065 ret = -EFAULT; 1066 goto out; 1067 } 1068 if (is_vm_hugetlb_page(vma)) { 1069 i = follow_hugetlb_page(mm, vma, pages, vmas, 1070 &start, &nr_pages, i, 1071 gup_flags, locked); 1072 if (locked && *locked == 0) { 1073 /* 1074 * We've got a VM_FAULT_RETRY 1075 * and we've lost mmap_sem. 1076 * We must stop here. 1077 */ 1078 BUG_ON(gup_flags & FOLL_NOWAIT); 1079 BUG_ON(ret != 0); 1080 goto out; 1081 } 1082 continue; 1083 } 1084 } 1085 retry: 1086 /* 1087 * If we have a pending SIGKILL, don't keep faulting pages and 1088 * potentially allocating memory. 1089 */ 1090 if (fatal_signal_pending(current)) { 1091 ret = -ERESTARTSYS; 1092 goto out; 1093 } 1094 cond_resched(); 1095 1096 page = follow_page_mask(vma, start, foll_flags, &ctx); 1097 if (!page) { 1098 ret = faultin_page(tsk, vma, start, &foll_flags, 1099 locked); 1100 switch (ret) { 1101 case 0: 1102 goto retry; 1103 case -EBUSY: 1104 ret = 0; 1105 fallthrough; 1106 case -EFAULT: 1107 case -ENOMEM: 1108 case -EHWPOISON: 1109 goto out; 1110 case -ENOENT: 1111 goto next_page; 1112 } 1113 BUG(); 1114 } else if (PTR_ERR(page) == -EEXIST) { 1115 /* 1116 * Proper page table entry exists, but no corresponding 1117 * struct page. 1118 */ 1119 goto next_page; 1120 } else if (IS_ERR(page)) { 1121 ret = PTR_ERR(page); 1122 goto out; 1123 } 1124 if (pages) { 1125 pages[i] = page; 1126 flush_anon_page(vma, page, start); 1127 flush_dcache_page(page); 1128 ctx.page_mask = 0; 1129 } 1130 next_page: 1131 if (vmas) { 1132 vmas[i] = vma; 1133 ctx.page_mask = 0; 1134 } 1135 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1136 if (page_increm > nr_pages) 1137 page_increm = nr_pages; 1138 i += page_increm; 1139 start += page_increm * PAGE_SIZE; 1140 nr_pages -= page_increm; 1141 } while (nr_pages); 1142 out: 1143 if (ctx.pgmap) 1144 put_dev_pagemap(ctx.pgmap); 1145 return i ? i : ret; 1146 } 1147 1148 static bool vma_permits_fault(struct vm_area_struct *vma, 1149 unsigned int fault_flags) 1150 { 1151 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1152 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1153 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1154 1155 if (!(vm_flags & vma->vm_flags)) 1156 return false; 1157 1158 /* 1159 * The architecture might have a hardware protection 1160 * mechanism other than read/write that can deny access. 1161 * 1162 * gup always represents data access, not instruction 1163 * fetches, so execute=false here: 1164 */ 1165 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1166 return false; 1167 1168 return true; 1169 } 1170 1171 /* 1172 * fixup_user_fault() - manually resolve a user page fault 1173 * @tsk: the task_struct to use for page fault accounting, or 1174 * NULL if faults are not to be recorded. 1175 * @mm: mm_struct of target mm 1176 * @address: user address 1177 * @fault_flags:flags to pass down to handle_mm_fault() 1178 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 1179 * does not allow retry 1180 * 1181 * This is meant to be called in the specific scenario where for locking reasons 1182 * we try to access user memory in atomic context (within a pagefault_disable() 1183 * section), this returns -EFAULT, and we want to resolve the user fault before 1184 * trying again. 1185 * 1186 * Typically this is meant to be used by the futex code. 1187 * 1188 * The main difference with get_user_pages() is that this function will 1189 * unconditionally call handle_mm_fault() which will in turn perform all the 1190 * necessary SW fixup of the dirty and young bits in the PTE, while 1191 * get_user_pages() only guarantees to update these in the struct page. 1192 * 1193 * This is important for some architectures where those bits also gate the 1194 * access permission to the page because they are maintained in software. On 1195 * such architectures, gup() will not be enough to make a subsequent access 1196 * succeed. 1197 * 1198 * This function will not return with an unlocked mmap_sem. So it has not the 1199 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 1200 */ 1201 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1202 unsigned long address, unsigned int fault_flags, 1203 bool *unlocked) 1204 { 1205 struct vm_area_struct *vma; 1206 vm_fault_t ret, major = 0; 1207 1208 address = untagged_addr(address); 1209 1210 if (unlocked) 1211 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1212 1213 retry: 1214 vma = find_extend_vma(mm, address); 1215 if (!vma || address < vma->vm_start) 1216 return -EFAULT; 1217 1218 if (!vma_permits_fault(vma, fault_flags)) 1219 return -EFAULT; 1220 1221 ret = handle_mm_fault(vma, address, fault_flags); 1222 major |= ret & VM_FAULT_MAJOR; 1223 if (ret & VM_FAULT_ERROR) { 1224 int err = vm_fault_to_errno(ret, 0); 1225 1226 if (err) 1227 return err; 1228 BUG(); 1229 } 1230 1231 if (ret & VM_FAULT_RETRY) { 1232 down_read(&mm->mmap_sem); 1233 if (!(fault_flags & FAULT_FLAG_TRIED)) { 1234 *unlocked = true; 1235 fault_flags |= FAULT_FLAG_TRIED; 1236 goto retry; 1237 } 1238 } 1239 1240 if (tsk) { 1241 if (major) 1242 tsk->maj_flt++; 1243 else 1244 tsk->min_flt++; 1245 } 1246 return 0; 1247 } 1248 EXPORT_SYMBOL_GPL(fixup_user_fault); 1249 1250 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1251 struct mm_struct *mm, 1252 unsigned long start, 1253 unsigned long nr_pages, 1254 struct page **pages, 1255 struct vm_area_struct **vmas, 1256 int *locked, 1257 unsigned int flags) 1258 { 1259 long ret, pages_done; 1260 bool lock_dropped; 1261 1262 if (locked) { 1263 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1264 BUG_ON(vmas); 1265 /* check caller initialized locked */ 1266 BUG_ON(*locked != 1); 1267 } 1268 1269 /* 1270 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1271 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1272 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1273 * for FOLL_GET, not for the newer FOLL_PIN. 1274 * 1275 * FOLL_PIN always expects pages to be non-null, but no need to assert 1276 * that here, as any failures will be obvious enough. 1277 */ 1278 if (pages && !(flags & FOLL_PIN)) 1279 flags |= FOLL_GET; 1280 1281 pages_done = 0; 1282 lock_dropped = false; 1283 for (;;) { 1284 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1285 vmas, locked); 1286 if (!locked) 1287 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1288 return ret; 1289 1290 /* VM_FAULT_RETRY cannot return errors */ 1291 if (!*locked) { 1292 BUG_ON(ret < 0); 1293 BUG_ON(ret >= nr_pages); 1294 } 1295 1296 if (ret > 0) { 1297 nr_pages -= ret; 1298 pages_done += ret; 1299 if (!nr_pages) 1300 break; 1301 } 1302 if (*locked) { 1303 /* 1304 * VM_FAULT_RETRY didn't trigger or it was a 1305 * FOLL_NOWAIT. 1306 */ 1307 if (!pages_done) 1308 pages_done = ret; 1309 break; 1310 } 1311 /* 1312 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1313 * For the prefault case (!pages) we only update counts. 1314 */ 1315 if (likely(pages)) 1316 pages += ret; 1317 start += ret << PAGE_SHIFT; 1318 lock_dropped = true; 1319 1320 retry: 1321 /* 1322 * Repeat on the address that fired VM_FAULT_RETRY 1323 * with both FAULT_FLAG_ALLOW_RETRY and 1324 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1325 * by fatal signals, so we need to check it before we 1326 * start trying again otherwise it can loop forever. 1327 */ 1328 1329 if (fatal_signal_pending(current)) { 1330 if (!pages_done) 1331 pages_done = -EINTR; 1332 break; 1333 } 1334 1335 ret = down_read_killable(&mm->mmap_sem); 1336 if (ret) { 1337 BUG_ON(ret > 0); 1338 if (!pages_done) 1339 pages_done = ret; 1340 break; 1341 } 1342 1343 *locked = 1; 1344 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1345 pages, NULL, locked); 1346 if (!*locked) { 1347 /* Continue to retry until we succeeded */ 1348 BUG_ON(ret != 0); 1349 goto retry; 1350 } 1351 if (ret != 1) { 1352 BUG_ON(ret > 1); 1353 if (!pages_done) 1354 pages_done = ret; 1355 break; 1356 } 1357 nr_pages--; 1358 pages_done++; 1359 if (!nr_pages) 1360 break; 1361 if (likely(pages)) 1362 pages++; 1363 start += PAGE_SIZE; 1364 } 1365 if (lock_dropped && *locked) { 1366 /* 1367 * We must let the caller know we temporarily dropped the lock 1368 * and so the critical section protected by it was lost. 1369 */ 1370 up_read(&mm->mmap_sem); 1371 *locked = 0; 1372 } 1373 return pages_done; 1374 } 1375 1376 /** 1377 * populate_vma_page_range() - populate a range of pages in the vma. 1378 * @vma: target vma 1379 * @start: start address 1380 * @end: end address 1381 * @locked: whether the mmap_sem is still held 1382 * 1383 * This takes care of mlocking the pages too if VM_LOCKED is set. 1384 * 1385 * return 0 on success, negative error code on error. 1386 * 1387 * vma->vm_mm->mmap_sem must be held. 1388 * 1389 * If @locked is NULL, it may be held for read or write and will 1390 * be unperturbed. 1391 * 1392 * If @locked is non-NULL, it must held for read only and may be 1393 * released. If it's released, *@locked will be set to 0. 1394 */ 1395 long populate_vma_page_range(struct vm_area_struct *vma, 1396 unsigned long start, unsigned long end, int *locked) 1397 { 1398 struct mm_struct *mm = vma->vm_mm; 1399 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1400 int gup_flags; 1401 1402 VM_BUG_ON(start & ~PAGE_MASK); 1403 VM_BUG_ON(end & ~PAGE_MASK); 1404 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1405 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1406 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1407 1408 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1409 if (vma->vm_flags & VM_LOCKONFAULT) 1410 gup_flags &= ~FOLL_POPULATE; 1411 /* 1412 * We want to touch writable mappings with a write fault in order 1413 * to break COW, except for shared mappings because these don't COW 1414 * and we would not want to dirty them for nothing. 1415 */ 1416 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1417 gup_flags |= FOLL_WRITE; 1418 1419 /* 1420 * We want mlock to succeed for regions that have any permissions 1421 * other than PROT_NONE. 1422 */ 1423 if (vma_is_accessible(vma)) 1424 gup_flags |= FOLL_FORCE; 1425 1426 /* 1427 * We made sure addr is within a VMA, so the following will 1428 * not result in a stack expansion that recurses back here. 1429 */ 1430 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1431 NULL, NULL, locked); 1432 } 1433 1434 /* 1435 * __mm_populate - populate and/or mlock pages within a range of address space. 1436 * 1437 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1438 * flags. VMAs must be already marked with the desired vm_flags, and 1439 * mmap_sem must not be held. 1440 */ 1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1442 { 1443 struct mm_struct *mm = current->mm; 1444 unsigned long end, nstart, nend; 1445 struct vm_area_struct *vma = NULL; 1446 int locked = 0; 1447 long ret = 0; 1448 1449 end = start + len; 1450 1451 for (nstart = start; nstart < end; nstart = nend) { 1452 /* 1453 * We want to fault in pages for [nstart; end) address range. 1454 * Find first corresponding VMA. 1455 */ 1456 if (!locked) { 1457 locked = 1; 1458 down_read(&mm->mmap_sem); 1459 vma = find_vma(mm, nstart); 1460 } else if (nstart >= vma->vm_end) 1461 vma = vma->vm_next; 1462 if (!vma || vma->vm_start >= end) 1463 break; 1464 /* 1465 * Set [nstart; nend) to intersection of desired address 1466 * range with the first VMA. Also, skip undesirable VMA types. 1467 */ 1468 nend = min(end, vma->vm_end); 1469 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1470 continue; 1471 if (nstart < vma->vm_start) 1472 nstart = vma->vm_start; 1473 /* 1474 * Now fault in a range of pages. populate_vma_page_range() 1475 * double checks the vma flags, so that it won't mlock pages 1476 * if the vma was already munlocked. 1477 */ 1478 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1479 if (ret < 0) { 1480 if (ignore_errors) { 1481 ret = 0; 1482 continue; /* continue at next VMA */ 1483 } 1484 break; 1485 } 1486 nend = nstart + ret * PAGE_SIZE; 1487 ret = 0; 1488 } 1489 if (locked) 1490 up_read(&mm->mmap_sem); 1491 return ret; /* 0 or negative error code */ 1492 } 1493 1494 /** 1495 * get_dump_page() - pin user page in memory while writing it to core dump 1496 * @addr: user address 1497 * 1498 * Returns struct page pointer of user page pinned for dump, 1499 * to be freed afterwards by put_page(). 1500 * 1501 * Returns NULL on any kind of failure - a hole must then be inserted into 1502 * the corefile, to preserve alignment with its headers; and also returns 1503 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1504 * allowing a hole to be left in the corefile to save diskspace. 1505 * 1506 * Called without mmap_sem, but after all other threads have been killed. 1507 */ 1508 #ifdef CONFIG_ELF_CORE 1509 struct page *get_dump_page(unsigned long addr) 1510 { 1511 struct vm_area_struct *vma; 1512 struct page *page; 1513 1514 if (__get_user_pages(current, current->mm, addr, 1, 1515 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1516 NULL) < 1) 1517 return NULL; 1518 flush_cache_page(vma, addr, page_to_pfn(page)); 1519 return page; 1520 } 1521 #endif /* CONFIG_ELF_CORE */ 1522 #else /* CONFIG_MMU */ 1523 static long __get_user_pages_locked(struct task_struct *tsk, 1524 struct mm_struct *mm, unsigned long start, 1525 unsigned long nr_pages, struct page **pages, 1526 struct vm_area_struct **vmas, int *locked, 1527 unsigned int foll_flags) 1528 { 1529 struct vm_area_struct *vma; 1530 unsigned long vm_flags; 1531 int i; 1532 1533 /* calculate required read or write permissions. 1534 * If FOLL_FORCE is set, we only require the "MAY" flags. 1535 */ 1536 vm_flags = (foll_flags & FOLL_WRITE) ? 1537 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1538 vm_flags &= (foll_flags & FOLL_FORCE) ? 1539 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1540 1541 for (i = 0; i < nr_pages; i++) { 1542 vma = find_vma(mm, start); 1543 if (!vma) 1544 goto finish_or_fault; 1545 1546 /* protect what we can, including chardevs */ 1547 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1548 !(vm_flags & vma->vm_flags)) 1549 goto finish_or_fault; 1550 1551 if (pages) { 1552 pages[i] = virt_to_page(start); 1553 if (pages[i]) 1554 get_page(pages[i]); 1555 } 1556 if (vmas) 1557 vmas[i] = vma; 1558 start = (start + PAGE_SIZE) & PAGE_MASK; 1559 } 1560 1561 return i; 1562 1563 finish_or_fault: 1564 return i ? : -EFAULT; 1565 } 1566 #endif /* !CONFIG_MMU */ 1567 1568 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1569 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1570 { 1571 long i; 1572 struct vm_area_struct *vma_prev = NULL; 1573 1574 for (i = 0; i < nr_pages; i++) { 1575 struct vm_area_struct *vma = vmas[i]; 1576 1577 if (vma == vma_prev) 1578 continue; 1579 1580 vma_prev = vma; 1581 1582 if (vma_is_fsdax(vma)) 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 #ifdef CONFIG_CMA 1589 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1590 { 1591 /* 1592 * We want to make sure we allocate the new page from the same node 1593 * as the source page. 1594 */ 1595 int nid = page_to_nid(page); 1596 /* 1597 * Trying to allocate a page for migration. Ignore allocation 1598 * failure warnings. We don't force __GFP_THISNODE here because 1599 * this node here is the node where we have CMA reservation and 1600 * in some case these nodes will have really less non movable 1601 * allocation memory. 1602 */ 1603 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1604 1605 if (PageHighMem(page)) 1606 gfp_mask |= __GFP_HIGHMEM; 1607 1608 #ifdef CONFIG_HUGETLB_PAGE 1609 if (PageHuge(page)) { 1610 struct hstate *h = page_hstate(page); 1611 /* 1612 * We don't want to dequeue from the pool because pool pages will 1613 * mostly be from the CMA region. 1614 */ 1615 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1616 } 1617 #endif 1618 if (PageTransHuge(page)) { 1619 struct page *thp; 1620 /* 1621 * ignore allocation failure warnings 1622 */ 1623 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1624 1625 /* 1626 * Remove the movable mask so that we don't allocate from 1627 * CMA area again. 1628 */ 1629 thp_gfpmask &= ~__GFP_MOVABLE; 1630 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1631 if (!thp) 1632 return NULL; 1633 prep_transhuge_page(thp); 1634 return thp; 1635 } 1636 1637 return __alloc_pages_node(nid, gfp_mask, 0); 1638 } 1639 1640 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1641 struct mm_struct *mm, 1642 unsigned long start, 1643 unsigned long nr_pages, 1644 struct page **pages, 1645 struct vm_area_struct **vmas, 1646 unsigned int gup_flags) 1647 { 1648 unsigned long i; 1649 unsigned long step; 1650 bool drain_allow = true; 1651 bool migrate_allow = true; 1652 LIST_HEAD(cma_page_list); 1653 long ret = nr_pages; 1654 1655 check_again: 1656 for (i = 0; i < nr_pages;) { 1657 1658 struct page *head = compound_head(pages[i]); 1659 1660 /* 1661 * gup may start from a tail page. Advance step by the left 1662 * part. 1663 */ 1664 step = compound_nr(head) - (pages[i] - head); 1665 /* 1666 * If we get a page from the CMA zone, since we are going to 1667 * be pinning these entries, we might as well move them out 1668 * of the CMA zone if possible. 1669 */ 1670 if (is_migrate_cma_page(head)) { 1671 if (PageHuge(head)) 1672 isolate_huge_page(head, &cma_page_list); 1673 else { 1674 if (!PageLRU(head) && drain_allow) { 1675 lru_add_drain_all(); 1676 drain_allow = false; 1677 } 1678 1679 if (!isolate_lru_page(head)) { 1680 list_add_tail(&head->lru, &cma_page_list); 1681 mod_node_page_state(page_pgdat(head), 1682 NR_ISOLATED_ANON + 1683 page_is_file_lru(head), 1684 hpage_nr_pages(head)); 1685 } 1686 } 1687 } 1688 1689 i += step; 1690 } 1691 1692 if (!list_empty(&cma_page_list)) { 1693 /* 1694 * drop the above get_user_pages reference. 1695 */ 1696 for (i = 0; i < nr_pages; i++) 1697 put_page(pages[i]); 1698 1699 if (migrate_pages(&cma_page_list, new_non_cma_page, 1700 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1701 /* 1702 * some of the pages failed migration. Do get_user_pages 1703 * without migration. 1704 */ 1705 migrate_allow = false; 1706 1707 if (!list_empty(&cma_page_list)) 1708 putback_movable_pages(&cma_page_list); 1709 } 1710 /* 1711 * We did migrate all the pages, Try to get the page references 1712 * again migrating any new CMA pages which we failed to isolate 1713 * earlier. 1714 */ 1715 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1716 pages, vmas, NULL, 1717 gup_flags); 1718 1719 if ((ret > 0) && migrate_allow) { 1720 nr_pages = ret; 1721 drain_allow = true; 1722 goto check_again; 1723 } 1724 } 1725 1726 return ret; 1727 } 1728 #else 1729 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1730 struct mm_struct *mm, 1731 unsigned long start, 1732 unsigned long nr_pages, 1733 struct page **pages, 1734 struct vm_area_struct **vmas, 1735 unsigned int gup_flags) 1736 { 1737 return nr_pages; 1738 } 1739 #endif /* CONFIG_CMA */ 1740 1741 /* 1742 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1743 * allows us to process the FOLL_LONGTERM flag. 1744 */ 1745 static long __gup_longterm_locked(struct task_struct *tsk, 1746 struct mm_struct *mm, 1747 unsigned long start, 1748 unsigned long nr_pages, 1749 struct page **pages, 1750 struct vm_area_struct **vmas, 1751 unsigned int gup_flags) 1752 { 1753 struct vm_area_struct **vmas_tmp = vmas; 1754 unsigned long flags = 0; 1755 long rc, i; 1756 1757 if (gup_flags & FOLL_LONGTERM) { 1758 if (!pages) 1759 return -EINVAL; 1760 1761 if (!vmas_tmp) { 1762 vmas_tmp = kcalloc(nr_pages, 1763 sizeof(struct vm_area_struct *), 1764 GFP_KERNEL); 1765 if (!vmas_tmp) 1766 return -ENOMEM; 1767 } 1768 flags = memalloc_nocma_save(); 1769 } 1770 1771 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1772 vmas_tmp, NULL, gup_flags); 1773 1774 if (gup_flags & FOLL_LONGTERM) { 1775 memalloc_nocma_restore(flags); 1776 if (rc < 0) 1777 goto out; 1778 1779 if (check_dax_vmas(vmas_tmp, rc)) { 1780 for (i = 0; i < rc; i++) 1781 put_page(pages[i]); 1782 rc = -EOPNOTSUPP; 1783 goto out; 1784 } 1785 1786 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1787 vmas_tmp, gup_flags); 1788 } 1789 1790 out: 1791 if (vmas_tmp != vmas) 1792 kfree(vmas_tmp); 1793 return rc; 1794 } 1795 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1796 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1797 struct mm_struct *mm, 1798 unsigned long start, 1799 unsigned long nr_pages, 1800 struct page **pages, 1801 struct vm_area_struct **vmas, 1802 unsigned int flags) 1803 { 1804 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1805 NULL, flags); 1806 } 1807 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1808 1809 #ifdef CONFIG_MMU 1810 static long __get_user_pages_remote(struct task_struct *tsk, 1811 struct mm_struct *mm, 1812 unsigned long start, unsigned long nr_pages, 1813 unsigned int gup_flags, struct page **pages, 1814 struct vm_area_struct **vmas, int *locked) 1815 { 1816 /* 1817 * Parts of FOLL_LONGTERM behavior are incompatible with 1818 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1819 * vmas. However, this only comes up if locked is set, and there are 1820 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1821 * allow what we can. 1822 */ 1823 if (gup_flags & FOLL_LONGTERM) { 1824 if (WARN_ON_ONCE(locked)) 1825 return -EINVAL; 1826 /* 1827 * This will check the vmas (even if our vmas arg is NULL) 1828 * and return -ENOTSUPP if DAX isn't allowed in this case: 1829 */ 1830 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, 1831 vmas, gup_flags | FOLL_TOUCH | 1832 FOLL_REMOTE); 1833 } 1834 1835 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1836 locked, 1837 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1838 } 1839 1840 /* 1841 * get_user_pages_remote() - pin user pages in memory 1842 * @tsk: the task_struct to use for page fault accounting, or 1843 * NULL if faults are not to be recorded. 1844 * @mm: mm_struct of target mm 1845 * @start: starting user address 1846 * @nr_pages: number of pages from start to pin 1847 * @gup_flags: flags modifying lookup behaviour 1848 * @pages: array that receives pointers to the pages pinned. 1849 * Should be at least nr_pages long. Or NULL, if caller 1850 * only intends to ensure the pages are faulted in. 1851 * @vmas: array of pointers to vmas corresponding to each page. 1852 * Or NULL if the caller does not require them. 1853 * @locked: pointer to lock flag indicating whether lock is held and 1854 * subsequently whether VM_FAULT_RETRY functionality can be 1855 * utilised. Lock must initially be held. 1856 * 1857 * Returns either number of pages pinned (which may be less than the 1858 * number requested), or an error. Details about the return value: 1859 * 1860 * -- If nr_pages is 0, returns 0. 1861 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1862 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1863 * pages pinned. Again, this may be less than nr_pages. 1864 * 1865 * The caller is responsible for releasing returned @pages, via put_page(). 1866 * 1867 * @vmas are valid only as long as mmap_sem is held. 1868 * 1869 * Must be called with mmap_sem held for read or write. 1870 * 1871 * get_user_pages walks a process's page tables and takes a reference to 1872 * each struct page that each user address corresponds to at a given 1873 * instant. That is, it takes the page that would be accessed if a user 1874 * thread accesses the given user virtual address at that instant. 1875 * 1876 * This does not guarantee that the page exists in the user mappings when 1877 * get_user_pages returns, and there may even be a completely different 1878 * page there in some cases (eg. if mmapped pagecache has been invalidated 1879 * and subsequently re faulted). However it does guarantee that the page 1880 * won't be freed completely. And mostly callers simply care that the page 1881 * contains data that was valid *at some point in time*. Typically, an IO 1882 * or similar operation cannot guarantee anything stronger anyway because 1883 * locks can't be held over the syscall boundary. 1884 * 1885 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1886 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1887 * be called after the page is finished with, and before put_page is called. 1888 * 1889 * get_user_pages is typically used for fewer-copy IO operations, to get a 1890 * handle on the memory by some means other than accesses via the user virtual 1891 * addresses. The pages may be submitted for DMA to devices or accessed via 1892 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1893 * use the correct cache flushing APIs. 1894 * 1895 * See also get_user_pages_fast, for performance critical applications. 1896 * 1897 * get_user_pages should be phased out in favor of 1898 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1899 * should use get_user_pages because it cannot pass 1900 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1901 */ 1902 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1903 unsigned long start, unsigned long nr_pages, 1904 unsigned int gup_flags, struct page **pages, 1905 struct vm_area_struct **vmas, int *locked) 1906 { 1907 /* 1908 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1909 * never directly by the caller, so enforce that with an assertion: 1910 */ 1911 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1912 return -EINVAL; 1913 1914 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 1915 pages, vmas, locked); 1916 } 1917 EXPORT_SYMBOL(get_user_pages_remote); 1918 1919 #else /* CONFIG_MMU */ 1920 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1921 unsigned long start, unsigned long nr_pages, 1922 unsigned int gup_flags, struct page **pages, 1923 struct vm_area_struct **vmas, int *locked) 1924 { 1925 return 0; 1926 } 1927 1928 static long __get_user_pages_remote(struct task_struct *tsk, 1929 struct mm_struct *mm, 1930 unsigned long start, unsigned long nr_pages, 1931 unsigned int gup_flags, struct page **pages, 1932 struct vm_area_struct **vmas, int *locked) 1933 { 1934 return 0; 1935 } 1936 #endif /* !CONFIG_MMU */ 1937 1938 /* 1939 * This is the same as get_user_pages_remote(), just with a 1940 * less-flexible calling convention where we assume that the task 1941 * and mm being operated on are the current task's and don't allow 1942 * passing of a locked parameter. We also obviously don't pass 1943 * FOLL_REMOTE in here. 1944 */ 1945 long get_user_pages(unsigned long start, unsigned long nr_pages, 1946 unsigned int gup_flags, struct page **pages, 1947 struct vm_area_struct **vmas) 1948 { 1949 /* 1950 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1951 * never directly by the caller, so enforce that with an assertion: 1952 */ 1953 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1954 return -EINVAL; 1955 1956 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1957 pages, vmas, gup_flags | FOLL_TOUCH); 1958 } 1959 EXPORT_SYMBOL(get_user_pages); 1960 1961 /* 1962 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1963 * paths better by using either get_user_pages_locked() or 1964 * get_user_pages_unlocked(). 1965 * 1966 * get_user_pages_locked() is suitable to replace the form: 1967 * 1968 * down_read(&mm->mmap_sem); 1969 * do_something() 1970 * get_user_pages(tsk, mm, ..., pages, NULL); 1971 * up_read(&mm->mmap_sem); 1972 * 1973 * to: 1974 * 1975 * int locked = 1; 1976 * down_read(&mm->mmap_sem); 1977 * do_something() 1978 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1979 * if (locked) 1980 * up_read(&mm->mmap_sem); 1981 */ 1982 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1983 unsigned int gup_flags, struct page **pages, 1984 int *locked) 1985 { 1986 /* 1987 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1988 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1989 * vmas. As there are no users of this flag in this call we simply 1990 * disallow this option for now. 1991 */ 1992 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1993 return -EINVAL; 1994 1995 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1996 pages, NULL, locked, 1997 gup_flags | FOLL_TOUCH); 1998 } 1999 EXPORT_SYMBOL(get_user_pages_locked); 2000 2001 /* 2002 * get_user_pages_unlocked() is suitable to replace the form: 2003 * 2004 * down_read(&mm->mmap_sem); 2005 * get_user_pages(tsk, mm, ..., pages, NULL); 2006 * up_read(&mm->mmap_sem); 2007 * 2008 * with: 2009 * 2010 * get_user_pages_unlocked(tsk, mm, ..., pages); 2011 * 2012 * It is functionally equivalent to get_user_pages_fast so 2013 * get_user_pages_fast should be used instead if specific gup_flags 2014 * (e.g. FOLL_FORCE) are not required. 2015 */ 2016 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2017 struct page **pages, unsigned int gup_flags) 2018 { 2019 struct mm_struct *mm = current->mm; 2020 int locked = 1; 2021 long ret; 2022 2023 /* 2024 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2025 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2026 * vmas. As there are no users of this flag in this call we simply 2027 * disallow this option for now. 2028 */ 2029 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2030 return -EINVAL; 2031 2032 down_read(&mm->mmap_sem); 2033 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 2034 &locked, gup_flags | FOLL_TOUCH); 2035 if (locked) 2036 up_read(&mm->mmap_sem); 2037 return ret; 2038 } 2039 EXPORT_SYMBOL(get_user_pages_unlocked); 2040 2041 /* 2042 * Fast GUP 2043 * 2044 * get_user_pages_fast attempts to pin user pages by walking the page 2045 * tables directly and avoids taking locks. Thus the walker needs to be 2046 * protected from page table pages being freed from under it, and should 2047 * block any THP splits. 2048 * 2049 * One way to achieve this is to have the walker disable interrupts, and 2050 * rely on IPIs from the TLB flushing code blocking before the page table 2051 * pages are freed. This is unsuitable for architectures that do not need 2052 * to broadcast an IPI when invalidating TLBs. 2053 * 2054 * Another way to achieve this is to batch up page table containing pages 2055 * belonging to more than one mm_user, then rcu_sched a callback to free those 2056 * pages. Disabling interrupts will allow the fast_gup walker to both block 2057 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2058 * (which is a relatively rare event). The code below adopts this strategy. 2059 * 2060 * Before activating this code, please be aware that the following assumptions 2061 * are currently made: 2062 * 2063 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2064 * free pages containing page tables or TLB flushing requires IPI broadcast. 2065 * 2066 * *) ptes can be read atomically by the architecture. 2067 * 2068 * *) access_ok is sufficient to validate userspace address ranges. 2069 * 2070 * The last two assumptions can be relaxed by the addition of helper functions. 2071 * 2072 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2073 */ 2074 #ifdef CONFIG_HAVE_FAST_GUP 2075 2076 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2077 { 2078 if (flags & FOLL_PIN) { 2079 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2080 refs); 2081 2082 if (hpage_pincount_available(page)) 2083 hpage_pincount_sub(page, refs); 2084 else 2085 refs *= GUP_PIN_COUNTING_BIAS; 2086 } 2087 2088 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2089 /* 2090 * Calling put_page() for each ref is unnecessarily slow. Only the last 2091 * ref needs a put_page(). 2092 */ 2093 if (refs > 1) 2094 page_ref_sub(page, refs - 1); 2095 put_page(page); 2096 } 2097 2098 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2099 2100 /* 2101 * WARNING: only to be used in the get_user_pages_fast() implementation. 2102 * 2103 * With get_user_pages_fast(), we walk down the pagetables without taking any 2104 * locks. For this we would like to load the pointers atomically, but sometimes 2105 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2106 * we do have is the guarantee that a PTE will only either go from not present 2107 * to present, or present to not present or both -- it will not switch to a 2108 * completely different present page without a TLB flush in between; something 2109 * that we are blocking by holding interrupts off. 2110 * 2111 * Setting ptes from not present to present goes: 2112 * 2113 * ptep->pte_high = h; 2114 * smp_wmb(); 2115 * ptep->pte_low = l; 2116 * 2117 * And present to not present goes: 2118 * 2119 * ptep->pte_low = 0; 2120 * smp_wmb(); 2121 * ptep->pte_high = 0; 2122 * 2123 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2124 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2125 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2126 * picked up a changed pte high. We might have gotten rubbish values from 2127 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2128 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2129 * operates on present ptes we're safe. 2130 */ 2131 static inline pte_t gup_get_pte(pte_t *ptep) 2132 { 2133 pte_t pte; 2134 2135 do { 2136 pte.pte_low = ptep->pte_low; 2137 smp_rmb(); 2138 pte.pte_high = ptep->pte_high; 2139 smp_rmb(); 2140 } while (unlikely(pte.pte_low != ptep->pte_low)); 2141 2142 return pte; 2143 } 2144 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2145 /* 2146 * We require that the PTE can be read atomically. 2147 */ 2148 static inline pte_t gup_get_pte(pte_t *ptep) 2149 { 2150 return READ_ONCE(*ptep); 2151 } 2152 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2153 2154 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2155 unsigned int flags, 2156 struct page **pages) 2157 { 2158 while ((*nr) - nr_start) { 2159 struct page *page = pages[--(*nr)]; 2160 2161 ClearPageReferenced(page); 2162 if (flags & FOLL_PIN) 2163 unpin_user_page(page); 2164 else 2165 put_page(page); 2166 } 2167 } 2168 2169 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2170 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2171 unsigned int flags, struct page **pages, int *nr) 2172 { 2173 struct dev_pagemap *pgmap = NULL; 2174 int nr_start = *nr, ret = 0; 2175 pte_t *ptep, *ptem; 2176 2177 ptem = ptep = pte_offset_map(&pmd, addr); 2178 do { 2179 pte_t pte = gup_get_pte(ptep); 2180 struct page *head, *page; 2181 2182 /* 2183 * Similar to the PMD case below, NUMA hinting must take slow 2184 * path using the pte_protnone check. 2185 */ 2186 if (pte_protnone(pte)) 2187 goto pte_unmap; 2188 2189 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2190 goto pte_unmap; 2191 2192 if (pte_devmap(pte)) { 2193 if (unlikely(flags & FOLL_LONGTERM)) 2194 goto pte_unmap; 2195 2196 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2197 if (unlikely(!pgmap)) { 2198 undo_dev_pagemap(nr, nr_start, flags, pages); 2199 goto pte_unmap; 2200 } 2201 } else if (pte_special(pte)) 2202 goto pte_unmap; 2203 2204 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2205 page = pte_page(pte); 2206 2207 head = try_grab_compound_head(page, 1, flags); 2208 if (!head) 2209 goto pte_unmap; 2210 2211 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2212 put_compound_head(head, 1, flags); 2213 goto pte_unmap; 2214 } 2215 2216 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2217 2218 /* 2219 * We need to make the page accessible if and only if we are 2220 * going to access its content (the FOLL_PIN case). Please 2221 * see Documentation/core-api/pin_user_pages.rst for 2222 * details. 2223 */ 2224 if (flags & FOLL_PIN) { 2225 ret = arch_make_page_accessible(page); 2226 if (ret) { 2227 unpin_user_page(page); 2228 goto pte_unmap; 2229 } 2230 } 2231 SetPageReferenced(page); 2232 pages[*nr] = page; 2233 (*nr)++; 2234 2235 } while (ptep++, addr += PAGE_SIZE, addr != end); 2236 2237 ret = 1; 2238 2239 pte_unmap: 2240 if (pgmap) 2241 put_dev_pagemap(pgmap); 2242 pte_unmap(ptem); 2243 return ret; 2244 } 2245 #else 2246 2247 /* 2248 * If we can't determine whether or not a pte is special, then fail immediately 2249 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2250 * to be special. 2251 * 2252 * For a futex to be placed on a THP tail page, get_futex_key requires a 2253 * __get_user_pages_fast implementation that can pin pages. Thus it's still 2254 * useful to have gup_huge_pmd even if we can't operate on ptes. 2255 */ 2256 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2257 unsigned int flags, struct page **pages, int *nr) 2258 { 2259 return 0; 2260 } 2261 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2262 2263 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2264 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2265 unsigned long end, unsigned int flags, 2266 struct page **pages, int *nr) 2267 { 2268 int nr_start = *nr; 2269 struct dev_pagemap *pgmap = NULL; 2270 2271 do { 2272 struct page *page = pfn_to_page(pfn); 2273 2274 pgmap = get_dev_pagemap(pfn, pgmap); 2275 if (unlikely(!pgmap)) { 2276 undo_dev_pagemap(nr, nr_start, flags, pages); 2277 return 0; 2278 } 2279 SetPageReferenced(page); 2280 pages[*nr] = page; 2281 if (unlikely(!try_grab_page(page, flags))) { 2282 undo_dev_pagemap(nr, nr_start, flags, pages); 2283 return 0; 2284 } 2285 (*nr)++; 2286 pfn++; 2287 } while (addr += PAGE_SIZE, addr != end); 2288 2289 if (pgmap) 2290 put_dev_pagemap(pgmap); 2291 return 1; 2292 } 2293 2294 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2295 unsigned long end, unsigned int flags, 2296 struct page **pages, int *nr) 2297 { 2298 unsigned long fault_pfn; 2299 int nr_start = *nr; 2300 2301 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2302 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2303 return 0; 2304 2305 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2306 undo_dev_pagemap(nr, nr_start, flags, pages); 2307 return 0; 2308 } 2309 return 1; 2310 } 2311 2312 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2313 unsigned long end, unsigned int flags, 2314 struct page **pages, int *nr) 2315 { 2316 unsigned long fault_pfn; 2317 int nr_start = *nr; 2318 2319 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2320 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2321 return 0; 2322 2323 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2324 undo_dev_pagemap(nr, nr_start, flags, pages); 2325 return 0; 2326 } 2327 return 1; 2328 } 2329 #else 2330 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2331 unsigned long end, unsigned int flags, 2332 struct page **pages, int *nr) 2333 { 2334 BUILD_BUG(); 2335 return 0; 2336 } 2337 2338 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2339 unsigned long end, unsigned int flags, 2340 struct page **pages, int *nr) 2341 { 2342 BUILD_BUG(); 2343 return 0; 2344 } 2345 #endif 2346 2347 static int record_subpages(struct page *page, unsigned long addr, 2348 unsigned long end, struct page **pages) 2349 { 2350 int nr; 2351 2352 for (nr = 0; addr != end; addr += PAGE_SIZE) 2353 pages[nr++] = page++; 2354 2355 return nr; 2356 } 2357 2358 #ifdef CONFIG_ARCH_HAS_HUGEPD 2359 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2360 unsigned long sz) 2361 { 2362 unsigned long __boundary = (addr + sz) & ~(sz-1); 2363 return (__boundary - 1 < end - 1) ? __boundary : end; 2364 } 2365 2366 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2367 unsigned long end, unsigned int flags, 2368 struct page **pages, int *nr) 2369 { 2370 unsigned long pte_end; 2371 struct page *head, *page; 2372 pte_t pte; 2373 int refs; 2374 2375 pte_end = (addr + sz) & ~(sz-1); 2376 if (pte_end < end) 2377 end = pte_end; 2378 2379 pte = READ_ONCE(*ptep); 2380 2381 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2382 return 0; 2383 2384 /* hugepages are never "special" */ 2385 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2386 2387 head = pte_page(pte); 2388 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2389 refs = record_subpages(page, addr, end, pages + *nr); 2390 2391 head = try_grab_compound_head(head, refs, flags); 2392 if (!head) 2393 return 0; 2394 2395 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2396 put_compound_head(head, refs, flags); 2397 return 0; 2398 } 2399 2400 *nr += refs; 2401 SetPageReferenced(head); 2402 return 1; 2403 } 2404 2405 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2406 unsigned int pdshift, unsigned long end, unsigned int flags, 2407 struct page **pages, int *nr) 2408 { 2409 pte_t *ptep; 2410 unsigned long sz = 1UL << hugepd_shift(hugepd); 2411 unsigned long next; 2412 2413 ptep = hugepte_offset(hugepd, addr, pdshift); 2414 do { 2415 next = hugepte_addr_end(addr, end, sz); 2416 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2417 return 0; 2418 } while (ptep++, addr = next, addr != end); 2419 2420 return 1; 2421 } 2422 #else 2423 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2424 unsigned int pdshift, unsigned long end, unsigned int flags, 2425 struct page **pages, int *nr) 2426 { 2427 return 0; 2428 } 2429 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2430 2431 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2432 unsigned long end, unsigned int flags, 2433 struct page **pages, int *nr) 2434 { 2435 struct page *head, *page; 2436 int refs; 2437 2438 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2439 return 0; 2440 2441 if (pmd_devmap(orig)) { 2442 if (unlikely(flags & FOLL_LONGTERM)) 2443 return 0; 2444 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2445 pages, nr); 2446 } 2447 2448 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2449 refs = record_subpages(page, addr, end, pages + *nr); 2450 2451 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2452 if (!head) 2453 return 0; 2454 2455 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2456 put_compound_head(head, refs, flags); 2457 return 0; 2458 } 2459 2460 *nr += refs; 2461 SetPageReferenced(head); 2462 return 1; 2463 } 2464 2465 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2466 unsigned long end, unsigned int flags, 2467 struct page **pages, int *nr) 2468 { 2469 struct page *head, *page; 2470 int refs; 2471 2472 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2473 return 0; 2474 2475 if (pud_devmap(orig)) { 2476 if (unlikely(flags & FOLL_LONGTERM)) 2477 return 0; 2478 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2479 pages, nr); 2480 } 2481 2482 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2483 refs = record_subpages(page, addr, end, pages + *nr); 2484 2485 head = try_grab_compound_head(pud_page(orig), refs, flags); 2486 if (!head) 2487 return 0; 2488 2489 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2490 put_compound_head(head, refs, flags); 2491 return 0; 2492 } 2493 2494 *nr += refs; 2495 SetPageReferenced(head); 2496 return 1; 2497 } 2498 2499 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2500 unsigned long end, unsigned int flags, 2501 struct page **pages, int *nr) 2502 { 2503 int refs; 2504 struct page *head, *page; 2505 2506 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2507 return 0; 2508 2509 BUILD_BUG_ON(pgd_devmap(orig)); 2510 2511 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2512 refs = record_subpages(page, addr, end, pages + *nr); 2513 2514 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2515 if (!head) 2516 return 0; 2517 2518 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2519 put_compound_head(head, refs, flags); 2520 return 0; 2521 } 2522 2523 *nr += refs; 2524 SetPageReferenced(head); 2525 return 1; 2526 } 2527 2528 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2529 unsigned int flags, struct page **pages, int *nr) 2530 { 2531 unsigned long next; 2532 pmd_t *pmdp; 2533 2534 pmdp = pmd_offset(&pud, addr); 2535 do { 2536 pmd_t pmd = READ_ONCE(*pmdp); 2537 2538 next = pmd_addr_end(addr, end); 2539 if (!pmd_present(pmd)) 2540 return 0; 2541 2542 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2543 pmd_devmap(pmd))) { 2544 /* 2545 * NUMA hinting faults need to be handled in the GUP 2546 * slowpath for accounting purposes and so that they 2547 * can be serialised against THP migration. 2548 */ 2549 if (pmd_protnone(pmd)) 2550 return 0; 2551 2552 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2553 pages, nr)) 2554 return 0; 2555 2556 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2557 /* 2558 * architecture have different format for hugetlbfs 2559 * pmd format and THP pmd format 2560 */ 2561 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2562 PMD_SHIFT, next, flags, pages, nr)) 2563 return 0; 2564 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2565 return 0; 2566 } while (pmdp++, addr = next, addr != end); 2567 2568 return 1; 2569 } 2570 2571 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2572 unsigned int flags, struct page **pages, int *nr) 2573 { 2574 unsigned long next; 2575 pud_t *pudp; 2576 2577 pudp = pud_offset(&p4d, addr); 2578 do { 2579 pud_t pud = READ_ONCE(*pudp); 2580 2581 next = pud_addr_end(addr, end); 2582 if (unlikely(!pud_present(pud))) 2583 return 0; 2584 if (unlikely(pud_huge(pud))) { 2585 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2586 pages, nr)) 2587 return 0; 2588 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2589 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2590 PUD_SHIFT, next, flags, pages, nr)) 2591 return 0; 2592 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2593 return 0; 2594 } while (pudp++, addr = next, addr != end); 2595 2596 return 1; 2597 } 2598 2599 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2600 unsigned int flags, struct page **pages, int *nr) 2601 { 2602 unsigned long next; 2603 p4d_t *p4dp; 2604 2605 p4dp = p4d_offset(&pgd, addr); 2606 do { 2607 p4d_t p4d = READ_ONCE(*p4dp); 2608 2609 next = p4d_addr_end(addr, end); 2610 if (p4d_none(p4d)) 2611 return 0; 2612 BUILD_BUG_ON(p4d_huge(p4d)); 2613 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2614 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2615 P4D_SHIFT, next, flags, pages, nr)) 2616 return 0; 2617 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2618 return 0; 2619 } while (p4dp++, addr = next, addr != end); 2620 2621 return 1; 2622 } 2623 2624 static void gup_pgd_range(unsigned long addr, unsigned long end, 2625 unsigned int flags, struct page **pages, int *nr) 2626 { 2627 unsigned long next; 2628 pgd_t *pgdp; 2629 2630 pgdp = pgd_offset(current->mm, addr); 2631 do { 2632 pgd_t pgd = READ_ONCE(*pgdp); 2633 2634 next = pgd_addr_end(addr, end); 2635 if (pgd_none(pgd)) 2636 return; 2637 if (unlikely(pgd_huge(pgd))) { 2638 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2639 pages, nr)) 2640 return; 2641 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2642 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2643 PGDIR_SHIFT, next, flags, pages, nr)) 2644 return; 2645 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2646 return; 2647 } while (pgdp++, addr = next, addr != end); 2648 } 2649 #else 2650 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2651 unsigned int flags, struct page **pages, int *nr) 2652 { 2653 } 2654 #endif /* CONFIG_HAVE_FAST_GUP */ 2655 2656 #ifndef gup_fast_permitted 2657 /* 2658 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2659 * we need to fall back to the slow version: 2660 */ 2661 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2662 { 2663 return true; 2664 } 2665 #endif 2666 2667 /* 2668 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2669 * the regular GUP. 2670 * Note a difference with get_user_pages_fast: this always returns the 2671 * number of pages pinned, 0 if no pages were pinned. 2672 * 2673 * If the architecture does not support this function, simply return with no 2674 * pages pinned. 2675 */ 2676 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2677 struct page **pages) 2678 { 2679 unsigned long len, end; 2680 unsigned long flags; 2681 int nr_pinned = 0; 2682 /* 2683 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2684 * because gup fast is always a "pin with a +1 page refcount" request. 2685 */ 2686 unsigned int gup_flags = FOLL_GET; 2687 2688 if (write) 2689 gup_flags |= FOLL_WRITE; 2690 2691 start = untagged_addr(start) & PAGE_MASK; 2692 len = (unsigned long) nr_pages << PAGE_SHIFT; 2693 end = start + len; 2694 2695 if (end <= start) 2696 return 0; 2697 if (unlikely(!access_ok((void __user *)start, len))) 2698 return 0; 2699 2700 /* 2701 * Disable interrupts. We use the nested form as we can already have 2702 * interrupts disabled by get_futex_key. 2703 * 2704 * With interrupts disabled, we block page table pages from being 2705 * freed from under us. See struct mmu_table_batch comments in 2706 * include/asm-generic/tlb.h for more details. 2707 * 2708 * We do not adopt an rcu_read_lock(.) here as we also want to 2709 * block IPIs that come from THPs splitting. 2710 */ 2711 2712 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2713 gup_fast_permitted(start, end)) { 2714 local_irq_save(flags); 2715 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2716 local_irq_restore(flags); 2717 } 2718 2719 return nr_pinned; 2720 } 2721 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2722 2723 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2724 unsigned int gup_flags, struct page **pages) 2725 { 2726 int ret; 2727 2728 /* 2729 * FIXME: FOLL_LONGTERM does not work with 2730 * get_user_pages_unlocked() (see comments in that function) 2731 */ 2732 if (gup_flags & FOLL_LONGTERM) { 2733 down_read(¤t->mm->mmap_sem); 2734 ret = __gup_longterm_locked(current, current->mm, 2735 start, nr_pages, 2736 pages, NULL, gup_flags); 2737 up_read(¤t->mm->mmap_sem); 2738 } else { 2739 ret = get_user_pages_unlocked(start, nr_pages, 2740 pages, gup_flags); 2741 } 2742 2743 return ret; 2744 } 2745 2746 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2747 unsigned int gup_flags, 2748 struct page **pages) 2749 { 2750 unsigned long addr, len, end; 2751 int nr_pinned = 0, ret = 0; 2752 2753 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2754 FOLL_FORCE | FOLL_PIN | FOLL_GET))) 2755 return -EINVAL; 2756 2757 start = untagged_addr(start) & PAGE_MASK; 2758 addr = start; 2759 len = (unsigned long) nr_pages << PAGE_SHIFT; 2760 end = start + len; 2761 2762 if (end <= start) 2763 return 0; 2764 if (unlikely(!access_ok((void __user *)start, len))) 2765 return -EFAULT; 2766 2767 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2768 gup_fast_permitted(start, end)) { 2769 local_irq_disable(); 2770 gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned); 2771 local_irq_enable(); 2772 ret = nr_pinned; 2773 } 2774 2775 if (nr_pinned < nr_pages) { 2776 /* Try to get the remaining pages with get_user_pages */ 2777 start += nr_pinned << PAGE_SHIFT; 2778 pages += nr_pinned; 2779 2780 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2781 gup_flags, pages); 2782 2783 /* Have to be a bit careful with return values */ 2784 if (nr_pinned > 0) { 2785 if (ret < 0) 2786 ret = nr_pinned; 2787 else 2788 ret += nr_pinned; 2789 } 2790 } 2791 2792 return ret; 2793 } 2794 2795 /** 2796 * get_user_pages_fast() - pin user pages in memory 2797 * @start: starting user address 2798 * @nr_pages: number of pages from start to pin 2799 * @gup_flags: flags modifying pin behaviour 2800 * @pages: array that receives pointers to the pages pinned. 2801 * Should be at least nr_pages long. 2802 * 2803 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2804 * If not successful, it will fall back to taking the lock and 2805 * calling get_user_pages(). 2806 * 2807 * Returns number of pages pinned. This may be fewer than the number requested. 2808 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2809 * -errno. 2810 */ 2811 int get_user_pages_fast(unsigned long start, int nr_pages, 2812 unsigned int gup_flags, struct page **pages) 2813 { 2814 /* 2815 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2816 * never directly by the caller, so enforce that: 2817 */ 2818 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2819 return -EINVAL; 2820 2821 /* 2822 * The caller may or may not have explicitly set FOLL_GET; either way is 2823 * OK. However, internally (within mm/gup.c), gup fast variants must set 2824 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2825 * request. 2826 */ 2827 gup_flags |= FOLL_GET; 2828 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2829 } 2830 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2831 2832 /** 2833 * pin_user_pages_fast() - pin user pages in memory without taking locks 2834 * 2835 * @start: starting user address 2836 * @nr_pages: number of pages from start to pin 2837 * @gup_flags: flags modifying pin behaviour 2838 * @pages: array that receives pointers to the pages pinned. 2839 * Should be at least nr_pages long. 2840 * 2841 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2842 * get_user_pages_fast() for documentation on the function arguments, because 2843 * the arguments here are identical. 2844 * 2845 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2846 * see Documentation/core-api/pin_user_pages.rst for further details. 2847 * 2848 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2849 * is NOT intended for Case 2 (RDMA: long-term pins). 2850 */ 2851 int pin_user_pages_fast(unsigned long start, int nr_pages, 2852 unsigned int gup_flags, struct page **pages) 2853 { 2854 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2855 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2856 return -EINVAL; 2857 2858 gup_flags |= FOLL_PIN; 2859 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2860 } 2861 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2862 2863 /** 2864 * pin_user_pages_remote() - pin pages of a remote process (task != current) 2865 * 2866 * @tsk: the task_struct to use for page fault accounting, or 2867 * NULL if faults are not to be recorded. 2868 * @mm: mm_struct of target mm 2869 * @start: starting user address 2870 * @nr_pages: number of pages from start to pin 2871 * @gup_flags: flags modifying lookup behaviour 2872 * @pages: array that receives pointers to the pages pinned. 2873 * Should be at least nr_pages long. Or NULL, if caller 2874 * only intends to ensure the pages are faulted in. 2875 * @vmas: array of pointers to vmas corresponding to each page. 2876 * Or NULL if the caller does not require them. 2877 * @locked: pointer to lock flag indicating whether lock is held and 2878 * subsequently whether VM_FAULT_RETRY functionality can be 2879 * utilised. Lock must initially be held. 2880 * 2881 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2882 * get_user_pages_remote() for documentation on the function arguments, because 2883 * the arguments here are identical. 2884 * 2885 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2886 * see Documentation/core-api/pin_user_pages.rst for details. 2887 * 2888 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2889 * is NOT intended for Case 2 (RDMA: long-term pins). 2890 */ 2891 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 2892 unsigned long start, unsigned long nr_pages, 2893 unsigned int gup_flags, struct page **pages, 2894 struct vm_area_struct **vmas, int *locked) 2895 { 2896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2897 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2898 return -EINVAL; 2899 2900 gup_flags |= FOLL_PIN; 2901 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 2902 pages, vmas, locked); 2903 } 2904 EXPORT_SYMBOL(pin_user_pages_remote); 2905 2906 /** 2907 * pin_user_pages() - pin user pages in memory for use by other devices 2908 * 2909 * @start: starting user address 2910 * @nr_pages: number of pages from start to pin 2911 * @gup_flags: flags modifying lookup behaviour 2912 * @pages: array that receives pointers to the pages pinned. 2913 * Should be at least nr_pages long. Or NULL, if caller 2914 * only intends to ensure the pages are faulted in. 2915 * @vmas: array of pointers to vmas corresponding to each page. 2916 * Or NULL if the caller does not require them. 2917 * 2918 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2919 * FOLL_PIN is set. 2920 * 2921 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2922 * see Documentation/core-api/pin_user_pages.rst for details. 2923 * 2924 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2925 * is NOT intended for Case 2 (RDMA: long-term pins). 2926 */ 2927 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2928 unsigned int gup_flags, struct page **pages, 2929 struct vm_area_struct **vmas) 2930 { 2931 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2932 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2933 return -EINVAL; 2934 2935 gup_flags |= FOLL_PIN; 2936 return __gup_longterm_locked(current, current->mm, start, nr_pages, 2937 pages, vmas, gup_flags); 2938 } 2939 EXPORT_SYMBOL(pin_user_pages); 2940