xref: /linux/mm/gup.c (revision 6e3edb0fb5c0ee3ab1edc1fcfd159e7dd177ef0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in page_try_share_anon_rmap().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 	}
714 	if (likely(!pmd_trans_huge(pmdval)))
715 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716 
717 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
718 		return no_page_table(vma, flags);
719 
720 	ptl = pmd_lock(mm, pmd);
721 	if (unlikely(!pmd_present(*pmd))) {
722 		spin_unlock(ptl);
723 		return no_page_table(vma, flags);
724 	}
725 	if (unlikely(!pmd_trans_huge(*pmd))) {
726 		spin_unlock(ptl);
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 	}
729 	if (flags & FOLL_SPLIT_PMD) {
730 		spin_unlock(ptl);
731 		split_huge_pmd(vma, pmd, address);
732 		/* If pmd was left empty, stuff a page table in there quickly */
733 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735 	}
736 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
737 	spin_unlock(ptl);
738 	ctx->page_mask = HPAGE_PMD_NR - 1;
739 	return page;
740 }
741 
742 static struct page *follow_pud_mask(struct vm_area_struct *vma,
743 				    unsigned long address, p4d_t *p4dp,
744 				    unsigned int flags,
745 				    struct follow_page_context *ctx)
746 {
747 	pud_t *pud;
748 	spinlock_t *ptl;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	pud = pud_offset(p4dp, address);
753 	if (pud_none(*pud))
754 		return no_page_table(vma, flags);
755 	if (pud_devmap(*pud)) {
756 		ptl = pud_lock(mm, pud);
757 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 		spin_unlock(ptl);
759 		if (page)
760 			return page;
761 	}
762 	if (unlikely(pud_bad(*pud)))
763 		return no_page_table(vma, flags);
764 
765 	return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767 
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 				    unsigned long address, pgd_t *pgdp,
770 				    unsigned int flags,
771 				    struct follow_page_context *ctx)
772 {
773 	p4d_t *p4d;
774 
775 	p4d = p4d_offset(pgdp, address);
776 	if (p4d_none(*p4d))
777 		return no_page_table(vma, flags);
778 	BUILD_BUG_ON(p4d_huge(*p4d));
779 	if (unlikely(p4d_bad(*p4d)))
780 		return no_page_table(vma, flags);
781 
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct page *page;
815 	struct mm_struct *mm = vma->vm_mm;
816 
817 	ctx->page_mask = 0;
818 
819 	/*
820 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
821 	 * special hugetlb page table walking code.  This eliminates the
822 	 * need to check for hugetlb entries in the general walking code.
823 	 *
824 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
825 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
826 	 */
827 	if (is_vm_hugetlb_page(vma)) {
828 		page = hugetlb_follow_page_mask(vma, address, flags);
829 		if (!page)
830 			page = no_page_table(vma, flags);
831 		return page;
832 	}
833 
834 	pgd = pgd_offset(mm, address);
835 
836 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
837 		return no_page_table(vma, flags);
838 
839 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
840 }
841 
842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
843 			 unsigned int foll_flags)
844 {
845 	struct follow_page_context ctx = { NULL };
846 	struct page *page;
847 
848 	if (vma_is_secretmem(vma))
849 		return NULL;
850 
851 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
852 		return NULL;
853 
854 	page = follow_page_mask(vma, address, foll_flags, &ctx);
855 	if (ctx.pgmap)
856 		put_dev_pagemap(ctx.pgmap);
857 	return page;
858 }
859 
860 static int get_gate_page(struct mm_struct *mm, unsigned long address,
861 		unsigned int gup_flags, struct vm_area_struct **vma,
862 		struct page **page)
863 {
864 	pgd_t *pgd;
865 	p4d_t *p4d;
866 	pud_t *pud;
867 	pmd_t *pmd;
868 	pte_t *pte;
869 	pte_t entry;
870 	int ret = -EFAULT;
871 
872 	/* user gate pages are read-only */
873 	if (gup_flags & FOLL_WRITE)
874 		return -EFAULT;
875 	if (address > TASK_SIZE)
876 		pgd = pgd_offset_k(address);
877 	else
878 		pgd = pgd_offset_gate(mm, address);
879 	if (pgd_none(*pgd))
880 		return -EFAULT;
881 	p4d = p4d_offset(pgd, address);
882 	if (p4d_none(*p4d))
883 		return -EFAULT;
884 	pud = pud_offset(p4d, address);
885 	if (pud_none(*pud))
886 		return -EFAULT;
887 	pmd = pmd_offset(pud, address);
888 	if (!pmd_present(*pmd))
889 		return -EFAULT;
890 	pte = pte_offset_map(pmd, address);
891 	if (!pte)
892 		return -EFAULT;
893 	entry = ptep_get(pte);
894 	if (pte_none(entry))
895 		goto unmap;
896 	*vma = get_gate_vma(mm);
897 	if (!page)
898 		goto out;
899 	*page = vm_normal_page(*vma, address, entry);
900 	if (!*page) {
901 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
902 			goto unmap;
903 		*page = pte_page(entry);
904 	}
905 	ret = try_grab_page(*page, gup_flags);
906 	if (unlikely(ret))
907 		goto unmap;
908 out:
909 	ret = 0;
910 unmap:
911 	pte_unmap(pte);
912 	return ret;
913 }
914 
915 /*
916  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
917  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
918  * to 0 and -EBUSY returned.
919  */
920 static int faultin_page(struct vm_area_struct *vma,
921 		unsigned long address, unsigned int *flags, bool unshare,
922 		int *locked)
923 {
924 	unsigned int fault_flags = 0;
925 	vm_fault_t ret;
926 
927 	if (*flags & FOLL_NOFAULT)
928 		return -EFAULT;
929 	if (*flags & FOLL_WRITE)
930 		fault_flags |= FAULT_FLAG_WRITE;
931 	if (*flags & FOLL_REMOTE)
932 		fault_flags |= FAULT_FLAG_REMOTE;
933 	if (*flags & FOLL_UNLOCKABLE) {
934 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
935 		/*
936 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
937 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
938 		 * That's because some callers may not be prepared to
939 		 * handle early exits caused by non-fatal signals.
940 		 */
941 		if (*flags & FOLL_INTERRUPTIBLE)
942 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
943 	}
944 	if (*flags & FOLL_NOWAIT)
945 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
946 	if (*flags & FOLL_TRIED) {
947 		/*
948 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
949 		 * can co-exist
950 		 */
951 		fault_flags |= FAULT_FLAG_TRIED;
952 	}
953 	if (unshare) {
954 		fault_flags |= FAULT_FLAG_UNSHARE;
955 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
956 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
957 	}
958 
959 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
960 
961 	if (ret & VM_FAULT_COMPLETED) {
962 		/*
963 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
964 		 * mmap lock in the page fault handler. Sanity check this.
965 		 */
966 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
967 		*locked = 0;
968 
969 		/*
970 		 * We should do the same as VM_FAULT_RETRY, but let's not
971 		 * return -EBUSY since that's not reflecting the reality of
972 		 * what has happened - we've just fully completed a page
973 		 * fault, with the mmap lock released.  Use -EAGAIN to show
974 		 * that we want to take the mmap lock _again_.
975 		 */
976 		return -EAGAIN;
977 	}
978 
979 	if (ret & VM_FAULT_ERROR) {
980 		int err = vm_fault_to_errno(ret, *flags);
981 
982 		if (err)
983 			return err;
984 		BUG();
985 	}
986 
987 	if (ret & VM_FAULT_RETRY) {
988 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
989 			*locked = 0;
990 		return -EBUSY;
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * Writing to file-backed mappings which require folio dirty tracking using GUP
998  * is a fundamentally broken operation, as kernel write access to GUP mappings
999  * do not adhere to the semantics expected by a file system.
1000  *
1001  * Consider the following scenario:-
1002  *
1003  * 1. A folio is written to via GUP which write-faults the memory, notifying
1004  *    the file system and dirtying the folio.
1005  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1006  *    the PTE being marked read-only.
1007  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1008  *    direct mapping.
1009  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1010  *    (though it does not have to).
1011  *
1012  * This results in both data being written to a folio without writenotify, and
1013  * the folio being dirtied unexpectedly (if the caller decides to do so).
1014  */
1015 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1016 					  unsigned long gup_flags)
1017 {
1018 	/*
1019 	 * If we aren't pinning then no problematic write can occur. A long term
1020 	 * pin is the most egregious case so this is the case we disallow.
1021 	 */
1022 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1023 	    (FOLL_PIN | FOLL_LONGTERM))
1024 		return true;
1025 
1026 	/*
1027 	 * If the VMA does not require dirty tracking then no problematic write
1028 	 * can occur either.
1029 	 */
1030 	return !vma_needs_dirty_tracking(vma);
1031 }
1032 
1033 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1034 {
1035 	vm_flags_t vm_flags = vma->vm_flags;
1036 	int write = (gup_flags & FOLL_WRITE);
1037 	int foreign = (gup_flags & FOLL_REMOTE);
1038 	bool vma_anon = vma_is_anonymous(vma);
1039 
1040 	if (vm_flags & (VM_IO | VM_PFNMAP))
1041 		return -EFAULT;
1042 
1043 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1044 		return -EFAULT;
1045 
1046 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047 		return -EOPNOTSUPP;
1048 
1049 	if (vma_is_secretmem(vma))
1050 		return -EFAULT;
1051 
1052 	if (write) {
1053 		if (!vma_anon &&
1054 		    !writable_file_mapping_allowed(vma, gup_flags))
1055 			return -EFAULT;
1056 
1057 		if (!(vm_flags & VM_WRITE)) {
1058 			if (!(gup_flags & FOLL_FORCE))
1059 				return -EFAULT;
1060 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1061 			if (is_vm_hugetlb_page(vma))
1062 				return -EFAULT;
1063 			/*
1064 			 * We used to let the write,force case do COW in a
1065 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1066 			 * set a breakpoint in a read-only mapping of an
1067 			 * executable, without corrupting the file (yet only
1068 			 * when that file had been opened for writing!).
1069 			 * Anon pages in shared mappings are surprising: now
1070 			 * just reject it.
1071 			 */
1072 			if (!is_cow_mapping(vm_flags))
1073 				return -EFAULT;
1074 		}
1075 	} else if (!(vm_flags & VM_READ)) {
1076 		if (!(gup_flags & FOLL_FORCE))
1077 			return -EFAULT;
1078 		/*
1079 		 * Is there actually any vma we can reach here which does not
1080 		 * have VM_MAYREAD set?
1081 		 */
1082 		if (!(vm_flags & VM_MAYREAD))
1083 			return -EFAULT;
1084 	}
1085 	/*
1086 	 * gups are always data accesses, not instruction
1087 	 * fetches, so execute=false here
1088 	 */
1089 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1090 		return -EFAULT;
1091 	return 0;
1092 }
1093 
1094 /*
1095  * This is "vma_lookup()", but with a warning if we would have
1096  * historically expanded the stack in the GUP code.
1097  */
1098 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1099 	 unsigned long addr)
1100 {
1101 #ifdef CONFIG_STACK_GROWSUP
1102 	return vma_lookup(mm, addr);
1103 #else
1104 	static volatile unsigned long next_warn;
1105 	struct vm_area_struct *vma;
1106 	unsigned long now, next;
1107 
1108 	vma = find_vma(mm, addr);
1109 	if (!vma || (addr >= vma->vm_start))
1110 		return vma;
1111 
1112 	/* Only warn for half-way relevant accesses */
1113 	if (!(vma->vm_flags & VM_GROWSDOWN))
1114 		return NULL;
1115 	if (vma->vm_start - addr > 65536)
1116 		return NULL;
1117 
1118 	/* Let's not warn more than once an hour.. */
1119 	now = jiffies; next = next_warn;
1120 	if (next && time_before(now, next))
1121 		return NULL;
1122 	next_warn = now + 60*60*HZ;
1123 
1124 	/* Let people know things may have changed. */
1125 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1126 		current->comm, task_pid_nr(current),
1127 		vma->vm_start, vma->vm_end, addr);
1128 	dump_stack();
1129 	return NULL;
1130 #endif
1131 }
1132 
1133 /**
1134  * __get_user_pages() - pin user pages in memory
1135  * @mm:		mm_struct of target mm
1136  * @start:	starting user address
1137  * @nr_pages:	number of pages from start to pin
1138  * @gup_flags:	flags modifying pin behaviour
1139  * @pages:	array that receives pointers to the pages pinned.
1140  *		Should be at least nr_pages long. Or NULL, if caller
1141  *		only intends to ensure the pages are faulted in.
1142  * @locked:     whether we're still with the mmap_lock held
1143  *
1144  * Returns either number of pages pinned (which may be less than the
1145  * number requested), or an error. Details about the return value:
1146  *
1147  * -- If nr_pages is 0, returns 0.
1148  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1149  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1150  *    pages pinned. Again, this may be less than nr_pages.
1151  * -- 0 return value is possible when the fault would need to be retried.
1152  *
1153  * The caller is responsible for releasing returned @pages, via put_page().
1154  *
1155  * Must be called with mmap_lock held.  It may be released.  See below.
1156  *
1157  * __get_user_pages walks a process's page tables and takes a reference to
1158  * each struct page that each user address corresponds to at a given
1159  * instant. That is, it takes the page that would be accessed if a user
1160  * thread accesses the given user virtual address at that instant.
1161  *
1162  * This does not guarantee that the page exists in the user mappings when
1163  * __get_user_pages returns, and there may even be a completely different
1164  * page there in some cases (eg. if mmapped pagecache has been invalidated
1165  * and subsequently re-faulted). However it does guarantee that the page
1166  * won't be freed completely. And mostly callers simply care that the page
1167  * contains data that was valid *at some point in time*. Typically, an IO
1168  * or similar operation cannot guarantee anything stronger anyway because
1169  * locks can't be held over the syscall boundary.
1170  *
1171  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1172  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1173  * appropriate) must be called after the page is finished with, and
1174  * before put_page is called.
1175  *
1176  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1177  * be released. If this happens *@locked will be set to 0 on return.
1178  *
1179  * A caller using such a combination of @gup_flags must therefore hold the
1180  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1181  * it must be held for either reading or writing and will not be released.
1182  *
1183  * In most cases, get_user_pages or get_user_pages_fast should be used
1184  * instead of __get_user_pages. __get_user_pages should be used only if
1185  * you need some special @gup_flags.
1186  */
1187 static long __get_user_pages(struct mm_struct *mm,
1188 		unsigned long start, unsigned long nr_pages,
1189 		unsigned int gup_flags, struct page **pages,
1190 		int *locked)
1191 {
1192 	long ret = 0, i = 0;
1193 	struct vm_area_struct *vma = NULL;
1194 	struct follow_page_context ctx = { NULL };
1195 
1196 	if (!nr_pages)
1197 		return 0;
1198 
1199 	start = untagged_addr_remote(mm, start);
1200 
1201 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1202 
1203 	do {
1204 		struct page *page;
1205 		unsigned int foll_flags = gup_flags;
1206 		unsigned int page_increm;
1207 
1208 		/* first iteration or cross vma bound */
1209 		if (!vma || start >= vma->vm_end) {
1210 			vma = gup_vma_lookup(mm, start);
1211 			if (!vma && in_gate_area(mm, start)) {
1212 				ret = get_gate_page(mm, start & PAGE_MASK,
1213 						gup_flags, &vma,
1214 						pages ? &pages[i] : NULL);
1215 				if (ret)
1216 					goto out;
1217 				ctx.page_mask = 0;
1218 				goto next_page;
1219 			}
1220 
1221 			if (!vma) {
1222 				ret = -EFAULT;
1223 				goto out;
1224 			}
1225 			ret = check_vma_flags(vma, gup_flags);
1226 			if (ret)
1227 				goto out;
1228 
1229 			if (is_vm_hugetlb_page(vma)) {
1230 				i = follow_hugetlb_page(mm, vma, pages,
1231 							&start, &nr_pages, i,
1232 							gup_flags, locked);
1233 				if (!*locked) {
1234 					/*
1235 					 * We've got a VM_FAULT_RETRY
1236 					 * and we've lost mmap_lock.
1237 					 * We must stop here.
1238 					 */
1239 					BUG_ON(gup_flags & FOLL_NOWAIT);
1240 					goto out;
1241 				}
1242 				continue;
1243 			}
1244 		}
1245 retry:
1246 		/*
1247 		 * If we have a pending SIGKILL, don't keep faulting pages and
1248 		 * potentially allocating memory.
1249 		 */
1250 		if (fatal_signal_pending(current)) {
1251 			ret = -EINTR;
1252 			goto out;
1253 		}
1254 		cond_resched();
1255 
1256 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1257 		if (!page || PTR_ERR(page) == -EMLINK) {
1258 			ret = faultin_page(vma, start, &foll_flags,
1259 					   PTR_ERR(page) == -EMLINK, locked);
1260 			switch (ret) {
1261 			case 0:
1262 				goto retry;
1263 			case -EBUSY:
1264 			case -EAGAIN:
1265 				ret = 0;
1266 				fallthrough;
1267 			case -EFAULT:
1268 			case -ENOMEM:
1269 			case -EHWPOISON:
1270 				goto out;
1271 			}
1272 			BUG();
1273 		} else if (PTR_ERR(page) == -EEXIST) {
1274 			/*
1275 			 * Proper page table entry exists, but no corresponding
1276 			 * struct page. If the caller expects **pages to be
1277 			 * filled in, bail out now, because that can't be done
1278 			 * for this page.
1279 			 */
1280 			if (pages) {
1281 				ret = PTR_ERR(page);
1282 				goto out;
1283 			}
1284 
1285 			goto next_page;
1286 		} else if (IS_ERR(page)) {
1287 			ret = PTR_ERR(page);
1288 			goto out;
1289 		}
1290 		if (pages) {
1291 			pages[i] = page;
1292 			flush_anon_page(vma, page, start);
1293 			flush_dcache_page(page);
1294 			ctx.page_mask = 0;
1295 		}
1296 next_page:
1297 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1298 		if (page_increm > nr_pages)
1299 			page_increm = nr_pages;
1300 		i += page_increm;
1301 		start += page_increm * PAGE_SIZE;
1302 		nr_pages -= page_increm;
1303 	} while (nr_pages);
1304 out:
1305 	if (ctx.pgmap)
1306 		put_dev_pagemap(ctx.pgmap);
1307 	return i ? i : ret;
1308 }
1309 
1310 static bool vma_permits_fault(struct vm_area_struct *vma,
1311 			      unsigned int fault_flags)
1312 {
1313 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1314 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1315 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1316 
1317 	if (!(vm_flags & vma->vm_flags))
1318 		return false;
1319 
1320 	/*
1321 	 * The architecture might have a hardware protection
1322 	 * mechanism other than read/write that can deny access.
1323 	 *
1324 	 * gup always represents data access, not instruction
1325 	 * fetches, so execute=false here:
1326 	 */
1327 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1328 		return false;
1329 
1330 	return true;
1331 }
1332 
1333 /**
1334  * fixup_user_fault() - manually resolve a user page fault
1335  * @mm:		mm_struct of target mm
1336  * @address:	user address
1337  * @fault_flags:flags to pass down to handle_mm_fault()
1338  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1339  *		does not allow retry. If NULL, the caller must guarantee
1340  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1341  *
1342  * This is meant to be called in the specific scenario where for locking reasons
1343  * we try to access user memory in atomic context (within a pagefault_disable()
1344  * section), this returns -EFAULT, and we want to resolve the user fault before
1345  * trying again.
1346  *
1347  * Typically this is meant to be used by the futex code.
1348  *
1349  * The main difference with get_user_pages() is that this function will
1350  * unconditionally call handle_mm_fault() which will in turn perform all the
1351  * necessary SW fixup of the dirty and young bits in the PTE, while
1352  * get_user_pages() only guarantees to update these in the struct page.
1353  *
1354  * This is important for some architectures where those bits also gate the
1355  * access permission to the page because they are maintained in software.  On
1356  * such architectures, gup() will not be enough to make a subsequent access
1357  * succeed.
1358  *
1359  * This function will not return with an unlocked mmap_lock. So it has not the
1360  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1361  */
1362 int fixup_user_fault(struct mm_struct *mm,
1363 		     unsigned long address, unsigned int fault_flags,
1364 		     bool *unlocked)
1365 {
1366 	struct vm_area_struct *vma;
1367 	vm_fault_t ret;
1368 
1369 	address = untagged_addr_remote(mm, address);
1370 
1371 	if (unlocked)
1372 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1373 
1374 retry:
1375 	vma = gup_vma_lookup(mm, address);
1376 	if (!vma)
1377 		return -EFAULT;
1378 
1379 	if (!vma_permits_fault(vma, fault_flags))
1380 		return -EFAULT;
1381 
1382 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1383 	    fatal_signal_pending(current))
1384 		return -EINTR;
1385 
1386 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1387 
1388 	if (ret & VM_FAULT_COMPLETED) {
1389 		/*
1390 		 * NOTE: it's a pity that we need to retake the lock here
1391 		 * to pair with the unlock() in the callers. Ideally we
1392 		 * could tell the callers so they do not need to unlock.
1393 		 */
1394 		mmap_read_lock(mm);
1395 		*unlocked = true;
1396 		return 0;
1397 	}
1398 
1399 	if (ret & VM_FAULT_ERROR) {
1400 		int err = vm_fault_to_errno(ret, 0);
1401 
1402 		if (err)
1403 			return err;
1404 		BUG();
1405 	}
1406 
1407 	if (ret & VM_FAULT_RETRY) {
1408 		mmap_read_lock(mm);
1409 		*unlocked = true;
1410 		fault_flags |= FAULT_FLAG_TRIED;
1411 		goto retry;
1412 	}
1413 
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(fixup_user_fault);
1417 
1418 /*
1419  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1420  * specified, it'll also respond to generic signals.  The caller of GUP
1421  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1422  */
1423 static bool gup_signal_pending(unsigned int flags)
1424 {
1425 	if (fatal_signal_pending(current))
1426 		return true;
1427 
1428 	if (!(flags & FOLL_INTERRUPTIBLE))
1429 		return false;
1430 
1431 	return signal_pending(current);
1432 }
1433 
1434 /*
1435  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1436  * the caller. This function may drop the mmap_lock. If it does so, then it will
1437  * set (*locked = 0).
1438  *
1439  * (*locked == 0) means that the caller expects this function to acquire and
1440  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1441  * the function returns, even though it may have changed temporarily during
1442  * function execution.
1443  *
1444  * Please note that this function, unlike __get_user_pages(), will not return 0
1445  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1446  */
1447 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1448 						unsigned long start,
1449 						unsigned long nr_pages,
1450 						struct page **pages,
1451 						int *locked,
1452 						unsigned int flags)
1453 {
1454 	long ret, pages_done;
1455 	bool must_unlock = false;
1456 
1457 	/*
1458 	 * The internal caller expects GUP to manage the lock internally and the
1459 	 * lock must be released when this returns.
1460 	 */
1461 	if (!*locked) {
1462 		if (mmap_read_lock_killable(mm))
1463 			return -EAGAIN;
1464 		must_unlock = true;
1465 		*locked = 1;
1466 	}
1467 	else
1468 		mmap_assert_locked(mm);
1469 
1470 	if (flags & FOLL_PIN)
1471 		mm_set_has_pinned_flag(&mm->flags);
1472 
1473 	/*
1474 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1475 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1476 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1477 	 * for FOLL_GET, not for the newer FOLL_PIN.
1478 	 *
1479 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1480 	 * that here, as any failures will be obvious enough.
1481 	 */
1482 	if (pages && !(flags & FOLL_PIN))
1483 		flags |= FOLL_GET;
1484 
1485 	pages_done = 0;
1486 	for (;;) {
1487 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1488 				       locked);
1489 		if (!(flags & FOLL_UNLOCKABLE)) {
1490 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1491 			pages_done = ret;
1492 			break;
1493 		}
1494 
1495 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1496 		if (!*locked) {
1497 			BUG_ON(ret < 0);
1498 			BUG_ON(ret >= nr_pages);
1499 		}
1500 
1501 		if (ret > 0) {
1502 			nr_pages -= ret;
1503 			pages_done += ret;
1504 			if (!nr_pages)
1505 				break;
1506 		}
1507 		if (*locked) {
1508 			/*
1509 			 * VM_FAULT_RETRY didn't trigger or it was a
1510 			 * FOLL_NOWAIT.
1511 			 */
1512 			if (!pages_done)
1513 				pages_done = ret;
1514 			break;
1515 		}
1516 		/*
1517 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1518 		 * For the prefault case (!pages) we only update counts.
1519 		 */
1520 		if (likely(pages))
1521 			pages += ret;
1522 		start += ret << PAGE_SHIFT;
1523 
1524 		/* The lock was temporarily dropped, so we must unlock later */
1525 		must_unlock = true;
1526 
1527 retry:
1528 		/*
1529 		 * Repeat on the address that fired VM_FAULT_RETRY
1530 		 * with both FAULT_FLAG_ALLOW_RETRY and
1531 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1532 		 * by fatal signals of even common signals, depending on
1533 		 * the caller's request. So we need to check it before we
1534 		 * start trying again otherwise it can loop forever.
1535 		 */
1536 		if (gup_signal_pending(flags)) {
1537 			if (!pages_done)
1538 				pages_done = -EINTR;
1539 			break;
1540 		}
1541 
1542 		ret = mmap_read_lock_killable(mm);
1543 		if (ret) {
1544 			BUG_ON(ret > 0);
1545 			if (!pages_done)
1546 				pages_done = ret;
1547 			break;
1548 		}
1549 
1550 		*locked = 1;
1551 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1552 				       pages, locked);
1553 		if (!*locked) {
1554 			/* Continue to retry until we succeeded */
1555 			BUG_ON(ret != 0);
1556 			goto retry;
1557 		}
1558 		if (ret != 1) {
1559 			BUG_ON(ret > 1);
1560 			if (!pages_done)
1561 				pages_done = ret;
1562 			break;
1563 		}
1564 		nr_pages--;
1565 		pages_done++;
1566 		if (!nr_pages)
1567 			break;
1568 		if (likely(pages))
1569 			pages++;
1570 		start += PAGE_SIZE;
1571 	}
1572 	if (must_unlock && *locked) {
1573 		/*
1574 		 * We either temporarily dropped the lock, or the caller
1575 		 * requested that we both acquire and drop the lock. Either way,
1576 		 * we must now unlock, and notify the caller of that state.
1577 		 */
1578 		mmap_read_unlock(mm);
1579 		*locked = 0;
1580 	}
1581 	return pages_done;
1582 }
1583 
1584 /**
1585  * populate_vma_page_range() -  populate a range of pages in the vma.
1586  * @vma:   target vma
1587  * @start: start address
1588  * @end:   end address
1589  * @locked: whether the mmap_lock is still held
1590  *
1591  * This takes care of mlocking the pages too if VM_LOCKED is set.
1592  *
1593  * Return either number of pages pinned in the vma, or a negative error
1594  * code on error.
1595  *
1596  * vma->vm_mm->mmap_lock must be held.
1597  *
1598  * If @locked is NULL, it may be held for read or write and will
1599  * be unperturbed.
1600  *
1601  * If @locked is non-NULL, it must held for read only and may be
1602  * released.  If it's released, *@locked will be set to 0.
1603  */
1604 long populate_vma_page_range(struct vm_area_struct *vma,
1605 		unsigned long start, unsigned long end, int *locked)
1606 {
1607 	struct mm_struct *mm = vma->vm_mm;
1608 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1609 	int local_locked = 1;
1610 	int gup_flags;
1611 	long ret;
1612 
1613 	VM_BUG_ON(!PAGE_ALIGNED(start));
1614 	VM_BUG_ON(!PAGE_ALIGNED(end));
1615 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1616 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1617 	mmap_assert_locked(mm);
1618 
1619 	/*
1620 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1621 	 * faultin_page() to break COW, so it has no work to do here.
1622 	 */
1623 	if (vma->vm_flags & VM_LOCKONFAULT)
1624 		return nr_pages;
1625 
1626 	gup_flags = FOLL_TOUCH;
1627 	/*
1628 	 * We want to touch writable mappings with a write fault in order
1629 	 * to break COW, except for shared mappings because these don't COW
1630 	 * and we would not want to dirty them for nothing.
1631 	 */
1632 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1633 		gup_flags |= FOLL_WRITE;
1634 
1635 	/*
1636 	 * We want mlock to succeed for regions that have any permissions
1637 	 * other than PROT_NONE.
1638 	 */
1639 	if (vma_is_accessible(vma))
1640 		gup_flags |= FOLL_FORCE;
1641 
1642 	if (locked)
1643 		gup_flags |= FOLL_UNLOCKABLE;
1644 
1645 	/*
1646 	 * We made sure addr is within a VMA, so the following will
1647 	 * not result in a stack expansion that recurses back here.
1648 	 */
1649 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1650 			       NULL, locked ? locked : &local_locked);
1651 	lru_add_drain();
1652 	return ret;
1653 }
1654 
1655 /*
1656  * faultin_vma_page_range() - populate (prefault) page tables inside the
1657  *			      given VMA range readable/writable
1658  *
1659  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1660  *
1661  * @vma: target vma
1662  * @start: start address
1663  * @end: end address
1664  * @write: whether to prefault readable or writable
1665  * @locked: whether the mmap_lock is still held
1666  *
1667  * Returns either number of processed pages in the vma, or a negative error
1668  * code on error (see __get_user_pages()).
1669  *
1670  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1671  * covered by the VMA. If it's released, *@locked will be set to 0.
1672  */
1673 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1674 			    unsigned long end, bool write, int *locked)
1675 {
1676 	struct mm_struct *mm = vma->vm_mm;
1677 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1678 	int gup_flags;
1679 	long ret;
1680 
1681 	VM_BUG_ON(!PAGE_ALIGNED(start));
1682 	VM_BUG_ON(!PAGE_ALIGNED(end));
1683 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1684 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1685 	mmap_assert_locked(mm);
1686 
1687 	/*
1688 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1689 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1690 	 *	       difference with !FOLL_FORCE, because the page is writable
1691 	 *	       in the page table.
1692 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1693 	 *		  a poisoned page.
1694 	 * !FOLL_FORCE: Require proper access permissions.
1695 	 */
1696 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1697 	if (write)
1698 		gup_flags |= FOLL_WRITE;
1699 
1700 	/*
1701 	 * We want to report -EINVAL instead of -EFAULT for any permission
1702 	 * problems or incompatible mappings.
1703 	 */
1704 	if (check_vma_flags(vma, gup_flags))
1705 		return -EINVAL;
1706 
1707 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1708 			       NULL, locked);
1709 	lru_add_drain();
1710 	return ret;
1711 }
1712 
1713 /*
1714  * __mm_populate - populate and/or mlock pages within a range of address space.
1715  *
1716  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1717  * flags. VMAs must be already marked with the desired vm_flags, and
1718  * mmap_lock must not be held.
1719  */
1720 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1721 {
1722 	struct mm_struct *mm = current->mm;
1723 	unsigned long end, nstart, nend;
1724 	struct vm_area_struct *vma = NULL;
1725 	int locked = 0;
1726 	long ret = 0;
1727 
1728 	end = start + len;
1729 
1730 	for (nstart = start; nstart < end; nstart = nend) {
1731 		/*
1732 		 * We want to fault in pages for [nstart; end) address range.
1733 		 * Find first corresponding VMA.
1734 		 */
1735 		if (!locked) {
1736 			locked = 1;
1737 			mmap_read_lock(mm);
1738 			vma = find_vma_intersection(mm, nstart, end);
1739 		} else if (nstart >= vma->vm_end)
1740 			vma = find_vma_intersection(mm, vma->vm_end, end);
1741 
1742 		if (!vma)
1743 			break;
1744 		/*
1745 		 * Set [nstart; nend) to intersection of desired address
1746 		 * range with the first VMA. Also, skip undesirable VMA types.
1747 		 */
1748 		nend = min(end, vma->vm_end);
1749 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1750 			continue;
1751 		if (nstart < vma->vm_start)
1752 			nstart = vma->vm_start;
1753 		/*
1754 		 * Now fault in a range of pages. populate_vma_page_range()
1755 		 * double checks the vma flags, so that it won't mlock pages
1756 		 * if the vma was already munlocked.
1757 		 */
1758 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1759 		if (ret < 0) {
1760 			if (ignore_errors) {
1761 				ret = 0;
1762 				continue;	/* continue at next VMA */
1763 			}
1764 			break;
1765 		}
1766 		nend = nstart + ret * PAGE_SIZE;
1767 		ret = 0;
1768 	}
1769 	if (locked)
1770 		mmap_read_unlock(mm);
1771 	return ret;	/* 0 or negative error code */
1772 }
1773 #else /* CONFIG_MMU */
1774 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1775 		unsigned long nr_pages, struct page **pages,
1776 		int *locked, unsigned int foll_flags)
1777 {
1778 	struct vm_area_struct *vma;
1779 	bool must_unlock = false;
1780 	unsigned long vm_flags;
1781 	long i;
1782 
1783 	if (!nr_pages)
1784 		return 0;
1785 
1786 	/*
1787 	 * The internal caller expects GUP to manage the lock internally and the
1788 	 * lock must be released when this returns.
1789 	 */
1790 	if (!*locked) {
1791 		if (mmap_read_lock_killable(mm))
1792 			return -EAGAIN;
1793 		must_unlock = true;
1794 		*locked = 1;
1795 	}
1796 
1797 	/* calculate required read or write permissions.
1798 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1799 	 */
1800 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1801 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1802 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1803 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1804 
1805 	for (i = 0; i < nr_pages; i++) {
1806 		vma = find_vma(mm, start);
1807 		if (!vma)
1808 			break;
1809 
1810 		/* protect what we can, including chardevs */
1811 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1812 		    !(vm_flags & vma->vm_flags))
1813 			break;
1814 
1815 		if (pages) {
1816 			pages[i] = virt_to_page((void *)start);
1817 			if (pages[i])
1818 				get_page(pages[i]);
1819 		}
1820 
1821 		start = (start + PAGE_SIZE) & PAGE_MASK;
1822 	}
1823 
1824 	if (must_unlock && *locked) {
1825 		mmap_read_unlock(mm);
1826 		*locked = 0;
1827 	}
1828 
1829 	return i ? : -EFAULT;
1830 }
1831 #endif /* !CONFIG_MMU */
1832 
1833 /**
1834  * fault_in_writeable - fault in userspace address range for writing
1835  * @uaddr: start of address range
1836  * @size: size of address range
1837  *
1838  * Returns the number of bytes not faulted in (like copy_to_user() and
1839  * copy_from_user()).
1840  */
1841 size_t fault_in_writeable(char __user *uaddr, size_t size)
1842 {
1843 	char __user *start = uaddr, *end;
1844 
1845 	if (unlikely(size == 0))
1846 		return 0;
1847 	if (!user_write_access_begin(uaddr, size))
1848 		return size;
1849 	if (!PAGE_ALIGNED(uaddr)) {
1850 		unsafe_put_user(0, uaddr, out);
1851 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1852 	}
1853 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1854 	if (unlikely(end < start))
1855 		end = NULL;
1856 	while (uaddr != end) {
1857 		unsafe_put_user(0, uaddr, out);
1858 		uaddr += PAGE_SIZE;
1859 	}
1860 
1861 out:
1862 	user_write_access_end();
1863 	if (size > uaddr - start)
1864 		return size - (uaddr - start);
1865 	return 0;
1866 }
1867 EXPORT_SYMBOL(fault_in_writeable);
1868 
1869 /**
1870  * fault_in_subpage_writeable - fault in an address range for writing
1871  * @uaddr: start of address range
1872  * @size: size of address range
1873  *
1874  * Fault in a user address range for writing while checking for permissions at
1875  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1876  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1877  *
1878  * Returns the number of bytes not faulted in (like copy_to_user() and
1879  * copy_from_user()).
1880  */
1881 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1882 {
1883 	size_t faulted_in;
1884 
1885 	/*
1886 	 * Attempt faulting in at page granularity first for page table
1887 	 * permission checking. The arch-specific probe_subpage_writeable()
1888 	 * functions may not check for this.
1889 	 */
1890 	faulted_in = size - fault_in_writeable(uaddr, size);
1891 	if (faulted_in)
1892 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1893 
1894 	return size - faulted_in;
1895 }
1896 EXPORT_SYMBOL(fault_in_subpage_writeable);
1897 
1898 /*
1899  * fault_in_safe_writeable - fault in an address range for writing
1900  * @uaddr: start of address range
1901  * @size: length of address range
1902  *
1903  * Faults in an address range for writing.  This is primarily useful when we
1904  * already know that some or all of the pages in the address range aren't in
1905  * memory.
1906  *
1907  * Unlike fault_in_writeable(), this function is non-destructive.
1908  *
1909  * Note that we don't pin or otherwise hold the pages referenced that we fault
1910  * in.  There's no guarantee that they'll stay in memory for any duration of
1911  * time.
1912  *
1913  * Returns the number of bytes not faulted in, like copy_to_user() and
1914  * copy_from_user().
1915  */
1916 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1917 {
1918 	unsigned long start = (unsigned long)uaddr, end;
1919 	struct mm_struct *mm = current->mm;
1920 	bool unlocked = false;
1921 
1922 	if (unlikely(size == 0))
1923 		return 0;
1924 	end = PAGE_ALIGN(start + size);
1925 	if (end < start)
1926 		end = 0;
1927 
1928 	mmap_read_lock(mm);
1929 	do {
1930 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1931 			break;
1932 		start = (start + PAGE_SIZE) & PAGE_MASK;
1933 	} while (start != end);
1934 	mmap_read_unlock(mm);
1935 
1936 	if (size > (unsigned long)uaddr - start)
1937 		return size - ((unsigned long)uaddr - start);
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL(fault_in_safe_writeable);
1941 
1942 /**
1943  * fault_in_readable - fault in userspace address range for reading
1944  * @uaddr: start of user address range
1945  * @size: size of user address range
1946  *
1947  * Returns the number of bytes not faulted in (like copy_to_user() and
1948  * copy_from_user()).
1949  */
1950 size_t fault_in_readable(const char __user *uaddr, size_t size)
1951 {
1952 	const char __user *start = uaddr, *end;
1953 	volatile char c;
1954 
1955 	if (unlikely(size == 0))
1956 		return 0;
1957 	if (!user_read_access_begin(uaddr, size))
1958 		return size;
1959 	if (!PAGE_ALIGNED(uaddr)) {
1960 		unsafe_get_user(c, uaddr, out);
1961 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1962 	}
1963 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1964 	if (unlikely(end < start))
1965 		end = NULL;
1966 	while (uaddr != end) {
1967 		unsafe_get_user(c, uaddr, out);
1968 		uaddr += PAGE_SIZE;
1969 	}
1970 
1971 out:
1972 	user_read_access_end();
1973 	(void)c;
1974 	if (size > uaddr - start)
1975 		return size - (uaddr - start);
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL(fault_in_readable);
1979 
1980 /**
1981  * get_dump_page() - pin user page in memory while writing it to core dump
1982  * @addr: user address
1983  *
1984  * Returns struct page pointer of user page pinned for dump,
1985  * to be freed afterwards by put_page().
1986  *
1987  * Returns NULL on any kind of failure - a hole must then be inserted into
1988  * the corefile, to preserve alignment with its headers; and also returns
1989  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1990  * allowing a hole to be left in the corefile to save disk space.
1991  *
1992  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1993  */
1994 #ifdef CONFIG_ELF_CORE
1995 struct page *get_dump_page(unsigned long addr)
1996 {
1997 	struct page *page;
1998 	int locked = 0;
1999 	int ret;
2000 
2001 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2002 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2003 	return (ret == 1) ? page : NULL;
2004 }
2005 #endif /* CONFIG_ELF_CORE */
2006 
2007 #ifdef CONFIG_MIGRATION
2008 /*
2009  * Returns the number of collected pages. Return value is always >= 0.
2010  */
2011 static unsigned long collect_longterm_unpinnable_pages(
2012 					struct list_head *movable_page_list,
2013 					unsigned long nr_pages,
2014 					struct page **pages)
2015 {
2016 	unsigned long i, collected = 0;
2017 	struct folio *prev_folio = NULL;
2018 	bool drain_allow = true;
2019 
2020 	for (i = 0; i < nr_pages; i++) {
2021 		struct folio *folio = page_folio(pages[i]);
2022 
2023 		if (folio == prev_folio)
2024 			continue;
2025 		prev_folio = folio;
2026 
2027 		if (folio_is_longterm_pinnable(folio))
2028 			continue;
2029 
2030 		collected++;
2031 
2032 		if (folio_is_device_coherent(folio))
2033 			continue;
2034 
2035 		if (folio_test_hugetlb(folio)) {
2036 			isolate_hugetlb(folio, movable_page_list);
2037 			continue;
2038 		}
2039 
2040 		if (!folio_test_lru(folio) && drain_allow) {
2041 			lru_add_drain_all();
2042 			drain_allow = false;
2043 		}
2044 
2045 		if (!folio_isolate_lru(folio))
2046 			continue;
2047 
2048 		list_add_tail(&folio->lru, movable_page_list);
2049 		node_stat_mod_folio(folio,
2050 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2051 				    folio_nr_pages(folio));
2052 	}
2053 
2054 	return collected;
2055 }
2056 
2057 /*
2058  * Unpins all pages and migrates device coherent pages and movable_page_list.
2059  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2060  * (or partial success).
2061  */
2062 static int migrate_longterm_unpinnable_pages(
2063 					struct list_head *movable_page_list,
2064 					unsigned long nr_pages,
2065 					struct page **pages)
2066 {
2067 	int ret;
2068 	unsigned long i;
2069 
2070 	for (i = 0; i < nr_pages; i++) {
2071 		struct folio *folio = page_folio(pages[i]);
2072 
2073 		if (folio_is_device_coherent(folio)) {
2074 			/*
2075 			 * Migration will fail if the page is pinned, so convert
2076 			 * the pin on the source page to a normal reference.
2077 			 */
2078 			pages[i] = NULL;
2079 			folio_get(folio);
2080 			gup_put_folio(folio, 1, FOLL_PIN);
2081 
2082 			if (migrate_device_coherent_page(&folio->page)) {
2083 				ret = -EBUSY;
2084 				goto err;
2085 			}
2086 
2087 			continue;
2088 		}
2089 
2090 		/*
2091 		 * We can't migrate pages with unexpected references, so drop
2092 		 * the reference obtained by __get_user_pages_locked().
2093 		 * Migrating pages have been added to movable_page_list after
2094 		 * calling folio_isolate_lru() which takes a reference so the
2095 		 * page won't be freed if it's migrating.
2096 		 */
2097 		unpin_user_page(pages[i]);
2098 		pages[i] = NULL;
2099 	}
2100 
2101 	if (!list_empty(movable_page_list)) {
2102 		struct migration_target_control mtc = {
2103 			.nid = NUMA_NO_NODE,
2104 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2105 		};
2106 
2107 		if (migrate_pages(movable_page_list, alloc_migration_target,
2108 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2109 				  MR_LONGTERM_PIN, NULL)) {
2110 			ret = -ENOMEM;
2111 			goto err;
2112 		}
2113 	}
2114 
2115 	putback_movable_pages(movable_page_list);
2116 
2117 	return -EAGAIN;
2118 
2119 err:
2120 	for (i = 0; i < nr_pages; i++)
2121 		if (pages[i])
2122 			unpin_user_page(pages[i]);
2123 	putback_movable_pages(movable_page_list);
2124 
2125 	return ret;
2126 }
2127 
2128 /*
2129  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2130  * pages in the range are required to be pinned via FOLL_PIN, before calling
2131  * this routine.
2132  *
2133  * If any pages in the range are not allowed to be pinned, then this routine
2134  * will migrate those pages away, unpin all the pages in the range and return
2135  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2136  * call this routine again.
2137  *
2138  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2139  * The caller should give up, and propagate the error back up the call stack.
2140  *
2141  * If everything is OK and all pages in the range are allowed to be pinned, then
2142  * this routine leaves all pages pinned and returns zero for success.
2143  */
2144 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2145 					    struct page **pages)
2146 {
2147 	unsigned long collected;
2148 	LIST_HEAD(movable_page_list);
2149 
2150 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2151 						nr_pages, pages);
2152 	if (!collected)
2153 		return 0;
2154 
2155 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2156 						pages);
2157 }
2158 #else
2159 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2160 					    struct page **pages)
2161 {
2162 	return 0;
2163 }
2164 #endif /* CONFIG_MIGRATION */
2165 
2166 /*
2167  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2168  * allows us to process the FOLL_LONGTERM flag.
2169  */
2170 static long __gup_longterm_locked(struct mm_struct *mm,
2171 				  unsigned long start,
2172 				  unsigned long nr_pages,
2173 				  struct page **pages,
2174 				  int *locked,
2175 				  unsigned int gup_flags)
2176 {
2177 	unsigned int flags;
2178 	long rc, nr_pinned_pages;
2179 
2180 	if (!(gup_flags & FOLL_LONGTERM))
2181 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2182 					       locked, gup_flags);
2183 
2184 	flags = memalloc_pin_save();
2185 	do {
2186 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2187 							  pages, locked,
2188 							  gup_flags);
2189 		if (nr_pinned_pages <= 0) {
2190 			rc = nr_pinned_pages;
2191 			break;
2192 		}
2193 
2194 		/* FOLL_LONGTERM implies FOLL_PIN */
2195 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2196 	} while (rc == -EAGAIN);
2197 	memalloc_pin_restore(flags);
2198 	return rc ? rc : nr_pinned_pages;
2199 }
2200 
2201 /*
2202  * Check that the given flags are valid for the exported gup/pup interface, and
2203  * update them with the required flags that the caller must have set.
2204  */
2205 static bool is_valid_gup_args(struct page **pages, int *locked,
2206 			      unsigned int *gup_flags_p, unsigned int to_set)
2207 {
2208 	unsigned int gup_flags = *gup_flags_p;
2209 
2210 	/*
2211 	 * These flags not allowed to be specified externally to the gup
2212 	 * interfaces:
2213 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2214 	 * - FOLL_REMOTE is internal only and used on follow_page()
2215 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2216 	 */
2217 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2218 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2219 		return false;
2220 
2221 	gup_flags |= to_set;
2222 	if (locked) {
2223 		/* At the external interface locked must be set */
2224 		if (WARN_ON_ONCE(*locked != 1))
2225 			return false;
2226 
2227 		gup_flags |= FOLL_UNLOCKABLE;
2228 	}
2229 
2230 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2231 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2232 			 (FOLL_PIN | FOLL_GET)))
2233 		return false;
2234 
2235 	/* LONGTERM can only be specified when pinning */
2236 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2237 		return false;
2238 
2239 	/* Pages input must be given if using GET/PIN */
2240 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2241 		return false;
2242 
2243 	/* We want to allow the pgmap to be hot-unplugged at all times */
2244 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2245 			 (gup_flags & FOLL_PCI_P2PDMA)))
2246 		return false;
2247 
2248 	*gup_flags_p = gup_flags;
2249 	return true;
2250 }
2251 
2252 #ifdef CONFIG_MMU
2253 /**
2254  * get_user_pages_remote() - pin user pages in memory
2255  * @mm:		mm_struct of target mm
2256  * @start:	starting user address
2257  * @nr_pages:	number of pages from start to pin
2258  * @gup_flags:	flags modifying lookup behaviour
2259  * @pages:	array that receives pointers to the pages pinned.
2260  *		Should be at least nr_pages long. Or NULL, if caller
2261  *		only intends to ensure the pages are faulted in.
2262  * @locked:	pointer to lock flag indicating whether lock is held and
2263  *		subsequently whether VM_FAULT_RETRY functionality can be
2264  *		utilised. Lock must initially be held.
2265  *
2266  * Returns either number of pages pinned (which may be less than the
2267  * number requested), or an error. Details about the return value:
2268  *
2269  * -- If nr_pages is 0, returns 0.
2270  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2271  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2272  *    pages pinned. Again, this may be less than nr_pages.
2273  *
2274  * The caller is responsible for releasing returned @pages, via put_page().
2275  *
2276  * Must be called with mmap_lock held for read or write.
2277  *
2278  * get_user_pages_remote walks a process's page tables and takes a reference
2279  * to each struct page that each user address corresponds to at a given
2280  * instant. That is, it takes the page that would be accessed if a user
2281  * thread accesses the given user virtual address at that instant.
2282  *
2283  * This does not guarantee that the page exists in the user mappings when
2284  * get_user_pages_remote returns, and there may even be a completely different
2285  * page there in some cases (eg. if mmapped pagecache has been invalidated
2286  * and subsequently re-faulted). However it does guarantee that the page
2287  * won't be freed completely. And mostly callers simply care that the page
2288  * contains data that was valid *at some point in time*. Typically, an IO
2289  * or similar operation cannot guarantee anything stronger anyway because
2290  * locks can't be held over the syscall boundary.
2291  *
2292  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2293  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2294  * be called after the page is finished with, and before put_page is called.
2295  *
2296  * get_user_pages_remote is typically used for fewer-copy IO operations,
2297  * to get a handle on the memory by some means other than accesses
2298  * via the user virtual addresses. The pages may be submitted for
2299  * DMA to devices or accessed via their kernel linear mapping (via the
2300  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2301  *
2302  * See also get_user_pages_fast, for performance critical applications.
2303  *
2304  * get_user_pages_remote should be phased out in favor of
2305  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2306  * should use get_user_pages_remote because it cannot pass
2307  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2308  */
2309 long get_user_pages_remote(struct mm_struct *mm,
2310 		unsigned long start, unsigned long nr_pages,
2311 		unsigned int gup_flags, struct page **pages,
2312 		int *locked)
2313 {
2314 	int local_locked = 1;
2315 
2316 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2317 			       FOLL_TOUCH | FOLL_REMOTE))
2318 		return -EINVAL;
2319 
2320 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2321 				       locked ? locked : &local_locked,
2322 				       gup_flags);
2323 }
2324 EXPORT_SYMBOL(get_user_pages_remote);
2325 
2326 #else /* CONFIG_MMU */
2327 long get_user_pages_remote(struct mm_struct *mm,
2328 			   unsigned long start, unsigned long nr_pages,
2329 			   unsigned int gup_flags, struct page **pages,
2330 			   int *locked)
2331 {
2332 	return 0;
2333 }
2334 #endif /* !CONFIG_MMU */
2335 
2336 /**
2337  * get_user_pages() - pin user pages in memory
2338  * @start:      starting user address
2339  * @nr_pages:   number of pages from start to pin
2340  * @gup_flags:  flags modifying lookup behaviour
2341  * @pages:      array that receives pointers to the pages pinned.
2342  *              Should be at least nr_pages long. Or NULL, if caller
2343  *              only intends to ensure the pages are faulted in.
2344  *
2345  * This is the same as get_user_pages_remote(), just with a less-flexible
2346  * calling convention where we assume that the mm being operated on belongs to
2347  * the current task, and doesn't allow passing of a locked parameter.  We also
2348  * obviously don't pass FOLL_REMOTE in here.
2349  */
2350 long get_user_pages(unsigned long start, unsigned long nr_pages,
2351 		    unsigned int gup_flags, struct page **pages)
2352 {
2353 	int locked = 1;
2354 
2355 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2356 		return -EINVAL;
2357 
2358 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2359 				       &locked, gup_flags);
2360 }
2361 EXPORT_SYMBOL(get_user_pages);
2362 
2363 /*
2364  * get_user_pages_unlocked() is suitable to replace the form:
2365  *
2366  *      mmap_read_lock(mm);
2367  *      get_user_pages(mm, ..., pages, NULL);
2368  *      mmap_read_unlock(mm);
2369  *
2370  *  with:
2371  *
2372  *      get_user_pages_unlocked(mm, ..., pages);
2373  *
2374  * It is functionally equivalent to get_user_pages_fast so
2375  * get_user_pages_fast should be used instead if specific gup_flags
2376  * (e.g. FOLL_FORCE) are not required.
2377  */
2378 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2379 			     struct page **pages, unsigned int gup_flags)
2380 {
2381 	int locked = 0;
2382 
2383 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2384 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2385 		return -EINVAL;
2386 
2387 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2388 				       &locked, gup_flags);
2389 }
2390 EXPORT_SYMBOL(get_user_pages_unlocked);
2391 
2392 /*
2393  * Fast GUP
2394  *
2395  * get_user_pages_fast attempts to pin user pages by walking the page
2396  * tables directly and avoids taking locks. Thus the walker needs to be
2397  * protected from page table pages being freed from under it, and should
2398  * block any THP splits.
2399  *
2400  * One way to achieve this is to have the walker disable interrupts, and
2401  * rely on IPIs from the TLB flushing code blocking before the page table
2402  * pages are freed. This is unsuitable for architectures that do not need
2403  * to broadcast an IPI when invalidating TLBs.
2404  *
2405  * Another way to achieve this is to batch up page table containing pages
2406  * belonging to more than one mm_user, then rcu_sched a callback to free those
2407  * pages. Disabling interrupts will allow the fast_gup walker to both block
2408  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2409  * (which is a relatively rare event). The code below adopts this strategy.
2410  *
2411  * Before activating this code, please be aware that the following assumptions
2412  * are currently made:
2413  *
2414  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2415  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2416  *
2417  *  *) ptes can be read atomically by the architecture.
2418  *
2419  *  *) access_ok is sufficient to validate userspace address ranges.
2420  *
2421  * The last two assumptions can be relaxed by the addition of helper functions.
2422  *
2423  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2424  */
2425 #ifdef CONFIG_HAVE_FAST_GUP
2426 
2427 /*
2428  * Used in the GUP-fast path to determine whether a pin is permitted for a
2429  * specific folio.
2430  *
2431  * This call assumes the caller has pinned the folio, that the lowest page table
2432  * level still points to this folio, and that interrupts have been disabled.
2433  *
2434  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2435  * (see comment describing the writable_file_mapping_allowed() function). We
2436  * therefore try to avoid the most egregious case of a long-term mapping doing
2437  * so.
2438  *
2439  * This function cannot be as thorough as that one as the VMA is not available
2440  * in the fast path, so instead we whitelist known good cases and if in doubt,
2441  * fall back to the slow path.
2442  */
2443 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2444 {
2445 	struct address_space *mapping;
2446 	unsigned long mapping_flags;
2447 
2448 	/*
2449 	 * If we aren't pinning then no problematic write can occur. A long term
2450 	 * pin is the most egregious case so this is the one we disallow.
2451 	 */
2452 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2453 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2454 		return true;
2455 
2456 	/* The folio is pinned, so we can safely access folio fields. */
2457 
2458 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2459 		return false;
2460 
2461 	/* hugetlb mappings do not require dirty-tracking. */
2462 	if (folio_test_hugetlb(folio))
2463 		return true;
2464 
2465 	/*
2466 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2467 	 * cannot proceed, which means no actions performed under RCU can
2468 	 * proceed either.
2469 	 *
2470 	 * inodes and thus their mappings are freed under RCU, which means the
2471 	 * mapping cannot be freed beneath us and thus we can safely dereference
2472 	 * it.
2473 	 */
2474 	lockdep_assert_irqs_disabled();
2475 
2476 	/*
2477 	 * However, there may be operations which _alter_ the mapping, so ensure
2478 	 * we read it once and only once.
2479 	 */
2480 	mapping = READ_ONCE(folio->mapping);
2481 
2482 	/*
2483 	 * The mapping may have been truncated, in any case we cannot determine
2484 	 * if this mapping is safe - fall back to slow path to determine how to
2485 	 * proceed.
2486 	 */
2487 	if (!mapping)
2488 		return false;
2489 
2490 	/* Anonymous folios pose no problem. */
2491 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2492 	if (mapping_flags)
2493 		return mapping_flags & PAGE_MAPPING_ANON;
2494 
2495 	/*
2496 	 * At this point, we know the mapping is non-null and points to an
2497 	 * address_space object. The only remaining whitelisted file system is
2498 	 * shmem.
2499 	 */
2500 	return shmem_mapping(mapping);
2501 }
2502 
2503 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2504 					    unsigned int flags,
2505 					    struct page **pages)
2506 {
2507 	while ((*nr) - nr_start) {
2508 		struct page *page = pages[--(*nr)];
2509 
2510 		ClearPageReferenced(page);
2511 		if (flags & FOLL_PIN)
2512 			unpin_user_page(page);
2513 		else
2514 			put_page(page);
2515 	}
2516 }
2517 
2518 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2519 /*
2520  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2521  * operations.
2522  *
2523  * To pin the page, fast-gup needs to do below in order:
2524  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2525  *
2526  * For the rest of pgtable operations where pgtable updates can be racy
2527  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2528  * is pinned.
2529  *
2530  * Above will work for all pte-level operations, including THP split.
2531  *
2532  * For THP collapse, it's a bit more complicated because fast-gup may be
2533  * walking a pgtable page that is being freed (pte is still valid but pmd
2534  * can be cleared already).  To avoid race in such condition, we need to
2535  * also check pmd here to make sure pmd doesn't change (corresponds to
2536  * pmdp_collapse_flush() in the THP collapse code path).
2537  */
2538 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2539 			 unsigned long end, unsigned int flags,
2540 			 struct page **pages, int *nr)
2541 {
2542 	struct dev_pagemap *pgmap = NULL;
2543 	int nr_start = *nr, ret = 0;
2544 	pte_t *ptep, *ptem;
2545 
2546 	ptem = ptep = pte_offset_map(&pmd, addr);
2547 	if (!ptep)
2548 		return 0;
2549 	do {
2550 		pte_t pte = ptep_get_lockless(ptep);
2551 		struct page *page;
2552 		struct folio *folio;
2553 
2554 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2555 			goto pte_unmap;
2556 
2557 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2558 			goto pte_unmap;
2559 
2560 		if (pte_devmap(pte)) {
2561 			if (unlikely(flags & FOLL_LONGTERM))
2562 				goto pte_unmap;
2563 
2564 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2565 			if (unlikely(!pgmap)) {
2566 				undo_dev_pagemap(nr, nr_start, flags, pages);
2567 				goto pte_unmap;
2568 			}
2569 		} else if (pte_special(pte))
2570 			goto pte_unmap;
2571 
2572 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2573 		page = pte_page(pte);
2574 
2575 		folio = try_grab_folio(page, 1, flags);
2576 		if (!folio)
2577 			goto pte_unmap;
2578 
2579 		if (unlikely(page_is_secretmem(page))) {
2580 			gup_put_folio(folio, 1, flags);
2581 			goto pte_unmap;
2582 		}
2583 
2584 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2585 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2586 			gup_put_folio(folio, 1, flags);
2587 			goto pte_unmap;
2588 		}
2589 
2590 		if (!folio_fast_pin_allowed(folio, flags)) {
2591 			gup_put_folio(folio, 1, flags);
2592 			goto pte_unmap;
2593 		}
2594 
2595 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2596 			gup_put_folio(folio, 1, flags);
2597 			goto pte_unmap;
2598 		}
2599 
2600 		/*
2601 		 * We need to make the page accessible if and only if we are
2602 		 * going to access its content (the FOLL_PIN case).  Please
2603 		 * see Documentation/core-api/pin_user_pages.rst for
2604 		 * details.
2605 		 */
2606 		if (flags & FOLL_PIN) {
2607 			ret = arch_make_page_accessible(page);
2608 			if (ret) {
2609 				gup_put_folio(folio, 1, flags);
2610 				goto pte_unmap;
2611 			}
2612 		}
2613 		folio_set_referenced(folio);
2614 		pages[*nr] = page;
2615 		(*nr)++;
2616 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2617 
2618 	ret = 1;
2619 
2620 pte_unmap:
2621 	if (pgmap)
2622 		put_dev_pagemap(pgmap);
2623 	pte_unmap(ptem);
2624 	return ret;
2625 }
2626 #else
2627 
2628 /*
2629  * If we can't determine whether or not a pte is special, then fail immediately
2630  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2631  * to be special.
2632  *
2633  * For a futex to be placed on a THP tail page, get_futex_key requires a
2634  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2635  * useful to have gup_huge_pmd even if we can't operate on ptes.
2636  */
2637 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2638 			 unsigned long end, unsigned int flags,
2639 			 struct page **pages, int *nr)
2640 {
2641 	return 0;
2642 }
2643 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2644 
2645 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2646 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2647 			     unsigned long end, unsigned int flags,
2648 			     struct page **pages, int *nr)
2649 {
2650 	int nr_start = *nr;
2651 	struct dev_pagemap *pgmap = NULL;
2652 
2653 	do {
2654 		struct page *page = pfn_to_page(pfn);
2655 
2656 		pgmap = get_dev_pagemap(pfn, pgmap);
2657 		if (unlikely(!pgmap)) {
2658 			undo_dev_pagemap(nr, nr_start, flags, pages);
2659 			break;
2660 		}
2661 
2662 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2663 			undo_dev_pagemap(nr, nr_start, flags, pages);
2664 			break;
2665 		}
2666 
2667 		SetPageReferenced(page);
2668 		pages[*nr] = page;
2669 		if (unlikely(try_grab_page(page, flags))) {
2670 			undo_dev_pagemap(nr, nr_start, flags, pages);
2671 			break;
2672 		}
2673 		(*nr)++;
2674 		pfn++;
2675 	} while (addr += PAGE_SIZE, addr != end);
2676 
2677 	put_dev_pagemap(pgmap);
2678 	return addr == end;
2679 }
2680 
2681 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2682 				 unsigned long end, unsigned int flags,
2683 				 struct page **pages, int *nr)
2684 {
2685 	unsigned long fault_pfn;
2686 	int nr_start = *nr;
2687 
2688 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2689 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2690 		return 0;
2691 
2692 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2693 		undo_dev_pagemap(nr, nr_start, flags, pages);
2694 		return 0;
2695 	}
2696 	return 1;
2697 }
2698 
2699 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2700 				 unsigned long end, unsigned int flags,
2701 				 struct page **pages, int *nr)
2702 {
2703 	unsigned long fault_pfn;
2704 	int nr_start = *nr;
2705 
2706 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2707 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2708 		return 0;
2709 
2710 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2711 		undo_dev_pagemap(nr, nr_start, flags, pages);
2712 		return 0;
2713 	}
2714 	return 1;
2715 }
2716 #else
2717 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2718 				 unsigned long end, unsigned int flags,
2719 				 struct page **pages, int *nr)
2720 {
2721 	BUILD_BUG();
2722 	return 0;
2723 }
2724 
2725 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2726 				 unsigned long end, unsigned int flags,
2727 				 struct page **pages, int *nr)
2728 {
2729 	BUILD_BUG();
2730 	return 0;
2731 }
2732 #endif
2733 
2734 static int record_subpages(struct page *page, unsigned long addr,
2735 			   unsigned long end, struct page **pages)
2736 {
2737 	int nr;
2738 
2739 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2740 		pages[nr] = nth_page(page, nr);
2741 
2742 	return nr;
2743 }
2744 
2745 #ifdef CONFIG_ARCH_HAS_HUGEPD
2746 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2747 				      unsigned long sz)
2748 {
2749 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2750 	return (__boundary - 1 < end - 1) ? __boundary : end;
2751 }
2752 
2753 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2754 		       unsigned long end, unsigned int flags,
2755 		       struct page **pages, int *nr)
2756 {
2757 	unsigned long pte_end;
2758 	struct page *page;
2759 	struct folio *folio;
2760 	pte_t pte;
2761 	int refs;
2762 
2763 	pte_end = (addr + sz) & ~(sz-1);
2764 	if (pte_end < end)
2765 		end = pte_end;
2766 
2767 	pte = huge_ptep_get(ptep);
2768 
2769 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2770 		return 0;
2771 
2772 	/* hugepages are never "special" */
2773 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2774 
2775 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2776 	refs = record_subpages(page, addr, end, pages + *nr);
2777 
2778 	folio = try_grab_folio(page, refs, flags);
2779 	if (!folio)
2780 		return 0;
2781 
2782 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2783 		gup_put_folio(folio, refs, flags);
2784 		return 0;
2785 	}
2786 
2787 	if (!folio_fast_pin_allowed(folio, flags)) {
2788 		gup_put_folio(folio, refs, flags);
2789 		return 0;
2790 	}
2791 
2792 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2793 		gup_put_folio(folio, refs, flags);
2794 		return 0;
2795 	}
2796 
2797 	*nr += refs;
2798 	folio_set_referenced(folio);
2799 	return 1;
2800 }
2801 
2802 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2803 		unsigned int pdshift, unsigned long end, unsigned int flags,
2804 		struct page **pages, int *nr)
2805 {
2806 	pte_t *ptep;
2807 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2808 	unsigned long next;
2809 
2810 	ptep = hugepte_offset(hugepd, addr, pdshift);
2811 	do {
2812 		next = hugepte_addr_end(addr, end, sz);
2813 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2814 			return 0;
2815 	} while (ptep++, addr = next, addr != end);
2816 
2817 	return 1;
2818 }
2819 #else
2820 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2821 		unsigned int pdshift, unsigned long end, unsigned int flags,
2822 		struct page **pages, int *nr)
2823 {
2824 	return 0;
2825 }
2826 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2827 
2828 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2829 			unsigned long end, unsigned int flags,
2830 			struct page **pages, int *nr)
2831 {
2832 	struct page *page;
2833 	struct folio *folio;
2834 	int refs;
2835 
2836 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2837 		return 0;
2838 
2839 	if (pmd_devmap(orig)) {
2840 		if (unlikely(flags & FOLL_LONGTERM))
2841 			return 0;
2842 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2843 					     pages, nr);
2844 	}
2845 
2846 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2847 	refs = record_subpages(page, addr, end, pages + *nr);
2848 
2849 	folio = try_grab_folio(page, refs, flags);
2850 	if (!folio)
2851 		return 0;
2852 
2853 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2854 		gup_put_folio(folio, refs, flags);
2855 		return 0;
2856 	}
2857 
2858 	if (!folio_fast_pin_allowed(folio, flags)) {
2859 		gup_put_folio(folio, refs, flags);
2860 		return 0;
2861 	}
2862 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2863 		gup_put_folio(folio, refs, flags);
2864 		return 0;
2865 	}
2866 
2867 	*nr += refs;
2868 	folio_set_referenced(folio);
2869 	return 1;
2870 }
2871 
2872 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2873 			unsigned long end, unsigned int flags,
2874 			struct page **pages, int *nr)
2875 {
2876 	struct page *page;
2877 	struct folio *folio;
2878 	int refs;
2879 
2880 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2881 		return 0;
2882 
2883 	if (pud_devmap(orig)) {
2884 		if (unlikely(flags & FOLL_LONGTERM))
2885 			return 0;
2886 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2887 					     pages, nr);
2888 	}
2889 
2890 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2891 	refs = record_subpages(page, addr, end, pages + *nr);
2892 
2893 	folio = try_grab_folio(page, refs, flags);
2894 	if (!folio)
2895 		return 0;
2896 
2897 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2898 		gup_put_folio(folio, refs, flags);
2899 		return 0;
2900 	}
2901 
2902 	if (!folio_fast_pin_allowed(folio, flags)) {
2903 		gup_put_folio(folio, refs, flags);
2904 		return 0;
2905 	}
2906 
2907 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2908 		gup_put_folio(folio, refs, flags);
2909 		return 0;
2910 	}
2911 
2912 	*nr += refs;
2913 	folio_set_referenced(folio);
2914 	return 1;
2915 }
2916 
2917 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2918 			unsigned long end, unsigned int flags,
2919 			struct page **pages, int *nr)
2920 {
2921 	int refs;
2922 	struct page *page;
2923 	struct folio *folio;
2924 
2925 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2926 		return 0;
2927 
2928 	BUILD_BUG_ON(pgd_devmap(orig));
2929 
2930 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2931 	refs = record_subpages(page, addr, end, pages + *nr);
2932 
2933 	folio = try_grab_folio(page, refs, flags);
2934 	if (!folio)
2935 		return 0;
2936 
2937 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2938 		gup_put_folio(folio, refs, flags);
2939 		return 0;
2940 	}
2941 
2942 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2943 		gup_put_folio(folio, refs, flags);
2944 		return 0;
2945 	}
2946 
2947 	if (!folio_fast_pin_allowed(folio, flags)) {
2948 		gup_put_folio(folio, refs, flags);
2949 		return 0;
2950 	}
2951 
2952 	*nr += refs;
2953 	folio_set_referenced(folio);
2954 	return 1;
2955 }
2956 
2957 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2958 		unsigned int flags, struct page **pages, int *nr)
2959 {
2960 	unsigned long next;
2961 	pmd_t *pmdp;
2962 
2963 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2964 	do {
2965 		pmd_t pmd = pmdp_get_lockless(pmdp);
2966 
2967 		next = pmd_addr_end(addr, end);
2968 		if (!pmd_present(pmd))
2969 			return 0;
2970 
2971 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2972 			     pmd_devmap(pmd))) {
2973 			if (pmd_protnone(pmd) &&
2974 			    !gup_can_follow_protnone(flags))
2975 				return 0;
2976 
2977 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2978 				pages, nr))
2979 				return 0;
2980 
2981 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2982 			/*
2983 			 * architecture have different format for hugetlbfs
2984 			 * pmd format and THP pmd format
2985 			 */
2986 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2987 					 PMD_SHIFT, next, flags, pages, nr))
2988 				return 0;
2989 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2990 			return 0;
2991 	} while (pmdp++, addr = next, addr != end);
2992 
2993 	return 1;
2994 }
2995 
2996 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2997 			 unsigned int flags, struct page **pages, int *nr)
2998 {
2999 	unsigned long next;
3000 	pud_t *pudp;
3001 
3002 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3003 	do {
3004 		pud_t pud = READ_ONCE(*pudp);
3005 
3006 		next = pud_addr_end(addr, end);
3007 		if (unlikely(!pud_present(pud)))
3008 			return 0;
3009 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3010 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3011 					  pages, nr))
3012 				return 0;
3013 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3014 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3015 					 PUD_SHIFT, next, flags, pages, nr))
3016 				return 0;
3017 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3018 			return 0;
3019 	} while (pudp++, addr = next, addr != end);
3020 
3021 	return 1;
3022 }
3023 
3024 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3025 			 unsigned int flags, struct page **pages, int *nr)
3026 {
3027 	unsigned long next;
3028 	p4d_t *p4dp;
3029 
3030 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3031 	do {
3032 		p4d_t p4d = READ_ONCE(*p4dp);
3033 
3034 		next = p4d_addr_end(addr, end);
3035 		if (p4d_none(p4d))
3036 			return 0;
3037 		BUILD_BUG_ON(p4d_huge(p4d));
3038 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3039 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3040 					 P4D_SHIFT, next, flags, pages, nr))
3041 				return 0;
3042 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3043 			return 0;
3044 	} while (p4dp++, addr = next, addr != end);
3045 
3046 	return 1;
3047 }
3048 
3049 static void gup_pgd_range(unsigned long addr, unsigned long end,
3050 		unsigned int flags, struct page **pages, int *nr)
3051 {
3052 	unsigned long next;
3053 	pgd_t *pgdp;
3054 
3055 	pgdp = pgd_offset(current->mm, addr);
3056 	do {
3057 		pgd_t pgd = READ_ONCE(*pgdp);
3058 
3059 		next = pgd_addr_end(addr, end);
3060 		if (pgd_none(pgd))
3061 			return;
3062 		if (unlikely(pgd_huge(pgd))) {
3063 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3064 					  pages, nr))
3065 				return;
3066 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3067 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3068 					 PGDIR_SHIFT, next, flags, pages, nr))
3069 				return;
3070 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3071 			return;
3072 	} while (pgdp++, addr = next, addr != end);
3073 }
3074 #else
3075 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3076 		unsigned int flags, struct page **pages, int *nr)
3077 {
3078 }
3079 #endif /* CONFIG_HAVE_FAST_GUP */
3080 
3081 #ifndef gup_fast_permitted
3082 /*
3083  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3084  * we need to fall back to the slow version:
3085  */
3086 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3087 {
3088 	return true;
3089 }
3090 #endif
3091 
3092 static unsigned long lockless_pages_from_mm(unsigned long start,
3093 					    unsigned long end,
3094 					    unsigned int gup_flags,
3095 					    struct page **pages)
3096 {
3097 	unsigned long flags;
3098 	int nr_pinned = 0;
3099 	unsigned seq;
3100 
3101 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3102 	    !gup_fast_permitted(start, end))
3103 		return 0;
3104 
3105 	if (gup_flags & FOLL_PIN) {
3106 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3107 		if (seq & 1)
3108 			return 0;
3109 	}
3110 
3111 	/*
3112 	 * Disable interrupts. The nested form is used, in order to allow full,
3113 	 * general purpose use of this routine.
3114 	 *
3115 	 * With interrupts disabled, we block page table pages from being freed
3116 	 * from under us. See struct mmu_table_batch comments in
3117 	 * include/asm-generic/tlb.h for more details.
3118 	 *
3119 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3120 	 * that come from THPs splitting.
3121 	 */
3122 	local_irq_save(flags);
3123 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3124 	local_irq_restore(flags);
3125 
3126 	/*
3127 	 * When pinning pages for DMA there could be a concurrent write protect
3128 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3129 	 */
3130 	if (gup_flags & FOLL_PIN) {
3131 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3132 			unpin_user_pages_lockless(pages, nr_pinned);
3133 			return 0;
3134 		} else {
3135 			sanity_check_pinned_pages(pages, nr_pinned);
3136 		}
3137 	}
3138 	return nr_pinned;
3139 }
3140 
3141 static int internal_get_user_pages_fast(unsigned long start,
3142 					unsigned long nr_pages,
3143 					unsigned int gup_flags,
3144 					struct page **pages)
3145 {
3146 	unsigned long len, end;
3147 	unsigned long nr_pinned;
3148 	int locked = 0;
3149 	int ret;
3150 
3151 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3152 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3153 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3154 				       FOLL_PCI_P2PDMA)))
3155 		return -EINVAL;
3156 
3157 	if (gup_flags & FOLL_PIN)
3158 		mm_set_has_pinned_flag(&current->mm->flags);
3159 
3160 	if (!(gup_flags & FOLL_FAST_ONLY))
3161 		might_lock_read(&current->mm->mmap_lock);
3162 
3163 	start = untagged_addr(start) & PAGE_MASK;
3164 	len = nr_pages << PAGE_SHIFT;
3165 	if (check_add_overflow(start, len, &end))
3166 		return -EOVERFLOW;
3167 	if (end > TASK_SIZE_MAX)
3168 		return -EFAULT;
3169 	if (unlikely(!access_ok((void __user *)start, len)))
3170 		return -EFAULT;
3171 
3172 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3173 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3174 		return nr_pinned;
3175 
3176 	/* Slow path: try to get the remaining pages with get_user_pages */
3177 	start += nr_pinned << PAGE_SHIFT;
3178 	pages += nr_pinned;
3179 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3180 				    pages, &locked,
3181 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3182 	if (ret < 0) {
3183 		/*
3184 		 * The caller has to unpin the pages we already pinned so
3185 		 * returning -errno is not an option
3186 		 */
3187 		if (nr_pinned)
3188 			return nr_pinned;
3189 		return ret;
3190 	}
3191 	return ret + nr_pinned;
3192 }
3193 
3194 /**
3195  * get_user_pages_fast_only() - pin user pages in memory
3196  * @start:      starting user address
3197  * @nr_pages:   number of pages from start to pin
3198  * @gup_flags:  flags modifying pin behaviour
3199  * @pages:      array that receives pointers to the pages pinned.
3200  *              Should be at least nr_pages long.
3201  *
3202  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3203  * the regular GUP.
3204  *
3205  * If the architecture does not support this function, simply return with no
3206  * pages pinned.
3207  *
3208  * Careful, careful! COW breaking can go either way, so a non-write
3209  * access can get ambiguous page results. If you call this function without
3210  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3211  */
3212 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3213 			     unsigned int gup_flags, struct page **pages)
3214 {
3215 	/*
3216 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3217 	 * because gup fast is always a "pin with a +1 page refcount" request.
3218 	 *
3219 	 * FOLL_FAST_ONLY is required in order to match the API description of
3220 	 * this routine: no fall back to regular ("slow") GUP.
3221 	 */
3222 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3223 			       FOLL_GET | FOLL_FAST_ONLY))
3224 		return -EINVAL;
3225 
3226 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3227 }
3228 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3229 
3230 /**
3231  * get_user_pages_fast() - pin user pages in memory
3232  * @start:      starting user address
3233  * @nr_pages:   number of pages from start to pin
3234  * @gup_flags:  flags modifying pin behaviour
3235  * @pages:      array that receives pointers to the pages pinned.
3236  *              Should be at least nr_pages long.
3237  *
3238  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3239  * If not successful, it will fall back to taking the lock and
3240  * calling get_user_pages().
3241  *
3242  * Returns number of pages pinned. This may be fewer than the number requested.
3243  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3244  * -errno.
3245  */
3246 int get_user_pages_fast(unsigned long start, int nr_pages,
3247 			unsigned int gup_flags, struct page **pages)
3248 {
3249 	/*
3250 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3251 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3252 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3253 	 * request.
3254 	 */
3255 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3256 		return -EINVAL;
3257 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3258 }
3259 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3260 
3261 /**
3262  * pin_user_pages_fast() - pin user pages in memory without taking locks
3263  *
3264  * @start:      starting user address
3265  * @nr_pages:   number of pages from start to pin
3266  * @gup_flags:  flags modifying pin behaviour
3267  * @pages:      array that receives pointers to the pages pinned.
3268  *              Should be at least nr_pages long.
3269  *
3270  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3271  * get_user_pages_fast() for documentation on the function arguments, because
3272  * the arguments here are identical.
3273  *
3274  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3275  * see Documentation/core-api/pin_user_pages.rst for further details.
3276  *
3277  * Note that if a zero_page is amongst the returned pages, it will not have
3278  * pins in it and unpin_user_page() will not remove pins from it.
3279  */
3280 int pin_user_pages_fast(unsigned long start, int nr_pages,
3281 			unsigned int gup_flags, struct page **pages)
3282 {
3283 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3284 		return -EINVAL;
3285 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3286 }
3287 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3288 
3289 /**
3290  * pin_user_pages_remote() - pin pages of a remote process
3291  *
3292  * @mm:		mm_struct of target mm
3293  * @start:	starting user address
3294  * @nr_pages:	number of pages from start to pin
3295  * @gup_flags:	flags modifying lookup behaviour
3296  * @pages:	array that receives pointers to the pages pinned.
3297  *		Should be at least nr_pages long.
3298  * @locked:	pointer to lock flag indicating whether lock is held and
3299  *		subsequently whether VM_FAULT_RETRY functionality can be
3300  *		utilised. Lock must initially be held.
3301  *
3302  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3303  * get_user_pages_remote() for documentation on the function arguments, because
3304  * the arguments here are identical.
3305  *
3306  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3307  * see Documentation/core-api/pin_user_pages.rst for details.
3308  *
3309  * Note that if a zero_page is amongst the returned pages, it will not have
3310  * pins in it and unpin_user_page*() will not remove pins from it.
3311  */
3312 long pin_user_pages_remote(struct mm_struct *mm,
3313 			   unsigned long start, unsigned long nr_pages,
3314 			   unsigned int gup_flags, struct page **pages,
3315 			   int *locked)
3316 {
3317 	int local_locked = 1;
3318 
3319 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3320 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3321 		return 0;
3322 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3323 				     locked ? locked : &local_locked,
3324 				     gup_flags);
3325 }
3326 EXPORT_SYMBOL(pin_user_pages_remote);
3327 
3328 /**
3329  * pin_user_pages() - pin user pages in memory for use by other devices
3330  *
3331  * @start:	starting user address
3332  * @nr_pages:	number of pages from start to pin
3333  * @gup_flags:	flags modifying lookup behaviour
3334  * @pages:	array that receives pointers to the pages pinned.
3335  *		Should be at least nr_pages long.
3336  *
3337  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3338  * FOLL_PIN is set.
3339  *
3340  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3341  * see Documentation/core-api/pin_user_pages.rst for details.
3342  *
3343  * Note that if a zero_page is amongst the returned pages, it will not have
3344  * pins in it and unpin_user_page*() will not remove pins from it.
3345  */
3346 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3347 		    unsigned int gup_flags, struct page **pages)
3348 {
3349 	int locked = 1;
3350 
3351 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3352 		return 0;
3353 	return __gup_longterm_locked(current->mm, start, nr_pages,
3354 				     pages, &locked, gup_flags);
3355 }
3356 EXPORT_SYMBOL(pin_user_pages);
3357 
3358 /*
3359  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3360  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3361  * FOLL_PIN and rejects FOLL_GET.
3362  *
3363  * Note that if a zero_page is amongst the returned pages, it will not have
3364  * pins in it and unpin_user_page*() will not remove pins from it.
3365  */
3366 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3367 			     struct page **pages, unsigned int gup_flags)
3368 {
3369 	int locked = 0;
3370 
3371 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3372 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3373 		return 0;
3374 
3375 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3376 				     &locked, gup_flags);
3377 }
3378 EXPORT_SYMBOL(pin_user_pages_unlocked);
3379