xref: /linux/mm/gup.c (revision 5ac79730324c6f37106ce397586020ffe6e8e234)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio = page_folio(page);
56 
57 		if (is_zero_page(page) ||
58 		    !folio_test_anon(folio))
59 			continue;
60 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 		else
63 			/* Either a PTE-mapped or a PMD-mapped THP. */
64 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 				       !PageAnonExclusive(page), page);
66 	}
67 }
68 
69 /*
70  * Return the folio with ref appropriately incremented,
71  * or NULL if that failed.
72  */
73 static inline struct folio *try_get_folio(struct page *page, int refs)
74 {
75 	struct folio *folio;
76 
77 retry:
78 	folio = page_folio(page);
79 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
80 		return NULL;
81 	if (unlikely(!folio_ref_try_add(folio, refs)))
82 		return NULL;
83 
84 	/*
85 	 * At this point we have a stable reference to the folio; but it
86 	 * could be that between calling page_folio() and the refcount
87 	 * increment, the folio was split, in which case we'd end up
88 	 * holding a reference on a folio that has nothing to do with the page
89 	 * we were given anymore.
90 	 * So now that the folio is stable, recheck that the page still
91 	 * belongs to this folio.
92 	 */
93 	if (unlikely(page_folio(page) != folio)) {
94 		if (!put_devmap_managed_folio_refs(folio, refs))
95 			folio_put_refs(folio, refs);
96 		goto retry;
97 	}
98 
99 	return folio;
100 }
101 
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103 {
104 	if (flags & FOLL_PIN) {
105 		if (is_zero_folio(folio))
106 			return;
107 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 		if (folio_test_large(folio))
109 			atomic_sub(refs, &folio->_pincount);
110 		else
111 			refs *= GUP_PIN_COUNTING_BIAS;
112 	}
113 
114 	if (!put_devmap_managed_folio_refs(folio, refs))
115 		folio_put_refs(folio, refs);
116 }
117 
118 /**
119  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120  * @folio:    pointer to folio to be grabbed
121  * @refs:     the value to (effectively) add to the folio's refcount
122  * @flags:    gup flags: these are the FOLL_* flag values
123  *
124  * This might not do anything at all, depending on the flags argument.
125  *
126  * "grab" names in this file mean, "look at flags to decide whether to use
127  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
128  *
129  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
130  * time.
131  *
132  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134  *
135  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
136  *			be grabbed.
137  *
138  * It is called when we have a stable reference for the folio, typically in
139  * GUP slow path.
140  */
141 int __must_check try_grab_folio(struct folio *folio, int refs,
142 				unsigned int flags)
143 {
144 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
145 		return -ENOMEM;
146 
147 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
148 		return -EREMOTEIO;
149 
150 	if (flags & FOLL_GET)
151 		folio_ref_add(folio, refs);
152 	else if (flags & FOLL_PIN) {
153 		/*
154 		 * Don't take a pin on the zero page - it's not going anywhere
155 		 * and it is used in a *lot* of places.
156 		 */
157 		if (is_zero_folio(folio))
158 			return 0;
159 
160 		/*
161 		 * Increment the normal page refcount field at least once,
162 		 * so that the page really is pinned.
163 		 */
164 		if (folio_test_large(folio)) {
165 			folio_ref_add(folio, refs);
166 			atomic_add(refs, &folio->_pincount);
167 		} else {
168 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
169 		}
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 	}
173 
174 	return 0;
175 }
176 
177 /**
178  * unpin_user_page() - release a dma-pinned page
179  * @page:            pointer to page to be released
180  *
181  * Pages that were pinned via pin_user_pages*() must be released via either
182  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183  * that such pages can be separately tracked and uniquely handled. In
184  * particular, interactions with RDMA and filesystems need special handling.
185  */
186 void unpin_user_page(struct page *page)
187 {
188 	sanity_check_pinned_pages(&page, 1);
189 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
190 }
191 EXPORT_SYMBOL(unpin_user_page);
192 
193 /**
194  * unpin_folio() - release a dma-pinned folio
195  * @folio:         pointer to folio to be released
196  *
197  * Folios that were pinned via memfd_pin_folios() or other similar routines
198  * must be released either using unpin_folio() or unpin_folios().
199  */
200 void unpin_folio(struct folio *folio)
201 {
202 	gup_put_folio(folio, 1, FOLL_PIN);
203 }
204 EXPORT_SYMBOL_GPL(unpin_folio);
205 
206 /**
207  * folio_add_pin - Try to get an additional pin on a pinned folio
208  * @folio: The folio to be pinned
209  *
210  * Get an additional pin on a folio we already have a pin on.  Makes no change
211  * if the folio is a zero_page.
212  */
213 void folio_add_pin(struct folio *folio)
214 {
215 	if (is_zero_folio(folio))
216 		return;
217 
218 	/*
219 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 	 * page refcount field at least once, so that the page really is
221 	 * pinned.
222 	 */
223 	if (folio_test_large(folio)) {
224 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 		folio_ref_inc(folio);
226 		atomic_inc(&folio->_pincount);
227 	} else {
228 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 	}
231 }
232 
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 		unsigned long npages, unsigned long i, unsigned int *ntails)
235 {
236 	struct page *next = nth_page(start, i);
237 	struct folio *folio = page_folio(next);
238 	unsigned int nr = 1;
239 
240 	if (folio_test_large(folio))
241 		nr = min_t(unsigned int, npages - i,
242 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
243 
244 	*ntails = nr;
245 	return folio;
246 }
247 
248 static inline struct folio *gup_folio_next(struct page **list,
249 		unsigned long npages, unsigned long i, unsigned int *ntails)
250 {
251 	struct folio *folio = page_folio(list[i]);
252 	unsigned int nr;
253 
254 	for (nr = i + 1; nr < npages; nr++) {
255 		if (page_folio(list[nr]) != folio)
256 			break;
257 	}
258 
259 	*ntails = nr - i;
260 	return folio;
261 }
262 
263 /**
264  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265  * @pages:  array of pages to be maybe marked dirty, and definitely released.
266  * @npages: number of pages in the @pages array.
267  * @make_dirty: whether to mark the pages dirty
268  *
269  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270  * variants called on that page.
271  *
272  * For each page in the @pages array, make that page (or its head page, if a
273  * compound page) dirty, if @make_dirty is true, and if the page was previously
274  * listed as clean. In any case, releases all pages using unpin_user_page(),
275  * possibly via unpin_user_pages(), for the non-dirty case.
276  *
277  * Please see the unpin_user_page() documentation for details.
278  *
279  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280  * required, then the caller should a) verify that this is really correct,
281  * because _lock() is usually required, and b) hand code it:
282  * set_page_dirty_lock(), unpin_user_page().
283  *
284  */
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 				 bool make_dirty)
287 {
288 	unsigned long i;
289 	struct folio *folio;
290 	unsigned int nr;
291 
292 	if (!make_dirty) {
293 		unpin_user_pages(pages, npages);
294 		return;
295 	}
296 
297 	sanity_check_pinned_pages(pages, npages);
298 	for (i = 0; i < npages; i += nr) {
299 		folio = gup_folio_next(pages, npages, i, &nr);
300 		/*
301 		 * Checking PageDirty at this point may race with
302 		 * clear_page_dirty_for_io(), but that's OK. Two key
303 		 * cases:
304 		 *
305 		 * 1) This code sees the page as already dirty, so it
306 		 * skips the call to set_page_dirty(). That could happen
307 		 * because clear_page_dirty_for_io() called
308 		 * folio_mkclean(), followed by set_page_dirty().
309 		 * However, now the page is going to get written back,
310 		 * which meets the original intention of setting it
311 		 * dirty, so all is well: clear_page_dirty_for_io() goes
312 		 * on to call TestClearPageDirty(), and write the page
313 		 * back.
314 		 *
315 		 * 2) This code sees the page as clean, so it calls
316 		 * set_page_dirty(). The page stays dirty, despite being
317 		 * written back, so it gets written back again in the
318 		 * next writeback cycle. This is harmless.
319 		 */
320 		if (!folio_test_dirty(folio)) {
321 			folio_lock(folio);
322 			folio_mark_dirty(folio);
323 			folio_unlock(folio);
324 		}
325 		gup_put_folio(folio, nr, FOLL_PIN);
326 	}
327 }
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329 
330 /**
331  * unpin_user_page_range_dirty_lock() - release and optionally dirty
332  * gup-pinned page range
333  *
334  * @page:  the starting page of a range maybe marked dirty, and definitely released.
335  * @npages: number of consecutive pages to release.
336  * @make_dirty: whether to mark the pages dirty
337  *
338  * "gup-pinned page range" refers to a range of pages that has had one of the
339  * pin_user_pages() variants called on that page.
340  *
341  * For the page ranges defined by [page .. page+npages], make that range (or
342  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343  * page range was previously listed as clean.
344  *
345  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346  * required, then the caller should a) verify that this is really correct,
347  * because _lock() is usually required, and b) hand code it:
348  * set_page_dirty_lock(), unpin_user_page().
349  *
350  */
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 				      bool make_dirty)
353 {
354 	unsigned long i;
355 	struct folio *folio;
356 	unsigned int nr;
357 
358 	for (i = 0; i < npages; i += nr) {
359 		folio = gup_folio_range_next(page, npages, i, &nr);
360 		if (make_dirty && !folio_test_dirty(folio)) {
361 			folio_lock(folio);
362 			folio_mark_dirty(folio);
363 			folio_unlock(folio);
364 		}
365 		gup_put_folio(folio, nr, FOLL_PIN);
366 	}
367 }
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369 
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
371 {
372 	unsigned long i;
373 	struct folio *folio;
374 	unsigned int nr;
375 
376 	/*
377 	 * Don't perform any sanity checks because we might have raced with
378 	 * fork() and some anonymous pages might now actually be shared --
379 	 * which is why we're unpinning after all.
380 	 */
381 	for (i = 0; i < npages; i += nr) {
382 		folio = gup_folio_next(pages, npages, i, &nr);
383 		gup_put_folio(folio, nr, FOLL_PIN);
384 	}
385 }
386 
387 /**
388  * unpin_user_pages() - release an array of gup-pinned pages.
389  * @pages:  array of pages to be marked dirty and released.
390  * @npages: number of pages in the @pages array.
391  *
392  * For each page in the @pages array, release the page using unpin_user_page().
393  *
394  * Please see the unpin_user_page() documentation for details.
395  */
396 void unpin_user_pages(struct page **pages, unsigned long npages)
397 {
398 	unsigned long i;
399 	struct folio *folio;
400 	unsigned int nr;
401 
402 	/*
403 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 	 * leaving them pinned), but probably not. More likely, gup/pup returned
405 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 	 */
407 	if (WARN_ON(IS_ERR_VALUE(npages)))
408 		return;
409 
410 	sanity_check_pinned_pages(pages, npages);
411 	for (i = 0; i < npages; i += nr) {
412 		folio = gup_folio_next(pages, npages, i, &nr);
413 		gup_put_folio(folio, nr, FOLL_PIN);
414 	}
415 }
416 EXPORT_SYMBOL(unpin_user_pages);
417 
418 /**
419  * unpin_folios() - release an array of gup-pinned folios.
420  * @folios:  array of folios to be marked dirty and released.
421  * @nfolios: number of folios in the @folios array.
422  *
423  * For each folio in the @folios array, release the folio using gup_put_folio.
424  *
425  * Please see the unpin_folio() documentation for details.
426  */
427 void unpin_folios(struct folio **folios, unsigned long nfolios)
428 {
429 	unsigned long i = 0, j;
430 
431 	/*
432 	 * If this WARN_ON() fires, then the system *might* be leaking folios
433 	 * (by leaving them pinned), but probably not. More likely, gup/pup
434 	 * returned a hard -ERRNO error to the caller, who erroneously passed
435 	 * it here.
436 	 */
437 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
438 		return;
439 
440 	while (i < nfolios) {
441 		for (j = i + 1; j < nfolios; j++)
442 			if (folios[i] != folios[j])
443 				break;
444 
445 		if (folios[i])
446 			gup_put_folio(folios[i], j - i, FOLL_PIN);
447 		i = j;
448 	}
449 }
450 EXPORT_SYMBOL_GPL(unpin_folios);
451 
452 /*
453  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
454  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
455  * cache bouncing on large SMP machines for concurrent pinned gups.
456  */
457 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
458 {
459 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
460 		set_bit(MMF_HAS_PINNED, mm_flags);
461 }
462 
463 #ifdef CONFIG_MMU
464 
465 #ifdef CONFIG_HAVE_GUP_FAST
466 static int record_subpages(struct page *page, unsigned long sz,
467 			   unsigned long addr, unsigned long end,
468 			   struct page **pages)
469 {
470 	struct page *start_page;
471 	int nr;
472 
473 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
474 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
475 		pages[nr] = nth_page(start_page, nr);
476 
477 	return nr;
478 }
479 
480 /**
481  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
482  * @page:  pointer to page to be grabbed
483  * @refs:  the value to (effectively) add to the folio's refcount
484  * @flags: gup flags: these are the FOLL_* flag values.
485  *
486  * "grab" names in this file mean, "look at flags to decide whether to use
487  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
488  *
489  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
490  * same time. (That's true throughout the get_user_pages*() and
491  * pin_user_pages*() APIs.) Cases:
492  *
493  *    FOLL_GET: folio's refcount will be incremented by @refs.
494  *
495  *    FOLL_PIN on large folios: folio's refcount will be incremented by
496  *    @refs, and its pincount will be incremented by @refs.
497  *
498  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
499  *    @refs * GUP_PIN_COUNTING_BIAS.
500  *
501  * Return: The folio containing @page (with refcount appropriately
502  * incremented) for success, or NULL upon failure. If neither FOLL_GET
503  * nor FOLL_PIN was set, that's considered failure, and furthermore,
504  * a likely bug in the caller, so a warning is also emitted.
505  *
506  * It uses add ref unless zero to elevate the folio refcount and must be called
507  * in fast path only.
508  */
509 static struct folio *try_grab_folio_fast(struct page *page, int refs,
510 					 unsigned int flags)
511 {
512 	struct folio *folio;
513 
514 	/* Raise warn if it is not called in fast GUP */
515 	VM_WARN_ON_ONCE(!irqs_disabled());
516 
517 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
518 		return NULL;
519 
520 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
521 		return NULL;
522 
523 	if (flags & FOLL_GET)
524 		return try_get_folio(page, refs);
525 
526 	/* FOLL_PIN is set */
527 
528 	/*
529 	 * Don't take a pin on the zero page - it's not going anywhere
530 	 * and it is used in a *lot* of places.
531 	 */
532 	if (is_zero_page(page))
533 		return page_folio(page);
534 
535 	folio = try_get_folio(page, refs);
536 	if (!folio)
537 		return NULL;
538 
539 	/*
540 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
541 	 * right zone, so fail and let the caller fall back to the slow
542 	 * path.
543 	 */
544 	if (unlikely((flags & FOLL_LONGTERM) &&
545 		     !folio_is_longterm_pinnable(folio))) {
546 		if (!put_devmap_managed_folio_refs(folio, refs))
547 			folio_put_refs(folio, refs);
548 		return NULL;
549 	}
550 
551 	/*
552 	 * When pinning a large folio, use an exact count to track it.
553 	 *
554 	 * However, be sure to *also* increment the normal folio
555 	 * refcount field at least once, so that the folio really
556 	 * is pinned.  That's why the refcount from the earlier
557 	 * try_get_folio() is left intact.
558 	 */
559 	if (folio_test_large(folio))
560 		atomic_add(refs, &folio->_pincount);
561 	else
562 		folio_ref_add(folio,
563 				refs * (GUP_PIN_COUNTING_BIAS - 1));
564 	/*
565 	 * Adjust the pincount before re-checking the PTE for changes.
566 	 * This is essentially a smp_mb() and is paired with a memory
567 	 * barrier in folio_try_share_anon_rmap_*().
568 	 */
569 	smp_mb__after_atomic();
570 
571 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
572 
573 	return folio;
574 }
575 #endif	/* CONFIG_HAVE_GUP_FAST */
576 
577 static struct page *no_page_table(struct vm_area_struct *vma,
578 				  unsigned int flags, unsigned long address)
579 {
580 	if (!(flags & FOLL_DUMP))
581 		return NULL;
582 
583 	/*
584 	 * When core dumping, we don't want to allocate unnecessary pages or
585 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
586 	 * then get_dump_page() will return NULL to leave a hole in the dump.
587 	 * But we can only make this optimization where a hole would surely
588 	 * be zero-filled if handle_mm_fault() actually did handle it.
589 	 */
590 	if (is_vm_hugetlb_page(vma)) {
591 		struct hstate *h = hstate_vma(vma);
592 
593 		if (!hugetlbfs_pagecache_present(h, vma, address))
594 			return ERR_PTR(-EFAULT);
595 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
596 		return ERR_PTR(-EFAULT);
597 	}
598 
599 	return NULL;
600 }
601 
602 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
603 static struct page *follow_huge_pud(struct vm_area_struct *vma,
604 				    unsigned long addr, pud_t *pudp,
605 				    int flags, struct follow_page_context *ctx)
606 {
607 	struct mm_struct *mm = vma->vm_mm;
608 	struct page *page;
609 	pud_t pud = *pudp;
610 	unsigned long pfn = pud_pfn(pud);
611 	int ret;
612 
613 	assert_spin_locked(pud_lockptr(mm, pudp));
614 
615 	if ((flags & FOLL_WRITE) && !pud_write(pud))
616 		return NULL;
617 
618 	if (!pud_present(pud))
619 		return NULL;
620 
621 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
622 
623 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
624 	    pud_devmap(pud)) {
625 		/*
626 		 * device mapped pages can only be returned if the caller
627 		 * will manage the page reference count.
628 		 *
629 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
630 		 * assert that here:
631 		 */
632 		if (!(flags & (FOLL_GET | FOLL_PIN)))
633 			return ERR_PTR(-EEXIST);
634 
635 		if (flags & FOLL_TOUCH)
636 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
637 
638 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
639 		if (!ctx->pgmap)
640 			return ERR_PTR(-EFAULT);
641 	}
642 
643 	page = pfn_to_page(pfn);
644 
645 	if (!pud_devmap(pud) && !pud_write(pud) &&
646 	    gup_must_unshare(vma, flags, page))
647 		return ERR_PTR(-EMLINK);
648 
649 	ret = try_grab_folio(page_folio(page), 1, flags);
650 	if (ret)
651 		page = ERR_PTR(ret);
652 	else
653 		ctx->page_mask = HPAGE_PUD_NR - 1;
654 
655 	return page;
656 }
657 
658 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
659 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
660 					struct vm_area_struct *vma,
661 					unsigned int flags)
662 {
663 	/* If the pmd is writable, we can write to the page. */
664 	if (pmd_write(pmd))
665 		return true;
666 
667 	/* Maybe FOLL_FORCE is set to override it? */
668 	if (!(flags & FOLL_FORCE))
669 		return false;
670 
671 	/* But FOLL_FORCE has no effect on shared mappings */
672 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
673 		return false;
674 
675 	/* ... or read-only private ones */
676 	if (!(vma->vm_flags & VM_MAYWRITE))
677 		return false;
678 
679 	/* ... or already writable ones that just need to take a write fault */
680 	if (vma->vm_flags & VM_WRITE)
681 		return false;
682 
683 	/*
684 	 * See can_change_pte_writable(): we broke COW and could map the page
685 	 * writable if we have an exclusive anonymous page ...
686 	 */
687 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
688 		return false;
689 
690 	/* ... and a write-fault isn't required for other reasons. */
691 	if (pmd_needs_soft_dirty_wp(vma, pmd))
692 		return false;
693 	return !userfaultfd_huge_pmd_wp(vma, pmd);
694 }
695 
696 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
697 				    unsigned long addr, pmd_t *pmd,
698 				    unsigned int flags,
699 				    struct follow_page_context *ctx)
700 {
701 	struct mm_struct *mm = vma->vm_mm;
702 	pmd_t pmdval = *pmd;
703 	struct page *page;
704 	int ret;
705 
706 	assert_spin_locked(pmd_lockptr(mm, pmd));
707 
708 	page = pmd_page(pmdval);
709 	if ((flags & FOLL_WRITE) &&
710 	    !can_follow_write_pmd(pmdval, page, vma, flags))
711 		return NULL;
712 
713 	/* Avoid dumping huge zero page */
714 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
715 		return ERR_PTR(-EFAULT);
716 
717 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
718 		return NULL;
719 
720 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
721 		return ERR_PTR(-EMLINK);
722 
723 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
724 			!PageAnonExclusive(page), page);
725 
726 	ret = try_grab_folio(page_folio(page), 1, flags);
727 	if (ret)
728 		return ERR_PTR(ret);
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
732 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
733 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
734 
735 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
736 	ctx->page_mask = HPAGE_PMD_NR - 1;
737 
738 	return page;
739 }
740 
741 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
742 static struct page *follow_huge_pud(struct vm_area_struct *vma,
743 				    unsigned long addr, pud_t *pudp,
744 				    int flags, struct follow_page_context *ctx)
745 {
746 	return NULL;
747 }
748 
749 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
750 				    unsigned long addr, pmd_t *pmd,
751 				    unsigned int flags,
752 				    struct follow_page_context *ctx)
753 {
754 	return NULL;
755 }
756 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
757 
758 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
759 		pte_t *pte, unsigned int flags)
760 {
761 	if (flags & FOLL_TOUCH) {
762 		pte_t orig_entry = ptep_get(pte);
763 		pte_t entry = orig_entry;
764 
765 		if (flags & FOLL_WRITE)
766 			entry = pte_mkdirty(entry);
767 		entry = pte_mkyoung(entry);
768 
769 		if (!pte_same(orig_entry, entry)) {
770 			set_pte_at(vma->vm_mm, address, pte, entry);
771 			update_mmu_cache(vma, address, pte);
772 		}
773 	}
774 
775 	/* Proper page table entry exists, but no corresponding struct page */
776 	return -EEXIST;
777 }
778 
779 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
780 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
781 					struct vm_area_struct *vma,
782 					unsigned int flags)
783 {
784 	/* If the pte is writable, we can write to the page. */
785 	if (pte_write(pte))
786 		return true;
787 
788 	/* Maybe FOLL_FORCE is set to override it? */
789 	if (!(flags & FOLL_FORCE))
790 		return false;
791 
792 	/* But FOLL_FORCE has no effect on shared mappings */
793 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
794 		return false;
795 
796 	/* ... or read-only private ones */
797 	if (!(vma->vm_flags & VM_MAYWRITE))
798 		return false;
799 
800 	/* ... or already writable ones that just need to take a write fault */
801 	if (vma->vm_flags & VM_WRITE)
802 		return false;
803 
804 	/*
805 	 * See can_change_pte_writable(): we broke COW and could map the page
806 	 * writable if we have an exclusive anonymous page ...
807 	 */
808 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
809 		return false;
810 
811 	/* ... and a write-fault isn't required for other reasons. */
812 	if (pte_needs_soft_dirty_wp(vma, pte))
813 		return false;
814 	return !userfaultfd_pte_wp(vma, pte);
815 }
816 
817 static struct page *follow_page_pte(struct vm_area_struct *vma,
818 		unsigned long address, pmd_t *pmd, unsigned int flags,
819 		struct dev_pagemap **pgmap)
820 {
821 	struct mm_struct *mm = vma->vm_mm;
822 	struct page *page;
823 	spinlock_t *ptl;
824 	pte_t *ptep, pte;
825 	int ret;
826 
827 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
828 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
829 			 (FOLL_PIN | FOLL_GET)))
830 		return ERR_PTR(-EINVAL);
831 
832 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
833 	if (!ptep)
834 		return no_page_table(vma, flags, address);
835 	pte = ptep_get(ptep);
836 	if (!pte_present(pte))
837 		goto no_page;
838 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
839 		goto no_page;
840 
841 	page = vm_normal_page(vma, address, pte);
842 
843 	/*
844 	 * We only care about anon pages in can_follow_write_pte() and don't
845 	 * have to worry about pte_devmap() because they are never anon.
846 	 */
847 	if ((flags & FOLL_WRITE) &&
848 	    !can_follow_write_pte(pte, page, vma, flags)) {
849 		page = NULL;
850 		goto out;
851 	}
852 
853 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
854 		/*
855 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
856 		 * case since they are only valid while holding the pgmap
857 		 * reference.
858 		 */
859 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
860 		if (*pgmap)
861 			page = pte_page(pte);
862 		else
863 			goto no_page;
864 	} else if (unlikely(!page)) {
865 		if (flags & FOLL_DUMP) {
866 			/* Avoid special (like zero) pages in core dumps */
867 			page = ERR_PTR(-EFAULT);
868 			goto out;
869 		}
870 
871 		if (is_zero_pfn(pte_pfn(pte))) {
872 			page = pte_page(pte);
873 		} else {
874 			ret = follow_pfn_pte(vma, address, ptep, flags);
875 			page = ERR_PTR(ret);
876 			goto out;
877 		}
878 	}
879 
880 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
881 		page = ERR_PTR(-EMLINK);
882 		goto out;
883 	}
884 
885 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
886 		       !PageAnonExclusive(page), page);
887 
888 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
889 	ret = try_grab_folio(page_folio(page), 1, flags);
890 	if (unlikely(ret)) {
891 		page = ERR_PTR(ret);
892 		goto out;
893 	}
894 
895 	/*
896 	 * We need to make the page accessible if and only if we are going
897 	 * to access its content (the FOLL_PIN case).  Please see
898 	 * Documentation/core-api/pin_user_pages.rst for details.
899 	 */
900 	if (flags & FOLL_PIN) {
901 		ret = arch_make_page_accessible(page);
902 		if (ret) {
903 			unpin_user_page(page);
904 			page = ERR_PTR(ret);
905 			goto out;
906 		}
907 	}
908 	if (flags & FOLL_TOUCH) {
909 		if ((flags & FOLL_WRITE) &&
910 		    !pte_dirty(pte) && !PageDirty(page))
911 			set_page_dirty(page);
912 		/*
913 		 * pte_mkyoung() would be more correct here, but atomic care
914 		 * is needed to avoid losing the dirty bit: it is easier to use
915 		 * mark_page_accessed().
916 		 */
917 		mark_page_accessed(page);
918 	}
919 out:
920 	pte_unmap_unlock(ptep, ptl);
921 	return page;
922 no_page:
923 	pte_unmap_unlock(ptep, ptl);
924 	if (!pte_none(pte))
925 		return NULL;
926 	return no_page_table(vma, flags, address);
927 }
928 
929 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
930 				    unsigned long address, pud_t *pudp,
931 				    unsigned int flags,
932 				    struct follow_page_context *ctx)
933 {
934 	pmd_t *pmd, pmdval;
935 	spinlock_t *ptl;
936 	struct page *page;
937 	struct mm_struct *mm = vma->vm_mm;
938 
939 	pmd = pmd_offset(pudp, address);
940 	pmdval = pmdp_get_lockless(pmd);
941 	if (pmd_none(pmdval))
942 		return no_page_table(vma, flags, address);
943 	if (!pmd_present(pmdval))
944 		return no_page_table(vma, flags, address);
945 	if (pmd_devmap(pmdval)) {
946 		ptl = pmd_lock(mm, pmd);
947 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
948 		spin_unlock(ptl);
949 		if (page)
950 			return page;
951 		return no_page_table(vma, flags, address);
952 	}
953 	if (likely(!pmd_leaf(pmdval)))
954 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
955 
956 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
957 		return no_page_table(vma, flags, address);
958 
959 	ptl = pmd_lock(mm, pmd);
960 	pmdval = *pmd;
961 	if (unlikely(!pmd_present(pmdval))) {
962 		spin_unlock(ptl);
963 		return no_page_table(vma, flags, address);
964 	}
965 	if (unlikely(!pmd_leaf(pmdval))) {
966 		spin_unlock(ptl);
967 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
968 	}
969 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
970 		spin_unlock(ptl);
971 		split_huge_pmd(vma, pmd, address);
972 		/* If pmd was left empty, stuff a page table in there quickly */
973 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
974 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
975 	}
976 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
977 	spin_unlock(ptl);
978 	return page;
979 }
980 
981 static struct page *follow_pud_mask(struct vm_area_struct *vma,
982 				    unsigned long address, p4d_t *p4dp,
983 				    unsigned int flags,
984 				    struct follow_page_context *ctx)
985 {
986 	pud_t *pudp, pud;
987 	spinlock_t *ptl;
988 	struct page *page;
989 	struct mm_struct *mm = vma->vm_mm;
990 
991 	pudp = pud_offset(p4dp, address);
992 	pud = READ_ONCE(*pudp);
993 	if (!pud_present(pud))
994 		return no_page_table(vma, flags, address);
995 	if (pud_leaf(pud)) {
996 		ptl = pud_lock(mm, pudp);
997 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
998 		spin_unlock(ptl);
999 		if (page)
1000 			return page;
1001 		return no_page_table(vma, flags, address);
1002 	}
1003 	if (unlikely(pud_bad(pud)))
1004 		return no_page_table(vma, flags, address);
1005 
1006 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1007 }
1008 
1009 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1010 				    unsigned long address, pgd_t *pgdp,
1011 				    unsigned int flags,
1012 				    struct follow_page_context *ctx)
1013 {
1014 	p4d_t *p4dp, p4d;
1015 
1016 	p4dp = p4d_offset(pgdp, address);
1017 	p4d = READ_ONCE(*p4dp);
1018 	BUILD_BUG_ON(p4d_leaf(p4d));
1019 
1020 	if (!p4d_present(p4d) || p4d_bad(p4d))
1021 		return no_page_table(vma, flags, address);
1022 
1023 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1024 }
1025 
1026 /**
1027  * follow_page_mask - look up a page descriptor from a user-virtual address
1028  * @vma: vm_area_struct mapping @address
1029  * @address: virtual address to look up
1030  * @flags: flags modifying lookup behaviour
1031  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1032  *       pointer to output page_mask
1033  *
1034  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1035  *
1036  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1037  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1038  *
1039  * When getting an anonymous page and the caller has to trigger unsharing
1040  * of a shared anonymous page first, -EMLINK is returned. The caller should
1041  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1042  * relevant with FOLL_PIN and !FOLL_WRITE.
1043  *
1044  * On output, the @ctx->page_mask is set according to the size of the page.
1045  *
1046  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1047  * an error pointer if there is a mapping to something not represented
1048  * by a page descriptor (see also vm_normal_page()).
1049  */
1050 static struct page *follow_page_mask(struct vm_area_struct *vma,
1051 			      unsigned long address, unsigned int flags,
1052 			      struct follow_page_context *ctx)
1053 {
1054 	pgd_t *pgd;
1055 	struct mm_struct *mm = vma->vm_mm;
1056 	struct page *page;
1057 
1058 	vma_pgtable_walk_begin(vma);
1059 
1060 	ctx->page_mask = 0;
1061 	pgd = pgd_offset(mm, address);
1062 
1063 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1064 		page = no_page_table(vma, flags, address);
1065 	else
1066 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1067 
1068 	vma_pgtable_walk_end(vma);
1069 
1070 	return page;
1071 }
1072 
1073 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1074 			 unsigned int foll_flags)
1075 {
1076 	struct follow_page_context ctx = { NULL };
1077 	struct page *page;
1078 
1079 	if (vma_is_secretmem(vma))
1080 		return NULL;
1081 
1082 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
1083 		return NULL;
1084 
1085 	/*
1086 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
1087 	 * to fail on PROT_NONE-mapped pages.
1088 	 */
1089 	page = follow_page_mask(vma, address, foll_flags, &ctx);
1090 	if (ctx.pgmap)
1091 		put_dev_pagemap(ctx.pgmap);
1092 	return page;
1093 }
1094 
1095 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1096 		unsigned int gup_flags, struct vm_area_struct **vma,
1097 		struct page **page)
1098 {
1099 	pgd_t *pgd;
1100 	p4d_t *p4d;
1101 	pud_t *pud;
1102 	pmd_t *pmd;
1103 	pte_t *pte;
1104 	pte_t entry;
1105 	int ret = -EFAULT;
1106 
1107 	/* user gate pages are read-only */
1108 	if (gup_flags & FOLL_WRITE)
1109 		return -EFAULT;
1110 	if (address > TASK_SIZE)
1111 		pgd = pgd_offset_k(address);
1112 	else
1113 		pgd = pgd_offset_gate(mm, address);
1114 	if (pgd_none(*pgd))
1115 		return -EFAULT;
1116 	p4d = p4d_offset(pgd, address);
1117 	if (p4d_none(*p4d))
1118 		return -EFAULT;
1119 	pud = pud_offset(p4d, address);
1120 	if (pud_none(*pud))
1121 		return -EFAULT;
1122 	pmd = pmd_offset(pud, address);
1123 	if (!pmd_present(*pmd))
1124 		return -EFAULT;
1125 	pte = pte_offset_map(pmd, address);
1126 	if (!pte)
1127 		return -EFAULT;
1128 	entry = ptep_get(pte);
1129 	if (pte_none(entry))
1130 		goto unmap;
1131 	*vma = get_gate_vma(mm);
1132 	if (!page)
1133 		goto out;
1134 	*page = vm_normal_page(*vma, address, entry);
1135 	if (!*page) {
1136 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1137 			goto unmap;
1138 		*page = pte_page(entry);
1139 	}
1140 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1141 	if (unlikely(ret))
1142 		goto unmap;
1143 out:
1144 	ret = 0;
1145 unmap:
1146 	pte_unmap(pte);
1147 	return ret;
1148 }
1149 
1150 /*
1151  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1152  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1153  * to 0 and -EBUSY returned.
1154  */
1155 static int faultin_page(struct vm_area_struct *vma,
1156 		unsigned long address, unsigned int *flags, bool unshare,
1157 		int *locked)
1158 {
1159 	unsigned int fault_flags = 0;
1160 	vm_fault_t ret;
1161 
1162 	if (*flags & FOLL_NOFAULT)
1163 		return -EFAULT;
1164 	if (*flags & FOLL_WRITE)
1165 		fault_flags |= FAULT_FLAG_WRITE;
1166 	if (*flags & FOLL_REMOTE)
1167 		fault_flags |= FAULT_FLAG_REMOTE;
1168 	if (*flags & FOLL_UNLOCKABLE) {
1169 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1170 		/*
1171 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1172 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1173 		 * That's because some callers may not be prepared to
1174 		 * handle early exits caused by non-fatal signals.
1175 		 */
1176 		if (*flags & FOLL_INTERRUPTIBLE)
1177 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1178 	}
1179 	if (*flags & FOLL_NOWAIT)
1180 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1181 	if (*flags & FOLL_TRIED) {
1182 		/*
1183 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1184 		 * can co-exist
1185 		 */
1186 		fault_flags |= FAULT_FLAG_TRIED;
1187 	}
1188 	if (unshare) {
1189 		fault_flags |= FAULT_FLAG_UNSHARE;
1190 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1191 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1192 	}
1193 
1194 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1195 
1196 	if (ret & VM_FAULT_COMPLETED) {
1197 		/*
1198 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1199 		 * mmap lock in the page fault handler. Sanity check this.
1200 		 */
1201 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1202 		*locked = 0;
1203 
1204 		/*
1205 		 * We should do the same as VM_FAULT_RETRY, but let's not
1206 		 * return -EBUSY since that's not reflecting the reality of
1207 		 * what has happened - we've just fully completed a page
1208 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1209 		 * that we want to take the mmap lock _again_.
1210 		 */
1211 		return -EAGAIN;
1212 	}
1213 
1214 	if (ret & VM_FAULT_ERROR) {
1215 		int err = vm_fault_to_errno(ret, *flags);
1216 
1217 		if (err)
1218 			return err;
1219 		BUG();
1220 	}
1221 
1222 	if (ret & VM_FAULT_RETRY) {
1223 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1224 			*locked = 0;
1225 		return -EBUSY;
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Writing to file-backed mappings which require folio dirty tracking using GUP
1233  * is a fundamentally broken operation, as kernel write access to GUP mappings
1234  * do not adhere to the semantics expected by a file system.
1235  *
1236  * Consider the following scenario:-
1237  *
1238  * 1. A folio is written to via GUP which write-faults the memory, notifying
1239  *    the file system and dirtying the folio.
1240  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1241  *    the PTE being marked read-only.
1242  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1243  *    direct mapping.
1244  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1245  *    (though it does not have to).
1246  *
1247  * This results in both data being written to a folio without writenotify, and
1248  * the folio being dirtied unexpectedly (if the caller decides to do so).
1249  */
1250 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1251 					  unsigned long gup_flags)
1252 {
1253 	/*
1254 	 * If we aren't pinning then no problematic write can occur. A long term
1255 	 * pin is the most egregious case so this is the case we disallow.
1256 	 */
1257 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1258 	    (FOLL_PIN | FOLL_LONGTERM))
1259 		return true;
1260 
1261 	/*
1262 	 * If the VMA does not require dirty tracking then no problematic write
1263 	 * can occur either.
1264 	 */
1265 	return !vma_needs_dirty_tracking(vma);
1266 }
1267 
1268 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1269 {
1270 	vm_flags_t vm_flags = vma->vm_flags;
1271 	int write = (gup_flags & FOLL_WRITE);
1272 	int foreign = (gup_flags & FOLL_REMOTE);
1273 	bool vma_anon = vma_is_anonymous(vma);
1274 
1275 	if (vm_flags & (VM_IO | VM_PFNMAP))
1276 		return -EFAULT;
1277 
1278 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1279 		return -EFAULT;
1280 
1281 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1282 		return -EOPNOTSUPP;
1283 
1284 	if (vma_is_secretmem(vma))
1285 		return -EFAULT;
1286 
1287 	if (write) {
1288 		if (!vma_anon &&
1289 		    !writable_file_mapping_allowed(vma, gup_flags))
1290 			return -EFAULT;
1291 
1292 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1293 			if (!(gup_flags & FOLL_FORCE))
1294 				return -EFAULT;
1295 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1296 			if (is_vm_hugetlb_page(vma))
1297 				return -EFAULT;
1298 			/*
1299 			 * We used to let the write,force case do COW in a
1300 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1301 			 * set a breakpoint in a read-only mapping of an
1302 			 * executable, without corrupting the file (yet only
1303 			 * when that file had been opened for writing!).
1304 			 * Anon pages in shared mappings are surprising: now
1305 			 * just reject it.
1306 			 */
1307 			if (!is_cow_mapping(vm_flags))
1308 				return -EFAULT;
1309 		}
1310 	} else if (!(vm_flags & VM_READ)) {
1311 		if (!(gup_flags & FOLL_FORCE))
1312 			return -EFAULT;
1313 		/*
1314 		 * Is there actually any vma we can reach here which does not
1315 		 * have VM_MAYREAD set?
1316 		 */
1317 		if (!(vm_flags & VM_MAYREAD))
1318 			return -EFAULT;
1319 	}
1320 	/*
1321 	 * gups are always data accesses, not instruction
1322 	 * fetches, so execute=false here
1323 	 */
1324 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1325 		return -EFAULT;
1326 	return 0;
1327 }
1328 
1329 /*
1330  * This is "vma_lookup()", but with a warning if we would have
1331  * historically expanded the stack in the GUP code.
1332  */
1333 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1334 	 unsigned long addr)
1335 {
1336 #ifdef CONFIG_STACK_GROWSUP
1337 	return vma_lookup(mm, addr);
1338 #else
1339 	static volatile unsigned long next_warn;
1340 	struct vm_area_struct *vma;
1341 	unsigned long now, next;
1342 
1343 	vma = find_vma(mm, addr);
1344 	if (!vma || (addr >= vma->vm_start))
1345 		return vma;
1346 
1347 	/* Only warn for half-way relevant accesses */
1348 	if (!(vma->vm_flags & VM_GROWSDOWN))
1349 		return NULL;
1350 	if (vma->vm_start - addr > 65536)
1351 		return NULL;
1352 
1353 	/* Let's not warn more than once an hour.. */
1354 	now = jiffies; next = next_warn;
1355 	if (next && time_before(now, next))
1356 		return NULL;
1357 	next_warn = now + 60*60*HZ;
1358 
1359 	/* Let people know things may have changed. */
1360 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1361 		current->comm, task_pid_nr(current),
1362 		vma->vm_start, vma->vm_end, addr);
1363 	dump_stack();
1364 	return NULL;
1365 #endif
1366 }
1367 
1368 /**
1369  * __get_user_pages() - pin user pages in memory
1370  * @mm:		mm_struct of target mm
1371  * @start:	starting user address
1372  * @nr_pages:	number of pages from start to pin
1373  * @gup_flags:	flags modifying pin behaviour
1374  * @pages:	array that receives pointers to the pages pinned.
1375  *		Should be at least nr_pages long. Or NULL, if caller
1376  *		only intends to ensure the pages are faulted in.
1377  * @locked:     whether we're still with the mmap_lock held
1378  *
1379  * Returns either number of pages pinned (which may be less than the
1380  * number requested), or an error. Details about the return value:
1381  *
1382  * -- If nr_pages is 0, returns 0.
1383  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1384  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1385  *    pages pinned. Again, this may be less than nr_pages.
1386  * -- 0 return value is possible when the fault would need to be retried.
1387  *
1388  * The caller is responsible for releasing returned @pages, via put_page().
1389  *
1390  * Must be called with mmap_lock held.  It may be released.  See below.
1391  *
1392  * __get_user_pages walks a process's page tables and takes a reference to
1393  * each struct page that each user address corresponds to at a given
1394  * instant. That is, it takes the page that would be accessed if a user
1395  * thread accesses the given user virtual address at that instant.
1396  *
1397  * This does not guarantee that the page exists in the user mappings when
1398  * __get_user_pages returns, and there may even be a completely different
1399  * page there in some cases (eg. if mmapped pagecache has been invalidated
1400  * and subsequently re-faulted). However it does guarantee that the page
1401  * won't be freed completely. And mostly callers simply care that the page
1402  * contains data that was valid *at some point in time*. Typically, an IO
1403  * or similar operation cannot guarantee anything stronger anyway because
1404  * locks can't be held over the syscall boundary.
1405  *
1406  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1407  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1408  * appropriate) must be called after the page is finished with, and
1409  * before put_page is called.
1410  *
1411  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1412  * be released. If this happens *@locked will be set to 0 on return.
1413  *
1414  * A caller using such a combination of @gup_flags must therefore hold the
1415  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1416  * it must be held for either reading or writing and will not be released.
1417  *
1418  * In most cases, get_user_pages or get_user_pages_fast should be used
1419  * instead of __get_user_pages. __get_user_pages should be used only if
1420  * you need some special @gup_flags.
1421  */
1422 static long __get_user_pages(struct mm_struct *mm,
1423 		unsigned long start, unsigned long nr_pages,
1424 		unsigned int gup_flags, struct page **pages,
1425 		int *locked)
1426 {
1427 	long ret = 0, i = 0;
1428 	struct vm_area_struct *vma = NULL;
1429 	struct follow_page_context ctx = { NULL };
1430 
1431 	if (!nr_pages)
1432 		return 0;
1433 
1434 	start = untagged_addr_remote(mm, start);
1435 
1436 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1437 
1438 	do {
1439 		struct page *page;
1440 		unsigned int foll_flags = gup_flags;
1441 		unsigned int page_increm;
1442 
1443 		/* first iteration or cross vma bound */
1444 		if (!vma || start >= vma->vm_end) {
1445 			/*
1446 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1447 			 * lookups+error reporting differently.
1448 			 */
1449 			if (gup_flags & FOLL_MADV_POPULATE) {
1450 				vma = vma_lookup(mm, start);
1451 				if (!vma) {
1452 					ret = -ENOMEM;
1453 					goto out;
1454 				}
1455 				if (check_vma_flags(vma, gup_flags)) {
1456 					ret = -EINVAL;
1457 					goto out;
1458 				}
1459 				goto retry;
1460 			}
1461 			vma = gup_vma_lookup(mm, start);
1462 			if (!vma && in_gate_area(mm, start)) {
1463 				ret = get_gate_page(mm, start & PAGE_MASK,
1464 						gup_flags, &vma,
1465 						pages ? &page : NULL);
1466 				if (ret)
1467 					goto out;
1468 				ctx.page_mask = 0;
1469 				goto next_page;
1470 			}
1471 
1472 			if (!vma) {
1473 				ret = -EFAULT;
1474 				goto out;
1475 			}
1476 			ret = check_vma_flags(vma, gup_flags);
1477 			if (ret)
1478 				goto out;
1479 		}
1480 retry:
1481 		/*
1482 		 * If we have a pending SIGKILL, don't keep faulting pages and
1483 		 * potentially allocating memory.
1484 		 */
1485 		if (fatal_signal_pending(current)) {
1486 			ret = -EINTR;
1487 			goto out;
1488 		}
1489 		cond_resched();
1490 
1491 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1492 		if (!page || PTR_ERR(page) == -EMLINK) {
1493 			ret = faultin_page(vma, start, &foll_flags,
1494 					   PTR_ERR(page) == -EMLINK, locked);
1495 			switch (ret) {
1496 			case 0:
1497 				goto retry;
1498 			case -EBUSY:
1499 			case -EAGAIN:
1500 				ret = 0;
1501 				fallthrough;
1502 			case -EFAULT:
1503 			case -ENOMEM:
1504 			case -EHWPOISON:
1505 				goto out;
1506 			}
1507 			BUG();
1508 		} else if (PTR_ERR(page) == -EEXIST) {
1509 			/*
1510 			 * Proper page table entry exists, but no corresponding
1511 			 * struct page. If the caller expects **pages to be
1512 			 * filled in, bail out now, because that can't be done
1513 			 * for this page.
1514 			 */
1515 			if (pages) {
1516 				ret = PTR_ERR(page);
1517 				goto out;
1518 			}
1519 		} else if (IS_ERR(page)) {
1520 			ret = PTR_ERR(page);
1521 			goto out;
1522 		}
1523 next_page:
1524 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1525 		if (page_increm > nr_pages)
1526 			page_increm = nr_pages;
1527 
1528 		if (pages) {
1529 			struct page *subpage;
1530 			unsigned int j;
1531 
1532 			/*
1533 			 * This must be a large folio (and doesn't need to
1534 			 * be the whole folio; it can be part of it), do
1535 			 * the refcount work for all the subpages too.
1536 			 *
1537 			 * NOTE: here the page may not be the head page
1538 			 * e.g. when start addr is not thp-size aligned.
1539 			 * try_grab_folio() should have taken care of tail
1540 			 * pages.
1541 			 */
1542 			if (page_increm > 1) {
1543 				struct folio *folio = page_folio(page);
1544 
1545 				/*
1546 				 * Since we already hold refcount on the
1547 				 * large folio, this should never fail.
1548 				 */
1549 				if (try_grab_folio(folio, page_increm - 1,
1550 						   foll_flags)) {
1551 					/*
1552 					 * Release the 1st page ref if the
1553 					 * folio is problematic, fail hard.
1554 					 */
1555 					gup_put_folio(folio, 1,
1556 						      foll_flags);
1557 					ret = -EFAULT;
1558 					goto out;
1559 				}
1560 			}
1561 
1562 			for (j = 0; j < page_increm; j++) {
1563 				subpage = nth_page(page, j);
1564 				pages[i + j] = subpage;
1565 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1566 				flush_dcache_page(subpage);
1567 			}
1568 		}
1569 
1570 		i += page_increm;
1571 		start += page_increm * PAGE_SIZE;
1572 		nr_pages -= page_increm;
1573 	} while (nr_pages);
1574 out:
1575 	if (ctx.pgmap)
1576 		put_dev_pagemap(ctx.pgmap);
1577 	return i ? i : ret;
1578 }
1579 
1580 static bool vma_permits_fault(struct vm_area_struct *vma,
1581 			      unsigned int fault_flags)
1582 {
1583 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1584 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1585 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1586 
1587 	if (!(vm_flags & vma->vm_flags))
1588 		return false;
1589 
1590 	/*
1591 	 * The architecture might have a hardware protection
1592 	 * mechanism other than read/write that can deny access.
1593 	 *
1594 	 * gup always represents data access, not instruction
1595 	 * fetches, so execute=false here:
1596 	 */
1597 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1598 		return false;
1599 
1600 	return true;
1601 }
1602 
1603 /**
1604  * fixup_user_fault() - manually resolve a user page fault
1605  * @mm:		mm_struct of target mm
1606  * @address:	user address
1607  * @fault_flags:flags to pass down to handle_mm_fault()
1608  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1609  *		does not allow retry. If NULL, the caller must guarantee
1610  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1611  *
1612  * This is meant to be called in the specific scenario where for locking reasons
1613  * we try to access user memory in atomic context (within a pagefault_disable()
1614  * section), this returns -EFAULT, and we want to resolve the user fault before
1615  * trying again.
1616  *
1617  * Typically this is meant to be used by the futex code.
1618  *
1619  * The main difference with get_user_pages() is that this function will
1620  * unconditionally call handle_mm_fault() which will in turn perform all the
1621  * necessary SW fixup of the dirty and young bits in the PTE, while
1622  * get_user_pages() only guarantees to update these in the struct page.
1623  *
1624  * This is important for some architectures where those bits also gate the
1625  * access permission to the page because they are maintained in software.  On
1626  * such architectures, gup() will not be enough to make a subsequent access
1627  * succeed.
1628  *
1629  * This function will not return with an unlocked mmap_lock. So it has not the
1630  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1631  */
1632 int fixup_user_fault(struct mm_struct *mm,
1633 		     unsigned long address, unsigned int fault_flags,
1634 		     bool *unlocked)
1635 {
1636 	struct vm_area_struct *vma;
1637 	vm_fault_t ret;
1638 
1639 	address = untagged_addr_remote(mm, address);
1640 
1641 	if (unlocked)
1642 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1643 
1644 retry:
1645 	vma = gup_vma_lookup(mm, address);
1646 	if (!vma)
1647 		return -EFAULT;
1648 
1649 	if (!vma_permits_fault(vma, fault_flags))
1650 		return -EFAULT;
1651 
1652 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1653 	    fatal_signal_pending(current))
1654 		return -EINTR;
1655 
1656 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1657 
1658 	if (ret & VM_FAULT_COMPLETED) {
1659 		/*
1660 		 * NOTE: it's a pity that we need to retake the lock here
1661 		 * to pair with the unlock() in the callers. Ideally we
1662 		 * could tell the callers so they do not need to unlock.
1663 		 */
1664 		mmap_read_lock(mm);
1665 		*unlocked = true;
1666 		return 0;
1667 	}
1668 
1669 	if (ret & VM_FAULT_ERROR) {
1670 		int err = vm_fault_to_errno(ret, 0);
1671 
1672 		if (err)
1673 			return err;
1674 		BUG();
1675 	}
1676 
1677 	if (ret & VM_FAULT_RETRY) {
1678 		mmap_read_lock(mm);
1679 		*unlocked = true;
1680 		fault_flags |= FAULT_FLAG_TRIED;
1681 		goto retry;
1682 	}
1683 
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(fixup_user_fault);
1687 
1688 /*
1689  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1690  * specified, it'll also respond to generic signals.  The caller of GUP
1691  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1692  */
1693 static bool gup_signal_pending(unsigned int flags)
1694 {
1695 	if (fatal_signal_pending(current))
1696 		return true;
1697 
1698 	if (!(flags & FOLL_INTERRUPTIBLE))
1699 		return false;
1700 
1701 	return signal_pending(current);
1702 }
1703 
1704 /*
1705  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1706  * the caller. This function may drop the mmap_lock. If it does so, then it will
1707  * set (*locked = 0).
1708  *
1709  * (*locked == 0) means that the caller expects this function to acquire and
1710  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1711  * the function returns, even though it may have changed temporarily during
1712  * function execution.
1713  *
1714  * Please note that this function, unlike __get_user_pages(), will not return 0
1715  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1716  */
1717 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1718 						unsigned long start,
1719 						unsigned long nr_pages,
1720 						struct page **pages,
1721 						int *locked,
1722 						unsigned int flags)
1723 {
1724 	long ret, pages_done;
1725 	bool must_unlock = false;
1726 
1727 	if (!nr_pages)
1728 		return 0;
1729 
1730 	/*
1731 	 * The internal caller expects GUP to manage the lock internally and the
1732 	 * lock must be released when this returns.
1733 	 */
1734 	if (!*locked) {
1735 		if (mmap_read_lock_killable(mm))
1736 			return -EAGAIN;
1737 		must_unlock = true;
1738 		*locked = 1;
1739 	}
1740 	else
1741 		mmap_assert_locked(mm);
1742 
1743 	if (flags & FOLL_PIN)
1744 		mm_set_has_pinned_flag(&mm->flags);
1745 
1746 	/*
1747 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1748 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1749 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1750 	 * for FOLL_GET, not for the newer FOLL_PIN.
1751 	 *
1752 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1753 	 * that here, as any failures will be obvious enough.
1754 	 */
1755 	if (pages && !(flags & FOLL_PIN))
1756 		flags |= FOLL_GET;
1757 
1758 	pages_done = 0;
1759 	for (;;) {
1760 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1761 				       locked);
1762 		if (!(flags & FOLL_UNLOCKABLE)) {
1763 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1764 			pages_done = ret;
1765 			break;
1766 		}
1767 
1768 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1769 		if (!*locked) {
1770 			BUG_ON(ret < 0);
1771 			BUG_ON(ret >= nr_pages);
1772 		}
1773 
1774 		if (ret > 0) {
1775 			nr_pages -= ret;
1776 			pages_done += ret;
1777 			if (!nr_pages)
1778 				break;
1779 		}
1780 		if (*locked) {
1781 			/*
1782 			 * VM_FAULT_RETRY didn't trigger or it was a
1783 			 * FOLL_NOWAIT.
1784 			 */
1785 			if (!pages_done)
1786 				pages_done = ret;
1787 			break;
1788 		}
1789 		/*
1790 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1791 		 * For the prefault case (!pages) we only update counts.
1792 		 */
1793 		if (likely(pages))
1794 			pages += ret;
1795 		start += ret << PAGE_SHIFT;
1796 
1797 		/* The lock was temporarily dropped, so we must unlock later */
1798 		must_unlock = true;
1799 
1800 retry:
1801 		/*
1802 		 * Repeat on the address that fired VM_FAULT_RETRY
1803 		 * with both FAULT_FLAG_ALLOW_RETRY and
1804 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1805 		 * by fatal signals of even common signals, depending on
1806 		 * the caller's request. So we need to check it before we
1807 		 * start trying again otherwise it can loop forever.
1808 		 */
1809 		if (gup_signal_pending(flags)) {
1810 			if (!pages_done)
1811 				pages_done = -EINTR;
1812 			break;
1813 		}
1814 
1815 		ret = mmap_read_lock_killable(mm);
1816 		if (ret) {
1817 			BUG_ON(ret > 0);
1818 			if (!pages_done)
1819 				pages_done = ret;
1820 			break;
1821 		}
1822 
1823 		*locked = 1;
1824 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1825 				       pages, locked);
1826 		if (!*locked) {
1827 			/* Continue to retry until we succeeded */
1828 			BUG_ON(ret != 0);
1829 			goto retry;
1830 		}
1831 		if (ret != 1) {
1832 			BUG_ON(ret > 1);
1833 			if (!pages_done)
1834 				pages_done = ret;
1835 			break;
1836 		}
1837 		nr_pages--;
1838 		pages_done++;
1839 		if (!nr_pages)
1840 			break;
1841 		if (likely(pages))
1842 			pages++;
1843 		start += PAGE_SIZE;
1844 	}
1845 	if (must_unlock && *locked) {
1846 		/*
1847 		 * We either temporarily dropped the lock, or the caller
1848 		 * requested that we both acquire and drop the lock. Either way,
1849 		 * we must now unlock, and notify the caller of that state.
1850 		 */
1851 		mmap_read_unlock(mm);
1852 		*locked = 0;
1853 	}
1854 
1855 	/*
1856 	 * Failing to pin anything implies something has gone wrong (except when
1857 	 * FOLL_NOWAIT is specified).
1858 	 */
1859 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1860 		return -EFAULT;
1861 
1862 	return pages_done;
1863 }
1864 
1865 /**
1866  * populate_vma_page_range() -  populate a range of pages in the vma.
1867  * @vma:   target vma
1868  * @start: start address
1869  * @end:   end address
1870  * @locked: whether the mmap_lock is still held
1871  *
1872  * This takes care of mlocking the pages too if VM_LOCKED is set.
1873  *
1874  * Return either number of pages pinned in the vma, or a negative error
1875  * code on error.
1876  *
1877  * vma->vm_mm->mmap_lock must be held.
1878  *
1879  * If @locked is NULL, it may be held for read or write and will
1880  * be unperturbed.
1881  *
1882  * If @locked is non-NULL, it must held for read only and may be
1883  * released.  If it's released, *@locked will be set to 0.
1884  */
1885 long populate_vma_page_range(struct vm_area_struct *vma,
1886 		unsigned long start, unsigned long end, int *locked)
1887 {
1888 	struct mm_struct *mm = vma->vm_mm;
1889 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1890 	int local_locked = 1;
1891 	int gup_flags;
1892 	long ret;
1893 
1894 	VM_BUG_ON(!PAGE_ALIGNED(start));
1895 	VM_BUG_ON(!PAGE_ALIGNED(end));
1896 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1897 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1898 	mmap_assert_locked(mm);
1899 
1900 	/*
1901 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1902 	 * faultin_page() to break COW, so it has no work to do here.
1903 	 */
1904 	if (vma->vm_flags & VM_LOCKONFAULT)
1905 		return nr_pages;
1906 
1907 	/* ... similarly, we've never faulted in PROT_NONE pages */
1908 	if (!vma_is_accessible(vma))
1909 		return -EFAULT;
1910 
1911 	gup_flags = FOLL_TOUCH;
1912 	/*
1913 	 * We want to touch writable mappings with a write fault in order
1914 	 * to break COW, except for shared mappings because these don't COW
1915 	 * and we would not want to dirty them for nothing.
1916 	 *
1917 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1918 	 * readable (ie write-only or executable).
1919 	 */
1920 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1921 		gup_flags |= FOLL_WRITE;
1922 	else
1923 		gup_flags |= FOLL_FORCE;
1924 
1925 	if (locked)
1926 		gup_flags |= FOLL_UNLOCKABLE;
1927 
1928 	/*
1929 	 * We made sure addr is within a VMA, so the following will
1930 	 * not result in a stack expansion that recurses back here.
1931 	 */
1932 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1933 			       NULL, locked ? locked : &local_locked);
1934 	lru_add_drain();
1935 	return ret;
1936 }
1937 
1938 /*
1939  * faultin_page_range() - populate (prefault) page tables inside the
1940  *			  given range readable/writable
1941  *
1942  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1943  *
1944  * @mm: the mm to populate page tables in
1945  * @start: start address
1946  * @end: end address
1947  * @write: whether to prefault readable or writable
1948  * @locked: whether the mmap_lock is still held
1949  *
1950  * Returns either number of processed pages in the MM, or a negative error
1951  * code on error (see __get_user_pages()). Note that this function reports
1952  * errors related to VMAs, such as incompatible mappings, as expected by
1953  * MADV_POPULATE_(READ|WRITE).
1954  *
1955  * The range must be page-aligned.
1956  *
1957  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1958  */
1959 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1960 			unsigned long end, bool write, int *locked)
1961 {
1962 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1963 	int gup_flags;
1964 	long ret;
1965 
1966 	VM_BUG_ON(!PAGE_ALIGNED(start));
1967 	VM_BUG_ON(!PAGE_ALIGNED(end));
1968 	mmap_assert_locked(mm);
1969 
1970 	/*
1971 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1972 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1973 	 *	       difference with !FOLL_FORCE, because the page is writable
1974 	 *	       in the page table.
1975 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1976 	 *		  a poisoned page.
1977 	 * !FOLL_FORCE: Require proper access permissions.
1978 	 */
1979 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1980 		    FOLL_MADV_POPULATE;
1981 	if (write)
1982 		gup_flags |= FOLL_WRITE;
1983 
1984 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1985 				      gup_flags);
1986 	lru_add_drain();
1987 	return ret;
1988 }
1989 
1990 /*
1991  * __mm_populate - populate and/or mlock pages within a range of address space.
1992  *
1993  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1994  * flags. VMAs must be already marked with the desired vm_flags, and
1995  * mmap_lock must not be held.
1996  */
1997 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1998 {
1999 	struct mm_struct *mm = current->mm;
2000 	unsigned long end, nstart, nend;
2001 	struct vm_area_struct *vma = NULL;
2002 	int locked = 0;
2003 	long ret = 0;
2004 
2005 	end = start + len;
2006 
2007 	for (nstart = start; nstart < end; nstart = nend) {
2008 		/*
2009 		 * We want to fault in pages for [nstart; end) address range.
2010 		 * Find first corresponding VMA.
2011 		 */
2012 		if (!locked) {
2013 			locked = 1;
2014 			mmap_read_lock(mm);
2015 			vma = find_vma_intersection(mm, nstart, end);
2016 		} else if (nstart >= vma->vm_end)
2017 			vma = find_vma_intersection(mm, vma->vm_end, end);
2018 
2019 		if (!vma)
2020 			break;
2021 		/*
2022 		 * Set [nstart; nend) to intersection of desired address
2023 		 * range with the first VMA. Also, skip undesirable VMA types.
2024 		 */
2025 		nend = min(end, vma->vm_end);
2026 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2027 			continue;
2028 		if (nstart < vma->vm_start)
2029 			nstart = vma->vm_start;
2030 		/*
2031 		 * Now fault in a range of pages. populate_vma_page_range()
2032 		 * double checks the vma flags, so that it won't mlock pages
2033 		 * if the vma was already munlocked.
2034 		 */
2035 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2036 		if (ret < 0) {
2037 			if (ignore_errors) {
2038 				ret = 0;
2039 				continue;	/* continue at next VMA */
2040 			}
2041 			break;
2042 		}
2043 		nend = nstart + ret * PAGE_SIZE;
2044 		ret = 0;
2045 	}
2046 	if (locked)
2047 		mmap_read_unlock(mm);
2048 	return ret;	/* 0 or negative error code */
2049 }
2050 #else /* CONFIG_MMU */
2051 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2052 		unsigned long nr_pages, struct page **pages,
2053 		int *locked, unsigned int foll_flags)
2054 {
2055 	struct vm_area_struct *vma;
2056 	bool must_unlock = false;
2057 	unsigned long vm_flags;
2058 	long i;
2059 
2060 	if (!nr_pages)
2061 		return 0;
2062 
2063 	/*
2064 	 * The internal caller expects GUP to manage the lock internally and the
2065 	 * lock must be released when this returns.
2066 	 */
2067 	if (!*locked) {
2068 		if (mmap_read_lock_killable(mm))
2069 			return -EAGAIN;
2070 		must_unlock = true;
2071 		*locked = 1;
2072 	}
2073 
2074 	/* calculate required read or write permissions.
2075 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2076 	 */
2077 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2078 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2079 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2080 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2081 
2082 	for (i = 0; i < nr_pages; i++) {
2083 		vma = find_vma(mm, start);
2084 		if (!vma)
2085 			break;
2086 
2087 		/* protect what we can, including chardevs */
2088 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2089 		    !(vm_flags & vma->vm_flags))
2090 			break;
2091 
2092 		if (pages) {
2093 			pages[i] = virt_to_page((void *)start);
2094 			if (pages[i])
2095 				get_page(pages[i]);
2096 		}
2097 
2098 		start = (start + PAGE_SIZE) & PAGE_MASK;
2099 	}
2100 
2101 	if (must_unlock && *locked) {
2102 		mmap_read_unlock(mm);
2103 		*locked = 0;
2104 	}
2105 
2106 	return i ? : -EFAULT;
2107 }
2108 #endif /* !CONFIG_MMU */
2109 
2110 /**
2111  * fault_in_writeable - fault in userspace address range for writing
2112  * @uaddr: start of address range
2113  * @size: size of address range
2114  *
2115  * Returns the number of bytes not faulted in (like copy_to_user() and
2116  * copy_from_user()).
2117  */
2118 size_t fault_in_writeable(char __user *uaddr, size_t size)
2119 {
2120 	char __user *start = uaddr, *end;
2121 
2122 	if (unlikely(size == 0))
2123 		return 0;
2124 	if (!user_write_access_begin(uaddr, size))
2125 		return size;
2126 	if (!PAGE_ALIGNED(uaddr)) {
2127 		unsafe_put_user(0, uaddr, out);
2128 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2129 	}
2130 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2131 	if (unlikely(end < start))
2132 		end = NULL;
2133 	while (uaddr != end) {
2134 		unsafe_put_user(0, uaddr, out);
2135 		uaddr += PAGE_SIZE;
2136 	}
2137 
2138 out:
2139 	user_write_access_end();
2140 	if (size > uaddr - start)
2141 		return size - (uaddr - start);
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL(fault_in_writeable);
2145 
2146 /**
2147  * fault_in_subpage_writeable - fault in an address range for writing
2148  * @uaddr: start of address range
2149  * @size: size of address range
2150  *
2151  * Fault in a user address range for writing while checking for permissions at
2152  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2153  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2154  *
2155  * Returns the number of bytes not faulted in (like copy_to_user() and
2156  * copy_from_user()).
2157  */
2158 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2159 {
2160 	size_t faulted_in;
2161 
2162 	/*
2163 	 * Attempt faulting in at page granularity first for page table
2164 	 * permission checking. The arch-specific probe_subpage_writeable()
2165 	 * functions may not check for this.
2166 	 */
2167 	faulted_in = size - fault_in_writeable(uaddr, size);
2168 	if (faulted_in)
2169 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2170 
2171 	return size - faulted_in;
2172 }
2173 EXPORT_SYMBOL(fault_in_subpage_writeable);
2174 
2175 /*
2176  * fault_in_safe_writeable - fault in an address range for writing
2177  * @uaddr: start of address range
2178  * @size: length of address range
2179  *
2180  * Faults in an address range for writing.  This is primarily useful when we
2181  * already know that some or all of the pages in the address range aren't in
2182  * memory.
2183  *
2184  * Unlike fault_in_writeable(), this function is non-destructive.
2185  *
2186  * Note that we don't pin or otherwise hold the pages referenced that we fault
2187  * in.  There's no guarantee that they'll stay in memory for any duration of
2188  * time.
2189  *
2190  * Returns the number of bytes not faulted in, like copy_to_user() and
2191  * copy_from_user().
2192  */
2193 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2194 {
2195 	unsigned long start = (unsigned long)uaddr, end;
2196 	struct mm_struct *mm = current->mm;
2197 	bool unlocked = false;
2198 
2199 	if (unlikely(size == 0))
2200 		return 0;
2201 	end = PAGE_ALIGN(start + size);
2202 	if (end < start)
2203 		end = 0;
2204 
2205 	mmap_read_lock(mm);
2206 	do {
2207 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2208 			break;
2209 		start = (start + PAGE_SIZE) & PAGE_MASK;
2210 	} while (start != end);
2211 	mmap_read_unlock(mm);
2212 
2213 	if (size > (unsigned long)uaddr - start)
2214 		return size - ((unsigned long)uaddr - start);
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL(fault_in_safe_writeable);
2218 
2219 /**
2220  * fault_in_readable - fault in userspace address range for reading
2221  * @uaddr: start of user address range
2222  * @size: size of user address range
2223  *
2224  * Returns the number of bytes not faulted in (like copy_to_user() and
2225  * copy_from_user()).
2226  */
2227 size_t fault_in_readable(const char __user *uaddr, size_t size)
2228 {
2229 	const char __user *start = uaddr, *end;
2230 	volatile char c;
2231 
2232 	if (unlikely(size == 0))
2233 		return 0;
2234 	if (!user_read_access_begin(uaddr, size))
2235 		return size;
2236 	if (!PAGE_ALIGNED(uaddr)) {
2237 		unsafe_get_user(c, uaddr, out);
2238 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2239 	}
2240 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2241 	if (unlikely(end < start))
2242 		end = NULL;
2243 	while (uaddr != end) {
2244 		unsafe_get_user(c, uaddr, out);
2245 		uaddr += PAGE_SIZE;
2246 	}
2247 
2248 out:
2249 	user_read_access_end();
2250 	(void)c;
2251 	if (size > uaddr - start)
2252 		return size - (uaddr - start);
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL(fault_in_readable);
2256 
2257 /**
2258  * get_dump_page() - pin user page in memory while writing it to core dump
2259  * @addr: user address
2260  *
2261  * Returns struct page pointer of user page pinned for dump,
2262  * to be freed afterwards by put_page().
2263  *
2264  * Returns NULL on any kind of failure - a hole must then be inserted into
2265  * the corefile, to preserve alignment with its headers; and also returns
2266  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2267  * allowing a hole to be left in the corefile to save disk space.
2268  *
2269  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2270  */
2271 #ifdef CONFIG_ELF_CORE
2272 struct page *get_dump_page(unsigned long addr)
2273 {
2274 	struct page *page;
2275 	int locked = 0;
2276 	int ret;
2277 
2278 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2279 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2280 	return (ret == 1) ? page : NULL;
2281 }
2282 #endif /* CONFIG_ELF_CORE */
2283 
2284 #ifdef CONFIG_MIGRATION
2285 /*
2286  * Returns the number of collected folios. Return value is always >= 0.
2287  */
2288 static unsigned long collect_longterm_unpinnable_folios(
2289 					struct list_head *movable_folio_list,
2290 					unsigned long nr_folios,
2291 					struct folio **folios)
2292 {
2293 	unsigned long i, collected = 0;
2294 	struct folio *prev_folio = NULL;
2295 	bool drain_allow = true;
2296 
2297 	for (i = 0; i < nr_folios; i++) {
2298 		struct folio *folio = folios[i];
2299 
2300 		if (folio == prev_folio)
2301 			continue;
2302 		prev_folio = folio;
2303 
2304 		if (folio_is_longterm_pinnable(folio))
2305 			continue;
2306 
2307 		collected++;
2308 
2309 		if (folio_is_device_coherent(folio))
2310 			continue;
2311 
2312 		if (folio_test_hugetlb(folio)) {
2313 			isolate_hugetlb(folio, movable_folio_list);
2314 			continue;
2315 		}
2316 
2317 		if (!folio_test_lru(folio) && drain_allow) {
2318 			lru_add_drain_all();
2319 			drain_allow = false;
2320 		}
2321 
2322 		if (!folio_isolate_lru(folio))
2323 			continue;
2324 
2325 		list_add_tail(&folio->lru, movable_folio_list);
2326 		node_stat_mod_folio(folio,
2327 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2328 				    folio_nr_pages(folio));
2329 	}
2330 
2331 	return collected;
2332 }
2333 
2334 /*
2335  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2336  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2337  * failure (or partial success).
2338  */
2339 static int migrate_longterm_unpinnable_folios(
2340 					struct list_head *movable_folio_list,
2341 					unsigned long nr_folios,
2342 					struct folio **folios)
2343 {
2344 	int ret;
2345 	unsigned long i;
2346 
2347 	for (i = 0; i < nr_folios; i++) {
2348 		struct folio *folio = folios[i];
2349 
2350 		if (folio_is_device_coherent(folio)) {
2351 			/*
2352 			 * Migration will fail if the folio is pinned, so
2353 			 * convert the pin on the source folio to a normal
2354 			 * reference.
2355 			 */
2356 			folios[i] = NULL;
2357 			folio_get(folio);
2358 			gup_put_folio(folio, 1, FOLL_PIN);
2359 
2360 			if (migrate_device_coherent_page(&folio->page)) {
2361 				ret = -EBUSY;
2362 				goto err;
2363 			}
2364 
2365 			continue;
2366 		}
2367 
2368 		/*
2369 		 * We can't migrate folios with unexpected references, so drop
2370 		 * the reference obtained by __get_user_pages_locked().
2371 		 * Migrating folios have been added to movable_folio_list after
2372 		 * calling folio_isolate_lru() which takes a reference so the
2373 		 * folio won't be freed if it's migrating.
2374 		 */
2375 		unpin_folio(folios[i]);
2376 		folios[i] = NULL;
2377 	}
2378 
2379 	if (!list_empty(movable_folio_list)) {
2380 		struct migration_target_control mtc = {
2381 			.nid = NUMA_NO_NODE,
2382 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2383 			.reason = MR_LONGTERM_PIN,
2384 		};
2385 
2386 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2387 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2388 				  MR_LONGTERM_PIN, NULL)) {
2389 			ret = -ENOMEM;
2390 			goto err;
2391 		}
2392 	}
2393 
2394 	putback_movable_pages(movable_folio_list);
2395 
2396 	return -EAGAIN;
2397 
2398 err:
2399 	unpin_folios(folios, nr_folios);
2400 	putback_movable_pages(movable_folio_list);
2401 
2402 	return ret;
2403 }
2404 
2405 /*
2406  * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2407  * Rather confusingly, all folios in the range are required to be pinned via
2408  * FOLL_PIN, before calling this routine.
2409  *
2410  * If any folios in the range are not allowed to be pinned, then this routine
2411  * will migrate those folios away, unpin all the folios in the range and return
2412  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2413  * call this routine again.
2414  *
2415  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2416  * The caller should give up, and propagate the error back up the call stack.
2417  *
2418  * If everything is OK and all folios in the range are allowed to be pinned,
2419  * then this routine leaves all folios pinned and returns zero for success.
2420  */
2421 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2422 					     struct folio **folios)
2423 {
2424 	unsigned long collected;
2425 	LIST_HEAD(movable_folio_list);
2426 
2427 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2428 						       nr_folios, folios);
2429 	if (!collected)
2430 		return 0;
2431 
2432 	return migrate_longterm_unpinnable_folios(&movable_folio_list,
2433 						  nr_folios, folios);
2434 }
2435 
2436 /*
2437  * This routine just converts all the pages in the @pages array to folios and
2438  * calls check_and_migrate_movable_folios() to do the heavy lifting.
2439  *
2440  * Please see the check_and_migrate_movable_folios() documentation for details.
2441  */
2442 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2443 					    struct page **pages)
2444 {
2445 	struct folio **folios;
2446 	long i, ret;
2447 
2448 	folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2449 	if (!folios)
2450 		return -ENOMEM;
2451 
2452 	for (i = 0; i < nr_pages; i++)
2453 		folios[i] = page_folio(pages[i]);
2454 
2455 	ret = check_and_migrate_movable_folios(nr_pages, folios);
2456 
2457 	kfree(folios);
2458 	return ret;
2459 }
2460 #else
2461 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2462 					    struct page **pages)
2463 {
2464 	return 0;
2465 }
2466 
2467 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2468 					     struct folio **folios)
2469 {
2470 	return 0;
2471 }
2472 #endif /* CONFIG_MIGRATION */
2473 
2474 /*
2475  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2476  * allows us to process the FOLL_LONGTERM flag.
2477  */
2478 static long __gup_longterm_locked(struct mm_struct *mm,
2479 				  unsigned long start,
2480 				  unsigned long nr_pages,
2481 				  struct page **pages,
2482 				  int *locked,
2483 				  unsigned int gup_flags)
2484 {
2485 	unsigned int flags;
2486 	long rc, nr_pinned_pages;
2487 
2488 	if (!(gup_flags & FOLL_LONGTERM))
2489 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2490 					       locked, gup_flags);
2491 
2492 	flags = memalloc_pin_save();
2493 	do {
2494 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2495 							  pages, locked,
2496 							  gup_flags);
2497 		if (nr_pinned_pages <= 0) {
2498 			rc = nr_pinned_pages;
2499 			break;
2500 		}
2501 
2502 		/* FOLL_LONGTERM implies FOLL_PIN */
2503 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2504 	} while (rc == -EAGAIN);
2505 	memalloc_pin_restore(flags);
2506 	return rc ? rc : nr_pinned_pages;
2507 }
2508 
2509 /*
2510  * Check that the given flags are valid for the exported gup/pup interface, and
2511  * update them with the required flags that the caller must have set.
2512  */
2513 static bool is_valid_gup_args(struct page **pages, int *locked,
2514 			      unsigned int *gup_flags_p, unsigned int to_set)
2515 {
2516 	unsigned int gup_flags = *gup_flags_p;
2517 
2518 	/*
2519 	 * These flags not allowed to be specified externally to the gup
2520 	 * interfaces:
2521 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2522 	 * - FOLL_REMOTE is internal only and used on follow_page()
2523 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2524 	 */
2525 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2526 		return false;
2527 
2528 	gup_flags |= to_set;
2529 	if (locked) {
2530 		/* At the external interface locked must be set */
2531 		if (WARN_ON_ONCE(*locked != 1))
2532 			return false;
2533 
2534 		gup_flags |= FOLL_UNLOCKABLE;
2535 	}
2536 
2537 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2538 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2539 			 (FOLL_PIN | FOLL_GET)))
2540 		return false;
2541 
2542 	/* LONGTERM can only be specified when pinning */
2543 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2544 		return false;
2545 
2546 	/* Pages input must be given if using GET/PIN */
2547 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2548 		return false;
2549 
2550 	/* We want to allow the pgmap to be hot-unplugged at all times */
2551 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2552 			 (gup_flags & FOLL_PCI_P2PDMA)))
2553 		return false;
2554 
2555 	*gup_flags_p = gup_flags;
2556 	return true;
2557 }
2558 
2559 #ifdef CONFIG_MMU
2560 /**
2561  * get_user_pages_remote() - pin user pages in memory
2562  * @mm:		mm_struct of target mm
2563  * @start:	starting user address
2564  * @nr_pages:	number of pages from start to pin
2565  * @gup_flags:	flags modifying lookup behaviour
2566  * @pages:	array that receives pointers to the pages pinned.
2567  *		Should be at least nr_pages long. Or NULL, if caller
2568  *		only intends to ensure the pages are faulted in.
2569  * @locked:	pointer to lock flag indicating whether lock is held and
2570  *		subsequently whether VM_FAULT_RETRY functionality can be
2571  *		utilised. Lock must initially be held.
2572  *
2573  * Returns either number of pages pinned (which may be less than the
2574  * number requested), or an error. Details about the return value:
2575  *
2576  * -- If nr_pages is 0, returns 0.
2577  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2578  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2579  *    pages pinned. Again, this may be less than nr_pages.
2580  *
2581  * The caller is responsible for releasing returned @pages, via put_page().
2582  *
2583  * Must be called with mmap_lock held for read or write.
2584  *
2585  * get_user_pages_remote walks a process's page tables and takes a reference
2586  * to each struct page that each user address corresponds to at a given
2587  * instant. That is, it takes the page that would be accessed if a user
2588  * thread accesses the given user virtual address at that instant.
2589  *
2590  * This does not guarantee that the page exists in the user mappings when
2591  * get_user_pages_remote returns, and there may even be a completely different
2592  * page there in some cases (eg. if mmapped pagecache has been invalidated
2593  * and subsequently re-faulted). However it does guarantee that the page
2594  * won't be freed completely. And mostly callers simply care that the page
2595  * contains data that was valid *at some point in time*. Typically, an IO
2596  * or similar operation cannot guarantee anything stronger anyway because
2597  * locks can't be held over the syscall boundary.
2598  *
2599  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2600  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2601  * be called after the page is finished with, and before put_page is called.
2602  *
2603  * get_user_pages_remote is typically used for fewer-copy IO operations,
2604  * to get a handle on the memory by some means other than accesses
2605  * via the user virtual addresses. The pages may be submitted for
2606  * DMA to devices or accessed via their kernel linear mapping (via the
2607  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2608  *
2609  * See also get_user_pages_fast, for performance critical applications.
2610  *
2611  * get_user_pages_remote should be phased out in favor of
2612  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2613  * should use get_user_pages_remote because it cannot pass
2614  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2615  */
2616 long get_user_pages_remote(struct mm_struct *mm,
2617 		unsigned long start, unsigned long nr_pages,
2618 		unsigned int gup_flags, struct page **pages,
2619 		int *locked)
2620 {
2621 	int local_locked = 1;
2622 
2623 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2624 			       FOLL_TOUCH | FOLL_REMOTE))
2625 		return -EINVAL;
2626 
2627 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2628 				       locked ? locked : &local_locked,
2629 				       gup_flags);
2630 }
2631 EXPORT_SYMBOL(get_user_pages_remote);
2632 
2633 #else /* CONFIG_MMU */
2634 long get_user_pages_remote(struct mm_struct *mm,
2635 			   unsigned long start, unsigned long nr_pages,
2636 			   unsigned int gup_flags, struct page **pages,
2637 			   int *locked)
2638 {
2639 	return 0;
2640 }
2641 #endif /* !CONFIG_MMU */
2642 
2643 /**
2644  * get_user_pages() - pin user pages in memory
2645  * @start:      starting user address
2646  * @nr_pages:   number of pages from start to pin
2647  * @gup_flags:  flags modifying lookup behaviour
2648  * @pages:      array that receives pointers to the pages pinned.
2649  *              Should be at least nr_pages long. Or NULL, if caller
2650  *              only intends to ensure the pages are faulted in.
2651  *
2652  * This is the same as get_user_pages_remote(), just with a less-flexible
2653  * calling convention where we assume that the mm being operated on belongs to
2654  * the current task, and doesn't allow passing of a locked parameter.  We also
2655  * obviously don't pass FOLL_REMOTE in here.
2656  */
2657 long get_user_pages(unsigned long start, unsigned long nr_pages,
2658 		    unsigned int gup_flags, struct page **pages)
2659 {
2660 	int locked = 1;
2661 
2662 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2663 		return -EINVAL;
2664 
2665 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2666 				       &locked, gup_flags);
2667 }
2668 EXPORT_SYMBOL(get_user_pages);
2669 
2670 /*
2671  * get_user_pages_unlocked() is suitable to replace the form:
2672  *
2673  *      mmap_read_lock(mm);
2674  *      get_user_pages(mm, ..., pages, NULL);
2675  *      mmap_read_unlock(mm);
2676  *
2677  *  with:
2678  *
2679  *      get_user_pages_unlocked(mm, ..., pages);
2680  *
2681  * It is functionally equivalent to get_user_pages_fast so
2682  * get_user_pages_fast should be used instead if specific gup_flags
2683  * (e.g. FOLL_FORCE) are not required.
2684  */
2685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2686 			     struct page **pages, unsigned int gup_flags)
2687 {
2688 	int locked = 0;
2689 
2690 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2691 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2692 		return -EINVAL;
2693 
2694 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2695 				       &locked, gup_flags);
2696 }
2697 EXPORT_SYMBOL(get_user_pages_unlocked);
2698 
2699 /*
2700  * GUP-fast
2701  *
2702  * get_user_pages_fast attempts to pin user pages by walking the page
2703  * tables directly and avoids taking locks. Thus the walker needs to be
2704  * protected from page table pages being freed from under it, and should
2705  * block any THP splits.
2706  *
2707  * One way to achieve this is to have the walker disable interrupts, and
2708  * rely on IPIs from the TLB flushing code blocking before the page table
2709  * pages are freed. This is unsuitable for architectures that do not need
2710  * to broadcast an IPI when invalidating TLBs.
2711  *
2712  * Another way to achieve this is to batch up page table containing pages
2713  * belonging to more than one mm_user, then rcu_sched a callback to free those
2714  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2715  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2716  * (which is a relatively rare event). The code below adopts this strategy.
2717  *
2718  * Before activating this code, please be aware that the following assumptions
2719  * are currently made:
2720  *
2721  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2722  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2723  *
2724  *  *) ptes can be read atomically by the architecture.
2725  *
2726  *  *) access_ok is sufficient to validate userspace address ranges.
2727  *
2728  * The last two assumptions can be relaxed by the addition of helper functions.
2729  *
2730  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2731  */
2732 #ifdef CONFIG_HAVE_GUP_FAST
2733 /*
2734  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2735  * a specific folio.
2736  *
2737  * This call assumes the caller has pinned the folio, that the lowest page table
2738  * level still points to this folio, and that interrupts have been disabled.
2739  *
2740  * GUP-fast must reject all secretmem folios.
2741  *
2742  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2743  * (see comment describing the writable_file_mapping_allowed() function). We
2744  * therefore try to avoid the most egregious case of a long-term mapping doing
2745  * so.
2746  *
2747  * This function cannot be as thorough as that one as the VMA is not available
2748  * in the fast path, so instead we whitelist known good cases and if in doubt,
2749  * fall back to the slow path.
2750  */
2751 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2752 {
2753 	bool reject_file_backed = false;
2754 	struct address_space *mapping;
2755 	bool check_secretmem = false;
2756 	unsigned long mapping_flags;
2757 
2758 	/*
2759 	 * If we aren't pinning then no problematic write can occur. A long term
2760 	 * pin is the most egregious case so this is the one we disallow.
2761 	 */
2762 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2763 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2764 		reject_file_backed = true;
2765 
2766 	/* We hold a folio reference, so we can safely access folio fields. */
2767 
2768 	/* secretmem folios are always order-0 folios. */
2769 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2770 		check_secretmem = true;
2771 
2772 	if (!reject_file_backed && !check_secretmem)
2773 		return true;
2774 
2775 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2776 		return false;
2777 
2778 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2779 	if (folio_test_hugetlb(folio))
2780 		return true;
2781 
2782 	/*
2783 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2784 	 * cannot proceed, which means no actions performed under RCU can
2785 	 * proceed either.
2786 	 *
2787 	 * inodes and thus their mappings are freed under RCU, which means the
2788 	 * mapping cannot be freed beneath us and thus we can safely dereference
2789 	 * it.
2790 	 */
2791 	lockdep_assert_irqs_disabled();
2792 
2793 	/*
2794 	 * However, there may be operations which _alter_ the mapping, so ensure
2795 	 * we read it once and only once.
2796 	 */
2797 	mapping = READ_ONCE(folio->mapping);
2798 
2799 	/*
2800 	 * The mapping may have been truncated, in any case we cannot determine
2801 	 * if this mapping is safe - fall back to slow path to determine how to
2802 	 * proceed.
2803 	 */
2804 	if (!mapping)
2805 		return false;
2806 
2807 	/* Anonymous folios pose no problem. */
2808 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2809 	if (mapping_flags)
2810 		return mapping_flags & PAGE_MAPPING_ANON;
2811 
2812 	/*
2813 	 * At this point, we know the mapping is non-null and points to an
2814 	 * address_space object.
2815 	 */
2816 	if (check_secretmem && secretmem_mapping(mapping))
2817 		return false;
2818 	/* The only remaining allowed file system is shmem. */
2819 	return !reject_file_backed || shmem_mapping(mapping);
2820 }
2821 
2822 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2823 		unsigned int flags, struct page **pages)
2824 {
2825 	while ((*nr) - nr_start) {
2826 		struct folio *folio = page_folio(pages[--(*nr)]);
2827 
2828 		folio_clear_referenced(folio);
2829 		gup_put_folio(folio, 1, flags);
2830 	}
2831 }
2832 
2833 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2834 /*
2835  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2836  * operations.
2837  *
2838  * To pin the page, GUP-fast needs to do below in order:
2839  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2840  *
2841  * For the rest of pgtable operations where pgtable updates can be racy
2842  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2843  * is pinned.
2844  *
2845  * Above will work for all pte-level operations, including THP split.
2846  *
2847  * For THP collapse, it's a bit more complicated because GUP-fast may be
2848  * walking a pgtable page that is being freed (pte is still valid but pmd
2849  * can be cleared already).  To avoid race in such condition, we need to
2850  * also check pmd here to make sure pmd doesn't change (corresponds to
2851  * pmdp_collapse_flush() in the THP collapse code path).
2852  */
2853 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2854 		unsigned long end, unsigned int flags, struct page **pages,
2855 		int *nr)
2856 {
2857 	struct dev_pagemap *pgmap = NULL;
2858 	int nr_start = *nr, ret = 0;
2859 	pte_t *ptep, *ptem;
2860 
2861 	ptem = ptep = pte_offset_map(&pmd, addr);
2862 	if (!ptep)
2863 		return 0;
2864 	do {
2865 		pte_t pte = ptep_get_lockless(ptep);
2866 		struct page *page;
2867 		struct folio *folio;
2868 
2869 		/*
2870 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2871 		 * pte_access_permitted() better should reject these pages
2872 		 * either way: otherwise, GUP-fast might succeed in
2873 		 * cases where ordinary GUP would fail due to VMA access
2874 		 * permissions.
2875 		 */
2876 		if (pte_protnone(pte))
2877 			goto pte_unmap;
2878 
2879 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2880 			goto pte_unmap;
2881 
2882 		if (pte_devmap(pte)) {
2883 			if (unlikely(flags & FOLL_LONGTERM))
2884 				goto pte_unmap;
2885 
2886 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2887 			if (unlikely(!pgmap)) {
2888 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2889 				goto pte_unmap;
2890 			}
2891 		} else if (pte_special(pte))
2892 			goto pte_unmap;
2893 
2894 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2895 		page = pte_page(pte);
2896 
2897 		folio = try_grab_folio_fast(page, 1, flags);
2898 		if (!folio)
2899 			goto pte_unmap;
2900 
2901 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2902 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2903 			gup_put_folio(folio, 1, flags);
2904 			goto pte_unmap;
2905 		}
2906 
2907 		if (!gup_fast_folio_allowed(folio, flags)) {
2908 			gup_put_folio(folio, 1, flags);
2909 			goto pte_unmap;
2910 		}
2911 
2912 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2913 			gup_put_folio(folio, 1, flags);
2914 			goto pte_unmap;
2915 		}
2916 
2917 		/*
2918 		 * We need to make the page accessible if and only if we are
2919 		 * going to access its content (the FOLL_PIN case).  Please
2920 		 * see Documentation/core-api/pin_user_pages.rst for
2921 		 * details.
2922 		 */
2923 		if (flags & FOLL_PIN) {
2924 			ret = arch_make_page_accessible(page);
2925 			if (ret) {
2926 				gup_put_folio(folio, 1, flags);
2927 				goto pte_unmap;
2928 			}
2929 		}
2930 		folio_set_referenced(folio);
2931 		pages[*nr] = page;
2932 		(*nr)++;
2933 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2934 
2935 	ret = 1;
2936 
2937 pte_unmap:
2938 	if (pgmap)
2939 		put_dev_pagemap(pgmap);
2940 	pte_unmap(ptem);
2941 	return ret;
2942 }
2943 #else
2944 
2945 /*
2946  * If we can't determine whether or not a pte is special, then fail immediately
2947  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2948  * to be special.
2949  *
2950  * For a futex to be placed on a THP tail page, get_futex_key requires a
2951  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2952  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2953  */
2954 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2955 		unsigned long end, unsigned int flags, struct page **pages,
2956 		int *nr)
2957 {
2958 	return 0;
2959 }
2960 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2961 
2962 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2963 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2964 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
2965 {
2966 	int nr_start = *nr;
2967 	struct dev_pagemap *pgmap = NULL;
2968 
2969 	do {
2970 		struct folio *folio;
2971 		struct page *page = pfn_to_page(pfn);
2972 
2973 		pgmap = get_dev_pagemap(pfn, pgmap);
2974 		if (unlikely(!pgmap)) {
2975 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2976 			break;
2977 		}
2978 
2979 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2980 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2981 			break;
2982 		}
2983 
2984 		folio = try_grab_folio_fast(page, 1, flags);
2985 		if (!folio) {
2986 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2987 			break;
2988 		}
2989 		folio_set_referenced(folio);
2990 		pages[*nr] = page;
2991 		(*nr)++;
2992 		pfn++;
2993 	} while (addr += PAGE_SIZE, addr != end);
2994 
2995 	put_dev_pagemap(pgmap);
2996 	return addr == end;
2997 }
2998 
2999 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3000 		unsigned long end, unsigned int flags, struct page **pages,
3001 		int *nr)
3002 {
3003 	unsigned long fault_pfn;
3004 	int nr_start = *nr;
3005 
3006 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3007 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3008 		return 0;
3009 
3010 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3011 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3012 		return 0;
3013 	}
3014 	return 1;
3015 }
3016 
3017 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3018 		unsigned long end, unsigned int flags, struct page **pages,
3019 		int *nr)
3020 {
3021 	unsigned long fault_pfn;
3022 	int nr_start = *nr;
3023 
3024 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3025 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3026 		return 0;
3027 
3028 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3029 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3030 		return 0;
3031 	}
3032 	return 1;
3033 }
3034 #else
3035 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3036 		unsigned long end, unsigned int flags, struct page **pages,
3037 		int *nr)
3038 {
3039 	BUILD_BUG();
3040 	return 0;
3041 }
3042 
3043 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3044 		unsigned long end, unsigned int flags, struct page **pages,
3045 		int *nr)
3046 {
3047 	BUILD_BUG();
3048 	return 0;
3049 }
3050 #endif
3051 
3052 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3053 		unsigned long end, unsigned int flags, struct page **pages,
3054 		int *nr)
3055 {
3056 	struct page *page;
3057 	struct folio *folio;
3058 	int refs;
3059 
3060 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3061 		return 0;
3062 
3063 	if (pmd_devmap(orig)) {
3064 		if (unlikely(flags & FOLL_LONGTERM))
3065 			return 0;
3066 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3067 					        pages, nr);
3068 	}
3069 
3070 	page = pmd_page(orig);
3071 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3072 
3073 	folio = try_grab_folio_fast(page, refs, flags);
3074 	if (!folio)
3075 		return 0;
3076 
3077 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3078 		gup_put_folio(folio, refs, flags);
3079 		return 0;
3080 	}
3081 
3082 	if (!gup_fast_folio_allowed(folio, flags)) {
3083 		gup_put_folio(folio, refs, flags);
3084 		return 0;
3085 	}
3086 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3087 		gup_put_folio(folio, refs, flags);
3088 		return 0;
3089 	}
3090 
3091 	*nr += refs;
3092 	folio_set_referenced(folio);
3093 	return 1;
3094 }
3095 
3096 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3097 		unsigned long end, unsigned int flags, struct page **pages,
3098 		int *nr)
3099 {
3100 	struct page *page;
3101 	struct folio *folio;
3102 	int refs;
3103 
3104 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3105 		return 0;
3106 
3107 	if (pud_devmap(orig)) {
3108 		if (unlikely(flags & FOLL_LONGTERM))
3109 			return 0;
3110 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3111 					        pages, nr);
3112 	}
3113 
3114 	page = pud_page(orig);
3115 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3116 
3117 	folio = try_grab_folio_fast(page, refs, flags);
3118 	if (!folio)
3119 		return 0;
3120 
3121 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3122 		gup_put_folio(folio, refs, flags);
3123 		return 0;
3124 	}
3125 
3126 	if (!gup_fast_folio_allowed(folio, flags)) {
3127 		gup_put_folio(folio, refs, flags);
3128 		return 0;
3129 	}
3130 
3131 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3132 		gup_put_folio(folio, refs, flags);
3133 		return 0;
3134 	}
3135 
3136 	*nr += refs;
3137 	folio_set_referenced(folio);
3138 	return 1;
3139 }
3140 
3141 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3142 		unsigned long end, unsigned int flags, struct page **pages,
3143 		int *nr)
3144 {
3145 	int refs;
3146 	struct page *page;
3147 	struct folio *folio;
3148 
3149 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3150 		return 0;
3151 
3152 	BUILD_BUG_ON(pgd_devmap(orig));
3153 
3154 	page = pgd_page(orig);
3155 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3156 
3157 	folio = try_grab_folio_fast(page, refs, flags);
3158 	if (!folio)
3159 		return 0;
3160 
3161 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3162 		gup_put_folio(folio, refs, flags);
3163 		return 0;
3164 	}
3165 
3166 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3167 		gup_put_folio(folio, refs, flags);
3168 		return 0;
3169 	}
3170 
3171 	if (!gup_fast_folio_allowed(folio, flags)) {
3172 		gup_put_folio(folio, refs, flags);
3173 		return 0;
3174 	}
3175 
3176 	*nr += refs;
3177 	folio_set_referenced(folio);
3178 	return 1;
3179 }
3180 
3181 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3182 		unsigned long end, unsigned int flags, struct page **pages,
3183 		int *nr)
3184 {
3185 	unsigned long next;
3186 	pmd_t *pmdp;
3187 
3188 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3189 	do {
3190 		pmd_t pmd = pmdp_get_lockless(pmdp);
3191 
3192 		next = pmd_addr_end(addr, end);
3193 		if (!pmd_present(pmd))
3194 			return 0;
3195 
3196 		if (unlikely(pmd_leaf(pmd))) {
3197 			/* See gup_fast_pte_range() */
3198 			if (pmd_protnone(pmd))
3199 				return 0;
3200 
3201 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3202 				pages, nr))
3203 				return 0;
3204 
3205 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3206 					       pages, nr))
3207 			return 0;
3208 	} while (pmdp++, addr = next, addr != end);
3209 
3210 	return 1;
3211 }
3212 
3213 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3214 		unsigned long end, unsigned int flags, struct page **pages,
3215 		int *nr)
3216 {
3217 	unsigned long next;
3218 	pud_t *pudp;
3219 
3220 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3221 	do {
3222 		pud_t pud = READ_ONCE(*pudp);
3223 
3224 		next = pud_addr_end(addr, end);
3225 		if (unlikely(!pud_present(pud)))
3226 			return 0;
3227 		if (unlikely(pud_leaf(pud))) {
3228 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3229 					       pages, nr))
3230 				return 0;
3231 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3232 					       pages, nr))
3233 			return 0;
3234 	} while (pudp++, addr = next, addr != end);
3235 
3236 	return 1;
3237 }
3238 
3239 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3240 		unsigned long end, unsigned int flags, struct page **pages,
3241 		int *nr)
3242 {
3243 	unsigned long next;
3244 	p4d_t *p4dp;
3245 
3246 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3247 	do {
3248 		p4d_t p4d = READ_ONCE(*p4dp);
3249 
3250 		next = p4d_addr_end(addr, end);
3251 		if (!p4d_present(p4d))
3252 			return 0;
3253 		BUILD_BUG_ON(p4d_leaf(p4d));
3254 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3255 					pages, nr))
3256 			return 0;
3257 	} while (p4dp++, addr = next, addr != end);
3258 
3259 	return 1;
3260 }
3261 
3262 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3263 		unsigned int flags, struct page **pages, int *nr)
3264 {
3265 	unsigned long next;
3266 	pgd_t *pgdp;
3267 
3268 	pgdp = pgd_offset(current->mm, addr);
3269 	do {
3270 		pgd_t pgd = READ_ONCE(*pgdp);
3271 
3272 		next = pgd_addr_end(addr, end);
3273 		if (pgd_none(pgd))
3274 			return;
3275 		if (unlikely(pgd_leaf(pgd))) {
3276 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3277 					       pages, nr))
3278 				return;
3279 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3280 					       pages, nr))
3281 			return;
3282 	} while (pgdp++, addr = next, addr != end);
3283 }
3284 #else
3285 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3286 		unsigned int flags, struct page **pages, int *nr)
3287 {
3288 }
3289 #endif /* CONFIG_HAVE_GUP_FAST */
3290 
3291 #ifndef gup_fast_permitted
3292 /*
3293  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3294  * we need to fall back to the slow version:
3295  */
3296 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3297 {
3298 	return true;
3299 }
3300 #endif
3301 
3302 static unsigned long gup_fast(unsigned long start, unsigned long end,
3303 		unsigned int gup_flags, struct page **pages)
3304 {
3305 	unsigned long flags;
3306 	int nr_pinned = 0;
3307 	unsigned seq;
3308 
3309 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3310 	    !gup_fast_permitted(start, end))
3311 		return 0;
3312 
3313 	if (gup_flags & FOLL_PIN) {
3314 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3315 		if (seq & 1)
3316 			return 0;
3317 	}
3318 
3319 	/*
3320 	 * Disable interrupts. The nested form is used, in order to allow full,
3321 	 * general purpose use of this routine.
3322 	 *
3323 	 * With interrupts disabled, we block page table pages from being freed
3324 	 * from under us. See struct mmu_table_batch comments in
3325 	 * include/asm-generic/tlb.h for more details.
3326 	 *
3327 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3328 	 * that come from THPs splitting.
3329 	 */
3330 	local_irq_save(flags);
3331 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3332 	local_irq_restore(flags);
3333 
3334 	/*
3335 	 * When pinning pages for DMA there could be a concurrent write protect
3336 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3337 	 */
3338 	if (gup_flags & FOLL_PIN) {
3339 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3340 			gup_fast_unpin_user_pages(pages, nr_pinned);
3341 			return 0;
3342 		} else {
3343 			sanity_check_pinned_pages(pages, nr_pinned);
3344 		}
3345 	}
3346 	return nr_pinned;
3347 }
3348 
3349 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3350 		unsigned int gup_flags, struct page **pages)
3351 {
3352 	unsigned long len, end;
3353 	unsigned long nr_pinned;
3354 	int locked = 0;
3355 	int ret;
3356 
3357 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3358 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3359 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3360 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3361 		return -EINVAL;
3362 
3363 	if (gup_flags & FOLL_PIN)
3364 		mm_set_has_pinned_flag(&current->mm->flags);
3365 
3366 	if (!(gup_flags & FOLL_FAST_ONLY))
3367 		might_lock_read(&current->mm->mmap_lock);
3368 
3369 	start = untagged_addr(start) & PAGE_MASK;
3370 	len = nr_pages << PAGE_SHIFT;
3371 	if (check_add_overflow(start, len, &end))
3372 		return -EOVERFLOW;
3373 	if (end > TASK_SIZE_MAX)
3374 		return -EFAULT;
3375 	if (unlikely(!access_ok((void __user *)start, len)))
3376 		return -EFAULT;
3377 
3378 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3379 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3380 		return nr_pinned;
3381 
3382 	/* Slow path: try to get the remaining pages with get_user_pages */
3383 	start += nr_pinned << PAGE_SHIFT;
3384 	pages += nr_pinned;
3385 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3386 				    pages, &locked,
3387 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3388 	if (ret < 0) {
3389 		/*
3390 		 * The caller has to unpin the pages we already pinned so
3391 		 * returning -errno is not an option
3392 		 */
3393 		if (nr_pinned)
3394 			return nr_pinned;
3395 		return ret;
3396 	}
3397 	return ret + nr_pinned;
3398 }
3399 
3400 /**
3401  * get_user_pages_fast_only() - pin user pages in memory
3402  * @start:      starting user address
3403  * @nr_pages:   number of pages from start to pin
3404  * @gup_flags:  flags modifying pin behaviour
3405  * @pages:      array that receives pointers to the pages pinned.
3406  *              Should be at least nr_pages long.
3407  *
3408  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3409  * the regular GUP.
3410  *
3411  * If the architecture does not support this function, simply return with no
3412  * pages pinned.
3413  *
3414  * Careful, careful! COW breaking can go either way, so a non-write
3415  * access can get ambiguous page results. If you call this function without
3416  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3417  */
3418 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3419 			     unsigned int gup_flags, struct page **pages)
3420 {
3421 	/*
3422 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3423 	 * because gup fast is always a "pin with a +1 page refcount" request.
3424 	 *
3425 	 * FOLL_FAST_ONLY is required in order to match the API description of
3426 	 * this routine: no fall back to regular ("slow") GUP.
3427 	 */
3428 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3429 			       FOLL_GET | FOLL_FAST_ONLY))
3430 		return -EINVAL;
3431 
3432 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3433 }
3434 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3435 
3436 /**
3437  * get_user_pages_fast() - pin user pages in memory
3438  * @start:      starting user address
3439  * @nr_pages:   number of pages from start to pin
3440  * @gup_flags:  flags modifying pin behaviour
3441  * @pages:      array that receives pointers to the pages pinned.
3442  *              Should be at least nr_pages long.
3443  *
3444  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3445  * If not successful, it will fall back to taking the lock and
3446  * calling get_user_pages().
3447  *
3448  * Returns number of pages pinned. This may be fewer than the number requested.
3449  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3450  * -errno.
3451  */
3452 int get_user_pages_fast(unsigned long start, int nr_pages,
3453 			unsigned int gup_flags, struct page **pages)
3454 {
3455 	/*
3456 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3457 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3458 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3459 	 * request.
3460 	 */
3461 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3462 		return -EINVAL;
3463 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3464 }
3465 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3466 
3467 /**
3468  * pin_user_pages_fast() - pin user pages in memory without taking locks
3469  *
3470  * @start:      starting user address
3471  * @nr_pages:   number of pages from start to pin
3472  * @gup_flags:  flags modifying pin behaviour
3473  * @pages:      array that receives pointers to the pages pinned.
3474  *              Should be at least nr_pages long.
3475  *
3476  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3477  * get_user_pages_fast() for documentation on the function arguments, because
3478  * the arguments here are identical.
3479  *
3480  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3481  * see Documentation/core-api/pin_user_pages.rst for further details.
3482  *
3483  * Note that if a zero_page is amongst the returned pages, it will not have
3484  * pins in it and unpin_user_page() will not remove pins from it.
3485  */
3486 int pin_user_pages_fast(unsigned long start, int nr_pages,
3487 			unsigned int gup_flags, struct page **pages)
3488 {
3489 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3490 		return -EINVAL;
3491 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3492 }
3493 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3494 
3495 /**
3496  * pin_user_pages_remote() - pin pages of a remote process
3497  *
3498  * @mm:		mm_struct of target mm
3499  * @start:	starting user address
3500  * @nr_pages:	number of pages from start to pin
3501  * @gup_flags:	flags modifying lookup behaviour
3502  * @pages:	array that receives pointers to the pages pinned.
3503  *		Should be at least nr_pages long.
3504  * @locked:	pointer to lock flag indicating whether lock is held and
3505  *		subsequently whether VM_FAULT_RETRY functionality can be
3506  *		utilised. Lock must initially be held.
3507  *
3508  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3509  * get_user_pages_remote() for documentation on the function arguments, because
3510  * the arguments here are identical.
3511  *
3512  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3513  * see Documentation/core-api/pin_user_pages.rst for details.
3514  *
3515  * Note that if a zero_page is amongst the returned pages, it will not have
3516  * pins in it and unpin_user_page*() will not remove pins from it.
3517  */
3518 long pin_user_pages_remote(struct mm_struct *mm,
3519 			   unsigned long start, unsigned long nr_pages,
3520 			   unsigned int gup_flags, struct page **pages,
3521 			   int *locked)
3522 {
3523 	int local_locked = 1;
3524 
3525 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3526 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3527 		return 0;
3528 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3529 				     locked ? locked : &local_locked,
3530 				     gup_flags);
3531 }
3532 EXPORT_SYMBOL(pin_user_pages_remote);
3533 
3534 /**
3535  * pin_user_pages() - pin user pages in memory for use by other devices
3536  *
3537  * @start:	starting user address
3538  * @nr_pages:	number of pages from start to pin
3539  * @gup_flags:	flags modifying lookup behaviour
3540  * @pages:	array that receives pointers to the pages pinned.
3541  *		Should be at least nr_pages long.
3542  *
3543  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3544  * FOLL_PIN is set.
3545  *
3546  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3547  * see Documentation/core-api/pin_user_pages.rst for details.
3548  *
3549  * Note that if a zero_page is amongst the returned pages, it will not have
3550  * pins in it and unpin_user_page*() will not remove pins from it.
3551  */
3552 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3553 		    unsigned int gup_flags, struct page **pages)
3554 {
3555 	int locked = 1;
3556 
3557 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3558 		return 0;
3559 	return __gup_longterm_locked(current->mm, start, nr_pages,
3560 				     pages, &locked, gup_flags);
3561 }
3562 EXPORT_SYMBOL(pin_user_pages);
3563 
3564 /*
3565  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3566  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3567  * FOLL_PIN and rejects FOLL_GET.
3568  *
3569  * Note that if a zero_page is amongst the returned pages, it will not have
3570  * pins in it and unpin_user_page*() will not remove pins from it.
3571  */
3572 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3573 			     struct page **pages, unsigned int gup_flags)
3574 {
3575 	int locked = 0;
3576 
3577 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3578 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3579 		return 0;
3580 
3581 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3582 				     &locked, gup_flags);
3583 }
3584 EXPORT_SYMBOL(pin_user_pages_unlocked);
3585 
3586 /**
3587  * memfd_pin_folios() - pin folios associated with a memfd
3588  * @memfd:      the memfd whose folios are to be pinned
3589  * @start:      the first memfd offset
3590  * @end:        the last memfd offset (inclusive)
3591  * @folios:     array that receives pointers to the folios pinned
3592  * @max_folios: maximum number of entries in @folios
3593  * @offset:     the offset into the first folio
3594  *
3595  * Attempt to pin folios associated with a memfd in the contiguous range
3596  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3597  * the folios can either be found in the page cache or need to be allocated
3598  * if necessary. Once the folios are located, they are all pinned via
3599  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3600  * And, eventually, these pinned folios must be released either using
3601  * unpin_folios() or unpin_folio().
3602  *
3603  * It must be noted that the folios may be pinned for an indefinite amount
3604  * of time. And, in most cases, the duration of time they may stay pinned
3605  * would be controlled by the userspace. This behavior is effectively the
3606  * same as using FOLL_LONGTERM with other GUP APIs.
3607  *
3608  * Returns number of folios pinned, which could be less than @max_folios
3609  * as it depends on the folio sizes that cover the range [start, end].
3610  * If no folios were pinned, it returns -errno.
3611  */
3612 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3613 		      struct folio **folios, unsigned int max_folios,
3614 		      pgoff_t *offset)
3615 {
3616 	unsigned int flags, nr_folios, nr_found;
3617 	unsigned int i, pgshift = PAGE_SHIFT;
3618 	pgoff_t start_idx, end_idx, next_idx;
3619 	struct folio *folio = NULL;
3620 	struct folio_batch fbatch;
3621 	struct hstate *h;
3622 	long ret = -EINVAL;
3623 
3624 	if (start < 0 || start > end || !max_folios)
3625 		return -EINVAL;
3626 
3627 	if (!memfd)
3628 		return -EINVAL;
3629 
3630 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3631 		return -EINVAL;
3632 
3633 	if (end >= i_size_read(file_inode(memfd)))
3634 		return -EINVAL;
3635 
3636 	if (is_file_hugepages(memfd)) {
3637 		h = hstate_file(memfd);
3638 		pgshift = huge_page_shift(h);
3639 	}
3640 
3641 	flags = memalloc_pin_save();
3642 	do {
3643 		nr_folios = 0;
3644 		start_idx = start >> pgshift;
3645 		end_idx = end >> pgshift;
3646 		if (is_file_hugepages(memfd)) {
3647 			start_idx <<= huge_page_order(h);
3648 			end_idx <<= huge_page_order(h);
3649 		}
3650 
3651 		folio_batch_init(&fbatch);
3652 		while (start_idx <= end_idx && nr_folios < max_folios) {
3653 			/*
3654 			 * In most cases, we should be able to find the folios
3655 			 * in the page cache. If we cannot find them for some
3656 			 * reason, we try to allocate them and add them to the
3657 			 * page cache.
3658 			 */
3659 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3660 							     &start_idx,
3661 							     end_idx,
3662 							     &fbatch);
3663 			if (folio) {
3664 				folio_put(folio);
3665 				folio = NULL;
3666 			}
3667 
3668 			next_idx = 0;
3669 			for (i = 0; i < nr_found; i++) {
3670 				/*
3671 				 * As there can be multiple entries for a
3672 				 * given folio in the batch returned by
3673 				 * filemap_get_folios_contig(), the below
3674 				 * check is to ensure that we pin and return a
3675 				 * unique set of folios between start and end.
3676 				 */
3677 				if (next_idx &&
3678 				    next_idx != folio_index(fbatch.folios[i]))
3679 					continue;
3680 
3681 				folio = page_folio(&fbatch.folios[i]->page);
3682 
3683 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3684 					folio_batch_release(&fbatch);
3685 					ret = -EINVAL;
3686 					goto err;
3687 				}
3688 
3689 				if (nr_folios == 0)
3690 					*offset = offset_in_folio(folio, start);
3691 
3692 				folios[nr_folios] = folio;
3693 				next_idx = folio_next_index(folio);
3694 				if (++nr_folios == max_folios)
3695 					break;
3696 			}
3697 
3698 			folio = NULL;
3699 			folio_batch_release(&fbatch);
3700 			if (!nr_found) {
3701 				folio = memfd_alloc_folio(memfd, start_idx);
3702 				if (IS_ERR(folio)) {
3703 					ret = PTR_ERR(folio);
3704 					if (ret != -EEXIST)
3705 						goto err;
3706 				}
3707 			}
3708 		}
3709 
3710 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3711 	} while (ret == -EAGAIN);
3712 
3713 	memalloc_pin_restore(flags);
3714 	return ret ? ret : nr_folios;
3715 err:
3716 	memalloc_pin_restore(flags);
3717 	unpin_folios(folios, nr_folios);
3718 
3719 	return ret;
3720 }
3721 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3722