1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio = page_folio(page); 56 57 if (is_zero_page(page) || 58 !folio_test_anon(folio)) 59 continue; 60 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 62 else 63 /* Either a PTE-mapped or a PMD-mapped THP. */ 64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 65 !PageAnonExclusive(page), page); 66 } 67 } 68 69 /* 70 * Return the folio with ref appropriately incremented, 71 * or NULL if that failed. 72 */ 73 static inline struct folio *try_get_folio(struct page *page, int refs) 74 { 75 struct folio *folio; 76 77 retry: 78 folio = page_folio(page); 79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 80 return NULL; 81 if (unlikely(!folio_ref_try_add(folio, refs))) 82 return NULL; 83 84 /* 85 * At this point we have a stable reference to the folio; but it 86 * could be that between calling page_folio() and the refcount 87 * increment, the folio was split, in which case we'd end up 88 * holding a reference on a folio that has nothing to do with the page 89 * we were given anymore. 90 * So now that the folio is stable, recheck that the page still 91 * belongs to this folio. 92 */ 93 if (unlikely(page_folio(page) != folio)) { 94 if (!put_devmap_managed_folio_refs(folio, refs)) 95 folio_put_refs(folio, refs); 96 goto retry; 97 } 98 99 return folio; 100 } 101 102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 103 { 104 if (flags & FOLL_PIN) { 105 if (is_zero_folio(folio)) 106 return; 107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 108 if (folio_test_large(folio)) 109 atomic_sub(refs, &folio->_pincount); 110 else 111 refs *= GUP_PIN_COUNTING_BIAS; 112 } 113 114 if (!put_devmap_managed_folio_refs(folio, refs)) 115 folio_put_refs(folio, refs); 116 } 117 118 /** 119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 120 * @folio: pointer to folio to be grabbed 121 * @refs: the value to (effectively) add to the folio's refcount 122 * @flags: gup flags: these are the FOLL_* flag values 123 * 124 * This might not do anything at all, depending on the flags argument. 125 * 126 * "grab" names in this file mean, "look at flags to decide whether to use 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 128 * 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 130 * time. 131 * 132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 133 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 134 * 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 136 * be grabbed. 137 * 138 * It is called when we have a stable reference for the folio, typically in 139 * GUP slow path. 140 */ 141 int __must_check try_grab_folio(struct folio *folio, int refs, 142 unsigned int flags) 143 { 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 145 return -ENOMEM; 146 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 148 return -EREMOTEIO; 149 150 if (flags & FOLL_GET) 151 folio_ref_add(folio, refs); 152 else if (flags & FOLL_PIN) { 153 /* 154 * Don't take a pin on the zero page - it's not going anywhere 155 * and it is used in a *lot* of places. 156 */ 157 if (is_zero_folio(folio)) 158 return 0; 159 160 /* 161 * Increment the normal page refcount field at least once, 162 * so that the page really is pinned. 163 */ 164 if (folio_test_large(folio)) { 165 folio_ref_add(folio, refs); 166 atomic_add(refs, &folio->_pincount); 167 } else { 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 169 } 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 } 173 174 return 0; 175 } 176 177 /** 178 * unpin_user_page() - release a dma-pinned page 179 * @page: pointer to page to be released 180 * 181 * Pages that were pinned via pin_user_pages*() must be released via either 182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 183 * that such pages can be separately tracked and uniquely handled. In 184 * particular, interactions with RDMA and filesystems need special handling. 185 */ 186 void unpin_user_page(struct page *page) 187 { 188 sanity_check_pinned_pages(&page, 1); 189 gup_put_folio(page_folio(page), 1, FOLL_PIN); 190 } 191 EXPORT_SYMBOL(unpin_user_page); 192 193 /** 194 * unpin_folio() - release a dma-pinned folio 195 * @folio: pointer to folio to be released 196 * 197 * Folios that were pinned via memfd_pin_folios() or other similar routines 198 * must be released either using unpin_folio() or unpin_folios(). 199 */ 200 void unpin_folio(struct folio *folio) 201 { 202 gup_put_folio(folio, 1, FOLL_PIN); 203 } 204 EXPORT_SYMBOL_GPL(unpin_folio); 205 206 /** 207 * folio_add_pin - Try to get an additional pin on a pinned folio 208 * @folio: The folio to be pinned 209 * 210 * Get an additional pin on a folio we already have a pin on. Makes no change 211 * if the folio is a zero_page. 212 */ 213 void folio_add_pin(struct folio *folio) 214 { 215 if (is_zero_folio(folio)) 216 return; 217 218 /* 219 * Similar to try_grab_folio(): be sure to *also* increment the normal 220 * page refcount field at least once, so that the page really is 221 * pinned. 222 */ 223 if (folio_test_large(folio)) { 224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 225 folio_ref_inc(folio); 226 atomic_inc(&folio->_pincount); 227 } else { 228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 } 232 233 static inline struct folio *gup_folio_range_next(struct page *start, 234 unsigned long npages, unsigned long i, unsigned int *ntails) 235 { 236 struct page *next = nth_page(start, i); 237 struct folio *folio = page_folio(next); 238 unsigned int nr = 1; 239 240 if (folio_test_large(folio)) 241 nr = min_t(unsigned int, npages - i, 242 folio_nr_pages(folio) - folio_page_idx(folio, next)); 243 244 *ntails = nr; 245 return folio; 246 } 247 248 static inline struct folio *gup_folio_next(struct page **list, 249 unsigned long npages, unsigned long i, unsigned int *ntails) 250 { 251 struct folio *folio = page_folio(list[i]); 252 unsigned int nr; 253 254 for (nr = i + 1; nr < npages; nr++) { 255 if (page_folio(list[nr]) != folio) 256 break; 257 } 258 259 *ntails = nr - i; 260 return folio; 261 } 262 263 /** 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 265 * @pages: array of pages to be maybe marked dirty, and definitely released. 266 * @npages: number of pages in the @pages array. 267 * @make_dirty: whether to mark the pages dirty 268 * 269 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 270 * variants called on that page. 271 * 272 * For each page in the @pages array, make that page (or its head page, if a 273 * compound page) dirty, if @make_dirty is true, and if the page was previously 274 * listed as clean. In any case, releases all pages using unpin_user_page(), 275 * possibly via unpin_user_pages(), for the non-dirty case. 276 * 277 * Please see the unpin_user_page() documentation for details. 278 * 279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 280 * required, then the caller should a) verify that this is really correct, 281 * because _lock() is usually required, and b) hand code it: 282 * set_page_dirty_lock(), unpin_user_page(). 283 * 284 */ 285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 286 bool make_dirty) 287 { 288 unsigned long i; 289 struct folio *folio; 290 unsigned int nr; 291 292 if (!make_dirty) { 293 unpin_user_pages(pages, npages); 294 return; 295 } 296 297 sanity_check_pinned_pages(pages, npages); 298 for (i = 0; i < npages; i += nr) { 299 folio = gup_folio_next(pages, npages, i, &nr); 300 /* 301 * Checking PageDirty at this point may race with 302 * clear_page_dirty_for_io(), but that's OK. Two key 303 * cases: 304 * 305 * 1) This code sees the page as already dirty, so it 306 * skips the call to set_page_dirty(). That could happen 307 * because clear_page_dirty_for_io() called 308 * folio_mkclean(), followed by set_page_dirty(). 309 * However, now the page is going to get written back, 310 * which meets the original intention of setting it 311 * dirty, so all is well: clear_page_dirty_for_io() goes 312 * on to call TestClearPageDirty(), and write the page 313 * back. 314 * 315 * 2) This code sees the page as clean, so it calls 316 * set_page_dirty(). The page stays dirty, despite being 317 * written back, so it gets written back again in the 318 * next writeback cycle. This is harmless. 319 */ 320 if (!folio_test_dirty(folio)) { 321 folio_lock(folio); 322 folio_mark_dirty(folio); 323 folio_unlock(folio); 324 } 325 gup_put_folio(folio, nr, FOLL_PIN); 326 } 327 } 328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 329 330 /** 331 * unpin_user_page_range_dirty_lock() - release and optionally dirty 332 * gup-pinned page range 333 * 334 * @page: the starting page of a range maybe marked dirty, and definitely released. 335 * @npages: number of consecutive pages to release. 336 * @make_dirty: whether to mark the pages dirty 337 * 338 * "gup-pinned page range" refers to a range of pages that has had one of the 339 * pin_user_pages() variants called on that page. 340 * 341 * For the page ranges defined by [page .. page+npages], make that range (or 342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 343 * page range was previously listed as clean. 344 * 345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 346 * required, then the caller should a) verify that this is really correct, 347 * because _lock() is usually required, and b) hand code it: 348 * set_page_dirty_lock(), unpin_user_page(). 349 * 350 */ 351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 352 bool make_dirty) 353 { 354 unsigned long i; 355 struct folio *folio; 356 unsigned int nr; 357 358 for (i = 0; i < npages; i += nr) { 359 folio = gup_folio_range_next(page, npages, i, &nr); 360 if (make_dirty && !folio_test_dirty(folio)) { 361 folio_lock(folio); 362 folio_mark_dirty(folio); 363 folio_unlock(folio); 364 } 365 gup_put_folio(folio, nr, FOLL_PIN); 366 } 367 } 368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 369 370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 371 { 372 unsigned long i; 373 struct folio *folio; 374 unsigned int nr; 375 376 /* 377 * Don't perform any sanity checks because we might have raced with 378 * fork() and some anonymous pages might now actually be shared -- 379 * which is why we're unpinning after all. 380 */ 381 for (i = 0; i < npages; i += nr) { 382 folio = gup_folio_next(pages, npages, i, &nr); 383 gup_put_folio(folio, nr, FOLL_PIN); 384 } 385 } 386 387 /** 388 * unpin_user_pages() - release an array of gup-pinned pages. 389 * @pages: array of pages to be marked dirty and released. 390 * @npages: number of pages in the @pages array. 391 * 392 * For each page in the @pages array, release the page using unpin_user_page(). 393 * 394 * Please see the unpin_user_page() documentation for details. 395 */ 396 void unpin_user_pages(struct page **pages, unsigned long npages) 397 { 398 unsigned long i; 399 struct folio *folio; 400 unsigned int nr; 401 402 /* 403 * If this WARN_ON() fires, then the system *might* be leaking pages (by 404 * leaving them pinned), but probably not. More likely, gup/pup returned 405 * a hard -ERRNO error to the caller, who erroneously passed it here. 406 */ 407 if (WARN_ON(IS_ERR_VALUE(npages))) 408 return; 409 410 sanity_check_pinned_pages(pages, npages); 411 for (i = 0; i < npages; i += nr) { 412 folio = gup_folio_next(pages, npages, i, &nr); 413 gup_put_folio(folio, nr, FOLL_PIN); 414 } 415 } 416 EXPORT_SYMBOL(unpin_user_pages); 417 418 /** 419 * unpin_user_folio() - release pages of a folio 420 * @folio: pointer to folio to be released 421 * @npages: number of pages of same folio 422 * 423 * Release npages of the folio 424 */ 425 void unpin_user_folio(struct folio *folio, unsigned long npages) 426 { 427 gup_put_folio(folio, npages, FOLL_PIN); 428 } 429 EXPORT_SYMBOL(unpin_user_folio); 430 431 /** 432 * unpin_folios() - release an array of gup-pinned folios. 433 * @folios: array of folios to be marked dirty and released. 434 * @nfolios: number of folios in the @folios array. 435 * 436 * For each folio in the @folios array, release the folio using gup_put_folio. 437 * 438 * Please see the unpin_folio() documentation for details. 439 */ 440 void unpin_folios(struct folio **folios, unsigned long nfolios) 441 { 442 unsigned long i = 0, j; 443 444 /* 445 * If this WARN_ON() fires, then the system *might* be leaking folios 446 * (by leaving them pinned), but probably not. More likely, gup/pup 447 * returned a hard -ERRNO error to the caller, who erroneously passed 448 * it here. 449 */ 450 if (WARN_ON(IS_ERR_VALUE(nfolios))) 451 return; 452 453 while (i < nfolios) { 454 for (j = i + 1; j < nfolios; j++) 455 if (folios[i] != folios[j]) 456 break; 457 458 if (folios[i]) 459 gup_put_folio(folios[i], j - i, FOLL_PIN); 460 i = j; 461 } 462 } 463 EXPORT_SYMBOL_GPL(unpin_folios); 464 465 /* 466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 468 * cache bouncing on large SMP machines for concurrent pinned gups. 469 */ 470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 471 { 472 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 473 set_bit(MMF_HAS_PINNED, mm_flags); 474 } 475 476 #ifdef CONFIG_MMU 477 478 #ifdef CONFIG_HAVE_GUP_FAST 479 static int record_subpages(struct page *page, unsigned long sz, 480 unsigned long addr, unsigned long end, 481 struct page **pages) 482 { 483 struct page *start_page; 484 int nr; 485 486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 488 pages[nr] = nth_page(start_page, nr); 489 490 return nr; 491 } 492 493 /** 494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 495 * @page: pointer to page to be grabbed 496 * @refs: the value to (effectively) add to the folio's refcount 497 * @flags: gup flags: these are the FOLL_* flag values. 498 * 499 * "grab" names in this file mean, "look at flags to decide whether to use 500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 501 * 502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 503 * same time. (That's true throughout the get_user_pages*() and 504 * pin_user_pages*() APIs.) Cases: 505 * 506 * FOLL_GET: folio's refcount will be incremented by @refs. 507 * 508 * FOLL_PIN on large folios: folio's refcount will be incremented by 509 * @refs, and its pincount will be incremented by @refs. 510 * 511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 512 * @refs * GUP_PIN_COUNTING_BIAS. 513 * 514 * Return: The folio containing @page (with refcount appropriately 515 * incremented) for success, or NULL upon failure. If neither FOLL_GET 516 * nor FOLL_PIN was set, that's considered failure, and furthermore, 517 * a likely bug in the caller, so a warning is also emitted. 518 * 519 * It uses add ref unless zero to elevate the folio refcount and must be called 520 * in fast path only. 521 */ 522 static struct folio *try_grab_folio_fast(struct page *page, int refs, 523 unsigned int flags) 524 { 525 struct folio *folio; 526 527 /* Raise warn if it is not called in fast GUP */ 528 VM_WARN_ON_ONCE(!irqs_disabled()); 529 530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 531 return NULL; 532 533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 534 return NULL; 535 536 if (flags & FOLL_GET) 537 return try_get_folio(page, refs); 538 539 /* FOLL_PIN is set */ 540 541 /* 542 * Don't take a pin on the zero page - it's not going anywhere 543 * and it is used in a *lot* of places. 544 */ 545 if (is_zero_page(page)) 546 return page_folio(page); 547 548 folio = try_get_folio(page, refs); 549 if (!folio) 550 return NULL; 551 552 /* 553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 554 * right zone, so fail and let the caller fall back to the slow 555 * path. 556 */ 557 if (unlikely((flags & FOLL_LONGTERM) && 558 !folio_is_longterm_pinnable(folio))) { 559 if (!put_devmap_managed_folio_refs(folio, refs)) 560 folio_put_refs(folio, refs); 561 return NULL; 562 } 563 564 /* 565 * When pinning a large folio, use an exact count to track it. 566 * 567 * However, be sure to *also* increment the normal folio 568 * refcount field at least once, so that the folio really 569 * is pinned. That's why the refcount from the earlier 570 * try_get_folio() is left intact. 571 */ 572 if (folio_test_large(folio)) 573 atomic_add(refs, &folio->_pincount); 574 else 575 folio_ref_add(folio, 576 refs * (GUP_PIN_COUNTING_BIAS - 1)); 577 /* 578 * Adjust the pincount before re-checking the PTE for changes. 579 * This is essentially a smp_mb() and is paired with a memory 580 * barrier in folio_try_share_anon_rmap_*(). 581 */ 582 smp_mb__after_atomic(); 583 584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 585 586 return folio; 587 } 588 #endif /* CONFIG_HAVE_GUP_FAST */ 589 590 static struct page *no_page_table(struct vm_area_struct *vma, 591 unsigned int flags, unsigned long address) 592 { 593 if (!(flags & FOLL_DUMP)) 594 return NULL; 595 596 /* 597 * When core dumping, we don't want to allocate unnecessary pages or 598 * page tables. Return error instead of NULL to skip handle_mm_fault, 599 * then get_dump_page() will return NULL to leave a hole in the dump. 600 * But we can only make this optimization where a hole would surely 601 * be zero-filled if handle_mm_fault() actually did handle it. 602 */ 603 if (is_vm_hugetlb_page(vma)) { 604 struct hstate *h = hstate_vma(vma); 605 606 if (!hugetlbfs_pagecache_present(h, vma, address)) 607 return ERR_PTR(-EFAULT); 608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 609 return ERR_PTR(-EFAULT); 610 } 611 612 return NULL; 613 } 614 615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 616 static struct page *follow_huge_pud(struct vm_area_struct *vma, 617 unsigned long addr, pud_t *pudp, 618 int flags, struct follow_page_context *ctx) 619 { 620 struct mm_struct *mm = vma->vm_mm; 621 struct page *page; 622 pud_t pud = *pudp; 623 unsigned long pfn = pud_pfn(pud); 624 int ret; 625 626 assert_spin_locked(pud_lockptr(mm, pudp)); 627 628 if ((flags & FOLL_WRITE) && !pud_write(pud)) 629 return NULL; 630 631 if (!pud_present(pud)) 632 return NULL; 633 634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 635 636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 637 pud_devmap(pud)) { 638 /* 639 * device mapped pages can only be returned if the caller 640 * will manage the page reference count. 641 * 642 * At least one of FOLL_GET | FOLL_PIN must be set, so 643 * assert that here: 644 */ 645 if (!(flags & (FOLL_GET | FOLL_PIN))) 646 return ERR_PTR(-EEXIST); 647 648 if (flags & FOLL_TOUCH) 649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 650 651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 652 if (!ctx->pgmap) 653 return ERR_PTR(-EFAULT); 654 } 655 656 page = pfn_to_page(pfn); 657 658 if (!pud_devmap(pud) && !pud_write(pud) && 659 gup_must_unshare(vma, flags, page)) 660 return ERR_PTR(-EMLINK); 661 662 ret = try_grab_folio(page_folio(page), 1, flags); 663 if (ret) 664 page = ERR_PTR(ret); 665 else 666 ctx->page_mask = HPAGE_PUD_NR - 1; 667 668 return page; 669 } 670 671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 673 struct vm_area_struct *vma, 674 unsigned int flags) 675 { 676 /* If the pmd is writable, we can write to the page. */ 677 if (pmd_write(pmd)) 678 return true; 679 680 /* Maybe FOLL_FORCE is set to override it? */ 681 if (!(flags & FOLL_FORCE)) 682 return false; 683 684 /* But FOLL_FORCE has no effect on shared mappings */ 685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 686 return false; 687 688 /* ... or read-only private ones */ 689 if (!(vma->vm_flags & VM_MAYWRITE)) 690 return false; 691 692 /* ... or already writable ones that just need to take a write fault */ 693 if (vma->vm_flags & VM_WRITE) 694 return false; 695 696 /* 697 * See can_change_pte_writable(): we broke COW and could map the page 698 * writable if we have an exclusive anonymous page ... 699 */ 700 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 701 return false; 702 703 /* ... and a write-fault isn't required for other reasons. */ 704 if (pmd_needs_soft_dirty_wp(vma, pmd)) 705 return false; 706 return !userfaultfd_huge_pmd_wp(vma, pmd); 707 } 708 709 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 710 unsigned long addr, pmd_t *pmd, 711 unsigned int flags, 712 struct follow_page_context *ctx) 713 { 714 struct mm_struct *mm = vma->vm_mm; 715 pmd_t pmdval = *pmd; 716 struct page *page; 717 int ret; 718 719 assert_spin_locked(pmd_lockptr(mm, pmd)); 720 721 page = pmd_page(pmdval); 722 if ((flags & FOLL_WRITE) && 723 !can_follow_write_pmd(pmdval, page, vma, flags)) 724 return NULL; 725 726 /* Avoid dumping huge zero page */ 727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 728 return ERR_PTR(-EFAULT); 729 730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 731 return NULL; 732 733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 734 return ERR_PTR(-EMLINK); 735 736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 737 !PageAnonExclusive(page), page); 738 739 ret = try_grab_folio(page_folio(page), 1, flags); 740 if (ret) 741 return ERR_PTR(ret); 742 743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 747 748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 749 ctx->page_mask = HPAGE_PMD_NR - 1; 750 751 return page; 752 } 753 754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 755 static struct page *follow_huge_pud(struct vm_area_struct *vma, 756 unsigned long addr, pud_t *pudp, 757 int flags, struct follow_page_context *ctx) 758 { 759 return NULL; 760 } 761 762 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 763 unsigned long addr, pmd_t *pmd, 764 unsigned int flags, 765 struct follow_page_context *ctx) 766 { 767 return NULL; 768 } 769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 770 771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 772 pte_t *pte, unsigned int flags) 773 { 774 if (flags & FOLL_TOUCH) { 775 pte_t orig_entry = ptep_get(pte); 776 pte_t entry = orig_entry; 777 778 if (flags & FOLL_WRITE) 779 entry = pte_mkdirty(entry); 780 entry = pte_mkyoung(entry); 781 782 if (!pte_same(orig_entry, entry)) { 783 set_pte_at(vma->vm_mm, address, pte, entry); 784 update_mmu_cache(vma, address, pte); 785 } 786 } 787 788 /* Proper page table entry exists, but no corresponding struct page */ 789 return -EEXIST; 790 } 791 792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 793 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 794 struct vm_area_struct *vma, 795 unsigned int flags) 796 { 797 /* If the pte is writable, we can write to the page. */ 798 if (pte_write(pte)) 799 return true; 800 801 /* Maybe FOLL_FORCE is set to override it? */ 802 if (!(flags & FOLL_FORCE)) 803 return false; 804 805 /* But FOLL_FORCE has no effect on shared mappings */ 806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 807 return false; 808 809 /* ... or read-only private ones */ 810 if (!(vma->vm_flags & VM_MAYWRITE)) 811 return false; 812 813 /* ... or already writable ones that just need to take a write fault */ 814 if (vma->vm_flags & VM_WRITE) 815 return false; 816 817 /* 818 * See can_change_pte_writable(): we broke COW and could map the page 819 * writable if we have an exclusive anonymous page ... 820 */ 821 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 822 return false; 823 824 /* ... and a write-fault isn't required for other reasons. */ 825 if (pte_needs_soft_dirty_wp(vma, pte)) 826 return false; 827 return !userfaultfd_pte_wp(vma, pte); 828 } 829 830 static struct page *follow_page_pte(struct vm_area_struct *vma, 831 unsigned long address, pmd_t *pmd, unsigned int flags, 832 struct dev_pagemap **pgmap) 833 { 834 struct mm_struct *mm = vma->vm_mm; 835 struct page *page; 836 spinlock_t *ptl; 837 pte_t *ptep, pte; 838 int ret; 839 840 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 841 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 842 (FOLL_PIN | FOLL_GET))) 843 return ERR_PTR(-EINVAL); 844 845 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 846 if (!ptep) 847 return no_page_table(vma, flags, address); 848 pte = ptep_get(ptep); 849 if (!pte_present(pte)) 850 goto no_page; 851 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 852 goto no_page; 853 854 page = vm_normal_page(vma, address, pte); 855 856 /* 857 * We only care about anon pages in can_follow_write_pte() and don't 858 * have to worry about pte_devmap() because they are never anon. 859 */ 860 if ((flags & FOLL_WRITE) && 861 !can_follow_write_pte(pte, page, vma, flags)) { 862 page = NULL; 863 goto out; 864 } 865 866 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 867 /* 868 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 869 * case since they are only valid while holding the pgmap 870 * reference. 871 */ 872 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 873 if (*pgmap) 874 page = pte_page(pte); 875 else 876 goto no_page; 877 } else if (unlikely(!page)) { 878 if (flags & FOLL_DUMP) { 879 /* Avoid special (like zero) pages in core dumps */ 880 page = ERR_PTR(-EFAULT); 881 goto out; 882 } 883 884 if (is_zero_pfn(pte_pfn(pte))) { 885 page = pte_page(pte); 886 } else { 887 ret = follow_pfn_pte(vma, address, ptep, flags); 888 page = ERR_PTR(ret); 889 goto out; 890 } 891 } 892 893 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 894 page = ERR_PTR(-EMLINK); 895 goto out; 896 } 897 898 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 899 !PageAnonExclusive(page), page); 900 901 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 902 ret = try_grab_folio(page_folio(page), 1, flags); 903 if (unlikely(ret)) { 904 page = ERR_PTR(ret); 905 goto out; 906 } 907 908 /* 909 * We need to make the page accessible if and only if we are going 910 * to access its content (the FOLL_PIN case). Please see 911 * Documentation/core-api/pin_user_pages.rst for details. 912 */ 913 if (flags & FOLL_PIN) { 914 ret = arch_make_page_accessible(page); 915 if (ret) { 916 unpin_user_page(page); 917 page = ERR_PTR(ret); 918 goto out; 919 } 920 } 921 if (flags & FOLL_TOUCH) { 922 if ((flags & FOLL_WRITE) && 923 !pte_dirty(pte) && !PageDirty(page)) 924 set_page_dirty(page); 925 /* 926 * pte_mkyoung() would be more correct here, but atomic care 927 * is needed to avoid losing the dirty bit: it is easier to use 928 * mark_page_accessed(). 929 */ 930 mark_page_accessed(page); 931 } 932 out: 933 pte_unmap_unlock(ptep, ptl); 934 return page; 935 no_page: 936 pte_unmap_unlock(ptep, ptl); 937 if (!pte_none(pte)) 938 return NULL; 939 return no_page_table(vma, flags, address); 940 } 941 942 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 943 unsigned long address, pud_t *pudp, 944 unsigned int flags, 945 struct follow_page_context *ctx) 946 { 947 pmd_t *pmd, pmdval; 948 spinlock_t *ptl; 949 struct page *page; 950 struct mm_struct *mm = vma->vm_mm; 951 952 pmd = pmd_offset(pudp, address); 953 pmdval = pmdp_get_lockless(pmd); 954 if (pmd_none(pmdval)) 955 return no_page_table(vma, flags, address); 956 if (!pmd_present(pmdval)) 957 return no_page_table(vma, flags, address); 958 if (pmd_devmap(pmdval)) { 959 ptl = pmd_lock(mm, pmd); 960 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 961 spin_unlock(ptl); 962 if (page) 963 return page; 964 return no_page_table(vma, flags, address); 965 } 966 if (likely(!pmd_leaf(pmdval))) 967 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 968 969 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 970 return no_page_table(vma, flags, address); 971 972 ptl = pmd_lock(mm, pmd); 973 pmdval = *pmd; 974 if (unlikely(!pmd_present(pmdval))) { 975 spin_unlock(ptl); 976 return no_page_table(vma, flags, address); 977 } 978 if (unlikely(!pmd_leaf(pmdval))) { 979 spin_unlock(ptl); 980 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 981 } 982 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 983 spin_unlock(ptl); 984 split_huge_pmd(vma, pmd, address); 985 /* If pmd was left empty, stuff a page table in there quickly */ 986 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 987 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 988 } 989 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 990 spin_unlock(ptl); 991 return page; 992 } 993 994 static struct page *follow_pud_mask(struct vm_area_struct *vma, 995 unsigned long address, p4d_t *p4dp, 996 unsigned int flags, 997 struct follow_page_context *ctx) 998 { 999 pud_t *pudp, pud; 1000 spinlock_t *ptl; 1001 struct page *page; 1002 struct mm_struct *mm = vma->vm_mm; 1003 1004 pudp = pud_offset(p4dp, address); 1005 pud = READ_ONCE(*pudp); 1006 if (!pud_present(pud)) 1007 return no_page_table(vma, flags, address); 1008 if (pud_leaf(pud)) { 1009 ptl = pud_lock(mm, pudp); 1010 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1011 spin_unlock(ptl); 1012 if (page) 1013 return page; 1014 return no_page_table(vma, flags, address); 1015 } 1016 if (unlikely(pud_bad(pud))) 1017 return no_page_table(vma, flags, address); 1018 1019 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1020 } 1021 1022 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1023 unsigned long address, pgd_t *pgdp, 1024 unsigned int flags, 1025 struct follow_page_context *ctx) 1026 { 1027 p4d_t *p4dp, p4d; 1028 1029 p4dp = p4d_offset(pgdp, address); 1030 p4d = READ_ONCE(*p4dp); 1031 BUILD_BUG_ON(p4d_leaf(p4d)); 1032 1033 if (!p4d_present(p4d) || p4d_bad(p4d)) 1034 return no_page_table(vma, flags, address); 1035 1036 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1037 } 1038 1039 /** 1040 * follow_page_mask - look up a page descriptor from a user-virtual address 1041 * @vma: vm_area_struct mapping @address 1042 * @address: virtual address to look up 1043 * @flags: flags modifying lookup behaviour 1044 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1045 * pointer to output page_mask 1046 * 1047 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1048 * 1049 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1050 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1051 * 1052 * When getting an anonymous page and the caller has to trigger unsharing 1053 * of a shared anonymous page first, -EMLINK is returned. The caller should 1054 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1055 * relevant with FOLL_PIN and !FOLL_WRITE. 1056 * 1057 * On output, the @ctx->page_mask is set according to the size of the page. 1058 * 1059 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1060 * an error pointer if there is a mapping to something not represented 1061 * by a page descriptor (see also vm_normal_page()). 1062 */ 1063 static struct page *follow_page_mask(struct vm_area_struct *vma, 1064 unsigned long address, unsigned int flags, 1065 struct follow_page_context *ctx) 1066 { 1067 pgd_t *pgd; 1068 struct mm_struct *mm = vma->vm_mm; 1069 struct page *page; 1070 1071 vma_pgtable_walk_begin(vma); 1072 1073 ctx->page_mask = 0; 1074 pgd = pgd_offset(mm, address); 1075 1076 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1077 page = no_page_table(vma, flags, address); 1078 else 1079 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1080 1081 vma_pgtable_walk_end(vma); 1082 1083 return page; 1084 } 1085 1086 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1087 unsigned int foll_flags) 1088 { 1089 struct follow_page_context ctx = { NULL }; 1090 struct page *page; 1091 1092 if (vma_is_secretmem(vma)) 1093 return NULL; 1094 1095 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 1096 return NULL; 1097 1098 /* 1099 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 1100 * to fail on PROT_NONE-mapped pages. 1101 */ 1102 page = follow_page_mask(vma, address, foll_flags, &ctx); 1103 if (ctx.pgmap) 1104 put_dev_pagemap(ctx.pgmap); 1105 return page; 1106 } 1107 1108 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1109 unsigned int gup_flags, struct vm_area_struct **vma, 1110 struct page **page) 1111 { 1112 pgd_t *pgd; 1113 p4d_t *p4d; 1114 pud_t *pud; 1115 pmd_t *pmd; 1116 pte_t *pte; 1117 pte_t entry; 1118 int ret = -EFAULT; 1119 1120 /* user gate pages are read-only */ 1121 if (gup_flags & FOLL_WRITE) 1122 return -EFAULT; 1123 if (address > TASK_SIZE) 1124 pgd = pgd_offset_k(address); 1125 else 1126 pgd = pgd_offset_gate(mm, address); 1127 if (pgd_none(*pgd)) 1128 return -EFAULT; 1129 p4d = p4d_offset(pgd, address); 1130 if (p4d_none(*p4d)) 1131 return -EFAULT; 1132 pud = pud_offset(p4d, address); 1133 if (pud_none(*pud)) 1134 return -EFAULT; 1135 pmd = pmd_offset(pud, address); 1136 if (!pmd_present(*pmd)) 1137 return -EFAULT; 1138 pte = pte_offset_map(pmd, address); 1139 if (!pte) 1140 return -EFAULT; 1141 entry = ptep_get(pte); 1142 if (pte_none(entry)) 1143 goto unmap; 1144 *vma = get_gate_vma(mm); 1145 if (!page) 1146 goto out; 1147 *page = vm_normal_page(*vma, address, entry); 1148 if (!*page) { 1149 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1150 goto unmap; 1151 *page = pte_page(entry); 1152 } 1153 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1154 if (unlikely(ret)) 1155 goto unmap; 1156 out: 1157 ret = 0; 1158 unmap: 1159 pte_unmap(pte); 1160 return ret; 1161 } 1162 1163 /* 1164 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1165 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1166 * to 0 and -EBUSY returned. 1167 */ 1168 static int faultin_page(struct vm_area_struct *vma, 1169 unsigned long address, unsigned int *flags, bool unshare, 1170 int *locked) 1171 { 1172 unsigned int fault_flags = 0; 1173 vm_fault_t ret; 1174 1175 if (*flags & FOLL_NOFAULT) 1176 return -EFAULT; 1177 if (*flags & FOLL_WRITE) 1178 fault_flags |= FAULT_FLAG_WRITE; 1179 if (*flags & FOLL_REMOTE) 1180 fault_flags |= FAULT_FLAG_REMOTE; 1181 if (*flags & FOLL_UNLOCKABLE) { 1182 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1183 /* 1184 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1185 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1186 * That's because some callers may not be prepared to 1187 * handle early exits caused by non-fatal signals. 1188 */ 1189 if (*flags & FOLL_INTERRUPTIBLE) 1190 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1191 } 1192 if (*flags & FOLL_NOWAIT) 1193 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1194 if (*flags & FOLL_TRIED) { 1195 /* 1196 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1197 * can co-exist 1198 */ 1199 fault_flags |= FAULT_FLAG_TRIED; 1200 } 1201 if (unshare) { 1202 fault_flags |= FAULT_FLAG_UNSHARE; 1203 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1204 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1205 } 1206 1207 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1208 1209 if (ret & VM_FAULT_COMPLETED) { 1210 /* 1211 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1212 * mmap lock in the page fault handler. Sanity check this. 1213 */ 1214 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1215 *locked = 0; 1216 1217 /* 1218 * We should do the same as VM_FAULT_RETRY, but let's not 1219 * return -EBUSY since that's not reflecting the reality of 1220 * what has happened - we've just fully completed a page 1221 * fault, with the mmap lock released. Use -EAGAIN to show 1222 * that we want to take the mmap lock _again_. 1223 */ 1224 return -EAGAIN; 1225 } 1226 1227 if (ret & VM_FAULT_ERROR) { 1228 int err = vm_fault_to_errno(ret, *flags); 1229 1230 if (err) 1231 return err; 1232 BUG(); 1233 } 1234 1235 if (ret & VM_FAULT_RETRY) { 1236 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1237 *locked = 0; 1238 return -EBUSY; 1239 } 1240 1241 return 0; 1242 } 1243 1244 /* 1245 * Writing to file-backed mappings which require folio dirty tracking using GUP 1246 * is a fundamentally broken operation, as kernel write access to GUP mappings 1247 * do not adhere to the semantics expected by a file system. 1248 * 1249 * Consider the following scenario:- 1250 * 1251 * 1. A folio is written to via GUP which write-faults the memory, notifying 1252 * the file system and dirtying the folio. 1253 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1254 * the PTE being marked read-only. 1255 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1256 * direct mapping. 1257 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1258 * (though it does not have to). 1259 * 1260 * This results in both data being written to a folio without writenotify, and 1261 * the folio being dirtied unexpectedly (if the caller decides to do so). 1262 */ 1263 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1264 unsigned long gup_flags) 1265 { 1266 /* 1267 * If we aren't pinning then no problematic write can occur. A long term 1268 * pin is the most egregious case so this is the case we disallow. 1269 */ 1270 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1271 (FOLL_PIN | FOLL_LONGTERM)) 1272 return true; 1273 1274 /* 1275 * If the VMA does not require dirty tracking then no problematic write 1276 * can occur either. 1277 */ 1278 return !vma_needs_dirty_tracking(vma); 1279 } 1280 1281 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1282 { 1283 vm_flags_t vm_flags = vma->vm_flags; 1284 int write = (gup_flags & FOLL_WRITE); 1285 int foreign = (gup_flags & FOLL_REMOTE); 1286 bool vma_anon = vma_is_anonymous(vma); 1287 1288 if (vm_flags & (VM_IO | VM_PFNMAP)) 1289 return -EFAULT; 1290 1291 if ((gup_flags & FOLL_ANON) && !vma_anon) 1292 return -EFAULT; 1293 1294 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1295 return -EOPNOTSUPP; 1296 1297 if (vma_is_secretmem(vma)) 1298 return -EFAULT; 1299 1300 if (write) { 1301 if (!vma_anon && 1302 !writable_file_mapping_allowed(vma, gup_flags)) 1303 return -EFAULT; 1304 1305 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1306 if (!(gup_flags & FOLL_FORCE)) 1307 return -EFAULT; 1308 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1309 if (is_vm_hugetlb_page(vma)) 1310 return -EFAULT; 1311 /* 1312 * We used to let the write,force case do COW in a 1313 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1314 * set a breakpoint in a read-only mapping of an 1315 * executable, without corrupting the file (yet only 1316 * when that file had been opened for writing!). 1317 * Anon pages in shared mappings are surprising: now 1318 * just reject it. 1319 */ 1320 if (!is_cow_mapping(vm_flags)) 1321 return -EFAULT; 1322 } 1323 } else if (!(vm_flags & VM_READ)) { 1324 if (!(gup_flags & FOLL_FORCE)) 1325 return -EFAULT; 1326 /* 1327 * Is there actually any vma we can reach here which does not 1328 * have VM_MAYREAD set? 1329 */ 1330 if (!(vm_flags & VM_MAYREAD)) 1331 return -EFAULT; 1332 } 1333 /* 1334 * gups are always data accesses, not instruction 1335 * fetches, so execute=false here 1336 */ 1337 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1338 return -EFAULT; 1339 return 0; 1340 } 1341 1342 /* 1343 * This is "vma_lookup()", but with a warning if we would have 1344 * historically expanded the stack in the GUP code. 1345 */ 1346 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1347 unsigned long addr) 1348 { 1349 #ifdef CONFIG_STACK_GROWSUP 1350 return vma_lookup(mm, addr); 1351 #else 1352 static volatile unsigned long next_warn; 1353 struct vm_area_struct *vma; 1354 unsigned long now, next; 1355 1356 vma = find_vma(mm, addr); 1357 if (!vma || (addr >= vma->vm_start)) 1358 return vma; 1359 1360 /* Only warn for half-way relevant accesses */ 1361 if (!(vma->vm_flags & VM_GROWSDOWN)) 1362 return NULL; 1363 if (vma->vm_start - addr > 65536) 1364 return NULL; 1365 1366 /* Let's not warn more than once an hour.. */ 1367 now = jiffies; next = next_warn; 1368 if (next && time_before(now, next)) 1369 return NULL; 1370 next_warn = now + 60*60*HZ; 1371 1372 /* Let people know things may have changed. */ 1373 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1374 current->comm, task_pid_nr(current), 1375 vma->vm_start, vma->vm_end, addr); 1376 dump_stack(); 1377 return NULL; 1378 #endif 1379 } 1380 1381 /** 1382 * __get_user_pages() - pin user pages in memory 1383 * @mm: mm_struct of target mm 1384 * @start: starting user address 1385 * @nr_pages: number of pages from start to pin 1386 * @gup_flags: flags modifying pin behaviour 1387 * @pages: array that receives pointers to the pages pinned. 1388 * Should be at least nr_pages long. Or NULL, if caller 1389 * only intends to ensure the pages are faulted in. 1390 * @locked: whether we're still with the mmap_lock held 1391 * 1392 * Returns either number of pages pinned (which may be less than the 1393 * number requested), or an error. Details about the return value: 1394 * 1395 * -- If nr_pages is 0, returns 0. 1396 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1397 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1398 * pages pinned. Again, this may be less than nr_pages. 1399 * -- 0 return value is possible when the fault would need to be retried. 1400 * 1401 * The caller is responsible for releasing returned @pages, via put_page(). 1402 * 1403 * Must be called with mmap_lock held. It may be released. See below. 1404 * 1405 * __get_user_pages walks a process's page tables and takes a reference to 1406 * each struct page that each user address corresponds to at a given 1407 * instant. That is, it takes the page that would be accessed if a user 1408 * thread accesses the given user virtual address at that instant. 1409 * 1410 * This does not guarantee that the page exists in the user mappings when 1411 * __get_user_pages returns, and there may even be a completely different 1412 * page there in some cases (eg. if mmapped pagecache has been invalidated 1413 * and subsequently re-faulted). However it does guarantee that the page 1414 * won't be freed completely. And mostly callers simply care that the page 1415 * contains data that was valid *at some point in time*. Typically, an IO 1416 * or similar operation cannot guarantee anything stronger anyway because 1417 * locks can't be held over the syscall boundary. 1418 * 1419 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1420 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1421 * appropriate) must be called after the page is finished with, and 1422 * before put_page is called. 1423 * 1424 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1425 * be released. If this happens *@locked will be set to 0 on return. 1426 * 1427 * A caller using such a combination of @gup_flags must therefore hold the 1428 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1429 * it must be held for either reading or writing and will not be released. 1430 * 1431 * In most cases, get_user_pages or get_user_pages_fast should be used 1432 * instead of __get_user_pages. __get_user_pages should be used only if 1433 * you need some special @gup_flags. 1434 */ 1435 static long __get_user_pages(struct mm_struct *mm, 1436 unsigned long start, unsigned long nr_pages, 1437 unsigned int gup_flags, struct page **pages, 1438 int *locked) 1439 { 1440 long ret = 0, i = 0; 1441 struct vm_area_struct *vma = NULL; 1442 struct follow_page_context ctx = { NULL }; 1443 1444 if (!nr_pages) 1445 return 0; 1446 1447 start = untagged_addr_remote(mm, start); 1448 1449 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1450 1451 do { 1452 struct page *page; 1453 unsigned int foll_flags = gup_flags; 1454 unsigned int page_increm; 1455 1456 /* first iteration or cross vma bound */ 1457 if (!vma || start >= vma->vm_end) { 1458 /* 1459 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1460 * lookups+error reporting differently. 1461 */ 1462 if (gup_flags & FOLL_MADV_POPULATE) { 1463 vma = vma_lookup(mm, start); 1464 if (!vma) { 1465 ret = -ENOMEM; 1466 goto out; 1467 } 1468 if (check_vma_flags(vma, gup_flags)) { 1469 ret = -EINVAL; 1470 goto out; 1471 } 1472 goto retry; 1473 } 1474 vma = gup_vma_lookup(mm, start); 1475 if (!vma && in_gate_area(mm, start)) { 1476 ret = get_gate_page(mm, start & PAGE_MASK, 1477 gup_flags, &vma, 1478 pages ? &page : NULL); 1479 if (ret) 1480 goto out; 1481 ctx.page_mask = 0; 1482 goto next_page; 1483 } 1484 1485 if (!vma) { 1486 ret = -EFAULT; 1487 goto out; 1488 } 1489 ret = check_vma_flags(vma, gup_flags); 1490 if (ret) 1491 goto out; 1492 } 1493 retry: 1494 /* 1495 * If we have a pending SIGKILL, don't keep faulting pages and 1496 * potentially allocating memory. 1497 */ 1498 if (fatal_signal_pending(current)) { 1499 ret = -EINTR; 1500 goto out; 1501 } 1502 cond_resched(); 1503 1504 page = follow_page_mask(vma, start, foll_flags, &ctx); 1505 if (!page || PTR_ERR(page) == -EMLINK) { 1506 ret = faultin_page(vma, start, &foll_flags, 1507 PTR_ERR(page) == -EMLINK, locked); 1508 switch (ret) { 1509 case 0: 1510 goto retry; 1511 case -EBUSY: 1512 case -EAGAIN: 1513 ret = 0; 1514 fallthrough; 1515 case -EFAULT: 1516 case -ENOMEM: 1517 case -EHWPOISON: 1518 goto out; 1519 } 1520 BUG(); 1521 } else if (PTR_ERR(page) == -EEXIST) { 1522 /* 1523 * Proper page table entry exists, but no corresponding 1524 * struct page. If the caller expects **pages to be 1525 * filled in, bail out now, because that can't be done 1526 * for this page. 1527 */ 1528 if (pages) { 1529 ret = PTR_ERR(page); 1530 goto out; 1531 } 1532 } else if (IS_ERR(page)) { 1533 ret = PTR_ERR(page); 1534 goto out; 1535 } 1536 next_page: 1537 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1538 if (page_increm > nr_pages) 1539 page_increm = nr_pages; 1540 1541 if (pages) { 1542 struct page *subpage; 1543 unsigned int j; 1544 1545 /* 1546 * This must be a large folio (and doesn't need to 1547 * be the whole folio; it can be part of it), do 1548 * the refcount work for all the subpages too. 1549 * 1550 * NOTE: here the page may not be the head page 1551 * e.g. when start addr is not thp-size aligned. 1552 * try_grab_folio() should have taken care of tail 1553 * pages. 1554 */ 1555 if (page_increm > 1) { 1556 struct folio *folio = page_folio(page); 1557 1558 /* 1559 * Since we already hold refcount on the 1560 * large folio, this should never fail. 1561 */ 1562 if (try_grab_folio(folio, page_increm - 1, 1563 foll_flags)) { 1564 /* 1565 * Release the 1st page ref if the 1566 * folio is problematic, fail hard. 1567 */ 1568 gup_put_folio(folio, 1, 1569 foll_flags); 1570 ret = -EFAULT; 1571 goto out; 1572 } 1573 } 1574 1575 for (j = 0; j < page_increm; j++) { 1576 subpage = nth_page(page, j); 1577 pages[i + j] = subpage; 1578 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1579 flush_dcache_page(subpage); 1580 } 1581 } 1582 1583 i += page_increm; 1584 start += page_increm * PAGE_SIZE; 1585 nr_pages -= page_increm; 1586 } while (nr_pages); 1587 out: 1588 if (ctx.pgmap) 1589 put_dev_pagemap(ctx.pgmap); 1590 return i ? i : ret; 1591 } 1592 1593 static bool vma_permits_fault(struct vm_area_struct *vma, 1594 unsigned int fault_flags) 1595 { 1596 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1597 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1598 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1599 1600 if (!(vm_flags & vma->vm_flags)) 1601 return false; 1602 1603 /* 1604 * The architecture might have a hardware protection 1605 * mechanism other than read/write that can deny access. 1606 * 1607 * gup always represents data access, not instruction 1608 * fetches, so execute=false here: 1609 */ 1610 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1611 return false; 1612 1613 return true; 1614 } 1615 1616 /** 1617 * fixup_user_fault() - manually resolve a user page fault 1618 * @mm: mm_struct of target mm 1619 * @address: user address 1620 * @fault_flags:flags to pass down to handle_mm_fault() 1621 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1622 * does not allow retry. If NULL, the caller must guarantee 1623 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1624 * 1625 * This is meant to be called in the specific scenario where for locking reasons 1626 * we try to access user memory in atomic context (within a pagefault_disable() 1627 * section), this returns -EFAULT, and we want to resolve the user fault before 1628 * trying again. 1629 * 1630 * Typically this is meant to be used by the futex code. 1631 * 1632 * The main difference with get_user_pages() is that this function will 1633 * unconditionally call handle_mm_fault() which will in turn perform all the 1634 * necessary SW fixup of the dirty and young bits in the PTE, while 1635 * get_user_pages() only guarantees to update these in the struct page. 1636 * 1637 * This is important for some architectures where those bits also gate the 1638 * access permission to the page because they are maintained in software. On 1639 * such architectures, gup() will not be enough to make a subsequent access 1640 * succeed. 1641 * 1642 * This function will not return with an unlocked mmap_lock. So it has not the 1643 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1644 */ 1645 int fixup_user_fault(struct mm_struct *mm, 1646 unsigned long address, unsigned int fault_flags, 1647 bool *unlocked) 1648 { 1649 struct vm_area_struct *vma; 1650 vm_fault_t ret; 1651 1652 address = untagged_addr_remote(mm, address); 1653 1654 if (unlocked) 1655 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1656 1657 retry: 1658 vma = gup_vma_lookup(mm, address); 1659 if (!vma) 1660 return -EFAULT; 1661 1662 if (!vma_permits_fault(vma, fault_flags)) 1663 return -EFAULT; 1664 1665 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1666 fatal_signal_pending(current)) 1667 return -EINTR; 1668 1669 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1670 1671 if (ret & VM_FAULT_COMPLETED) { 1672 /* 1673 * NOTE: it's a pity that we need to retake the lock here 1674 * to pair with the unlock() in the callers. Ideally we 1675 * could tell the callers so they do not need to unlock. 1676 */ 1677 mmap_read_lock(mm); 1678 *unlocked = true; 1679 return 0; 1680 } 1681 1682 if (ret & VM_FAULT_ERROR) { 1683 int err = vm_fault_to_errno(ret, 0); 1684 1685 if (err) 1686 return err; 1687 BUG(); 1688 } 1689 1690 if (ret & VM_FAULT_RETRY) { 1691 mmap_read_lock(mm); 1692 *unlocked = true; 1693 fault_flags |= FAULT_FLAG_TRIED; 1694 goto retry; 1695 } 1696 1697 return 0; 1698 } 1699 EXPORT_SYMBOL_GPL(fixup_user_fault); 1700 1701 /* 1702 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1703 * specified, it'll also respond to generic signals. The caller of GUP 1704 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1705 */ 1706 static bool gup_signal_pending(unsigned int flags) 1707 { 1708 if (fatal_signal_pending(current)) 1709 return true; 1710 1711 if (!(flags & FOLL_INTERRUPTIBLE)) 1712 return false; 1713 1714 return signal_pending(current); 1715 } 1716 1717 /* 1718 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1719 * the caller. This function may drop the mmap_lock. If it does so, then it will 1720 * set (*locked = 0). 1721 * 1722 * (*locked == 0) means that the caller expects this function to acquire and 1723 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1724 * the function returns, even though it may have changed temporarily during 1725 * function execution. 1726 * 1727 * Please note that this function, unlike __get_user_pages(), will not return 0 1728 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1729 */ 1730 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1731 unsigned long start, 1732 unsigned long nr_pages, 1733 struct page **pages, 1734 int *locked, 1735 unsigned int flags) 1736 { 1737 long ret, pages_done; 1738 bool must_unlock = false; 1739 1740 if (!nr_pages) 1741 return 0; 1742 1743 /* 1744 * The internal caller expects GUP to manage the lock internally and the 1745 * lock must be released when this returns. 1746 */ 1747 if (!*locked) { 1748 if (mmap_read_lock_killable(mm)) 1749 return -EAGAIN; 1750 must_unlock = true; 1751 *locked = 1; 1752 } 1753 else 1754 mmap_assert_locked(mm); 1755 1756 if (flags & FOLL_PIN) 1757 mm_set_has_pinned_flag(&mm->flags); 1758 1759 /* 1760 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1761 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1762 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1763 * for FOLL_GET, not for the newer FOLL_PIN. 1764 * 1765 * FOLL_PIN always expects pages to be non-null, but no need to assert 1766 * that here, as any failures will be obvious enough. 1767 */ 1768 if (pages && !(flags & FOLL_PIN)) 1769 flags |= FOLL_GET; 1770 1771 pages_done = 0; 1772 for (;;) { 1773 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1774 locked); 1775 if (!(flags & FOLL_UNLOCKABLE)) { 1776 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1777 pages_done = ret; 1778 break; 1779 } 1780 1781 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1782 if (!*locked) { 1783 BUG_ON(ret < 0); 1784 BUG_ON(ret >= nr_pages); 1785 } 1786 1787 if (ret > 0) { 1788 nr_pages -= ret; 1789 pages_done += ret; 1790 if (!nr_pages) 1791 break; 1792 } 1793 if (*locked) { 1794 /* 1795 * VM_FAULT_RETRY didn't trigger or it was a 1796 * FOLL_NOWAIT. 1797 */ 1798 if (!pages_done) 1799 pages_done = ret; 1800 break; 1801 } 1802 /* 1803 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1804 * For the prefault case (!pages) we only update counts. 1805 */ 1806 if (likely(pages)) 1807 pages += ret; 1808 start += ret << PAGE_SHIFT; 1809 1810 /* The lock was temporarily dropped, so we must unlock later */ 1811 must_unlock = true; 1812 1813 retry: 1814 /* 1815 * Repeat on the address that fired VM_FAULT_RETRY 1816 * with both FAULT_FLAG_ALLOW_RETRY and 1817 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1818 * by fatal signals of even common signals, depending on 1819 * the caller's request. So we need to check it before we 1820 * start trying again otherwise it can loop forever. 1821 */ 1822 if (gup_signal_pending(flags)) { 1823 if (!pages_done) 1824 pages_done = -EINTR; 1825 break; 1826 } 1827 1828 ret = mmap_read_lock_killable(mm); 1829 if (ret) { 1830 BUG_ON(ret > 0); 1831 if (!pages_done) 1832 pages_done = ret; 1833 break; 1834 } 1835 1836 *locked = 1; 1837 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1838 pages, locked); 1839 if (!*locked) { 1840 /* Continue to retry until we succeeded */ 1841 BUG_ON(ret != 0); 1842 goto retry; 1843 } 1844 if (ret != 1) { 1845 BUG_ON(ret > 1); 1846 if (!pages_done) 1847 pages_done = ret; 1848 break; 1849 } 1850 nr_pages--; 1851 pages_done++; 1852 if (!nr_pages) 1853 break; 1854 if (likely(pages)) 1855 pages++; 1856 start += PAGE_SIZE; 1857 } 1858 if (must_unlock && *locked) { 1859 /* 1860 * We either temporarily dropped the lock, or the caller 1861 * requested that we both acquire and drop the lock. Either way, 1862 * we must now unlock, and notify the caller of that state. 1863 */ 1864 mmap_read_unlock(mm); 1865 *locked = 0; 1866 } 1867 1868 /* 1869 * Failing to pin anything implies something has gone wrong (except when 1870 * FOLL_NOWAIT is specified). 1871 */ 1872 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1873 return -EFAULT; 1874 1875 return pages_done; 1876 } 1877 1878 /** 1879 * populate_vma_page_range() - populate a range of pages in the vma. 1880 * @vma: target vma 1881 * @start: start address 1882 * @end: end address 1883 * @locked: whether the mmap_lock is still held 1884 * 1885 * This takes care of mlocking the pages too if VM_LOCKED is set. 1886 * 1887 * Return either number of pages pinned in the vma, or a negative error 1888 * code on error. 1889 * 1890 * vma->vm_mm->mmap_lock must be held. 1891 * 1892 * If @locked is NULL, it may be held for read or write and will 1893 * be unperturbed. 1894 * 1895 * If @locked is non-NULL, it must held for read only and may be 1896 * released. If it's released, *@locked will be set to 0. 1897 */ 1898 long populate_vma_page_range(struct vm_area_struct *vma, 1899 unsigned long start, unsigned long end, int *locked) 1900 { 1901 struct mm_struct *mm = vma->vm_mm; 1902 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1903 int local_locked = 1; 1904 int gup_flags; 1905 long ret; 1906 1907 VM_BUG_ON(!PAGE_ALIGNED(start)); 1908 VM_BUG_ON(!PAGE_ALIGNED(end)); 1909 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1910 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1911 mmap_assert_locked(mm); 1912 1913 /* 1914 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1915 * faultin_page() to break COW, so it has no work to do here. 1916 */ 1917 if (vma->vm_flags & VM_LOCKONFAULT) 1918 return nr_pages; 1919 1920 /* ... similarly, we've never faulted in PROT_NONE pages */ 1921 if (!vma_is_accessible(vma)) 1922 return -EFAULT; 1923 1924 gup_flags = FOLL_TOUCH; 1925 /* 1926 * We want to touch writable mappings with a write fault in order 1927 * to break COW, except for shared mappings because these don't COW 1928 * and we would not want to dirty them for nothing. 1929 * 1930 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1931 * readable (ie write-only or executable). 1932 */ 1933 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1934 gup_flags |= FOLL_WRITE; 1935 else 1936 gup_flags |= FOLL_FORCE; 1937 1938 if (locked) 1939 gup_flags |= FOLL_UNLOCKABLE; 1940 1941 /* 1942 * We made sure addr is within a VMA, so the following will 1943 * not result in a stack expansion that recurses back here. 1944 */ 1945 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1946 NULL, locked ? locked : &local_locked); 1947 lru_add_drain(); 1948 return ret; 1949 } 1950 1951 /* 1952 * faultin_page_range() - populate (prefault) page tables inside the 1953 * given range readable/writable 1954 * 1955 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1956 * 1957 * @mm: the mm to populate page tables in 1958 * @start: start address 1959 * @end: end address 1960 * @write: whether to prefault readable or writable 1961 * @locked: whether the mmap_lock is still held 1962 * 1963 * Returns either number of processed pages in the MM, or a negative error 1964 * code on error (see __get_user_pages()). Note that this function reports 1965 * errors related to VMAs, such as incompatible mappings, as expected by 1966 * MADV_POPULATE_(READ|WRITE). 1967 * 1968 * The range must be page-aligned. 1969 * 1970 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1971 */ 1972 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1973 unsigned long end, bool write, int *locked) 1974 { 1975 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1976 int gup_flags; 1977 long ret; 1978 1979 VM_BUG_ON(!PAGE_ALIGNED(start)); 1980 VM_BUG_ON(!PAGE_ALIGNED(end)); 1981 mmap_assert_locked(mm); 1982 1983 /* 1984 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1985 * the page dirty with FOLL_WRITE -- which doesn't make a 1986 * difference with !FOLL_FORCE, because the page is writable 1987 * in the page table. 1988 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1989 * a poisoned page. 1990 * !FOLL_FORCE: Require proper access permissions. 1991 */ 1992 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1993 FOLL_MADV_POPULATE; 1994 if (write) 1995 gup_flags |= FOLL_WRITE; 1996 1997 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1998 gup_flags); 1999 lru_add_drain(); 2000 return ret; 2001 } 2002 2003 /* 2004 * __mm_populate - populate and/or mlock pages within a range of address space. 2005 * 2006 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 2007 * flags. VMAs must be already marked with the desired vm_flags, and 2008 * mmap_lock must not be held. 2009 */ 2010 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 2011 { 2012 struct mm_struct *mm = current->mm; 2013 unsigned long end, nstart, nend; 2014 struct vm_area_struct *vma = NULL; 2015 int locked = 0; 2016 long ret = 0; 2017 2018 end = start + len; 2019 2020 for (nstart = start; nstart < end; nstart = nend) { 2021 /* 2022 * We want to fault in pages for [nstart; end) address range. 2023 * Find first corresponding VMA. 2024 */ 2025 if (!locked) { 2026 locked = 1; 2027 mmap_read_lock(mm); 2028 vma = find_vma_intersection(mm, nstart, end); 2029 } else if (nstart >= vma->vm_end) 2030 vma = find_vma_intersection(mm, vma->vm_end, end); 2031 2032 if (!vma) 2033 break; 2034 /* 2035 * Set [nstart; nend) to intersection of desired address 2036 * range with the first VMA. Also, skip undesirable VMA types. 2037 */ 2038 nend = min(end, vma->vm_end); 2039 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2040 continue; 2041 if (nstart < vma->vm_start) 2042 nstart = vma->vm_start; 2043 /* 2044 * Now fault in a range of pages. populate_vma_page_range() 2045 * double checks the vma flags, so that it won't mlock pages 2046 * if the vma was already munlocked. 2047 */ 2048 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2049 if (ret < 0) { 2050 if (ignore_errors) { 2051 ret = 0; 2052 continue; /* continue at next VMA */ 2053 } 2054 break; 2055 } 2056 nend = nstart + ret * PAGE_SIZE; 2057 ret = 0; 2058 } 2059 if (locked) 2060 mmap_read_unlock(mm); 2061 return ret; /* 0 or negative error code */ 2062 } 2063 #else /* CONFIG_MMU */ 2064 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2065 unsigned long nr_pages, struct page **pages, 2066 int *locked, unsigned int foll_flags) 2067 { 2068 struct vm_area_struct *vma; 2069 bool must_unlock = false; 2070 unsigned long vm_flags; 2071 long i; 2072 2073 if (!nr_pages) 2074 return 0; 2075 2076 /* 2077 * The internal caller expects GUP to manage the lock internally and the 2078 * lock must be released when this returns. 2079 */ 2080 if (!*locked) { 2081 if (mmap_read_lock_killable(mm)) 2082 return -EAGAIN; 2083 must_unlock = true; 2084 *locked = 1; 2085 } 2086 2087 /* calculate required read or write permissions. 2088 * If FOLL_FORCE is set, we only require the "MAY" flags. 2089 */ 2090 vm_flags = (foll_flags & FOLL_WRITE) ? 2091 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2092 vm_flags &= (foll_flags & FOLL_FORCE) ? 2093 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2094 2095 for (i = 0; i < nr_pages; i++) { 2096 vma = find_vma(mm, start); 2097 if (!vma) 2098 break; 2099 2100 /* protect what we can, including chardevs */ 2101 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2102 !(vm_flags & vma->vm_flags)) 2103 break; 2104 2105 if (pages) { 2106 pages[i] = virt_to_page((void *)start); 2107 if (pages[i]) 2108 get_page(pages[i]); 2109 } 2110 2111 start = (start + PAGE_SIZE) & PAGE_MASK; 2112 } 2113 2114 if (must_unlock && *locked) { 2115 mmap_read_unlock(mm); 2116 *locked = 0; 2117 } 2118 2119 return i ? : -EFAULT; 2120 } 2121 #endif /* !CONFIG_MMU */ 2122 2123 /** 2124 * fault_in_writeable - fault in userspace address range for writing 2125 * @uaddr: start of address range 2126 * @size: size of address range 2127 * 2128 * Returns the number of bytes not faulted in (like copy_to_user() and 2129 * copy_from_user()). 2130 */ 2131 size_t fault_in_writeable(char __user *uaddr, size_t size) 2132 { 2133 char __user *start = uaddr, *end; 2134 2135 if (unlikely(size == 0)) 2136 return 0; 2137 if (!user_write_access_begin(uaddr, size)) 2138 return size; 2139 if (!PAGE_ALIGNED(uaddr)) { 2140 unsafe_put_user(0, uaddr, out); 2141 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2142 } 2143 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2144 if (unlikely(end < start)) 2145 end = NULL; 2146 while (uaddr != end) { 2147 unsafe_put_user(0, uaddr, out); 2148 uaddr += PAGE_SIZE; 2149 } 2150 2151 out: 2152 user_write_access_end(); 2153 if (size > uaddr - start) 2154 return size - (uaddr - start); 2155 return 0; 2156 } 2157 EXPORT_SYMBOL(fault_in_writeable); 2158 2159 /** 2160 * fault_in_subpage_writeable - fault in an address range for writing 2161 * @uaddr: start of address range 2162 * @size: size of address range 2163 * 2164 * Fault in a user address range for writing while checking for permissions at 2165 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2166 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2167 * 2168 * Returns the number of bytes not faulted in (like copy_to_user() and 2169 * copy_from_user()). 2170 */ 2171 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2172 { 2173 size_t faulted_in; 2174 2175 /* 2176 * Attempt faulting in at page granularity first for page table 2177 * permission checking. The arch-specific probe_subpage_writeable() 2178 * functions may not check for this. 2179 */ 2180 faulted_in = size - fault_in_writeable(uaddr, size); 2181 if (faulted_in) 2182 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2183 2184 return size - faulted_in; 2185 } 2186 EXPORT_SYMBOL(fault_in_subpage_writeable); 2187 2188 /* 2189 * fault_in_safe_writeable - fault in an address range for writing 2190 * @uaddr: start of address range 2191 * @size: length of address range 2192 * 2193 * Faults in an address range for writing. This is primarily useful when we 2194 * already know that some or all of the pages in the address range aren't in 2195 * memory. 2196 * 2197 * Unlike fault_in_writeable(), this function is non-destructive. 2198 * 2199 * Note that we don't pin or otherwise hold the pages referenced that we fault 2200 * in. There's no guarantee that they'll stay in memory for any duration of 2201 * time. 2202 * 2203 * Returns the number of bytes not faulted in, like copy_to_user() and 2204 * copy_from_user(). 2205 */ 2206 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2207 { 2208 unsigned long start = (unsigned long)uaddr, end; 2209 struct mm_struct *mm = current->mm; 2210 bool unlocked = false; 2211 2212 if (unlikely(size == 0)) 2213 return 0; 2214 end = PAGE_ALIGN(start + size); 2215 if (end < start) 2216 end = 0; 2217 2218 mmap_read_lock(mm); 2219 do { 2220 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2221 break; 2222 start = (start + PAGE_SIZE) & PAGE_MASK; 2223 } while (start != end); 2224 mmap_read_unlock(mm); 2225 2226 if (size > (unsigned long)uaddr - start) 2227 return size - ((unsigned long)uaddr - start); 2228 return 0; 2229 } 2230 EXPORT_SYMBOL(fault_in_safe_writeable); 2231 2232 /** 2233 * fault_in_readable - fault in userspace address range for reading 2234 * @uaddr: start of user address range 2235 * @size: size of user address range 2236 * 2237 * Returns the number of bytes not faulted in (like copy_to_user() and 2238 * copy_from_user()). 2239 */ 2240 size_t fault_in_readable(const char __user *uaddr, size_t size) 2241 { 2242 const char __user *start = uaddr, *end; 2243 volatile char c; 2244 2245 if (unlikely(size == 0)) 2246 return 0; 2247 if (!user_read_access_begin(uaddr, size)) 2248 return size; 2249 if (!PAGE_ALIGNED(uaddr)) { 2250 unsafe_get_user(c, uaddr, out); 2251 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2252 } 2253 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2254 if (unlikely(end < start)) 2255 end = NULL; 2256 while (uaddr != end) { 2257 unsafe_get_user(c, uaddr, out); 2258 uaddr += PAGE_SIZE; 2259 } 2260 2261 out: 2262 user_read_access_end(); 2263 (void)c; 2264 if (size > uaddr - start) 2265 return size - (uaddr - start); 2266 return 0; 2267 } 2268 EXPORT_SYMBOL(fault_in_readable); 2269 2270 /** 2271 * get_dump_page() - pin user page in memory while writing it to core dump 2272 * @addr: user address 2273 * 2274 * Returns struct page pointer of user page pinned for dump, 2275 * to be freed afterwards by put_page(). 2276 * 2277 * Returns NULL on any kind of failure - a hole must then be inserted into 2278 * the corefile, to preserve alignment with its headers; and also returns 2279 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2280 * allowing a hole to be left in the corefile to save disk space. 2281 * 2282 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2283 */ 2284 #ifdef CONFIG_ELF_CORE 2285 struct page *get_dump_page(unsigned long addr) 2286 { 2287 struct page *page; 2288 int locked = 0; 2289 int ret; 2290 2291 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2292 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2293 return (ret == 1) ? page : NULL; 2294 } 2295 #endif /* CONFIG_ELF_CORE */ 2296 2297 #ifdef CONFIG_MIGRATION 2298 /* 2299 * Returns the number of collected folios. Return value is always >= 0. 2300 */ 2301 static unsigned long collect_longterm_unpinnable_folios( 2302 struct list_head *movable_folio_list, 2303 unsigned long nr_folios, 2304 struct folio **folios) 2305 { 2306 unsigned long i, collected = 0; 2307 struct folio *prev_folio = NULL; 2308 bool drain_allow = true; 2309 2310 for (i = 0; i < nr_folios; i++) { 2311 struct folio *folio = folios[i]; 2312 2313 if (folio == prev_folio) 2314 continue; 2315 prev_folio = folio; 2316 2317 if (folio_is_longterm_pinnable(folio)) 2318 continue; 2319 2320 collected++; 2321 2322 if (folio_is_device_coherent(folio)) 2323 continue; 2324 2325 if (folio_test_hugetlb(folio)) { 2326 isolate_hugetlb(folio, movable_folio_list); 2327 continue; 2328 } 2329 2330 if (!folio_test_lru(folio) && drain_allow) { 2331 lru_add_drain_all(); 2332 drain_allow = false; 2333 } 2334 2335 if (!folio_isolate_lru(folio)) 2336 continue; 2337 2338 list_add_tail(&folio->lru, movable_folio_list); 2339 node_stat_mod_folio(folio, 2340 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2341 folio_nr_pages(folio)); 2342 } 2343 2344 return collected; 2345 } 2346 2347 /* 2348 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2349 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2350 * failure (or partial success). 2351 */ 2352 static int migrate_longterm_unpinnable_folios( 2353 struct list_head *movable_folio_list, 2354 unsigned long nr_folios, 2355 struct folio **folios) 2356 { 2357 int ret; 2358 unsigned long i; 2359 2360 for (i = 0; i < nr_folios; i++) { 2361 struct folio *folio = folios[i]; 2362 2363 if (folio_is_device_coherent(folio)) { 2364 /* 2365 * Migration will fail if the folio is pinned, so 2366 * convert the pin on the source folio to a normal 2367 * reference. 2368 */ 2369 folios[i] = NULL; 2370 folio_get(folio); 2371 gup_put_folio(folio, 1, FOLL_PIN); 2372 2373 if (migrate_device_coherent_page(&folio->page)) { 2374 ret = -EBUSY; 2375 goto err; 2376 } 2377 2378 continue; 2379 } 2380 2381 /* 2382 * We can't migrate folios with unexpected references, so drop 2383 * the reference obtained by __get_user_pages_locked(). 2384 * Migrating folios have been added to movable_folio_list after 2385 * calling folio_isolate_lru() which takes a reference so the 2386 * folio won't be freed if it's migrating. 2387 */ 2388 unpin_folio(folios[i]); 2389 folios[i] = NULL; 2390 } 2391 2392 if (!list_empty(movable_folio_list)) { 2393 struct migration_target_control mtc = { 2394 .nid = NUMA_NO_NODE, 2395 .gfp_mask = GFP_USER | __GFP_NOWARN, 2396 .reason = MR_LONGTERM_PIN, 2397 }; 2398 2399 if (migrate_pages(movable_folio_list, alloc_migration_target, 2400 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2401 MR_LONGTERM_PIN, NULL)) { 2402 ret = -ENOMEM; 2403 goto err; 2404 } 2405 } 2406 2407 putback_movable_pages(movable_folio_list); 2408 2409 return -EAGAIN; 2410 2411 err: 2412 unpin_folios(folios, nr_folios); 2413 putback_movable_pages(movable_folio_list); 2414 2415 return ret; 2416 } 2417 2418 /* 2419 * Check whether all folios are *allowed* to be pinned indefinitely (longterm). 2420 * Rather confusingly, all folios in the range are required to be pinned via 2421 * FOLL_PIN, before calling this routine. 2422 * 2423 * If any folios in the range are not allowed to be pinned, then this routine 2424 * will migrate those folios away, unpin all the folios in the range and return 2425 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2426 * call this routine again. 2427 * 2428 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2429 * The caller should give up, and propagate the error back up the call stack. 2430 * 2431 * If everything is OK and all folios in the range are allowed to be pinned, 2432 * then this routine leaves all folios pinned and returns zero for success. 2433 */ 2434 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2435 struct folio **folios) 2436 { 2437 unsigned long collected; 2438 LIST_HEAD(movable_folio_list); 2439 2440 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2441 nr_folios, folios); 2442 if (!collected) 2443 return 0; 2444 2445 return migrate_longterm_unpinnable_folios(&movable_folio_list, 2446 nr_folios, folios); 2447 } 2448 2449 /* 2450 * This routine just converts all the pages in the @pages array to folios and 2451 * calls check_and_migrate_movable_folios() to do the heavy lifting. 2452 * 2453 * Please see the check_and_migrate_movable_folios() documentation for details. 2454 */ 2455 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2456 struct page **pages) 2457 { 2458 struct folio **folios; 2459 long i, ret; 2460 2461 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL); 2462 if (!folios) 2463 return -ENOMEM; 2464 2465 for (i = 0; i < nr_pages; i++) 2466 folios[i] = page_folio(pages[i]); 2467 2468 ret = check_and_migrate_movable_folios(nr_pages, folios); 2469 2470 kfree(folios); 2471 return ret; 2472 } 2473 #else 2474 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2475 struct page **pages) 2476 { 2477 return 0; 2478 } 2479 2480 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2481 struct folio **folios) 2482 { 2483 return 0; 2484 } 2485 #endif /* CONFIG_MIGRATION */ 2486 2487 /* 2488 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2489 * allows us to process the FOLL_LONGTERM flag. 2490 */ 2491 static long __gup_longterm_locked(struct mm_struct *mm, 2492 unsigned long start, 2493 unsigned long nr_pages, 2494 struct page **pages, 2495 int *locked, 2496 unsigned int gup_flags) 2497 { 2498 unsigned int flags; 2499 long rc, nr_pinned_pages; 2500 2501 if (!(gup_flags & FOLL_LONGTERM)) 2502 return __get_user_pages_locked(mm, start, nr_pages, pages, 2503 locked, gup_flags); 2504 2505 flags = memalloc_pin_save(); 2506 do { 2507 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2508 pages, locked, 2509 gup_flags); 2510 if (nr_pinned_pages <= 0) { 2511 rc = nr_pinned_pages; 2512 break; 2513 } 2514 2515 /* FOLL_LONGTERM implies FOLL_PIN */ 2516 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2517 } while (rc == -EAGAIN); 2518 memalloc_pin_restore(flags); 2519 return rc ? rc : nr_pinned_pages; 2520 } 2521 2522 /* 2523 * Check that the given flags are valid for the exported gup/pup interface, and 2524 * update them with the required flags that the caller must have set. 2525 */ 2526 static bool is_valid_gup_args(struct page **pages, int *locked, 2527 unsigned int *gup_flags_p, unsigned int to_set) 2528 { 2529 unsigned int gup_flags = *gup_flags_p; 2530 2531 /* 2532 * These flags not allowed to be specified externally to the gup 2533 * interfaces: 2534 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2535 * - FOLL_REMOTE is internal only and used on follow_page() 2536 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2537 */ 2538 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2539 return false; 2540 2541 gup_flags |= to_set; 2542 if (locked) { 2543 /* At the external interface locked must be set */ 2544 if (WARN_ON_ONCE(*locked != 1)) 2545 return false; 2546 2547 gup_flags |= FOLL_UNLOCKABLE; 2548 } 2549 2550 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2551 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2552 (FOLL_PIN | FOLL_GET))) 2553 return false; 2554 2555 /* LONGTERM can only be specified when pinning */ 2556 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2557 return false; 2558 2559 /* Pages input must be given if using GET/PIN */ 2560 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2561 return false; 2562 2563 /* We want to allow the pgmap to be hot-unplugged at all times */ 2564 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2565 (gup_flags & FOLL_PCI_P2PDMA))) 2566 return false; 2567 2568 *gup_flags_p = gup_flags; 2569 return true; 2570 } 2571 2572 #ifdef CONFIG_MMU 2573 /** 2574 * get_user_pages_remote() - pin user pages in memory 2575 * @mm: mm_struct of target mm 2576 * @start: starting user address 2577 * @nr_pages: number of pages from start to pin 2578 * @gup_flags: flags modifying lookup behaviour 2579 * @pages: array that receives pointers to the pages pinned. 2580 * Should be at least nr_pages long. Or NULL, if caller 2581 * only intends to ensure the pages are faulted in. 2582 * @locked: pointer to lock flag indicating whether lock is held and 2583 * subsequently whether VM_FAULT_RETRY functionality can be 2584 * utilised. Lock must initially be held. 2585 * 2586 * Returns either number of pages pinned (which may be less than the 2587 * number requested), or an error. Details about the return value: 2588 * 2589 * -- If nr_pages is 0, returns 0. 2590 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2591 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2592 * pages pinned. Again, this may be less than nr_pages. 2593 * 2594 * The caller is responsible for releasing returned @pages, via put_page(). 2595 * 2596 * Must be called with mmap_lock held for read or write. 2597 * 2598 * get_user_pages_remote walks a process's page tables and takes a reference 2599 * to each struct page that each user address corresponds to at a given 2600 * instant. That is, it takes the page that would be accessed if a user 2601 * thread accesses the given user virtual address at that instant. 2602 * 2603 * This does not guarantee that the page exists in the user mappings when 2604 * get_user_pages_remote returns, and there may even be a completely different 2605 * page there in some cases (eg. if mmapped pagecache has been invalidated 2606 * and subsequently re-faulted). However it does guarantee that the page 2607 * won't be freed completely. And mostly callers simply care that the page 2608 * contains data that was valid *at some point in time*. Typically, an IO 2609 * or similar operation cannot guarantee anything stronger anyway because 2610 * locks can't be held over the syscall boundary. 2611 * 2612 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2613 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2614 * be called after the page is finished with, and before put_page is called. 2615 * 2616 * get_user_pages_remote is typically used for fewer-copy IO operations, 2617 * to get a handle on the memory by some means other than accesses 2618 * via the user virtual addresses. The pages may be submitted for 2619 * DMA to devices or accessed via their kernel linear mapping (via the 2620 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2621 * 2622 * See also get_user_pages_fast, for performance critical applications. 2623 * 2624 * get_user_pages_remote should be phased out in favor of 2625 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2626 * should use get_user_pages_remote because it cannot pass 2627 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2628 */ 2629 long get_user_pages_remote(struct mm_struct *mm, 2630 unsigned long start, unsigned long nr_pages, 2631 unsigned int gup_flags, struct page **pages, 2632 int *locked) 2633 { 2634 int local_locked = 1; 2635 2636 if (!is_valid_gup_args(pages, locked, &gup_flags, 2637 FOLL_TOUCH | FOLL_REMOTE)) 2638 return -EINVAL; 2639 2640 return __get_user_pages_locked(mm, start, nr_pages, pages, 2641 locked ? locked : &local_locked, 2642 gup_flags); 2643 } 2644 EXPORT_SYMBOL(get_user_pages_remote); 2645 2646 #else /* CONFIG_MMU */ 2647 long get_user_pages_remote(struct mm_struct *mm, 2648 unsigned long start, unsigned long nr_pages, 2649 unsigned int gup_flags, struct page **pages, 2650 int *locked) 2651 { 2652 return 0; 2653 } 2654 #endif /* !CONFIG_MMU */ 2655 2656 /** 2657 * get_user_pages() - pin user pages in memory 2658 * @start: starting user address 2659 * @nr_pages: number of pages from start to pin 2660 * @gup_flags: flags modifying lookup behaviour 2661 * @pages: array that receives pointers to the pages pinned. 2662 * Should be at least nr_pages long. Or NULL, if caller 2663 * only intends to ensure the pages are faulted in. 2664 * 2665 * This is the same as get_user_pages_remote(), just with a less-flexible 2666 * calling convention where we assume that the mm being operated on belongs to 2667 * the current task, and doesn't allow passing of a locked parameter. We also 2668 * obviously don't pass FOLL_REMOTE in here. 2669 */ 2670 long get_user_pages(unsigned long start, unsigned long nr_pages, 2671 unsigned int gup_flags, struct page **pages) 2672 { 2673 int locked = 1; 2674 2675 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2676 return -EINVAL; 2677 2678 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2679 &locked, gup_flags); 2680 } 2681 EXPORT_SYMBOL(get_user_pages); 2682 2683 /* 2684 * get_user_pages_unlocked() is suitable to replace the form: 2685 * 2686 * mmap_read_lock(mm); 2687 * get_user_pages(mm, ..., pages, NULL); 2688 * mmap_read_unlock(mm); 2689 * 2690 * with: 2691 * 2692 * get_user_pages_unlocked(mm, ..., pages); 2693 * 2694 * It is functionally equivalent to get_user_pages_fast so 2695 * get_user_pages_fast should be used instead if specific gup_flags 2696 * (e.g. FOLL_FORCE) are not required. 2697 */ 2698 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2699 struct page **pages, unsigned int gup_flags) 2700 { 2701 int locked = 0; 2702 2703 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2704 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2705 return -EINVAL; 2706 2707 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2708 &locked, gup_flags); 2709 } 2710 EXPORT_SYMBOL(get_user_pages_unlocked); 2711 2712 /* 2713 * GUP-fast 2714 * 2715 * get_user_pages_fast attempts to pin user pages by walking the page 2716 * tables directly and avoids taking locks. Thus the walker needs to be 2717 * protected from page table pages being freed from under it, and should 2718 * block any THP splits. 2719 * 2720 * One way to achieve this is to have the walker disable interrupts, and 2721 * rely on IPIs from the TLB flushing code blocking before the page table 2722 * pages are freed. This is unsuitable for architectures that do not need 2723 * to broadcast an IPI when invalidating TLBs. 2724 * 2725 * Another way to achieve this is to batch up page table containing pages 2726 * belonging to more than one mm_user, then rcu_sched a callback to free those 2727 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2728 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2729 * (which is a relatively rare event). The code below adopts this strategy. 2730 * 2731 * Before activating this code, please be aware that the following assumptions 2732 * are currently made: 2733 * 2734 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2735 * free pages containing page tables or TLB flushing requires IPI broadcast. 2736 * 2737 * *) ptes can be read atomically by the architecture. 2738 * 2739 * *) access_ok is sufficient to validate userspace address ranges. 2740 * 2741 * The last two assumptions can be relaxed by the addition of helper functions. 2742 * 2743 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2744 */ 2745 #ifdef CONFIG_HAVE_GUP_FAST 2746 /* 2747 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2748 * a specific folio. 2749 * 2750 * This call assumes the caller has pinned the folio, that the lowest page table 2751 * level still points to this folio, and that interrupts have been disabled. 2752 * 2753 * GUP-fast must reject all secretmem folios. 2754 * 2755 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2756 * (see comment describing the writable_file_mapping_allowed() function). We 2757 * therefore try to avoid the most egregious case of a long-term mapping doing 2758 * so. 2759 * 2760 * This function cannot be as thorough as that one as the VMA is not available 2761 * in the fast path, so instead we whitelist known good cases and if in doubt, 2762 * fall back to the slow path. 2763 */ 2764 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2765 { 2766 bool reject_file_backed = false; 2767 struct address_space *mapping; 2768 bool check_secretmem = false; 2769 unsigned long mapping_flags; 2770 2771 /* 2772 * If we aren't pinning then no problematic write can occur. A long term 2773 * pin is the most egregious case so this is the one we disallow. 2774 */ 2775 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2776 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2777 reject_file_backed = true; 2778 2779 /* We hold a folio reference, so we can safely access folio fields. */ 2780 2781 /* secretmem folios are always order-0 folios. */ 2782 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2783 check_secretmem = true; 2784 2785 if (!reject_file_backed && !check_secretmem) 2786 return true; 2787 2788 if (WARN_ON_ONCE(folio_test_slab(folio))) 2789 return false; 2790 2791 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2792 if (folio_test_hugetlb(folio)) 2793 return true; 2794 2795 /* 2796 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2797 * cannot proceed, which means no actions performed under RCU can 2798 * proceed either. 2799 * 2800 * inodes and thus their mappings are freed under RCU, which means the 2801 * mapping cannot be freed beneath us and thus we can safely dereference 2802 * it. 2803 */ 2804 lockdep_assert_irqs_disabled(); 2805 2806 /* 2807 * However, there may be operations which _alter_ the mapping, so ensure 2808 * we read it once and only once. 2809 */ 2810 mapping = READ_ONCE(folio->mapping); 2811 2812 /* 2813 * The mapping may have been truncated, in any case we cannot determine 2814 * if this mapping is safe - fall back to slow path to determine how to 2815 * proceed. 2816 */ 2817 if (!mapping) 2818 return false; 2819 2820 /* Anonymous folios pose no problem. */ 2821 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2822 if (mapping_flags) 2823 return mapping_flags & PAGE_MAPPING_ANON; 2824 2825 /* 2826 * At this point, we know the mapping is non-null and points to an 2827 * address_space object. 2828 */ 2829 if (check_secretmem && secretmem_mapping(mapping)) 2830 return false; 2831 /* The only remaining allowed file system is shmem. */ 2832 return !reject_file_backed || shmem_mapping(mapping); 2833 } 2834 2835 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2836 unsigned int flags, struct page **pages) 2837 { 2838 while ((*nr) - nr_start) { 2839 struct folio *folio = page_folio(pages[--(*nr)]); 2840 2841 folio_clear_referenced(folio); 2842 gup_put_folio(folio, 1, flags); 2843 } 2844 } 2845 2846 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2847 /* 2848 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2849 * operations. 2850 * 2851 * To pin the page, GUP-fast needs to do below in order: 2852 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2853 * 2854 * For the rest of pgtable operations where pgtable updates can be racy 2855 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2856 * is pinned. 2857 * 2858 * Above will work for all pte-level operations, including THP split. 2859 * 2860 * For THP collapse, it's a bit more complicated because GUP-fast may be 2861 * walking a pgtable page that is being freed (pte is still valid but pmd 2862 * can be cleared already). To avoid race in such condition, we need to 2863 * also check pmd here to make sure pmd doesn't change (corresponds to 2864 * pmdp_collapse_flush() in the THP collapse code path). 2865 */ 2866 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2867 unsigned long end, unsigned int flags, struct page **pages, 2868 int *nr) 2869 { 2870 struct dev_pagemap *pgmap = NULL; 2871 int nr_start = *nr, ret = 0; 2872 pte_t *ptep, *ptem; 2873 2874 ptem = ptep = pte_offset_map(&pmd, addr); 2875 if (!ptep) 2876 return 0; 2877 do { 2878 pte_t pte = ptep_get_lockless(ptep); 2879 struct page *page; 2880 struct folio *folio; 2881 2882 /* 2883 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2884 * pte_access_permitted() better should reject these pages 2885 * either way: otherwise, GUP-fast might succeed in 2886 * cases where ordinary GUP would fail due to VMA access 2887 * permissions. 2888 */ 2889 if (pte_protnone(pte)) 2890 goto pte_unmap; 2891 2892 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2893 goto pte_unmap; 2894 2895 if (pte_devmap(pte)) { 2896 if (unlikely(flags & FOLL_LONGTERM)) 2897 goto pte_unmap; 2898 2899 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2900 if (unlikely(!pgmap)) { 2901 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2902 goto pte_unmap; 2903 } 2904 } else if (pte_special(pte)) 2905 goto pte_unmap; 2906 2907 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2908 page = pte_page(pte); 2909 2910 folio = try_grab_folio_fast(page, 1, flags); 2911 if (!folio) 2912 goto pte_unmap; 2913 2914 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2915 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2916 gup_put_folio(folio, 1, flags); 2917 goto pte_unmap; 2918 } 2919 2920 if (!gup_fast_folio_allowed(folio, flags)) { 2921 gup_put_folio(folio, 1, flags); 2922 goto pte_unmap; 2923 } 2924 2925 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2926 gup_put_folio(folio, 1, flags); 2927 goto pte_unmap; 2928 } 2929 2930 /* 2931 * We need to make the page accessible if and only if we are 2932 * going to access its content (the FOLL_PIN case). Please 2933 * see Documentation/core-api/pin_user_pages.rst for 2934 * details. 2935 */ 2936 if (flags & FOLL_PIN) { 2937 ret = arch_make_page_accessible(page); 2938 if (ret) { 2939 gup_put_folio(folio, 1, flags); 2940 goto pte_unmap; 2941 } 2942 } 2943 folio_set_referenced(folio); 2944 pages[*nr] = page; 2945 (*nr)++; 2946 } while (ptep++, addr += PAGE_SIZE, addr != end); 2947 2948 ret = 1; 2949 2950 pte_unmap: 2951 if (pgmap) 2952 put_dev_pagemap(pgmap); 2953 pte_unmap(ptem); 2954 return ret; 2955 } 2956 #else 2957 2958 /* 2959 * If we can't determine whether or not a pte is special, then fail immediately 2960 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2961 * to be special. 2962 * 2963 * For a futex to be placed on a THP tail page, get_futex_key requires a 2964 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2965 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2966 */ 2967 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2968 unsigned long end, unsigned int flags, struct page **pages, 2969 int *nr) 2970 { 2971 return 0; 2972 } 2973 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2974 2975 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2976 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2977 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2978 { 2979 int nr_start = *nr; 2980 struct dev_pagemap *pgmap = NULL; 2981 2982 do { 2983 struct folio *folio; 2984 struct page *page = pfn_to_page(pfn); 2985 2986 pgmap = get_dev_pagemap(pfn, pgmap); 2987 if (unlikely(!pgmap)) { 2988 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2989 break; 2990 } 2991 2992 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2993 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2994 break; 2995 } 2996 2997 folio = try_grab_folio_fast(page, 1, flags); 2998 if (!folio) { 2999 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3000 break; 3001 } 3002 folio_set_referenced(folio); 3003 pages[*nr] = page; 3004 (*nr)++; 3005 pfn++; 3006 } while (addr += PAGE_SIZE, addr != end); 3007 3008 put_dev_pagemap(pgmap); 3009 return addr == end; 3010 } 3011 3012 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3013 unsigned long end, unsigned int flags, struct page **pages, 3014 int *nr) 3015 { 3016 unsigned long fault_pfn; 3017 int nr_start = *nr; 3018 3019 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3020 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3021 return 0; 3022 3023 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3024 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3025 return 0; 3026 } 3027 return 1; 3028 } 3029 3030 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3031 unsigned long end, unsigned int flags, struct page **pages, 3032 int *nr) 3033 { 3034 unsigned long fault_pfn; 3035 int nr_start = *nr; 3036 3037 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3038 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3039 return 0; 3040 3041 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3042 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3043 return 0; 3044 } 3045 return 1; 3046 } 3047 #else 3048 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3049 unsigned long end, unsigned int flags, struct page **pages, 3050 int *nr) 3051 { 3052 BUILD_BUG(); 3053 return 0; 3054 } 3055 3056 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3057 unsigned long end, unsigned int flags, struct page **pages, 3058 int *nr) 3059 { 3060 BUILD_BUG(); 3061 return 0; 3062 } 3063 #endif 3064 3065 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3066 unsigned long end, unsigned int flags, struct page **pages, 3067 int *nr) 3068 { 3069 struct page *page; 3070 struct folio *folio; 3071 int refs; 3072 3073 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3074 return 0; 3075 3076 if (pmd_devmap(orig)) { 3077 if (unlikely(flags & FOLL_LONGTERM)) 3078 return 0; 3079 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3080 pages, nr); 3081 } 3082 3083 page = pmd_page(orig); 3084 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3085 3086 folio = try_grab_folio_fast(page, refs, flags); 3087 if (!folio) 3088 return 0; 3089 3090 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3091 gup_put_folio(folio, refs, flags); 3092 return 0; 3093 } 3094 3095 if (!gup_fast_folio_allowed(folio, flags)) { 3096 gup_put_folio(folio, refs, flags); 3097 return 0; 3098 } 3099 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3100 gup_put_folio(folio, refs, flags); 3101 return 0; 3102 } 3103 3104 *nr += refs; 3105 folio_set_referenced(folio); 3106 return 1; 3107 } 3108 3109 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3110 unsigned long end, unsigned int flags, struct page **pages, 3111 int *nr) 3112 { 3113 struct page *page; 3114 struct folio *folio; 3115 int refs; 3116 3117 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3118 return 0; 3119 3120 if (pud_devmap(orig)) { 3121 if (unlikely(flags & FOLL_LONGTERM)) 3122 return 0; 3123 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3124 pages, nr); 3125 } 3126 3127 page = pud_page(orig); 3128 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3129 3130 folio = try_grab_folio_fast(page, refs, flags); 3131 if (!folio) 3132 return 0; 3133 3134 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3135 gup_put_folio(folio, refs, flags); 3136 return 0; 3137 } 3138 3139 if (!gup_fast_folio_allowed(folio, flags)) { 3140 gup_put_folio(folio, refs, flags); 3141 return 0; 3142 } 3143 3144 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3145 gup_put_folio(folio, refs, flags); 3146 return 0; 3147 } 3148 3149 *nr += refs; 3150 folio_set_referenced(folio); 3151 return 1; 3152 } 3153 3154 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3155 unsigned long end, unsigned int flags, struct page **pages, 3156 int *nr) 3157 { 3158 int refs; 3159 struct page *page; 3160 struct folio *folio; 3161 3162 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3163 return 0; 3164 3165 BUILD_BUG_ON(pgd_devmap(orig)); 3166 3167 page = pgd_page(orig); 3168 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3169 3170 folio = try_grab_folio_fast(page, refs, flags); 3171 if (!folio) 3172 return 0; 3173 3174 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3175 gup_put_folio(folio, refs, flags); 3176 return 0; 3177 } 3178 3179 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3180 gup_put_folio(folio, refs, flags); 3181 return 0; 3182 } 3183 3184 if (!gup_fast_folio_allowed(folio, flags)) { 3185 gup_put_folio(folio, refs, flags); 3186 return 0; 3187 } 3188 3189 *nr += refs; 3190 folio_set_referenced(folio); 3191 return 1; 3192 } 3193 3194 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3195 unsigned long end, unsigned int flags, struct page **pages, 3196 int *nr) 3197 { 3198 unsigned long next; 3199 pmd_t *pmdp; 3200 3201 pmdp = pmd_offset_lockless(pudp, pud, addr); 3202 do { 3203 pmd_t pmd = pmdp_get_lockless(pmdp); 3204 3205 next = pmd_addr_end(addr, end); 3206 if (!pmd_present(pmd)) 3207 return 0; 3208 3209 if (unlikely(pmd_leaf(pmd))) { 3210 /* See gup_fast_pte_range() */ 3211 if (pmd_protnone(pmd)) 3212 return 0; 3213 3214 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3215 pages, nr)) 3216 return 0; 3217 3218 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3219 pages, nr)) 3220 return 0; 3221 } while (pmdp++, addr = next, addr != end); 3222 3223 return 1; 3224 } 3225 3226 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3227 unsigned long end, unsigned int flags, struct page **pages, 3228 int *nr) 3229 { 3230 unsigned long next; 3231 pud_t *pudp; 3232 3233 pudp = pud_offset_lockless(p4dp, p4d, addr); 3234 do { 3235 pud_t pud = READ_ONCE(*pudp); 3236 3237 next = pud_addr_end(addr, end); 3238 if (unlikely(!pud_present(pud))) 3239 return 0; 3240 if (unlikely(pud_leaf(pud))) { 3241 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3242 pages, nr)) 3243 return 0; 3244 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3245 pages, nr)) 3246 return 0; 3247 } while (pudp++, addr = next, addr != end); 3248 3249 return 1; 3250 } 3251 3252 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3253 unsigned long end, unsigned int flags, struct page **pages, 3254 int *nr) 3255 { 3256 unsigned long next; 3257 p4d_t *p4dp; 3258 3259 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3260 do { 3261 p4d_t p4d = READ_ONCE(*p4dp); 3262 3263 next = p4d_addr_end(addr, end); 3264 if (!p4d_present(p4d)) 3265 return 0; 3266 BUILD_BUG_ON(p4d_leaf(p4d)); 3267 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3268 pages, nr)) 3269 return 0; 3270 } while (p4dp++, addr = next, addr != end); 3271 3272 return 1; 3273 } 3274 3275 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3276 unsigned int flags, struct page **pages, int *nr) 3277 { 3278 unsigned long next; 3279 pgd_t *pgdp; 3280 3281 pgdp = pgd_offset(current->mm, addr); 3282 do { 3283 pgd_t pgd = READ_ONCE(*pgdp); 3284 3285 next = pgd_addr_end(addr, end); 3286 if (pgd_none(pgd)) 3287 return; 3288 if (unlikely(pgd_leaf(pgd))) { 3289 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3290 pages, nr)) 3291 return; 3292 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3293 pages, nr)) 3294 return; 3295 } while (pgdp++, addr = next, addr != end); 3296 } 3297 #else 3298 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3299 unsigned int flags, struct page **pages, int *nr) 3300 { 3301 } 3302 #endif /* CONFIG_HAVE_GUP_FAST */ 3303 3304 #ifndef gup_fast_permitted 3305 /* 3306 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3307 * we need to fall back to the slow version: 3308 */ 3309 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3310 { 3311 return true; 3312 } 3313 #endif 3314 3315 static unsigned long gup_fast(unsigned long start, unsigned long end, 3316 unsigned int gup_flags, struct page **pages) 3317 { 3318 unsigned long flags; 3319 int nr_pinned = 0; 3320 unsigned seq; 3321 3322 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3323 !gup_fast_permitted(start, end)) 3324 return 0; 3325 3326 if (gup_flags & FOLL_PIN) { 3327 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3328 if (seq & 1) 3329 return 0; 3330 } 3331 3332 /* 3333 * Disable interrupts. The nested form is used, in order to allow full, 3334 * general purpose use of this routine. 3335 * 3336 * With interrupts disabled, we block page table pages from being freed 3337 * from under us. See struct mmu_table_batch comments in 3338 * include/asm-generic/tlb.h for more details. 3339 * 3340 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3341 * that come from THPs splitting. 3342 */ 3343 local_irq_save(flags); 3344 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3345 local_irq_restore(flags); 3346 3347 /* 3348 * When pinning pages for DMA there could be a concurrent write protect 3349 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3350 */ 3351 if (gup_flags & FOLL_PIN) { 3352 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3353 gup_fast_unpin_user_pages(pages, nr_pinned); 3354 return 0; 3355 } else { 3356 sanity_check_pinned_pages(pages, nr_pinned); 3357 } 3358 } 3359 return nr_pinned; 3360 } 3361 3362 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3363 unsigned int gup_flags, struct page **pages) 3364 { 3365 unsigned long len, end; 3366 unsigned long nr_pinned; 3367 int locked = 0; 3368 int ret; 3369 3370 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3371 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3372 FOLL_FAST_ONLY | FOLL_NOFAULT | 3373 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3374 return -EINVAL; 3375 3376 if (gup_flags & FOLL_PIN) 3377 mm_set_has_pinned_flag(¤t->mm->flags); 3378 3379 if (!(gup_flags & FOLL_FAST_ONLY)) 3380 might_lock_read(¤t->mm->mmap_lock); 3381 3382 start = untagged_addr(start) & PAGE_MASK; 3383 len = nr_pages << PAGE_SHIFT; 3384 if (check_add_overflow(start, len, &end)) 3385 return -EOVERFLOW; 3386 if (end > TASK_SIZE_MAX) 3387 return -EFAULT; 3388 if (unlikely(!access_ok((void __user *)start, len))) 3389 return -EFAULT; 3390 3391 nr_pinned = gup_fast(start, end, gup_flags, pages); 3392 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3393 return nr_pinned; 3394 3395 /* Slow path: try to get the remaining pages with get_user_pages */ 3396 start += nr_pinned << PAGE_SHIFT; 3397 pages += nr_pinned; 3398 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3399 pages, &locked, 3400 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3401 if (ret < 0) { 3402 /* 3403 * The caller has to unpin the pages we already pinned so 3404 * returning -errno is not an option 3405 */ 3406 if (nr_pinned) 3407 return nr_pinned; 3408 return ret; 3409 } 3410 return ret + nr_pinned; 3411 } 3412 3413 /** 3414 * get_user_pages_fast_only() - pin user pages in memory 3415 * @start: starting user address 3416 * @nr_pages: number of pages from start to pin 3417 * @gup_flags: flags modifying pin behaviour 3418 * @pages: array that receives pointers to the pages pinned. 3419 * Should be at least nr_pages long. 3420 * 3421 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3422 * the regular GUP. 3423 * 3424 * If the architecture does not support this function, simply return with no 3425 * pages pinned. 3426 * 3427 * Careful, careful! COW breaking can go either way, so a non-write 3428 * access can get ambiguous page results. If you call this function without 3429 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3430 */ 3431 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3432 unsigned int gup_flags, struct page **pages) 3433 { 3434 /* 3435 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3436 * because gup fast is always a "pin with a +1 page refcount" request. 3437 * 3438 * FOLL_FAST_ONLY is required in order to match the API description of 3439 * this routine: no fall back to regular ("slow") GUP. 3440 */ 3441 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3442 FOLL_GET | FOLL_FAST_ONLY)) 3443 return -EINVAL; 3444 3445 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3446 } 3447 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3448 3449 /** 3450 * get_user_pages_fast() - pin user pages in memory 3451 * @start: starting user address 3452 * @nr_pages: number of pages from start to pin 3453 * @gup_flags: flags modifying pin behaviour 3454 * @pages: array that receives pointers to the pages pinned. 3455 * Should be at least nr_pages long. 3456 * 3457 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3458 * If not successful, it will fall back to taking the lock and 3459 * calling get_user_pages(). 3460 * 3461 * Returns number of pages pinned. This may be fewer than the number requested. 3462 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3463 * -errno. 3464 */ 3465 int get_user_pages_fast(unsigned long start, int nr_pages, 3466 unsigned int gup_flags, struct page **pages) 3467 { 3468 /* 3469 * The caller may or may not have explicitly set FOLL_GET; either way is 3470 * OK. However, internally (within mm/gup.c), gup fast variants must set 3471 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3472 * request. 3473 */ 3474 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3475 return -EINVAL; 3476 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3477 } 3478 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3479 3480 /** 3481 * pin_user_pages_fast() - pin user pages in memory without taking locks 3482 * 3483 * @start: starting user address 3484 * @nr_pages: number of pages from start to pin 3485 * @gup_flags: flags modifying pin behaviour 3486 * @pages: array that receives pointers to the pages pinned. 3487 * Should be at least nr_pages long. 3488 * 3489 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3490 * get_user_pages_fast() for documentation on the function arguments, because 3491 * the arguments here are identical. 3492 * 3493 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3494 * see Documentation/core-api/pin_user_pages.rst for further details. 3495 * 3496 * Note that if a zero_page is amongst the returned pages, it will not have 3497 * pins in it and unpin_user_page() will not remove pins from it. 3498 */ 3499 int pin_user_pages_fast(unsigned long start, int nr_pages, 3500 unsigned int gup_flags, struct page **pages) 3501 { 3502 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3503 return -EINVAL; 3504 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3505 } 3506 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3507 3508 /** 3509 * pin_user_pages_remote() - pin pages of a remote process 3510 * 3511 * @mm: mm_struct of target mm 3512 * @start: starting user address 3513 * @nr_pages: number of pages from start to pin 3514 * @gup_flags: flags modifying lookup behaviour 3515 * @pages: array that receives pointers to the pages pinned. 3516 * Should be at least nr_pages long. 3517 * @locked: pointer to lock flag indicating whether lock is held and 3518 * subsequently whether VM_FAULT_RETRY functionality can be 3519 * utilised. Lock must initially be held. 3520 * 3521 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3522 * get_user_pages_remote() for documentation on the function arguments, because 3523 * the arguments here are identical. 3524 * 3525 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3526 * see Documentation/core-api/pin_user_pages.rst for details. 3527 * 3528 * Note that if a zero_page is amongst the returned pages, it will not have 3529 * pins in it and unpin_user_page*() will not remove pins from it. 3530 */ 3531 long pin_user_pages_remote(struct mm_struct *mm, 3532 unsigned long start, unsigned long nr_pages, 3533 unsigned int gup_flags, struct page **pages, 3534 int *locked) 3535 { 3536 int local_locked = 1; 3537 3538 if (!is_valid_gup_args(pages, locked, &gup_flags, 3539 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3540 return 0; 3541 return __gup_longterm_locked(mm, start, nr_pages, pages, 3542 locked ? locked : &local_locked, 3543 gup_flags); 3544 } 3545 EXPORT_SYMBOL(pin_user_pages_remote); 3546 3547 /** 3548 * pin_user_pages() - pin user pages in memory for use by other devices 3549 * 3550 * @start: starting user address 3551 * @nr_pages: number of pages from start to pin 3552 * @gup_flags: flags modifying lookup behaviour 3553 * @pages: array that receives pointers to the pages pinned. 3554 * Should be at least nr_pages long. 3555 * 3556 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3557 * FOLL_PIN is set. 3558 * 3559 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3560 * see Documentation/core-api/pin_user_pages.rst for details. 3561 * 3562 * Note that if a zero_page is amongst the returned pages, it will not have 3563 * pins in it and unpin_user_page*() will not remove pins from it. 3564 */ 3565 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3566 unsigned int gup_flags, struct page **pages) 3567 { 3568 int locked = 1; 3569 3570 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3571 return 0; 3572 return __gup_longterm_locked(current->mm, start, nr_pages, 3573 pages, &locked, gup_flags); 3574 } 3575 EXPORT_SYMBOL(pin_user_pages); 3576 3577 /* 3578 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3579 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3580 * FOLL_PIN and rejects FOLL_GET. 3581 * 3582 * Note that if a zero_page is amongst the returned pages, it will not have 3583 * pins in it and unpin_user_page*() will not remove pins from it. 3584 */ 3585 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3586 struct page **pages, unsigned int gup_flags) 3587 { 3588 int locked = 0; 3589 3590 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3591 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3592 return 0; 3593 3594 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3595 &locked, gup_flags); 3596 } 3597 EXPORT_SYMBOL(pin_user_pages_unlocked); 3598 3599 /** 3600 * memfd_pin_folios() - pin folios associated with a memfd 3601 * @memfd: the memfd whose folios are to be pinned 3602 * @start: the first memfd offset 3603 * @end: the last memfd offset (inclusive) 3604 * @folios: array that receives pointers to the folios pinned 3605 * @max_folios: maximum number of entries in @folios 3606 * @offset: the offset into the first folio 3607 * 3608 * Attempt to pin folios associated with a memfd in the contiguous range 3609 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3610 * the folios can either be found in the page cache or need to be allocated 3611 * if necessary. Once the folios are located, they are all pinned via 3612 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3613 * And, eventually, these pinned folios must be released either using 3614 * unpin_folios() or unpin_folio(). 3615 * 3616 * It must be noted that the folios may be pinned for an indefinite amount 3617 * of time. And, in most cases, the duration of time they may stay pinned 3618 * would be controlled by the userspace. This behavior is effectively the 3619 * same as using FOLL_LONGTERM with other GUP APIs. 3620 * 3621 * Returns number of folios pinned, which could be less than @max_folios 3622 * as it depends on the folio sizes that cover the range [start, end]. 3623 * If no folios were pinned, it returns -errno. 3624 */ 3625 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3626 struct folio **folios, unsigned int max_folios, 3627 pgoff_t *offset) 3628 { 3629 unsigned int flags, nr_folios, nr_found; 3630 unsigned int i, pgshift = PAGE_SHIFT; 3631 pgoff_t start_idx, end_idx, next_idx; 3632 struct folio *folio = NULL; 3633 struct folio_batch fbatch; 3634 struct hstate *h; 3635 long ret = -EINVAL; 3636 3637 if (start < 0 || start > end || !max_folios) 3638 return -EINVAL; 3639 3640 if (!memfd) 3641 return -EINVAL; 3642 3643 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3644 return -EINVAL; 3645 3646 if (end >= i_size_read(file_inode(memfd))) 3647 return -EINVAL; 3648 3649 if (is_file_hugepages(memfd)) { 3650 h = hstate_file(memfd); 3651 pgshift = huge_page_shift(h); 3652 } 3653 3654 flags = memalloc_pin_save(); 3655 do { 3656 nr_folios = 0; 3657 start_idx = start >> pgshift; 3658 end_idx = end >> pgshift; 3659 if (is_file_hugepages(memfd)) { 3660 start_idx <<= huge_page_order(h); 3661 end_idx <<= huge_page_order(h); 3662 } 3663 3664 folio_batch_init(&fbatch); 3665 while (start_idx <= end_idx && nr_folios < max_folios) { 3666 /* 3667 * In most cases, we should be able to find the folios 3668 * in the page cache. If we cannot find them for some 3669 * reason, we try to allocate them and add them to the 3670 * page cache. 3671 */ 3672 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3673 &start_idx, 3674 end_idx, 3675 &fbatch); 3676 if (folio) { 3677 folio_put(folio); 3678 folio = NULL; 3679 } 3680 3681 next_idx = 0; 3682 for (i = 0; i < nr_found; i++) { 3683 /* 3684 * As there can be multiple entries for a 3685 * given folio in the batch returned by 3686 * filemap_get_folios_contig(), the below 3687 * check is to ensure that we pin and return a 3688 * unique set of folios between start and end. 3689 */ 3690 if (next_idx && 3691 next_idx != folio_index(fbatch.folios[i])) 3692 continue; 3693 3694 folio = page_folio(&fbatch.folios[i]->page); 3695 3696 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3697 folio_batch_release(&fbatch); 3698 ret = -EINVAL; 3699 goto err; 3700 } 3701 3702 if (nr_folios == 0) 3703 *offset = offset_in_folio(folio, start); 3704 3705 folios[nr_folios] = folio; 3706 next_idx = folio_next_index(folio); 3707 if (++nr_folios == max_folios) 3708 break; 3709 } 3710 3711 folio = NULL; 3712 folio_batch_release(&fbatch); 3713 if (!nr_found) { 3714 folio = memfd_alloc_folio(memfd, start_idx); 3715 if (IS_ERR(folio)) { 3716 ret = PTR_ERR(folio); 3717 if (ret != -EEXIST) 3718 goto err; 3719 } 3720 } 3721 } 3722 3723 ret = check_and_migrate_movable_folios(nr_folios, folios); 3724 } while (ret == -EAGAIN); 3725 3726 memalloc_pin_restore(flags); 3727 return ret ? ret : nr_folios; 3728 err: 3729 memalloc_pin_restore(flags); 3730 unpin_folios(folios, nr_folios); 3731 3732 return ret; 3733 } 3734 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3735