xref: /linux/mm/gup.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio = page_folio(page);
56 
57 		if (is_zero_page(page) ||
58 		    !folio_test_anon(folio))
59 			continue;
60 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 		else
63 			/* Either a PTE-mapped or a PMD-mapped THP. */
64 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 				       !PageAnonExclusive(page), page);
66 	}
67 }
68 
69 /*
70  * Return the folio with ref appropriately incremented,
71  * or NULL if that failed.
72  */
73 static inline struct folio *try_get_folio(struct page *page, int refs)
74 {
75 	struct folio *folio;
76 
77 retry:
78 	folio = page_folio(page);
79 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
80 		return NULL;
81 	if (unlikely(!folio_ref_try_add(folio, refs)))
82 		return NULL;
83 
84 	/*
85 	 * At this point we have a stable reference to the folio; but it
86 	 * could be that between calling page_folio() and the refcount
87 	 * increment, the folio was split, in which case we'd end up
88 	 * holding a reference on a folio that has nothing to do with the page
89 	 * we were given anymore.
90 	 * So now that the folio is stable, recheck that the page still
91 	 * belongs to this folio.
92 	 */
93 	if (unlikely(page_folio(page) != folio)) {
94 		if (!put_devmap_managed_folio_refs(folio, refs))
95 			folio_put_refs(folio, refs);
96 		goto retry;
97 	}
98 
99 	return folio;
100 }
101 
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103 {
104 	if (flags & FOLL_PIN) {
105 		if (is_zero_folio(folio))
106 			return;
107 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 		if (folio_test_large(folio))
109 			atomic_sub(refs, &folio->_pincount);
110 		else
111 			refs *= GUP_PIN_COUNTING_BIAS;
112 	}
113 
114 	if (!put_devmap_managed_folio_refs(folio, refs))
115 		folio_put_refs(folio, refs);
116 }
117 
118 /**
119  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120  * @folio:    pointer to folio to be grabbed
121  * @refs:     the value to (effectively) add to the folio's refcount
122  * @flags:    gup flags: these are the FOLL_* flag values
123  *
124  * This might not do anything at all, depending on the flags argument.
125  *
126  * "grab" names in this file mean, "look at flags to decide whether to use
127  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
128  *
129  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
130  * time.
131  *
132  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134  *
135  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
136  *			be grabbed.
137  *
138  * It is called when we have a stable reference for the folio, typically in
139  * GUP slow path.
140  */
141 int __must_check try_grab_folio(struct folio *folio, int refs,
142 				unsigned int flags)
143 {
144 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
145 		return -ENOMEM;
146 
147 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
148 		return -EREMOTEIO;
149 
150 	if (flags & FOLL_GET)
151 		folio_ref_add(folio, refs);
152 	else if (flags & FOLL_PIN) {
153 		/*
154 		 * Don't take a pin on the zero page - it's not going anywhere
155 		 * and it is used in a *lot* of places.
156 		 */
157 		if (is_zero_folio(folio))
158 			return 0;
159 
160 		/*
161 		 * Increment the normal page refcount field at least once,
162 		 * so that the page really is pinned.
163 		 */
164 		if (folio_test_large(folio)) {
165 			folio_ref_add(folio, refs);
166 			atomic_add(refs, &folio->_pincount);
167 		} else {
168 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
169 		}
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 	}
173 
174 	return 0;
175 }
176 
177 /**
178  * unpin_user_page() - release a dma-pinned page
179  * @page:            pointer to page to be released
180  *
181  * Pages that were pinned via pin_user_pages*() must be released via either
182  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183  * that such pages can be separately tracked and uniquely handled. In
184  * particular, interactions with RDMA and filesystems need special handling.
185  */
186 void unpin_user_page(struct page *page)
187 {
188 	sanity_check_pinned_pages(&page, 1);
189 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
190 }
191 EXPORT_SYMBOL(unpin_user_page);
192 
193 /**
194  * unpin_folio() - release a dma-pinned folio
195  * @folio:         pointer to folio to be released
196  *
197  * Folios that were pinned via memfd_pin_folios() or other similar routines
198  * must be released either using unpin_folio() or unpin_folios().
199  */
200 void unpin_folio(struct folio *folio)
201 {
202 	gup_put_folio(folio, 1, FOLL_PIN);
203 }
204 EXPORT_SYMBOL_GPL(unpin_folio);
205 
206 /**
207  * folio_add_pin - Try to get an additional pin on a pinned folio
208  * @folio: The folio to be pinned
209  *
210  * Get an additional pin on a folio we already have a pin on.  Makes no change
211  * if the folio is a zero_page.
212  */
213 void folio_add_pin(struct folio *folio)
214 {
215 	if (is_zero_folio(folio))
216 		return;
217 
218 	/*
219 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 	 * page refcount field at least once, so that the page really is
221 	 * pinned.
222 	 */
223 	if (folio_test_large(folio)) {
224 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 		folio_ref_inc(folio);
226 		atomic_inc(&folio->_pincount);
227 	} else {
228 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 	}
231 }
232 
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 		unsigned long npages, unsigned long i, unsigned int *ntails)
235 {
236 	struct page *next = nth_page(start, i);
237 	struct folio *folio = page_folio(next);
238 	unsigned int nr = 1;
239 
240 	if (folio_test_large(folio))
241 		nr = min_t(unsigned int, npages - i,
242 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
243 
244 	*ntails = nr;
245 	return folio;
246 }
247 
248 static inline struct folio *gup_folio_next(struct page **list,
249 		unsigned long npages, unsigned long i, unsigned int *ntails)
250 {
251 	struct folio *folio = page_folio(list[i]);
252 	unsigned int nr;
253 
254 	for (nr = i + 1; nr < npages; nr++) {
255 		if (page_folio(list[nr]) != folio)
256 			break;
257 	}
258 
259 	*ntails = nr - i;
260 	return folio;
261 }
262 
263 /**
264  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265  * @pages:  array of pages to be maybe marked dirty, and definitely released.
266  * @npages: number of pages in the @pages array.
267  * @make_dirty: whether to mark the pages dirty
268  *
269  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270  * variants called on that page.
271  *
272  * For each page in the @pages array, make that page (or its head page, if a
273  * compound page) dirty, if @make_dirty is true, and if the page was previously
274  * listed as clean. In any case, releases all pages using unpin_user_page(),
275  * possibly via unpin_user_pages(), for the non-dirty case.
276  *
277  * Please see the unpin_user_page() documentation for details.
278  *
279  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280  * required, then the caller should a) verify that this is really correct,
281  * because _lock() is usually required, and b) hand code it:
282  * set_page_dirty_lock(), unpin_user_page().
283  *
284  */
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 				 bool make_dirty)
287 {
288 	unsigned long i;
289 	struct folio *folio;
290 	unsigned int nr;
291 
292 	if (!make_dirty) {
293 		unpin_user_pages(pages, npages);
294 		return;
295 	}
296 
297 	sanity_check_pinned_pages(pages, npages);
298 	for (i = 0; i < npages; i += nr) {
299 		folio = gup_folio_next(pages, npages, i, &nr);
300 		/*
301 		 * Checking PageDirty at this point may race with
302 		 * clear_page_dirty_for_io(), but that's OK. Two key
303 		 * cases:
304 		 *
305 		 * 1) This code sees the page as already dirty, so it
306 		 * skips the call to set_page_dirty(). That could happen
307 		 * because clear_page_dirty_for_io() called
308 		 * folio_mkclean(), followed by set_page_dirty().
309 		 * However, now the page is going to get written back,
310 		 * which meets the original intention of setting it
311 		 * dirty, so all is well: clear_page_dirty_for_io() goes
312 		 * on to call TestClearPageDirty(), and write the page
313 		 * back.
314 		 *
315 		 * 2) This code sees the page as clean, so it calls
316 		 * set_page_dirty(). The page stays dirty, despite being
317 		 * written back, so it gets written back again in the
318 		 * next writeback cycle. This is harmless.
319 		 */
320 		if (!folio_test_dirty(folio)) {
321 			folio_lock(folio);
322 			folio_mark_dirty(folio);
323 			folio_unlock(folio);
324 		}
325 		gup_put_folio(folio, nr, FOLL_PIN);
326 	}
327 }
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329 
330 /**
331  * unpin_user_page_range_dirty_lock() - release and optionally dirty
332  * gup-pinned page range
333  *
334  * @page:  the starting page of a range maybe marked dirty, and definitely released.
335  * @npages: number of consecutive pages to release.
336  * @make_dirty: whether to mark the pages dirty
337  *
338  * "gup-pinned page range" refers to a range of pages that has had one of the
339  * pin_user_pages() variants called on that page.
340  *
341  * For the page ranges defined by [page .. page+npages], make that range (or
342  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343  * page range was previously listed as clean.
344  *
345  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346  * required, then the caller should a) verify that this is really correct,
347  * because _lock() is usually required, and b) hand code it:
348  * set_page_dirty_lock(), unpin_user_page().
349  *
350  */
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 				      bool make_dirty)
353 {
354 	unsigned long i;
355 	struct folio *folio;
356 	unsigned int nr;
357 
358 	for (i = 0; i < npages; i += nr) {
359 		folio = gup_folio_range_next(page, npages, i, &nr);
360 		if (make_dirty && !folio_test_dirty(folio)) {
361 			folio_lock(folio);
362 			folio_mark_dirty(folio);
363 			folio_unlock(folio);
364 		}
365 		gup_put_folio(folio, nr, FOLL_PIN);
366 	}
367 }
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369 
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
371 {
372 	unsigned long i;
373 	struct folio *folio;
374 	unsigned int nr;
375 
376 	/*
377 	 * Don't perform any sanity checks because we might have raced with
378 	 * fork() and some anonymous pages might now actually be shared --
379 	 * which is why we're unpinning after all.
380 	 */
381 	for (i = 0; i < npages; i += nr) {
382 		folio = gup_folio_next(pages, npages, i, &nr);
383 		gup_put_folio(folio, nr, FOLL_PIN);
384 	}
385 }
386 
387 /**
388  * unpin_user_pages() - release an array of gup-pinned pages.
389  * @pages:  array of pages to be marked dirty and released.
390  * @npages: number of pages in the @pages array.
391  *
392  * For each page in the @pages array, release the page using unpin_user_page().
393  *
394  * Please see the unpin_user_page() documentation for details.
395  */
396 void unpin_user_pages(struct page **pages, unsigned long npages)
397 {
398 	unsigned long i;
399 	struct folio *folio;
400 	unsigned int nr;
401 
402 	/*
403 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 	 * leaving them pinned), but probably not. More likely, gup/pup returned
405 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 	 */
407 	if (WARN_ON(IS_ERR_VALUE(npages)))
408 		return;
409 
410 	sanity_check_pinned_pages(pages, npages);
411 	for (i = 0; i < npages; i += nr) {
412 		folio = gup_folio_next(pages, npages, i, &nr);
413 		gup_put_folio(folio, nr, FOLL_PIN);
414 	}
415 }
416 EXPORT_SYMBOL(unpin_user_pages);
417 
418 /**
419  * unpin_user_folio() - release pages of a folio
420  * @folio:  pointer to folio to be released
421  * @npages: number of pages of same folio
422  *
423  * Release npages of the folio
424  */
425 void unpin_user_folio(struct folio *folio, unsigned long npages)
426 {
427 	gup_put_folio(folio, npages, FOLL_PIN);
428 }
429 EXPORT_SYMBOL(unpin_user_folio);
430 
431 /**
432  * unpin_folios() - release an array of gup-pinned folios.
433  * @folios:  array of folios to be marked dirty and released.
434  * @nfolios: number of folios in the @folios array.
435  *
436  * For each folio in the @folios array, release the folio using gup_put_folio.
437  *
438  * Please see the unpin_folio() documentation for details.
439  */
440 void unpin_folios(struct folio **folios, unsigned long nfolios)
441 {
442 	unsigned long i = 0, j;
443 
444 	/*
445 	 * If this WARN_ON() fires, then the system *might* be leaking folios
446 	 * (by leaving them pinned), but probably not. More likely, gup/pup
447 	 * returned a hard -ERRNO error to the caller, who erroneously passed
448 	 * it here.
449 	 */
450 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
451 		return;
452 
453 	while (i < nfolios) {
454 		for (j = i + 1; j < nfolios; j++)
455 			if (folios[i] != folios[j])
456 				break;
457 
458 		if (folios[i])
459 			gup_put_folio(folios[i], j - i, FOLL_PIN);
460 		i = j;
461 	}
462 }
463 EXPORT_SYMBOL_GPL(unpin_folios);
464 
465 /*
466  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
468  * cache bouncing on large SMP machines for concurrent pinned gups.
469  */
470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
471 {
472 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
473 		set_bit(MMF_HAS_PINNED, mm_flags);
474 }
475 
476 #ifdef CONFIG_MMU
477 
478 #ifdef CONFIG_HAVE_GUP_FAST
479 static int record_subpages(struct page *page, unsigned long sz,
480 			   unsigned long addr, unsigned long end,
481 			   struct page **pages)
482 {
483 	struct page *start_page;
484 	int nr;
485 
486 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
487 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
488 		pages[nr] = nth_page(start_page, nr);
489 
490 	return nr;
491 }
492 
493 /**
494  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495  * @page:  pointer to page to be grabbed
496  * @refs:  the value to (effectively) add to the folio's refcount
497  * @flags: gup flags: these are the FOLL_* flag values.
498  *
499  * "grab" names in this file mean, "look at flags to decide whether to use
500  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
501  *
502  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503  * same time. (That's true throughout the get_user_pages*() and
504  * pin_user_pages*() APIs.) Cases:
505  *
506  *    FOLL_GET: folio's refcount will be incremented by @refs.
507  *
508  *    FOLL_PIN on large folios: folio's refcount will be incremented by
509  *    @refs, and its pincount will be incremented by @refs.
510  *
511  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
512  *    @refs * GUP_PIN_COUNTING_BIAS.
513  *
514  * Return: The folio containing @page (with refcount appropriately
515  * incremented) for success, or NULL upon failure. If neither FOLL_GET
516  * nor FOLL_PIN was set, that's considered failure, and furthermore,
517  * a likely bug in the caller, so a warning is also emitted.
518  *
519  * It uses add ref unless zero to elevate the folio refcount and must be called
520  * in fast path only.
521  */
522 static struct folio *try_grab_folio_fast(struct page *page, int refs,
523 					 unsigned int flags)
524 {
525 	struct folio *folio;
526 
527 	/* Raise warn if it is not called in fast GUP */
528 	VM_WARN_ON_ONCE(!irqs_disabled());
529 
530 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
531 		return NULL;
532 
533 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
534 		return NULL;
535 
536 	if (flags & FOLL_GET)
537 		return try_get_folio(page, refs);
538 
539 	/* FOLL_PIN is set */
540 
541 	/*
542 	 * Don't take a pin on the zero page - it's not going anywhere
543 	 * and it is used in a *lot* of places.
544 	 */
545 	if (is_zero_page(page))
546 		return page_folio(page);
547 
548 	folio = try_get_folio(page, refs);
549 	if (!folio)
550 		return NULL;
551 
552 	/*
553 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 	 * right zone, so fail and let the caller fall back to the slow
555 	 * path.
556 	 */
557 	if (unlikely((flags & FOLL_LONGTERM) &&
558 		     !folio_is_longterm_pinnable(folio))) {
559 		if (!put_devmap_managed_folio_refs(folio, refs))
560 			folio_put_refs(folio, refs);
561 		return NULL;
562 	}
563 
564 	/*
565 	 * When pinning a large folio, use an exact count to track it.
566 	 *
567 	 * However, be sure to *also* increment the normal folio
568 	 * refcount field at least once, so that the folio really
569 	 * is pinned.  That's why the refcount from the earlier
570 	 * try_get_folio() is left intact.
571 	 */
572 	if (folio_test_large(folio))
573 		atomic_add(refs, &folio->_pincount);
574 	else
575 		folio_ref_add(folio,
576 				refs * (GUP_PIN_COUNTING_BIAS - 1));
577 	/*
578 	 * Adjust the pincount before re-checking the PTE for changes.
579 	 * This is essentially a smp_mb() and is paired with a memory
580 	 * barrier in folio_try_share_anon_rmap_*().
581 	 */
582 	smp_mb__after_atomic();
583 
584 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
585 
586 	return folio;
587 }
588 #endif	/* CONFIG_HAVE_GUP_FAST */
589 
590 static struct page *no_page_table(struct vm_area_struct *vma,
591 				  unsigned int flags, unsigned long address)
592 {
593 	if (!(flags & FOLL_DUMP))
594 		return NULL;
595 
596 	/*
597 	 * When core dumping, we don't want to allocate unnecessary pages or
598 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
599 	 * then get_dump_page() will return NULL to leave a hole in the dump.
600 	 * But we can only make this optimization where a hole would surely
601 	 * be zero-filled if handle_mm_fault() actually did handle it.
602 	 */
603 	if (is_vm_hugetlb_page(vma)) {
604 		struct hstate *h = hstate_vma(vma);
605 
606 		if (!hugetlbfs_pagecache_present(h, vma, address))
607 			return ERR_PTR(-EFAULT);
608 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
609 		return ERR_PTR(-EFAULT);
610 	}
611 
612 	return NULL;
613 }
614 
615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
616 static struct page *follow_huge_pud(struct vm_area_struct *vma,
617 				    unsigned long addr, pud_t *pudp,
618 				    int flags, struct follow_page_context *ctx)
619 {
620 	struct mm_struct *mm = vma->vm_mm;
621 	struct page *page;
622 	pud_t pud = *pudp;
623 	unsigned long pfn = pud_pfn(pud);
624 	int ret;
625 
626 	assert_spin_locked(pud_lockptr(mm, pudp));
627 
628 	if ((flags & FOLL_WRITE) && !pud_write(pud))
629 		return NULL;
630 
631 	if (!pud_present(pud))
632 		return NULL;
633 
634 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
635 
636 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
637 	    pud_devmap(pud)) {
638 		/*
639 		 * device mapped pages can only be returned if the caller
640 		 * will manage the page reference count.
641 		 *
642 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
643 		 * assert that here:
644 		 */
645 		if (!(flags & (FOLL_GET | FOLL_PIN)))
646 			return ERR_PTR(-EEXIST);
647 
648 		if (flags & FOLL_TOUCH)
649 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
650 
651 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
652 		if (!ctx->pgmap)
653 			return ERR_PTR(-EFAULT);
654 	}
655 
656 	page = pfn_to_page(pfn);
657 
658 	if (!pud_devmap(pud) && !pud_write(pud) &&
659 	    gup_must_unshare(vma, flags, page))
660 		return ERR_PTR(-EMLINK);
661 
662 	ret = try_grab_folio(page_folio(page), 1, flags);
663 	if (ret)
664 		page = ERR_PTR(ret);
665 	else
666 		ctx->page_mask = HPAGE_PUD_NR - 1;
667 
668 	return page;
669 }
670 
671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
673 					struct vm_area_struct *vma,
674 					unsigned int flags)
675 {
676 	/* If the pmd is writable, we can write to the page. */
677 	if (pmd_write(pmd))
678 		return true;
679 
680 	/* Maybe FOLL_FORCE is set to override it? */
681 	if (!(flags & FOLL_FORCE))
682 		return false;
683 
684 	/* But FOLL_FORCE has no effect on shared mappings */
685 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
686 		return false;
687 
688 	/* ... or read-only private ones */
689 	if (!(vma->vm_flags & VM_MAYWRITE))
690 		return false;
691 
692 	/* ... or already writable ones that just need to take a write fault */
693 	if (vma->vm_flags & VM_WRITE)
694 		return false;
695 
696 	/*
697 	 * See can_change_pte_writable(): we broke COW and could map the page
698 	 * writable if we have an exclusive anonymous page ...
699 	 */
700 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
701 		return false;
702 
703 	/* ... and a write-fault isn't required for other reasons. */
704 	if (pmd_needs_soft_dirty_wp(vma, pmd))
705 		return false;
706 	return !userfaultfd_huge_pmd_wp(vma, pmd);
707 }
708 
709 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
710 				    unsigned long addr, pmd_t *pmd,
711 				    unsigned int flags,
712 				    struct follow_page_context *ctx)
713 {
714 	struct mm_struct *mm = vma->vm_mm;
715 	pmd_t pmdval = *pmd;
716 	struct page *page;
717 	int ret;
718 
719 	assert_spin_locked(pmd_lockptr(mm, pmd));
720 
721 	page = pmd_page(pmdval);
722 	if ((flags & FOLL_WRITE) &&
723 	    !can_follow_write_pmd(pmdval, page, vma, flags))
724 		return NULL;
725 
726 	/* Avoid dumping huge zero page */
727 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
728 		return ERR_PTR(-EFAULT);
729 
730 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
731 		return NULL;
732 
733 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
734 		return ERR_PTR(-EMLINK);
735 
736 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
737 			!PageAnonExclusive(page), page);
738 
739 	ret = try_grab_folio(page_folio(page), 1, flags);
740 	if (ret)
741 		return ERR_PTR(ret);
742 
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
745 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
746 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
747 
748 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
749 	ctx->page_mask = HPAGE_PMD_NR - 1;
750 
751 	return page;
752 }
753 
754 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
755 static struct page *follow_huge_pud(struct vm_area_struct *vma,
756 				    unsigned long addr, pud_t *pudp,
757 				    int flags, struct follow_page_context *ctx)
758 {
759 	return NULL;
760 }
761 
762 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
763 				    unsigned long addr, pmd_t *pmd,
764 				    unsigned int flags,
765 				    struct follow_page_context *ctx)
766 {
767 	return NULL;
768 }
769 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
770 
771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
772 		pte_t *pte, unsigned int flags)
773 {
774 	if (flags & FOLL_TOUCH) {
775 		pte_t orig_entry = ptep_get(pte);
776 		pte_t entry = orig_entry;
777 
778 		if (flags & FOLL_WRITE)
779 			entry = pte_mkdirty(entry);
780 		entry = pte_mkyoung(entry);
781 
782 		if (!pte_same(orig_entry, entry)) {
783 			set_pte_at(vma->vm_mm, address, pte, entry);
784 			update_mmu_cache(vma, address, pte);
785 		}
786 	}
787 
788 	/* Proper page table entry exists, but no corresponding struct page */
789 	return -EEXIST;
790 }
791 
792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
793 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
794 					struct vm_area_struct *vma,
795 					unsigned int flags)
796 {
797 	/* If the pte is writable, we can write to the page. */
798 	if (pte_write(pte))
799 		return true;
800 
801 	/* Maybe FOLL_FORCE is set to override it? */
802 	if (!(flags & FOLL_FORCE))
803 		return false;
804 
805 	/* But FOLL_FORCE has no effect on shared mappings */
806 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
807 		return false;
808 
809 	/* ... or read-only private ones */
810 	if (!(vma->vm_flags & VM_MAYWRITE))
811 		return false;
812 
813 	/* ... or already writable ones that just need to take a write fault */
814 	if (vma->vm_flags & VM_WRITE)
815 		return false;
816 
817 	/*
818 	 * See can_change_pte_writable(): we broke COW and could map the page
819 	 * writable if we have an exclusive anonymous page ...
820 	 */
821 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
822 		return false;
823 
824 	/* ... and a write-fault isn't required for other reasons. */
825 	if (pte_needs_soft_dirty_wp(vma, pte))
826 		return false;
827 	return !userfaultfd_pte_wp(vma, pte);
828 }
829 
830 static struct page *follow_page_pte(struct vm_area_struct *vma,
831 		unsigned long address, pmd_t *pmd, unsigned int flags,
832 		struct dev_pagemap **pgmap)
833 {
834 	struct mm_struct *mm = vma->vm_mm;
835 	struct page *page;
836 	spinlock_t *ptl;
837 	pte_t *ptep, pte;
838 	int ret;
839 
840 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
841 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
842 			 (FOLL_PIN | FOLL_GET)))
843 		return ERR_PTR(-EINVAL);
844 
845 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
846 	if (!ptep)
847 		return no_page_table(vma, flags, address);
848 	pte = ptep_get(ptep);
849 	if (!pte_present(pte))
850 		goto no_page;
851 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
852 		goto no_page;
853 
854 	page = vm_normal_page(vma, address, pte);
855 
856 	/*
857 	 * We only care about anon pages in can_follow_write_pte() and don't
858 	 * have to worry about pte_devmap() because they are never anon.
859 	 */
860 	if ((flags & FOLL_WRITE) &&
861 	    !can_follow_write_pte(pte, page, vma, flags)) {
862 		page = NULL;
863 		goto out;
864 	}
865 
866 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
867 		/*
868 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
869 		 * case since they are only valid while holding the pgmap
870 		 * reference.
871 		 */
872 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
873 		if (*pgmap)
874 			page = pte_page(pte);
875 		else
876 			goto no_page;
877 	} else if (unlikely(!page)) {
878 		if (flags & FOLL_DUMP) {
879 			/* Avoid special (like zero) pages in core dumps */
880 			page = ERR_PTR(-EFAULT);
881 			goto out;
882 		}
883 
884 		if (is_zero_pfn(pte_pfn(pte))) {
885 			page = pte_page(pte);
886 		} else {
887 			ret = follow_pfn_pte(vma, address, ptep, flags);
888 			page = ERR_PTR(ret);
889 			goto out;
890 		}
891 	}
892 
893 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
894 		page = ERR_PTR(-EMLINK);
895 		goto out;
896 	}
897 
898 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
899 		       !PageAnonExclusive(page), page);
900 
901 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
902 	ret = try_grab_folio(page_folio(page), 1, flags);
903 	if (unlikely(ret)) {
904 		page = ERR_PTR(ret);
905 		goto out;
906 	}
907 
908 	/*
909 	 * We need to make the page accessible if and only if we are going
910 	 * to access its content (the FOLL_PIN case).  Please see
911 	 * Documentation/core-api/pin_user_pages.rst for details.
912 	 */
913 	if (flags & FOLL_PIN) {
914 		ret = arch_make_page_accessible(page);
915 		if (ret) {
916 			unpin_user_page(page);
917 			page = ERR_PTR(ret);
918 			goto out;
919 		}
920 	}
921 	if (flags & FOLL_TOUCH) {
922 		if ((flags & FOLL_WRITE) &&
923 		    !pte_dirty(pte) && !PageDirty(page))
924 			set_page_dirty(page);
925 		/*
926 		 * pte_mkyoung() would be more correct here, but atomic care
927 		 * is needed to avoid losing the dirty bit: it is easier to use
928 		 * mark_page_accessed().
929 		 */
930 		mark_page_accessed(page);
931 	}
932 out:
933 	pte_unmap_unlock(ptep, ptl);
934 	return page;
935 no_page:
936 	pte_unmap_unlock(ptep, ptl);
937 	if (!pte_none(pte))
938 		return NULL;
939 	return no_page_table(vma, flags, address);
940 }
941 
942 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
943 				    unsigned long address, pud_t *pudp,
944 				    unsigned int flags,
945 				    struct follow_page_context *ctx)
946 {
947 	pmd_t *pmd, pmdval;
948 	spinlock_t *ptl;
949 	struct page *page;
950 	struct mm_struct *mm = vma->vm_mm;
951 
952 	pmd = pmd_offset(pudp, address);
953 	pmdval = pmdp_get_lockless(pmd);
954 	if (pmd_none(pmdval))
955 		return no_page_table(vma, flags, address);
956 	if (!pmd_present(pmdval))
957 		return no_page_table(vma, flags, address);
958 	if (pmd_devmap(pmdval)) {
959 		ptl = pmd_lock(mm, pmd);
960 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
961 		spin_unlock(ptl);
962 		if (page)
963 			return page;
964 		return no_page_table(vma, flags, address);
965 	}
966 	if (likely(!pmd_leaf(pmdval)))
967 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
968 
969 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
970 		return no_page_table(vma, flags, address);
971 
972 	ptl = pmd_lock(mm, pmd);
973 	pmdval = *pmd;
974 	if (unlikely(!pmd_present(pmdval))) {
975 		spin_unlock(ptl);
976 		return no_page_table(vma, flags, address);
977 	}
978 	if (unlikely(!pmd_leaf(pmdval))) {
979 		spin_unlock(ptl);
980 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
981 	}
982 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
983 		spin_unlock(ptl);
984 		split_huge_pmd(vma, pmd, address);
985 		/* If pmd was left empty, stuff a page table in there quickly */
986 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
987 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
988 	}
989 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
990 	spin_unlock(ptl);
991 	return page;
992 }
993 
994 static struct page *follow_pud_mask(struct vm_area_struct *vma,
995 				    unsigned long address, p4d_t *p4dp,
996 				    unsigned int flags,
997 				    struct follow_page_context *ctx)
998 {
999 	pud_t *pudp, pud;
1000 	spinlock_t *ptl;
1001 	struct page *page;
1002 	struct mm_struct *mm = vma->vm_mm;
1003 
1004 	pudp = pud_offset(p4dp, address);
1005 	pud = READ_ONCE(*pudp);
1006 	if (!pud_present(pud))
1007 		return no_page_table(vma, flags, address);
1008 	if (pud_leaf(pud)) {
1009 		ptl = pud_lock(mm, pudp);
1010 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1011 		spin_unlock(ptl);
1012 		if (page)
1013 			return page;
1014 		return no_page_table(vma, flags, address);
1015 	}
1016 	if (unlikely(pud_bad(pud)))
1017 		return no_page_table(vma, flags, address);
1018 
1019 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1020 }
1021 
1022 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1023 				    unsigned long address, pgd_t *pgdp,
1024 				    unsigned int flags,
1025 				    struct follow_page_context *ctx)
1026 {
1027 	p4d_t *p4dp, p4d;
1028 
1029 	p4dp = p4d_offset(pgdp, address);
1030 	p4d = READ_ONCE(*p4dp);
1031 	BUILD_BUG_ON(p4d_leaf(p4d));
1032 
1033 	if (!p4d_present(p4d) || p4d_bad(p4d))
1034 		return no_page_table(vma, flags, address);
1035 
1036 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1037 }
1038 
1039 /**
1040  * follow_page_mask - look up a page descriptor from a user-virtual address
1041  * @vma: vm_area_struct mapping @address
1042  * @address: virtual address to look up
1043  * @flags: flags modifying lookup behaviour
1044  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1045  *       pointer to output page_mask
1046  *
1047  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1048  *
1049  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1050  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1051  *
1052  * When getting an anonymous page and the caller has to trigger unsharing
1053  * of a shared anonymous page first, -EMLINK is returned. The caller should
1054  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1055  * relevant with FOLL_PIN and !FOLL_WRITE.
1056  *
1057  * On output, the @ctx->page_mask is set according to the size of the page.
1058  *
1059  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1060  * an error pointer if there is a mapping to something not represented
1061  * by a page descriptor (see also vm_normal_page()).
1062  */
1063 static struct page *follow_page_mask(struct vm_area_struct *vma,
1064 			      unsigned long address, unsigned int flags,
1065 			      struct follow_page_context *ctx)
1066 {
1067 	pgd_t *pgd;
1068 	struct mm_struct *mm = vma->vm_mm;
1069 	struct page *page;
1070 
1071 	vma_pgtable_walk_begin(vma);
1072 
1073 	ctx->page_mask = 0;
1074 	pgd = pgd_offset(mm, address);
1075 
1076 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1077 		page = no_page_table(vma, flags, address);
1078 	else
1079 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1080 
1081 	vma_pgtable_walk_end(vma);
1082 
1083 	return page;
1084 }
1085 
1086 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1087 			 unsigned int foll_flags)
1088 {
1089 	struct follow_page_context ctx = { NULL };
1090 	struct page *page;
1091 
1092 	if (vma_is_secretmem(vma))
1093 		return NULL;
1094 
1095 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1096 		return NULL;
1097 
1098 	/*
1099 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1100 	 * to fail on PROT_NONE-mapped pages.
1101 	 */
1102 	page = follow_page_mask(vma, address, foll_flags, &ctx);
1103 	if (ctx.pgmap)
1104 		put_dev_pagemap(ctx.pgmap);
1105 	return page;
1106 }
1107 
1108 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1109 		unsigned int gup_flags, struct vm_area_struct **vma,
1110 		struct page **page)
1111 {
1112 	pgd_t *pgd;
1113 	p4d_t *p4d;
1114 	pud_t *pud;
1115 	pmd_t *pmd;
1116 	pte_t *pte;
1117 	pte_t entry;
1118 	int ret = -EFAULT;
1119 
1120 	/* user gate pages are read-only */
1121 	if (gup_flags & FOLL_WRITE)
1122 		return -EFAULT;
1123 	if (address > TASK_SIZE)
1124 		pgd = pgd_offset_k(address);
1125 	else
1126 		pgd = pgd_offset_gate(mm, address);
1127 	if (pgd_none(*pgd))
1128 		return -EFAULT;
1129 	p4d = p4d_offset(pgd, address);
1130 	if (p4d_none(*p4d))
1131 		return -EFAULT;
1132 	pud = pud_offset(p4d, address);
1133 	if (pud_none(*pud))
1134 		return -EFAULT;
1135 	pmd = pmd_offset(pud, address);
1136 	if (!pmd_present(*pmd))
1137 		return -EFAULT;
1138 	pte = pte_offset_map(pmd, address);
1139 	if (!pte)
1140 		return -EFAULT;
1141 	entry = ptep_get(pte);
1142 	if (pte_none(entry))
1143 		goto unmap;
1144 	*vma = get_gate_vma(mm);
1145 	if (!page)
1146 		goto out;
1147 	*page = vm_normal_page(*vma, address, entry);
1148 	if (!*page) {
1149 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1150 			goto unmap;
1151 		*page = pte_page(entry);
1152 	}
1153 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1154 	if (unlikely(ret))
1155 		goto unmap;
1156 out:
1157 	ret = 0;
1158 unmap:
1159 	pte_unmap(pte);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1165  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1166  * to 0 and -EBUSY returned.
1167  */
1168 static int faultin_page(struct vm_area_struct *vma,
1169 		unsigned long address, unsigned int *flags, bool unshare,
1170 		int *locked)
1171 {
1172 	unsigned int fault_flags = 0;
1173 	vm_fault_t ret;
1174 
1175 	if (*flags & FOLL_NOFAULT)
1176 		return -EFAULT;
1177 	if (*flags & FOLL_WRITE)
1178 		fault_flags |= FAULT_FLAG_WRITE;
1179 	if (*flags & FOLL_REMOTE)
1180 		fault_flags |= FAULT_FLAG_REMOTE;
1181 	if (*flags & FOLL_UNLOCKABLE) {
1182 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1183 		/*
1184 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1185 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1186 		 * That's because some callers may not be prepared to
1187 		 * handle early exits caused by non-fatal signals.
1188 		 */
1189 		if (*flags & FOLL_INTERRUPTIBLE)
1190 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1191 	}
1192 	if (*flags & FOLL_NOWAIT)
1193 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1194 	if (*flags & FOLL_TRIED) {
1195 		/*
1196 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1197 		 * can co-exist
1198 		 */
1199 		fault_flags |= FAULT_FLAG_TRIED;
1200 	}
1201 	if (unshare) {
1202 		fault_flags |= FAULT_FLAG_UNSHARE;
1203 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1204 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1205 	}
1206 
1207 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1208 
1209 	if (ret & VM_FAULT_COMPLETED) {
1210 		/*
1211 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1212 		 * mmap lock in the page fault handler. Sanity check this.
1213 		 */
1214 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1215 		*locked = 0;
1216 
1217 		/*
1218 		 * We should do the same as VM_FAULT_RETRY, but let's not
1219 		 * return -EBUSY since that's not reflecting the reality of
1220 		 * what has happened - we've just fully completed a page
1221 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1222 		 * that we want to take the mmap lock _again_.
1223 		 */
1224 		return -EAGAIN;
1225 	}
1226 
1227 	if (ret & VM_FAULT_ERROR) {
1228 		int err = vm_fault_to_errno(ret, *flags);
1229 
1230 		if (err)
1231 			return err;
1232 		BUG();
1233 	}
1234 
1235 	if (ret & VM_FAULT_RETRY) {
1236 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1237 			*locked = 0;
1238 		return -EBUSY;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Writing to file-backed mappings which require folio dirty tracking using GUP
1246  * is a fundamentally broken operation, as kernel write access to GUP mappings
1247  * do not adhere to the semantics expected by a file system.
1248  *
1249  * Consider the following scenario:-
1250  *
1251  * 1. A folio is written to via GUP which write-faults the memory, notifying
1252  *    the file system and dirtying the folio.
1253  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1254  *    the PTE being marked read-only.
1255  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1256  *    direct mapping.
1257  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1258  *    (though it does not have to).
1259  *
1260  * This results in both data being written to a folio without writenotify, and
1261  * the folio being dirtied unexpectedly (if the caller decides to do so).
1262  */
1263 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1264 					  unsigned long gup_flags)
1265 {
1266 	/*
1267 	 * If we aren't pinning then no problematic write can occur. A long term
1268 	 * pin is the most egregious case so this is the case we disallow.
1269 	 */
1270 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1271 	    (FOLL_PIN | FOLL_LONGTERM))
1272 		return true;
1273 
1274 	/*
1275 	 * If the VMA does not require dirty tracking then no problematic write
1276 	 * can occur either.
1277 	 */
1278 	return !vma_needs_dirty_tracking(vma);
1279 }
1280 
1281 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1282 {
1283 	vm_flags_t vm_flags = vma->vm_flags;
1284 	int write = (gup_flags & FOLL_WRITE);
1285 	int foreign = (gup_flags & FOLL_REMOTE);
1286 	bool vma_anon = vma_is_anonymous(vma);
1287 
1288 	if (vm_flags & (VM_IO | VM_PFNMAP))
1289 		return -EFAULT;
1290 
1291 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1292 		return -EFAULT;
1293 
1294 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1295 		return -EOPNOTSUPP;
1296 
1297 	if (vma_is_secretmem(vma))
1298 		return -EFAULT;
1299 
1300 	if (write) {
1301 		if (!vma_anon &&
1302 		    !writable_file_mapping_allowed(vma, gup_flags))
1303 			return -EFAULT;
1304 
1305 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1306 			if (!(gup_flags & FOLL_FORCE))
1307 				return -EFAULT;
1308 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1309 			if (is_vm_hugetlb_page(vma))
1310 				return -EFAULT;
1311 			/*
1312 			 * We used to let the write,force case do COW in a
1313 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1314 			 * set a breakpoint in a read-only mapping of an
1315 			 * executable, without corrupting the file (yet only
1316 			 * when that file had been opened for writing!).
1317 			 * Anon pages in shared mappings are surprising: now
1318 			 * just reject it.
1319 			 */
1320 			if (!is_cow_mapping(vm_flags))
1321 				return -EFAULT;
1322 		}
1323 	} else if (!(vm_flags & VM_READ)) {
1324 		if (!(gup_flags & FOLL_FORCE))
1325 			return -EFAULT;
1326 		/*
1327 		 * Is there actually any vma we can reach here which does not
1328 		 * have VM_MAYREAD set?
1329 		 */
1330 		if (!(vm_flags & VM_MAYREAD))
1331 			return -EFAULT;
1332 	}
1333 	/*
1334 	 * gups are always data accesses, not instruction
1335 	 * fetches, so execute=false here
1336 	 */
1337 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1338 		return -EFAULT;
1339 	return 0;
1340 }
1341 
1342 /*
1343  * This is "vma_lookup()", but with a warning if we would have
1344  * historically expanded the stack in the GUP code.
1345  */
1346 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1347 	 unsigned long addr)
1348 {
1349 #ifdef CONFIG_STACK_GROWSUP
1350 	return vma_lookup(mm, addr);
1351 #else
1352 	static volatile unsigned long next_warn;
1353 	struct vm_area_struct *vma;
1354 	unsigned long now, next;
1355 
1356 	vma = find_vma(mm, addr);
1357 	if (!vma || (addr >= vma->vm_start))
1358 		return vma;
1359 
1360 	/* Only warn for half-way relevant accesses */
1361 	if (!(vma->vm_flags & VM_GROWSDOWN))
1362 		return NULL;
1363 	if (vma->vm_start - addr > 65536)
1364 		return NULL;
1365 
1366 	/* Let's not warn more than once an hour.. */
1367 	now = jiffies; next = next_warn;
1368 	if (next && time_before(now, next))
1369 		return NULL;
1370 	next_warn = now + 60*60*HZ;
1371 
1372 	/* Let people know things may have changed. */
1373 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1374 		current->comm, task_pid_nr(current),
1375 		vma->vm_start, vma->vm_end, addr);
1376 	dump_stack();
1377 	return NULL;
1378 #endif
1379 }
1380 
1381 /**
1382  * __get_user_pages() - pin user pages in memory
1383  * @mm:		mm_struct of target mm
1384  * @start:	starting user address
1385  * @nr_pages:	number of pages from start to pin
1386  * @gup_flags:	flags modifying pin behaviour
1387  * @pages:	array that receives pointers to the pages pinned.
1388  *		Should be at least nr_pages long. Or NULL, if caller
1389  *		only intends to ensure the pages are faulted in.
1390  * @locked:     whether we're still with the mmap_lock held
1391  *
1392  * Returns either number of pages pinned (which may be less than the
1393  * number requested), or an error. Details about the return value:
1394  *
1395  * -- If nr_pages is 0, returns 0.
1396  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1397  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1398  *    pages pinned. Again, this may be less than nr_pages.
1399  * -- 0 return value is possible when the fault would need to be retried.
1400  *
1401  * The caller is responsible for releasing returned @pages, via put_page().
1402  *
1403  * Must be called with mmap_lock held.  It may be released.  See below.
1404  *
1405  * __get_user_pages walks a process's page tables and takes a reference to
1406  * each struct page that each user address corresponds to at a given
1407  * instant. That is, it takes the page that would be accessed if a user
1408  * thread accesses the given user virtual address at that instant.
1409  *
1410  * This does not guarantee that the page exists in the user mappings when
1411  * __get_user_pages returns, and there may even be a completely different
1412  * page there in some cases (eg. if mmapped pagecache has been invalidated
1413  * and subsequently re-faulted). However it does guarantee that the page
1414  * won't be freed completely. And mostly callers simply care that the page
1415  * contains data that was valid *at some point in time*. Typically, an IO
1416  * or similar operation cannot guarantee anything stronger anyway because
1417  * locks can't be held over the syscall boundary.
1418  *
1419  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1420  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1421  * appropriate) must be called after the page is finished with, and
1422  * before put_page is called.
1423  *
1424  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1425  * be released. If this happens *@locked will be set to 0 on return.
1426  *
1427  * A caller using such a combination of @gup_flags must therefore hold the
1428  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1429  * it must be held for either reading or writing and will not be released.
1430  *
1431  * In most cases, get_user_pages or get_user_pages_fast should be used
1432  * instead of __get_user_pages. __get_user_pages should be used only if
1433  * you need some special @gup_flags.
1434  */
1435 static long __get_user_pages(struct mm_struct *mm,
1436 		unsigned long start, unsigned long nr_pages,
1437 		unsigned int gup_flags, struct page **pages,
1438 		int *locked)
1439 {
1440 	long ret = 0, i = 0;
1441 	struct vm_area_struct *vma = NULL;
1442 	struct follow_page_context ctx = { NULL };
1443 
1444 	if (!nr_pages)
1445 		return 0;
1446 
1447 	start = untagged_addr_remote(mm, start);
1448 
1449 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1450 
1451 	do {
1452 		struct page *page;
1453 		unsigned int foll_flags = gup_flags;
1454 		unsigned int page_increm;
1455 
1456 		/* first iteration or cross vma bound */
1457 		if (!vma || start >= vma->vm_end) {
1458 			/*
1459 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1460 			 * lookups+error reporting differently.
1461 			 */
1462 			if (gup_flags & FOLL_MADV_POPULATE) {
1463 				vma = vma_lookup(mm, start);
1464 				if (!vma) {
1465 					ret = -ENOMEM;
1466 					goto out;
1467 				}
1468 				if (check_vma_flags(vma, gup_flags)) {
1469 					ret = -EINVAL;
1470 					goto out;
1471 				}
1472 				goto retry;
1473 			}
1474 			vma = gup_vma_lookup(mm, start);
1475 			if (!vma && in_gate_area(mm, start)) {
1476 				ret = get_gate_page(mm, start & PAGE_MASK,
1477 						gup_flags, &vma,
1478 						pages ? &page : NULL);
1479 				if (ret)
1480 					goto out;
1481 				ctx.page_mask = 0;
1482 				goto next_page;
1483 			}
1484 
1485 			if (!vma) {
1486 				ret = -EFAULT;
1487 				goto out;
1488 			}
1489 			ret = check_vma_flags(vma, gup_flags);
1490 			if (ret)
1491 				goto out;
1492 		}
1493 retry:
1494 		/*
1495 		 * If we have a pending SIGKILL, don't keep faulting pages and
1496 		 * potentially allocating memory.
1497 		 */
1498 		if (fatal_signal_pending(current)) {
1499 			ret = -EINTR;
1500 			goto out;
1501 		}
1502 		cond_resched();
1503 
1504 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1505 		if (!page || PTR_ERR(page) == -EMLINK) {
1506 			ret = faultin_page(vma, start, &foll_flags,
1507 					   PTR_ERR(page) == -EMLINK, locked);
1508 			switch (ret) {
1509 			case 0:
1510 				goto retry;
1511 			case -EBUSY:
1512 			case -EAGAIN:
1513 				ret = 0;
1514 				fallthrough;
1515 			case -EFAULT:
1516 			case -ENOMEM:
1517 			case -EHWPOISON:
1518 				goto out;
1519 			}
1520 			BUG();
1521 		} else if (PTR_ERR(page) == -EEXIST) {
1522 			/*
1523 			 * Proper page table entry exists, but no corresponding
1524 			 * struct page. If the caller expects **pages to be
1525 			 * filled in, bail out now, because that can't be done
1526 			 * for this page.
1527 			 */
1528 			if (pages) {
1529 				ret = PTR_ERR(page);
1530 				goto out;
1531 			}
1532 		} else if (IS_ERR(page)) {
1533 			ret = PTR_ERR(page);
1534 			goto out;
1535 		}
1536 next_page:
1537 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1538 		if (page_increm > nr_pages)
1539 			page_increm = nr_pages;
1540 
1541 		if (pages) {
1542 			struct page *subpage;
1543 			unsigned int j;
1544 
1545 			/*
1546 			 * This must be a large folio (and doesn't need to
1547 			 * be the whole folio; it can be part of it), do
1548 			 * the refcount work for all the subpages too.
1549 			 *
1550 			 * NOTE: here the page may not be the head page
1551 			 * e.g. when start addr is not thp-size aligned.
1552 			 * try_grab_folio() should have taken care of tail
1553 			 * pages.
1554 			 */
1555 			if (page_increm > 1) {
1556 				struct folio *folio = page_folio(page);
1557 
1558 				/*
1559 				 * Since we already hold refcount on the
1560 				 * large folio, this should never fail.
1561 				 */
1562 				if (try_grab_folio(folio, page_increm - 1,
1563 						   foll_flags)) {
1564 					/*
1565 					 * Release the 1st page ref if the
1566 					 * folio is problematic, fail hard.
1567 					 */
1568 					gup_put_folio(folio, 1,
1569 						      foll_flags);
1570 					ret = -EFAULT;
1571 					goto out;
1572 				}
1573 			}
1574 
1575 			for (j = 0; j < page_increm; j++) {
1576 				subpage = nth_page(page, j);
1577 				pages[i + j] = subpage;
1578 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1579 				flush_dcache_page(subpage);
1580 			}
1581 		}
1582 
1583 		i += page_increm;
1584 		start += page_increm * PAGE_SIZE;
1585 		nr_pages -= page_increm;
1586 	} while (nr_pages);
1587 out:
1588 	if (ctx.pgmap)
1589 		put_dev_pagemap(ctx.pgmap);
1590 	return i ? i : ret;
1591 }
1592 
1593 static bool vma_permits_fault(struct vm_area_struct *vma,
1594 			      unsigned int fault_flags)
1595 {
1596 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1597 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1598 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1599 
1600 	if (!(vm_flags & vma->vm_flags))
1601 		return false;
1602 
1603 	/*
1604 	 * The architecture might have a hardware protection
1605 	 * mechanism other than read/write that can deny access.
1606 	 *
1607 	 * gup always represents data access, not instruction
1608 	 * fetches, so execute=false here:
1609 	 */
1610 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 /**
1617  * fixup_user_fault() - manually resolve a user page fault
1618  * @mm:		mm_struct of target mm
1619  * @address:	user address
1620  * @fault_flags:flags to pass down to handle_mm_fault()
1621  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1622  *		does not allow retry. If NULL, the caller must guarantee
1623  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1624  *
1625  * This is meant to be called in the specific scenario where for locking reasons
1626  * we try to access user memory in atomic context (within a pagefault_disable()
1627  * section), this returns -EFAULT, and we want to resolve the user fault before
1628  * trying again.
1629  *
1630  * Typically this is meant to be used by the futex code.
1631  *
1632  * The main difference with get_user_pages() is that this function will
1633  * unconditionally call handle_mm_fault() which will in turn perform all the
1634  * necessary SW fixup of the dirty and young bits in the PTE, while
1635  * get_user_pages() only guarantees to update these in the struct page.
1636  *
1637  * This is important for some architectures where those bits also gate the
1638  * access permission to the page because they are maintained in software.  On
1639  * such architectures, gup() will not be enough to make a subsequent access
1640  * succeed.
1641  *
1642  * This function will not return with an unlocked mmap_lock. So it has not the
1643  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1644  */
1645 int fixup_user_fault(struct mm_struct *mm,
1646 		     unsigned long address, unsigned int fault_flags,
1647 		     bool *unlocked)
1648 {
1649 	struct vm_area_struct *vma;
1650 	vm_fault_t ret;
1651 
1652 	address = untagged_addr_remote(mm, address);
1653 
1654 	if (unlocked)
1655 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1656 
1657 retry:
1658 	vma = gup_vma_lookup(mm, address);
1659 	if (!vma)
1660 		return -EFAULT;
1661 
1662 	if (!vma_permits_fault(vma, fault_flags))
1663 		return -EFAULT;
1664 
1665 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1666 	    fatal_signal_pending(current))
1667 		return -EINTR;
1668 
1669 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1670 
1671 	if (ret & VM_FAULT_COMPLETED) {
1672 		/*
1673 		 * NOTE: it's a pity that we need to retake the lock here
1674 		 * to pair with the unlock() in the callers. Ideally we
1675 		 * could tell the callers so they do not need to unlock.
1676 		 */
1677 		mmap_read_lock(mm);
1678 		*unlocked = true;
1679 		return 0;
1680 	}
1681 
1682 	if (ret & VM_FAULT_ERROR) {
1683 		int err = vm_fault_to_errno(ret, 0);
1684 
1685 		if (err)
1686 			return err;
1687 		BUG();
1688 	}
1689 
1690 	if (ret & VM_FAULT_RETRY) {
1691 		mmap_read_lock(mm);
1692 		*unlocked = true;
1693 		fault_flags |= FAULT_FLAG_TRIED;
1694 		goto retry;
1695 	}
1696 
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(fixup_user_fault);
1700 
1701 /*
1702  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1703  * specified, it'll also respond to generic signals.  The caller of GUP
1704  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1705  */
1706 static bool gup_signal_pending(unsigned int flags)
1707 {
1708 	if (fatal_signal_pending(current))
1709 		return true;
1710 
1711 	if (!(flags & FOLL_INTERRUPTIBLE))
1712 		return false;
1713 
1714 	return signal_pending(current);
1715 }
1716 
1717 /*
1718  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1719  * the caller. This function may drop the mmap_lock. If it does so, then it will
1720  * set (*locked = 0).
1721  *
1722  * (*locked == 0) means that the caller expects this function to acquire and
1723  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1724  * the function returns, even though it may have changed temporarily during
1725  * function execution.
1726  *
1727  * Please note that this function, unlike __get_user_pages(), will not return 0
1728  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1729  */
1730 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1731 						unsigned long start,
1732 						unsigned long nr_pages,
1733 						struct page **pages,
1734 						int *locked,
1735 						unsigned int flags)
1736 {
1737 	long ret, pages_done;
1738 	bool must_unlock = false;
1739 
1740 	if (!nr_pages)
1741 		return 0;
1742 
1743 	/*
1744 	 * The internal caller expects GUP to manage the lock internally and the
1745 	 * lock must be released when this returns.
1746 	 */
1747 	if (!*locked) {
1748 		if (mmap_read_lock_killable(mm))
1749 			return -EAGAIN;
1750 		must_unlock = true;
1751 		*locked = 1;
1752 	}
1753 	else
1754 		mmap_assert_locked(mm);
1755 
1756 	if (flags & FOLL_PIN)
1757 		mm_set_has_pinned_flag(&mm->flags);
1758 
1759 	/*
1760 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1761 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1762 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1763 	 * for FOLL_GET, not for the newer FOLL_PIN.
1764 	 *
1765 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1766 	 * that here, as any failures will be obvious enough.
1767 	 */
1768 	if (pages && !(flags & FOLL_PIN))
1769 		flags |= FOLL_GET;
1770 
1771 	pages_done = 0;
1772 	for (;;) {
1773 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1774 				       locked);
1775 		if (!(flags & FOLL_UNLOCKABLE)) {
1776 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1777 			pages_done = ret;
1778 			break;
1779 		}
1780 
1781 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1782 		if (!*locked) {
1783 			BUG_ON(ret < 0);
1784 			BUG_ON(ret >= nr_pages);
1785 		}
1786 
1787 		if (ret > 0) {
1788 			nr_pages -= ret;
1789 			pages_done += ret;
1790 			if (!nr_pages)
1791 				break;
1792 		}
1793 		if (*locked) {
1794 			/*
1795 			 * VM_FAULT_RETRY didn't trigger or it was a
1796 			 * FOLL_NOWAIT.
1797 			 */
1798 			if (!pages_done)
1799 				pages_done = ret;
1800 			break;
1801 		}
1802 		/*
1803 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1804 		 * For the prefault case (!pages) we only update counts.
1805 		 */
1806 		if (likely(pages))
1807 			pages += ret;
1808 		start += ret << PAGE_SHIFT;
1809 
1810 		/* The lock was temporarily dropped, so we must unlock later */
1811 		must_unlock = true;
1812 
1813 retry:
1814 		/*
1815 		 * Repeat on the address that fired VM_FAULT_RETRY
1816 		 * with both FAULT_FLAG_ALLOW_RETRY and
1817 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1818 		 * by fatal signals of even common signals, depending on
1819 		 * the caller's request. So we need to check it before we
1820 		 * start trying again otherwise it can loop forever.
1821 		 */
1822 		if (gup_signal_pending(flags)) {
1823 			if (!pages_done)
1824 				pages_done = -EINTR;
1825 			break;
1826 		}
1827 
1828 		ret = mmap_read_lock_killable(mm);
1829 		if (ret) {
1830 			BUG_ON(ret > 0);
1831 			if (!pages_done)
1832 				pages_done = ret;
1833 			break;
1834 		}
1835 
1836 		*locked = 1;
1837 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1838 				       pages, locked);
1839 		if (!*locked) {
1840 			/* Continue to retry until we succeeded */
1841 			BUG_ON(ret != 0);
1842 			goto retry;
1843 		}
1844 		if (ret != 1) {
1845 			BUG_ON(ret > 1);
1846 			if (!pages_done)
1847 				pages_done = ret;
1848 			break;
1849 		}
1850 		nr_pages--;
1851 		pages_done++;
1852 		if (!nr_pages)
1853 			break;
1854 		if (likely(pages))
1855 			pages++;
1856 		start += PAGE_SIZE;
1857 	}
1858 	if (must_unlock && *locked) {
1859 		/*
1860 		 * We either temporarily dropped the lock, or the caller
1861 		 * requested that we both acquire and drop the lock. Either way,
1862 		 * we must now unlock, and notify the caller of that state.
1863 		 */
1864 		mmap_read_unlock(mm);
1865 		*locked = 0;
1866 	}
1867 
1868 	/*
1869 	 * Failing to pin anything implies something has gone wrong (except when
1870 	 * FOLL_NOWAIT is specified).
1871 	 */
1872 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1873 		return -EFAULT;
1874 
1875 	return pages_done;
1876 }
1877 
1878 /**
1879  * populate_vma_page_range() -  populate a range of pages in the vma.
1880  * @vma:   target vma
1881  * @start: start address
1882  * @end:   end address
1883  * @locked: whether the mmap_lock is still held
1884  *
1885  * This takes care of mlocking the pages too if VM_LOCKED is set.
1886  *
1887  * Return either number of pages pinned in the vma, or a negative error
1888  * code on error.
1889  *
1890  * vma->vm_mm->mmap_lock must be held.
1891  *
1892  * If @locked is NULL, it may be held for read or write and will
1893  * be unperturbed.
1894  *
1895  * If @locked is non-NULL, it must held for read only and may be
1896  * released.  If it's released, *@locked will be set to 0.
1897  */
1898 long populate_vma_page_range(struct vm_area_struct *vma,
1899 		unsigned long start, unsigned long end, int *locked)
1900 {
1901 	struct mm_struct *mm = vma->vm_mm;
1902 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1903 	int local_locked = 1;
1904 	int gup_flags;
1905 	long ret;
1906 
1907 	VM_BUG_ON(!PAGE_ALIGNED(start));
1908 	VM_BUG_ON(!PAGE_ALIGNED(end));
1909 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1910 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1911 	mmap_assert_locked(mm);
1912 
1913 	/*
1914 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1915 	 * faultin_page() to break COW, so it has no work to do here.
1916 	 */
1917 	if (vma->vm_flags & VM_LOCKONFAULT)
1918 		return nr_pages;
1919 
1920 	/* ... similarly, we've never faulted in PROT_NONE pages */
1921 	if (!vma_is_accessible(vma))
1922 		return -EFAULT;
1923 
1924 	gup_flags = FOLL_TOUCH;
1925 	/*
1926 	 * We want to touch writable mappings with a write fault in order
1927 	 * to break COW, except for shared mappings because these don't COW
1928 	 * and we would not want to dirty them for nothing.
1929 	 *
1930 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1931 	 * readable (ie write-only or executable).
1932 	 */
1933 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1934 		gup_flags |= FOLL_WRITE;
1935 	else
1936 		gup_flags |= FOLL_FORCE;
1937 
1938 	if (locked)
1939 		gup_flags |= FOLL_UNLOCKABLE;
1940 
1941 	/*
1942 	 * We made sure addr is within a VMA, so the following will
1943 	 * not result in a stack expansion that recurses back here.
1944 	 */
1945 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1946 			       NULL, locked ? locked : &local_locked);
1947 	lru_add_drain();
1948 	return ret;
1949 }
1950 
1951 /*
1952  * faultin_page_range() - populate (prefault) page tables inside the
1953  *			  given range readable/writable
1954  *
1955  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1956  *
1957  * @mm: the mm to populate page tables in
1958  * @start: start address
1959  * @end: end address
1960  * @write: whether to prefault readable or writable
1961  * @locked: whether the mmap_lock is still held
1962  *
1963  * Returns either number of processed pages in the MM, or a negative error
1964  * code on error (see __get_user_pages()). Note that this function reports
1965  * errors related to VMAs, such as incompatible mappings, as expected by
1966  * MADV_POPULATE_(READ|WRITE).
1967  *
1968  * The range must be page-aligned.
1969  *
1970  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1971  */
1972 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1973 			unsigned long end, bool write, int *locked)
1974 {
1975 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1976 	int gup_flags;
1977 	long ret;
1978 
1979 	VM_BUG_ON(!PAGE_ALIGNED(start));
1980 	VM_BUG_ON(!PAGE_ALIGNED(end));
1981 	mmap_assert_locked(mm);
1982 
1983 	/*
1984 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1985 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1986 	 *	       difference with !FOLL_FORCE, because the page is writable
1987 	 *	       in the page table.
1988 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1989 	 *		  a poisoned page.
1990 	 * !FOLL_FORCE: Require proper access permissions.
1991 	 */
1992 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1993 		    FOLL_MADV_POPULATE;
1994 	if (write)
1995 		gup_flags |= FOLL_WRITE;
1996 
1997 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1998 				      gup_flags);
1999 	lru_add_drain();
2000 	return ret;
2001 }
2002 
2003 /*
2004  * __mm_populate - populate and/or mlock pages within a range of address space.
2005  *
2006  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2007  * flags. VMAs must be already marked with the desired vm_flags, and
2008  * mmap_lock must not be held.
2009  */
2010 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2011 {
2012 	struct mm_struct *mm = current->mm;
2013 	unsigned long end, nstart, nend;
2014 	struct vm_area_struct *vma = NULL;
2015 	int locked = 0;
2016 	long ret = 0;
2017 
2018 	end = start + len;
2019 
2020 	for (nstart = start; nstart < end; nstart = nend) {
2021 		/*
2022 		 * We want to fault in pages for [nstart; end) address range.
2023 		 * Find first corresponding VMA.
2024 		 */
2025 		if (!locked) {
2026 			locked = 1;
2027 			mmap_read_lock(mm);
2028 			vma = find_vma_intersection(mm, nstart, end);
2029 		} else if (nstart >= vma->vm_end)
2030 			vma = find_vma_intersection(mm, vma->vm_end, end);
2031 
2032 		if (!vma)
2033 			break;
2034 		/*
2035 		 * Set [nstart; nend) to intersection of desired address
2036 		 * range with the first VMA. Also, skip undesirable VMA types.
2037 		 */
2038 		nend = min(end, vma->vm_end);
2039 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2040 			continue;
2041 		if (nstart < vma->vm_start)
2042 			nstart = vma->vm_start;
2043 		/*
2044 		 * Now fault in a range of pages. populate_vma_page_range()
2045 		 * double checks the vma flags, so that it won't mlock pages
2046 		 * if the vma was already munlocked.
2047 		 */
2048 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2049 		if (ret < 0) {
2050 			if (ignore_errors) {
2051 				ret = 0;
2052 				continue;	/* continue at next VMA */
2053 			}
2054 			break;
2055 		}
2056 		nend = nstart + ret * PAGE_SIZE;
2057 		ret = 0;
2058 	}
2059 	if (locked)
2060 		mmap_read_unlock(mm);
2061 	return ret;	/* 0 or negative error code */
2062 }
2063 #else /* CONFIG_MMU */
2064 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2065 		unsigned long nr_pages, struct page **pages,
2066 		int *locked, unsigned int foll_flags)
2067 {
2068 	struct vm_area_struct *vma;
2069 	bool must_unlock = false;
2070 	unsigned long vm_flags;
2071 	long i;
2072 
2073 	if (!nr_pages)
2074 		return 0;
2075 
2076 	/*
2077 	 * The internal caller expects GUP to manage the lock internally and the
2078 	 * lock must be released when this returns.
2079 	 */
2080 	if (!*locked) {
2081 		if (mmap_read_lock_killable(mm))
2082 			return -EAGAIN;
2083 		must_unlock = true;
2084 		*locked = 1;
2085 	}
2086 
2087 	/* calculate required read or write permissions.
2088 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2089 	 */
2090 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2091 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2092 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2093 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2094 
2095 	for (i = 0; i < nr_pages; i++) {
2096 		vma = find_vma(mm, start);
2097 		if (!vma)
2098 			break;
2099 
2100 		/* protect what we can, including chardevs */
2101 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2102 		    !(vm_flags & vma->vm_flags))
2103 			break;
2104 
2105 		if (pages) {
2106 			pages[i] = virt_to_page((void *)start);
2107 			if (pages[i])
2108 				get_page(pages[i]);
2109 		}
2110 
2111 		start = (start + PAGE_SIZE) & PAGE_MASK;
2112 	}
2113 
2114 	if (must_unlock && *locked) {
2115 		mmap_read_unlock(mm);
2116 		*locked = 0;
2117 	}
2118 
2119 	return i ? : -EFAULT;
2120 }
2121 #endif /* !CONFIG_MMU */
2122 
2123 /**
2124  * fault_in_writeable - fault in userspace address range for writing
2125  * @uaddr: start of address range
2126  * @size: size of address range
2127  *
2128  * Returns the number of bytes not faulted in (like copy_to_user() and
2129  * copy_from_user()).
2130  */
2131 size_t fault_in_writeable(char __user *uaddr, size_t size)
2132 {
2133 	char __user *start = uaddr, *end;
2134 
2135 	if (unlikely(size == 0))
2136 		return 0;
2137 	if (!user_write_access_begin(uaddr, size))
2138 		return size;
2139 	if (!PAGE_ALIGNED(uaddr)) {
2140 		unsafe_put_user(0, uaddr, out);
2141 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2142 	}
2143 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2144 	if (unlikely(end < start))
2145 		end = NULL;
2146 	while (uaddr != end) {
2147 		unsafe_put_user(0, uaddr, out);
2148 		uaddr += PAGE_SIZE;
2149 	}
2150 
2151 out:
2152 	user_write_access_end();
2153 	if (size > uaddr - start)
2154 		return size - (uaddr - start);
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL(fault_in_writeable);
2158 
2159 /**
2160  * fault_in_subpage_writeable - fault in an address range for writing
2161  * @uaddr: start of address range
2162  * @size: size of address range
2163  *
2164  * Fault in a user address range for writing while checking for permissions at
2165  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2166  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2167  *
2168  * Returns the number of bytes not faulted in (like copy_to_user() and
2169  * copy_from_user()).
2170  */
2171 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2172 {
2173 	size_t faulted_in;
2174 
2175 	/*
2176 	 * Attempt faulting in at page granularity first for page table
2177 	 * permission checking. The arch-specific probe_subpage_writeable()
2178 	 * functions may not check for this.
2179 	 */
2180 	faulted_in = size - fault_in_writeable(uaddr, size);
2181 	if (faulted_in)
2182 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2183 
2184 	return size - faulted_in;
2185 }
2186 EXPORT_SYMBOL(fault_in_subpage_writeable);
2187 
2188 /*
2189  * fault_in_safe_writeable - fault in an address range for writing
2190  * @uaddr: start of address range
2191  * @size: length of address range
2192  *
2193  * Faults in an address range for writing.  This is primarily useful when we
2194  * already know that some or all of the pages in the address range aren't in
2195  * memory.
2196  *
2197  * Unlike fault_in_writeable(), this function is non-destructive.
2198  *
2199  * Note that we don't pin or otherwise hold the pages referenced that we fault
2200  * in.  There's no guarantee that they'll stay in memory for any duration of
2201  * time.
2202  *
2203  * Returns the number of bytes not faulted in, like copy_to_user() and
2204  * copy_from_user().
2205  */
2206 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2207 {
2208 	unsigned long start = (unsigned long)uaddr, end;
2209 	struct mm_struct *mm = current->mm;
2210 	bool unlocked = false;
2211 
2212 	if (unlikely(size == 0))
2213 		return 0;
2214 	end = PAGE_ALIGN(start + size);
2215 	if (end < start)
2216 		end = 0;
2217 
2218 	mmap_read_lock(mm);
2219 	do {
2220 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2221 			break;
2222 		start = (start + PAGE_SIZE) & PAGE_MASK;
2223 	} while (start != end);
2224 	mmap_read_unlock(mm);
2225 
2226 	if (size > (unsigned long)uaddr - start)
2227 		return size - ((unsigned long)uaddr - start);
2228 	return 0;
2229 }
2230 EXPORT_SYMBOL(fault_in_safe_writeable);
2231 
2232 /**
2233  * fault_in_readable - fault in userspace address range for reading
2234  * @uaddr: start of user address range
2235  * @size: size of user address range
2236  *
2237  * Returns the number of bytes not faulted in (like copy_to_user() and
2238  * copy_from_user()).
2239  */
2240 size_t fault_in_readable(const char __user *uaddr, size_t size)
2241 {
2242 	const char __user *start = uaddr, *end;
2243 	volatile char c;
2244 
2245 	if (unlikely(size == 0))
2246 		return 0;
2247 	if (!user_read_access_begin(uaddr, size))
2248 		return size;
2249 	if (!PAGE_ALIGNED(uaddr)) {
2250 		unsafe_get_user(c, uaddr, out);
2251 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2252 	}
2253 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2254 	if (unlikely(end < start))
2255 		end = NULL;
2256 	while (uaddr != end) {
2257 		unsafe_get_user(c, uaddr, out);
2258 		uaddr += PAGE_SIZE;
2259 	}
2260 
2261 out:
2262 	user_read_access_end();
2263 	(void)c;
2264 	if (size > uaddr - start)
2265 		return size - (uaddr - start);
2266 	return 0;
2267 }
2268 EXPORT_SYMBOL(fault_in_readable);
2269 
2270 /**
2271  * get_dump_page() - pin user page in memory while writing it to core dump
2272  * @addr: user address
2273  *
2274  * Returns struct page pointer of user page pinned for dump,
2275  * to be freed afterwards by put_page().
2276  *
2277  * Returns NULL on any kind of failure - a hole must then be inserted into
2278  * the corefile, to preserve alignment with its headers; and also returns
2279  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2280  * allowing a hole to be left in the corefile to save disk space.
2281  *
2282  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2283  */
2284 #ifdef CONFIG_ELF_CORE
2285 struct page *get_dump_page(unsigned long addr)
2286 {
2287 	struct page *page;
2288 	int locked = 0;
2289 	int ret;
2290 
2291 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2292 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2293 	return (ret == 1) ? page : NULL;
2294 }
2295 #endif /* CONFIG_ELF_CORE */
2296 
2297 #ifdef CONFIG_MIGRATION
2298 /*
2299  * Returns the number of collected folios. Return value is always >= 0.
2300  */
2301 static unsigned long collect_longterm_unpinnable_folios(
2302 					struct list_head *movable_folio_list,
2303 					unsigned long nr_folios,
2304 					struct folio **folios)
2305 {
2306 	unsigned long i, collected = 0;
2307 	struct folio *prev_folio = NULL;
2308 	bool drain_allow = true;
2309 
2310 	for (i = 0; i < nr_folios; i++) {
2311 		struct folio *folio = folios[i];
2312 
2313 		if (folio == prev_folio)
2314 			continue;
2315 		prev_folio = folio;
2316 
2317 		if (folio_is_longterm_pinnable(folio))
2318 			continue;
2319 
2320 		collected++;
2321 
2322 		if (folio_is_device_coherent(folio))
2323 			continue;
2324 
2325 		if (folio_test_hugetlb(folio)) {
2326 			isolate_hugetlb(folio, movable_folio_list);
2327 			continue;
2328 		}
2329 
2330 		if (!folio_test_lru(folio) && drain_allow) {
2331 			lru_add_drain_all();
2332 			drain_allow = false;
2333 		}
2334 
2335 		if (!folio_isolate_lru(folio))
2336 			continue;
2337 
2338 		list_add_tail(&folio->lru, movable_folio_list);
2339 		node_stat_mod_folio(folio,
2340 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2341 				    folio_nr_pages(folio));
2342 	}
2343 
2344 	return collected;
2345 }
2346 
2347 /*
2348  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2349  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2350  * failure (or partial success).
2351  */
2352 static int migrate_longterm_unpinnable_folios(
2353 					struct list_head *movable_folio_list,
2354 					unsigned long nr_folios,
2355 					struct folio **folios)
2356 {
2357 	int ret;
2358 	unsigned long i;
2359 
2360 	for (i = 0; i < nr_folios; i++) {
2361 		struct folio *folio = folios[i];
2362 
2363 		if (folio_is_device_coherent(folio)) {
2364 			/*
2365 			 * Migration will fail if the folio is pinned, so
2366 			 * convert the pin on the source folio to a normal
2367 			 * reference.
2368 			 */
2369 			folios[i] = NULL;
2370 			folio_get(folio);
2371 			gup_put_folio(folio, 1, FOLL_PIN);
2372 
2373 			if (migrate_device_coherent_page(&folio->page)) {
2374 				ret = -EBUSY;
2375 				goto err;
2376 			}
2377 
2378 			continue;
2379 		}
2380 
2381 		/*
2382 		 * We can't migrate folios with unexpected references, so drop
2383 		 * the reference obtained by __get_user_pages_locked().
2384 		 * Migrating folios have been added to movable_folio_list after
2385 		 * calling folio_isolate_lru() which takes a reference so the
2386 		 * folio won't be freed if it's migrating.
2387 		 */
2388 		unpin_folio(folios[i]);
2389 		folios[i] = NULL;
2390 	}
2391 
2392 	if (!list_empty(movable_folio_list)) {
2393 		struct migration_target_control mtc = {
2394 			.nid = NUMA_NO_NODE,
2395 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2396 			.reason = MR_LONGTERM_PIN,
2397 		};
2398 
2399 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2400 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2401 				  MR_LONGTERM_PIN, NULL)) {
2402 			ret = -ENOMEM;
2403 			goto err;
2404 		}
2405 	}
2406 
2407 	putback_movable_pages(movable_folio_list);
2408 
2409 	return -EAGAIN;
2410 
2411 err:
2412 	unpin_folios(folios, nr_folios);
2413 	putback_movable_pages(movable_folio_list);
2414 
2415 	return ret;
2416 }
2417 
2418 /*
2419  * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2420  * Rather confusingly, all folios in the range are required to be pinned via
2421  * FOLL_PIN, before calling this routine.
2422  *
2423  * If any folios in the range are not allowed to be pinned, then this routine
2424  * will migrate those folios away, unpin all the folios in the range and return
2425  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2426  * call this routine again.
2427  *
2428  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2429  * The caller should give up, and propagate the error back up the call stack.
2430  *
2431  * If everything is OK and all folios in the range are allowed to be pinned,
2432  * then this routine leaves all folios pinned and returns zero for success.
2433  */
2434 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2435 					     struct folio **folios)
2436 {
2437 	unsigned long collected;
2438 	LIST_HEAD(movable_folio_list);
2439 
2440 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2441 						       nr_folios, folios);
2442 	if (!collected)
2443 		return 0;
2444 
2445 	return migrate_longterm_unpinnable_folios(&movable_folio_list,
2446 						  nr_folios, folios);
2447 }
2448 
2449 /*
2450  * This routine just converts all the pages in the @pages array to folios and
2451  * calls check_and_migrate_movable_folios() to do the heavy lifting.
2452  *
2453  * Please see the check_and_migrate_movable_folios() documentation for details.
2454  */
2455 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2456 					    struct page **pages)
2457 {
2458 	struct folio **folios;
2459 	long i, ret;
2460 
2461 	folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2462 	if (!folios)
2463 		return -ENOMEM;
2464 
2465 	for (i = 0; i < nr_pages; i++)
2466 		folios[i] = page_folio(pages[i]);
2467 
2468 	ret = check_and_migrate_movable_folios(nr_pages, folios);
2469 
2470 	kfree(folios);
2471 	return ret;
2472 }
2473 #else
2474 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2475 					    struct page **pages)
2476 {
2477 	return 0;
2478 }
2479 
2480 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2481 					     struct folio **folios)
2482 {
2483 	return 0;
2484 }
2485 #endif /* CONFIG_MIGRATION */
2486 
2487 /*
2488  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2489  * allows us to process the FOLL_LONGTERM flag.
2490  */
2491 static long __gup_longterm_locked(struct mm_struct *mm,
2492 				  unsigned long start,
2493 				  unsigned long nr_pages,
2494 				  struct page **pages,
2495 				  int *locked,
2496 				  unsigned int gup_flags)
2497 {
2498 	unsigned int flags;
2499 	long rc, nr_pinned_pages;
2500 
2501 	if (!(gup_flags & FOLL_LONGTERM))
2502 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2503 					       locked, gup_flags);
2504 
2505 	flags = memalloc_pin_save();
2506 	do {
2507 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2508 							  pages, locked,
2509 							  gup_flags);
2510 		if (nr_pinned_pages <= 0) {
2511 			rc = nr_pinned_pages;
2512 			break;
2513 		}
2514 
2515 		/* FOLL_LONGTERM implies FOLL_PIN */
2516 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2517 	} while (rc == -EAGAIN);
2518 	memalloc_pin_restore(flags);
2519 	return rc ? rc : nr_pinned_pages;
2520 }
2521 
2522 /*
2523  * Check that the given flags are valid for the exported gup/pup interface, and
2524  * update them with the required flags that the caller must have set.
2525  */
2526 static bool is_valid_gup_args(struct page **pages, int *locked,
2527 			      unsigned int *gup_flags_p, unsigned int to_set)
2528 {
2529 	unsigned int gup_flags = *gup_flags_p;
2530 
2531 	/*
2532 	 * These flags not allowed to be specified externally to the gup
2533 	 * interfaces:
2534 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2535 	 * - FOLL_REMOTE is internal only and used on follow_page()
2536 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2537 	 */
2538 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2539 		return false;
2540 
2541 	gup_flags |= to_set;
2542 	if (locked) {
2543 		/* At the external interface locked must be set */
2544 		if (WARN_ON_ONCE(*locked != 1))
2545 			return false;
2546 
2547 		gup_flags |= FOLL_UNLOCKABLE;
2548 	}
2549 
2550 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2551 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2552 			 (FOLL_PIN | FOLL_GET)))
2553 		return false;
2554 
2555 	/* LONGTERM can only be specified when pinning */
2556 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2557 		return false;
2558 
2559 	/* Pages input must be given if using GET/PIN */
2560 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2561 		return false;
2562 
2563 	/* We want to allow the pgmap to be hot-unplugged at all times */
2564 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2565 			 (gup_flags & FOLL_PCI_P2PDMA)))
2566 		return false;
2567 
2568 	*gup_flags_p = gup_flags;
2569 	return true;
2570 }
2571 
2572 #ifdef CONFIG_MMU
2573 /**
2574  * get_user_pages_remote() - pin user pages in memory
2575  * @mm:		mm_struct of target mm
2576  * @start:	starting user address
2577  * @nr_pages:	number of pages from start to pin
2578  * @gup_flags:	flags modifying lookup behaviour
2579  * @pages:	array that receives pointers to the pages pinned.
2580  *		Should be at least nr_pages long. Or NULL, if caller
2581  *		only intends to ensure the pages are faulted in.
2582  * @locked:	pointer to lock flag indicating whether lock is held and
2583  *		subsequently whether VM_FAULT_RETRY functionality can be
2584  *		utilised. Lock must initially be held.
2585  *
2586  * Returns either number of pages pinned (which may be less than the
2587  * number requested), or an error. Details about the return value:
2588  *
2589  * -- If nr_pages is 0, returns 0.
2590  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2591  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2592  *    pages pinned. Again, this may be less than nr_pages.
2593  *
2594  * The caller is responsible for releasing returned @pages, via put_page().
2595  *
2596  * Must be called with mmap_lock held for read or write.
2597  *
2598  * get_user_pages_remote walks a process's page tables and takes a reference
2599  * to each struct page that each user address corresponds to at a given
2600  * instant. That is, it takes the page that would be accessed if a user
2601  * thread accesses the given user virtual address at that instant.
2602  *
2603  * This does not guarantee that the page exists in the user mappings when
2604  * get_user_pages_remote returns, and there may even be a completely different
2605  * page there in some cases (eg. if mmapped pagecache has been invalidated
2606  * and subsequently re-faulted). However it does guarantee that the page
2607  * won't be freed completely. And mostly callers simply care that the page
2608  * contains data that was valid *at some point in time*. Typically, an IO
2609  * or similar operation cannot guarantee anything stronger anyway because
2610  * locks can't be held over the syscall boundary.
2611  *
2612  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2613  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2614  * be called after the page is finished with, and before put_page is called.
2615  *
2616  * get_user_pages_remote is typically used for fewer-copy IO operations,
2617  * to get a handle on the memory by some means other than accesses
2618  * via the user virtual addresses. The pages may be submitted for
2619  * DMA to devices or accessed via their kernel linear mapping (via the
2620  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2621  *
2622  * See also get_user_pages_fast, for performance critical applications.
2623  *
2624  * get_user_pages_remote should be phased out in favor of
2625  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2626  * should use get_user_pages_remote because it cannot pass
2627  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2628  */
2629 long get_user_pages_remote(struct mm_struct *mm,
2630 		unsigned long start, unsigned long nr_pages,
2631 		unsigned int gup_flags, struct page **pages,
2632 		int *locked)
2633 {
2634 	int local_locked = 1;
2635 
2636 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2637 			       FOLL_TOUCH | FOLL_REMOTE))
2638 		return -EINVAL;
2639 
2640 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2641 				       locked ? locked : &local_locked,
2642 				       gup_flags);
2643 }
2644 EXPORT_SYMBOL(get_user_pages_remote);
2645 
2646 #else /* CONFIG_MMU */
2647 long get_user_pages_remote(struct mm_struct *mm,
2648 			   unsigned long start, unsigned long nr_pages,
2649 			   unsigned int gup_flags, struct page **pages,
2650 			   int *locked)
2651 {
2652 	return 0;
2653 }
2654 #endif /* !CONFIG_MMU */
2655 
2656 /**
2657  * get_user_pages() - pin user pages in memory
2658  * @start:      starting user address
2659  * @nr_pages:   number of pages from start to pin
2660  * @gup_flags:  flags modifying lookup behaviour
2661  * @pages:      array that receives pointers to the pages pinned.
2662  *              Should be at least nr_pages long. Or NULL, if caller
2663  *              only intends to ensure the pages are faulted in.
2664  *
2665  * This is the same as get_user_pages_remote(), just with a less-flexible
2666  * calling convention where we assume that the mm being operated on belongs to
2667  * the current task, and doesn't allow passing of a locked parameter.  We also
2668  * obviously don't pass FOLL_REMOTE in here.
2669  */
2670 long get_user_pages(unsigned long start, unsigned long nr_pages,
2671 		    unsigned int gup_flags, struct page **pages)
2672 {
2673 	int locked = 1;
2674 
2675 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2676 		return -EINVAL;
2677 
2678 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2679 				       &locked, gup_flags);
2680 }
2681 EXPORT_SYMBOL(get_user_pages);
2682 
2683 /*
2684  * get_user_pages_unlocked() is suitable to replace the form:
2685  *
2686  *      mmap_read_lock(mm);
2687  *      get_user_pages(mm, ..., pages, NULL);
2688  *      mmap_read_unlock(mm);
2689  *
2690  *  with:
2691  *
2692  *      get_user_pages_unlocked(mm, ..., pages);
2693  *
2694  * It is functionally equivalent to get_user_pages_fast so
2695  * get_user_pages_fast should be used instead if specific gup_flags
2696  * (e.g. FOLL_FORCE) are not required.
2697  */
2698 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2699 			     struct page **pages, unsigned int gup_flags)
2700 {
2701 	int locked = 0;
2702 
2703 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2704 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2705 		return -EINVAL;
2706 
2707 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2708 				       &locked, gup_flags);
2709 }
2710 EXPORT_SYMBOL(get_user_pages_unlocked);
2711 
2712 /*
2713  * GUP-fast
2714  *
2715  * get_user_pages_fast attempts to pin user pages by walking the page
2716  * tables directly and avoids taking locks. Thus the walker needs to be
2717  * protected from page table pages being freed from under it, and should
2718  * block any THP splits.
2719  *
2720  * One way to achieve this is to have the walker disable interrupts, and
2721  * rely on IPIs from the TLB flushing code blocking before the page table
2722  * pages are freed. This is unsuitable for architectures that do not need
2723  * to broadcast an IPI when invalidating TLBs.
2724  *
2725  * Another way to achieve this is to batch up page table containing pages
2726  * belonging to more than one mm_user, then rcu_sched a callback to free those
2727  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2728  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2729  * (which is a relatively rare event). The code below adopts this strategy.
2730  *
2731  * Before activating this code, please be aware that the following assumptions
2732  * are currently made:
2733  *
2734  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2735  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2736  *
2737  *  *) ptes can be read atomically by the architecture.
2738  *
2739  *  *) access_ok is sufficient to validate userspace address ranges.
2740  *
2741  * The last two assumptions can be relaxed by the addition of helper functions.
2742  *
2743  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2744  */
2745 #ifdef CONFIG_HAVE_GUP_FAST
2746 /*
2747  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2748  * a specific folio.
2749  *
2750  * This call assumes the caller has pinned the folio, that the lowest page table
2751  * level still points to this folio, and that interrupts have been disabled.
2752  *
2753  * GUP-fast must reject all secretmem folios.
2754  *
2755  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2756  * (see comment describing the writable_file_mapping_allowed() function). We
2757  * therefore try to avoid the most egregious case of a long-term mapping doing
2758  * so.
2759  *
2760  * This function cannot be as thorough as that one as the VMA is not available
2761  * in the fast path, so instead we whitelist known good cases and if in doubt,
2762  * fall back to the slow path.
2763  */
2764 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2765 {
2766 	bool reject_file_backed = false;
2767 	struct address_space *mapping;
2768 	bool check_secretmem = false;
2769 	unsigned long mapping_flags;
2770 
2771 	/*
2772 	 * If we aren't pinning then no problematic write can occur. A long term
2773 	 * pin is the most egregious case so this is the one we disallow.
2774 	 */
2775 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2776 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2777 		reject_file_backed = true;
2778 
2779 	/* We hold a folio reference, so we can safely access folio fields. */
2780 
2781 	/* secretmem folios are always order-0 folios. */
2782 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2783 		check_secretmem = true;
2784 
2785 	if (!reject_file_backed && !check_secretmem)
2786 		return true;
2787 
2788 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2789 		return false;
2790 
2791 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2792 	if (folio_test_hugetlb(folio))
2793 		return true;
2794 
2795 	/*
2796 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2797 	 * cannot proceed, which means no actions performed under RCU can
2798 	 * proceed either.
2799 	 *
2800 	 * inodes and thus their mappings are freed under RCU, which means the
2801 	 * mapping cannot be freed beneath us and thus we can safely dereference
2802 	 * it.
2803 	 */
2804 	lockdep_assert_irqs_disabled();
2805 
2806 	/*
2807 	 * However, there may be operations which _alter_ the mapping, so ensure
2808 	 * we read it once and only once.
2809 	 */
2810 	mapping = READ_ONCE(folio->mapping);
2811 
2812 	/*
2813 	 * The mapping may have been truncated, in any case we cannot determine
2814 	 * if this mapping is safe - fall back to slow path to determine how to
2815 	 * proceed.
2816 	 */
2817 	if (!mapping)
2818 		return false;
2819 
2820 	/* Anonymous folios pose no problem. */
2821 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2822 	if (mapping_flags)
2823 		return mapping_flags & PAGE_MAPPING_ANON;
2824 
2825 	/*
2826 	 * At this point, we know the mapping is non-null and points to an
2827 	 * address_space object.
2828 	 */
2829 	if (check_secretmem && secretmem_mapping(mapping))
2830 		return false;
2831 	/* The only remaining allowed file system is shmem. */
2832 	return !reject_file_backed || shmem_mapping(mapping);
2833 }
2834 
2835 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2836 		unsigned int flags, struct page **pages)
2837 {
2838 	while ((*nr) - nr_start) {
2839 		struct folio *folio = page_folio(pages[--(*nr)]);
2840 
2841 		folio_clear_referenced(folio);
2842 		gup_put_folio(folio, 1, flags);
2843 	}
2844 }
2845 
2846 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2847 /*
2848  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2849  * operations.
2850  *
2851  * To pin the page, GUP-fast needs to do below in order:
2852  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2853  *
2854  * For the rest of pgtable operations where pgtable updates can be racy
2855  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2856  * is pinned.
2857  *
2858  * Above will work for all pte-level operations, including THP split.
2859  *
2860  * For THP collapse, it's a bit more complicated because GUP-fast may be
2861  * walking a pgtable page that is being freed (pte is still valid but pmd
2862  * can be cleared already).  To avoid race in such condition, we need to
2863  * also check pmd here to make sure pmd doesn't change (corresponds to
2864  * pmdp_collapse_flush() in the THP collapse code path).
2865  */
2866 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2867 		unsigned long end, unsigned int flags, struct page **pages,
2868 		int *nr)
2869 {
2870 	struct dev_pagemap *pgmap = NULL;
2871 	int nr_start = *nr, ret = 0;
2872 	pte_t *ptep, *ptem;
2873 
2874 	ptem = ptep = pte_offset_map(&pmd, addr);
2875 	if (!ptep)
2876 		return 0;
2877 	do {
2878 		pte_t pte = ptep_get_lockless(ptep);
2879 		struct page *page;
2880 		struct folio *folio;
2881 
2882 		/*
2883 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2884 		 * pte_access_permitted() better should reject these pages
2885 		 * either way: otherwise, GUP-fast might succeed in
2886 		 * cases where ordinary GUP would fail due to VMA access
2887 		 * permissions.
2888 		 */
2889 		if (pte_protnone(pte))
2890 			goto pte_unmap;
2891 
2892 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2893 			goto pte_unmap;
2894 
2895 		if (pte_devmap(pte)) {
2896 			if (unlikely(flags & FOLL_LONGTERM))
2897 				goto pte_unmap;
2898 
2899 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2900 			if (unlikely(!pgmap)) {
2901 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2902 				goto pte_unmap;
2903 			}
2904 		} else if (pte_special(pte))
2905 			goto pte_unmap;
2906 
2907 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2908 		page = pte_page(pte);
2909 
2910 		folio = try_grab_folio_fast(page, 1, flags);
2911 		if (!folio)
2912 			goto pte_unmap;
2913 
2914 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2915 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2916 			gup_put_folio(folio, 1, flags);
2917 			goto pte_unmap;
2918 		}
2919 
2920 		if (!gup_fast_folio_allowed(folio, flags)) {
2921 			gup_put_folio(folio, 1, flags);
2922 			goto pte_unmap;
2923 		}
2924 
2925 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2926 			gup_put_folio(folio, 1, flags);
2927 			goto pte_unmap;
2928 		}
2929 
2930 		/*
2931 		 * We need to make the page accessible if and only if we are
2932 		 * going to access its content (the FOLL_PIN case).  Please
2933 		 * see Documentation/core-api/pin_user_pages.rst for
2934 		 * details.
2935 		 */
2936 		if (flags & FOLL_PIN) {
2937 			ret = arch_make_page_accessible(page);
2938 			if (ret) {
2939 				gup_put_folio(folio, 1, flags);
2940 				goto pte_unmap;
2941 			}
2942 		}
2943 		folio_set_referenced(folio);
2944 		pages[*nr] = page;
2945 		(*nr)++;
2946 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2947 
2948 	ret = 1;
2949 
2950 pte_unmap:
2951 	if (pgmap)
2952 		put_dev_pagemap(pgmap);
2953 	pte_unmap(ptem);
2954 	return ret;
2955 }
2956 #else
2957 
2958 /*
2959  * If we can't determine whether or not a pte is special, then fail immediately
2960  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2961  * to be special.
2962  *
2963  * For a futex to be placed on a THP tail page, get_futex_key requires a
2964  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2965  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2966  */
2967 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2968 		unsigned long end, unsigned int flags, struct page **pages,
2969 		int *nr)
2970 {
2971 	return 0;
2972 }
2973 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2974 
2975 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2976 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2977 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
2978 {
2979 	int nr_start = *nr;
2980 	struct dev_pagemap *pgmap = NULL;
2981 
2982 	do {
2983 		struct folio *folio;
2984 		struct page *page = pfn_to_page(pfn);
2985 
2986 		pgmap = get_dev_pagemap(pfn, pgmap);
2987 		if (unlikely(!pgmap)) {
2988 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2989 			break;
2990 		}
2991 
2992 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2993 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2994 			break;
2995 		}
2996 
2997 		folio = try_grab_folio_fast(page, 1, flags);
2998 		if (!folio) {
2999 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3000 			break;
3001 		}
3002 		folio_set_referenced(folio);
3003 		pages[*nr] = page;
3004 		(*nr)++;
3005 		pfn++;
3006 	} while (addr += PAGE_SIZE, addr != end);
3007 
3008 	put_dev_pagemap(pgmap);
3009 	return addr == end;
3010 }
3011 
3012 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3013 		unsigned long end, unsigned int flags, struct page **pages,
3014 		int *nr)
3015 {
3016 	unsigned long fault_pfn;
3017 	int nr_start = *nr;
3018 
3019 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3020 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3021 		return 0;
3022 
3023 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3024 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3025 		return 0;
3026 	}
3027 	return 1;
3028 }
3029 
3030 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3031 		unsigned long end, unsigned int flags, struct page **pages,
3032 		int *nr)
3033 {
3034 	unsigned long fault_pfn;
3035 	int nr_start = *nr;
3036 
3037 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3038 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3039 		return 0;
3040 
3041 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3042 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3043 		return 0;
3044 	}
3045 	return 1;
3046 }
3047 #else
3048 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3049 		unsigned long end, unsigned int flags, struct page **pages,
3050 		int *nr)
3051 {
3052 	BUILD_BUG();
3053 	return 0;
3054 }
3055 
3056 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3057 		unsigned long end, unsigned int flags, struct page **pages,
3058 		int *nr)
3059 {
3060 	BUILD_BUG();
3061 	return 0;
3062 }
3063 #endif
3064 
3065 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3066 		unsigned long end, unsigned int flags, struct page **pages,
3067 		int *nr)
3068 {
3069 	struct page *page;
3070 	struct folio *folio;
3071 	int refs;
3072 
3073 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3074 		return 0;
3075 
3076 	if (pmd_devmap(orig)) {
3077 		if (unlikely(flags & FOLL_LONGTERM))
3078 			return 0;
3079 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3080 					        pages, nr);
3081 	}
3082 
3083 	page = pmd_page(orig);
3084 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3085 
3086 	folio = try_grab_folio_fast(page, refs, flags);
3087 	if (!folio)
3088 		return 0;
3089 
3090 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3091 		gup_put_folio(folio, refs, flags);
3092 		return 0;
3093 	}
3094 
3095 	if (!gup_fast_folio_allowed(folio, flags)) {
3096 		gup_put_folio(folio, refs, flags);
3097 		return 0;
3098 	}
3099 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3100 		gup_put_folio(folio, refs, flags);
3101 		return 0;
3102 	}
3103 
3104 	*nr += refs;
3105 	folio_set_referenced(folio);
3106 	return 1;
3107 }
3108 
3109 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3110 		unsigned long end, unsigned int flags, struct page **pages,
3111 		int *nr)
3112 {
3113 	struct page *page;
3114 	struct folio *folio;
3115 	int refs;
3116 
3117 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3118 		return 0;
3119 
3120 	if (pud_devmap(orig)) {
3121 		if (unlikely(flags & FOLL_LONGTERM))
3122 			return 0;
3123 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3124 					        pages, nr);
3125 	}
3126 
3127 	page = pud_page(orig);
3128 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3129 
3130 	folio = try_grab_folio_fast(page, refs, flags);
3131 	if (!folio)
3132 		return 0;
3133 
3134 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3135 		gup_put_folio(folio, refs, flags);
3136 		return 0;
3137 	}
3138 
3139 	if (!gup_fast_folio_allowed(folio, flags)) {
3140 		gup_put_folio(folio, refs, flags);
3141 		return 0;
3142 	}
3143 
3144 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3145 		gup_put_folio(folio, refs, flags);
3146 		return 0;
3147 	}
3148 
3149 	*nr += refs;
3150 	folio_set_referenced(folio);
3151 	return 1;
3152 }
3153 
3154 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3155 		unsigned long end, unsigned int flags, struct page **pages,
3156 		int *nr)
3157 {
3158 	int refs;
3159 	struct page *page;
3160 	struct folio *folio;
3161 
3162 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3163 		return 0;
3164 
3165 	BUILD_BUG_ON(pgd_devmap(orig));
3166 
3167 	page = pgd_page(orig);
3168 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3169 
3170 	folio = try_grab_folio_fast(page, refs, flags);
3171 	if (!folio)
3172 		return 0;
3173 
3174 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3175 		gup_put_folio(folio, refs, flags);
3176 		return 0;
3177 	}
3178 
3179 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3180 		gup_put_folio(folio, refs, flags);
3181 		return 0;
3182 	}
3183 
3184 	if (!gup_fast_folio_allowed(folio, flags)) {
3185 		gup_put_folio(folio, refs, flags);
3186 		return 0;
3187 	}
3188 
3189 	*nr += refs;
3190 	folio_set_referenced(folio);
3191 	return 1;
3192 }
3193 
3194 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3195 		unsigned long end, unsigned int flags, struct page **pages,
3196 		int *nr)
3197 {
3198 	unsigned long next;
3199 	pmd_t *pmdp;
3200 
3201 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3202 	do {
3203 		pmd_t pmd = pmdp_get_lockless(pmdp);
3204 
3205 		next = pmd_addr_end(addr, end);
3206 		if (!pmd_present(pmd))
3207 			return 0;
3208 
3209 		if (unlikely(pmd_leaf(pmd))) {
3210 			/* See gup_fast_pte_range() */
3211 			if (pmd_protnone(pmd))
3212 				return 0;
3213 
3214 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3215 				pages, nr))
3216 				return 0;
3217 
3218 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3219 					       pages, nr))
3220 			return 0;
3221 	} while (pmdp++, addr = next, addr != end);
3222 
3223 	return 1;
3224 }
3225 
3226 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3227 		unsigned long end, unsigned int flags, struct page **pages,
3228 		int *nr)
3229 {
3230 	unsigned long next;
3231 	pud_t *pudp;
3232 
3233 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3234 	do {
3235 		pud_t pud = READ_ONCE(*pudp);
3236 
3237 		next = pud_addr_end(addr, end);
3238 		if (unlikely(!pud_present(pud)))
3239 			return 0;
3240 		if (unlikely(pud_leaf(pud))) {
3241 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3242 					       pages, nr))
3243 				return 0;
3244 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3245 					       pages, nr))
3246 			return 0;
3247 	} while (pudp++, addr = next, addr != end);
3248 
3249 	return 1;
3250 }
3251 
3252 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3253 		unsigned long end, unsigned int flags, struct page **pages,
3254 		int *nr)
3255 {
3256 	unsigned long next;
3257 	p4d_t *p4dp;
3258 
3259 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3260 	do {
3261 		p4d_t p4d = READ_ONCE(*p4dp);
3262 
3263 		next = p4d_addr_end(addr, end);
3264 		if (!p4d_present(p4d))
3265 			return 0;
3266 		BUILD_BUG_ON(p4d_leaf(p4d));
3267 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3268 					pages, nr))
3269 			return 0;
3270 	} while (p4dp++, addr = next, addr != end);
3271 
3272 	return 1;
3273 }
3274 
3275 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3276 		unsigned int flags, struct page **pages, int *nr)
3277 {
3278 	unsigned long next;
3279 	pgd_t *pgdp;
3280 
3281 	pgdp = pgd_offset(current->mm, addr);
3282 	do {
3283 		pgd_t pgd = READ_ONCE(*pgdp);
3284 
3285 		next = pgd_addr_end(addr, end);
3286 		if (pgd_none(pgd))
3287 			return;
3288 		if (unlikely(pgd_leaf(pgd))) {
3289 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3290 					       pages, nr))
3291 				return;
3292 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3293 					       pages, nr))
3294 			return;
3295 	} while (pgdp++, addr = next, addr != end);
3296 }
3297 #else
3298 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3299 		unsigned int flags, struct page **pages, int *nr)
3300 {
3301 }
3302 #endif /* CONFIG_HAVE_GUP_FAST */
3303 
3304 #ifndef gup_fast_permitted
3305 /*
3306  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3307  * we need to fall back to the slow version:
3308  */
3309 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3310 {
3311 	return true;
3312 }
3313 #endif
3314 
3315 static unsigned long gup_fast(unsigned long start, unsigned long end,
3316 		unsigned int gup_flags, struct page **pages)
3317 {
3318 	unsigned long flags;
3319 	int nr_pinned = 0;
3320 	unsigned seq;
3321 
3322 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3323 	    !gup_fast_permitted(start, end))
3324 		return 0;
3325 
3326 	if (gup_flags & FOLL_PIN) {
3327 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3328 		if (seq & 1)
3329 			return 0;
3330 	}
3331 
3332 	/*
3333 	 * Disable interrupts. The nested form is used, in order to allow full,
3334 	 * general purpose use of this routine.
3335 	 *
3336 	 * With interrupts disabled, we block page table pages from being freed
3337 	 * from under us. See struct mmu_table_batch comments in
3338 	 * include/asm-generic/tlb.h for more details.
3339 	 *
3340 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3341 	 * that come from THPs splitting.
3342 	 */
3343 	local_irq_save(flags);
3344 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3345 	local_irq_restore(flags);
3346 
3347 	/*
3348 	 * When pinning pages for DMA there could be a concurrent write protect
3349 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3350 	 */
3351 	if (gup_flags & FOLL_PIN) {
3352 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3353 			gup_fast_unpin_user_pages(pages, nr_pinned);
3354 			return 0;
3355 		} else {
3356 			sanity_check_pinned_pages(pages, nr_pinned);
3357 		}
3358 	}
3359 	return nr_pinned;
3360 }
3361 
3362 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3363 		unsigned int gup_flags, struct page **pages)
3364 {
3365 	unsigned long len, end;
3366 	unsigned long nr_pinned;
3367 	int locked = 0;
3368 	int ret;
3369 
3370 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3371 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3372 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3373 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3374 		return -EINVAL;
3375 
3376 	if (gup_flags & FOLL_PIN)
3377 		mm_set_has_pinned_flag(&current->mm->flags);
3378 
3379 	if (!(gup_flags & FOLL_FAST_ONLY))
3380 		might_lock_read(&current->mm->mmap_lock);
3381 
3382 	start = untagged_addr(start) & PAGE_MASK;
3383 	len = nr_pages << PAGE_SHIFT;
3384 	if (check_add_overflow(start, len, &end))
3385 		return -EOVERFLOW;
3386 	if (end > TASK_SIZE_MAX)
3387 		return -EFAULT;
3388 	if (unlikely(!access_ok((void __user *)start, len)))
3389 		return -EFAULT;
3390 
3391 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3392 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3393 		return nr_pinned;
3394 
3395 	/* Slow path: try to get the remaining pages with get_user_pages */
3396 	start += nr_pinned << PAGE_SHIFT;
3397 	pages += nr_pinned;
3398 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3399 				    pages, &locked,
3400 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3401 	if (ret < 0) {
3402 		/*
3403 		 * The caller has to unpin the pages we already pinned so
3404 		 * returning -errno is not an option
3405 		 */
3406 		if (nr_pinned)
3407 			return nr_pinned;
3408 		return ret;
3409 	}
3410 	return ret + nr_pinned;
3411 }
3412 
3413 /**
3414  * get_user_pages_fast_only() - pin user pages in memory
3415  * @start:      starting user address
3416  * @nr_pages:   number of pages from start to pin
3417  * @gup_flags:  flags modifying pin behaviour
3418  * @pages:      array that receives pointers to the pages pinned.
3419  *              Should be at least nr_pages long.
3420  *
3421  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3422  * the regular GUP.
3423  *
3424  * If the architecture does not support this function, simply return with no
3425  * pages pinned.
3426  *
3427  * Careful, careful! COW breaking can go either way, so a non-write
3428  * access can get ambiguous page results. If you call this function without
3429  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3430  */
3431 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3432 			     unsigned int gup_flags, struct page **pages)
3433 {
3434 	/*
3435 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3436 	 * because gup fast is always a "pin with a +1 page refcount" request.
3437 	 *
3438 	 * FOLL_FAST_ONLY is required in order to match the API description of
3439 	 * this routine: no fall back to regular ("slow") GUP.
3440 	 */
3441 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3442 			       FOLL_GET | FOLL_FAST_ONLY))
3443 		return -EINVAL;
3444 
3445 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3446 }
3447 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3448 
3449 /**
3450  * get_user_pages_fast() - pin user pages in memory
3451  * @start:      starting user address
3452  * @nr_pages:   number of pages from start to pin
3453  * @gup_flags:  flags modifying pin behaviour
3454  * @pages:      array that receives pointers to the pages pinned.
3455  *              Should be at least nr_pages long.
3456  *
3457  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3458  * If not successful, it will fall back to taking the lock and
3459  * calling get_user_pages().
3460  *
3461  * Returns number of pages pinned. This may be fewer than the number requested.
3462  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3463  * -errno.
3464  */
3465 int get_user_pages_fast(unsigned long start, int nr_pages,
3466 			unsigned int gup_flags, struct page **pages)
3467 {
3468 	/*
3469 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3470 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3471 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3472 	 * request.
3473 	 */
3474 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3475 		return -EINVAL;
3476 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3477 }
3478 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3479 
3480 /**
3481  * pin_user_pages_fast() - pin user pages in memory without taking locks
3482  *
3483  * @start:      starting user address
3484  * @nr_pages:   number of pages from start to pin
3485  * @gup_flags:  flags modifying pin behaviour
3486  * @pages:      array that receives pointers to the pages pinned.
3487  *              Should be at least nr_pages long.
3488  *
3489  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3490  * get_user_pages_fast() for documentation on the function arguments, because
3491  * the arguments here are identical.
3492  *
3493  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3494  * see Documentation/core-api/pin_user_pages.rst for further details.
3495  *
3496  * Note that if a zero_page is amongst the returned pages, it will not have
3497  * pins in it and unpin_user_page() will not remove pins from it.
3498  */
3499 int pin_user_pages_fast(unsigned long start, int nr_pages,
3500 			unsigned int gup_flags, struct page **pages)
3501 {
3502 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3503 		return -EINVAL;
3504 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3505 }
3506 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3507 
3508 /**
3509  * pin_user_pages_remote() - pin pages of a remote process
3510  *
3511  * @mm:		mm_struct of target mm
3512  * @start:	starting user address
3513  * @nr_pages:	number of pages from start to pin
3514  * @gup_flags:	flags modifying lookup behaviour
3515  * @pages:	array that receives pointers to the pages pinned.
3516  *		Should be at least nr_pages long.
3517  * @locked:	pointer to lock flag indicating whether lock is held and
3518  *		subsequently whether VM_FAULT_RETRY functionality can be
3519  *		utilised. Lock must initially be held.
3520  *
3521  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3522  * get_user_pages_remote() for documentation on the function arguments, because
3523  * the arguments here are identical.
3524  *
3525  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3526  * see Documentation/core-api/pin_user_pages.rst for details.
3527  *
3528  * Note that if a zero_page is amongst the returned pages, it will not have
3529  * pins in it and unpin_user_page*() will not remove pins from it.
3530  */
3531 long pin_user_pages_remote(struct mm_struct *mm,
3532 			   unsigned long start, unsigned long nr_pages,
3533 			   unsigned int gup_flags, struct page **pages,
3534 			   int *locked)
3535 {
3536 	int local_locked = 1;
3537 
3538 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3539 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3540 		return 0;
3541 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3542 				     locked ? locked : &local_locked,
3543 				     gup_flags);
3544 }
3545 EXPORT_SYMBOL(pin_user_pages_remote);
3546 
3547 /**
3548  * pin_user_pages() - pin user pages in memory for use by other devices
3549  *
3550  * @start:	starting user address
3551  * @nr_pages:	number of pages from start to pin
3552  * @gup_flags:	flags modifying lookup behaviour
3553  * @pages:	array that receives pointers to the pages pinned.
3554  *		Should be at least nr_pages long.
3555  *
3556  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3557  * FOLL_PIN is set.
3558  *
3559  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3560  * see Documentation/core-api/pin_user_pages.rst for details.
3561  *
3562  * Note that if a zero_page is amongst the returned pages, it will not have
3563  * pins in it and unpin_user_page*() will not remove pins from it.
3564  */
3565 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3566 		    unsigned int gup_flags, struct page **pages)
3567 {
3568 	int locked = 1;
3569 
3570 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3571 		return 0;
3572 	return __gup_longterm_locked(current->mm, start, nr_pages,
3573 				     pages, &locked, gup_flags);
3574 }
3575 EXPORT_SYMBOL(pin_user_pages);
3576 
3577 /*
3578  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3579  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3580  * FOLL_PIN and rejects FOLL_GET.
3581  *
3582  * Note that if a zero_page is amongst the returned pages, it will not have
3583  * pins in it and unpin_user_page*() will not remove pins from it.
3584  */
3585 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3586 			     struct page **pages, unsigned int gup_flags)
3587 {
3588 	int locked = 0;
3589 
3590 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3591 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3592 		return 0;
3593 
3594 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3595 				     &locked, gup_flags);
3596 }
3597 EXPORT_SYMBOL(pin_user_pages_unlocked);
3598 
3599 /**
3600  * memfd_pin_folios() - pin folios associated with a memfd
3601  * @memfd:      the memfd whose folios are to be pinned
3602  * @start:      the first memfd offset
3603  * @end:        the last memfd offset (inclusive)
3604  * @folios:     array that receives pointers to the folios pinned
3605  * @max_folios: maximum number of entries in @folios
3606  * @offset:     the offset into the first folio
3607  *
3608  * Attempt to pin folios associated with a memfd in the contiguous range
3609  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3610  * the folios can either be found in the page cache or need to be allocated
3611  * if necessary. Once the folios are located, they are all pinned via
3612  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3613  * And, eventually, these pinned folios must be released either using
3614  * unpin_folios() or unpin_folio().
3615  *
3616  * It must be noted that the folios may be pinned for an indefinite amount
3617  * of time. And, in most cases, the duration of time they may stay pinned
3618  * would be controlled by the userspace. This behavior is effectively the
3619  * same as using FOLL_LONGTERM with other GUP APIs.
3620  *
3621  * Returns number of folios pinned, which could be less than @max_folios
3622  * as it depends on the folio sizes that cover the range [start, end].
3623  * If no folios were pinned, it returns -errno.
3624  */
3625 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3626 		      struct folio **folios, unsigned int max_folios,
3627 		      pgoff_t *offset)
3628 {
3629 	unsigned int flags, nr_folios, nr_found;
3630 	unsigned int i, pgshift = PAGE_SHIFT;
3631 	pgoff_t start_idx, end_idx, next_idx;
3632 	struct folio *folio = NULL;
3633 	struct folio_batch fbatch;
3634 	struct hstate *h;
3635 	long ret = -EINVAL;
3636 
3637 	if (start < 0 || start > end || !max_folios)
3638 		return -EINVAL;
3639 
3640 	if (!memfd)
3641 		return -EINVAL;
3642 
3643 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3644 		return -EINVAL;
3645 
3646 	if (end >= i_size_read(file_inode(memfd)))
3647 		return -EINVAL;
3648 
3649 	if (is_file_hugepages(memfd)) {
3650 		h = hstate_file(memfd);
3651 		pgshift = huge_page_shift(h);
3652 	}
3653 
3654 	flags = memalloc_pin_save();
3655 	do {
3656 		nr_folios = 0;
3657 		start_idx = start >> pgshift;
3658 		end_idx = end >> pgshift;
3659 		if (is_file_hugepages(memfd)) {
3660 			start_idx <<= huge_page_order(h);
3661 			end_idx <<= huge_page_order(h);
3662 		}
3663 
3664 		folio_batch_init(&fbatch);
3665 		while (start_idx <= end_idx && nr_folios < max_folios) {
3666 			/*
3667 			 * In most cases, we should be able to find the folios
3668 			 * in the page cache. If we cannot find them for some
3669 			 * reason, we try to allocate them and add them to the
3670 			 * page cache.
3671 			 */
3672 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3673 							     &start_idx,
3674 							     end_idx,
3675 							     &fbatch);
3676 			if (folio) {
3677 				folio_put(folio);
3678 				folio = NULL;
3679 			}
3680 
3681 			next_idx = 0;
3682 			for (i = 0; i < nr_found; i++) {
3683 				/*
3684 				 * As there can be multiple entries for a
3685 				 * given folio in the batch returned by
3686 				 * filemap_get_folios_contig(), the below
3687 				 * check is to ensure that we pin and return a
3688 				 * unique set of folios between start and end.
3689 				 */
3690 				if (next_idx &&
3691 				    next_idx != folio_index(fbatch.folios[i]))
3692 					continue;
3693 
3694 				folio = page_folio(&fbatch.folios[i]->page);
3695 
3696 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3697 					folio_batch_release(&fbatch);
3698 					ret = -EINVAL;
3699 					goto err;
3700 				}
3701 
3702 				if (nr_folios == 0)
3703 					*offset = offset_in_folio(folio, start);
3704 
3705 				folios[nr_folios] = folio;
3706 				next_idx = folio_next_index(folio);
3707 				if (++nr_folios == max_folios)
3708 					break;
3709 			}
3710 
3711 			folio = NULL;
3712 			folio_batch_release(&fbatch);
3713 			if (!nr_found) {
3714 				folio = memfd_alloc_folio(memfd, start_idx);
3715 				if (IS_ERR(folio)) {
3716 					ret = PTR_ERR(folio);
3717 					if (ret != -EEXIST)
3718 						goto err;
3719 				}
3720 			}
3721 		}
3722 
3723 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3724 	} while (ret == -EAGAIN);
3725 
3726 	memalloc_pin_restore(flags);
3727 	return ret ? ret : nr_folios;
3728 err:
3729 	memalloc_pin_restore(flags);
3730 	unpin_folios(folios, nr_folios);
3731 
3732 	return ret;
3733 }
3734 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3735