1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* Equivalent to calling put_page() @refs times. */ 49 static void put_page_refs(struct page *page, int refs) 50 { 51 #ifdef CONFIG_DEBUG_VM 52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) 53 return; 54 #endif 55 56 /* 57 * Calling put_page() for each ref is unnecessarily slow. Only the last 58 * ref needs a put_page(). 59 */ 60 if (refs > 1) 61 page_ref_sub(page, refs - 1); 62 put_page(page); 63 } 64 65 /* 66 * Return the compound head page with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct page *try_get_compound_head(struct page *page, int refs) 70 { 71 struct page *head = compound_head(page); 72 73 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 74 return NULL; 75 if (unlikely(!page_cache_add_speculative(head, refs))) 76 return NULL; 77 78 /* 79 * At this point we have a stable reference to the head page; but it 80 * could be that between the compound_head() lookup and the refcount 81 * increment, the compound page was split, in which case we'd end up 82 * holding a reference on a page that has nothing to do with the page 83 * we were given anymore. 84 * So now that the head page is stable, recheck that the pages still 85 * belong together. 86 */ 87 if (unlikely(compound_head(page) != head)) { 88 put_page_refs(head, refs); 89 return NULL; 90 } 91 92 return head; 93 } 94 95 /** 96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 97 * flags-dependent amount. 98 * 99 * Even though the name includes "compound_head", this function is still 100 * appropriate for callers that have a non-compound @page to get. 101 * 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the page's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: page's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will 116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be 117 * incremented by @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * FOLL_PIN on normal pages, or compound pages that are two pages long: 120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS. 121 * 122 * Return: head page (with refcount appropriately incremented) for success, or 123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 124 * considered failure, and furthermore, a likely bug in the caller, so a warning 125 * is also emitted. 126 */ 127 struct page *try_grab_compound_head(struct page *page, 128 int refs, unsigned int flags) 129 { 130 if (flags & FOLL_GET) 131 return try_get_compound_head(page, refs); 132 else if (flags & FOLL_PIN) { 133 /* 134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 135 * right zone, so fail and let the caller fall back to the slow 136 * path. 137 */ 138 if (unlikely((flags & FOLL_LONGTERM) && 139 !is_pinnable_page(page))) 140 return NULL; 141 142 /* 143 * CAUTION: Don't use compound_head() on the page before this 144 * point, the result won't be stable. 145 */ 146 page = try_get_compound_head(page, refs); 147 if (!page) 148 return NULL; 149 150 /* 151 * When pinning a compound page of order > 1 (which is what 152 * hpage_pincount_available() checks for), use an exact count to 153 * track it, via hpage_pincount_add/_sub(). 154 * 155 * However, be sure to *also* increment the normal page refcount 156 * field at least once, so that the page really is pinned. 157 * That's why the refcount from the earlier 158 * try_get_compound_head() is left intact. 159 */ 160 if (hpage_pincount_available(page)) 161 hpage_pincount_add(page, refs); 162 else 163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 166 refs); 167 168 return page; 169 } 170 171 WARN_ON_ONCE(1); 172 return NULL; 173 } 174 175 static void put_compound_head(struct page *page, int refs, unsigned int flags) 176 { 177 if (flags & FOLL_PIN) { 178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 179 refs); 180 181 if (hpage_pincount_available(page)) 182 hpage_pincount_sub(page, refs); 183 else 184 refs *= GUP_PIN_COUNTING_BIAS; 185 } 186 187 put_page_refs(page, refs); 188 } 189 190 /** 191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 192 * 193 * This might not do anything at all, depending on the flags argument. 194 * 195 * "grab" names in this file mean, "look at flags to decide whether to use 196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 197 * 198 * @page: pointer to page to be grabbed 199 * @flags: gup flags: these are the FOLL_* flag values. 200 * 201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 202 * time. Cases: please see the try_grab_compound_head() documentation, with 203 * "refs=1". 204 * 205 * Return: true for success, or if no action was required (if neither FOLL_PIN 206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 207 * FOLL_PIN was set, but the page could not be grabbed. 208 */ 209 bool __must_check try_grab_page(struct page *page, unsigned int flags) 210 { 211 if (!(flags & (FOLL_GET | FOLL_PIN))) 212 return true; 213 214 return try_grab_compound_head(page, 1, flags); 215 } 216 217 /** 218 * unpin_user_page() - release a dma-pinned page 219 * @page: pointer to page to be released 220 * 221 * Pages that were pinned via pin_user_pages*() must be released via either 222 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 223 * that such pages can be separately tracked and uniquely handled. In 224 * particular, interactions with RDMA and filesystems need special handling. 225 */ 226 void unpin_user_page(struct page *page) 227 { 228 put_compound_head(compound_head(page), 1, FOLL_PIN); 229 } 230 EXPORT_SYMBOL(unpin_user_page); 231 232 static inline void compound_range_next(unsigned long i, unsigned long npages, 233 struct page **list, struct page **head, 234 unsigned int *ntails) 235 { 236 struct page *next, *page; 237 unsigned int nr = 1; 238 239 if (i >= npages) 240 return; 241 242 next = *list + i; 243 page = compound_head(next); 244 if (PageCompound(page) && compound_order(page) >= 1) 245 nr = min_t(unsigned int, 246 page + compound_nr(page) - next, npages - i); 247 248 *head = page; 249 *ntails = nr; 250 } 251 252 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 253 for (__i = 0, \ 254 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 255 __i < __npages; __i += __ntails, \ 256 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 257 258 static inline void compound_next(unsigned long i, unsigned long npages, 259 struct page **list, struct page **head, 260 unsigned int *ntails) 261 { 262 struct page *page; 263 unsigned int nr; 264 265 if (i >= npages) 266 return; 267 268 page = compound_head(list[i]); 269 for (nr = i + 1; nr < npages; nr++) { 270 if (compound_head(list[nr]) != page) 271 break; 272 } 273 274 *head = page; 275 *ntails = nr - i; 276 } 277 278 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 279 for (__i = 0, \ 280 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 281 __i < __npages; __i += __ntails, \ 282 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 283 284 /** 285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 286 * @pages: array of pages to be maybe marked dirty, and definitely released. 287 * @npages: number of pages in the @pages array. 288 * @make_dirty: whether to mark the pages dirty 289 * 290 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 291 * variants called on that page. 292 * 293 * For each page in the @pages array, make that page (or its head page, if a 294 * compound page) dirty, if @make_dirty is true, and if the page was previously 295 * listed as clean. In any case, releases all pages using unpin_user_page(), 296 * possibly via unpin_user_pages(), for the non-dirty case. 297 * 298 * Please see the unpin_user_page() documentation for details. 299 * 300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 301 * required, then the caller should a) verify that this is really correct, 302 * because _lock() is usually required, and b) hand code it: 303 * set_page_dirty_lock(), unpin_user_page(). 304 * 305 */ 306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 307 bool make_dirty) 308 { 309 unsigned long index; 310 struct page *head; 311 unsigned int ntails; 312 313 if (!make_dirty) { 314 unpin_user_pages(pages, npages); 315 return; 316 } 317 318 for_each_compound_head(index, pages, npages, head, ntails) { 319 /* 320 * Checking PageDirty at this point may race with 321 * clear_page_dirty_for_io(), but that's OK. Two key 322 * cases: 323 * 324 * 1) This code sees the page as already dirty, so it 325 * skips the call to set_page_dirty(). That could happen 326 * because clear_page_dirty_for_io() called 327 * page_mkclean(), followed by set_page_dirty(). 328 * However, now the page is going to get written back, 329 * which meets the original intention of setting it 330 * dirty, so all is well: clear_page_dirty_for_io() goes 331 * on to call TestClearPageDirty(), and write the page 332 * back. 333 * 334 * 2) This code sees the page as clean, so it calls 335 * set_page_dirty(). The page stays dirty, despite being 336 * written back, so it gets written back again in the 337 * next writeback cycle. This is harmless. 338 */ 339 if (!PageDirty(head)) 340 set_page_dirty_lock(head); 341 put_compound_head(head, ntails, FOLL_PIN); 342 } 343 } 344 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 345 346 /** 347 * unpin_user_page_range_dirty_lock() - release and optionally dirty 348 * gup-pinned page range 349 * 350 * @page: the starting page of a range maybe marked dirty, and definitely released. 351 * @npages: number of consecutive pages to release. 352 * @make_dirty: whether to mark the pages dirty 353 * 354 * "gup-pinned page range" refers to a range of pages that has had one of the 355 * pin_user_pages() variants called on that page. 356 * 357 * For the page ranges defined by [page .. page+npages], make that range (or 358 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 359 * page range was previously listed as clean. 360 * 361 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 362 * required, then the caller should a) verify that this is really correct, 363 * because _lock() is usually required, and b) hand code it: 364 * set_page_dirty_lock(), unpin_user_page(). 365 * 366 */ 367 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 368 bool make_dirty) 369 { 370 unsigned long index; 371 struct page *head; 372 unsigned int ntails; 373 374 for_each_compound_range(index, &page, npages, head, ntails) { 375 if (make_dirty && !PageDirty(head)) 376 set_page_dirty_lock(head); 377 put_compound_head(head, ntails, FOLL_PIN); 378 } 379 } 380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 381 382 /** 383 * unpin_user_pages() - release an array of gup-pinned pages. 384 * @pages: array of pages to be marked dirty and released. 385 * @npages: number of pages in the @pages array. 386 * 387 * For each page in the @pages array, release the page using unpin_user_page(). 388 * 389 * Please see the unpin_user_page() documentation for details. 390 */ 391 void unpin_user_pages(struct page **pages, unsigned long npages) 392 { 393 unsigned long index; 394 struct page *head; 395 unsigned int ntails; 396 397 /* 398 * If this WARN_ON() fires, then the system *might* be leaking pages (by 399 * leaving them pinned), but probably not. More likely, gup/pup returned 400 * a hard -ERRNO error to the caller, who erroneously passed it here. 401 */ 402 if (WARN_ON(IS_ERR_VALUE(npages))) 403 return; 404 405 for_each_compound_head(index, pages, npages, head, ntails) 406 put_compound_head(head, ntails, FOLL_PIN); 407 } 408 EXPORT_SYMBOL(unpin_user_pages); 409 410 /* 411 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 412 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 413 * cache bouncing on large SMP machines for concurrent pinned gups. 414 */ 415 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 416 { 417 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 418 set_bit(MMF_HAS_PINNED, mm_flags); 419 } 420 421 #ifdef CONFIG_MMU 422 static struct page *no_page_table(struct vm_area_struct *vma, 423 unsigned int flags) 424 { 425 /* 426 * When core dumping an enormous anonymous area that nobody 427 * has touched so far, we don't want to allocate unnecessary pages or 428 * page tables. Return error instead of NULL to skip handle_mm_fault, 429 * then get_dump_page() will return NULL to leave a hole in the dump. 430 * But we can only make this optimization where a hole would surely 431 * be zero-filled if handle_mm_fault() actually did handle it. 432 */ 433 if ((flags & FOLL_DUMP) && 434 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 435 return ERR_PTR(-EFAULT); 436 return NULL; 437 } 438 439 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 440 pte_t *pte, unsigned int flags) 441 { 442 /* No page to get reference */ 443 if (flags & FOLL_GET) 444 return -EFAULT; 445 446 if (flags & FOLL_TOUCH) { 447 pte_t entry = *pte; 448 449 if (flags & FOLL_WRITE) 450 entry = pte_mkdirty(entry); 451 entry = pte_mkyoung(entry); 452 453 if (!pte_same(*pte, entry)) { 454 set_pte_at(vma->vm_mm, address, pte, entry); 455 update_mmu_cache(vma, address, pte); 456 } 457 } 458 459 /* Proper page table entry exists, but no corresponding struct page */ 460 return -EEXIST; 461 } 462 463 /* 464 * FOLL_FORCE can write to even unwritable pte's, but only 465 * after we've gone through a COW cycle and they are dirty. 466 */ 467 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 468 { 469 return pte_write(pte) || 470 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 471 } 472 473 static struct page *follow_page_pte(struct vm_area_struct *vma, 474 unsigned long address, pmd_t *pmd, unsigned int flags, 475 struct dev_pagemap **pgmap) 476 { 477 struct mm_struct *mm = vma->vm_mm; 478 struct page *page; 479 spinlock_t *ptl; 480 pte_t *ptep, pte; 481 int ret; 482 483 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 484 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 485 (FOLL_PIN | FOLL_GET))) 486 return ERR_PTR(-EINVAL); 487 retry: 488 if (unlikely(pmd_bad(*pmd))) 489 return no_page_table(vma, flags); 490 491 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 492 pte = *ptep; 493 if (!pte_present(pte)) { 494 swp_entry_t entry; 495 /* 496 * KSM's break_ksm() relies upon recognizing a ksm page 497 * even while it is being migrated, so for that case we 498 * need migration_entry_wait(). 499 */ 500 if (likely(!(flags & FOLL_MIGRATION))) 501 goto no_page; 502 if (pte_none(pte)) 503 goto no_page; 504 entry = pte_to_swp_entry(pte); 505 if (!is_migration_entry(entry)) 506 goto no_page; 507 pte_unmap_unlock(ptep, ptl); 508 migration_entry_wait(mm, pmd, address); 509 goto retry; 510 } 511 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 512 goto no_page; 513 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 514 pte_unmap_unlock(ptep, ptl); 515 return NULL; 516 } 517 518 page = vm_normal_page(vma, address, pte); 519 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 520 /* 521 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 522 * case since they are only valid while holding the pgmap 523 * reference. 524 */ 525 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 526 if (*pgmap) 527 page = pte_page(pte); 528 else 529 goto no_page; 530 } else if (unlikely(!page)) { 531 if (flags & FOLL_DUMP) { 532 /* Avoid special (like zero) pages in core dumps */ 533 page = ERR_PTR(-EFAULT); 534 goto out; 535 } 536 537 if (is_zero_pfn(pte_pfn(pte))) { 538 page = pte_page(pte); 539 } else { 540 ret = follow_pfn_pte(vma, address, ptep, flags); 541 page = ERR_PTR(ret); 542 goto out; 543 } 544 } 545 546 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 547 if (unlikely(!try_grab_page(page, flags))) { 548 page = ERR_PTR(-ENOMEM); 549 goto out; 550 } 551 /* 552 * We need to make the page accessible if and only if we are going 553 * to access its content (the FOLL_PIN case). Please see 554 * Documentation/core-api/pin_user_pages.rst for details. 555 */ 556 if (flags & FOLL_PIN) { 557 ret = arch_make_page_accessible(page); 558 if (ret) { 559 unpin_user_page(page); 560 page = ERR_PTR(ret); 561 goto out; 562 } 563 } 564 if (flags & FOLL_TOUCH) { 565 if ((flags & FOLL_WRITE) && 566 !pte_dirty(pte) && !PageDirty(page)) 567 set_page_dirty(page); 568 /* 569 * pte_mkyoung() would be more correct here, but atomic care 570 * is needed to avoid losing the dirty bit: it is easier to use 571 * mark_page_accessed(). 572 */ 573 mark_page_accessed(page); 574 } 575 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 576 /* Do not mlock pte-mapped THP */ 577 if (PageTransCompound(page)) 578 goto out; 579 580 /* 581 * The preliminary mapping check is mainly to avoid the 582 * pointless overhead of lock_page on the ZERO_PAGE 583 * which might bounce very badly if there is contention. 584 * 585 * If the page is already locked, we don't need to 586 * handle it now - vmscan will handle it later if and 587 * when it attempts to reclaim the page. 588 */ 589 if (page->mapping && trylock_page(page)) { 590 lru_add_drain(); /* push cached pages to LRU */ 591 /* 592 * Because we lock page here, and migration is 593 * blocked by the pte's page reference, and we 594 * know the page is still mapped, we don't even 595 * need to check for file-cache page truncation. 596 */ 597 mlock_vma_page(page); 598 unlock_page(page); 599 } 600 } 601 out: 602 pte_unmap_unlock(ptep, ptl); 603 return page; 604 no_page: 605 pte_unmap_unlock(ptep, ptl); 606 if (!pte_none(pte)) 607 return NULL; 608 return no_page_table(vma, flags); 609 } 610 611 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 612 unsigned long address, pud_t *pudp, 613 unsigned int flags, 614 struct follow_page_context *ctx) 615 { 616 pmd_t *pmd, pmdval; 617 spinlock_t *ptl; 618 struct page *page; 619 struct mm_struct *mm = vma->vm_mm; 620 621 pmd = pmd_offset(pudp, address); 622 /* 623 * The READ_ONCE() will stabilize the pmdval in a register or 624 * on the stack so that it will stop changing under the code. 625 */ 626 pmdval = READ_ONCE(*pmd); 627 if (pmd_none(pmdval)) 628 return no_page_table(vma, flags); 629 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 630 page = follow_huge_pmd(mm, address, pmd, flags); 631 if (page) 632 return page; 633 return no_page_table(vma, flags); 634 } 635 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 636 page = follow_huge_pd(vma, address, 637 __hugepd(pmd_val(pmdval)), flags, 638 PMD_SHIFT); 639 if (page) 640 return page; 641 return no_page_table(vma, flags); 642 } 643 retry: 644 if (!pmd_present(pmdval)) { 645 if (likely(!(flags & FOLL_MIGRATION))) 646 return no_page_table(vma, flags); 647 VM_BUG_ON(thp_migration_supported() && 648 !is_pmd_migration_entry(pmdval)); 649 if (is_pmd_migration_entry(pmdval)) 650 pmd_migration_entry_wait(mm, pmd); 651 pmdval = READ_ONCE(*pmd); 652 /* 653 * MADV_DONTNEED may convert the pmd to null because 654 * mmap_lock is held in read mode 655 */ 656 if (pmd_none(pmdval)) 657 return no_page_table(vma, flags); 658 goto retry; 659 } 660 if (pmd_devmap(pmdval)) { 661 ptl = pmd_lock(mm, pmd); 662 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 663 spin_unlock(ptl); 664 if (page) 665 return page; 666 } 667 if (likely(!pmd_trans_huge(pmdval))) 668 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 669 670 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 671 return no_page_table(vma, flags); 672 673 retry_locked: 674 ptl = pmd_lock(mm, pmd); 675 if (unlikely(pmd_none(*pmd))) { 676 spin_unlock(ptl); 677 return no_page_table(vma, flags); 678 } 679 if (unlikely(!pmd_present(*pmd))) { 680 spin_unlock(ptl); 681 if (likely(!(flags & FOLL_MIGRATION))) 682 return no_page_table(vma, flags); 683 pmd_migration_entry_wait(mm, pmd); 684 goto retry_locked; 685 } 686 if (unlikely(!pmd_trans_huge(*pmd))) { 687 spin_unlock(ptl); 688 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 689 } 690 if (flags & FOLL_SPLIT_PMD) { 691 int ret; 692 page = pmd_page(*pmd); 693 if (is_huge_zero_page(page)) { 694 spin_unlock(ptl); 695 ret = 0; 696 split_huge_pmd(vma, pmd, address); 697 if (pmd_trans_unstable(pmd)) 698 ret = -EBUSY; 699 } else { 700 spin_unlock(ptl); 701 split_huge_pmd(vma, pmd, address); 702 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 703 } 704 705 return ret ? ERR_PTR(ret) : 706 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 707 } 708 page = follow_trans_huge_pmd(vma, address, pmd, flags); 709 spin_unlock(ptl); 710 ctx->page_mask = HPAGE_PMD_NR - 1; 711 return page; 712 } 713 714 static struct page *follow_pud_mask(struct vm_area_struct *vma, 715 unsigned long address, p4d_t *p4dp, 716 unsigned int flags, 717 struct follow_page_context *ctx) 718 { 719 pud_t *pud; 720 spinlock_t *ptl; 721 struct page *page; 722 struct mm_struct *mm = vma->vm_mm; 723 724 pud = pud_offset(p4dp, address); 725 if (pud_none(*pud)) 726 return no_page_table(vma, flags); 727 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 728 page = follow_huge_pud(mm, address, pud, flags); 729 if (page) 730 return page; 731 return no_page_table(vma, flags); 732 } 733 if (is_hugepd(__hugepd(pud_val(*pud)))) { 734 page = follow_huge_pd(vma, address, 735 __hugepd(pud_val(*pud)), flags, 736 PUD_SHIFT); 737 if (page) 738 return page; 739 return no_page_table(vma, flags); 740 } 741 if (pud_devmap(*pud)) { 742 ptl = pud_lock(mm, pud); 743 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 744 spin_unlock(ptl); 745 if (page) 746 return page; 747 } 748 if (unlikely(pud_bad(*pud))) 749 return no_page_table(vma, flags); 750 751 return follow_pmd_mask(vma, address, pud, flags, ctx); 752 } 753 754 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 755 unsigned long address, pgd_t *pgdp, 756 unsigned int flags, 757 struct follow_page_context *ctx) 758 { 759 p4d_t *p4d; 760 struct page *page; 761 762 p4d = p4d_offset(pgdp, address); 763 if (p4d_none(*p4d)) 764 return no_page_table(vma, flags); 765 BUILD_BUG_ON(p4d_huge(*p4d)); 766 if (unlikely(p4d_bad(*p4d))) 767 return no_page_table(vma, flags); 768 769 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 770 page = follow_huge_pd(vma, address, 771 __hugepd(p4d_val(*p4d)), flags, 772 P4D_SHIFT); 773 if (page) 774 return page; 775 return no_page_table(vma, flags); 776 } 777 return follow_pud_mask(vma, address, p4d, flags, ctx); 778 } 779 780 /** 781 * follow_page_mask - look up a page descriptor from a user-virtual address 782 * @vma: vm_area_struct mapping @address 783 * @address: virtual address to look up 784 * @flags: flags modifying lookup behaviour 785 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 786 * pointer to output page_mask 787 * 788 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 789 * 790 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 791 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 792 * 793 * On output, the @ctx->page_mask is set according to the size of the page. 794 * 795 * Return: the mapped (struct page *), %NULL if no mapping exists, or 796 * an error pointer if there is a mapping to something not represented 797 * by a page descriptor (see also vm_normal_page()). 798 */ 799 static struct page *follow_page_mask(struct vm_area_struct *vma, 800 unsigned long address, unsigned int flags, 801 struct follow_page_context *ctx) 802 { 803 pgd_t *pgd; 804 struct page *page; 805 struct mm_struct *mm = vma->vm_mm; 806 807 ctx->page_mask = 0; 808 809 /* make this handle hugepd */ 810 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 811 if (!IS_ERR(page)) { 812 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 813 return page; 814 } 815 816 pgd = pgd_offset(mm, address); 817 818 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 819 return no_page_table(vma, flags); 820 821 if (pgd_huge(*pgd)) { 822 page = follow_huge_pgd(mm, address, pgd, flags); 823 if (page) 824 return page; 825 return no_page_table(vma, flags); 826 } 827 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 828 page = follow_huge_pd(vma, address, 829 __hugepd(pgd_val(*pgd)), flags, 830 PGDIR_SHIFT); 831 if (page) 832 return page; 833 return no_page_table(vma, flags); 834 } 835 836 return follow_p4d_mask(vma, address, pgd, flags, ctx); 837 } 838 839 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 840 unsigned int foll_flags) 841 { 842 struct follow_page_context ctx = { NULL }; 843 struct page *page; 844 845 if (vma_is_secretmem(vma)) 846 return NULL; 847 848 page = follow_page_mask(vma, address, foll_flags, &ctx); 849 if (ctx.pgmap) 850 put_dev_pagemap(ctx.pgmap); 851 return page; 852 } 853 854 static int get_gate_page(struct mm_struct *mm, unsigned long address, 855 unsigned int gup_flags, struct vm_area_struct **vma, 856 struct page **page) 857 { 858 pgd_t *pgd; 859 p4d_t *p4d; 860 pud_t *pud; 861 pmd_t *pmd; 862 pte_t *pte; 863 int ret = -EFAULT; 864 865 /* user gate pages are read-only */ 866 if (gup_flags & FOLL_WRITE) 867 return -EFAULT; 868 if (address > TASK_SIZE) 869 pgd = pgd_offset_k(address); 870 else 871 pgd = pgd_offset_gate(mm, address); 872 if (pgd_none(*pgd)) 873 return -EFAULT; 874 p4d = p4d_offset(pgd, address); 875 if (p4d_none(*p4d)) 876 return -EFAULT; 877 pud = pud_offset(p4d, address); 878 if (pud_none(*pud)) 879 return -EFAULT; 880 pmd = pmd_offset(pud, address); 881 if (!pmd_present(*pmd)) 882 return -EFAULT; 883 VM_BUG_ON(pmd_trans_huge(*pmd)); 884 pte = pte_offset_map(pmd, address); 885 if (pte_none(*pte)) 886 goto unmap; 887 *vma = get_gate_vma(mm); 888 if (!page) 889 goto out; 890 *page = vm_normal_page(*vma, address, *pte); 891 if (!*page) { 892 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 893 goto unmap; 894 *page = pte_page(*pte); 895 } 896 if (unlikely(!try_grab_page(*page, gup_flags))) { 897 ret = -ENOMEM; 898 goto unmap; 899 } 900 out: 901 ret = 0; 902 unmap: 903 pte_unmap(pte); 904 return ret; 905 } 906 907 /* 908 * mmap_lock must be held on entry. If @locked != NULL and *@flags 909 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 910 * is, *@locked will be set to 0 and -EBUSY returned. 911 */ 912 static int faultin_page(struct vm_area_struct *vma, 913 unsigned long address, unsigned int *flags, int *locked) 914 { 915 unsigned int fault_flags = 0; 916 vm_fault_t ret; 917 918 /* mlock all present pages, but do not fault in new pages */ 919 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 920 return -ENOENT; 921 if (*flags & FOLL_WRITE) 922 fault_flags |= FAULT_FLAG_WRITE; 923 if (*flags & FOLL_REMOTE) 924 fault_flags |= FAULT_FLAG_REMOTE; 925 if (locked) 926 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 927 if (*flags & FOLL_NOWAIT) 928 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 929 if (*flags & FOLL_TRIED) { 930 /* 931 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 932 * can co-exist 933 */ 934 fault_flags |= FAULT_FLAG_TRIED; 935 } 936 937 ret = handle_mm_fault(vma, address, fault_flags, NULL); 938 if (ret & VM_FAULT_ERROR) { 939 int err = vm_fault_to_errno(ret, *flags); 940 941 if (err) 942 return err; 943 BUG(); 944 } 945 946 if (ret & VM_FAULT_RETRY) { 947 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 948 *locked = 0; 949 return -EBUSY; 950 } 951 952 /* 953 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 954 * necessary, even if maybe_mkwrite decided not to set pte_write. We 955 * can thus safely do subsequent page lookups as if they were reads. 956 * But only do so when looping for pte_write is futile: in some cases 957 * userspace may also be wanting to write to the gotten user page, 958 * which a read fault here might prevent (a readonly page might get 959 * reCOWed by userspace write). 960 */ 961 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 962 *flags |= FOLL_COW; 963 return 0; 964 } 965 966 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 967 { 968 vm_flags_t vm_flags = vma->vm_flags; 969 int write = (gup_flags & FOLL_WRITE); 970 int foreign = (gup_flags & FOLL_REMOTE); 971 972 if (vm_flags & (VM_IO | VM_PFNMAP)) 973 return -EFAULT; 974 975 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 976 return -EFAULT; 977 978 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 979 return -EOPNOTSUPP; 980 981 if (vma_is_secretmem(vma)) 982 return -EFAULT; 983 984 if (write) { 985 if (!(vm_flags & VM_WRITE)) { 986 if (!(gup_flags & FOLL_FORCE)) 987 return -EFAULT; 988 /* 989 * We used to let the write,force case do COW in a 990 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 991 * set a breakpoint in a read-only mapping of an 992 * executable, without corrupting the file (yet only 993 * when that file had been opened for writing!). 994 * Anon pages in shared mappings are surprising: now 995 * just reject it. 996 */ 997 if (!is_cow_mapping(vm_flags)) 998 return -EFAULT; 999 } 1000 } else if (!(vm_flags & VM_READ)) { 1001 if (!(gup_flags & FOLL_FORCE)) 1002 return -EFAULT; 1003 /* 1004 * Is there actually any vma we can reach here which does not 1005 * have VM_MAYREAD set? 1006 */ 1007 if (!(vm_flags & VM_MAYREAD)) 1008 return -EFAULT; 1009 } 1010 /* 1011 * gups are always data accesses, not instruction 1012 * fetches, so execute=false here 1013 */ 1014 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1015 return -EFAULT; 1016 return 0; 1017 } 1018 1019 /** 1020 * __get_user_pages() - pin user pages in memory 1021 * @mm: mm_struct of target mm 1022 * @start: starting user address 1023 * @nr_pages: number of pages from start to pin 1024 * @gup_flags: flags modifying pin behaviour 1025 * @pages: array that receives pointers to the pages pinned. 1026 * Should be at least nr_pages long. Or NULL, if caller 1027 * only intends to ensure the pages are faulted in. 1028 * @vmas: array of pointers to vmas corresponding to each page. 1029 * Or NULL if the caller does not require them. 1030 * @locked: whether we're still with the mmap_lock held 1031 * 1032 * Returns either number of pages pinned (which may be less than the 1033 * number requested), or an error. Details about the return value: 1034 * 1035 * -- If nr_pages is 0, returns 0. 1036 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1037 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1038 * pages pinned. Again, this may be less than nr_pages. 1039 * -- 0 return value is possible when the fault would need to be retried. 1040 * 1041 * The caller is responsible for releasing returned @pages, via put_page(). 1042 * 1043 * @vmas are valid only as long as mmap_lock is held. 1044 * 1045 * Must be called with mmap_lock held. It may be released. See below. 1046 * 1047 * __get_user_pages walks a process's page tables and takes a reference to 1048 * each struct page that each user address corresponds to at a given 1049 * instant. That is, it takes the page that would be accessed if a user 1050 * thread accesses the given user virtual address at that instant. 1051 * 1052 * This does not guarantee that the page exists in the user mappings when 1053 * __get_user_pages returns, and there may even be a completely different 1054 * page there in some cases (eg. if mmapped pagecache has been invalidated 1055 * and subsequently re faulted). However it does guarantee that the page 1056 * won't be freed completely. And mostly callers simply care that the page 1057 * contains data that was valid *at some point in time*. Typically, an IO 1058 * or similar operation cannot guarantee anything stronger anyway because 1059 * locks can't be held over the syscall boundary. 1060 * 1061 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1062 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1063 * appropriate) must be called after the page is finished with, and 1064 * before put_page is called. 1065 * 1066 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1067 * released by an up_read(). That can happen if @gup_flags does not 1068 * have FOLL_NOWAIT. 1069 * 1070 * A caller using such a combination of @locked and @gup_flags 1071 * must therefore hold the mmap_lock for reading only, and recognize 1072 * when it's been released. Otherwise, it must be held for either 1073 * reading or writing and will not be released. 1074 * 1075 * In most cases, get_user_pages or get_user_pages_fast should be used 1076 * instead of __get_user_pages. __get_user_pages should be used only if 1077 * you need some special @gup_flags. 1078 */ 1079 static long __get_user_pages(struct mm_struct *mm, 1080 unsigned long start, unsigned long nr_pages, 1081 unsigned int gup_flags, struct page **pages, 1082 struct vm_area_struct **vmas, int *locked) 1083 { 1084 long ret = 0, i = 0; 1085 struct vm_area_struct *vma = NULL; 1086 struct follow_page_context ctx = { NULL }; 1087 1088 if (!nr_pages) 1089 return 0; 1090 1091 start = untagged_addr(start); 1092 1093 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1094 1095 /* 1096 * If FOLL_FORCE is set then do not force a full fault as the hinting 1097 * fault information is unrelated to the reference behaviour of a task 1098 * using the address space 1099 */ 1100 if (!(gup_flags & FOLL_FORCE)) 1101 gup_flags |= FOLL_NUMA; 1102 1103 do { 1104 struct page *page; 1105 unsigned int foll_flags = gup_flags; 1106 unsigned int page_increm; 1107 1108 /* first iteration or cross vma bound */ 1109 if (!vma || start >= vma->vm_end) { 1110 vma = find_extend_vma(mm, start); 1111 if (!vma && in_gate_area(mm, start)) { 1112 ret = get_gate_page(mm, start & PAGE_MASK, 1113 gup_flags, &vma, 1114 pages ? &pages[i] : NULL); 1115 if (ret) 1116 goto out; 1117 ctx.page_mask = 0; 1118 goto next_page; 1119 } 1120 1121 if (!vma) { 1122 ret = -EFAULT; 1123 goto out; 1124 } 1125 ret = check_vma_flags(vma, gup_flags); 1126 if (ret) 1127 goto out; 1128 1129 if (is_vm_hugetlb_page(vma)) { 1130 i = follow_hugetlb_page(mm, vma, pages, vmas, 1131 &start, &nr_pages, i, 1132 gup_flags, locked); 1133 if (locked && *locked == 0) { 1134 /* 1135 * We've got a VM_FAULT_RETRY 1136 * and we've lost mmap_lock. 1137 * We must stop here. 1138 */ 1139 BUG_ON(gup_flags & FOLL_NOWAIT); 1140 goto out; 1141 } 1142 continue; 1143 } 1144 } 1145 retry: 1146 /* 1147 * If we have a pending SIGKILL, don't keep faulting pages and 1148 * potentially allocating memory. 1149 */ 1150 if (fatal_signal_pending(current)) { 1151 ret = -EINTR; 1152 goto out; 1153 } 1154 cond_resched(); 1155 1156 page = follow_page_mask(vma, start, foll_flags, &ctx); 1157 if (!page) { 1158 ret = faultin_page(vma, start, &foll_flags, locked); 1159 switch (ret) { 1160 case 0: 1161 goto retry; 1162 case -EBUSY: 1163 ret = 0; 1164 fallthrough; 1165 case -EFAULT: 1166 case -ENOMEM: 1167 case -EHWPOISON: 1168 goto out; 1169 case -ENOENT: 1170 goto next_page; 1171 } 1172 BUG(); 1173 } else if (PTR_ERR(page) == -EEXIST) { 1174 /* 1175 * Proper page table entry exists, but no corresponding 1176 * struct page. 1177 */ 1178 goto next_page; 1179 } else if (IS_ERR(page)) { 1180 ret = PTR_ERR(page); 1181 goto out; 1182 } 1183 if (pages) { 1184 pages[i] = page; 1185 flush_anon_page(vma, page, start); 1186 flush_dcache_page(page); 1187 ctx.page_mask = 0; 1188 } 1189 next_page: 1190 if (vmas) { 1191 vmas[i] = vma; 1192 ctx.page_mask = 0; 1193 } 1194 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1195 if (page_increm > nr_pages) 1196 page_increm = nr_pages; 1197 i += page_increm; 1198 start += page_increm * PAGE_SIZE; 1199 nr_pages -= page_increm; 1200 } while (nr_pages); 1201 out: 1202 if (ctx.pgmap) 1203 put_dev_pagemap(ctx.pgmap); 1204 return i ? i : ret; 1205 } 1206 1207 static bool vma_permits_fault(struct vm_area_struct *vma, 1208 unsigned int fault_flags) 1209 { 1210 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1211 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1212 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1213 1214 if (!(vm_flags & vma->vm_flags)) 1215 return false; 1216 1217 /* 1218 * The architecture might have a hardware protection 1219 * mechanism other than read/write that can deny access. 1220 * 1221 * gup always represents data access, not instruction 1222 * fetches, so execute=false here: 1223 */ 1224 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1225 return false; 1226 1227 return true; 1228 } 1229 1230 /** 1231 * fixup_user_fault() - manually resolve a user page fault 1232 * @mm: mm_struct of target mm 1233 * @address: user address 1234 * @fault_flags:flags to pass down to handle_mm_fault() 1235 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1236 * does not allow retry. If NULL, the caller must guarantee 1237 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1238 * 1239 * This is meant to be called in the specific scenario where for locking reasons 1240 * we try to access user memory in atomic context (within a pagefault_disable() 1241 * section), this returns -EFAULT, and we want to resolve the user fault before 1242 * trying again. 1243 * 1244 * Typically this is meant to be used by the futex code. 1245 * 1246 * The main difference with get_user_pages() is that this function will 1247 * unconditionally call handle_mm_fault() which will in turn perform all the 1248 * necessary SW fixup of the dirty and young bits in the PTE, while 1249 * get_user_pages() only guarantees to update these in the struct page. 1250 * 1251 * This is important for some architectures where those bits also gate the 1252 * access permission to the page because they are maintained in software. On 1253 * such architectures, gup() will not be enough to make a subsequent access 1254 * succeed. 1255 * 1256 * This function will not return with an unlocked mmap_lock. So it has not the 1257 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1258 */ 1259 int fixup_user_fault(struct mm_struct *mm, 1260 unsigned long address, unsigned int fault_flags, 1261 bool *unlocked) 1262 { 1263 struct vm_area_struct *vma; 1264 vm_fault_t ret; 1265 1266 address = untagged_addr(address); 1267 1268 if (unlocked) 1269 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1270 1271 retry: 1272 vma = find_extend_vma(mm, address); 1273 if (!vma || address < vma->vm_start) 1274 return -EFAULT; 1275 1276 if (!vma_permits_fault(vma, fault_flags)) 1277 return -EFAULT; 1278 1279 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1280 fatal_signal_pending(current)) 1281 return -EINTR; 1282 1283 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1284 if (ret & VM_FAULT_ERROR) { 1285 int err = vm_fault_to_errno(ret, 0); 1286 1287 if (err) 1288 return err; 1289 BUG(); 1290 } 1291 1292 if (ret & VM_FAULT_RETRY) { 1293 mmap_read_lock(mm); 1294 *unlocked = true; 1295 fault_flags |= FAULT_FLAG_TRIED; 1296 goto retry; 1297 } 1298 1299 return 0; 1300 } 1301 EXPORT_SYMBOL_GPL(fixup_user_fault); 1302 1303 /* 1304 * Please note that this function, unlike __get_user_pages will not 1305 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1306 */ 1307 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1308 unsigned long start, 1309 unsigned long nr_pages, 1310 struct page **pages, 1311 struct vm_area_struct **vmas, 1312 int *locked, 1313 unsigned int flags) 1314 { 1315 long ret, pages_done; 1316 bool lock_dropped; 1317 1318 if (locked) { 1319 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1320 BUG_ON(vmas); 1321 /* check caller initialized locked */ 1322 BUG_ON(*locked != 1); 1323 } 1324 1325 if (flags & FOLL_PIN) 1326 mm_set_has_pinned_flag(&mm->flags); 1327 1328 /* 1329 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1330 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1331 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1332 * for FOLL_GET, not for the newer FOLL_PIN. 1333 * 1334 * FOLL_PIN always expects pages to be non-null, but no need to assert 1335 * that here, as any failures will be obvious enough. 1336 */ 1337 if (pages && !(flags & FOLL_PIN)) 1338 flags |= FOLL_GET; 1339 1340 pages_done = 0; 1341 lock_dropped = false; 1342 for (;;) { 1343 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1344 vmas, locked); 1345 if (!locked) 1346 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1347 return ret; 1348 1349 /* VM_FAULT_RETRY cannot return errors */ 1350 if (!*locked) { 1351 BUG_ON(ret < 0); 1352 BUG_ON(ret >= nr_pages); 1353 } 1354 1355 if (ret > 0) { 1356 nr_pages -= ret; 1357 pages_done += ret; 1358 if (!nr_pages) 1359 break; 1360 } 1361 if (*locked) { 1362 /* 1363 * VM_FAULT_RETRY didn't trigger or it was a 1364 * FOLL_NOWAIT. 1365 */ 1366 if (!pages_done) 1367 pages_done = ret; 1368 break; 1369 } 1370 /* 1371 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1372 * For the prefault case (!pages) we only update counts. 1373 */ 1374 if (likely(pages)) 1375 pages += ret; 1376 start += ret << PAGE_SHIFT; 1377 lock_dropped = true; 1378 1379 retry: 1380 /* 1381 * Repeat on the address that fired VM_FAULT_RETRY 1382 * with both FAULT_FLAG_ALLOW_RETRY and 1383 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1384 * by fatal signals, so we need to check it before we 1385 * start trying again otherwise it can loop forever. 1386 */ 1387 1388 if (fatal_signal_pending(current)) { 1389 if (!pages_done) 1390 pages_done = -EINTR; 1391 break; 1392 } 1393 1394 ret = mmap_read_lock_killable(mm); 1395 if (ret) { 1396 BUG_ON(ret > 0); 1397 if (!pages_done) 1398 pages_done = ret; 1399 break; 1400 } 1401 1402 *locked = 1; 1403 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1404 pages, NULL, locked); 1405 if (!*locked) { 1406 /* Continue to retry until we succeeded */ 1407 BUG_ON(ret != 0); 1408 goto retry; 1409 } 1410 if (ret != 1) { 1411 BUG_ON(ret > 1); 1412 if (!pages_done) 1413 pages_done = ret; 1414 break; 1415 } 1416 nr_pages--; 1417 pages_done++; 1418 if (!nr_pages) 1419 break; 1420 if (likely(pages)) 1421 pages++; 1422 start += PAGE_SIZE; 1423 } 1424 if (lock_dropped && *locked) { 1425 /* 1426 * We must let the caller know we temporarily dropped the lock 1427 * and so the critical section protected by it was lost. 1428 */ 1429 mmap_read_unlock(mm); 1430 *locked = 0; 1431 } 1432 return pages_done; 1433 } 1434 1435 /** 1436 * populate_vma_page_range() - populate a range of pages in the vma. 1437 * @vma: target vma 1438 * @start: start address 1439 * @end: end address 1440 * @locked: whether the mmap_lock is still held 1441 * 1442 * This takes care of mlocking the pages too if VM_LOCKED is set. 1443 * 1444 * Return either number of pages pinned in the vma, or a negative error 1445 * code on error. 1446 * 1447 * vma->vm_mm->mmap_lock must be held. 1448 * 1449 * If @locked is NULL, it may be held for read or write and will 1450 * be unperturbed. 1451 * 1452 * If @locked is non-NULL, it must held for read only and may be 1453 * released. If it's released, *@locked will be set to 0. 1454 */ 1455 long populate_vma_page_range(struct vm_area_struct *vma, 1456 unsigned long start, unsigned long end, int *locked) 1457 { 1458 struct mm_struct *mm = vma->vm_mm; 1459 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1460 int gup_flags; 1461 1462 VM_BUG_ON(!PAGE_ALIGNED(start)); 1463 VM_BUG_ON(!PAGE_ALIGNED(end)); 1464 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1465 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1466 mmap_assert_locked(mm); 1467 1468 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1469 if (vma->vm_flags & VM_LOCKONFAULT) 1470 gup_flags &= ~FOLL_POPULATE; 1471 /* 1472 * We want to touch writable mappings with a write fault in order 1473 * to break COW, except for shared mappings because these don't COW 1474 * and we would not want to dirty them for nothing. 1475 */ 1476 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1477 gup_flags |= FOLL_WRITE; 1478 1479 /* 1480 * We want mlock to succeed for regions that have any permissions 1481 * other than PROT_NONE. 1482 */ 1483 if (vma_is_accessible(vma)) 1484 gup_flags |= FOLL_FORCE; 1485 1486 /* 1487 * We made sure addr is within a VMA, so the following will 1488 * not result in a stack expansion that recurses back here. 1489 */ 1490 return __get_user_pages(mm, start, nr_pages, gup_flags, 1491 NULL, NULL, locked); 1492 } 1493 1494 /* 1495 * faultin_vma_page_range() - populate (prefault) page tables inside the 1496 * given VMA range readable/writable 1497 * 1498 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1499 * 1500 * @vma: target vma 1501 * @start: start address 1502 * @end: end address 1503 * @write: whether to prefault readable or writable 1504 * @locked: whether the mmap_lock is still held 1505 * 1506 * Returns either number of processed pages in the vma, or a negative error 1507 * code on error (see __get_user_pages()). 1508 * 1509 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1510 * covered by the VMA. 1511 * 1512 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1513 * 1514 * If @locked is non-NULL, it must held for read only and may be released. If 1515 * it's released, *@locked will be set to 0. 1516 */ 1517 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1518 unsigned long end, bool write, int *locked) 1519 { 1520 struct mm_struct *mm = vma->vm_mm; 1521 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1522 int gup_flags; 1523 1524 VM_BUG_ON(!PAGE_ALIGNED(start)); 1525 VM_BUG_ON(!PAGE_ALIGNED(end)); 1526 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1527 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1528 mmap_assert_locked(mm); 1529 1530 /* 1531 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1532 * the page dirty with FOLL_WRITE -- which doesn't make a 1533 * difference with !FOLL_FORCE, because the page is writable 1534 * in the page table. 1535 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1536 * a poisoned page. 1537 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. 1538 * !FOLL_FORCE: Require proper access permissions. 1539 */ 1540 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; 1541 if (write) 1542 gup_flags |= FOLL_WRITE; 1543 1544 /* 1545 * We want to report -EINVAL instead of -EFAULT for any permission 1546 * problems or incompatible mappings. 1547 */ 1548 if (check_vma_flags(vma, gup_flags)) 1549 return -EINVAL; 1550 1551 return __get_user_pages(mm, start, nr_pages, gup_flags, 1552 NULL, NULL, locked); 1553 } 1554 1555 /* 1556 * __mm_populate - populate and/or mlock pages within a range of address space. 1557 * 1558 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1559 * flags. VMAs must be already marked with the desired vm_flags, and 1560 * mmap_lock must not be held. 1561 */ 1562 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1563 { 1564 struct mm_struct *mm = current->mm; 1565 unsigned long end, nstart, nend; 1566 struct vm_area_struct *vma = NULL; 1567 int locked = 0; 1568 long ret = 0; 1569 1570 end = start + len; 1571 1572 for (nstart = start; nstart < end; nstart = nend) { 1573 /* 1574 * We want to fault in pages for [nstart; end) address range. 1575 * Find first corresponding VMA. 1576 */ 1577 if (!locked) { 1578 locked = 1; 1579 mmap_read_lock(mm); 1580 vma = find_vma(mm, nstart); 1581 } else if (nstart >= vma->vm_end) 1582 vma = vma->vm_next; 1583 if (!vma || vma->vm_start >= end) 1584 break; 1585 /* 1586 * Set [nstart; nend) to intersection of desired address 1587 * range with the first VMA. Also, skip undesirable VMA types. 1588 */ 1589 nend = min(end, vma->vm_end); 1590 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1591 continue; 1592 if (nstart < vma->vm_start) 1593 nstart = vma->vm_start; 1594 /* 1595 * Now fault in a range of pages. populate_vma_page_range() 1596 * double checks the vma flags, so that it won't mlock pages 1597 * if the vma was already munlocked. 1598 */ 1599 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1600 if (ret < 0) { 1601 if (ignore_errors) { 1602 ret = 0; 1603 continue; /* continue at next VMA */ 1604 } 1605 break; 1606 } 1607 nend = nstart + ret * PAGE_SIZE; 1608 ret = 0; 1609 } 1610 if (locked) 1611 mmap_read_unlock(mm); 1612 return ret; /* 0 or negative error code */ 1613 } 1614 #else /* CONFIG_MMU */ 1615 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1616 unsigned long nr_pages, struct page **pages, 1617 struct vm_area_struct **vmas, int *locked, 1618 unsigned int foll_flags) 1619 { 1620 struct vm_area_struct *vma; 1621 unsigned long vm_flags; 1622 long i; 1623 1624 /* calculate required read or write permissions. 1625 * If FOLL_FORCE is set, we only require the "MAY" flags. 1626 */ 1627 vm_flags = (foll_flags & FOLL_WRITE) ? 1628 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1629 vm_flags &= (foll_flags & FOLL_FORCE) ? 1630 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1631 1632 for (i = 0; i < nr_pages; i++) { 1633 vma = find_vma(mm, start); 1634 if (!vma) 1635 goto finish_or_fault; 1636 1637 /* protect what we can, including chardevs */ 1638 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1639 !(vm_flags & vma->vm_flags)) 1640 goto finish_or_fault; 1641 1642 if (pages) { 1643 pages[i] = virt_to_page(start); 1644 if (pages[i]) 1645 get_page(pages[i]); 1646 } 1647 if (vmas) 1648 vmas[i] = vma; 1649 start = (start + PAGE_SIZE) & PAGE_MASK; 1650 } 1651 1652 return i; 1653 1654 finish_or_fault: 1655 return i ? : -EFAULT; 1656 } 1657 #endif /* !CONFIG_MMU */ 1658 1659 /** 1660 * get_dump_page() - pin user page in memory while writing it to core dump 1661 * @addr: user address 1662 * 1663 * Returns struct page pointer of user page pinned for dump, 1664 * to be freed afterwards by put_page(). 1665 * 1666 * Returns NULL on any kind of failure - a hole must then be inserted into 1667 * the corefile, to preserve alignment with its headers; and also returns 1668 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1669 * allowing a hole to be left in the corefile to save disk space. 1670 * 1671 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1672 */ 1673 #ifdef CONFIG_ELF_CORE 1674 struct page *get_dump_page(unsigned long addr) 1675 { 1676 struct mm_struct *mm = current->mm; 1677 struct page *page; 1678 int locked = 1; 1679 int ret; 1680 1681 if (mmap_read_lock_killable(mm)) 1682 return NULL; 1683 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1684 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1685 if (locked) 1686 mmap_read_unlock(mm); 1687 return (ret == 1) ? page : NULL; 1688 } 1689 #endif /* CONFIG_ELF_CORE */ 1690 1691 #ifdef CONFIG_MIGRATION 1692 /* 1693 * Check whether all pages are pinnable, if so return number of pages. If some 1694 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1695 * pages were migrated, or if some pages were not successfully isolated. 1696 * Return negative error if migration fails. 1697 */ 1698 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1699 struct page **pages, 1700 unsigned int gup_flags) 1701 { 1702 unsigned long i; 1703 unsigned long isolation_error_count = 0; 1704 bool drain_allow = true; 1705 LIST_HEAD(movable_page_list); 1706 long ret = 0; 1707 struct page *prev_head = NULL; 1708 struct page *head; 1709 struct migration_target_control mtc = { 1710 .nid = NUMA_NO_NODE, 1711 .gfp_mask = GFP_USER | __GFP_NOWARN, 1712 }; 1713 1714 for (i = 0; i < nr_pages; i++) { 1715 head = compound_head(pages[i]); 1716 if (head == prev_head) 1717 continue; 1718 prev_head = head; 1719 /* 1720 * If we get a movable page, since we are going to be pinning 1721 * these entries, try to move them out if possible. 1722 */ 1723 if (!is_pinnable_page(head)) { 1724 if (PageHuge(head)) { 1725 if (!isolate_huge_page(head, &movable_page_list)) 1726 isolation_error_count++; 1727 } else { 1728 if (!PageLRU(head) && drain_allow) { 1729 lru_add_drain_all(); 1730 drain_allow = false; 1731 } 1732 1733 if (isolate_lru_page(head)) { 1734 isolation_error_count++; 1735 continue; 1736 } 1737 list_add_tail(&head->lru, &movable_page_list); 1738 mod_node_page_state(page_pgdat(head), 1739 NR_ISOLATED_ANON + 1740 page_is_file_lru(head), 1741 thp_nr_pages(head)); 1742 } 1743 } 1744 } 1745 1746 /* 1747 * If list is empty, and no isolation errors, means that all pages are 1748 * in the correct zone. 1749 */ 1750 if (list_empty(&movable_page_list) && !isolation_error_count) 1751 return nr_pages; 1752 1753 if (gup_flags & FOLL_PIN) { 1754 unpin_user_pages(pages, nr_pages); 1755 } else { 1756 for (i = 0; i < nr_pages; i++) 1757 put_page(pages[i]); 1758 } 1759 if (!list_empty(&movable_page_list)) { 1760 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1761 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1762 MR_LONGTERM_PIN, NULL); 1763 if (ret && !list_empty(&movable_page_list)) 1764 putback_movable_pages(&movable_page_list); 1765 } 1766 1767 return ret > 0 ? -ENOMEM : ret; 1768 } 1769 #else 1770 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1771 struct page **pages, 1772 unsigned int gup_flags) 1773 { 1774 return nr_pages; 1775 } 1776 #endif /* CONFIG_MIGRATION */ 1777 1778 /* 1779 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1780 * allows us to process the FOLL_LONGTERM flag. 1781 */ 1782 static long __gup_longterm_locked(struct mm_struct *mm, 1783 unsigned long start, 1784 unsigned long nr_pages, 1785 struct page **pages, 1786 struct vm_area_struct **vmas, 1787 unsigned int gup_flags) 1788 { 1789 unsigned int flags; 1790 long rc; 1791 1792 if (!(gup_flags & FOLL_LONGTERM)) 1793 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1794 NULL, gup_flags); 1795 flags = memalloc_pin_save(); 1796 do { 1797 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1798 NULL, gup_flags); 1799 if (rc <= 0) 1800 break; 1801 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1802 } while (!rc); 1803 memalloc_pin_restore(flags); 1804 1805 return rc; 1806 } 1807 1808 static bool is_valid_gup_flags(unsigned int gup_flags) 1809 { 1810 /* 1811 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1812 * never directly by the caller, so enforce that with an assertion: 1813 */ 1814 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1815 return false; 1816 /* 1817 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1818 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1819 * FOLL_PIN. 1820 */ 1821 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1822 return false; 1823 1824 return true; 1825 } 1826 1827 #ifdef CONFIG_MMU 1828 static long __get_user_pages_remote(struct mm_struct *mm, 1829 unsigned long start, unsigned long nr_pages, 1830 unsigned int gup_flags, struct page **pages, 1831 struct vm_area_struct **vmas, int *locked) 1832 { 1833 /* 1834 * Parts of FOLL_LONGTERM behavior are incompatible with 1835 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1836 * vmas. However, this only comes up if locked is set, and there are 1837 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1838 * allow what we can. 1839 */ 1840 if (gup_flags & FOLL_LONGTERM) { 1841 if (WARN_ON_ONCE(locked)) 1842 return -EINVAL; 1843 /* 1844 * This will check the vmas (even if our vmas arg is NULL) 1845 * and return -ENOTSUPP if DAX isn't allowed in this case: 1846 */ 1847 return __gup_longterm_locked(mm, start, nr_pages, pages, 1848 vmas, gup_flags | FOLL_TOUCH | 1849 FOLL_REMOTE); 1850 } 1851 1852 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1853 locked, 1854 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1855 } 1856 1857 /** 1858 * get_user_pages_remote() - pin user pages in memory 1859 * @mm: mm_struct of target mm 1860 * @start: starting user address 1861 * @nr_pages: number of pages from start to pin 1862 * @gup_flags: flags modifying lookup behaviour 1863 * @pages: array that receives pointers to the pages pinned. 1864 * Should be at least nr_pages long. Or NULL, if caller 1865 * only intends to ensure the pages are faulted in. 1866 * @vmas: array of pointers to vmas corresponding to each page. 1867 * Or NULL if the caller does not require them. 1868 * @locked: pointer to lock flag indicating whether lock is held and 1869 * subsequently whether VM_FAULT_RETRY functionality can be 1870 * utilised. Lock must initially be held. 1871 * 1872 * Returns either number of pages pinned (which may be less than the 1873 * number requested), or an error. Details about the return value: 1874 * 1875 * -- If nr_pages is 0, returns 0. 1876 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1877 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1878 * pages pinned. Again, this may be less than nr_pages. 1879 * 1880 * The caller is responsible for releasing returned @pages, via put_page(). 1881 * 1882 * @vmas are valid only as long as mmap_lock is held. 1883 * 1884 * Must be called with mmap_lock held for read or write. 1885 * 1886 * get_user_pages_remote walks a process's page tables and takes a reference 1887 * to each struct page that each user address corresponds to at a given 1888 * instant. That is, it takes the page that would be accessed if a user 1889 * thread accesses the given user virtual address at that instant. 1890 * 1891 * This does not guarantee that the page exists in the user mappings when 1892 * get_user_pages_remote returns, and there may even be a completely different 1893 * page there in some cases (eg. if mmapped pagecache has been invalidated 1894 * and subsequently re faulted). However it does guarantee that the page 1895 * won't be freed completely. And mostly callers simply care that the page 1896 * contains data that was valid *at some point in time*. Typically, an IO 1897 * or similar operation cannot guarantee anything stronger anyway because 1898 * locks can't be held over the syscall boundary. 1899 * 1900 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1901 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1902 * be called after the page is finished with, and before put_page is called. 1903 * 1904 * get_user_pages_remote is typically used for fewer-copy IO operations, 1905 * to get a handle on the memory by some means other than accesses 1906 * via the user virtual addresses. The pages may be submitted for 1907 * DMA to devices or accessed via their kernel linear mapping (via the 1908 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1909 * 1910 * See also get_user_pages_fast, for performance critical applications. 1911 * 1912 * get_user_pages_remote should be phased out in favor of 1913 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1914 * should use get_user_pages_remote because it cannot pass 1915 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1916 */ 1917 long get_user_pages_remote(struct mm_struct *mm, 1918 unsigned long start, unsigned long nr_pages, 1919 unsigned int gup_flags, struct page **pages, 1920 struct vm_area_struct **vmas, int *locked) 1921 { 1922 if (!is_valid_gup_flags(gup_flags)) 1923 return -EINVAL; 1924 1925 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1926 pages, vmas, locked); 1927 } 1928 EXPORT_SYMBOL(get_user_pages_remote); 1929 1930 #else /* CONFIG_MMU */ 1931 long get_user_pages_remote(struct mm_struct *mm, 1932 unsigned long start, unsigned long nr_pages, 1933 unsigned int gup_flags, struct page **pages, 1934 struct vm_area_struct **vmas, int *locked) 1935 { 1936 return 0; 1937 } 1938 1939 static long __get_user_pages_remote(struct mm_struct *mm, 1940 unsigned long start, unsigned long nr_pages, 1941 unsigned int gup_flags, struct page **pages, 1942 struct vm_area_struct **vmas, int *locked) 1943 { 1944 return 0; 1945 } 1946 #endif /* !CONFIG_MMU */ 1947 1948 /** 1949 * get_user_pages() - pin user pages in memory 1950 * @start: starting user address 1951 * @nr_pages: number of pages from start to pin 1952 * @gup_flags: flags modifying lookup behaviour 1953 * @pages: array that receives pointers to the pages pinned. 1954 * Should be at least nr_pages long. Or NULL, if caller 1955 * only intends to ensure the pages are faulted in. 1956 * @vmas: array of pointers to vmas corresponding to each page. 1957 * Or NULL if the caller does not require them. 1958 * 1959 * This is the same as get_user_pages_remote(), just with a less-flexible 1960 * calling convention where we assume that the mm being operated on belongs to 1961 * the current task, and doesn't allow passing of a locked parameter. We also 1962 * obviously don't pass FOLL_REMOTE in here. 1963 */ 1964 long get_user_pages(unsigned long start, unsigned long nr_pages, 1965 unsigned int gup_flags, struct page **pages, 1966 struct vm_area_struct **vmas) 1967 { 1968 if (!is_valid_gup_flags(gup_flags)) 1969 return -EINVAL; 1970 1971 return __gup_longterm_locked(current->mm, start, nr_pages, 1972 pages, vmas, gup_flags | FOLL_TOUCH); 1973 } 1974 EXPORT_SYMBOL(get_user_pages); 1975 1976 /** 1977 * get_user_pages_locked() - variant of get_user_pages() 1978 * 1979 * @start: starting user address 1980 * @nr_pages: number of pages from start to pin 1981 * @gup_flags: flags modifying lookup behaviour 1982 * @pages: array that receives pointers to the pages pinned. 1983 * Should be at least nr_pages long. Or NULL, if caller 1984 * only intends to ensure the pages are faulted in. 1985 * @locked: pointer to lock flag indicating whether lock is held and 1986 * subsequently whether VM_FAULT_RETRY functionality can be 1987 * utilised. Lock must initially be held. 1988 * 1989 * It is suitable to replace the form: 1990 * 1991 * mmap_read_lock(mm); 1992 * do_something() 1993 * get_user_pages(mm, ..., pages, NULL); 1994 * mmap_read_unlock(mm); 1995 * 1996 * to: 1997 * 1998 * int locked = 1; 1999 * mmap_read_lock(mm); 2000 * do_something() 2001 * get_user_pages_locked(mm, ..., pages, &locked); 2002 * if (locked) 2003 * mmap_read_unlock(mm); 2004 * 2005 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2006 * paths better by using either get_user_pages_locked() or 2007 * get_user_pages_unlocked(). 2008 * 2009 */ 2010 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2011 unsigned int gup_flags, struct page **pages, 2012 int *locked) 2013 { 2014 /* 2015 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2016 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2017 * vmas. As there are no users of this flag in this call we simply 2018 * disallow this option for now. 2019 */ 2020 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2021 return -EINVAL; 2022 /* 2023 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2024 * never directly by the caller, so enforce that: 2025 */ 2026 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2027 return -EINVAL; 2028 2029 return __get_user_pages_locked(current->mm, start, nr_pages, 2030 pages, NULL, locked, 2031 gup_flags | FOLL_TOUCH); 2032 } 2033 EXPORT_SYMBOL(get_user_pages_locked); 2034 2035 /* 2036 * get_user_pages_unlocked() is suitable to replace the form: 2037 * 2038 * mmap_read_lock(mm); 2039 * get_user_pages(mm, ..., pages, NULL); 2040 * mmap_read_unlock(mm); 2041 * 2042 * with: 2043 * 2044 * get_user_pages_unlocked(mm, ..., pages); 2045 * 2046 * It is functionally equivalent to get_user_pages_fast so 2047 * get_user_pages_fast should be used instead if specific gup_flags 2048 * (e.g. FOLL_FORCE) are not required. 2049 */ 2050 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2051 struct page **pages, unsigned int gup_flags) 2052 { 2053 struct mm_struct *mm = current->mm; 2054 int locked = 1; 2055 long ret; 2056 2057 /* 2058 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2059 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2060 * vmas. As there are no users of this flag in this call we simply 2061 * disallow this option for now. 2062 */ 2063 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2064 return -EINVAL; 2065 2066 mmap_read_lock(mm); 2067 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2068 &locked, gup_flags | FOLL_TOUCH); 2069 if (locked) 2070 mmap_read_unlock(mm); 2071 return ret; 2072 } 2073 EXPORT_SYMBOL(get_user_pages_unlocked); 2074 2075 /* 2076 * Fast GUP 2077 * 2078 * get_user_pages_fast attempts to pin user pages by walking the page 2079 * tables directly and avoids taking locks. Thus the walker needs to be 2080 * protected from page table pages being freed from under it, and should 2081 * block any THP splits. 2082 * 2083 * One way to achieve this is to have the walker disable interrupts, and 2084 * rely on IPIs from the TLB flushing code blocking before the page table 2085 * pages are freed. This is unsuitable for architectures that do not need 2086 * to broadcast an IPI when invalidating TLBs. 2087 * 2088 * Another way to achieve this is to batch up page table containing pages 2089 * belonging to more than one mm_user, then rcu_sched a callback to free those 2090 * pages. Disabling interrupts will allow the fast_gup walker to both block 2091 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2092 * (which is a relatively rare event). The code below adopts this strategy. 2093 * 2094 * Before activating this code, please be aware that the following assumptions 2095 * are currently made: 2096 * 2097 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2098 * free pages containing page tables or TLB flushing requires IPI broadcast. 2099 * 2100 * *) ptes can be read atomically by the architecture. 2101 * 2102 * *) access_ok is sufficient to validate userspace address ranges. 2103 * 2104 * The last two assumptions can be relaxed by the addition of helper functions. 2105 * 2106 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2107 */ 2108 #ifdef CONFIG_HAVE_FAST_GUP 2109 2110 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2111 unsigned int flags, 2112 struct page **pages) 2113 { 2114 while ((*nr) - nr_start) { 2115 struct page *page = pages[--(*nr)]; 2116 2117 ClearPageReferenced(page); 2118 if (flags & FOLL_PIN) 2119 unpin_user_page(page); 2120 else 2121 put_page(page); 2122 } 2123 } 2124 2125 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2126 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2127 unsigned int flags, struct page **pages, int *nr) 2128 { 2129 struct dev_pagemap *pgmap = NULL; 2130 int nr_start = *nr, ret = 0; 2131 pte_t *ptep, *ptem; 2132 2133 ptem = ptep = pte_offset_map(&pmd, addr); 2134 do { 2135 pte_t pte = ptep_get_lockless(ptep); 2136 struct page *head, *page; 2137 2138 /* 2139 * Similar to the PMD case below, NUMA hinting must take slow 2140 * path using the pte_protnone check. 2141 */ 2142 if (pte_protnone(pte)) 2143 goto pte_unmap; 2144 2145 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2146 goto pte_unmap; 2147 2148 if (pte_devmap(pte)) { 2149 if (unlikely(flags & FOLL_LONGTERM)) 2150 goto pte_unmap; 2151 2152 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2153 if (unlikely(!pgmap)) { 2154 undo_dev_pagemap(nr, nr_start, flags, pages); 2155 goto pte_unmap; 2156 } 2157 } else if (pte_special(pte)) 2158 goto pte_unmap; 2159 2160 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2161 page = pte_page(pte); 2162 2163 head = try_grab_compound_head(page, 1, flags); 2164 if (!head) 2165 goto pte_unmap; 2166 2167 if (unlikely(page_is_secretmem(page))) { 2168 put_compound_head(head, 1, flags); 2169 goto pte_unmap; 2170 } 2171 2172 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2173 put_compound_head(head, 1, flags); 2174 goto pte_unmap; 2175 } 2176 2177 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2178 2179 /* 2180 * We need to make the page accessible if and only if we are 2181 * going to access its content (the FOLL_PIN case). Please 2182 * see Documentation/core-api/pin_user_pages.rst for 2183 * details. 2184 */ 2185 if (flags & FOLL_PIN) { 2186 ret = arch_make_page_accessible(page); 2187 if (ret) { 2188 unpin_user_page(page); 2189 goto pte_unmap; 2190 } 2191 } 2192 SetPageReferenced(page); 2193 pages[*nr] = page; 2194 (*nr)++; 2195 2196 } while (ptep++, addr += PAGE_SIZE, addr != end); 2197 2198 ret = 1; 2199 2200 pte_unmap: 2201 if (pgmap) 2202 put_dev_pagemap(pgmap); 2203 pte_unmap(ptem); 2204 return ret; 2205 } 2206 #else 2207 2208 /* 2209 * If we can't determine whether or not a pte is special, then fail immediately 2210 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2211 * to be special. 2212 * 2213 * For a futex to be placed on a THP tail page, get_futex_key requires a 2214 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2215 * useful to have gup_huge_pmd even if we can't operate on ptes. 2216 */ 2217 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2218 unsigned int flags, struct page **pages, int *nr) 2219 { 2220 return 0; 2221 } 2222 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2223 2224 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2225 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2226 unsigned long end, unsigned int flags, 2227 struct page **pages, int *nr) 2228 { 2229 int nr_start = *nr; 2230 struct dev_pagemap *pgmap = NULL; 2231 int ret = 1; 2232 2233 do { 2234 struct page *page = pfn_to_page(pfn); 2235 2236 pgmap = get_dev_pagemap(pfn, pgmap); 2237 if (unlikely(!pgmap)) { 2238 undo_dev_pagemap(nr, nr_start, flags, pages); 2239 ret = 0; 2240 break; 2241 } 2242 SetPageReferenced(page); 2243 pages[*nr] = page; 2244 if (unlikely(!try_grab_page(page, flags))) { 2245 undo_dev_pagemap(nr, nr_start, flags, pages); 2246 ret = 0; 2247 break; 2248 } 2249 (*nr)++; 2250 pfn++; 2251 } while (addr += PAGE_SIZE, addr != end); 2252 2253 put_dev_pagemap(pgmap); 2254 return ret; 2255 } 2256 2257 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2258 unsigned long end, unsigned int flags, 2259 struct page **pages, int *nr) 2260 { 2261 unsigned long fault_pfn; 2262 int nr_start = *nr; 2263 2264 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2265 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2266 return 0; 2267 2268 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2269 undo_dev_pagemap(nr, nr_start, flags, pages); 2270 return 0; 2271 } 2272 return 1; 2273 } 2274 2275 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2276 unsigned long end, unsigned int flags, 2277 struct page **pages, int *nr) 2278 { 2279 unsigned long fault_pfn; 2280 int nr_start = *nr; 2281 2282 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2283 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2284 return 0; 2285 2286 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2287 undo_dev_pagemap(nr, nr_start, flags, pages); 2288 return 0; 2289 } 2290 return 1; 2291 } 2292 #else 2293 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2294 unsigned long end, unsigned int flags, 2295 struct page **pages, int *nr) 2296 { 2297 BUILD_BUG(); 2298 return 0; 2299 } 2300 2301 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2302 unsigned long end, unsigned int flags, 2303 struct page **pages, int *nr) 2304 { 2305 BUILD_BUG(); 2306 return 0; 2307 } 2308 #endif 2309 2310 static int record_subpages(struct page *page, unsigned long addr, 2311 unsigned long end, struct page **pages) 2312 { 2313 int nr; 2314 2315 for (nr = 0; addr != end; addr += PAGE_SIZE) 2316 pages[nr++] = page++; 2317 2318 return nr; 2319 } 2320 2321 #ifdef CONFIG_ARCH_HAS_HUGEPD 2322 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2323 unsigned long sz) 2324 { 2325 unsigned long __boundary = (addr + sz) & ~(sz-1); 2326 return (__boundary - 1 < end - 1) ? __boundary : end; 2327 } 2328 2329 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2330 unsigned long end, unsigned int flags, 2331 struct page **pages, int *nr) 2332 { 2333 unsigned long pte_end; 2334 struct page *head, *page; 2335 pte_t pte; 2336 int refs; 2337 2338 pte_end = (addr + sz) & ~(sz-1); 2339 if (pte_end < end) 2340 end = pte_end; 2341 2342 pte = huge_ptep_get(ptep); 2343 2344 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2345 return 0; 2346 2347 /* hugepages are never "special" */ 2348 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2349 2350 head = pte_page(pte); 2351 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2352 refs = record_subpages(page, addr, end, pages + *nr); 2353 2354 head = try_grab_compound_head(head, refs, flags); 2355 if (!head) 2356 return 0; 2357 2358 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2359 put_compound_head(head, refs, flags); 2360 return 0; 2361 } 2362 2363 *nr += refs; 2364 SetPageReferenced(head); 2365 return 1; 2366 } 2367 2368 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2369 unsigned int pdshift, unsigned long end, unsigned int flags, 2370 struct page **pages, int *nr) 2371 { 2372 pte_t *ptep; 2373 unsigned long sz = 1UL << hugepd_shift(hugepd); 2374 unsigned long next; 2375 2376 ptep = hugepte_offset(hugepd, addr, pdshift); 2377 do { 2378 next = hugepte_addr_end(addr, end, sz); 2379 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2380 return 0; 2381 } while (ptep++, addr = next, addr != end); 2382 2383 return 1; 2384 } 2385 #else 2386 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2387 unsigned int pdshift, unsigned long end, unsigned int flags, 2388 struct page **pages, int *nr) 2389 { 2390 return 0; 2391 } 2392 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2393 2394 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2395 unsigned long end, unsigned int flags, 2396 struct page **pages, int *nr) 2397 { 2398 struct page *head, *page; 2399 int refs; 2400 2401 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2402 return 0; 2403 2404 if (pmd_devmap(orig)) { 2405 if (unlikely(flags & FOLL_LONGTERM)) 2406 return 0; 2407 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2408 pages, nr); 2409 } 2410 2411 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2412 refs = record_subpages(page, addr, end, pages + *nr); 2413 2414 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2415 if (!head) 2416 return 0; 2417 2418 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2419 put_compound_head(head, refs, flags); 2420 return 0; 2421 } 2422 2423 *nr += refs; 2424 SetPageReferenced(head); 2425 return 1; 2426 } 2427 2428 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2429 unsigned long end, unsigned int flags, 2430 struct page **pages, int *nr) 2431 { 2432 struct page *head, *page; 2433 int refs; 2434 2435 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2436 return 0; 2437 2438 if (pud_devmap(orig)) { 2439 if (unlikely(flags & FOLL_LONGTERM)) 2440 return 0; 2441 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2442 pages, nr); 2443 } 2444 2445 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2446 refs = record_subpages(page, addr, end, pages + *nr); 2447 2448 head = try_grab_compound_head(pud_page(orig), refs, flags); 2449 if (!head) 2450 return 0; 2451 2452 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2453 put_compound_head(head, refs, flags); 2454 return 0; 2455 } 2456 2457 *nr += refs; 2458 SetPageReferenced(head); 2459 return 1; 2460 } 2461 2462 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2463 unsigned long end, unsigned int flags, 2464 struct page **pages, int *nr) 2465 { 2466 int refs; 2467 struct page *head, *page; 2468 2469 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2470 return 0; 2471 2472 BUILD_BUG_ON(pgd_devmap(orig)); 2473 2474 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2475 refs = record_subpages(page, addr, end, pages + *nr); 2476 2477 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2478 if (!head) 2479 return 0; 2480 2481 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2482 put_compound_head(head, refs, flags); 2483 return 0; 2484 } 2485 2486 *nr += refs; 2487 SetPageReferenced(head); 2488 return 1; 2489 } 2490 2491 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2492 unsigned int flags, struct page **pages, int *nr) 2493 { 2494 unsigned long next; 2495 pmd_t *pmdp; 2496 2497 pmdp = pmd_offset_lockless(pudp, pud, addr); 2498 do { 2499 pmd_t pmd = READ_ONCE(*pmdp); 2500 2501 next = pmd_addr_end(addr, end); 2502 if (!pmd_present(pmd)) 2503 return 0; 2504 2505 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2506 pmd_devmap(pmd))) { 2507 /* 2508 * NUMA hinting faults need to be handled in the GUP 2509 * slowpath for accounting purposes and so that they 2510 * can be serialised against THP migration. 2511 */ 2512 if (pmd_protnone(pmd)) 2513 return 0; 2514 2515 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2516 pages, nr)) 2517 return 0; 2518 2519 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2520 /* 2521 * architecture have different format for hugetlbfs 2522 * pmd format and THP pmd format 2523 */ 2524 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2525 PMD_SHIFT, next, flags, pages, nr)) 2526 return 0; 2527 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2528 return 0; 2529 } while (pmdp++, addr = next, addr != end); 2530 2531 return 1; 2532 } 2533 2534 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2535 unsigned int flags, struct page **pages, int *nr) 2536 { 2537 unsigned long next; 2538 pud_t *pudp; 2539 2540 pudp = pud_offset_lockless(p4dp, p4d, addr); 2541 do { 2542 pud_t pud = READ_ONCE(*pudp); 2543 2544 next = pud_addr_end(addr, end); 2545 if (unlikely(!pud_present(pud))) 2546 return 0; 2547 if (unlikely(pud_huge(pud))) { 2548 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2549 pages, nr)) 2550 return 0; 2551 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2552 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2553 PUD_SHIFT, next, flags, pages, nr)) 2554 return 0; 2555 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2556 return 0; 2557 } while (pudp++, addr = next, addr != end); 2558 2559 return 1; 2560 } 2561 2562 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2563 unsigned int flags, struct page **pages, int *nr) 2564 { 2565 unsigned long next; 2566 p4d_t *p4dp; 2567 2568 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2569 do { 2570 p4d_t p4d = READ_ONCE(*p4dp); 2571 2572 next = p4d_addr_end(addr, end); 2573 if (p4d_none(p4d)) 2574 return 0; 2575 BUILD_BUG_ON(p4d_huge(p4d)); 2576 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2577 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2578 P4D_SHIFT, next, flags, pages, nr)) 2579 return 0; 2580 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2581 return 0; 2582 } while (p4dp++, addr = next, addr != end); 2583 2584 return 1; 2585 } 2586 2587 static void gup_pgd_range(unsigned long addr, unsigned long end, 2588 unsigned int flags, struct page **pages, int *nr) 2589 { 2590 unsigned long next; 2591 pgd_t *pgdp; 2592 2593 pgdp = pgd_offset(current->mm, addr); 2594 do { 2595 pgd_t pgd = READ_ONCE(*pgdp); 2596 2597 next = pgd_addr_end(addr, end); 2598 if (pgd_none(pgd)) 2599 return; 2600 if (unlikely(pgd_huge(pgd))) { 2601 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2602 pages, nr)) 2603 return; 2604 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2605 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2606 PGDIR_SHIFT, next, flags, pages, nr)) 2607 return; 2608 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2609 return; 2610 } while (pgdp++, addr = next, addr != end); 2611 } 2612 #else 2613 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2614 unsigned int flags, struct page **pages, int *nr) 2615 { 2616 } 2617 #endif /* CONFIG_HAVE_FAST_GUP */ 2618 2619 #ifndef gup_fast_permitted 2620 /* 2621 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2622 * we need to fall back to the slow version: 2623 */ 2624 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2625 { 2626 return true; 2627 } 2628 #endif 2629 2630 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2631 unsigned int gup_flags, struct page **pages) 2632 { 2633 int ret; 2634 2635 /* 2636 * FIXME: FOLL_LONGTERM does not work with 2637 * get_user_pages_unlocked() (see comments in that function) 2638 */ 2639 if (gup_flags & FOLL_LONGTERM) { 2640 mmap_read_lock(current->mm); 2641 ret = __gup_longterm_locked(current->mm, 2642 start, nr_pages, 2643 pages, NULL, gup_flags); 2644 mmap_read_unlock(current->mm); 2645 } else { 2646 ret = get_user_pages_unlocked(start, nr_pages, 2647 pages, gup_flags); 2648 } 2649 2650 return ret; 2651 } 2652 2653 static unsigned long lockless_pages_from_mm(unsigned long start, 2654 unsigned long end, 2655 unsigned int gup_flags, 2656 struct page **pages) 2657 { 2658 unsigned long flags; 2659 int nr_pinned = 0; 2660 unsigned seq; 2661 2662 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2663 !gup_fast_permitted(start, end)) 2664 return 0; 2665 2666 if (gup_flags & FOLL_PIN) { 2667 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2668 if (seq & 1) 2669 return 0; 2670 } 2671 2672 /* 2673 * Disable interrupts. The nested form is used, in order to allow full, 2674 * general purpose use of this routine. 2675 * 2676 * With interrupts disabled, we block page table pages from being freed 2677 * from under us. See struct mmu_table_batch comments in 2678 * include/asm-generic/tlb.h for more details. 2679 * 2680 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2681 * that come from THPs splitting. 2682 */ 2683 local_irq_save(flags); 2684 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2685 local_irq_restore(flags); 2686 2687 /* 2688 * When pinning pages for DMA there could be a concurrent write protect 2689 * from fork() via copy_page_range(), in this case always fail fast GUP. 2690 */ 2691 if (gup_flags & FOLL_PIN) { 2692 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2693 unpin_user_pages(pages, nr_pinned); 2694 return 0; 2695 } 2696 } 2697 return nr_pinned; 2698 } 2699 2700 static int internal_get_user_pages_fast(unsigned long start, 2701 unsigned long nr_pages, 2702 unsigned int gup_flags, 2703 struct page **pages) 2704 { 2705 unsigned long len, end; 2706 unsigned long nr_pinned; 2707 int ret; 2708 2709 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2710 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2711 FOLL_FAST_ONLY))) 2712 return -EINVAL; 2713 2714 if (gup_flags & FOLL_PIN) 2715 mm_set_has_pinned_flag(¤t->mm->flags); 2716 2717 if (!(gup_flags & FOLL_FAST_ONLY)) 2718 might_lock_read(¤t->mm->mmap_lock); 2719 2720 start = untagged_addr(start) & PAGE_MASK; 2721 len = nr_pages << PAGE_SHIFT; 2722 if (check_add_overflow(start, len, &end)) 2723 return 0; 2724 if (unlikely(!access_ok((void __user *)start, len))) 2725 return -EFAULT; 2726 2727 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2728 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2729 return nr_pinned; 2730 2731 /* Slow path: try to get the remaining pages with get_user_pages */ 2732 start += nr_pinned << PAGE_SHIFT; 2733 pages += nr_pinned; 2734 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2735 pages); 2736 if (ret < 0) { 2737 /* 2738 * The caller has to unpin the pages we already pinned so 2739 * returning -errno is not an option 2740 */ 2741 if (nr_pinned) 2742 return nr_pinned; 2743 return ret; 2744 } 2745 return ret + nr_pinned; 2746 } 2747 2748 /** 2749 * get_user_pages_fast_only() - pin user pages in memory 2750 * @start: starting user address 2751 * @nr_pages: number of pages from start to pin 2752 * @gup_flags: flags modifying pin behaviour 2753 * @pages: array that receives pointers to the pages pinned. 2754 * Should be at least nr_pages long. 2755 * 2756 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2757 * the regular GUP. 2758 * Note a difference with get_user_pages_fast: this always returns the 2759 * number of pages pinned, 0 if no pages were pinned. 2760 * 2761 * If the architecture does not support this function, simply return with no 2762 * pages pinned. 2763 * 2764 * Careful, careful! COW breaking can go either way, so a non-write 2765 * access can get ambiguous page results. If you call this function without 2766 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2767 */ 2768 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2769 unsigned int gup_flags, struct page **pages) 2770 { 2771 int nr_pinned; 2772 /* 2773 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2774 * because gup fast is always a "pin with a +1 page refcount" request. 2775 * 2776 * FOLL_FAST_ONLY is required in order to match the API description of 2777 * this routine: no fall back to regular ("slow") GUP. 2778 */ 2779 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2780 2781 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2782 pages); 2783 2784 /* 2785 * As specified in the API description above, this routine is not 2786 * allowed to return negative values. However, the common core 2787 * routine internal_get_user_pages_fast() *can* return -errno. 2788 * Therefore, correct for that here: 2789 */ 2790 if (nr_pinned < 0) 2791 nr_pinned = 0; 2792 2793 return nr_pinned; 2794 } 2795 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2796 2797 /** 2798 * get_user_pages_fast() - pin user pages in memory 2799 * @start: starting user address 2800 * @nr_pages: number of pages from start to pin 2801 * @gup_flags: flags modifying pin behaviour 2802 * @pages: array that receives pointers to the pages pinned. 2803 * Should be at least nr_pages long. 2804 * 2805 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2806 * If not successful, it will fall back to taking the lock and 2807 * calling get_user_pages(). 2808 * 2809 * Returns number of pages pinned. This may be fewer than the number requested. 2810 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2811 * -errno. 2812 */ 2813 int get_user_pages_fast(unsigned long start, int nr_pages, 2814 unsigned int gup_flags, struct page **pages) 2815 { 2816 if (!is_valid_gup_flags(gup_flags)) 2817 return -EINVAL; 2818 2819 /* 2820 * The caller may or may not have explicitly set FOLL_GET; either way is 2821 * OK. However, internally (within mm/gup.c), gup fast variants must set 2822 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2823 * request. 2824 */ 2825 gup_flags |= FOLL_GET; 2826 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2827 } 2828 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2829 2830 /** 2831 * pin_user_pages_fast() - pin user pages in memory without taking locks 2832 * 2833 * @start: starting user address 2834 * @nr_pages: number of pages from start to pin 2835 * @gup_flags: flags modifying pin behaviour 2836 * @pages: array that receives pointers to the pages pinned. 2837 * Should be at least nr_pages long. 2838 * 2839 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2840 * get_user_pages_fast() for documentation on the function arguments, because 2841 * the arguments here are identical. 2842 * 2843 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2844 * see Documentation/core-api/pin_user_pages.rst for further details. 2845 */ 2846 int pin_user_pages_fast(unsigned long start, int nr_pages, 2847 unsigned int gup_flags, struct page **pages) 2848 { 2849 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2850 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2851 return -EINVAL; 2852 2853 gup_flags |= FOLL_PIN; 2854 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2855 } 2856 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2857 2858 /* 2859 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2860 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2861 * 2862 * The API rules are the same, too: no negative values may be returned. 2863 */ 2864 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2865 unsigned int gup_flags, struct page **pages) 2866 { 2867 int nr_pinned; 2868 2869 /* 2870 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2871 * rules require returning 0, rather than -errno: 2872 */ 2873 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2874 return 0; 2875 /* 2876 * FOLL_FAST_ONLY is required in order to match the API description of 2877 * this routine: no fall back to regular ("slow") GUP. 2878 */ 2879 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2880 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2881 pages); 2882 /* 2883 * This routine is not allowed to return negative values. However, 2884 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2885 * correct for that here: 2886 */ 2887 if (nr_pinned < 0) 2888 nr_pinned = 0; 2889 2890 return nr_pinned; 2891 } 2892 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2893 2894 /** 2895 * pin_user_pages_remote() - pin pages of a remote process 2896 * 2897 * @mm: mm_struct of target mm 2898 * @start: starting user address 2899 * @nr_pages: number of pages from start to pin 2900 * @gup_flags: flags modifying lookup behaviour 2901 * @pages: array that receives pointers to the pages pinned. 2902 * Should be at least nr_pages long. Or NULL, if caller 2903 * only intends to ensure the pages are faulted in. 2904 * @vmas: array of pointers to vmas corresponding to each page. 2905 * Or NULL if the caller does not require them. 2906 * @locked: pointer to lock flag indicating whether lock is held and 2907 * subsequently whether VM_FAULT_RETRY functionality can be 2908 * utilised. Lock must initially be held. 2909 * 2910 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2911 * get_user_pages_remote() for documentation on the function arguments, because 2912 * the arguments here are identical. 2913 * 2914 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2915 * see Documentation/core-api/pin_user_pages.rst for details. 2916 */ 2917 long pin_user_pages_remote(struct mm_struct *mm, 2918 unsigned long start, unsigned long nr_pages, 2919 unsigned int gup_flags, struct page **pages, 2920 struct vm_area_struct **vmas, int *locked) 2921 { 2922 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2923 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2924 return -EINVAL; 2925 2926 gup_flags |= FOLL_PIN; 2927 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2928 pages, vmas, locked); 2929 } 2930 EXPORT_SYMBOL(pin_user_pages_remote); 2931 2932 /** 2933 * pin_user_pages() - pin user pages in memory for use by other devices 2934 * 2935 * @start: starting user address 2936 * @nr_pages: number of pages from start to pin 2937 * @gup_flags: flags modifying lookup behaviour 2938 * @pages: array that receives pointers to the pages pinned. 2939 * Should be at least nr_pages long. Or NULL, if caller 2940 * only intends to ensure the pages are faulted in. 2941 * @vmas: array of pointers to vmas corresponding to each page. 2942 * Or NULL if the caller does not require them. 2943 * 2944 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2945 * FOLL_PIN is set. 2946 * 2947 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2948 * see Documentation/core-api/pin_user_pages.rst for details. 2949 */ 2950 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2951 unsigned int gup_flags, struct page **pages, 2952 struct vm_area_struct **vmas) 2953 { 2954 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2955 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2956 return -EINVAL; 2957 2958 gup_flags |= FOLL_PIN; 2959 return __gup_longterm_locked(current->mm, start, nr_pages, 2960 pages, vmas, gup_flags); 2961 } 2962 EXPORT_SYMBOL(pin_user_pages); 2963 2964 /* 2965 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2966 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2967 * FOLL_PIN and rejects FOLL_GET. 2968 */ 2969 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2970 struct page **pages, unsigned int gup_flags) 2971 { 2972 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2973 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2974 return -EINVAL; 2975 2976 gup_flags |= FOLL_PIN; 2977 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2978 } 2979 EXPORT_SYMBOL(pin_user_pages_unlocked); 2980 2981 /* 2982 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2983 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2984 * FOLL_GET. 2985 */ 2986 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2987 unsigned int gup_flags, struct page **pages, 2988 int *locked) 2989 { 2990 /* 2991 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2992 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2993 * vmas. As there are no users of this flag in this call we simply 2994 * disallow this option for now. 2995 */ 2996 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2997 return -EINVAL; 2998 2999 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3000 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3001 return -EINVAL; 3002 3003 gup_flags |= FOLL_PIN; 3004 return __get_user_pages_locked(current->mm, start, nr_pages, 3005 pages, NULL, locked, 3006 gup_flags | FOLL_TOUCH); 3007 } 3008 EXPORT_SYMBOL(pin_user_pages_locked); 3009