xref: /linux/mm/gup.c (revision 6cc45f8c1f898570916044f606be9890d295e129)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio;
56 
57 		if (!page)
58 			continue;
59 
60 		folio = page_folio(page);
61 
62 		if (is_zero_page(page) ||
63 		    !folio_test_anon(folio))
64 			continue;
65 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
66 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
67 		else
68 			/* Either a PTE-mapped or a PMD-mapped THP. */
69 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
70 				       !PageAnonExclusive(page), page);
71 	}
72 }
73 
74 /*
75  * Return the folio with ref appropriately incremented,
76  * or NULL if that failed.
77  */
78 static inline struct folio *try_get_folio(struct page *page, int refs)
79 {
80 	struct folio *folio;
81 
82 retry:
83 	folio = page_folio(page);
84 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
85 		return NULL;
86 	if (unlikely(!folio_ref_try_add(folio, refs)))
87 		return NULL;
88 
89 	/*
90 	 * At this point we have a stable reference to the folio; but it
91 	 * could be that between calling page_folio() and the refcount
92 	 * increment, the folio was split, in which case we'd end up
93 	 * holding a reference on a folio that has nothing to do with the page
94 	 * we were given anymore.
95 	 * So now that the folio is stable, recheck that the page still
96 	 * belongs to this folio.
97 	 */
98 	if (unlikely(page_folio(page) != folio)) {
99 		if (!put_devmap_managed_folio_refs(folio, refs))
100 			folio_put_refs(folio, refs);
101 		goto retry;
102 	}
103 
104 	return folio;
105 }
106 
107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108 {
109 	if (flags & FOLL_PIN) {
110 		if (is_zero_folio(folio))
111 			return;
112 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 		if (folio_test_large(folio))
114 			atomic_sub(refs, &folio->_pincount);
115 		else
116 			refs *= GUP_PIN_COUNTING_BIAS;
117 	}
118 
119 	if (!put_devmap_managed_folio_refs(folio, refs))
120 		folio_put_refs(folio, refs);
121 }
122 
123 /**
124  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
125  * @folio:    pointer to folio to be grabbed
126  * @refs:     the value to (effectively) add to the folio's refcount
127  * @flags:    gup flags: these are the FOLL_* flag values
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
133  *
134  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
135  * time.
136  *
137  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
138  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
139  *
140  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
141  *			be grabbed.
142  *
143  * It is called when we have a stable reference for the folio, typically in
144  * GUP slow path.
145  */
146 int __must_check try_grab_folio(struct folio *folio, int refs,
147 				unsigned int flags)
148 {
149 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
150 		return -ENOMEM;
151 
152 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
153 		return -EREMOTEIO;
154 
155 	if (flags & FOLL_GET)
156 		folio_ref_add(folio, refs);
157 	else if (flags & FOLL_PIN) {
158 		/*
159 		 * Don't take a pin on the zero page - it's not going anywhere
160 		 * and it is used in a *lot* of places.
161 		 */
162 		if (is_zero_folio(folio))
163 			return 0;
164 
165 		/*
166 		 * Increment the normal page refcount field at least once,
167 		 * so that the page really is pinned.
168 		 */
169 		if (folio_test_large(folio)) {
170 			folio_ref_add(folio, refs);
171 			atomic_add(refs, &folio->_pincount);
172 		} else {
173 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
174 		}
175 
176 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 	}
178 
179 	return 0;
180 }
181 
182 /**
183  * unpin_user_page() - release a dma-pinned page
184  * @page:            pointer to page to be released
185  *
186  * Pages that were pinned via pin_user_pages*() must be released via either
187  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
188  * that such pages can be separately tracked and uniquely handled. In
189  * particular, interactions with RDMA and filesystems need special handling.
190  */
191 void unpin_user_page(struct page *page)
192 {
193 	sanity_check_pinned_pages(&page, 1);
194 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
195 }
196 EXPORT_SYMBOL(unpin_user_page);
197 
198 /**
199  * unpin_folio() - release a dma-pinned folio
200  * @folio:         pointer to folio to be released
201  *
202  * Folios that were pinned via memfd_pin_folios() or other similar routines
203  * must be released either using unpin_folio() or unpin_folios().
204  */
205 void unpin_folio(struct folio *folio)
206 {
207 	gup_put_folio(folio, 1, FOLL_PIN);
208 }
209 EXPORT_SYMBOL_GPL(unpin_folio);
210 
211 /**
212  * folio_add_pin - Try to get an additional pin on a pinned folio
213  * @folio: The folio to be pinned
214  *
215  * Get an additional pin on a folio we already have a pin on.  Makes no change
216  * if the folio is a zero_page.
217  */
218 void folio_add_pin(struct folio *folio)
219 {
220 	if (is_zero_folio(folio))
221 		return;
222 
223 	/*
224 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
225 	 * page refcount field at least once, so that the page really is
226 	 * pinned.
227 	 */
228 	if (folio_test_large(folio)) {
229 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
230 		folio_ref_inc(folio);
231 		atomic_inc(&folio->_pincount);
232 	} else {
233 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
234 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
235 	}
236 }
237 
238 static inline struct folio *gup_folio_range_next(struct page *start,
239 		unsigned long npages, unsigned long i, unsigned int *ntails)
240 {
241 	struct page *next = nth_page(start, i);
242 	struct folio *folio = page_folio(next);
243 	unsigned int nr = 1;
244 
245 	if (folio_test_large(folio))
246 		nr = min_t(unsigned int, npages - i,
247 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
248 
249 	*ntails = nr;
250 	return folio;
251 }
252 
253 static inline struct folio *gup_folio_next(struct page **list,
254 		unsigned long npages, unsigned long i, unsigned int *ntails)
255 {
256 	struct folio *folio = page_folio(list[i]);
257 	unsigned int nr;
258 
259 	for (nr = i + 1; nr < npages; nr++) {
260 		if (page_folio(list[nr]) != folio)
261 			break;
262 	}
263 
264 	*ntails = nr - i;
265 	return folio;
266 }
267 
268 /**
269  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270  * @pages:  array of pages to be maybe marked dirty, and definitely released.
271  * @npages: number of pages in the @pages array.
272  * @make_dirty: whether to mark the pages dirty
273  *
274  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275  * variants called on that page.
276  *
277  * For each page in the @pages array, make that page (or its head page, if a
278  * compound page) dirty, if @make_dirty is true, and if the page was previously
279  * listed as clean. In any case, releases all pages using unpin_user_page(),
280  * possibly via unpin_user_pages(), for the non-dirty case.
281  *
282  * Please see the unpin_user_page() documentation for details.
283  *
284  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285  * required, then the caller should a) verify that this is really correct,
286  * because _lock() is usually required, and b) hand code it:
287  * set_page_dirty_lock(), unpin_user_page().
288  *
289  */
290 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
291 				 bool make_dirty)
292 {
293 	unsigned long i;
294 	struct folio *folio;
295 	unsigned int nr;
296 
297 	if (!make_dirty) {
298 		unpin_user_pages(pages, npages);
299 		return;
300 	}
301 
302 	sanity_check_pinned_pages(pages, npages);
303 	for (i = 0; i < npages; i += nr) {
304 		folio = gup_folio_next(pages, npages, i, &nr);
305 		/*
306 		 * Checking PageDirty at this point may race with
307 		 * clear_page_dirty_for_io(), but that's OK. Two key
308 		 * cases:
309 		 *
310 		 * 1) This code sees the page as already dirty, so it
311 		 * skips the call to set_page_dirty(). That could happen
312 		 * because clear_page_dirty_for_io() called
313 		 * folio_mkclean(), followed by set_page_dirty().
314 		 * However, now the page is going to get written back,
315 		 * which meets the original intention of setting it
316 		 * dirty, so all is well: clear_page_dirty_for_io() goes
317 		 * on to call TestClearPageDirty(), and write the page
318 		 * back.
319 		 *
320 		 * 2) This code sees the page as clean, so it calls
321 		 * set_page_dirty(). The page stays dirty, despite being
322 		 * written back, so it gets written back again in the
323 		 * next writeback cycle. This is harmless.
324 		 */
325 		if (!folio_test_dirty(folio)) {
326 			folio_lock(folio);
327 			folio_mark_dirty(folio);
328 			folio_unlock(folio);
329 		}
330 		gup_put_folio(folio, nr, FOLL_PIN);
331 	}
332 }
333 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
334 
335 /**
336  * unpin_user_page_range_dirty_lock() - release and optionally dirty
337  * gup-pinned page range
338  *
339  * @page:  the starting page of a range maybe marked dirty, and definitely released.
340  * @npages: number of consecutive pages to release.
341  * @make_dirty: whether to mark the pages dirty
342  *
343  * "gup-pinned page range" refers to a range of pages that has had one of the
344  * pin_user_pages() variants called on that page.
345  *
346  * For the page ranges defined by [page .. page+npages], make that range (or
347  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
348  * page range was previously listed as clean.
349  *
350  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
351  * required, then the caller should a) verify that this is really correct,
352  * because _lock() is usually required, and b) hand code it:
353  * set_page_dirty_lock(), unpin_user_page().
354  *
355  */
356 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
357 				      bool make_dirty)
358 {
359 	unsigned long i;
360 	struct folio *folio;
361 	unsigned int nr;
362 
363 	for (i = 0; i < npages; i += nr) {
364 		folio = gup_folio_range_next(page, npages, i, &nr);
365 		if (make_dirty && !folio_test_dirty(folio)) {
366 			folio_lock(folio);
367 			folio_mark_dirty(folio);
368 			folio_unlock(folio);
369 		}
370 		gup_put_folio(folio, nr, FOLL_PIN);
371 	}
372 }
373 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
374 
375 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
376 {
377 	unsigned long i;
378 	struct folio *folio;
379 	unsigned int nr;
380 
381 	/*
382 	 * Don't perform any sanity checks because we might have raced with
383 	 * fork() and some anonymous pages might now actually be shared --
384 	 * which is why we're unpinning after all.
385 	 */
386 	for (i = 0; i < npages; i += nr) {
387 		folio = gup_folio_next(pages, npages, i, &nr);
388 		gup_put_folio(folio, nr, FOLL_PIN);
389 	}
390 }
391 
392 /**
393  * unpin_user_pages() - release an array of gup-pinned pages.
394  * @pages:  array of pages to be marked dirty and released.
395  * @npages: number of pages in the @pages array.
396  *
397  * For each page in the @pages array, release the page using unpin_user_page().
398  *
399  * Please see the unpin_user_page() documentation for details.
400  */
401 void unpin_user_pages(struct page **pages, unsigned long npages)
402 {
403 	unsigned long i;
404 	struct folio *folio;
405 	unsigned int nr;
406 
407 	/*
408 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
409 	 * leaving them pinned), but probably not. More likely, gup/pup returned
410 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
411 	 */
412 	if (WARN_ON(IS_ERR_VALUE(npages)))
413 		return;
414 
415 	sanity_check_pinned_pages(pages, npages);
416 	for (i = 0; i < npages; i += nr) {
417 		if (!pages[i]) {
418 			nr = 1;
419 			continue;
420 		}
421 		folio = gup_folio_next(pages, npages, i, &nr);
422 		gup_put_folio(folio, nr, FOLL_PIN);
423 	}
424 }
425 EXPORT_SYMBOL(unpin_user_pages);
426 
427 /**
428  * unpin_user_folio() - release pages of a folio
429  * @folio:  pointer to folio to be released
430  * @npages: number of pages of same folio
431  *
432  * Release npages of the folio
433  */
434 void unpin_user_folio(struct folio *folio, unsigned long npages)
435 {
436 	gup_put_folio(folio, npages, FOLL_PIN);
437 }
438 EXPORT_SYMBOL(unpin_user_folio);
439 
440 /**
441  * unpin_folios() - release an array of gup-pinned folios.
442  * @folios:  array of folios to be marked dirty and released.
443  * @nfolios: number of folios in the @folios array.
444  *
445  * For each folio in the @folios array, release the folio using gup_put_folio.
446  *
447  * Please see the unpin_folio() documentation for details.
448  */
449 void unpin_folios(struct folio **folios, unsigned long nfolios)
450 {
451 	unsigned long i = 0, j;
452 
453 	/*
454 	 * If this WARN_ON() fires, then the system *might* be leaking folios
455 	 * (by leaving them pinned), but probably not. More likely, gup/pup
456 	 * returned a hard -ERRNO error to the caller, who erroneously passed
457 	 * it here.
458 	 */
459 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
460 		return;
461 
462 	while (i < nfolios) {
463 		for (j = i + 1; j < nfolios; j++)
464 			if (folios[i] != folios[j])
465 				break;
466 
467 		if (folios[i])
468 			gup_put_folio(folios[i], j - i, FOLL_PIN);
469 		i = j;
470 	}
471 }
472 EXPORT_SYMBOL_GPL(unpin_folios);
473 
474 /*
475  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
476  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
477  * cache bouncing on large SMP machines for concurrent pinned gups.
478  */
479 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
480 {
481 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
482 		set_bit(MMF_HAS_PINNED, mm_flags);
483 }
484 
485 #ifdef CONFIG_MMU
486 
487 #ifdef CONFIG_HAVE_GUP_FAST
488 static int record_subpages(struct page *page, unsigned long sz,
489 			   unsigned long addr, unsigned long end,
490 			   struct page **pages)
491 {
492 	struct page *start_page;
493 	int nr;
494 
495 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
496 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
497 		pages[nr] = nth_page(start_page, nr);
498 
499 	return nr;
500 }
501 
502 /**
503  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
504  * @page:  pointer to page to be grabbed
505  * @refs:  the value to (effectively) add to the folio's refcount
506  * @flags: gup flags: these are the FOLL_* flag values.
507  *
508  * "grab" names in this file mean, "look at flags to decide whether to use
509  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
510  *
511  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
512  * same time. (That's true throughout the get_user_pages*() and
513  * pin_user_pages*() APIs.) Cases:
514  *
515  *    FOLL_GET: folio's refcount will be incremented by @refs.
516  *
517  *    FOLL_PIN on large folios: folio's refcount will be incremented by
518  *    @refs, and its pincount will be incremented by @refs.
519  *
520  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
521  *    @refs * GUP_PIN_COUNTING_BIAS.
522  *
523  * Return: The folio containing @page (with refcount appropriately
524  * incremented) for success, or NULL upon failure. If neither FOLL_GET
525  * nor FOLL_PIN was set, that's considered failure, and furthermore,
526  * a likely bug in the caller, so a warning is also emitted.
527  *
528  * It uses add ref unless zero to elevate the folio refcount and must be called
529  * in fast path only.
530  */
531 static struct folio *try_grab_folio_fast(struct page *page, int refs,
532 					 unsigned int flags)
533 {
534 	struct folio *folio;
535 
536 	/* Raise warn if it is not called in fast GUP */
537 	VM_WARN_ON_ONCE(!irqs_disabled());
538 
539 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
540 		return NULL;
541 
542 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
543 		return NULL;
544 
545 	if (flags & FOLL_GET)
546 		return try_get_folio(page, refs);
547 
548 	/* FOLL_PIN is set */
549 
550 	/*
551 	 * Don't take a pin on the zero page - it's not going anywhere
552 	 * and it is used in a *lot* of places.
553 	 */
554 	if (is_zero_page(page))
555 		return page_folio(page);
556 
557 	folio = try_get_folio(page, refs);
558 	if (!folio)
559 		return NULL;
560 
561 	/*
562 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
563 	 * right zone, so fail and let the caller fall back to the slow
564 	 * path.
565 	 */
566 	if (unlikely((flags & FOLL_LONGTERM) &&
567 		     !folio_is_longterm_pinnable(folio))) {
568 		if (!put_devmap_managed_folio_refs(folio, refs))
569 			folio_put_refs(folio, refs);
570 		return NULL;
571 	}
572 
573 	/*
574 	 * When pinning a large folio, use an exact count to track it.
575 	 *
576 	 * However, be sure to *also* increment the normal folio
577 	 * refcount field at least once, so that the folio really
578 	 * is pinned.  That's why the refcount from the earlier
579 	 * try_get_folio() is left intact.
580 	 */
581 	if (folio_test_large(folio))
582 		atomic_add(refs, &folio->_pincount);
583 	else
584 		folio_ref_add(folio,
585 				refs * (GUP_PIN_COUNTING_BIAS - 1));
586 	/*
587 	 * Adjust the pincount before re-checking the PTE for changes.
588 	 * This is essentially a smp_mb() and is paired with a memory
589 	 * barrier in folio_try_share_anon_rmap_*().
590 	 */
591 	smp_mb__after_atomic();
592 
593 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
594 
595 	return folio;
596 }
597 #endif	/* CONFIG_HAVE_GUP_FAST */
598 
599 static struct page *no_page_table(struct vm_area_struct *vma,
600 				  unsigned int flags, unsigned long address)
601 {
602 	if (!(flags & FOLL_DUMP))
603 		return NULL;
604 
605 	/*
606 	 * When core dumping, we don't want to allocate unnecessary pages or
607 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
608 	 * then get_dump_page() will return NULL to leave a hole in the dump.
609 	 * But we can only make this optimization where a hole would surely
610 	 * be zero-filled if handle_mm_fault() actually did handle it.
611 	 */
612 	if (is_vm_hugetlb_page(vma)) {
613 		struct hstate *h = hstate_vma(vma);
614 
615 		if (!hugetlbfs_pagecache_present(h, vma, address))
616 			return ERR_PTR(-EFAULT);
617 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
618 		return ERR_PTR(-EFAULT);
619 	}
620 
621 	return NULL;
622 }
623 
624 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
625 static struct page *follow_huge_pud(struct vm_area_struct *vma,
626 				    unsigned long addr, pud_t *pudp,
627 				    int flags, struct follow_page_context *ctx)
628 {
629 	struct mm_struct *mm = vma->vm_mm;
630 	struct page *page;
631 	pud_t pud = *pudp;
632 	unsigned long pfn = pud_pfn(pud);
633 	int ret;
634 
635 	assert_spin_locked(pud_lockptr(mm, pudp));
636 
637 	if ((flags & FOLL_WRITE) && !pud_write(pud))
638 		return NULL;
639 
640 	if (!pud_present(pud))
641 		return NULL;
642 
643 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
644 
645 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
646 	    pud_devmap(pud)) {
647 		/*
648 		 * device mapped pages can only be returned if the caller
649 		 * will manage the page reference count.
650 		 *
651 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
652 		 * assert that here:
653 		 */
654 		if (!(flags & (FOLL_GET | FOLL_PIN)))
655 			return ERR_PTR(-EEXIST);
656 
657 		if (flags & FOLL_TOUCH)
658 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
659 
660 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
661 		if (!ctx->pgmap)
662 			return ERR_PTR(-EFAULT);
663 	}
664 
665 	page = pfn_to_page(pfn);
666 
667 	if (!pud_devmap(pud) && !pud_write(pud) &&
668 	    gup_must_unshare(vma, flags, page))
669 		return ERR_PTR(-EMLINK);
670 
671 	ret = try_grab_folio(page_folio(page), 1, flags);
672 	if (ret)
673 		page = ERR_PTR(ret);
674 	else
675 		ctx->page_mask = HPAGE_PUD_NR - 1;
676 
677 	return page;
678 }
679 
680 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
681 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
682 					struct vm_area_struct *vma,
683 					unsigned int flags)
684 {
685 	/* If the pmd is writable, we can write to the page. */
686 	if (pmd_write(pmd))
687 		return true;
688 
689 	/* Maybe FOLL_FORCE is set to override it? */
690 	if (!(flags & FOLL_FORCE))
691 		return false;
692 
693 	/* But FOLL_FORCE has no effect on shared mappings */
694 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
695 		return false;
696 
697 	/* ... or read-only private ones */
698 	if (!(vma->vm_flags & VM_MAYWRITE))
699 		return false;
700 
701 	/* ... or already writable ones that just need to take a write fault */
702 	if (vma->vm_flags & VM_WRITE)
703 		return false;
704 
705 	/*
706 	 * See can_change_pte_writable(): we broke COW and could map the page
707 	 * writable if we have an exclusive anonymous page ...
708 	 */
709 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
710 		return false;
711 
712 	/* ... and a write-fault isn't required for other reasons. */
713 	if (pmd_needs_soft_dirty_wp(vma, pmd))
714 		return false;
715 	return !userfaultfd_huge_pmd_wp(vma, pmd);
716 }
717 
718 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
719 				    unsigned long addr, pmd_t *pmd,
720 				    unsigned int flags,
721 				    struct follow_page_context *ctx)
722 {
723 	struct mm_struct *mm = vma->vm_mm;
724 	pmd_t pmdval = *pmd;
725 	struct page *page;
726 	int ret;
727 
728 	assert_spin_locked(pmd_lockptr(mm, pmd));
729 
730 	page = pmd_page(pmdval);
731 	if ((flags & FOLL_WRITE) &&
732 	    !can_follow_write_pmd(pmdval, page, vma, flags))
733 		return NULL;
734 
735 	/* Avoid dumping huge zero page */
736 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
737 		return ERR_PTR(-EFAULT);
738 
739 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
740 		return NULL;
741 
742 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
743 		return ERR_PTR(-EMLINK);
744 
745 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
746 			!PageAnonExclusive(page), page);
747 
748 	ret = try_grab_folio(page_folio(page), 1, flags);
749 	if (ret)
750 		return ERR_PTR(ret);
751 
752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
753 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
754 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
755 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
756 
757 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
758 	ctx->page_mask = HPAGE_PMD_NR - 1;
759 
760 	return page;
761 }
762 
763 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
764 static struct page *follow_huge_pud(struct vm_area_struct *vma,
765 				    unsigned long addr, pud_t *pudp,
766 				    int flags, struct follow_page_context *ctx)
767 {
768 	return NULL;
769 }
770 
771 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
772 				    unsigned long addr, pmd_t *pmd,
773 				    unsigned int flags,
774 				    struct follow_page_context *ctx)
775 {
776 	return NULL;
777 }
778 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
779 
780 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
781 		pte_t *pte, unsigned int flags)
782 {
783 	if (flags & FOLL_TOUCH) {
784 		pte_t orig_entry = ptep_get(pte);
785 		pte_t entry = orig_entry;
786 
787 		if (flags & FOLL_WRITE)
788 			entry = pte_mkdirty(entry);
789 		entry = pte_mkyoung(entry);
790 
791 		if (!pte_same(orig_entry, entry)) {
792 			set_pte_at(vma->vm_mm, address, pte, entry);
793 			update_mmu_cache(vma, address, pte);
794 		}
795 	}
796 
797 	/* Proper page table entry exists, but no corresponding struct page */
798 	return -EEXIST;
799 }
800 
801 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
802 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
803 					struct vm_area_struct *vma,
804 					unsigned int flags)
805 {
806 	/* If the pte is writable, we can write to the page. */
807 	if (pte_write(pte))
808 		return true;
809 
810 	/* Maybe FOLL_FORCE is set to override it? */
811 	if (!(flags & FOLL_FORCE))
812 		return false;
813 
814 	/* But FOLL_FORCE has no effect on shared mappings */
815 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
816 		return false;
817 
818 	/* ... or read-only private ones */
819 	if (!(vma->vm_flags & VM_MAYWRITE))
820 		return false;
821 
822 	/* ... or already writable ones that just need to take a write fault */
823 	if (vma->vm_flags & VM_WRITE)
824 		return false;
825 
826 	/*
827 	 * See can_change_pte_writable(): we broke COW and could map the page
828 	 * writable if we have an exclusive anonymous page ...
829 	 */
830 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
831 		return false;
832 
833 	/* ... and a write-fault isn't required for other reasons. */
834 	if (pte_needs_soft_dirty_wp(vma, pte))
835 		return false;
836 	return !userfaultfd_pte_wp(vma, pte);
837 }
838 
839 static struct page *follow_page_pte(struct vm_area_struct *vma,
840 		unsigned long address, pmd_t *pmd, unsigned int flags,
841 		struct dev_pagemap **pgmap)
842 {
843 	struct mm_struct *mm = vma->vm_mm;
844 	struct folio *folio;
845 	struct page *page;
846 	spinlock_t *ptl;
847 	pte_t *ptep, pte;
848 	int ret;
849 
850 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
851 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
852 			 (FOLL_PIN | FOLL_GET)))
853 		return ERR_PTR(-EINVAL);
854 
855 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
856 	if (!ptep)
857 		return no_page_table(vma, flags, address);
858 	pte = ptep_get(ptep);
859 	if (!pte_present(pte))
860 		goto no_page;
861 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
862 		goto no_page;
863 
864 	page = vm_normal_page(vma, address, pte);
865 
866 	/*
867 	 * We only care about anon pages in can_follow_write_pte() and don't
868 	 * have to worry about pte_devmap() because they are never anon.
869 	 */
870 	if ((flags & FOLL_WRITE) &&
871 	    !can_follow_write_pte(pte, page, vma, flags)) {
872 		page = NULL;
873 		goto out;
874 	}
875 
876 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
877 		/*
878 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
879 		 * case since they are only valid while holding the pgmap
880 		 * reference.
881 		 */
882 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
883 		if (*pgmap)
884 			page = pte_page(pte);
885 		else
886 			goto no_page;
887 	} else if (unlikely(!page)) {
888 		if (flags & FOLL_DUMP) {
889 			/* Avoid special (like zero) pages in core dumps */
890 			page = ERR_PTR(-EFAULT);
891 			goto out;
892 		}
893 
894 		if (is_zero_pfn(pte_pfn(pte))) {
895 			page = pte_page(pte);
896 		} else {
897 			ret = follow_pfn_pte(vma, address, ptep, flags);
898 			page = ERR_PTR(ret);
899 			goto out;
900 		}
901 	}
902 	folio = page_folio(page);
903 
904 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
905 		page = ERR_PTR(-EMLINK);
906 		goto out;
907 	}
908 
909 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
910 		       !PageAnonExclusive(page), page);
911 
912 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
913 	ret = try_grab_folio(folio, 1, flags);
914 	if (unlikely(ret)) {
915 		page = ERR_PTR(ret);
916 		goto out;
917 	}
918 
919 	/*
920 	 * We need to make the page accessible if and only if we are going
921 	 * to access its content (the FOLL_PIN case).  Please see
922 	 * Documentation/core-api/pin_user_pages.rst for details.
923 	 */
924 	if (flags & FOLL_PIN) {
925 		ret = arch_make_folio_accessible(folio);
926 		if (ret) {
927 			unpin_user_page(page);
928 			page = ERR_PTR(ret);
929 			goto out;
930 		}
931 	}
932 	if (flags & FOLL_TOUCH) {
933 		if ((flags & FOLL_WRITE) &&
934 		    !pte_dirty(pte) && !folio_test_dirty(folio))
935 			folio_mark_dirty(folio);
936 		/*
937 		 * pte_mkyoung() would be more correct here, but atomic care
938 		 * is needed to avoid losing the dirty bit: it is easier to use
939 		 * folio_mark_accessed().
940 		 */
941 		folio_mark_accessed(folio);
942 	}
943 out:
944 	pte_unmap_unlock(ptep, ptl);
945 	return page;
946 no_page:
947 	pte_unmap_unlock(ptep, ptl);
948 	if (!pte_none(pte))
949 		return NULL;
950 	return no_page_table(vma, flags, address);
951 }
952 
953 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
954 				    unsigned long address, pud_t *pudp,
955 				    unsigned int flags,
956 				    struct follow_page_context *ctx)
957 {
958 	pmd_t *pmd, pmdval;
959 	spinlock_t *ptl;
960 	struct page *page;
961 	struct mm_struct *mm = vma->vm_mm;
962 
963 	pmd = pmd_offset(pudp, address);
964 	pmdval = pmdp_get_lockless(pmd);
965 	if (pmd_none(pmdval))
966 		return no_page_table(vma, flags, address);
967 	if (!pmd_present(pmdval))
968 		return no_page_table(vma, flags, address);
969 	if (pmd_devmap(pmdval)) {
970 		ptl = pmd_lock(mm, pmd);
971 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
972 		spin_unlock(ptl);
973 		if (page)
974 			return page;
975 		return no_page_table(vma, flags, address);
976 	}
977 	if (likely(!pmd_leaf(pmdval)))
978 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
979 
980 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
981 		return no_page_table(vma, flags, address);
982 
983 	ptl = pmd_lock(mm, pmd);
984 	pmdval = *pmd;
985 	if (unlikely(!pmd_present(pmdval))) {
986 		spin_unlock(ptl);
987 		return no_page_table(vma, flags, address);
988 	}
989 	if (unlikely(!pmd_leaf(pmdval))) {
990 		spin_unlock(ptl);
991 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
992 	}
993 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
994 		spin_unlock(ptl);
995 		split_huge_pmd(vma, pmd, address);
996 		/* If pmd was left empty, stuff a page table in there quickly */
997 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
998 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
999 	}
1000 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
1001 	spin_unlock(ptl);
1002 	return page;
1003 }
1004 
1005 static struct page *follow_pud_mask(struct vm_area_struct *vma,
1006 				    unsigned long address, p4d_t *p4dp,
1007 				    unsigned int flags,
1008 				    struct follow_page_context *ctx)
1009 {
1010 	pud_t *pudp, pud;
1011 	spinlock_t *ptl;
1012 	struct page *page;
1013 	struct mm_struct *mm = vma->vm_mm;
1014 
1015 	pudp = pud_offset(p4dp, address);
1016 	pud = READ_ONCE(*pudp);
1017 	if (!pud_present(pud))
1018 		return no_page_table(vma, flags, address);
1019 	if (pud_leaf(pud)) {
1020 		ptl = pud_lock(mm, pudp);
1021 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1022 		spin_unlock(ptl);
1023 		if (page)
1024 			return page;
1025 		return no_page_table(vma, flags, address);
1026 	}
1027 	if (unlikely(pud_bad(pud)))
1028 		return no_page_table(vma, flags, address);
1029 
1030 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1031 }
1032 
1033 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1034 				    unsigned long address, pgd_t *pgdp,
1035 				    unsigned int flags,
1036 				    struct follow_page_context *ctx)
1037 {
1038 	p4d_t *p4dp, p4d;
1039 
1040 	p4dp = p4d_offset(pgdp, address);
1041 	p4d = READ_ONCE(*p4dp);
1042 	BUILD_BUG_ON(p4d_leaf(p4d));
1043 
1044 	if (!p4d_present(p4d) || p4d_bad(p4d))
1045 		return no_page_table(vma, flags, address);
1046 
1047 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1048 }
1049 
1050 /**
1051  * follow_page_mask - look up a page descriptor from a user-virtual address
1052  * @vma: vm_area_struct mapping @address
1053  * @address: virtual address to look up
1054  * @flags: flags modifying lookup behaviour
1055  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1056  *       pointer to output page_mask
1057  *
1058  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1059  *
1060  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1061  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1062  *
1063  * When getting an anonymous page and the caller has to trigger unsharing
1064  * of a shared anonymous page first, -EMLINK is returned. The caller should
1065  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1066  * relevant with FOLL_PIN and !FOLL_WRITE.
1067  *
1068  * On output, the @ctx->page_mask is set according to the size of the page.
1069  *
1070  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1071  * an error pointer if there is a mapping to something not represented
1072  * by a page descriptor (see also vm_normal_page()).
1073  */
1074 static struct page *follow_page_mask(struct vm_area_struct *vma,
1075 			      unsigned long address, unsigned int flags,
1076 			      struct follow_page_context *ctx)
1077 {
1078 	pgd_t *pgd;
1079 	struct mm_struct *mm = vma->vm_mm;
1080 	struct page *page;
1081 
1082 	vma_pgtable_walk_begin(vma);
1083 
1084 	ctx->page_mask = 0;
1085 	pgd = pgd_offset(mm, address);
1086 
1087 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1088 		page = no_page_table(vma, flags, address);
1089 	else
1090 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1091 
1092 	vma_pgtable_walk_end(vma);
1093 
1094 	return page;
1095 }
1096 
1097 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1098 		unsigned int gup_flags, struct vm_area_struct **vma,
1099 		struct page **page)
1100 {
1101 	pgd_t *pgd;
1102 	p4d_t *p4d;
1103 	pud_t *pud;
1104 	pmd_t *pmd;
1105 	pte_t *pte;
1106 	pte_t entry;
1107 	int ret = -EFAULT;
1108 
1109 	/* user gate pages are read-only */
1110 	if (gup_flags & FOLL_WRITE)
1111 		return -EFAULT;
1112 	if (address > TASK_SIZE)
1113 		pgd = pgd_offset_k(address);
1114 	else
1115 		pgd = pgd_offset_gate(mm, address);
1116 	if (pgd_none(*pgd))
1117 		return -EFAULT;
1118 	p4d = p4d_offset(pgd, address);
1119 	if (p4d_none(*p4d))
1120 		return -EFAULT;
1121 	pud = pud_offset(p4d, address);
1122 	if (pud_none(*pud))
1123 		return -EFAULT;
1124 	pmd = pmd_offset(pud, address);
1125 	if (!pmd_present(*pmd))
1126 		return -EFAULT;
1127 	pte = pte_offset_map(pmd, address);
1128 	if (!pte)
1129 		return -EFAULT;
1130 	entry = ptep_get(pte);
1131 	if (pte_none(entry))
1132 		goto unmap;
1133 	*vma = get_gate_vma(mm);
1134 	if (!page)
1135 		goto out;
1136 	*page = vm_normal_page(*vma, address, entry);
1137 	if (!*page) {
1138 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1139 			goto unmap;
1140 		*page = pte_page(entry);
1141 	}
1142 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1143 	if (unlikely(ret))
1144 		goto unmap;
1145 out:
1146 	ret = 0;
1147 unmap:
1148 	pte_unmap(pte);
1149 	return ret;
1150 }
1151 
1152 /*
1153  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1154  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1155  * to 0 and -EBUSY returned.
1156  */
1157 static int faultin_page(struct vm_area_struct *vma,
1158 		unsigned long address, unsigned int flags, bool unshare,
1159 		int *locked)
1160 {
1161 	unsigned int fault_flags = 0;
1162 	vm_fault_t ret;
1163 
1164 	if (flags & FOLL_NOFAULT)
1165 		return -EFAULT;
1166 	if (flags & FOLL_WRITE)
1167 		fault_flags |= FAULT_FLAG_WRITE;
1168 	if (flags & FOLL_REMOTE)
1169 		fault_flags |= FAULT_FLAG_REMOTE;
1170 	if (flags & FOLL_UNLOCKABLE) {
1171 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1172 		/*
1173 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1174 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1175 		 * That's because some callers may not be prepared to
1176 		 * handle early exits caused by non-fatal signals.
1177 		 */
1178 		if (flags & FOLL_INTERRUPTIBLE)
1179 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1180 	}
1181 	if (flags & FOLL_NOWAIT)
1182 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1183 	if (flags & FOLL_TRIED) {
1184 		/*
1185 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1186 		 * can co-exist
1187 		 */
1188 		fault_flags |= FAULT_FLAG_TRIED;
1189 	}
1190 	if (unshare) {
1191 		fault_flags |= FAULT_FLAG_UNSHARE;
1192 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1193 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1194 	}
1195 
1196 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1197 
1198 	if (ret & VM_FAULT_COMPLETED) {
1199 		/*
1200 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1201 		 * mmap lock in the page fault handler. Sanity check this.
1202 		 */
1203 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1204 		*locked = 0;
1205 
1206 		/*
1207 		 * We should do the same as VM_FAULT_RETRY, but let's not
1208 		 * return -EBUSY since that's not reflecting the reality of
1209 		 * what has happened - we've just fully completed a page
1210 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1211 		 * that we want to take the mmap lock _again_.
1212 		 */
1213 		return -EAGAIN;
1214 	}
1215 
1216 	if (ret & VM_FAULT_ERROR) {
1217 		int err = vm_fault_to_errno(ret, flags);
1218 
1219 		if (err)
1220 			return err;
1221 		BUG();
1222 	}
1223 
1224 	if (ret & VM_FAULT_RETRY) {
1225 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1226 			*locked = 0;
1227 		return -EBUSY;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Writing to file-backed mappings which require folio dirty tracking using GUP
1235  * is a fundamentally broken operation, as kernel write access to GUP mappings
1236  * do not adhere to the semantics expected by a file system.
1237  *
1238  * Consider the following scenario:-
1239  *
1240  * 1. A folio is written to via GUP which write-faults the memory, notifying
1241  *    the file system and dirtying the folio.
1242  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1243  *    the PTE being marked read-only.
1244  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1245  *    direct mapping.
1246  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1247  *    (though it does not have to).
1248  *
1249  * This results in both data being written to a folio without writenotify, and
1250  * the folio being dirtied unexpectedly (if the caller decides to do so).
1251  */
1252 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1253 					  unsigned long gup_flags)
1254 {
1255 	/*
1256 	 * If we aren't pinning then no problematic write can occur. A long term
1257 	 * pin is the most egregious case so this is the case we disallow.
1258 	 */
1259 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1260 	    (FOLL_PIN | FOLL_LONGTERM))
1261 		return true;
1262 
1263 	/*
1264 	 * If the VMA does not require dirty tracking then no problematic write
1265 	 * can occur either.
1266 	 */
1267 	return !vma_needs_dirty_tracking(vma);
1268 }
1269 
1270 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1271 {
1272 	vm_flags_t vm_flags = vma->vm_flags;
1273 	int write = (gup_flags & FOLL_WRITE);
1274 	int foreign = (gup_flags & FOLL_REMOTE);
1275 	bool vma_anon = vma_is_anonymous(vma);
1276 
1277 	if (vm_flags & (VM_IO | VM_PFNMAP))
1278 		return -EFAULT;
1279 
1280 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1281 		return -EFAULT;
1282 
1283 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1284 		return -EOPNOTSUPP;
1285 
1286 	if (vma_is_secretmem(vma))
1287 		return -EFAULT;
1288 
1289 	if (write) {
1290 		if (!vma_anon &&
1291 		    !writable_file_mapping_allowed(vma, gup_flags))
1292 			return -EFAULT;
1293 
1294 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1295 			if (!(gup_flags & FOLL_FORCE))
1296 				return -EFAULT;
1297 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1298 			if (is_vm_hugetlb_page(vma))
1299 				return -EFAULT;
1300 			/*
1301 			 * We used to let the write,force case do COW in a
1302 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1303 			 * set a breakpoint in a read-only mapping of an
1304 			 * executable, without corrupting the file (yet only
1305 			 * when that file had been opened for writing!).
1306 			 * Anon pages in shared mappings are surprising: now
1307 			 * just reject it.
1308 			 */
1309 			if (!is_cow_mapping(vm_flags))
1310 				return -EFAULT;
1311 		}
1312 	} else if (!(vm_flags & VM_READ)) {
1313 		if (!(gup_flags & FOLL_FORCE))
1314 			return -EFAULT;
1315 		/*
1316 		 * Is there actually any vma we can reach here which does not
1317 		 * have VM_MAYREAD set?
1318 		 */
1319 		if (!(vm_flags & VM_MAYREAD))
1320 			return -EFAULT;
1321 	}
1322 	/*
1323 	 * gups are always data accesses, not instruction
1324 	 * fetches, so execute=false here
1325 	 */
1326 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1327 		return -EFAULT;
1328 	return 0;
1329 }
1330 
1331 /*
1332  * This is "vma_lookup()", but with a warning if we would have
1333  * historically expanded the stack in the GUP code.
1334  */
1335 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1336 	 unsigned long addr)
1337 {
1338 #ifdef CONFIG_STACK_GROWSUP
1339 	return vma_lookup(mm, addr);
1340 #else
1341 	static volatile unsigned long next_warn;
1342 	struct vm_area_struct *vma;
1343 	unsigned long now, next;
1344 
1345 	vma = find_vma(mm, addr);
1346 	if (!vma || (addr >= vma->vm_start))
1347 		return vma;
1348 
1349 	/* Only warn for half-way relevant accesses */
1350 	if (!(vma->vm_flags & VM_GROWSDOWN))
1351 		return NULL;
1352 	if (vma->vm_start - addr > 65536)
1353 		return NULL;
1354 
1355 	/* Let's not warn more than once an hour.. */
1356 	now = jiffies; next = next_warn;
1357 	if (next && time_before(now, next))
1358 		return NULL;
1359 	next_warn = now + 60*60*HZ;
1360 
1361 	/* Let people know things may have changed. */
1362 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1363 		current->comm, task_pid_nr(current),
1364 		vma->vm_start, vma->vm_end, addr);
1365 	dump_stack();
1366 	return NULL;
1367 #endif
1368 }
1369 
1370 /**
1371  * __get_user_pages() - pin user pages in memory
1372  * @mm:		mm_struct of target mm
1373  * @start:	starting user address
1374  * @nr_pages:	number of pages from start to pin
1375  * @gup_flags:	flags modifying pin behaviour
1376  * @pages:	array that receives pointers to the pages pinned.
1377  *		Should be at least nr_pages long. Or NULL, if caller
1378  *		only intends to ensure the pages are faulted in.
1379  * @locked:     whether we're still with the mmap_lock held
1380  *
1381  * Returns either number of pages pinned (which may be less than the
1382  * number requested), or an error. Details about the return value:
1383  *
1384  * -- If nr_pages is 0, returns 0.
1385  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1386  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1387  *    pages pinned. Again, this may be less than nr_pages.
1388  * -- 0 return value is possible when the fault would need to be retried.
1389  *
1390  * The caller is responsible for releasing returned @pages, via put_page().
1391  *
1392  * Must be called with mmap_lock held.  It may be released.  See below.
1393  *
1394  * __get_user_pages walks a process's page tables and takes a reference to
1395  * each struct page that each user address corresponds to at a given
1396  * instant. That is, it takes the page that would be accessed if a user
1397  * thread accesses the given user virtual address at that instant.
1398  *
1399  * This does not guarantee that the page exists in the user mappings when
1400  * __get_user_pages returns, and there may even be a completely different
1401  * page there in some cases (eg. if mmapped pagecache has been invalidated
1402  * and subsequently re-faulted). However it does guarantee that the page
1403  * won't be freed completely. And mostly callers simply care that the page
1404  * contains data that was valid *at some point in time*. Typically, an IO
1405  * or similar operation cannot guarantee anything stronger anyway because
1406  * locks can't be held over the syscall boundary.
1407  *
1408  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1409  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1410  * appropriate) must be called after the page is finished with, and
1411  * before put_page is called.
1412  *
1413  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1414  * be released. If this happens *@locked will be set to 0 on return.
1415  *
1416  * A caller using such a combination of @gup_flags must therefore hold the
1417  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1418  * it must be held for either reading or writing and will not be released.
1419  *
1420  * In most cases, get_user_pages or get_user_pages_fast should be used
1421  * instead of __get_user_pages. __get_user_pages should be used only if
1422  * you need some special @gup_flags.
1423  */
1424 static long __get_user_pages(struct mm_struct *mm,
1425 		unsigned long start, unsigned long nr_pages,
1426 		unsigned int gup_flags, struct page **pages,
1427 		int *locked)
1428 {
1429 	long ret = 0, i = 0;
1430 	struct vm_area_struct *vma = NULL;
1431 	struct follow_page_context ctx = { NULL };
1432 
1433 	if (!nr_pages)
1434 		return 0;
1435 
1436 	start = untagged_addr_remote(mm, start);
1437 
1438 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1439 
1440 	do {
1441 		struct page *page;
1442 		unsigned int page_increm;
1443 
1444 		/* first iteration or cross vma bound */
1445 		if (!vma || start >= vma->vm_end) {
1446 			/*
1447 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1448 			 * lookups+error reporting differently.
1449 			 */
1450 			if (gup_flags & FOLL_MADV_POPULATE) {
1451 				vma = vma_lookup(mm, start);
1452 				if (!vma) {
1453 					ret = -ENOMEM;
1454 					goto out;
1455 				}
1456 				if (check_vma_flags(vma, gup_flags)) {
1457 					ret = -EINVAL;
1458 					goto out;
1459 				}
1460 				goto retry;
1461 			}
1462 			vma = gup_vma_lookup(mm, start);
1463 			if (!vma && in_gate_area(mm, start)) {
1464 				ret = get_gate_page(mm, start & PAGE_MASK,
1465 						gup_flags, &vma,
1466 						pages ? &page : NULL);
1467 				if (ret)
1468 					goto out;
1469 				ctx.page_mask = 0;
1470 				goto next_page;
1471 			}
1472 
1473 			if (!vma) {
1474 				ret = -EFAULT;
1475 				goto out;
1476 			}
1477 			ret = check_vma_flags(vma, gup_flags);
1478 			if (ret)
1479 				goto out;
1480 		}
1481 retry:
1482 		/*
1483 		 * If we have a pending SIGKILL, don't keep faulting pages and
1484 		 * potentially allocating memory.
1485 		 */
1486 		if (fatal_signal_pending(current)) {
1487 			ret = -EINTR;
1488 			goto out;
1489 		}
1490 		cond_resched();
1491 
1492 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1493 		if (!page || PTR_ERR(page) == -EMLINK) {
1494 			ret = faultin_page(vma, start, gup_flags,
1495 					   PTR_ERR(page) == -EMLINK, locked);
1496 			switch (ret) {
1497 			case 0:
1498 				goto retry;
1499 			case -EBUSY:
1500 			case -EAGAIN:
1501 				ret = 0;
1502 				fallthrough;
1503 			case -EFAULT:
1504 			case -ENOMEM:
1505 			case -EHWPOISON:
1506 				goto out;
1507 			}
1508 			BUG();
1509 		} else if (PTR_ERR(page) == -EEXIST) {
1510 			/*
1511 			 * Proper page table entry exists, but no corresponding
1512 			 * struct page. If the caller expects **pages to be
1513 			 * filled in, bail out now, because that can't be done
1514 			 * for this page.
1515 			 */
1516 			if (pages) {
1517 				ret = PTR_ERR(page);
1518 				goto out;
1519 			}
1520 		} else if (IS_ERR(page)) {
1521 			ret = PTR_ERR(page);
1522 			goto out;
1523 		}
1524 next_page:
1525 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1526 		if (page_increm > nr_pages)
1527 			page_increm = nr_pages;
1528 
1529 		if (pages) {
1530 			struct page *subpage;
1531 			unsigned int j;
1532 
1533 			/*
1534 			 * This must be a large folio (and doesn't need to
1535 			 * be the whole folio; it can be part of it), do
1536 			 * the refcount work for all the subpages too.
1537 			 *
1538 			 * NOTE: here the page may not be the head page
1539 			 * e.g. when start addr is not thp-size aligned.
1540 			 * try_grab_folio() should have taken care of tail
1541 			 * pages.
1542 			 */
1543 			if (page_increm > 1) {
1544 				struct folio *folio = page_folio(page);
1545 
1546 				/*
1547 				 * Since we already hold refcount on the
1548 				 * large folio, this should never fail.
1549 				 */
1550 				if (try_grab_folio(folio, page_increm - 1,
1551 						   gup_flags)) {
1552 					/*
1553 					 * Release the 1st page ref if the
1554 					 * folio is problematic, fail hard.
1555 					 */
1556 					gup_put_folio(folio, 1, gup_flags);
1557 					ret = -EFAULT;
1558 					goto out;
1559 				}
1560 			}
1561 
1562 			for (j = 0; j < page_increm; j++) {
1563 				subpage = nth_page(page, j);
1564 				pages[i + j] = subpage;
1565 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1566 				flush_dcache_page(subpage);
1567 			}
1568 		}
1569 
1570 		i += page_increm;
1571 		start += page_increm * PAGE_SIZE;
1572 		nr_pages -= page_increm;
1573 	} while (nr_pages);
1574 out:
1575 	if (ctx.pgmap)
1576 		put_dev_pagemap(ctx.pgmap);
1577 	return i ? i : ret;
1578 }
1579 
1580 static bool vma_permits_fault(struct vm_area_struct *vma,
1581 			      unsigned int fault_flags)
1582 {
1583 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1584 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1585 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1586 
1587 	if (!(vm_flags & vma->vm_flags))
1588 		return false;
1589 
1590 	/*
1591 	 * The architecture might have a hardware protection
1592 	 * mechanism other than read/write that can deny access.
1593 	 *
1594 	 * gup always represents data access, not instruction
1595 	 * fetches, so execute=false here:
1596 	 */
1597 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1598 		return false;
1599 
1600 	return true;
1601 }
1602 
1603 /**
1604  * fixup_user_fault() - manually resolve a user page fault
1605  * @mm:		mm_struct of target mm
1606  * @address:	user address
1607  * @fault_flags:flags to pass down to handle_mm_fault()
1608  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1609  *		does not allow retry. If NULL, the caller must guarantee
1610  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1611  *
1612  * This is meant to be called in the specific scenario where for locking reasons
1613  * we try to access user memory in atomic context (within a pagefault_disable()
1614  * section), this returns -EFAULT, and we want to resolve the user fault before
1615  * trying again.
1616  *
1617  * Typically this is meant to be used by the futex code.
1618  *
1619  * The main difference with get_user_pages() is that this function will
1620  * unconditionally call handle_mm_fault() which will in turn perform all the
1621  * necessary SW fixup of the dirty and young bits in the PTE, while
1622  * get_user_pages() only guarantees to update these in the struct page.
1623  *
1624  * This is important for some architectures where those bits also gate the
1625  * access permission to the page because they are maintained in software.  On
1626  * such architectures, gup() will not be enough to make a subsequent access
1627  * succeed.
1628  *
1629  * This function will not return with an unlocked mmap_lock. So it has not the
1630  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1631  */
1632 int fixup_user_fault(struct mm_struct *mm,
1633 		     unsigned long address, unsigned int fault_flags,
1634 		     bool *unlocked)
1635 {
1636 	struct vm_area_struct *vma;
1637 	vm_fault_t ret;
1638 
1639 	address = untagged_addr_remote(mm, address);
1640 
1641 	if (unlocked)
1642 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1643 
1644 retry:
1645 	vma = gup_vma_lookup(mm, address);
1646 	if (!vma)
1647 		return -EFAULT;
1648 
1649 	if (!vma_permits_fault(vma, fault_flags))
1650 		return -EFAULT;
1651 
1652 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1653 	    fatal_signal_pending(current))
1654 		return -EINTR;
1655 
1656 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1657 
1658 	if (ret & VM_FAULT_COMPLETED) {
1659 		/*
1660 		 * NOTE: it's a pity that we need to retake the lock here
1661 		 * to pair with the unlock() in the callers. Ideally we
1662 		 * could tell the callers so they do not need to unlock.
1663 		 */
1664 		mmap_read_lock(mm);
1665 		*unlocked = true;
1666 		return 0;
1667 	}
1668 
1669 	if (ret & VM_FAULT_ERROR) {
1670 		int err = vm_fault_to_errno(ret, 0);
1671 
1672 		if (err)
1673 			return err;
1674 		BUG();
1675 	}
1676 
1677 	if (ret & VM_FAULT_RETRY) {
1678 		mmap_read_lock(mm);
1679 		*unlocked = true;
1680 		fault_flags |= FAULT_FLAG_TRIED;
1681 		goto retry;
1682 	}
1683 
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(fixup_user_fault);
1687 
1688 /*
1689  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1690  * specified, it'll also respond to generic signals.  The caller of GUP
1691  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1692  */
1693 static bool gup_signal_pending(unsigned int flags)
1694 {
1695 	if (fatal_signal_pending(current))
1696 		return true;
1697 
1698 	if (!(flags & FOLL_INTERRUPTIBLE))
1699 		return false;
1700 
1701 	return signal_pending(current);
1702 }
1703 
1704 /*
1705  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1706  * the caller. This function may drop the mmap_lock. If it does so, then it will
1707  * set (*locked = 0).
1708  *
1709  * (*locked == 0) means that the caller expects this function to acquire and
1710  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1711  * the function returns, even though it may have changed temporarily during
1712  * function execution.
1713  *
1714  * Please note that this function, unlike __get_user_pages(), will not return 0
1715  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1716  */
1717 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1718 						unsigned long start,
1719 						unsigned long nr_pages,
1720 						struct page **pages,
1721 						int *locked,
1722 						unsigned int flags)
1723 {
1724 	long ret, pages_done;
1725 	bool must_unlock = false;
1726 
1727 	if (!nr_pages)
1728 		return 0;
1729 
1730 	/*
1731 	 * The internal caller expects GUP to manage the lock internally and the
1732 	 * lock must be released when this returns.
1733 	 */
1734 	if (!*locked) {
1735 		if (mmap_read_lock_killable(mm))
1736 			return -EAGAIN;
1737 		must_unlock = true;
1738 		*locked = 1;
1739 	}
1740 	else
1741 		mmap_assert_locked(mm);
1742 
1743 	if (flags & FOLL_PIN)
1744 		mm_set_has_pinned_flag(&mm->flags);
1745 
1746 	/*
1747 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1748 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1749 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1750 	 * for FOLL_GET, not for the newer FOLL_PIN.
1751 	 *
1752 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1753 	 * that here, as any failures will be obvious enough.
1754 	 */
1755 	if (pages && !(flags & FOLL_PIN))
1756 		flags |= FOLL_GET;
1757 
1758 	pages_done = 0;
1759 	for (;;) {
1760 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1761 				       locked);
1762 		if (!(flags & FOLL_UNLOCKABLE)) {
1763 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1764 			pages_done = ret;
1765 			break;
1766 		}
1767 
1768 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1769 		if (!*locked) {
1770 			BUG_ON(ret < 0);
1771 			BUG_ON(ret >= nr_pages);
1772 		}
1773 
1774 		if (ret > 0) {
1775 			nr_pages -= ret;
1776 			pages_done += ret;
1777 			if (!nr_pages)
1778 				break;
1779 		}
1780 		if (*locked) {
1781 			/*
1782 			 * VM_FAULT_RETRY didn't trigger or it was a
1783 			 * FOLL_NOWAIT.
1784 			 */
1785 			if (!pages_done)
1786 				pages_done = ret;
1787 			break;
1788 		}
1789 		/*
1790 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1791 		 * For the prefault case (!pages) we only update counts.
1792 		 */
1793 		if (likely(pages))
1794 			pages += ret;
1795 		start += ret << PAGE_SHIFT;
1796 
1797 		/* The lock was temporarily dropped, so we must unlock later */
1798 		must_unlock = true;
1799 
1800 retry:
1801 		/*
1802 		 * Repeat on the address that fired VM_FAULT_RETRY
1803 		 * with both FAULT_FLAG_ALLOW_RETRY and
1804 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1805 		 * by fatal signals of even common signals, depending on
1806 		 * the caller's request. So we need to check it before we
1807 		 * start trying again otherwise it can loop forever.
1808 		 */
1809 		if (gup_signal_pending(flags)) {
1810 			if (!pages_done)
1811 				pages_done = -EINTR;
1812 			break;
1813 		}
1814 
1815 		ret = mmap_read_lock_killable(mm);
1816 		if (ret) {
1817 			BUG_ON(ret > 0);
1818 			if (!pages_done)
1819 				pages_done = ret;
1820 			break;
1821 		}
1822 
1823 		*locked = 1;
1824 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1825 				       pages, locked);
1826 		if (!*locked) {
1827 			/* Continue to retry until we succeeded */
1828 			BUG_ON(ret != 0);
1829 			goto retry;
1830 		}
1831 		if (ret != 1) {
1832 			BUG_ON(ret > 1);
1833 			if (!pages_done)
1834 				pages_done = ret;
1835 			break;
1836 		}
1837 		nr_pages--;
1838 		pages_done++;
1839 		if (!nr_pages)
1840 			break;
1841 		if (likely(pages))
1842 			pages++;
1843 		start += PAGE_SIZE;
1844 	}
1845 	if (must_unlock && *locked) {
1846 		/*
1847 		 * We either temporarily dropped the lock, or the caller
1848 		 * requested that we both acquire and drop the lock. Either way,
1849 		 * we must now unlock, and notify the caller of that state.
1850 		 */
1851 		mmap_read_unlock(mm);
1852 		*locked = 0;
1853 	}
1854 
1855 	/*
1856 	 * Failing to pin anything implies something has gone wrong (except when
1857 	 * FOLL_NOWAIT is specified).
1858 	 */
1859 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1860 		return -EFAULT;
1861 
1862 	return pages_done;
1863 }
1864 
1865 /**
1866  * populate_vma_page_range() -  populate a range of pages in the vma.
1867  * @vma:   target vma
1868  * @start: start address
1869  * @end:   end address
1870  * @locked: whether the mmap_lock is still held
1871  *
1872  * This takes care of mlocking the pages too if VM_LOCKED is set.
1873  *
1874  * Return either number of pages pinned in the vma, or a negative error
1875  * code on error.
1876  *
1877  * vma->vm_mm->mmap_lock must be held.
1878  *
1879  * If @locked is NULL, it may be held for read or write and will
1880  * be unperturbed.
1881  *
1882  * If @locked is non-NULL, it must held for read only and may be
1883  * released.  If it's released, *@locked will be set to 0.
1884  */
1885 long populate_vma_page_range(struct vm_area_struct *vma,
1886 		unsigned long start, unsigned long end, int *locked)
1887 {
1888 	struct mm_struct *mm = vma->vm_mm;
1889 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1890 	int local_locked = 1;
1891 	int gup_flags;
1892 	long ret;
1893 
1894 	VM_BUG_ON(!PAGE_ALIGNED(start));
1895 	VM_BUG_ON(!PAGE_ALIGNED(end));
1896 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1897 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1898 	mmap_assert_locked(mm);
1899 
1900 	/*
1901 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1902 	 * faultin_page() to break COW, so it has no work to do here.
1903 	 */
1904 	if (vma->vm_flags & VM_LOCKONFAULT)
1905 		return nr_pages;
1906 
1907 	/* ... similarly, we've never faulted in PROT_NONE pages */
1908 	if (!vma_is_accessible(vma))
1909 		return -EFAULT;
1910 
1911 	gup_flags = FOLL_TOUCH;
1912 	/*
1913 	 * We want to touch writable mappings with a write fault in order
1914 	 * to break COW, except for shared mappings because these don't COW
1915 	 * and we would not want to dirty them for nothing.
1916 	 *
1917 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1918 	 * readable (ie write-only or executable).
1919 	 */
1920 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1921 		gup_flags |= FOLL_WRITE;
1922 	else
1923 		gup_flags |= FOLL_FORCE;
1924 
1925 	if (locked)
1926 		gup_flags |= FOLL_UNLOCKABLE;
1927 
1928 	/*
1929 	 * We made sure addr is within a VMA, so the following will
1930 	 * not result in a stack expansion that recurses back here.
1931 	 */
1932 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1933 			       NULL, locked ? locked : &local_locked);
1934 	lru_add_drain();
1935 	return ret;
1936 }
1937 
1938 /*
1939  * faultin_page_range() - populate (prefault) page tables inside the
1940  *			  given range readable/writable
1941  *
1942  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1943  *
1944  * @mm: the mm to populate page tables in
1945  * @start: start address
1946  * @end: end address
1947  * @write: whether to prefault readable or writable
1948  * @locked: whether the mmap_lock is still held
1949  *
1950  * Returns either number of processed pages in the MM, or a negative error
1951  * code on error (see __get_user_pages()). Note that this function reports
1952  * errors related to VMAs, such as incompatible mappings, as expected by
1953  * MADV_POPULATE_(READ|WRITE).
1954  *
1955  * The range must be page-aligned.
1956  *
1957  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1958  */
1959 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1960 			unsigned long end, bool write, int *locked)
1961 {
1962 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1963 	int gup_flags;
1964 	long ret;
1965 
1966 	VM_BUG_ON(!PAGE_ALIGNED(start));
1967 	VM_BUG_ON(!PAGE_ALIGNED(end));
1968 	mmap_assert_locked(mm);
1969 
1970 	/*
1971 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1972 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1973 	 *	       difference with !FOLL_FORCE, because the page is writable
1974 	 *	       in the page table.
1975 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1976 	 *		  a poisoned page.
1977 	 * !FOLL_FORCE: Require proper access permissions.
1978 	 */
1979 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1980 		    FOLL_MADV_POPULATE;
1981 	if (write)
1982 		gup_flags |= FOLL_WRITE;
1983 
1984 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1985 				      gup_flags);
1986 	lru_add_drain();
1987 	return ret;
1988 }
1989 
1990 /*
1991  * __mm_populate - populate and/or mlock pages within a range of address space.
1992  *
1993  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1994  * flags. VMAs must be already marked with the desired vm_flags, and
1995  * mmap_lock must not be held.
1996  */
1997 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1998 {
1999 	struct mm_struct *mm = current->mm;
2000 	unsigned long end, nstart, nend;
2001 	struct vm_area_struct *vma = NULL;
2002 	int locked = 0;
2003 	long ret = 0;
2004 
2005 	end = start + len;
2006 
2007 	for (nstart = start; nstart < end; nstart = nend) {
2008 		/*
2009 		 * We want to fault in pages for [nstart; end) address range.
2010 		 * Find first corresponding VMA.
2011 		 */
2012 		if (!locked) {
2013 			locked = 1;
2014 			mmap_read_lock(mm);
2015 			vma = find_vma_intersection(mm, nstart, end);
2016 		} else if (nstart >= vma->vm_end)
2017 			vma = find_vma_intersection(mm, vma->vm_end, end);
2018 
2019 		if (!vma)
2020 			break;
2021 		/*
2022 		 * Set [nstart; nend) to intersection of desired address
2023 		 * range with the first VMA. Also, skip undesirable VMA types.
2024 		 */
2025 		nend = min(end, vma->vm_end);
2026 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2027 			continue;
2028 		if (nstart < vma->vm_start)
2029 			nstart = vma->vm_start;
2030 		/*
2031 		 * Now fault in a range of pages. populate_vma_page_range()
2032 		 * double checks the vma flags, so that it won't mlock pages
2033 		 * if the vma was already munlocked.
2034 		 */
2035 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2036 		if (ret < 0) {
2037 			if (ignore_errors) {
2038 				ret = 0;
2039 				continue;	/* continue at next VMA */
2040 			}
2041 			break;
2042 		}
2043 		nend = nstart + ret * PAGE_SIZE;
2044 		ret = 0;
2045 	}
2046 	if (locked)
2047 		mmap_read_unlock(mm);
2048 	return ret;	/* 0 or negative error code */
2049 }
2050 #else /* CONFIG_MMU */
2051 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2052 		unsigned long nr_pages, struct page **pages,
2053 		int *locked, unsigned int foll_flags)
2054 {
2055 	struct vm_area_struct *vma;
2056 	bool must_unlock = false;
2057 	unsigned long vm_flags;
2058 	long i;
2059 
2060 	if (!nr_pages)
2061 		return 0;
2062 
2063 	/*
2064 	 * The internal caller expects GUP to manage the lock internally and the
2065 	 * lock must be released when this returns.
2066 	 */
2067 	if (!*locked) {
2068 		if (mmap_read_lock_killable(mm))
2069 			return -EAGAIN;
2070 		must_unlock = true;
2071 		*locked = 1;
2072 	}
2073 
2074 	/* calculate required read or write permissions.
2075 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2076 	 */
2077 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2078 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2079 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2080 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2081 
2082 	for (i = 0; i < nr_pages; i++) {
2083 		vma = find_vma(mm, start);
2084 		if (!vma)
2085 			break;
2086 
2087 		/* protect what we can, including chardevs */
2088 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2089 		    !(vm_flags & vma->vm_flags))
2090 			break;
2091 
2092 		if (pages) {
2093 			pages[i] = virt_to_page((void *)start);
2094 			if (pages[i])
2095 				get_page(pages[i]);
2096 		}
2097 
2098 		start = (start + PAGE_SIZE) & PAGE_MASK;
2099 	}
2100 
2101 	if (must_unlock && *locked) {
2102 		mmap_read_unlock(mm);
2103 		*locked = 0;
2104 	}
2105 
2106 	return i ? : -EFAULT;
2107 }
2108 #endif /* !CONFIG_MMU */
2109 
2110 /**
2111  * fault_in_writeable - fault in userspace address range for writing
2112  * @uaddr: start of address range
2113  * @size: size of address range
2114  *
2115  * Returns the number of bytes not faulted in (like copy_to_user() and
2116  * copy_from_user()).
2117  */
2118 size_t fault_in_writeable(char __user *uaddr, size_t size)
2119 {
2120 	char __user *start = uaddr, *end;
2121 
2122 	if (unlikely(size == 0))
2123 		return 0;
2124 	if (!user_write_access_begin(uaddr, size))
2125 		return size;
2126 	if (!PAGE_ALIGNED(uaddr)) {
2127 		unsafe_put_user(0, uaddr, out);
2128 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2129 	}
2130 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2131 	if (unlikely(end < start))
2132 		end = NULL;
2133 	while (uaddr != end) {
2134 		unsafe_put_user(0, uaddr, out);
2135 		uaddr += PAGE_SIZE;
2136 	}
2137 
2138 out:
2139 	user_write_access_end();
2140 	if (size > uaddr - start)
2141 		return size - (uaddr - start);
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL(fault_in_writeable);
2145 
2146 /**
2147  * fault_in_subpage_writeable - fault in an address range for writing
2148  * @uaddr: start of address range
2149  * @size: size of address range
2150  *
2151  * Fault in a user address range for writing while checking for permissions at
2152  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2153  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2154  *
2155  * Returns the number of bytes not faulted in (like copy_to_user() and
2156  * copy_from_user()).
2157  */
2158 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2159 {
2160 	size_t faulted_in;
2161 
2162 	/*
2163 	 * Attempt faulting in at page granularity first for page table
2164 	 * permission checking. The arch-specific probe_subpage_writeable()
2165 	 * functions may not check for this.
2166 	 */
2167 	faulted_in = size - fault_in_writeable(uaddr, size);
2168 	if (faulted_in)
2169 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2170 
2171 	return size - faulted_in;
2172 }
2173 EXPORT_SYMBOL(fault_in_subpage_writeable);
2174 
2175 /*
2176  * fault_in_safe_writeable - fault in an address range for writing
2177  * @uaddr: start of address range
2178  * @size: length of address range
2179  *
2180  * Faults in an address range for writing.  This is primarily useful when we
2181  * already know that some or all of the pages in the address range aren't in
2182  * memory.
2183  *
2184  * Unlike fault_in_writeable(), this function is non-destructive.
2185  *
2186  * Note that we don't pin or otherwise hold the pages referenced that we fault
2187  * in.  There's no guarantee that they'll stay in memory for any duration of
2188  * time.
2189  *
2190  * Returns the number of bytes not faulted in, like copy_to_user() and
2191  * copy_from_user().
2192  */
2193 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2194 {
2195 	unsigned long start = (unsigned long)uaddr, end;
2196 	struct mm_struct *mm = current->mm;
2197 	bool unlocked = false;
2198 
2199 	if (unlikely(size == 0))
2200 		return 0;
2201 	end = PAGE_ALIGN(start + size);
2202 	if (end < start)
2203 		end = 0;
2204 
2205 	mmap_read_lock(mm);
2206 	do {
2207 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2208 			break;
2209 		start = (start + PAGE_SIZE) & PAGE_MASK;
2210 	} while (start != end);
2211 	mmap_read_unlock(mm);
2212 
2213 	if (size > (unsigned long)uaddr - start)
2214 		return size - ((unsigned long)uaddr - start);
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL(fault_in_safe_writeable);
2218 
2219 /**
2220  * fault_in_readable - fault in userspace address range for reading
2221  * @uaddr: start of user address range
2222  * @size: size of user address range
2223  *
2224  * Returns the number of bytes not faulted in (like copy_to_user() and
2225  * copy_from_user()).
2226  */
2227 size_t fault_in_readable(const char __user *uaddr, size_t size)
2228 {
2229 	const char __user *start = uaddr, *end;
2230 	volatile char c;
2231 
2232 	if (unlikely(size == 0))
2233 		return 0;
2234 	if (!user_read_access_begin(uaddr, size))
2235 		return size;
2236 	if (!PAGE_ALIGNED(uaddr)) {
2237 		unsafe_get_user(c, uaddr, out);
2238 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2239 	}
2240 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2241 	if (unlikely(end < start))
2242 		end = NULL;
2243 	while (uaddr != end) {
2244 		unsafe_get_user(c, uaddr, out);
2245 		uaddr += PAGE_SIZE;
2246 	}
2247 
2248 out:
2249 	user_read_access_end();
2250 	(void)c;
2251 	if (size > uaddr - start)
2252 		return size - (uaddr - start);
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL(fault_in_readable);
2256 
2257 /**
2258  * get_dump_page() - pin user page in memory while writing it to core dump
2259  * @addr: user address
2260  *
2261  * Returns struct page pointer of user page pinned for dump,
2262  * to be freed afterwards by put_page().
2263  *
2264  * Returns NULL on any kind of failure - a hole must then be inserted into
2265  * the corefile, to preserve alignment with its headers; and also returns
2266  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2267  * allowing a hole to be left in the corefile to save disk space.
2268  *
2269  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2270  */
2271 #ifdef CONFIG_ELF_CORE
2272 struct page *get_dump_page(unsigned long addr)
2273 {
2274 	struct page *page;
2275 	int locked = 0;
2276 	int ret;
2277 
2278 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2279 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2280 	return (ret == 1) ? page : NULL;
2281 }
2282 #endif /* CONFIG_ELF_CORE */
2283 
2284 #ifdef CONFIG_MIGRATION
2285 
2286 /*
2287  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2288  * avoid this complication, by simply interpreting a list of folios as a list of
2289  * pages, that approach won't work in the longer term, because eventually the
2290  * layouts of struct page and struct folio will become completely different.
2291  * Furthermore, this pof approach avoids excessive page_folio() calls.
2292  */
2293 struct pages_or_folios {
2294 	union {
2295 		struct page **pages;
2296 		struct folio **folios;
2297 		void **entries;
2298 	};
2299 	bool has_folios;
2300 	long nr_entries;
2301 };
2302 
2303 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2304 {
2305 	if (pofs->has_folios)
2306 		return pofs->folios[i];
2307 	return page_folio(pofs->pages[i]);
2308 }
2309 
2310 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2311 {
2312 	pofs->entries[i] = NULL;
2313 }
2314 
2315 static void pofs_unpin(struct pages_or_folios *pofs)
2316 {
2317 	if (pofs->has_folios)
2318 		unpin_folios(pofs->folios, pofs->nr_entries);
2319 	else
2320 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2321 }
2322 
2323 /*
2324  * Returns the number of collected folios. Return value is always >= 0.
2325  */
2326 static unsigned long collect_longterm_unpinnable_folios(
2327 		struct list_head *movable_folio_list,
2328 		struct pages_or_folios *pofs)
2329 {
2330 	unsigned long i, collected = 0;
2331 	struct folio *prev_folio = NULL;
2332 	bool drain_allow = true;
2333 
2334 	for (i = 0; i < pofs->nr_entries; i++) {
2335 		struct folio *folio = pofs_get_folio(pofs, i);
2336 
2337 		if (folio == prev_folio)
2338 			continue;
2339 		prev_folio = folio;
2340 
2341 		if (folio_is_longterm_pinnable(folio))
2342 			continue;
2343 
2344 		collected++;
2345 
2346 		if (folio_is_device_coherent(folio))
2347 			continue;
2348 
2349 		if (folio_test_hugetlb(folio)) {
2350 			isolate_hugetlb(folio, movable_folio_list);
2351 			continue;
2352 		}
2353 
2354 		if (!folio_test_lru(folio) && drain_allow) {
2355 			lru_add_drain_all();
2356 			drain_allow = false;
2357 		}
2358 
2359 		if (!folio_isolate_lru(folio))
2360 			continue;
2361 
2362 		list_add_tail(&folio->lru, movable_folio_list);
2363 		node_stat_mod_folio(folio,
2364 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2365 				    folio_nr_pages(folio));
2366 	}
2367 
2368 	return collected;
2369 }
2370 
2371 /*
2372  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2373  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2374  * failure (or partial success).
2375  */
2376 static int
2377 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2378 				   struct pages_or_folios *pofs)
2379 {
2380 	int ret;
2381 	unsigned long i;
2382 
2383 	for (i = 0; i < pofs->nr_entries; i++) {
2384 		struct folio *folio = pofs_get_folio(pofs, i);
2385 
2386 		if (folio_is_device_coherent(folio)) {
2387 			/*
2388 			 * Migration will fail if the folio is pinned, so
2389 			 * convert the pin on the source folio to a normal
2390 			 * reference.
2391 			 */
2392 			pofs_clear_entry(pofs, i);
2393 			folio_get(folio);
2394 			gup_put_folio(folio, 1, FOLL_PIN);
2395 
2396 			if (migrate_device_coherent_folio(folio)) {
2397 				ret = -EBUSY;
2398 				goto err;
2399 			}
2400 
2401 			continue;
2402 		}
2403 
2404 		/*
2405 		 * We can't migrate folios with unexpected references, so drop
2406 		 * the reference obtained by __get_user_pages_locked().
2407 		 * Migrating folios have been added to movable_folio_list after
2408 		 * calling folio_isolate_lru() which takes a reference so the
2409 		 * folio won't be freed if it's migrating.
2410 		 */
2411 		unpin_folio(folio);
2412 		pofs_clear_entry(pofs, i);
2413 	}
2414 
2415 	if (!list_empty(movable_folio_list)) {
2416 		struct migration_target_control mtc = {
2417 			.nid = NUMA_NO_NODE,
2418 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2419 			.reason = MR_LONGTERM_PIN,
2420 		};
2421 
2422 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2423 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2424 				  MR_LONGTERM_PIN, NULL)) {
2425 			ret = -ENOMEM;
2426 			goto err;
2427 		}
2428 	}
2429 
2430 	putback_movable_pages(movable_folio_list);
2431 
2432 	return -EAGAIN;
2433 
2434 err:
2435 	pofs_unpin(pofs);
2436 	putback_movable_pages(movable_folio_list);
2437 
2438 	return ret;
2439 }
2440 
2441 static long
2442 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2443 {
2444 	LIST_HEAD(movable_folio_list);
2445 	unsigned long collected;
2446 
2447 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2448 						       pofs);
2449 	if (!collected)
2450 		return 0;
2451 
2452 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2453 }
2454 
2455 /*
2456  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2457  * Rather confusingly, all folios in the range are required to be pinned via
2458  * FOLL_PIN, before calling this routine.
2459  *
2460  * Return values:
2461  *
2462  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2463  * then this routine leaves all folios pinned and returns zero for success.
2464  *
2465  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2466  * routine will migrate those folios away, unpin all the folios in the range. If
2467  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2468  * caller should re-pin the entire range with FOLL_PIN and then call this
2469  * routine again.
2470  *
2471  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2472  * indicates a migration failure. The caller should give up, and propagate the
2473  * error back up the call stack. The caller does not need to unpin any folios in
2474  * that case, because this routine will do the unpinning.
2475  */
2476 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2477 					     struct folio **folios)
2478 {
2479 	struct pages_or_folios pofs = {
2480 		.folios = folios,
2481 		.has_folios = true,
2482 		.nr_entries = nr_folios,
2483 	};
2484 
2485 	return check_and_migrate_movable_pages_or_folios(&pofs);
2486 }
2487 
2488 /*
2489  * Return values and behavior are the same as those for
2490  * check_and_migrate_movable_folios().
2491  */
2492 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2493 					    struct page **pages)
2494 {
2495 	struct pages_or_folios pofs = {
2496 		.pages = pages,
2497 		.has_folios = false,
2498 		.nr_entries = nr_pages,
2499 	};
2500 
2501 	return check_and_migrate_movable_pages_or_folios(&pofs);
2502 }
2503 #else
2504 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2505 					    struct page **pages)
2506 {
2507 	return 0;
2508 }
2509 
2510 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2511 					     struct folio **folios)
2512 {
2513 	return 0;
2514 }
2515 #endif /* CONFIG_MIGRATION */
2516 
2517 /*
2518  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2519  * allows us to process the FOLL_LONGTERM flag.
2520  */
2521 static long __gup_longterm_locked(struct mm_struct *mm,
2522 				  unsigned long start,
2523 				  unsigned long nr_pages,
2524 				  struct page **pages,
2525 				  int *locked,
2526 				  unsigned int gup_flags)
2527 {
2528 	unsigned int flags;
2529 	long rc, nr_pinned_pages;
2530 
2531 	if (!(gup_flags & FOLL_LONGTERM))
2532 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2533 					       locked, gup_flags);
2534 
2535 	flags = memalloc_pin_save();
2536 	do {
2537 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2538 							  pages, locked,
2539 							  gup_flags);
2540 		if (nr_pinned_pages <= 0) {
2541 			rc = nr_pinned_pages;
2542 			break;
2543 		}
2544 
2545 		/* FOLL_LONGTERM implies FOLL_PIN */
2546 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2547 	} while (rc == -EAGAIN);
2548 	memalloc_pin_restore(flags);
2549 	return rc ? rc : nr_pinned_pages;
2550 }
2551 
2552 /*
2553  * Check that the given flags are valid for the exported gup/pup interface, and
2554  * update them with the required flags that the caller must have set.
2555  */
2556 static bool is_valid_gup_args(struct page **pages, int *locked,
2557 			      unsigned int *gup_flags_p, unsigned int to_set)
2558 {
2559 	unsigned int gup_flags = *gup_flags_p;
2560 
2561 	/*
2562 	 * These flags not allowed to be specified externally to the gup
2563 	 * interfaces:
2564 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2565 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2566 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2567 	 */
2568 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2569 		return false;
2570 
2571 	gup_flags |= to_set;
2572 	if (locked) {
2573 		/* At the external interface locked must be set */
2574 		if (WARN_ON_ONCE(*locked != 1))
2575 			return false;
2576 
2577 		gup_flags |= FOLL_UNLOCKABLE;
2578 	}
2579 
2580 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2581 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2582 			 (FOLL_PIN | FOLL_GET)))
2583 		return false;
2584 
2585 	/* LONGTERM can only be specified when pinning */
2586 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2587 		return false;
2588 
2589 	/* Pages input must be given if using GET/PIN */
2590 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2591 		return false;
2592 
2593 	/* We want to allow the pgmap to be hot-unplugged at all times */
2594 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2595 			 (gup_flags & FOLL_PCI_P2PDMA)))
2596 		return false;
2597 
2598 	*gup_flags_p = gup_flags;
2599 	return true;
2600 }
2601 
2602 #ifdef CONFIG_MMU
2603 /**
2604  * get_user_pages_remote() - pin user pages in memory
2605  * @mm:		mm_struct of target mm
2606  * @start:	starting user address
2607  * @nr_pages:	number of pages from start to pin
2608  * @gup_flags:	flags modifying lookup behaviour
2609  * @pages:	array that receives pointers to the pages pinned.
2610  *		Should be at least nr_pages long. Or NULL, if caller
2611  *		only intends to ensure the pages are faulted in.
2612  * @locked:	pointer to lock flag indicating whether lock is held and
2613  *		subsequently whether VM_FAULT_RETRY functionality can be
2614  *		utilised. Lock must initially be held.
2615  *
2616  * Returns either number of pages pinned (which may be less than the
2617  * number requested), or an error. Details about the return value:
2618  *
2619  * -- If nr_pages is 0, returns 0.
2620  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2621  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2622  *    pages pinned. Again, this may be less than nr_pages.
2623  *
2624  * The caller is responsible for releasing returned @pages, via put_page().
2625  *
2626  * Must be called with mmap_lock held for read or write.
2627  *
2628  * get_user_pages_remote walks a process's page tables and takes a reference
2629  * to each struct page that each user address corresponds to at a given
2630  * instant. That is, it takes the page that would be accessed if a user
2631  * thread accesses the given user virtual address at that instant.
2632  *
2633  * This does not guarantee that the page exists in the user mappings when
2634  * get_user_pages_remote returns, and there may even be a completely different
2635  * page there in some cases (eg. if mmapped pagecache has been invalidated
2636  * and subsequently re-faulted). However it does guarantee that the page
2637  * won't be freed completely. And mostly callers simply care that the page
2638  * contains data that was valid *at some point in time*. Typically, an IO
2639  * or similar operation cannot guarantee anything stronger anyway because
2640  * locks can't be held over the syscall boundary.
2641  *
2642  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2643  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2644  * be called after the page is finished with, and before put_page is called.
2645  *
2646  * get_user_pages_remote is typically used for fewer-copy IO operations,
2647  * to get a handle on the memory by some means other than accesses
2648  * via the user virtual addresses. The pages may be submitted for
2649  * DMA to devices or accessed via their kernel linear mapping (via the
2650  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2651  *
2652  * See also get_user_pages_fast, for performance critical applications.
2653  *
2654  * get_user_pages_remote should be phased out in favor of
2655  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2656  * should use get_user_pages_remote because it cannot pass
2657  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2658  */
2659 long get_user_pages_remote(struct mm_struct *mm,
2660 		unsigned long start, unsigned long nr_pages,
2661 		unsigned int gup_flags, struct page **pages,
2662 		int *locked)
2663 {
2664 	int local_locked = 1;
2665 
2666 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2667 			       FOLL_TOUCH | FOLL_REMOTE))
2668 		return -EINVAL;
2669 
2670 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2671 				       locked ? locked : &local_locked,
2672 				       gup_flags);
2673 }
2674 EXPORT_SYMBOL(get_user_pages_remote);
2675 
2676 #else /* CONFIG_MMU */
2677 long get_user_pages_remote(struct mm_struct *mm,
2678 			   unsigned long start, unsigned long nr_pages,
2679 			   unsigned int gup_flags, struct page **pages,
2680 			   int *locked)
2681 {
2682 	return 0;
2683 }
2684 #endif /* !CONFIG_MMU */
2685 
2686 /**
2687  * get_user_pages() - pin user pages in memory
2688  * @start:      starting user address
2689  * @nr_pages:   number of pages from start to pin
2690  * @gup_flags:  flags modifying lookup behaviour
2691  * @pages:      array that receives pointers to the pages pinned.
2692  *              Should be at least nr_pages long. Or NULL, if caller
2693  *              only intends to ensure the pages are faulted in.
2694  *
2695  * This is the same as get_user_pages_remote(), just with a less-flexible
2696  * calling convention where we assume that the mm being operated on belongs to
2697  * the current task, and doesn't allow passing of a locked parameter.  We also
2698  * obviously don't pass FOLL_REMOTE in here.
2699  */
2700 long get_user_pages(unsigned long start, unsigned long nr_pages,
2701 		    unsigned int gup_flags, struct page **pages)
2702 {
2703 	int locked = 1;
2704 
2705 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2706 		return -EINVAL;
2707 
2708 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2709 				       &locked, gup_flags);
2710 }
2711 EXPORT_SYMBOL(get_user_pages);
2712 
2713 /*
2714  * get_user_pages_unlocked() is suitable to replace the form:
2715  *
2716  *      mmap_read_lock(mm);
2717  *      get_user_pages(mm, ..., pages, NULL);
2718  *      mmap_read_unlock(mm);
2719  *
2720  *  with:
2721  *
2722  *      get_user_pages_unlocked(mm, ..., pages);
2723  *
2724  * It is functionally equivalent to get_user_pages_fast so
2725  * get_user_pages_fast should be used instead if specific gup_flags
2726  * (e.g. FOLL_FORCE) are not required.
2727  */
2728 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2729 			     struct page **pages, unsigned int gup_flags)
2730 {
2731 	int locked = 0;
2732 
2733 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2734 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2735 		return -EINVAL;
2736 
2737 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2738 				       &locked, gup_flags);
2739 }
2740 EXPORT_SYMBOL(get_user_pages_unlocked);
2741 
2742 /*
2743  * GUP-fast
2744  *
2745  * get_user_pages_fast attempts to pin user pages by walking the page
2746  * tables directly and avoids taking locks. Thus the walker needs to be
2747  * protected from page table pages being freed from under it, and should
2748  * block any THP splits.
2749  *
2750  * One way to achieve this is to have the walker disable interrupts, and
2751  * rely on IPIs from the TLB flushing code blocking before the page table
2752  * pages are freed. This is unsuitable for architectures that do not need
2753  * to broadcast an IPI when invalidating TLBs.
2754  *
2755  * Another way to achieve this is to batch up page table containing pages
2756  * belonging to more than one mm_user, then rcu_sched a callback to free those
2757  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2758  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2759  * (which is a relatively rare event). The code below adopts this strategy.
2760  *
2761  * Before activating this code, please be aware that the following assumptions
2762  * are currently made:
2763  *
2764  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2765  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2766  *
2767  *  *) ptes can be read atomically by the architecture.
2768  *
2769  *  *) access_ok is sufficient to validate userspace address ranges.
2770  *
2771  * The last two assumptions can be relaxed by the addition of helper functions.
2772  *
2773  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2774  */
2775 #ifdef CONFIG_HAVE_GUP_FAST
2776 /*
2777  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2778  * a specific folio.
2779  *
2780  * This call assumes the caller has pinned the folio, that the lowest page table
2781  * level still points to this folio, and that interrupts have been disabled.
2782  *
2783  * GUP-fast must reject all secretmem folios.
2784  *
2785  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2786  * (see comment describing the writable_file_mapping_allowed() function). We
2787  * therefore try to avoid the most egregious case of a long-term mapping doing
2788  * so.
2789  *
2790  * This function cannot be as thorough as that one as the VMA is not available
2791  * in the fast path, so instead we whitelist known good cases and if in doubt,
2792  * fall back to the slow path.
2793  */
2794 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2795 {
2796 	bool reject_file_backed = false;
2797 	struct address_space *mapping;
2798 	bool check_secretmem = false;
2799 	unsigned long mapping_flags;
2800 
2801 	/*
2802 	 * If we aren't pinning then no problematic write can occur. A long term
2803 	 * pin is the most egregious case so this is the one we disallow.
2804 	 */
2805 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2806 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2807 		reject_file_backed = true;
2808 
2809 	/* We hold a folio reference, so we can safely access folio fields. */
2810 
2811 	/* secretmem folios are always order-0 folios. */
2812 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2813 		check_secretmem = true;
2814 
2815 	if (!reject_file_backed && !check_secretmem)
2816 		return true;
2817 
2818 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2819 		return false;
2820 
2821 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2822 	if (folio_test_hugetlb(folio))
2823 		return true;
2824 
2825 	/*
2826 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2827 	 * cannot proceed, which means no actions performed under RCU can
2828 	 * proceed either.
2829 	 *
2830 	 * inodes and thus their mappings are freed under RCU, which means the
2831 	 * mapping cannot be freed beneath us and thus we can safely dereference
2832 	 * it.
2833 	 */
2834 	lockdep_assert_irqs_disabled();
2835 
2836 	/*
2837 	 * However, there may be operations which _alter_ the mapping, so ensure
2838 	 * we read it once and only once.
2839 	 */
2840 	mapping = READ_ONCE(folio->mapping);
2841 
2842 	/*
2843 	 * The mapping may have been truncated, in any case we cannot determine
2844 	 * if this mapping is safe - fall back to slow path to determine how to
2845 	 * proceed.
2846 	 */
2847 	if (!mapping)
2848 		return false;
2849 
2850 	/* Anonymous folios pose no problem. */
2851 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2852 	if (mapping_flags)
2853 		return mapping_flags & PAGE_MAPPING_ANON;
2854 
2855 	/*
2856 	 * At this point, we know the mapping is non-null and points to an
2857 	 * address_space object.
2858 	 */
2859 	if (check_secretmem && secretmem_mapping(mapping))
2860 		return false;
2861 	/* The only remaining allowed file system is shmem. */
2862 	return !reject_file_backed || shmem_mapping(mapping);
2863 }
2864 
2865 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2866 		unsigned int flags, struct page **pages)
2867 {
2868 	while ((*nr) - nr_start) {
2869 		struct folio *folio = page_folio(pages[--(*nr)]);
2870 
2871 		folio_clear_referenced(folio);
2872 		gup_put_folio(folio, 1, flags);
2873 	}
2874 }
2875 
2876 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2877 /*
2878  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2879  * operations.
2880  *
2881  * To pin the page, GUP-fast needs to do below in order:
2882  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2883  *
2884  * For the rest of pgtable operations where pgtable updates can be racy
2885  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2886  * is pinned.
2887  *
2888  * Above will work for all pte-level operations, including THP split.
2889  *
2890  * For THP collapse, it's a bit more complicated because GUP-fast may be
2891  * walking a pgtable page that is being freed (pte is still valid but pmd
2892  * can be cleared already).  To avoid race in such condition, we need to
2893  * also check pmd here to make sure pmd doesn't change (corresponds to
2894  * pmdp_collapse_flush() in the THP collapse code path).
2895  */
2896 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2897 		unsigned long end, unsigned int flags, struct page **pages,
2898 		int *nr)
2899 {
2900 	struct dev_pagemap *pgmap = NULL;
2901 	int nr_start = *nr, ret = 0;
2902 	pte_t *ptep, *ptem;
2903 
2904 	ptem = ptep = pte_offset_map(&pmd, addr);
2905 	if (!ptep)
2906 		return 0;
2907 	do {
2908 		pte_t pte = ptep_get_lockless(ptep);
2909 		struct page *page;
2910 		struct folio *folio;
2911 
2912 		/*
2913 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2914 		 * pte_access_permitted() better should reject these pages
2915 		 * either way: otherwise, GUP-fast might succeed in
2916 		 * cases where ordinary GUP would fail due to VMA access
2917 		 * permissions.
2918 		 */
2919 		if (pte_protnone(pte))
2920 			goto pte_unmap;
2921 
2922 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2923 			goto pte_unmap;
2924 
2925 		if (pte_devmap(pte)) {
2926 			if (unlikely(flags & FOLL_LONGTERM))
2927 				goto pte_unmap;
2928 
2929 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2930 			if (unlikely(!pgmap)) {
2931 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2932 				goto pte_unmap;
2933 			}
2934 		} else if (pte_special(pte))
2935 			goto pte_unmap;
2936 
2937 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2938 		page = pte_page(pte);
2939 
2940 		folio = try_grab_folio_fast(page, 1, flags);
2941 		if (!folio)
2942 			goto pte_unmap;
2943 
2944 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2945 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2946 			gup_put_folio(folio, 1, flags);
2947 			goto pte_unmap;
2948 		}
2949 
2950 		if (!gup_fast_folio_allowed(folio, flags)) {
2951 			gup_put_folio(folio, 1, flags);
2952 			goto pte_unmap;
2953 		}
2954 
2955 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2956 			gup_put_folio(folio, 1, flags);
2957 			goto pte_unmap;
2958 		}
2959 
2960 		/*
2961 		 * We need to make the page accessible if and only if we are
2962 		 * going to access its content (the FOLL_PIN case).  Please
2963 		 * see Documentation/core-api/pin_user_pages.rst for
2964 		 * details.
2965 		 */
2966 		if (flags & FOLL_PIN) {
2967 			ret = arch_make_folio_accessible(folio);
2968 			if (ret) {
2969 				gup_put_folio(folio, 1, flags);
2970 				goto pte_unmap;
2971 			}
2972 		}
2973 		folio_set_referenced(folio);
2974 		pages[*nr] = page;
2975 		(*nr)++;
2976 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2977 
2978 	ret = 1;
2979 
2980 pte_unmap:
2981 	if (pgmap)
2982 		put_dev_pagemap(pgmap);
2983 	pte_unmap(ptem);
2984 	return ret;
2985 }
2986 #else
2987 
2988 /*
2989  * If we can't determine whether or not a pte is special, then fail immediately
2990  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2991  * to be special.
2992  *
2993  * For a futex to be placed on a THP tail page, get_futex_key requires a
2994  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2995  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2996  */
2997 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2998 		unsigned long end, unsigned int flags, struct page **pages,
2999 		int *nr)
3000 {
3001 	return 0;
3002 }
3003 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3004 
3005 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3006 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3007 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
3008 {
3009 	int nr_start = *nr;
3010 	struct dev_pagemap *pgmap = NULL;
3011 
3012 	do {
3013 		struct folio *folio;
3014 		struct page *page = pfn_to_page(pfn);
3015 
3016 		pgmap = get_dev_pagemap(pfn, pgmap);
3017 		if (unlikely(!pgmap)) {
3018 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3019 			break;
3020 		}
3021 
3022 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3023 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3024 			break;
3025 		}
3026 
3027 		folio = try_grab_folio_fast(page, 1, flags);
3028 		if (!folio) {
3029 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3030 			break;
3031 		}
3032 		folio_set_referenced(folio);
3033 		pages[*nr] = page;
3034 		(*nr)++;
3035 		pfn++;
3036 	} while (addr += PAGE_SIZE, addr != end);
3037 
3038 	put_dev_pagemap(pgmap);
3039 	return addr == end;
3040 }
3041 
3042 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3043 		unsigned long end, unsigned int flags, struct page **pages,
3044 		int *nr)
3045 {
3046 	unsigned long fault_pfn;
3047 	int nr_start = *nr;
3048 
3049 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3050 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3051 		return 0;
3052 
3053 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3054 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3055 		return 0;
3056 	}
3057 	return 1;
3058 }
3059 
3060 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3061 		unsigned long end, unsigned int flags, struct page **pages,
3062 		int *nr)
3063 {
3064 	unsigned long fault_pfn;
3065 	int nr_start = *nr;
3066 
3067 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3068 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3069 		return 0;
3070 
3071 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3072 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3073 		return 0;
3074 	}
3075 	return 1;
3076 }
3077 #else
3078 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3079 		unsigned long end, unsigned int flags, struct page **pages,
3080 		int *nr)
3081 {
3082 	BUILD_BUG();
3083 	return 0;
3084 }
3085 
3086 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3087 		unsigned long end, unsigned int flags, struct page **pages,
3088 		int *nr)
3089 {
3090 	BUILD_BUG();
3091 	return 0;
3092 }
3093 #endif
3094 
3095 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3096 		unsigned long end, unsigned int flags, struct page **pages,
3097 		int *nr)
3098 {
3099 	struct page *page;
3100 	struct folio *folio;
3101 	int refs;
3102 
3103 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3104 		return 0;
3105 
3106 	if (pmd_special(orig))
3107 		return 0;
3108 
3109 	if (pmd_devmap(orig)) {
3110 		if (unlikely(flags & FOLL_LONGTERM))
3111 			return 0;
3112 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3113 					        pages, nr);
3114 	}
3115 
3116 	page = pmd_page(orig);
3117 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3118 
3119 	folio = try_grab_folio_fast(page, refs, flags);
3120 	if (!folio)
3121 		return 0;
3122 
3123 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3124 		gup_put_folio(folio, refs, flags);
3125 		return 0;
3126 	}
3127 
3128 	if (!gup_fast_folio_allowed(folio, flags)) {
3129 		gup_put_folio(folio, refs, flags);
3130 		return 0;
3131 	}
3132 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3133 		gup_put_folio(folio, refs, flags);
3134 		return 0;
3135 	}
3136 
3137 	*nr += refs;
3138 	folio_set_referenced(folio);
3139 	return 1;
3140 }
3141 
3142 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3143 		unsigned long end, unsigned int flags, struct page **pages,
3144 		int *nr)
3145 {
3146 	struct page *page;
3147 	struct folio *folio;
3148 	int refs;
3149 
3150 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3151 		return 0;
3152 
3153 	if (pud_special(orig))
3154 		return 0;
3155 
3156 	if (pud_devmap(orig)) {
3157 		if (unlikely(flags & FOLL_LONGTERM))
3158 			return 0;
3159 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3160 					        pages, nr);
3161 	}
3162 
3163 	page = pud_page(orig);
3164 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3165 
3166 	folio = try_grab_folio_fast(page, refs, flags);
3167 	if (!folio)
3168 		return 0;
3169 
3170 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3171 		gup_put_folio(folio, refs, flags);
3172 		return 0;
3173 	}
3174 
3175 	if (!gup_fast_folio_allowed(folio, flags)) {
3176 		gup_put_folio(folio, refs, flags);
3177 		return 0;
3178 	}
3179 
3180 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3181 		gup_put_folio(folio, refs, flags);
3182 		return 0;
3183 	}
3184 
3185 	*nr += refs;
3186 	folio_set_referenced(folio);
3187 	return 1;
3188 }
3189 
3190 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3191 		unsigned long end, unsigned int flags, struct page **pages,
3192 		int *nr)
3193 {
3194 	int refs;
3195 	struct page *page;
3196 	struct folio *folio;
3197 
3198 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3199 		return 0;
3200 
3201 	BUILD_BUG_ON(pgd_devmap(orig));
3202 
3203 	page = pgd_page(orig);
3204 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3205 
3206 	folio = try_grab_folio_fast(page, refs, flags);
3207 	if (!folio)
3208 		return 0;
3209 
3210 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3211 		gup_put_folio(folio, refs, flags);
3212 		return 0;
3213 	}
3214 
3215 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3216 		gup_put_folio(folio, refs, flags);
3217 		return 0;
3218 	}
3219 
3220 	if (!gup_fast_folio_allowed(folio, flags)) {
3221 		gup_put_folio(folio, refs, flags);
3222 		return 0;
3223 	}
3224 
3225 	*nr += refs;
3226 	folio_set_referenced(folio);
3227 	return 1;
3228 }
3229 
3230 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3231 		unsigned long end, unsigned int flags, struct page **pages,
3232 		int *nr)
3233 {
3234 	unsigned long next;
3235 	pmd_t *pmdp;
3236 
3237 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3238 	do {
3239 		pmd_t pmd = pmdp_get_lockless(pmdp);
3240 
3241 		next = pmd_addr_end(addr, end);
3242 		if (!pmd_present(pmd))
3243 			return 0;
3244 
3245 		if (unlikely(pmd_leaf(pmd))) {
3246 			/* See gup_fast_pte_range() */
3247 			if (pmd_protnone(pmd))
3248 				return 0;
3249 
3250 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3251 				pages, nr))
3252 				return 0;
3253 
3254 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3255 					       pages, nr))
3256 			return 0;
3257 	} while (pmdp++, addr = next, addr != end);
3258 
3259 	return 1;
3260 }
3261 
3262 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3263 		unsigned long end, unsigned int flags, struct page **pages,
3264 		int *nr)
3265 {
3266 	unsigned long next;
3267 	pud_t *pudp;
3268 
3269 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3270 	do {
3271 		pud_t pud = READ_ONCE(*pudp);
3272 
3273 		next = pud_addr_end(addr, end);
3274 		if (unlikely(!pud_present(pud)))
3275 			return 0;
3276 		if (unlikely(pud_leaf(pud))) {
3277 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3278 					       pages, nr))
3279 				return 0;
3280 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3281 					       pages, nr))
3282 			return 0;
3283 	} while (pudp++, addr = next, addr != end);
3284 
3285 	return 1;
3286 }
3287 
3288 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3289 		unsigned long end, unsigned int flags, struct page **pages,
3290 		int *nr)
3291 {
3292 	unsigned long next;
3293 	p4d_t *p4dp;
3294 
3295 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3296 	do {
3297 		p4d_t p4d = READ_ONCE(*p4dp);
3298 
3299 		next = p4d_addr_end(addr, end);
3300 		if (!p4d_present(p4d))
3301 			return 0;
3302 		BUILD_BUG_ON(p4d_leaf(p4d));
3303 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3304 					pages, nr))
3305 			return 0;
3306 	} while (p4dp++, addr = next, addr != end);
3307 
3308 	return 1;
3309 }
3310 
3311 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3312 		unsigned int flags, struct page **pages, int *nr)
3313 {
3314 	unsigned long next;
3315 	pgd_t *pgdp;
3316 
3317 	pgdp = pgd_offset(current->mm, addr);
3318 	do {
3319 		pgd_t pgd = READ_ONCE(*pgdp);
3320 
3321 		next = pgd_addr_end(addr, end);
3322 		if (pgd_none(pgd))
3323 			return;
3324 		if (unlikely(pgd_leaf(pgd))) {
3325 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3326 					       pages, nr))
3327 				return;
3328 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3329 					       pages, nr))
3330 			return;
3331 	} while (pgdp++, addr = next, addr != end);
3332 }
3333 #else
3334 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3335 		unsigned int flags, struct page **pages, int *nr)
3336 {
3337 }
3338 #endif /* CONFIG_HAVE_GUP_FAST */
3339 
3340 #ifndef gup_fast_permitted
3341 /*
3342  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3343  * we need to fall back to the slow version:
3344  */
3345 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3346 {
3347 	return true;
3348 }
3349 #endif
3350 
3351 static unsigned long gup_fast(unsigned long start, unsigned long end,
3352 		unsigned int gup_flags, struct page **pages)
3353 {
3354 	unsigned long flags;
3355 	int nr_pinned = 0;
3356 	unsigned seq;
3357 
3358 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3359 	    !gup_fast_permitted(start, end))
3360 		return 0;
3361 
3362 	if (gup_flags & FOLL_PIN) {
3363 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3364 		if (seq & 1)
3365 			return 0;
3366 	}
3367 
3368 	/*
3369 	 * Disable interrupts. The nested form is used, in order to allow full,
3370 	 * general purpose use of this routine.
3371 	 *
3372 	 * With interrupts disabled, we block page table pages from being freed
3373 	 * from under us. See struct mmu_table_batch comments in
3374 	 * include/asm-generic/tlb.h for more details.
3375 	 *
3376 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3377 	 * that come from THPs splitting.
3378 	 */
3379 	local_irq_save(flags);
3380 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3381 	local_irq_restore(flags);
3382 
3383 	/*
3384 	 * When pinning pages for DMA there could be a concurrent write protect
3385 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3386 	 */
3387 	if (gup_flags & FOLL_PIN) {
3388 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3389 			gup_fast_unpin_user_pages(pages, nr_pinned);
3390 			return 0;
3391 		} else {
3392 			sanity_check_pinned_pages(pages, nr_pinned);
3393 		}
3394 	}
3395 	return nr_pinned;
3396 }
3397 
3398 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3399 		unsigned int gup_flags, struct page **pages)
3400 {
3401 	unsigned long len, end;
3402 	unsigned long nr_pinned;
3403 	int locked = 0;
3404 	int ret;
3405 
3406 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3407 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3408 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3409 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3410 		return -EINVAL;
3411 
3412 	if (gup_flags & FOLL_PIN)
3413 		mm_set_has_pinned_flag(&current->mm->flags);
3414 
3415 	if (!(gup_flags & FOLL_FAST_ONLY))
3416 		might_lock_read(&current->mm->mmap_lock);
3417 
3418 	start = untagged_addr(start) & PAGE_MASK;
3419 	len = nr_pages << PAGE_SHIFT;
3420 	if (check_add_overflow(start, len, &end))
3421 		return -EOVERFLOW;
3422 	if (end > TASK_SIZE_MAX)
3423 		return -EFAULT;
3424 	if (unlikely(!access_ok((void __user *)start, len)))
3425 		return -EFAULT;
3426 
3427 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3428 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3429 		return nr_pinned;
3430 
3431 	/* Slow path: try to get the remaining pages with get_user_pages */
3432 	start += nr_pinned << PAGE_SHIFT;
3433 	pages += nr_pinned;
3434 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3435 				    pages, &locked,
3436 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3437 	if (ret < 0) {
3438 		/*
3439 		 * The caller has to unpin the pages we already pinned so
3440 		 * returning -errno is not an option
3441 		 */
3442 		if (nr_pinned)
3443 			return nr_pinned;
3444 		return ret;
3445 	}
3446 	return ret + nr_pinned;
3447 }
3448 
3449 /**
3450  * get_user_pages_fast_only() - pin user pages in memory
3451  * @start:      starting user address
3452  * @nr_pages:   number of pages from start to pin
3453  * @gup_flags:  flags modifying pin behaviour
3454  * @pages:      array that receives pointers to the pages pinned.
3455  *              Should be at least nr_pages long.
3456  *
3457  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3458  * the regular GUP.
3459  *
3460  * If the architecture does not support this function, simply return with no
3461  * pages pinned.
3462  *
3463  * Careful, careful! COW breaking can go either way, so a non-write
3464  * access can get ambiguous page results. If you call this function without
3465  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3466  */
3467 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3468 			     unsigned int gup_flags, struct page **pages)
3469 {
3470 	/*
3471 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3472 	 * because gup fast is always a "pin with a +1 page refcount" request.
3473 	 *
3474 	 * FOLL_FAST_ONLY is required in order to match the API description of
3475 	 * this routine: no fall back to regular ("slow") GUP.
3476 	 */
3477 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3478 			       FOLL_GET | FOLL_FAST_ONLY))
3479 		return -EINVAL;
3480 
3481 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3482 }
3483 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3484 
3485 /**
3486  * get_user_pages_fast() - pin user pages in memory
3487  * @start:      starting user address
3488  * @nr_pages:   number of pages from start to pin
3489  * @gup_flags:  flags modifying pin behaviour
3490  * @pages:      array that receives pointers to the pages pinned.
3491  *              Should be at least nr_pages long.
3492  *
3493  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3494  * If not successful, it will fall back to taking the lock and
3495  * calling get_user_pages().
3496  *
3497  * Returns number of pages pinned. This may be fewer than the number requested.
3498  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3499  * -errno.
3500  */
3501 int get_user_pages_fast(unsigned long start, int nr_pages,
3502 			unsigned int gup_flags, struct page **pages)
3503 {
3504 	/*
3505 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3506 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3507 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3508 	 * request.
3509 	 */
3510 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3511 		return -EINVAL;
3512 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3513 }
3514 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3515 
3516 /**
3517  * pin_user_pages_fast() - pin user pages in memory without taking locks
3518  *
3519  * @start:      starting user address
3520  * @nr_pages:   number of pages from start to pin
3521  * @gup_flags:  flags modifying pin behaviour
3522  * @pages:      array that receives pointers to the pages pinned.
3523  *              Should be at least nr_pages long.
3524  *
3525  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3526  * get_user_pages_fast() for documentation on the function arguments, because
3527  * the arguments here are identical.
3528  *
3529  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3530  * see Documentation/core-api/pin_user_pages.rst for further details.
3531  *
3532  * Note that if a zero_page is amongst the returned pages, it will not have
3533  * pins in it and unpin_user_page() will not remove pins from it.
3534  */
3535 int pin_user_pages_fast(unsigned long start, int nr_pages,
3536 			unsigned int gup_flags, struct page **pages)
3537 {
3538 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3539 		return -EINVAL;
3540 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3541 }
3542 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3543 
3544 /**
3545  * pin_user_pages_remote() - pin pages of a remote process
3546  *
3547  * @mm:		mm_struct of target mm
3548  * @start:	starting user address
3549  * @nr_pages:	number of pages from start to pin
3550  * @gup_flags:	flags modifying lookup behaviour
3551  * @pages:	array that receives pointers to the pages pinned.
3552  *		Should be at least nr_pages long.
3553  * @locked:	pointer to lock flag indicating whether lock is held and
3554  *		subsequently whether VM_FAULT_RETRY functionality can be
3555  *		utilised. Lock must initially be held.
3556  *
3557  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3558  * get_user_pages_remote() for documentation on the function arguments, because
3559  * the arguments here are identical.
3560  *
3561  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3562  * see Documentation/core-api/pin_user_pages.rst for details.
3563  *
3564  * Note that if a zero_page is amongst the returned pages, it will not have
3565  * pins in it and unpin_user_page*() will not remove pins from it.
3566  */
3567 long pin_user_pages_remote(struct mm_struct *mm,
3568 			   unsigned long start, unsigned long nr_pages,
3569 			   unsigned int gup_flags, struct page **pages,
3570 			   int *locked)
3571 {
3572 	int local_locked = 1;
3573 
3574 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3575 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3576 		return 0;
3577 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3578 				     locked ? locked : &local_locked,
3579 				     gup_flags);
3580 }
3581 EXPORT_SYMBOL(pin_user_pages_remote);
3582 
3583 /**
3584  * pin_user_pages() - pin user pages in memory for use by other devices
3585  *
3586  * @start:	starting user address
3587  * @nr_pages:	number of pages from start to pin
3588  * @gup_flags:	flags modifying lookup behaviour
3589  * @pages:	array that receives pointers to the pages pinned.
3590  *		Should be at least nr_pages long.
3591  *
3592  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3593  * FOLL_PIN is set.
3594  *
3595  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3596  * see Documentation/core-api/pin_user_pages.rst for details.
3597  *
3598  * Note that if a zero_page is amongst the returned pages, it will not have
3599  * pins in it and unpin_user_page*() will not remove pins from it.
3600  */
3601 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3602 		    unsigned int gup_flags, struct page **pages)
3603 {
3604 	int locked = 1;
3605 
3606 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3607 		return 0;
3608 	return __gup_longterm_locked(current->mm, start, nr_pages,
3609 				     pages, &locked, gup_flags);
3610 }
3611 EXPORT_SYMBOL(pin_user_pages);
3612 
3613 /*
3614  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3615  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3616  * FOLL_PIN and rejects FOLL_GET.
3617  *
3618  * Note that if a zero_page is amongst the returned pages, it will not have
3619  * pins in it and unpin_user_page*() will not remove pins from it.
3620  */
3621 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3622 			     struct page **pages, unsigned int gup_flags)
3623 {
3624 	int locked = 0;
3625 
3626 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3627 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3628 		return 0;
3629 
3630 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3631 				     &locked, gup_flags);
3632 }
3633 EXPORT_SYMBOL(pin_user_pages_unlocked);
3634 
3635 /**
3636  * memfd_pin_folios() - pin folios associated with a memfd
3637  * @memfd:      the memfd whose folios are to be pinned
3638  * @start:      the first memfd offset
3639  * @end:        the last memfd offset (inclusive)
3640  * @folios:     array that receives pointers to the folios pinned
3641  * @max_folios: maximum number of entries in @folios
3642  * @offset:     the offset into the first folio
3643  *
3644  * Attempt to pin folios associated with a memfd in the contiguous range
3645  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3646  * the folios can either be found in the page cache or need to be allocated
3647  * if necessary. Once the folios are located, they are all pinned via
3648  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3649  * And, eventually, these pinned folios must be released either using
3650  * unpin_folios() or unpin_folio().
3651  *
3652  * It must be noted that the folios may be pinned for an indefinite amount
3653  * of time. And, in most cases, the duration of time they may stay pinned
3654  * would be controlled by the userspace. This behavior is effectively the
3655  * same as using FOLL_LONGTERM with other GUP APIs.
3656  *
3657  * Returns number of folios pinned, which could be less than @max_folios
3658  * as it depends on the folio sizes that cover the range [start, end].
3659  * If no folios were pinned, it returns -errno.
3660  */
3661 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3662 		      struct folio **folios, unsigned int max_folios,
3663 		      pgoff_t *offset)
3664 {
3665 	unsigned int flags, nr_folios, nr_found;
3666 	unsigned int i, pgshift = PAGE_SHIFT;
3667 	pgoff_t start_idx, end_idx, next_idx;
3668 	struct folio *folio = NULL;
3669 	struct folio_batch fbatch;
3670 	struct hstate *h;
3671 	long ret = -EINVAL;
3672 
3673 	if (start < 0 || start > end || !max_folios)
3674 		return -EINVAL;
3675 
3676 	if (!memfd)
3677 		return -EINVAL;
3678 
3679 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3680 		return -EINVAL;
3681 
3682 	if (end >= i_size_read(file_inode(memfd)))
3683 		return -EINVAL;
3684 
3685 	if (is_file_hugepages(memfd)) {
3686 		h = hstate_file(memfd);
3687 		pgshift = huge_page_shift(h);
3688 	}
3689 
3690 	flags = memalloc_pin_save();
3691 	do {
3692 		nr_folios = 0;
3693 		start_idx = start >> pgshift;
3694 		end_idx = end >> pgshift;
3695 		if (is_file_hugepages(memfd)) {
3696 			start_idx <<= huge_page_order(h);
3697 			end_idx <<= huge_page_order(h);
3698 		}
3699 
3700 		folio_batch_init(&fbatch);
3701 		while (start_idx <= end_idx && nr_folios < max_folios) {
3702 			/*
3703 			 * In most cases, we should be able to find the folios
3704 			 * in the page cache. If we cannot find them for some
3705 			 * reason, we try to allocate them and add them to the
3706 			 * page cache.
3707 			 */
3708 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3709 							     &start_idx,
3710 							     end_idx,
3711 							     &fbatch);
3712 			if (folio) {
3713 				folio_put(folio);
3714 				folio = NULL;
3715 			}
3716 
3717 			next_idx = 0;
3718 			for (i = 0; i < nr_found; i++) {
3719 				/*
3720 				 * As there can be multiple entries for a
3721 				 * given folio in the batch returned by
3722 				 * filemap_get_folios_contig(), the below
3723 				 * check is to ensure that we pin and return a
3724 				 * unique set of folios between start and end.
3725 				 */
3726 				if (next_idx &&
3727 				    next_idx != folio_index(fbatch.folios[i]))
3728 					continue;
3729 
3730 				folio = page_folio(&fbatch.folios[i]->page);
3731 
3732 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3733 					folio_batch_release(&fbatch);
3734 					ret = -EINVAL;
3735 					goto err;
3736 				}
3737 
3738 				if (nr_folios == 0)
3739 					*offset = offset_in_folio(folio, start);
3740 
3741 				folios[nr_folios] = folio;
3742 				next_idx = folio_next_index(folio);
3743 				if (++nr_folios == max_folios)
3744 					break;
3745 			}
3746 
3747 			folio = NULL;
3748 			folio_batch_release(&fbatch);
3749 			if (!nr_found) {
3750 				folio = memfd_alloc_folio(memfd, start_idx);
3751 				if (IS_ERR(folio)) {
3752 					ret = PTR_ERR(folio);
3753 					if (ret != -EEXIST)
3754 						goto err;
3755 					folio = NULL;
3756 				}
3757 			}
3758 		}
3759 
3760 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3761 	} while (ret == -EAGAIN);
3762 
3763 	memalloc_pin_restore(flags);
3764 	return ret ? ret : nr_folios;
3765 err:
3766 	memalloc_pin_restore(flags);
3767 	unpin_folios(folios, nr_folios);
3768 
3769 	return ret;
3770 }
3771 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3772 
3773 /**
3774  * folio_add_pins() - add pins to an already-pinned folio
3775  * @folio: the folio to add more pins to
3776  * @pins: number of pins to add
3777  *
3778  * Try to add more pins to an already-pinned folio. The semantics
3779  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3780  * be changed.
3781  *
3782  * This function is helpful when having obtained a pin on a large folio
3783  * using memfd_pin_folios(), but wanting to logically unpin parts
3784  * (e.g., individual pages) of the folio later, for example, using
3785  * unpin_user_page_range_dirty_lock().
3786  *
3787  * This is not the right interface to initially pin a folio.
3788  */
3789 int folio_add_pins(struct folio *folio, unsigned int pins)
3790 {
3791 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3792 
3793 	return try_grab_folio(folio, pins, FOLL_PIN);
3794 }
3795 EXPORT_SYMBOL_GPL(folio_add_pins);
3796