1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio = page_folio(page); 56 57 if (is_zero_page(page) || 58 !folio_test_anon(folio)) 59 continue; 60 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 62 else 63 /* Either a PTE-mapped or a PMD-mapped THP. */ 64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 65 !PageAnonExclusive(page), page); 66 } 67 } 68 69 /* 70 * Return the folio with ref appropriately incremented, 71 * or NULL if that failed. 72 */ 73 static inline struct folio *try_get_folio(struct page *page, int refs) 74 { 75 struct folio *folio; 76 77 retry: 78 folio = page_folio(page); 79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 80 return NULL; 81 if (unlikely(!folio_ref_try_add(folio, refs))) 82 return NULL; 83 84 /* 85 * At this point we have a stable reference to the folio; but it 86 * could be that between calling page_folio() and the refcount 87 * increment, the folio was split, in which case we'd end up 88 * holding a reference on a folio that has nothing to do with the page 89 * we were given anymore. 90 * So now that the folio is stable, recheck that the page still 91 * belongs to this folio. 92 */ 93 if (unlikely(page_folio(page) != folio)) { 94 if (!put_devmap_managed_folio_refs(folio, refs)) 95 folio_put_refs(folio, refs); 96 goto retry; 97 } 98 99 return folio; 100 } 101 102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 103 { 104 if (flags & FOLL_PIN) { 105 if (is_zero_folio(folio)) 106 return; 107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 108 if (folio_test_large(folio)) 109 atomic_sub(refs, &folio->_pincount); 110 else 111 refs *= GUP_PIN_COUNTING_BIAS; 112 } 113 114 if (!put_devmap_managed_folio_refs(folio, refs)) 115 folio_put_refs(folio, refs); 116 } 117 118 /** 119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 120 * @folio: pointer to folio to be grabbed 121 * @refs: the value to (effectively) add to the folio's refcount 122 * @flags: gup flags: these are the FOLL_* flag values 123 * 124 * This might not do anything at all, depending on the flags argument. 125 * 126 * "grab" names in this file mean, "look at flags to decide whether to use 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 128 * 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 130 * time. 131 * 132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 133 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 134 * 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 136 * be grabbed. 137 * 138 * It is called when we have a stable reference for the folio, typically in 139 * GUP slow path. 140 */ 141 int __must_check try_grab_folio(struct folio *folio, int refs, 142 unsigned int flags) 143 { 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 145 return -ENOMEM; 146 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 148 return -EREMOTEIO; 149 150 if (flags & FOLL_GET) 151 folio_ref_add(folio, refs); 152 else if (flags & FOLL_PIN) { 153 /* 154 * Don't take a pin on the zero page - it's not going anywhere 155 * and it is used in a *lot* of places. 156 */ 157 if (is_zero_folio(folio)) 158 return 0; 159 160 /* 161 * Increment the normal page refcount field at least once, 162 * so that the page really is pinned. 163 */ 164 if (folio_test_large(folio)) { 165 folio_ref_add(folio, refs); 166 atomic_add(refs, &folio->_pincount); 167 } else { 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 169 } 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 } 173 174 return 0; 175 } 176 177 /** 178 * unpin_user_page() - release a dma-pinned page 179 * @page: pointer to page to be released 180 * 181 * Pages that were pinned via pin_user_pages*() must be released via either 182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 183 * that such pages can be separately tracked and uniquely handled. In 184 * particular, interactions with RDMA and filesystems need special handling. 185 */ 186 void unpin_user_page(struct page *page) 187 { 188 sanity_check_pinned_pages(&page, 1); 189 gup_put_folio(page_folio(page), 1, FOLL_PIN); 190 } 191 EXPORT_SYMBOL(unpin_user_page); 192 193 /** 194 * unpin_folio() - release a dma-pinned folio 195 * @folio: pointer to folio to be released 196 * 197 * Folios that were pinned via memfd_pin_folios() or other similar routines 198 * must be released either using unpin_folio() or unpin_folios(). 199 */ 200 void unpin_folio(struct folio *folio) 201 { 202 gup_put_folio(folio, 1, FOLL_PIN); 203 } 204 EXPORT_SYMBOL_GPL(unpin_folio); 205 206 /** 207 * folio_add_pin - Try to get an additional pin on a pinned folio 208 * @folio: The folio to be pinned 209 * 210 * Get an additional pin on a folio we already have a pin on. Makes no change 211 * if the folio is a zero_page. 212 */ 213 void folio_add_pin(struct folio *folio) 214 { 215 if (is_zero_folio(folio)) 216 return; 217 218 /* 219 * Similar to try_grab_folio(): be sure to *also* increment the normal 220 * page refcount field at least once, so that the page really is 221 * pinned. 222 */ 223 if (folio_test_large(folio)) { 224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 225 folio_ref_inc(folio); 226 atomic_inc(&folio->_pincount); 227 } else { 228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 } 232 233 static inline struct folio *gup_folio_range_next(struct page *start, 234 unsigned long npages, unsigned long i, unsigned int *ntails) 235 { 236 struct page *next = nth_page(start, i); 237 struct folio *folio = page_folio(next); 238 unsigned int nr = 1; 239 240 if (folio_test_large(folio)) 241 nr = min_t(unsigned int, npages - i, 242 folio_nr_pages(folio) - folio_page_idx(folio, next)); 243 244 *ntails = nr; 245 return folio; 246 } 247 248 static inline struct folio *gup_folio_next(struct page **list, 249 unsigned long npages, unsigned long i, unsigned int *ntails) 250 { 251 struct folio *folio = page_folio(list[i]); 252 unsigned int nr; 253 254 for (nr = i + 1; nr < npages; nr++) { 255 if (page_folio(list[nr]) != folio) 256 break; 257 } 258 259 *ntails = nr - i; 260 return folio; 261 } 262 263 /** 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 265 * @pages: array of pages to be maybe marked dirty, and definitely released. 266 * @npages: number of pages in the @pages array. 267 * @make_dirty: whether to mark the pages dirty 268 * 269 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 270 * variants called on that page. 271 * 272 * For each page in the @pages array, make that page (or its head page, if a 273 * compound page) dirty, if @make_dirty is true, and if the page was previously 274 * listed as clean. In any case, releases all pages using unpin_user_page(), 275 * possibly via unpin_user_pages(), for the non-dirty case. 276 * 277 * Please see the unpin_user_page() documentation for details. 278 * 279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 280 * required, then the caller should a) verify that this is really correct, 281 * because _lock() is usually required, and b) hand code it: 282 * set_page_dirty_lock(), unpin_user_page(). 283 * 284 */ 285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 286 bool make_dirty) 287 { 288 unsigned long i; 289 struct folio *folio; 290 unsigned int nr; 291 292 if (!make_dirty) { 293 unpin_user_pages(pages, npages); 294 return; 295 } 296 297 sanity_check_pinned_pages(pages, npages); 298 for (i = 0; i < npages; i += nr) { 299 folio = gup_folio_next(pages, npages, i, &nr); 300 /* 301 * Checking PageDirty at this point may race with 302 * clear_page_dirty_for_io(), but that's OK. Two key 303 * cases: 304 * 305 * 1) This code sees the page as already dirty, so it 306 * skips the call to set_page_dirty(). That could happen 307 * because clear_page_dirty_for_io() called 308 * folio_mkclean(), followed by set_page_dirty(). 309 * However, now the page is going to get written back, 310 * which meets the original intention of setting it 311 * dirty, so all is well: clear_page_dirty_for_io() goes 312 * on to call TestClearPageDirty(), and write the page 313 * back. 314 * 315 * 2) This code sees the page as clean, so it calls 316 * set_page_dirty(). The page stays dirty, despite being 317 * written back, so it gets written back again in the 318 * next writeback cycle. This is harmless. 319 */ 320 if (!folio_test_dirty(folio)) { 321 folio_lock(folio); 322 folio_mark_dirty(folio); 323 folio_unlock(folio); 324 } 325 gup_put_folio(folio, nr, FOLL_PIN); 326 } 327 } 328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 329 330 /** 331 * unpin_user_page_range_dirty_lock() - release and optionally dirty 332 * gup-pinned page range 333 * 334 * @page: the starting page of a range maybe marked dirty, and definitely released. 335 * @npages: number of consecutive pages to release. 336 * @make_dirty: whether to mark the pages dirty 337 * 338 * "gup-pinned page range" refers to a range of pages that has had one of the 339 * pin_user_pages() variants called on that page. 340 * 341 * For the page ranges defined by [page .. page+npages], make that range (or 342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 343 * page range was previously listed as clean. 344 * 345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 346 * required, then the caller should a) verify that this is really correct, 347 * because _lock() is usually required, and b) hand code it: 348 * set_page_dirty_lock(), unpin_user_page(). 349 * 350 */ 351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 352 bool make_dirty) 353 { 354 unsigned long i; 355 struct folio *folio; 356 unsigned int nr; 357 358 for (i = 0; i < npages; i += nr) { 359 folio = gup_folio_range_next(page, npages, i, &nr); 360 if (make_dirty && !folio_test_dirty(folio)) { 361 folio_lock(folio); 362 folio_mark_dirty(folio); 363 folio_unlock(folio); 364 } 365 gup_put_folio(folio, nr, FOLL_PIN); 366 } 367 } 368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 369 370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 371 { 372 unsigned long i; 373 struct folio *folio; 374 unsigned int nr; 375 376 /* 377 * Don't perform any sanity checks because we might have raced with 378 * fork() and some anonymous pages might now actually be shared -- 379 * which is why we're unpinning after all. 380 */ 381 for (i = 0; i < npages; i += nr) { 382 folio = gup_folio_next(pages, npages, i, &nr); 383 gup_put_folio(folio, nr, FOLL_PIN); 384 } 385 } 386 387 /** 388 * unpin_user_pages() - release an array of gup-pinned pages. 389 * @pages: array of pages to be marked dirty and released. 390 * @npages: number of pages in the @pages array. 391 * 392 * For each page in the @pages array, release the page using unpin_user_page(). 393 * 394 * Please see the unpin_user_page() documentation for details. 395 */ 396 void unpin_user_pages(struct page **pages, unsigned long npages) 397 { 398 unsigned long i; 399 struct folio *folio; 400 unsigned int nr; 401 402 /* 403 * If this WARN_ON() fires, then the system *might* be leaking pages (by 404 * leaving them pinned), but probably not. More likely, gup/pup returned 405 * a hard -ERRNO error to the caller, who erroneously passed it here. 406 */ 407 if (WARN_ON(IS_ERR_VALUE(npages))) 408 return; 409 410 sanity_check_pinned_pages(pages, npages); 411 for (i = 0; i < npages; i += nr) { 412 folio = gup_folio_next(pages, npages, i, &nr); 413 gup_put_folio(folio, nr, FOLL_PIN); 414 } 415 } 416 EXPORT_SYMBOL(unpin_user_pages); 417 418 /** 419 * unpin_folios() - release an array of gup-pinned folios. 420 * @folios: array of folios to be marked dirty and released. 421 * @nfolios: number of folios in the @folios array. 422 * 423 * For each folio in the @folios array, release the folio using gup_put_folio. 424 * 425 * Please see the unpin_folio() documentation for details. 426 */ 427 void unpin_folios(struct folio **folios, unsigned long nfolios) 428 { 429 unsigned long i = 0, j; 430 431 /* 432 * If this WARN_ON() fires, then the system *might* be leaking folios 433 * (by leaving them pinned), but probably not. More likely, gup/pup 434 * returned a hard -ERRNO error to the caller, who erroneously passed 435 * it here. 436 */ 437 if (WARN_ON(IS_ERR_VALUE(nfolios))) 438 return; 439 440 while (i < nfolios) { 441 for (j = i + 1; j < nfolios; j++) 442 if (folios[i] != folios[j]) 443 break; 444 445 if (folios[i]) 446 gup_put_folio(folios[i], j - i, FOLL_PIN); 447 i = j; 448 } 449 } 450 EXPORT_SYMBOL_GPL(unpin_folios); 451 452 /* 453 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 454 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 455 * cache bouncing on large SMP machines for concurrent pinned gups. 456 */ 457 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 458 { 459 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 460 set_bit(MMF_HAS_PINNED, mm_flags); 461 } 462 463 #ifdef CONFIG_MMU 464 465 #ifdef CONFIG_HAVE_GUP_FAST 466 static int record_subpages(struct page *page, unsigned long sz, 467 unsigned long addr, unsigned long end, 468 struct page **pages) 469 { 470 struct page *start_page; 471 int nr; 472 473 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 474 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 475 pages[nr] = nth_page(start_page, nr); 476 477 return nr; 478 } 479 480 /** 481 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 482 * @page: pointer to page to be grabbed 483 * @refs: the value to (effectively) add to the folio's refcount 484 * @flags: gup flags: these are the FOLL_* flag values. 485 * 486 * "grab" names in this file mean, "look at flags to decide whether to use 487 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 488 * 489 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 490 * same time. (That's true throughout the get_user_pages*() and 491 * pin_user_pages*() APIs.) Cases: 492 * 493 * FOLL_GET: folio's refcount will be incremented by @refs. 494 * 495 * FOLL_PIN on large folios: folio's refcount will be incremented by 496 * @refs, and its pincount will be incremented by @refs. 497 * 498 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 499 * @refs * GUP_PIN_COUNTING_BIAS. 500 * 501 * Return: The folio containing @page (with refcount appropriately 502 * incremented) for success, or NULL upon failure. If neither FOLL_GET 503 * nor FOLL_PIN was set, that's considered failure, and furthermore, 504 * a likely bug in the caller, so a warning is also emitted. 505 * 506 * It uses add ref unless zero to elevate the folio refcount and must be called 507 * in fast path only. 508 */ 509 static struct folio *try_grab_folio_fast(struct page *page, int refs, 510 unsigned int flags) 511 { 512 struct folio *folio; 513 514 /* Raise warn if it is not called in fast GUP */ 515 VM_WARN_ON_ONCE(!irqs_disabled()); 516 517 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 518 return NULL; 519 520 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 521 return NULL; 522 523 if (flags & FOLL_GET) 524 return try_get_folio(page, refs); 525 526 /* FOLL_PIN is set */ 527 528 /* 529 * Don't take a pin on the zero page - it's not going anywhere 530 * and it is used in a *lot* of places. 531 */ 532 if (is_zero_page(page)) 533 return page_folio(page); 534 535 folio = try_get_folio(page, refs); 536 if (!folio) 537 return NULL; 538 539 /* 540 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 541 * right zone, so fail and let the caller fall back to the slow 542 * path. 543 */ 544 if (unlikely((flags & FOLL_LONGTERM) && 545 !folio_is_longterm_pinnable(folio))) { 546 if (!put_devmap_managed_folio_refs(folio, refs)) 547 folio_put_refs(folio, refs); 548 return NULL; 549 } 550 551 /* 552 * When pinning a large folio, use an exact count to track it. 553 * 554 * However, be sure to *also* increment the normal folio 555 * refcount field at least once, so that the folio really 556 * is pinned. That's why the refcount from the earlier 557 * try_get_folio() is left intact. 558 */ 559 if (folio_test_large(folio)) 560 atomic_add(refs, &folio->_pincount); 561 else 562 folio_ref_add(folio, 563 refs * (GUP_PIN_COUNTING_BIAS - 1)); 564 /* 565 * Adjust the pincount before re-checking the PTE for changes. 566 * This is essentially a smp_mb() and is paired with a memory 567 * barrier in folio_try_share_anon_rmap_*(). 568 */ 569 smp_mb__after_atomic(); 570 571 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 572 573 return folio; 574 } 575 #endif /* CONFIG_HAVE_GUP_FAST */ 576 577 static struct page *no_page_table(struct vm_area_struct *vma, 578 unsigned int flags, unsigned long address) 579 { 580 if (!(flags & FOLL_DUMP)) 581 return NULL; 582 583 /* 584 * When core dumping, we don't want to allocate unnecessary pages or 585 * page tables. Return error instead of NULL to skip handle_mm_fault, 586 * then get_dump_page() will return NULL to leave a hole in the dump. 587 * But we can only make this optimization where a hole would surely 588 * be zero-filled if handle_mm_fault() actually did handle it. 589 */ 590 if (is_vm_hugetlb_page(vma)) { 591 struct hstate *h = hstate_vma(vma); 592 593 if (!hugetlbfs_pagecache_present(h, vma, address)) 594 return ERR_PTR(-EFAULT); 595 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 596 return ERR_PTR(-EFAULT); 597 } 598 599 return NULL; 600 } 601 602 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 603 static struct page *follow_huge_pud(struct vm_area_struct *vma, 604 unsigned long addr, pud_t *pudp, 605 int flags, struct follow_page_context *ctx) 606 { 607 struct mm_struct *mm = vma->vm_mm; 608 struct page *page; 609 pud_t pud = *pudp; 610 unsigned long pfn = pud_pfn(pud); 611 int ret; 612 613 assert_spin_locked(pud_lockptr(mm, pudp)); 614 615 if ((flags & FOLL_WRITE) && !pud_write(pud)) 616 return NULL; 617 618 if (!pud_present(pud)) 619 return NULL; 620 621 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 622 623 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 624 pud_devmap(pud)) { 625 /* 626 * device mapped pages can only be returned if the caller 627 * will manage the page reference count. 628 * 629 * At least one of FOLL_GET | FOLL_PIN must be set, so 630 * assert that here: 631 */ 632 if (!(flags & (FOLL_GET | FOLL_PIN))) 633 return ERR_PTR(-EEXIST); 634 635 if (flags & FOLL_TOUCH) 636 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 637 638 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 639 if (!ctx->pgmap) 640 return ERR_PTR(-EFAULT); 641 } 642 643 page = pfn_to_page(pfn); 644 645 if (!pud_devmap(pud) && !pud_write(pud) && 646 gup_must_unshare(vma, flags, page)) 647 return ERR_PTR(-EMLINK); 648 649 ret = try_grab_folio(page_folio(page), 1, flags); 650 if (ret) 651 page = ERR_PTR(ret); 652 else 653 ctx->page_mask = HPAGE_PUD_NR - 1; 654 655 return page; 656 } 657 658 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 659 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 660 struct vm_area_struct *vma, 661 unsigned int flags) 662 { 663 /* If the pmd is writable, we can write to the page. */ 664 if (pmd_write(pmd)) 665 return true; 666 667 /* Maybe FOLL_FORCE is set to override it? */ 668 if (!(flags & FOLL_FORCE)) 669 return false; 670 671 /* But FOLL_FORCE has no effect on shared mappings */ 672 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 673 return false; 674 675 /* ... or read-only private ones */ 676 if (!(vma->vm_flags & VM_MAYWRITE)) 677 return false; 678 679 /* ... or already writable ones that just need to take a write fault */ 680 if (vma->vm_flags & VM_WRITE) 681 return false; 682 683 /* 684 * See can_change_pte_writable(): we broke COW and could map the page 685 * writable if we have an exclusive anonymous page ... 686 */ 687 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 688 return false; 689 690 /* ... and a write-fault isn't required for other reasons. */ 691 if (pmd_needs_soft_dirty_wp(vma, pmd)) 692 return false; 693 return !userfaultfd_huge_pmd_wp(vma, pmd); 694 } 695 696 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 697 unsigned long addr, pmd_t *pmd, 698 unsigned int flags, 699 struct follow_page_context *ctx) 700 { 701 struct mm_struct *mm = vma->vm_mm; 702 pmd_t pmdval = *pmd; 703 struct page *page; 704 int ret; 705 706 assert_spin_locked(pmd_lockptr(mm, pmd)); 707 708 page = pmd_page(pmdval); 709 if ((flags & FOLL_WRITE) && 710 !can_follow_write_pmd(pmdval, page, vma, flags)) 711 return NULL; 712 713 /* Avoid dumping huge zero page */ 714 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 715 return ERR_PTR(-EFAULT); 716 717 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 718 return NULL; 719 720 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 721 return ERR_PTR(-EMLINK); 722 723 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 724 !PageAnonExclusive(page), page); 725 726 ret = try_grab_folio(page_folio(page), 1, flags); 727 if (ret) 728 return ERR_PTR(ret); 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 732 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 733 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 734 735 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 736 ctx->page_mask = HPAGE_PMD_NR - 1; 737 738 return page; 739 } 740 741 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 742 static struct page *follow_huge_pud(struct vm_area_struct *vma, 743 unsigned long addr, pud_t *pudp, 744 int flags, struct follow_page_context *ctx) 745 { 746 return NULL; 747 } 748 749 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 750 unsigned long addr, pmd_t *pmd, 751 unsigned int flags, 752 struct follow_page_context *ctx) 753 { 754 return NULL; 755 } 756 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 757 758 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 759 pte_t *pte, unsigned int flags) 760 { 761 if (flags & FOLL_TOUCH) { 762 pte_t orig_entry = ptep_get(pte); 763 pte_t entry = orig_entry; 764 765 if (flags & FOLL_WRITE) 766 entry = pte_mkdirty(entry); 767 entry = pte_mkyoung(entry); 768 769 if (!pte_same(orig_entry, entry)) { 770 set_pte_at(vma->vm_mm, address, pte, entry); 771 update_mmu_cache(vma, address, pte); 772 } 773 } 774 775 /* Proper page table entry exists, but no corresponding struct page */ 776 return -EEXIST; 777 } 778 779 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 780 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 781 struct vm_area_struct *vma, 782 unsigned int flags) 783 { 784 /* If the pte is writable, we can write to the page. */ 785 if (pte_write(pte)) 786 return true; 787 788 /* Maybe FOLL_FORCE is set to override it? */ 789 if (!(flags & FOLL_FORCE)) 790 return false; 791 792 /* But FOLL_FORCE has no effect on shared mappings */ 793 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 794 return false; 795 796 /* ... or read-only private ones */ 797 if (!(vma->vm_flags & VM_MAYWRITE)) 798 return false; 799 800 /* ... or already writable ones that just need to take a write fault */ 801 if (vma->vm_flags & VM_WRITE) 802 return false; 803 804 /* 805 * See can_change_pte_writable(): we broke COW and could map the page 806 * writable if we have an exclusive anonymous page ... 807 */ 808 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 809 return false; 810 811 /* ... and a write-fault isn't required for other reasons. */ 812 if (pte_needs_soft_dirty_wp(vma, pte)) 813 return false; 814 return !userfaultfd_pte_wp(vma, pte); 815 } 816 817 static struct page *follow_page_pte(struct vm_area_struct *vma, 818 unsigned long address, pmd_t *pmd, unsigned int flags, 819 struct dev_pagemap **pgmap) 820 { 821 struct mm_struct *mm = vma->vm_mm; 822 struct page *page; 823 spinlock_t *ptl; 824 pte_t *ptep, pte; 825 int ret; 826 827 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 828 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 829 (FOLL_PIN | FOLL_GET))) 830 return ERR_PTR(-EINVAL); 831 832 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 833 if (!ptep) 834 return no_page_table(vma, flags, address); 835 pte = ptep_get(ptep); 836 if (!pte_present(pte)) 837 goto no_page; 838 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 839 goto no_page; 840 841 page = vm_normal_page(vma, address, pte); 842 843 /* 844 * We only care about anon pages in can_follow_write_pte() and don't 845 * have to worry about pte_devmap() because they are never anon. 846 */ 847 if ((flags & FOLL_WRITE) && 848 !can_follow_write_pte(pte, page, vma, flags)) { 849 page = NULL; 850 goto out; 851 } 852 853 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 854 /* 855 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 856 * case since they are only valid while holding the pgmap 857 * reference. 858 */ 859 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 860 if (*pgmap) 861 page = pte_page(pte); 862 else 863 goto no_page; 864 } else if (unlikely(!page)) { 865 if (flags & FOLL_DUMP) { 866 /* Avoid special (like zero) pages in core dumps */ 867 page = ERR_PTR(-EFAULT); 868 goto out; 869 } 870 871 if (is_zero_pfn(pte_pfn(pte))) { 872 page = pte_page(pte); 873 } else { 874 ret = follow_pfn_pte(vma, address, ptep, flags); 875 page = ERR_PTR(ret); 876 goto out; 877 } 878 } 879 880 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 881 page = ERR_PTR(-EMLINK); 882 goto out; 883 } 884 885 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 886 !PageAnonExclusive(page), page); 887 888 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 889 ret = try_grab_folio(page_folio(page), 1, flags); 890 if (unlikely(ret)) { 891 page = ERR_PTR(ret); 892 goto out; 893 } 894 895 /* 896 * We need to make the page accessible if and only if we are going 897 * to access its content (the FOLL_PIN case). Please see 898 * Documentation/core-api/pin_user_pages.rst for details. 899 */ 900 if (flags & FOLL_PIN) { 901 ret = arch_make_page_accessible(page); 902 if (ret) { 903 unpin_user_page(page); 904 page = ERR_PTR(ret); 905 goto out; 906 } 907 } 908 if (flags & FOLL_TOUCH) { 909 if ((flags & FOLL_WRITE) && 910 !pte_dirty(pte) && !PageDirty(page)) 911 set_page_dirty(page); 912 /* 913 * pte_mkyoung() would be more correct here, but atomic care 914 * is needed to avoid losing the dirty bit: it is easier to use 915 * mark_page_accessed(). 916 */ 917 mark_page_accessed(page); 918 } 919 out: 920 pte_unmap_unlock(ptep, ptl); 921 return page; 922 no_page: 923 pte_unmap_unlock(ptep, ptl); 924 if (!pte_none(pte)) 925 return NULL; 926 return no_page_table(vma, flags, address); 927 } 928 929 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 930 unsigned long address, pud_t *pudp, 931 unsigned int flags, 932 struct follow_page_context *ctx) 933 { 934 pmd_t *pmd, pmdval; 935 spinlock_t *ptl; 936 struct page *page; 937 struct mm_struct *mm = vma->vm_mm; 938 939 pmd = pmd_offset(pudp, address); 940 pmdval = pmdp_get_lockless(pmd); 941 if (pmd_none(pmdval)) 942 return no_page_table(vma, flags, address); 943 if (!pmd_present(pmdval)) 944 return no_page_table(vma, flags, address); 945 if (pmd_devmap(pmdval)) { 946 ptl = pmd_lock(mm, pmd); 947 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 948 spin_unlock(ptl); 949 if (page) 950 return page; 951 return no_page_table(vma, flags, address); 952 } 953 if (likely(!pmd_leaf(pmdval))) 954 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 955 956 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 957 return no_page_table(vma, flags, address); 958 959 ptl = pmd_lock(mm, pmd); 960 pmdval = *pmd; 961 if (unlikely(!pmd_present(pmdval))) { 962 spin_unlock(ptl); 963 return no_page_table(vma, flags, address); 964 } 965 if (unlikely(!pmd_leaf(pmdval))) { 966 spin_unlock(ptl); 967 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 968 } 969 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 970 spin_unlock(ptl); 971 split_huge_pmd(vma, pmd, address); 972 /* If pmd was left empty, stuff a page table in there quickly */ 973 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 974 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 975 } 976 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 977 spin_unlock(ptl); 978 return page; 979 } 980 981 static struct page *follow_pud_mask(struct vm_area_struct *vma, 982 unsigned long address, p4d_t *p4dp, 983 unsigned int flags, 984 struct follow_page_context *ctx) 985 { 986 pud_t *pudp, pud; 987 spinlock_t *ptl; 988 struct page *page; 989 struct mm_struct *mm = vma->vm_mm; 990 991 pudp = pud_offset(p4dp, address); 992 pud = READ_ONCE(*pudp); 993 if (!pud_present(pud)) 994 return no_page_table(vma, flags, address); 995 if (pud_leaf(pud)) { 996 ptl = pud_lock(mm, pudp); 997 page = follow_huge_pud(vma, address, pudp, flags, ctx); 998 spin_unlock(ptl); 999 if (page) 1000 return page; 1001 return no_page_table(vma, flags, address); 1002 } 1003 if (unlikely(pud_bad(pud))) 1004 return no_page_table(vma, flags, address); 1005 1006 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1007 } 1008 1009 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1010 unsigned long address, pgd_t *pgdp, 1011 unsigned int flags, 1012 struct follow_page_context *ctx) 1013 { 1014 p4d_t *p4dp, p4d; 1015 1016 p4dp = p4d_offset(pgdp, address); 1017 p4d = READ_ONCE(*p4dp); 1018 BUILD_BUG_ON(p4d_leaf(p4d)); 1019 1020 if (!p4d_present(p4d) || p4d_bad(p4d)) 1021 return no_page_table(vma, flags, address); 1022 1023 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1024 } 1025 1026 /** 1027 * follow_page_mask - look up a page descriptor from a user-virtual address 1028 * @vma: vm_area_struct mapping @address 1029 * @address: virtual address to look up 1030 * @flags: flags modifying lookup behaviour 1031 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1032 * pointer to output page_mask 1033 * 1034 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1035 * 1036 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1037 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1038 * 1039 * When getting an anonymous page and the caller has to trigger unsharing 1040 * of a shared anonymous page first, -EMLINK is returned. The caller should 1041 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1042 * relevant with FOLL_PIN and !FOLL_WRITE. 1043 * 1044 * On output, the @ctx->page_mask is set according to the size of the page. 1045 * 1046 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1047 * an error pointer if there is a mapping to something not represented 1048 * by a page descriptor (see also vm_normal_page()). 1049 */ 1050 static struct page *follow_page_mask(struct vm_area_struct *vma, 1051 unsigned long address, unsigned int flags, 1052 struct follow_page_context *ctx) 1053 { 1054 pgd_t *pgd; 1055 struct mm_struct *mm = vma->vm_mm; 1056 struct page *page; 1057 1058 vma_pgtable_walk_begin(vma); 1059 1060 ctx->page_mask = 0; 1061 pgd = pgd_offset(mm, address); 1062 1063 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1064 page = no_page_table(vma, flags, address); 1065 else 1066 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1067 1068 vma_pgtable_walk_end(vma); 1069 1070 return page; 1071 } 1072 1073 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1074 unsigned int foll_flags) 1075 { 1076 struct follow_page_context ctx = { NULL }; 1077 struct page *page; 1078 1079 if (vma_is_secretmem(vma)) 1080 return NULL; 1081 1082 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 1083 return NULL; 1084 1085 /* 1086 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 1087 * to fail on PROT_NONE-mapped pages. 1088 */ 1089 page = follow_page_mask(vma, address, foll_flags, &ctx); 1090 if (ctx.pgmap) 1091 put_dev_pagemap(ctx.pgmap); 1092 return page; 1093 } 1094 1095 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1096 unsigned int gup_flags, struct vm_area_struct **vma, 1097 struct page **page) 1098 { 1099 pgd_t *pgd; 1100 p4d_t *p4d; 1101 pud_t *pud; 1102 pmd_t *pmd; 1103 pte_t *pte; 1104 pte_t entry; 1105 int ret = -EFAULT; 1106 1107 /* user gate pages are read-only */ 1108 if (gup_flags & FOLL_WRITE) 1109 return -EFAULT; 1110 if (address > TASK_SIZE) 1111 pgd = pgd_offset_k(address); 1112 else 1113 pgd = pgd_offset_gate(mm, address); 1114 if (pgd_none(*pgd)) 1115 return -EFAULT; 1116 p4d = p4d_offset(pgd, address); 1117 if (p4d_none(*p4d)) 1118 return -EFAULT; 1119 pud = pud_offset(p4d, address); 1120 if (pud_none(*pud)) 1121 return -EFAULT; 1122 pmd = pmd_offset(pud, address); 1123 if (!pmd_present(*pmd)) 1124 return -EFAULT; 1125 pte = pte_offset_map(pmd, address); 1126 if (!pte) 1127 return -EFAULT; 1128 entry = ptep_get(pte); 1129 if (pte_none(entry)) 1130 goto unmap; 1131 *vma = get_gate_vma(mm); 1132 if (!page) 1133 goto out; 1134 *page = vm_normal_page(*vma, address, entry); 1135 if (!*page) { 1136 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1137 goto unmap; 1138 *page = pte_page(entry); 1139 } 1140 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1141 if (unlikely(ret)) 1142 goto unmap; 1143 out: 1144 ret = 0; 1145 unmap: 1146 pte_unmap(pte); 1147 return ret; 1148 } 1149 1150 /* 1151 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1152 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1153 * to 0 and -EBUSY returned. 1154 */ 1155 static int faultin_page(struct vm_area_struct *vma, 1156 unsigned long address, unsigned int *flags, bool unshare, 1157 int *locked) 1158 { 1159 unsigned int fault_flags = 0; 1160 vm_fault_t ret; 1161 1162 if (*flags & FOLL_NOFAULT) 1163 return -EFAULT; 1164 if (*flags & FOLL_WRITE) 1165 fault_flags |= FAULT_FLAG_WRITE; 1166 if (*flags & FOLL_REMOTE) 1167 fault_flags |= FAULT_FLAG_REMOTE; 1168 if (*flags & FOLL_UNLOCKABLE) { 1169 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1170 /* 1171 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1172 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1173 * That's because some callers may not be prepared to 1174 * handle early exits caused by non-fatal signals. 1175 */ 1176 if (*flags & FOLL_INTERRUPTIBLE) 1177 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1178 } 1179 if (*flags & FOLL_NOWAIT) 1180 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1181 if (*flags & FOLL_TRIED) { 1182 /* 1183 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1184 * can co-exist 1185 */ 1186 fault_flags |= FAULT_FLAG_TRIED; 1187 } 1188 if (unshare) { 1189 fault_flags |= FAULT_FLAG_UNSHARE; 1190 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1191 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1192 } 1193 1194 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1195 1196 if (ret & VM_FAULT_COMPLETED) { 1197 /* 1198 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1199 * mmap lock in the page fault handler. Sanity check this. 1200 */ 1201 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1202 *locked = 0; 1203 1204 /* 1205 * We should do the same as VM_FAULT_RETRY, but let's not 1206 * return -EBUSY since that's not reflecting the reality of 1207 * what has happened - we've just fully completed a page 1208 * fault, with the mmap lock released. Use -EAGAIN to show 1209 * that we want to take the mmap lock _again_. 1210 */ 1211 return -EAGAIN; 1212 } 1213 1214 if (ret & VM_FAULT_ERROR) { 1215 int err = vm_fault_to_errno(ret, *flags); 1216 1217 if (err) 1218 return err; 1219 BUG(); 1220 } 1221 1222 if (ret & VM_FAULT_RETRY) { 1223 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1224 *locked = 0; 1225 return -EBUSY; 1226 } 1227 1228 return 0; 1229 } 1230 1231 /* 1232 * Writing to file-backed mappings which require folio dirty tracking using GUP 1233 * is a fundamentally broken operation, as kernel write access to GUP mappings 1234 * do not adhere to the semantics expected by a file system. 1235 * 1236 * Consider the following scenario:- 1237 * 1238 * 1. A folio is written to via GUP which write-faults the memory, notifying 1239 * the file system and dirtying the folio. 1240 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1241 * the PTE being marked read-only. 1242 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1243 * direct mapping. 1244 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1245 * (though it does not have to). 1246 * 1247 * This results in both data being written to a folio without writenotify, and 1248 * the folio being dirtied unexpectedly (if the caller decides to do so). 1249 */ 1250 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1251 unsigned long gup_flags) 1252 { 1253 /* 1254 * If we aren't pinning then no problematic write can occur. A long term 1255 * pin is the most egregious case so this is the case we disallow. 1256 */ 1257 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1258 (FOLL_PIN | FOLL_LONGTERM)) 1259 return true; 1260 1261 /* 1262 * If the VMA does not require dirty tracking then no problematic write 1263 * can occur either. 1264 */ 1265 return !vma_needs_dirty_tracking(vma); 1266 } 1267 1268 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1269 { 1270 vm_flags_t vm_flags = vma->vm_flags; 1271 int write = (gup_flags & FOLL_WRITE); 1272 int foreign = (gup_flags & FOLL_REMOTE); 1273 bool vma_anon = vma_is_anonymous(vma); 1274 1275 if (vm_flags & (VM_IO | VM_PFNMAP)) 1276 return -EFAULT; 1277 1278 if ((gup_flags & FOLL_ANON) && !vma_anon) 1279 return -EFAULT; 1280 1281 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1282 return -EOPNOTSUPP; 1283 1284 if (vma_is_secretmem(vma)) 1285 return -EFAULT; 1286 1287 if (write) { 1288 if (!vma_anon && 1289 !writable_file_mapping_allowed(vma, gup_flags)) 1290 return -EFAULT; 1291 1292 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1293 if (!(gup_flags & FOLL_FORCE)) 1294 return -EFAULT; 1295 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1296 if (is_vm_hugetlb_page(vma)) 1297 return -EFAULT; 1298 /* 1299 * We used to let the write,force case do COW in a 1300 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1301 * set a breakpoint in a read-only mapping of an 1302 * executable, without corrupting the file (yet only 1303 * when that file had been opened for writing!). 1304 * Anon pages in shared mappings are surprising: now 1305 * just reject it. 1306 */ 1307 if (!is_cow_mapping(vm_flags)) 1308 return -EFAULT; 1309 } 1310 } else if (!(vm_flags & VM_READ)) { 1311 if (!(gup_flags & FOLL_FORCE)) 1312 return -EFAULT; 1313 /* 1314 * Is there actually any vma we can reach here which does not 1315 * have VM_MAYREAD set? 1316 */ 1317 if (!(vm_flags & VM_MAYREAD)) 1318 return -EFAULT; 1319 } 1320 /* 1321 * gups are always data accesses, not instruction 1322 * fetches, so execute=false here 1323 */ 1324 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1325 return -EFAULT; 1326 return 0; 1327 } 1328 1329 /* 1330 * This is "vma_lookup()", but with a warning if we would have 1331 * historically expanded the stack in the GUP code. 1332 */ 1333 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1334 unsigned long addr) 1335 { 1336 #ifdef CONFIG_STACK_GROWSUP 1337 return vma_lookup(mm, addr); 1338 #else 1339 static volatile unsigned long next_warn; 1340 struct vm_area_struct *vma; 1341 unsigned long now, next; 1342 1343 vma = find_vma(mm, addr); 1344 if (!vma || (addr >= vma->vm_start)) 1345 return vma; 1346 1347 /* Only warn for half-way relevant accesses */ 1348 if (!(vma->vm_flags & VM_GROWSDOWN)) 1349 return NULL; 1350 if (vma->vm_start - addr > 65536) 1351 return NULL; 1352 1353 /* Let's not warn more than once an hour.. */ 1354 now = jiffies; next = next_warn; 1355 if (next && time_before(now, next)) 1356 return NULL; 1357 next_warn = now + 60*60*HZ; 1358 1359 /* Let people know things may have changed. */ 1360 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1361 current->comm, task_pid_nr(current), 1362 vma->vm_start, vma->vm_end, addr); 1363 dump_stack(); 1364 return NULL; 1365 #endif 1366 } 1367 1368 /** 1369 * __get_user_pages() - pin user pages in memory 1370 * @mm: mm_struct of target mm 1371 * @start: starting user address 1372 * @nr_pages: number of pages from start to pin 1373 * @gup_flags: flags modifying pin behaviour 1374 * @pages: array that receives pointers to the pages pinned. 1375 * Should be at least nr_pages long. Or NULL, if caller 1376 * only intends to ensure the pages are faulted in. 1377 * @locked: whether we're still with the mmap_lock held 1378 * 1379 * Returns either number of pages pinned (which may be less than the 1380 * number requested), or an error. Details about the return value: 1381 * 1382 * -- If nr_pages is 0, returns 0. 1383 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1384 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1385 * pages pinned. Again, this may be less than nr_pages. 1386 * -- 0 return value is possible when the fault would need to be retried. 1387 * 1388 * The caller is responsible for releasing returned @pages, via put_page(). 1389 * 1390 * Must be called with mmap_lock held. It may be released. See below. 1391 * 1392 * __get_user_pages walks a process's page tables and takes a reference to 1393 * each struct page that each user address corresponds to at a given 1394 * instant. That is, it takes the page that would be accessed if a user 1395 * thread accesses the given user virtual address at that instant. 1396 * 1397 * This does not guarantee that the page exists in the user mappings when 1398 * __get_user_pages returns, and there may even be a completely different 1399 * page there in some cases (eg. if mmapped pagecache has been invalidated 1400 * and subsequently re-faulted). However it does guarantee that the page 1401 * won't be freed completely. And mostly callers simply care that the page 1402 * contains data that was valid *at some point in time*. Typically, an IO 1403 * or similar operation cannot guarantee anything stronger anyway because 1404 * locks can't be held over the syscall boundary. 1405 * 1406 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1407 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1408 * appropriate) must be called after the page is finished with, and 1409 * before put_page is called. 1410 * 1411 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1412 * be released. If this happens *@locked will be set to 0 on return. 1413 * 1414 * A caller using such a combination of @gup_flags must therefore hold the 1415 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1416 * it must be held for either reading or writing and will not be released. 1417 * 1418 * In most cases, get_user_pages or get_user_pages_fast should be used 1419 * instead of __get_user_pages. __get_user_pages should be used only if 1420 * you need some special @gup_flags. 1421 */ 1422 static long __get_user_pages(struct mm_struct *mm, 1423 unsigned long start, unsigned long nr_pages, 1424 unsigned int gup_flags, struct page **pages, 1425 int *locked) 1426 { 1427 long ret = 0, i = 0; 1428 struct vm_area_struct *vma = NULL; 1429 struct follow_page_context ctx = { NULL }; 1430 1431 if (!nr_pages) 1432 return 0; 1433 1434 start = untagged_addr_remote(mm, start); 1435 1436 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1437 1438 do { 1439 struct page *page; 1440 unsigned int foll_flags = gup_flags; 1441 unsigned int page_increm; 1442 1443 /* first iteration or cross vma bound */ 1444 if (!vma || start >= vma->vm_end) { 1445 /* 1446 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1447 * lookups+error reporting differently. 1448 */ 1449 if (gup_flags & FOLL_MADV_POPULATE) { 1450 vma = vma_lookup(mm, start); 1451 if (!vma) { 1452 ret = -ENOMEM; 1453 goto out; 1454 } 1455 if (check_vma_flags(vma, gup_flags)) { 1456 ret = -EINVAL; 1457 goto out; 1458 } 1459 goto retry; 1460 } 1461 vma = gup_vma_lookup(mm, start); 1462 if (!vma && in_gate_area(mm, start)) { 1463 ret = get_gate_page(mm, start & PAGE_MASK, 1464 gup_flags, &vma, 1465 pages ? &page : NULL); 1466 if (ret) 1467 goto out; 1468 ctx.page_mask = 0; 1469 goto next_page; 1470 } 1471 1472 if (!vma) { 1473 ret = -EFAULT; 1474 goto out; 1475 } 1476 ret = check_vma_flags(vma, gup_flags); 1477 if (ret) 1478 goto out; 1479 } 1480 retry: 1481 /* 1482 * If we have a pending SIGKILL, don't keep faulting pages and 1483 * potentially allocating memory. 1484 */ 1485 if (fatal_signal_pending(current)) { 1486 ret = -EINTR; 1487 goto out; 1488 } 1489 cond_resched(); 1490 1491 page = follow_page_mask(vma, start, foll_flags, &ctx); 1492 if (!page || PTR_ERR(page) == -EMLINK) { 1493 ret = faultin_page(vma, start, &foll_flags, 1494 PTR_ERR(page) == -EMLINK, locked); 1495 switch (ret) { 1496 case 0: 1497 goto retry; 1498 case -EBUSY: 1499 case -EAGAIN: 1500 ret = 0; 1501 fallthrough; 1502 case -EFAULT: 1503 case -ENOMEM: 1504 case -EHWPOISON: 1505 goto out; 1506 } 1507 BUG(); 1508 } else if (PTR_ERR(page) == -EEXIST) { 1509 /* 1510 * Proper page table entry exists, but no corresponding 1511 * struct page. If the caller expects **pages to be 1512 * filled in, bail out now, because that can't be done 1513 * for this page. 1514 */ 1515 if (pages) { 1516 ret = PTR_ERR(page); 1517 goto out; 1518 } 1519 } else if (IS_ERR(page)) { 1520 ret = PTR_ERR(page); 1521 goto out; 1522 } 1523 next_page: 1524 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1525 if (page_increm > nr_pages) 1526 page_increm = nr_pages; 1527 1528 if (pages) { 1529 struct page *subpage; 1530 unsigned int j; 1531 1532 /* 1533 * This must be a large folio (and doesn't need to 1534 * be the whole folio; it can be part of it), do 1535 * the refcount work for all the subpages too. 1536 * 1537 * NOTE: here the page may not be the head page 1538 * e.g. when start addr is not thp-size aligned. 1539 * try_grab_folio() should have taken care of tail 1540 * pages. 1541 */ 1542 if (page_increm > 1) { 1543 struct folio *folio = page_folio(page); 1544 1545 /* 1546 * Since we already hold refcount on the 1547 * large folio, this should never fail. 1548 */ 1549 if (try_grab_folio(folio, page_increm - 1, 1550 foll_flags)) { 1551 /* 1552 * Release the 1st page ref if the 1553 * folio is problematic, fail hard. 1554 */ 1555 gup_put_folio(folio, 1, 1556 foll_flags); 1557 ret = -EFAULT; 1558 goto out; 1559 } 1560 } 1561 1562 for (j = 0; j < page_increm; j++) { 1563 subpage = nth_page(page, j); 1564 pages[i + j] = subpage; 1565 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1566 flush_dcache_page(subpage); 1567 } 1568 } 1569 1570 i += page_increm; 1571 start += page_increm * PAGE_SIZE; 1572 nr_pages -= page_increm; 1573 } while (nr_pages); 1574 out: 1575 if (ctx.pgmap) 1576 put_dev_pagemap(ctx.pgmap); 1577 return i ? i : ret; 1578 } 1579 1580 static bool vma_permits_fault(struct vm_area_struct *vma, 1581 unsigned int fault_flags) 1582 { 1583 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1584 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1585 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1586 1587 if (!(vm_flags & vma->vm_flags)) 1588 return false; 1589 1590 /* 1591 * The architecture might have a hardware protection 1592 * mechanism other than read/write that can deny access. 1593 * 1594 * gup always represents data access, not instruction 1595 * fetches, so execute=false here: 1596 */ 1597 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1598 return false; 1599 1600 return true; 1601 } 1602 1603 /** 1604 * fixup_user_fault() - manually resolve a user page fault 1605 * @mm: mm_struct of target mm 1606 * @address: user address 1607 * @fault_flags:flags to pass down to handle_mm_fault() 1608 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1609 * does not allow retry. If NULL, the caller must guarantee 1610 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1611 * 1612 * This is meant to be called in the specific scenario where for locking reasons 1613 * we try to access user memory in atomic context (within a pagefault_disable() 1614 * section), this returns -EFAULT, and we want to resolve the user fault before 1615 * trying again. 1616 * 1617 * Typically this is meant to be used by the futex code. 1618 * 1619 * The main difference with get_user_pages() is that this function will 1620 * unconditionally call handle_mm_fault() which will in turn perform all the 1621 * necessary SW fixup of the dirty and young bits in the PTE, while 1622 * get_user_pages() only guarantees to update these in the struct page. 1623 * 1624 * This is important for some architectures where those bits also gate the 1625 * access permission to the page because they are maintained in software. On 1626 * such architectures, gup() will not be enough to make a subsequent access 1627 * succeed. 1628 * 1629 * This function will not return with an unlocked mmap_lock. So it has not the 1630 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1631 */ 1632 int fixup_user_fault(struct mm_struct *mm, 1633 unsigned long address, unsigned int fault_flags, 1634 bool *unlocked) 1635 { 1636 struct vm_area_struct *vma; 1637 vm_fault_t ret; 1638 1639 address = untagged_addr_remote(mm, address); 1640 1641 if (unlocked) 1642 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1643 1644 retry: 1645 vma = gup_vma_lookup(mm, address); 1646 if (!vma) 1647 return -EFAULT; 1648 1649 if (!vma_permits_fault(vma, fault_flags)) 1650 return -EFAULT; 1651 1652 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1653 fatal_signal_pending(current)) 1654 return -EINTR; 1655 1656 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1657 1658 if (ret & VM_FAULT_COMPLETED) { 1659 /* 1660 * NOTE: it's a pity that we need to retake the lock here 1661 * to pair with the unlock() in the callers. Ideally we 1662 * could tell the callers so they do not need to unlock. 1663 */ 1664 mmap_read_lock(mm); 1665 *unlocked = true; 1666 return 0; 1667 } 1668 1669 if (ret & VM_FAULT_ERROR) { 1670 int err = vm_fault_to_errno(ret, 0); 1671 1672 if (err) 1673 return err; 1674 BUG(); 1675 } 1676 1677 if (ret & VM_FAULT_RETRY) { 1678 mmap_read_lock(mm); 1679 *unlocked = true; 1680 fault_flags |= FAULT_FLAG_TRIED; 1681 goto retry; 1682 } 1683 1684 return 0; 1685 } 1686 EXPORT_SYMBOL_GPL(fixup_user_fault); 1687 1688 /* 1689 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1690 * specified, it'll also respond to generic signals. The caller of GUP 1691 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1692 */ 1693 static bool gup_signal_pending(unsigned int flags) 1694 { 1695 if (fatal_signal_pending(current)) 1696 return true; 1697 1698 if (!(flags & FOLL_INTERRUPTIBLE)) 1699 return false; 1700 1701 return signal_pending(current); 1702 } 1703 1704 /* 1705 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1706 * the caller. This function may drop the mmap_lock. If it does so, then it will 1707 * set (*locked = 0). 1708 * 1709 * (*locked == 0) means that the caller expects this function to acquire and 1710 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1711 * the function returns, even though it may have changed temporarily during 1712 * function execution. 1713 * 1714 * Please note that this function, unlike __get_user_pages(), will not return 0 1715 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1716 */ 1717 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1718 unsigned long start, 1719 unsigned long nr_pages, 1720 struct page **pages, 1721 int *locked, 1722 unsigned int flags) 1723 { 1724 long ret, pages_done; 1725 bool must_unlock = false; 1726 1727 if (!nr_pages) 1728 return 0; 1729 1730 /* 1731 * The internal caller expects GUP to manage the lock internally and the 1732 * lock must be released when this returns. 1733 */ 1734 if (!*locked) { 1735 if (mmap_read_lock_killable(mm)) 1736 return -EAGAIN; 1737 must_unlock = true; 1738 *locked = 1; 1739 } 1740 else 1741 mmap_assert_locked(mm); 1742 1743 if (flags & FOLL_PIN) 1744 mm_set_has_pinned_flag(&mm->flags); 1745 1746 /* 1747 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1748 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1749 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1750 * for FOLL_GET, not for the newer FOLL_PIN. 1751 * 1752 * FOLL_PIN always expects pages to be non-null, but no need to assert 1753 * that here, as any failures will be obvious enough. 1754 */ 1755 if (pages && !(flags & FOLL_PIN)) 1756 flags |= FOLL_GET; 1757 1758 pages_done = 0; 1759 for (;;) { 1760 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1761 locked); 1762 if (!(flags & FOLL_UNLOCKABLE)) { 1763 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1764 pages_done = ret; 1765 break; 1766 } 1767 1768 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1769 if (!*locked) { 1770 BUG_ON(ret < 0); 1771 BUG_ON(ret >= nr_pages); 1772 } 1773 1774 if (ret > 0) { 1775 nr_pages -= ret; 1776 pages_done += ret; 1777 if (!nr_pages) 1778 break; 1779 } 1780 if (*locked) { 1781 /* 1782 * VM_FAULT_RETRY didn't trigger or it was a 1783 * FOLL_NOWAIT. 1784 */ 1785 if (!pages_done) 1786 pages_done = ret; 1787 break; 1788 } 1789 /* 1790 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1791 * For the prefault case (!pages) we only update counts. 1792 */ 1793 if (likely(pages)) 1794 pages += ret; 1795 start += ret << PAGE_SHIFT; 1796 1797 /* The lock was temporarily dropped, so we must unlock later */ 1798 must_unlock = true; 1799 1800 retry: 1801 /* 1802 * Repeat on the address that fired VM_FAULT_RETRY 1803 * with both FAULT_FLAG_ALLOW_RETRY and 1804 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1805 * by fatal signals of even common signals, depending on 1806 * the caller's request. So we need to check it before we 1807 * start trying again otherwise it can loop forever. 1808 */ 1809 if (gup_signal_pending(flags)) { 1810 if (!pages_done) 1811 pages_done = -EINTR; 1812 break; 1813 } 1814 1815 ret = mmap_read_lock_killable(mm); 1816 if (ret) { 1817 BUG_ON(ret > 0); 1818 if (!pages_done) 1819 pages_done = ret; 1820 break; 1821 } 1822 1823 *locked = 1; 1824 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1825 pages, locked); 1826 if (!*locked) { 1827 /* Continue to retry until we succeeded */ 1828 BUG_ON(ret != 0); 1829 goto retry; 1830 } 1831 if (ret != 1) { 1832 BUG_ON(ret > 1); 1833 if (!pages_done) 1834 pages_done = ret; 1835 break; 1836 } 1837 nr_pages--; 1838 pages_done++; 1839 if (!nr_pages) 1840 break; 1841 if (likely(pages)) 1842 pages++; 1843 start += PAGE_SIZE; 1844 } 1845 if (must_unlock && *locked) { 1846 /* 1847 * We either temporarily dropped the lock, or the caller 1848 * requested that we both acquire and drop the lock. Either way, 1849 * we must now unlock, and notify the caller of that state. 1850 */ 1851 mmap_read_unlock(mm); 1852 *locked = 0; 1853 } 1854 1855 /* 1856 * Failing to pin anything implies something has gone wrong (except when 1857 * FOLL_NOWAIT is specified). 1858 */ 1859 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1860 return -EFAULT; 1861 1862 return pages_done; 1863 } 1864 1865 /** 1866 * populate_vma_page_range() - populate a range of pages in the vma. 1867 * @vma: target vma 1868 * @start: start address 1869 * @end: end address 1870 * @locked: whether the mmap_lock is still held 1871 * 1872 * This takes care of mlocking the pages too if VM_LOCKED is set. 1873 * 1874 * Return either number of pages pinned in the vma, or a negative error 1875 * code on error. 1876 * 1877 * vma->vm_mm->mmap_lock must be held. 1878 * 1879 * If @locked is NULL, it may be held for read or write and will 1880 * be unperturbed. 1881 * 1882 * If @locked is non-NULL, it must held for read only and may be 1883 * released. If it's released, *@locked will be set to 0. 1884 */ 1885 long populate_vma_page_range(struct vm_area_struct *vma, 1886 unsigned long start, unsigned long end, int *locked) 1887 { 1888 struct mm_struct *mm = vma->vm_mm; 1889 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1890 int local_locked = 1; 1891 int gup_flags; 1892 long ret; 1893 1894 VM_BUG_ON(!PAGE_ALIGNED(start)); 1895 VM_BUG_ON(!PAGE_ALIGNED(end)); 1896 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1897 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1898 mmap_assert_locked(mm); 1899 1900 /* 1901 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1902 * faultin_page() to break COW, so it has no work to do here. 1903 */ 1904 if (vma->vm_flags & VM_LOCKONFAULT) 1905 return nr_pages; 1906 1907 /* ... similarly, we've never faulted in PROT_NONE pages */ 1908 if (!vma_is_accessible(vma)) 1909 return -EFAULT; 1910 1911 gup_flags = FOLL_TOUCH; 1912 /* 1913 * We want to touch writable mappings with a write fault in order 1914 * to break COW, except for shared mappings because these don't COW 1915 * and we would not want to dirty them for nothing. 1916 * 1917 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1918 * readable (ie write-only or executable). 1919 */ 1920 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1921 gup_flags |= FOLL_WRITE; 1922 else 1923 gup_flags |= FOLL_FORCE; 1924 1925 if (locked) 1926 gup_flags |= FOLL_UNLOCKABLE; 1927 1928 /* 1929 * We made sure addr is within a VMA, so the following will 1930 * not result in a stack expansion that recurses back here. 1931 */ 1932 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1933 NULL, locked ? locked : &local_locked); 1934 lru_add_drain(); 1935 return ret; 1936 } 1937 1938 /* 1939 * faultin_page_range() - populate (prefault) page tables inside the 1940 * given range readable/writable 1941 * 1942 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1943 * 1944 * @mm: the mm to populate page tables in 1945 * @start: start address 1946 * @end: end address 1947 * @write: whether to prefault readable or writable 1948 * @locked: whether the mmap_lock is still held 1949 * 1950 * Returns either number of processed pages in the MM, or a negative error 1951 * code on error (see __get_user_pages()). Note that this function reports 1952 * errors related to VMAs, such as incompatible mappings, as expected by 1953 * MADV_POPULATE_(READ|WRITE). 1954 * 1955 * The range must be page-aligned. 1956 * 1957 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1958 */ 1959 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1960 unsigned long end, bool write, int *locked) 1961 { 1962 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1963 int gup_flags; 1964 long ret; 1965 1966 VM_BUG_ON(!PAGE_ALIGNED(start)); 1967 VM_BUG_ON(!PAGE_ALIGNED(end)); 1968 mmap_assert_locked(mm); 1969 1970 /* 1971 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1972 * the page dirty with FOLL_WRITE -- which doesn't make a 1973 * difference with !FOLL_FORCE, because the page is writable 1974 * in the page table. 1975 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1976 * a poisoned page. 1977 * !FOLL_FORCE: Require proper access permissions. 1978 */ 1979 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1980 FOLL_MADV_POPULATE; 1981 if (write) 1982 gup_flags |= FOLL_WRITE; 1983 1984 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1985 gup_flags); 1986 lru_add_drain(); 1987 return ret; 1988 } 1989 1990 /* 1991 * __mm_populate - populate and/or mlock pages within a range of address space. 1992 * 1993 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1994 * flags. VMAs must be already marked with the desired vm_flags, and 1995 * mmap_lock must not be held. 1996 */ 1997 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1998 { 1999 struct mm_struct *mm = current->mm; 2000 unsigned long end, nstart, nend; 2001 struct vm_area_struct *vma = NULL; 2002 int locked = 0; 2003 long ret = 0; 2004 2005 end = start + len; 2006 2007 for (nstart = start; nstart < end; nstart = nend) { 2008 /* 2009 * We want to fault in pages for [nstart; end) address range. 2010 * Find first corresponding VMA. 2011 */ 2012 if (!locked) { 2013 locked = 1; 2014 mmap_read_lock(mm); 2015 vma = find_vma_intersection(mm, nstart, end); 2016 } else if (nstart >= vma->vm_end) 2017 vma = find_vma_intersection(mm, vma->vm_end, end); 2018 2019 if (!vma) 2020 break; 2021 /* 2022 * Set [nstart; nend) to intersection of desired address 2023 * range with the first VMA. Also, skip undesirable VMA types. 2024 */ 2025 nend = min(end, vma->vm_end); 2026 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2027 continue; 2028 if (nstart < vma->vm_start) 2029 nstart = vma->vm_start; 2030 /* 2031 * Now fault in a range of pages. populate_vma_page_range() 2032 * double checks the vma flags, so that it won't mlock pages 2033 * if the vma was already munlocked. 2034 */ 2035 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2036 if (ret < 0) { 2037 if (ignore_errors) { 2038 ret = 0; 2039 continue; /* continue at next VMA */ 2040 } 2041 break; 2042 } 2043 nend = nstart + ret * PAGE_SIZE; 2044 ret = 0; 2045 } 2046 if (locked) 2047 mmap_read_unlock(mm); 2048 return ret; /* 0 or negative error code */ 2049 } 2050 #else /* CONFIG_MMU */ 2051 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2052 unsigned long nr_pages, struct page **pages, 2053 int *locked, unsigned int foll_flags) 2054 { 2055 struct vm_area_struct *vma; 2056 bool must_unlock = false; 2057 unsigned long vm_flags; 2058 long i; 2059 2060 if (!nr_pages) 2061 return 0; 2062 2063 /* 2064 * The internal caller expects GUP to manage the lock internally and the 2065 * lock must be released when this returns. 2066 */ 2067 if (!*locked) { 2068 if (mmap_read_lock_killable(mm)) 2069 return -EAGAIN; 2070 must_unlock = true; 2071 *locked = 1; 2072 } 2073 2074 /* calculate required read or write permissions. 2075 * If FOLL_FORCE is set, we only require the "MAY" flags. 2076 */ 2077 vm_flags = (foll_flags & FOLL_WRITE) ? 2078 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2079 vm_flags &= (foll_flags & FOLL_FORCE) ? 2080 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2081 2082 for (i = 0; i < nr_pages; i++) { 2083 vma = find_vma(mm, start); 2084 if (!vma) 2085 break; 2086 2087 /* protect what we can, including chardevs */ 2088 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2089 !(vm_flags & vma->vm_flags)) 2090 break; 2091 2092 if (pages) { 2093 pages[i] = virt_to_page((void *)start); 2094 if (pages[i]) 2095 get_page(pages[i]); 2096 } 2097 2098 start = (start + PAGE_SIZE) & PAGE_MASK; 2099 } 2100 2101 if (must_unlock && *locked) { 2102 mmap_read_unlock(mm); 2103 *locked = 0; 2104 } 2105 2106 return i ? : -EFAULT; 2107 } 2108 #endif /* !CONFIG_MMU */ 2109 2110 /** 2111 * fault_in_writeable - fault in userspace address range for writing 2112 * @uaddr: start of address range 2113 * @size: size of address range 2114 * 2115 * Returns the number of bytes not faulted in (like copy_to_user() and 2116 * copy_from_user()). 2117 */ 2118 size_t fault_in_writeable(char __user *uaddr, size_t size) 2119 { 2120 char __user *start = uaddr, *end; 2121 2122 if (unlikely(size == 0)) 2123 return 0; 2124 if (!user_write_access_begin(uaddr, size)) 2125 return size; 2126 if (!PAGE_ALIGNED(uaddr)) { 2127 unsafe_put_user(0, uaddr, out); 2128 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2129 } 2130 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2131 if (unlikely(end < start)) 2132 end = NULL; 2133 while (uaddr != end) { 2134 unsafe_put_user(0, uaddr, out); 2135 uaddr += PAGE_SIZE; 2136 } 2137 2138 out: 2139 user_write_access_end(); 2140 if (size > uaddr - start) 2141 return size - (uaddr - start); 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(fault_in_writeable); 2145 2146 /** 2147 * fault_in_subpage_writeable - fault in an address range for writing 2148 * @uaddr: start of address range 2149 * @size: size of address range 2150 * 2151 * Fault in a user address range for writing while checking for permissions at 2152 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2153 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2154 * 2155 * Returns the number of bytes not faulted in (like copy_to_user() and 2156 * copy_from_user()). 2157 */ 2158 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2159 { 2160 size_t faulted_in; 2161 2162 /* 2163 * Attempt faulting in at page granularity first for page table 2164 * permission checking. The arch-specific probe_subpage_writeable() 2165 * functions may not check for this. 2166 */ 2167 faulted_in = size - fault_in_writeable(uaddr, size); 2168 if (faulted_in) 2169 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2170 2171 return size - faulted_in; 2172 } 2173 EXPORT_SYMBOL(fault_in_subpage_writeable); 2174 2175 /* 2176 * fault_in_safe_writeable - fault in an address range for writing 2177 * @uaddr: start of address range 2178 * @size: length of address range 2179 * 2180 * Faults in an address range for writing. This is primarily useful when we 2181 * already know that some or all of the pages in the address range aren't in 2182 * memory. 2183 * 2184 * Unlike fault_in_writeable(), this function is non-destructive. 2185 * 2186 * Note that we don't pin or otherwise hold the pages referenced that we fault 2187 * in. There's no guarantee that they'll stay in memory for any duration of 2188 * time. 2189 * 2190 * Returns the number of bytes not faulted in, like copy_to_user() and 2191 * copy_from_user(). 2192 */ 2193 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2194 { 2195 unsigned long start = (unsigned long)uaddr, end; 2196 struct mm_struct *mm = current->mm; 2197 bool unlocked = false; 2198 2199 if (unlikely(size == 0)) 2200 return 0; 2201 end = PAGE_ALIGN(start + size); 2202 if (end < start) 2203 end = 0; 2204 2205 mmap_read_lock(mm); 2206 do { 2207 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2208 break; 2209 start = (start + PAGE_SIZE) & PAGE_MASK; 2210 } while (start != end); 2211 mmap_read_unlock(mm); 2212 2213 if (size > (unsigned long)uaddr - start) 2214 return size - ((unsigned long)uaddr - start); 2215 return 0; 2216 } 2217 EXPORT_SYMBOL(fault_in_safe_writeable); 2218 2219 /** 2220 * fault_in_readable - fault in userspace address range for reading 2221 * @uaddr: start of user address range 2222 * @size: size of user address range 2223 * 2224 * Returns the number of bytes not faulted in (like copy_to_user() and 2225 * copy_from_user()). 2226 */ 2227 size_t fault_in_readable(const char __user *uaddr, size_t size) 2228 { 2229 const char __user *start = uaddr, *end; 2230 volatile char c; 2231 2232 if (unlikely(size == 0)) 2233 return 0; 2234 if (!user_read_access_begin(uaddr, size)) 2235 return size; 2236 if (!PAGE_ALIGNED(uaddr)) { 2237 unsafe_get_user(c, uaddr, out); 2238 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2239 } 2240 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2241 if (unlikely(end < start)) 2242 end = NULL; 2243 while (uaddr != end) { 2244 unsafe_get_user(c, uaddr, out); 2245 uaddr += PAGE_SIZE; 2246 } 2247 2248 out: 2249 user_read_access_end(); 2250 (void)c; 2251 if (size > uaddr - start) 2252 return size - (uaddr - start); 2253 return 0; 2254 } 2255 EXPORT_SYMBOL(fault_in_readable); 2256 2257 /** 2258 * get_dump_page() - pin user page in memory while writing it to core dump 2259 * @addr: user address 2260 * 2261 * Returns struct page pointer of user page pinned for dump, 2262 * to be freed afterwards by put_page(). 2263 * 2264 * Returns NULL on any kind of failure - a hole must then be inserted into 2265 * the corefile, to preserve alignment with its headers; and also returns 2266 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2267 * allowing a hole to be left in the corefile to save disk space. 2268 * 2269 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2270 */ 2271 #ifdef CONFIG_ELF_CORE 2272 struct page *get_dump_page(unsigned long addr) 2273 { 2274 struct page *page; 2275 int locked = 0; 2276 int ret; 2277 2278 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2279 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2280 return (ret == 1) ? page : NULL; 2281 } 2282 #endif /* CONFIG_ELF_CORE */ 2283 2284 #ifdef CONFIG_MIGRATION 2285 /* 2286 * Returns the number of collected folios. Return value is always >= 0. 2287 */ 2288 static unsigned long collect_longterm_unpinnable_folios( 2289 struct list_head *movable_folio_list, 2290 unsigned long nr_folios, 2291 struct folio **folios) 2292 { 2293 unsigned long i, collected = 0; 2294 struct folio *prev_folio = NULL; 2295 bool drain_allow = true; 2296 2297 for (i = 0; i < nr_folios; i++) { 2298 struct folio *folio = folios[i]; 2299 2300 if (folio == prev_folio) 2301 continue; 2302 prev_folio = folio; 2303 2304 if (folio_is_longterm_pinnable(folio)) 2305 continue; 2306 2307 collected++; 2308 2309 if (folio_is_device_coherent(folio)) 2310 continue; 2311 2312 if (folio_test_hugetlb(folio)) { 2313 isolate_hugetlb(folio, movable_folio_list); 2314 continue; 2315 } 2316 2317 if (!folio_test_lru(folio) && drain_allow) { 2318 lru_add_drain_all(); 2319 drain_allow = false; 2320 } 2321 2322 if (!folio_isolate_lru(folio)) 2323 continue; 2324 2325 list_add_tail(&folio->lru, movable_folio_list); 2326 node_stat_mod_folio(folio, 2327 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2328 folio_nr_pages(folio)); 2329 } 2330 2331 return collected; 2332 } 2333 2334 /* 2335 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2336 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2337 * failure (or partial success). 2338 */ 2339 static int migrate_longterm_unpinnable_folios( 2340 struct list_head *movable_folio_list, 2341 unsigned long nr_folios, 2342 struct folio **folios) 2343 { 2344 int ret; 2345 unsigned long i; 2346 2347 for (i = 0; i < nr_folios; i++) { 2348 struct folio *folio = folios[i]; 2349 2350 if (folio_is_device_coherent(folio)) { 2351 /* 2352 * Migration will fail if the folio is pinned, so 2353 * convert the pin on the source folio to a normal 2354 * reference. 2355 */ 2356 folios[i] = NULL; 2357 folio_get(folio); 2358 gup_put_folio(folio, 1, FOLL_PIN); 2359 2360 if (migrate_device_coherent_page(&folio->page)) { 2361 ret = -EBUSY; 2362 goto err; 2363 } 2364 2365 continue; 2366 } 2367 2368 /* 2369 * We can't migrate folios with unexpected references, so drop 2370 * the reference obtained by __get_user_pages_locked(). 2371 * Migrating folios have been added to movable_folio_list after 2372 * calling folio_isolate_lru() which takes a reference so the 2373 * folio won't be freed if it's migrating. 2374 */ 2375 unpin_folio(folios[i]); 2376 folios[i] = NULL; 2377 } 2378 2379 if (!list_empty(movable_folio_list)) { 2380 struct migration_target_control mtc = { 2381 .nid = NUMA_NO_NODE, 2382 .gfp_mask = GFP_USER | __GFP_NOWARN, 2383 .reason = MR_LONGTERM_PIN, 2384 }; 2385 2386 if (migrate_pages(movable_folio_list, alloc_migration_target, 2387 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2388 MR_LONGTERM_PIN, NULL)) { 2389 ret = -ENOMEM; 2390 goto err; 2391 } 2392 } 2393 2394 putback_movable_pages(movable_folio_list); 2395 2396 return -EAGAIN; 2397 2398 err: 2399 unpin_folios(folios, nr_folios); 2400 putback_movable_pages(movable_folio_list); 2401 2402 return ret; 2403 } 2404 2405 /* 2406 * Check whether all folios are *allowed* to be pinned indefinitely (longterm). 2407 * Rather confusingly, all folios in the range are required to be pinned via 2408 * FOLL_PIN, before calling this routine. 2409 * 2410 * If any folios in the range are not allowed to be pinned, then this routine 2411 * will migrate those folios away, unpin all the folios in the range and return 2412 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2413 * call this routine again. 2414 * 2415 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2416 * The caller should give up, and propagate the error back up the call stack. 2417 * 2418 * If everything is OK and all folios in the range are allowed to be pinned, 2419 * then this routine leaves all folios pinned and returns zero for success. 2420 */ 2421 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2422 struct folio **folios) 2423 { 2424 unsigned long collected; 2425 LIST_HEAD(movable_folio_list); 2426 2427 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2428 nr_folios, folios); 2429 if (!collected) 2430 return 0; 2431 2432 return migrate_longterm_unpinnable_folios(&movable_folio_list, 2433 nr_folios, folios); 2434 } 2435 2436 /* 2437 * This routine just converts all the pages in the @pages array to folios and 2438 * calls check_and_migrate_movable_folios() to do the heavy lifting. 2439 * 2440 * Please see the check_and_migrate_movable_folios() documentation for details. 2441 */ 2442 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2443 struct page **pages) 2444 { 2445 struct folio **folios; 2446 long i, ret; 2447 2448 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL); 2449 if (!folios) 2450 return -ENOMEM; 2451 2452 for (i = 0; i < nr_pages; i++) 2453 folios[i] = page_folio(pages[i]); 2454 2455 ret = check_and_migrate_movable_folios(nr_pages, folios); 2456 2457 kfree(folios); 2458 return ret; 2459 } 2460 #else 2461 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2462 struct page **pages) 2463 { 2464 return 0; 2465 } 2466 2467 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2468 struct folio **folios) 2469 { 2470 return 0; 2471 } 2472 #endif /* CONFIG_MIGRATION */ 2473 2474 /* 2475 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2476 * allows us to process the FOLL_LONGTERM flag. 2477 */ 2478 static long __gup_longterm_locked(struct mm_struct *mm, 2479 unsigned long start, 2480 unsigned long nr_pages, 2481 struct page **pages, 2482 int *locked, 2483 unsigned int gup_flags) 2484 { 2485 unsigned int flags; 2486 long rc, nr_pinned_pages; 2487 2488 if (!(gup_flags & FOLL_LONGTERM)) 2489 return __get_user_pages_locked(mm, start, nr_pages, pages, 2490 locked, gup_flags); 2491 2492 flags = memalloc_pin_save(); 2493 do { 2494 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2495 pages, locked, 2496 gup_flags); 2497 if (nr_pinned_pages <= 0) { 2498 rc = nr_pinned_pages; 2499 break; 2500 } 2501 2502 /* FOLL_LONGTERM implies FOLL_PIN */ 2503 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2504 } while (rc == -EAGAIN); 2505 memalloc_pin_restore(flags); 2506 return rc ? rc : nr_pinned_pages; 2507 } 2508 2509 /* 2510 * Check that the given flags are valid for the exported gup/pup interface, and 2511 * update them with the required flags that the caller must have set. 2512 */ 2513 static bool is_valid_gup_args(struct page **pages, int *locked, 2514 unsigned int *gup_flags_p, unsigned int to_set) 2515 { 2516 unsigned int gup_flags = *gup_flags_p; 2517 2518 /* 2519 * These flags not allowed to be specified externally to the gup 2520 * interfaces: 2521 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2522 * - FOLL_REMOTE is internal only and used on follow_page() 2523 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2524 */ 2525 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2526 return false; 2527 2528 gup_flags |= to_set; 2529 if (locked) { 2530 /* At the external interface locked must be set */ 2531 if (WARN_ON_ONCE(*locked != 1)) 2532 return false; 2533 2534 gup_flags |= FOLL_UNLOCKABLE; 2535 } 2536 2537 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2538 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2539 (FOLL_PIN | FOLL_GET))) 2540 return false; 2541 2542 /* LONGTERM can only be specified when pinning */ 2543 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2544 return false; 2545 2546 /* Pages input must be given if using GET/PIN */ 2547 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2548 return false; 2549 2550 /* We want to allow the pgmap to be hot-unplugged at all times */ 2551 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2552 (gup_flags & FOLL_PCI_P2PDMA))) 2553 return false; 2554 2555 *gup_flags_p = gup_flags; 2556 return true; 2557 } 2558 2559 #ifdef CONFIG_MMU 2560 /** 2561 * get_user_pages_remote() - pin user pages in memory 2562 * @mm: mm_struct of target mm 2563 * @start: starting user address 2564 * @nr_pages: number of pages from start to pin 2565 * @gup_flags: flags modifying lookup behaviour 2566 * @pages: array that receives pointers to the pages pinned. 2567 * Should be at least nr_pages long. Or NULL, if caller 2568 * only intends to ensure the pages are faulted in. 2569 * @locked: pointer to lock flag indicating whether lock is held and 2570 * subsequently whether VM_FAULT_RETRY functionality can be 2571 * utilised. Lock must initially be held. 2572 * 2573 * Returns either number of pages pinned (which may be less than the 2574 * number requested), or an error. Details about the return value: 2575 * 2576 * -- If nr_pages is 0, returns 0. 2577 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2578 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2579 * pages pinned. Again, this may be less than nr_pages. 2580 * 2581 * The caller is responsible for releasing returned @pages, via put_page(). 2582 * 2583 * Must be called with mmap_lock held for read or write. 2584 * 2585 * get_user_pages_remote walks a process's page tables and takes a reference 2586 * to each struct page that each user address corresponds to at a given 2587 * instant. That is, it takes the page that would be accessed if a user 2588 * thread accesses the given user virtual address at that instant. 2589 * 2590 * This does not guarantee that the page exists in the user mappings when 2591 * get_user_pages_remote returns, and there may even be a completely different 2592 * page there in some cases (eg. if mmapped pagecache has been invalidated 2593 * and subsequently re-faulted). However it does guarantee that the page 2594 * won't be freed completely. And mostly callers simply care that the page 2595 * contains data that was valid *at some point in time*. Typically, an IO 2596 * or similar operation cannot guarantee anything stronger anyway because 2597 * locks can't be held over the syscall boundary. 2598 * 2599 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2600 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2601 * be called after the page is finished with, and before put_page is called. 2602 * 2603 * get_user_pages_remote is typically used for fewer-copy IO operations, 2604 * to get a handle on the memory by some means other than accesses 2605 * via the user virtual addresses. The pages may be submitted for 2606 * DMA to devices or accessed via their kernel linear mapping (via the 2607 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2608 * 2609 * See also get_user_pages_fast, for performance critical applications. 2610 * 2611 * get_user_pages_remote should be phased out in favor of 2612 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2613 * should use get_user_pages_remote because it cannot pass 2614 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2615 */ 2616 long get_user_pages_remote(struct mm_struct *mm, 2617 unsigned long start, unsigned long nr_pages, 2618 unsigned int gup_flags, struct page **pages, 2619 int *locked) 2620 { 2621 int local_locked = 1; 2622 2623 if (!is_valid_gup_args(pages, locked, &gup_flags, 2624 FOLL_TOUCH | FOLL_REMOTE)) 2625 return -EINVAL; 2626 2627 return __get_user_pages_locked(mm, start, nr_pages, pages, 2628 locked ? locked : &local_locked, 2629 gup_flags); 2630 } 2631 EXPORT_SYMBOL(get_user_pages_remote); 2632 2633 #else /* CONFIG_MMU */ 2634 long get_user_pages_remote(struct mm_struct *mm, 2635 unsigned long start, unsigned long nr_pages, 2636 unsigned int gup_flags, struct page **pages, 2637 int *locked) 2638 { 2639 return 0; 2640 } 2641 #endif /* !CONFIG_MMU */ 2642 2643 /** 2644 * get_user_pages() - pin user pages in memory 2645 * @start: starting user address 2646 * @nr_pages: number of pages from start to pin 2647 * @gup_flags: flags modifying lookup behaviour 2648 * @pages: array that receives pointers to the pages pinned. 2649 * Should be at least nr_pages long. Or NULL, if caller 2650 * only intends to ensure the pages are faulted in. 2651 * 2652 * This is the same as get_user_pages_remote(), just with a less-flexible 2653 * calling convention where we assume that the mm being operated on belongs to 2654 * the current task, and doesn't allow passing of a locked parameter. We also 2655 * obviously don't pass FOLL_REMOTE in here. 2656 */ 2657 long get_user_pages(unsigned long start, unsigned long nr_pages, 2658 unsigned int gup_flags, struct page **pages) 2659 { 2660 int locked = 1; 2661 2662 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2663 return -EINVAL; 2664 2665 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2666 &locked, gup_flags); 2667 } 2668 EXPORT_SYMBOL(get_user_pages); 2669 2670 /* 2671 * get_user_pages_unlocked() is suitable to replace the form: 2672 * 2673 * mmap_read_lock(mm); 2674 * get_user_pages(mm, ..., pages, NULL); 2675 * mmap_read_unlock(mm); 2676 * 2677 * with: 2678 * 2679 * get_user_pages_unlocked(mm, ..., pages); 2680 * 2681 * It is functionally equivalent to get_user_pages_fast so 2682 * get_user_pages_fast should be used instead if specific gup_flags 2683 * (e.g. FOLL_FORCE) are not required. 2684 */ 2685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2686 struct page **pages, unsigned int gup_flags) 2687 { 2688 int locked = 0; 2689 2690 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2691 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2692 return -EINVAL; 2693 2694 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2695 &locked, gup_flags); 2696 } 2697 EXPORT_SYMBOL(get_user_pages_unlocked); 2698 2699 /* 2700 * GUP-fast 2701 * 2702 * get_user_pages_fast attempts to pin user pages by walking the page 2703 * tables directly and avoids taking locks. Thus the walker needs to be 2704 * protected from page table pages being freed from under it, and should 2705 * block any THP splits. 2706 * 2707 * One way to achieve this is to have the walker disable interrupts, and 2708 * rely on IPIs from the TLB flushing code blocking before the page table 2709 * pages are freed. This is unsuitable for architectures that do not need 2710 * to broadcast an IPI when invalidating TLBs. 2711 * 2712 * Another way to achieve this is to batch up page table containing pages 2713 * belonging to more than one mm_user, then rcu_sched a callback to free those 2714 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2715 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2716 * (which is a relatively rare event). The code below adopts this strategy. 2717 * 2718 * Before activating this code, please be aware that the following assumptions 2719 * are currently made: 2720 * 2721 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2722 * free pages containing page tables or TLB flushing requires IPI broadcast. 2723 * 2724 * *) ptes can be read atomically by the architecture. 2725 * 2726 * *) access_ok is sufficient to validate userspace address ranges. 2727 * 2728 * The last two assumptions can be relaxed by the addition of helper functions. 2729 * 2730 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2731 */ 2732 #ifdef CONFIG_HAVE_GUP_FAST 2733 /* 2734 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2735 * a specific folio. 2736 * 2737 * This call assumes the caller has pinned the folio, that the lowest page table 2738 * level still points to this folio, and that interrupts have been disabled. 2739 * 2740 * GUP-fast must reject all secretmem folios. 2741 * 2742 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2743 * (see comment describing the writable_file_mapping_allowed() function). We 2744 * therefore try to avoid the most egregious case of a long-term mapping doing 2745 * so. 2746 * 2747 * This function cannot be as thorough as that one as the VMA is not available 2748 * in the fast path, so instead we whitelist known good cases and if in doubt, 2749 * fall back to the slow path. 2750 */ 2751 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2752 { 2753 bool reject_file_backed = false; 2754 struct address_space *mapping; 2755 bool check_secretmem = false; 2756 unsigned long mapping_flags; 2757 2758 /* 2759 * If we aren't pinning then no problematic write can occur. A long term 2760 * pin is the most egregious case so this is the one we disallow. 2761 */ 2762 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2763 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2764 reject_file_backed = true; 2765 2766 /* We hold a folio reference, so we can safely access folio fields. */ 2767 2768 /* secretmem folios are always order-0 folios. */ 2769 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2770 check_secretmem = true; 2771 2772 if (!reject_file_backed && !check_secretmem) 2773 return true; 2774 2775 if (WARN_ON_ONCE(folio_test_slab(folio))) 2776 return false; 2777 2778 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2779 if (folio_test_hugetlb(folio)) 2780 return true; 2781 2782 /* 2783 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2784 * cannot proceed, which means no actions performed under RCU can 2785 * proceed either. 2786 * 2787 * inodes and thus their mappings are freed under RCU, which means the 2788 * mapping cannot be freed beneath us and thus we can safely dereference 2789 * it. 2790 */ 2791 lockdep_assert_irqs_disabled(); 2792 2793 /* 2794 * However, there may be operations which _alter_ the mapping, so ensure 2795 * we read it once and only once. 2796 */ 2797 mapping = READ_ONCE(folio->mapping); 2798 2799 /* 2800 * The mapping may have been truncated, in any case we cannot determine 2801 * if this mapping is safe - fall back to slow path to determine how to 2802 * proceed. 2803 */ 2804 if (!mapping) 2805 return false; 2806 2807 /* Anonymous folios pose no problem. */ 2808 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2809 if (mapping_flags) 2810 return mapping_flags & PAGE_MAPPING_ANON; 2811 2812 /* 2813 * At this point, we know the mapping is non-null and points to an 2814 * address_space object. 2815 */ 2816 if (check_secretmem && secretmem_mapping(mapping)) 2817 return false; 2818 /* The only remaining allowed file system is shmem. */ 2819 return !reject_file_backed || shmem_mapping(mapping); 2820 } 2821 2822 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2823 unsigned int flags, struct page **pages) 2824 { 2825 while ((*nr) - nr_start) { 2826 struct folio *folio = page_folio(pages[--(*nr)]); 2827 2828 folio_clear_referenced(folio); 2829 gup_put_folio(folio, 1, flags); 2830 } 2831 } 2832 2833 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2834 /* 2835 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2836 * operations. 2837 * 2838 * To pin the page, GUP-fast needs to do below in order: 2839 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2840 * 2841 * For the rest of pgtable operations where pgtable updates can be racy 2842 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2843 * is pinned. 2844 * 2845 * Above will work for all pte-level operations, including THP split. 2846 * 2847 * For THP collapse, it's a bit more complicated because GUP-fast may be 2848 * walking a pgtable page that is being freed (pte is still valid but pmd 2849 * can be cleared already). To avoid race in such condition, we need to 2850 * also check pmd here to make sure pmd doesn't change (corresponds to 2851 * pmdp_collapse_flush() in the THP collapse code path). 2852 */ 2853 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2854 unsigned long end, unsigned int flags, struct page **pages, 2855 int *nr) 2856 { 2857 struct dev_pagemap *pgmap = NULL; 2858 int nr_start = *nr, ret = 0; 2859 pte_t *ptep, *ptem; 2860 2861 ptem = ptep = pte_offset_map(&pmd, addr); 2862 if (!ptep) 2863 return 0; 2864 do { 2865 pte_t pte = ptep_get_lockless(ptep); 2866 struct page *page; 2867 struct folio *folio; 2868 2869 /* 2870 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2871 * pte_access_permitted() better should reject these pages 2872 * either way: otherwise, GUP-fast might succeed in 2873 * cases where ordinary GUP would fail due to VMA access 2874 * permissions. 2875 */ 2876 if (pte_protnone(pte)) 2877 goto pte_unmap; 2878 2879 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2880 goto pte_unmap; 2881 2882 if (pte_devmap(pte)) { 2883 if (unlikely(flags & FOLL_LONGTERM)) 2884 goto pte_unmap; 2885 2886 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2887 if (unlikely(!pgmap)) { 2888 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2889 goto pte_unmap; 2890 } 2891 } else if (pte_special(pte)) 2892 goto pte_unmap; 2893 2894 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2895 page = pte_page(pte); 2896 2897 folio = try_grab_folio_fast(page, 1, flags); 2898 if (!folio) 2899 goto pte_unmap; 2900 2901 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2902 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2903 gup_put_folio(folio, 1, flags); 2904 goto pte_unmap; 2905 } 2906 2907 if (!gup_fast_folio_allowed(folio, flags)) { 2908 gup_put_folio(folio, 1, flags); 2909 goto pte_unmap; 2910 } 2911 2912 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2913 gup_put_folio(folio, 1, flags); 2914 goto pte_unmap; 2915 } 2916 2917 /* 2918 * We need to make the page accessible if and only if we are 2919 * going to access its content (the FOLL_PIN case). Please 2920 * see Documentation/core-api/pin_user_pages.rst for 2921 * details. 2922 */ 2923 if (flags & FOLL_PIN) { 2924 ret = arch_make_page_accessible(page); 2925 if (ret) { 2926 gup_put_folio(folio, 1, flags); 2927 goto pte_unmap; 2928 } 2929 } 2930 folio_set_referenced(folio); 2931 pages[*nr] = page; 2932 (*nr)++; 2933 } while (ptep++, addr += PAGE_SIZE, addr != end); 2934 2935 ret = 1; 2936 2937 pte_unmap: 2938 if (pgmap) 2939 put_dev_pagemap(pgmap); 2940 pte_unmap(ptem); 2941 return ret; 2942 } 2943 #else 2944 2945 /* 2946 * If we can't determine whether or not a pte is special, then fail immediately 2947 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2948 * to be special. 2949 * 2950 * For a futex to be placed on a THP tail page, get_futex_key requires a 2951 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2952 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2953 */ 2954 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2955 unsigned long end, unsigned int flags, struct page **pages, 2956 int *nr) 2957 { 2958 return 0; 2959 } 2960 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2961 2962 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2963 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2964 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2965 { 2966 int nr_start = *nr; 2967 struct dev_pagemap *pgmap = NULL; 2968 2969 do { 2970 struct folio *folio; 2971 struct page *page = pfn_to_page(pfn); 2972 2973 pgmap = get_dev_pagemap(pfn, pgmap); 2974 if (unlikely(!pgmap)) { 2975 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2976 break; 2977 } 2978 2979 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2980 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2981 break; 2982 } 2983 2984 folio = try_grab_folio_fast(page, 1, flags); 2985 if (!folio) { 2986 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2987 break; 2988 } 2989 folio_set_referenced(folio); 2990 pages[*nr] = page; 2991 (*nr)++; 2992 pfn++; 2993 } while (addr += PAGE_SIZE, addr != end); 2994 2995 put_dev_pagemap(pgmap); 2996 return addr == end; 2997 } 2998 2999 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3000 unsigned long end, unsigned int flags, struct page **pages, 3001 int *nr) 3002 { 3003 unsigned long fault_pfn; 3004 int nr_start = *nr; 3005 3006 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3007 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3008 return 0; 3009 3010 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3011 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3012 return 0; 3013 } 3014 return 1; 3015 } 3016 3017 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3018 unsigned long end, unsigned int flags, struct page **pages, 3019 int *nr) 3020 { 3021 unsigned long fault_pfn; 3022 int nr_start = *nr; 3023 3024 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3025 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3026 return 0; 3027 3028 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3029 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3030 return 0; 3031 } 3032 return 1; 3033 } 3034 #else 3035 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3036 unsigned long end, unsigned int flags, struct page **pages, 3037 int *nr) 3038 { 3039 BUILD_BUG(); 3040 return 0; 3041 } 3042 3043 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3044 unsigned long end, unsigned int flags, struct page **pages, 3045 int *nr) 3046 { 3047 BUILD_BUG(); 3048 return 0; 3049 } 3050 #endif 3051 3052 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3053 unsigned long end, unsigned int flags, struct page **pages, 3054 int *nr) 3055 { 3056 struct page *page; 3057 struct folio *folio; 3058 int refs; 3059 3060 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3061 return 0; 3062 3063 if (pmd_devmap(orig)) { 3064 if (unlikely(flags & FOLL_LONGTERM)) 3065 return 0; 3066 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3067 pages, nr); 3068 } 3069 3070 page = pmd_page(orig); 3071 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3072 3073 folio = try_grab_folio_fast(page, refs, flags); 3074 if (!folio) 3075 return 0; 3076 3077 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3078 gup_put_folio(folio, refs, flags); 3079 return 0; 3080 } 3081 3082 if (!gup_fast_folio_allowed(folio, flags)) { 3083 gup_put_folio(folio, refs, flags); 3084 return 0; 3085 } 3086 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3087 gup_put_folio(folio, refs, flags); 3088 return 0; 3089 } 3090 3091 *nr += refs; 3092 folio_set_referenced(folio); 3093 return 1; 3094 } 3095 3096 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3097 unsigned long end, unsigned int flags, struct page **pages, 3098 int *nr) 3099 { 3100 struct page *page; 3101 struct folio *folio; 3102 int refs; 3103 3104 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3105 return 0; 3106 3107 if (pud_devmap(orig)) { 3108 if (unlikely(flags & FOLL_LONGTERM)) 3109 return 0; 3110 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3111 pages, nr); 3112 } 3113 3114 page = pud_page(orig); 3115 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3116 3117 folio = try_grab_folio_fast(page, refs, flags); 3118 if (!folio) 3119 return 0; 3120 3121 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3122 gup_put_folio(folio, refs, flags); 3123 return 0; 3124 } 3125 3126 if (!gup_fast_folio_allowed(folio, flags)) { 3127 gup_put_folio(folio, refs, flags); 3128 return 0; 3129 } 3130 3131 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3132 gup_put_folio(folio, refs, flags); 3133 return 0; 3134 } 3135 3136 *nr += refs; 3137 folio_set_referenced(folio); 3138 return 1; 3139 } 3140 3141 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3142 unsigned long end, unsigned int flags, struct page **pages, 3143 int *nr) 3144 { 3145 int refs; 3146 struct page *page; 3147 struct folio *folio; 3148 3149 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3150 return 0; 3151 3152 BUILD_BUG_ON(pgd_devmap(orig)); 3153 3154 page = pgd_page(orig); 3155 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3156 3157 folio = try_grab_folio_fast(page, refs, flags); 3158 if (!folio) 3159 return 0; 3160 3161 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3162 gup_put_folio(folio, refs, flags); 3163 return 0; 3164 } 3165 3166 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3167 gup_put_folio(folio, refs, flags); 3168 return 0; 3169 } 3170 3171 if (!gup_fast_folio_allowed(folio, flags)) { 3172 gup_put_folio(folio, refs, flags); 3173 return 0; 3174 } 3175 3176 *nr += refs; 3177 folio_set_referenced(folio); 3178 return 1; 3179 } 3180 3181 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3182 unsigned long end, unsigned int flags, struct page **pages, 3183 int *nr) 3184 { 3185 unsigned long next; 3186 pmd_t *pmdp; 3187 3188 pmdp = pmd_offset_lockless(pudp, pud, addr); 3189 do { 3190 pmd_t pmd = pmdp_get_lockless(pmdp); 3191 3192 next = pmd_addr_end(addr, end); 3193 if (!pmd_present(pmd)) 3194 return 0; 3195 3196 if (unlikely(pmd_leaf(pmd))) { 3197 /* See gup_fast_pte_range() */ 3198 if (pmd_protnone(pmd)) 3199 return 0; 3200 3201 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3202 pages, nr)) 3203 return 0; 3204 3205 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3206 pages, nr)) 3207 return 0; 3208 } while (pmdp++, addr = next, addr != end); 3209 3210 return 1; 3211 } 3212 3213 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3214 unsigned long end, unsigned int flags, struct page **pages, 3215 int *nr) 3216 { 3217 unsigned long next; 3218 pud_t *pudp; 3219 3220 pudp = pud_offset_lockless(p4dp, p4d, addr); 3221 do { 3222 pud_t pud = READ_ONCE(*pudp); 3223 3224 next = pud_addr_end(addr, end); 3225 if (unlikely(!pud_present(pud))) 3226 return 0; 3227 if (unlikely(pud_leaf(pud))) { 3228 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3229 pages, nr)) 3230 return 0; 3231 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3232 pages, nr)) 3233 return 0; 3234 } while (pudp++, addr = next, addr != end); 3235 3236 return 1; 3237 } 3238 3239 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3240 unsigned long end, unsigned int flags, struct page **pages, 3241 int *nr) 3242 { 3243 unsigned long next; 3244 p4d_t *p4dp; 3245 3246 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3247 do { 3248 p4d_t p4d = READ_ONCE(*p4dp); 3249 3250 next = p4d_addr_end(addr, end); 3251 if (!p4d_present(p4d)) 3252 return 0; 3253 BUILD_BUG_ON(p4d_leaf(p4d)); 3254 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3255 pages, nr)) 3256 return 0; 3257 } while (p4dp++, addr = next, addr != end); 3258 3259 return 1; 3260 } 3261 3262 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3263 unsigned int flags, struct page **pages, int *nr) 3264 { 3265 unsigned long next; 3266 pgd_t *pgdp; 3267 3268 pgdp = pgd_offset(current->mm, addr); 3269 do { 3270 pgd_t pgd = READ_ONCE(*pgdp); 3271 3272 next = pgd_addr_end(addr, end); 3273 if (pgd_none(pgd)) 3274 return; 3275 if (unlikely(pgd_leaf(pgd))) { 3276 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3277 pages, nr)) 3278 return; 3279 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3280 pages, nr)) 3281 return; 3282 } while (pgdp++, addr = next, addr != end); 3283 } 3284 #else 3285 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3286 unsigned int flags, struct page **pages, int *nr) 3287 { 3288 } 3289 #endif /* CONFIG_HAVE_GUP_FAST */ 3290 3291 #ifndef gup_fast_permitted 3292 /* 3293 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3294 * we need to fall back to the slow version: 3295 */ 3296 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3297 { 3298 return true; 3299 } 3300 #endif 3301 3302 static unsigned long gup_fast(unsigned long start, unsigned long end, 3303 unsigned int gup_flags, struct page **pages) 3304 { 3305 unsigned long flags; 3306 int nr_pinned = 0; 3307 unsigned seq; 3308 3309 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3310 !gup_fast_permitted(start, end)) 3311 return 0; 3312 3313 if (gup_flags & FOLL_PIN) { 3314 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3315 if (seq & 1) 3316 return 0; 3317 } 3318 3319 /* 3320 * Disable interrupts. The nested form is used, in order to allow full, 3321 * general purpose use of this routine. 3322 * 3323 * With interrupts disabled, we block page table pages from being freed 3324 * from under us. See struct mmu_table_batch comments in 3325 * include/asm-generic/tlb.h for more details. 3326 * 3327 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3328 * that come from THPs splitting. 3329 */ 3330 local_irq_save(flags); 3331 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3332 local_irq_restore(flags); 3333 3334 /* 3335 * When pinning pages for DMA there could be a concurrent write protect 3336 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3337 */ 3338 if (gup_flags & FOLL_PIN) { 3339 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3340 gup_fast_unpin_user_pages(pages, nr_pinned); 3341 return 0; 3342 } else { 3343 sanity_check_pinned_pages(pages, nr_pinned); 3344 } 3345 } 3346 return nr_pinned; 3347 } 3348 3349 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3350 unsigned int gup_flags, struct page **pages) 3351 { 3352 unsigned long len, end; 3353 unsigned long nr_pinned; 3354 int locked = 0; 3355 int ret; 3356 3357 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3358 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3359 FOLL_FAST_ONLY | FOLL_NOFAULT | 3360 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3361 return -EINVAL; 3362 3363 if (gup_flags & FOLL_PIN) 3364 mm_set_has_pinned_flag(¤t->mm->flags); 3365 3366 if (!(gup_flags & FOLL_FAST_ONLY)) 3367 might_lock_read(¤t->mm->mmap_lock); 3368 3369 start = untagged_addr(start) & PAGE_MASK; 3370 len = nr_pages << PAGE_SHIFT; 3371 if (check_add_overflow(start, len, &end)) 3372 return -EOVERFLOW; 3373 if (end > TASK_SIZE_MAX) 3374 return -EFAULT; 3375 if (unlikely(!access_ok((void __user *)start, len))) 3376 return -EFAULT; 3377 3378 nr_pinned = gup_fast(start, end, gup_flags, pages); 3379 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3380 return nr_pinned; 3381 3382 /* Slow path: try to get the remaining pages with get_user_pages */ 3383 start += nr_pinned << PAGE_SHIFT; 3384 pages += nr_pinned; 3385 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3386 pages, &locked, 3387 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3388 if (ret < 0) { 3389 /* 3390 * The caller has to unpin the pages we already pinned so 3391 * returning -errno is not an option 3392 */ 3393 if (nr_pinned) 3394 return nr_pinned; 3395 return ret; 3396 } 3397 return ret + nr_pinned; 3398 } 3399 3400 /** 3401 * get_user_pages_fast_only() - pin user pages in memory 3402 * @start: starting user address 3403 * @nr_pages: number of pages from start to pin 3404 * @gup_flags: flags modifying pin behaviour 3405 * @pages: array that receives pointers to the pages pinned. 3406 * Should be at least nr_pages long. 3407 * 3408 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3409 * the regular GUP. 3410 * 3411 * If the architecture does not support this function, simply return with no 3412 * pages pinned. 3413 * 3414 * Careful, careful! COW breaking can go either way, so a non-write 3415 * access can get ambiguous page results. If you call this function without 3416 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3417 */ 3418 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3419 unsigned int gup_flags, struct page **pages) 3420 { 3421 /* 3422 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3423 * because gup fast is always a "pin with a +1 page refcount" request. 3424 * 3425 * FOLL_FAST_ONLY is required in order to match the API description of 3426 * this routine: no fall back to regular ("slow") GUP. 3427 */ 3428 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3429 FOLL_GET | FOLL_FAST_ONLY)) 3430 return -EINVAL; 3431 3432 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3433 } 3434 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3435 3436 /** 3437 * get_user_pages_fast() - pin user pages in memory 3438 * @start: starting user address 3439 * @nr_pages: number of pages from start to pin 3440 * @gup_flags: flags modifying pin behaviour 3441 * @pages: array that receives pointers to the pages pinned. 3442 * Should be at least nr_pages long. 3443 * 3444 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3445 * If not successful, it will fall back to taking the lock and 3446 * calling get_user_pages(). 3447 * 3448 * Returns number of pages pinned. This may be fewer than the number requested. 3449 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3450 * -errno. 3451 */ 3452 int get_user_pages_fast(unsigned long start, int nr_pages, 3453 unsigned int gup_flags, struct page **pages) 3454 { 3455 /* 3456 * The caller may or may not have explicitly set FOLL_GET; either way is 3457 * OK. However, internally (within mm/gup.c), gup fast variants must set 3458 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3459 * request. 3460 */ 3461 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3462 return -EINVAL; 3463 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3464 } 3465 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3466 3467 /** 3468 * pin_user_pages_fast() - pin user pages in memory without taking locks 3469 * 3470 * @start: starting user address 3471 * @nr_pages: number of pages from start to pin 3472 * @gup_flags: flags modifying pin behaviour 3473 * @pages: array that receives pointers to the pages pinned. 3474 * Should be at least nr_pages long. 3475 * 3476 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3477 * get_user_pages_fast() for documentation on the function arguments, because 3478 * the arguments here are identical. 3479 * 3480 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3481 * see Documentation/core-api/pin_user_pages.rst for further details. 3482 * 3483 * Note that if a zero_page is amongst the returned pages, it will not have 3484 * pins in it and unpin_user_page() will not remove pins from it. 3485 */ 3486 int pin_user_pages_fast(unsigned long start, int nr_pages, 3487 unsigned int gup_flags, struct page **pages) 3488 { 3489 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3490 return -EINVAL; 3491 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3492 } 3493 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3494 3495 /** 3496 * pin_user_pages_remote() - pin pages of a remote process 3497 * 3498 * @mm: mm_struct of target mm 3499 * @start: starting user address 3500 * @nr_pages: number of pages from start to pin 3501 * @gup_flags: flags modifying lookup behaviour 3502 * @pages: array that receives pointers to the pages pinned. 3503 * Should be at least nr_pages long. 3504 * @locked: pointer to lock flag indicating whether lock is held and 3505 * subsequently whether VM_FAULT_RETRY functionality can be 3506 * utilised. Lock must initially be held. 3507 * 3508 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3509 * get_user_pages_remote() for documentation on the function arguments, because 3510 * the arguments here are identical. 3511 * 3512 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3513 * see Documentation/core-api/pin_user_pages.rst for details. 3514 * 3515 * Note that if a zero_page is amongst the returned pages, it will not have 3516 * pins in it and unpin_user_page*() will not remove pins from it. 3517 */ 3518 long pin_user_pages_remote(struct mm_struct *mm, 3519 unsigned long start, unsigned long nr_pages, 3520 unsigned int gup_flags, struct page **pages, 3521 int *locked) 3522 { 3523 int local_locked = 1; 3524 3525 if (!is_valid_gup_args(pages, locked, &gup_flags, 3526 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3527 return 0; 3528 return __gup_longterm_locked(mm, start, nr_pages, pages, 3529 locked ? locked : &local_locked, 3530 gup_flags); 3531 } 3532 EXPORT_SYMBOL(pin_user_pages_remote); 3533 3534 /** 3535 * pin_user_pages() - pin user pages in memory for use by other devices 3536 * 3537 * @start: starting user address 3538 * @nr_pages: number of pages from start to pin 3539 * @gup_flags: flags modifying lookup behaviour 3540 * @pages: array that receives pointers to the pages pinned. 3541 * Should be at least nr_pages long. 3542 * 3543 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3544 * FOLL_PIN is set. 3545 * 3546 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3547 * see Documentation/core-api/pin_user_pages.rst for details. 3548 * 3549 * Note that if a zero_page is amongst the returned pages, it will not have 3550 * pins in it and unpin_user_page*() will not remove pins from it. 3551 */ 3552 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3553 unsigned int gup_flags, struct page **pages) 3554 { 3555 int locked = 1; 3556 3557 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3558 return 0; 3559 return __gup_longterm_locked(current->mm, start, nr_pages, 3560 pages, &locked, gup_flags); 3561 } 3562 EXPORT_SYMBOL(pin_user_pages); 3563 3564 /* 3565 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3566 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3567 * FOLL_PIN and rejects FOLL_GET. 3568 * 3569 * Note that if a zero_page is amongst the returned pages, it will not have 3570 * pins in it and unpin_user_page*() will not remove pins from it. 3571 */ 3572 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3573 struct page **pages, unsigned int gup_flags) 3574 { 3575 int locked = 0; 3576 3577 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3578 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3579 return 0; 3580 3581 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3582 &locked, gup_flags); 3583 } 3584 EXPORT_SYMBOL(pin_user_pages_unlocked); 3585 3586 /** 3587 * memfd_pin_folios() - pin folios associated with a memfd 3588 * @memfd: the memfd whose folios are to be pinned 3589 * @start: the first memfd offset 3590 * @end: the last memfd offset (inclusive) 3591 * @folios: array that receives pointers to the folios pinned 3592 * @max_folios: maximum number of entries in @folios 3593 * @offset: the offset into the first folio 3594 * 3595 * Attempt to pin folios associated with a memfd in the contiguous range 3596 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3597 * the folios can either be found in the page cache or need to be allocated 3598 * if necessary. Once the folios are located, they are all pinned via 3599 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3600 * And, eventually, these pinned folios must be released either using 3601 * unpin_folios() or unpin_folio(). 3602 * 3603 * It must be noted that the folios may be pinned for an indefinite amount 3604 * of time. And, in most cases, the duration of time they may stay pinned 3605 * would be controlled by the userspace. This behavior is effectively the 3606 * same as using FOLL_LONGTERM with other GUP APIs. 3607 * 3608 * Returns number of folios pinned, which could be less than @max_folios 3609 * as it depends on the folio sizes that cover the range [start, end]. 3610 * If no folios were pinned, it returns -errno. 3611 */ 3612 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3613 struct folio **folios, unsigned int max_folios, 3614 pgoff_t *offset) 3615 { 3616 unsigned int flags, nr_folios, nr_found; 3617 unsigned int i, pgshift = PAGE_SHIFT; 3618 pgoff_t start_idx, end_idx, next_idx; 3619 struct folio *folio = NULL; 3620 struct folio_batch fbatch; 3621 struct hstate *h; 3622 long ret = -EINVAL; 3623 3624 if (start < 0 || start > end || !max_folios) 3625 return -EINVAL; 3626 3627 if (!memfd) 3628 return -EINVAL; 3629 3630 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3631 return -EINVAL; 3632 3633 if (end >= i_size_read(file_inode(memfd))) 3634 return -EINVAL; 3635 3636 if (is_file_hugepages(memfd)) { 3637 h = hstate_file(memfd); 3638 pgshift = huge_page_shift(h); 3639 } 3640 3641 flags = memalloc_pin_save(); 3642 do { 3643 nr_folios = 0; 3644 start_idx = start >> pgshift; 3645 end_idx = end >> pgshift; 3646 if (is_file_hugepages(memfd)) { 3647 start_idx <<= huge_page_order(h); 3648 end_idx <<= huge_page_order(h); 3649 } 3650 3651 folio_batch_init(&fbatch); 3652 while (start_idx <= end_idx && nr_folios < max_folios) { 3653 /* 3654 * In most cases, we should be able to find the folios 3655 * in the page cache. If we cannot find them for some 3656 * reason, we try to allocate them and add them to the 3657 * page cache. 3658 */ 3659 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3660 &start_idx, 3661 end_idx, 3662 &fbatch); 3663 if (folio) { 3664 folio_put(folio); 3665 folio = NULL; 3666 } 3667 3668 next_idx = 0; 3669 for (i = 0; i < nr_found; i++) { 3670 /* 3671 * As there can be multiple entries for a 3672 * given folio in the batch returned by 3673 * filemap_get_folios_contig(), the below 3674 * check is to ensure that we pin and return a 3675 * unique set of folios between start and end. 3676 */ 3677 if (next_idx && 3678 next_idx != folio_index(fbatch.folios[i])) 3679 continue; 3680 3681 folio = page_folio(&fbatch.folios[i]->page); 3682 3683 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3684 folio_batch_release(&fbatch); 3685 ret = -EINVAL; 3686 goto err; 3687 } 3688 3689 if (nr_folios == 0) 3690 *offset = offset_in_folio(folio, start); 3691 3692 folios[nr_folios] = folio; 3693 next_idx = folio_next_index(folio); 3694 if (++nr_folios == max_folios) 3695 break; 3696 } 3697 3698 folio = NULL; 3699 folio_batch_release(&fbatch); 3700 if (!nr_found) { 3701 folio = memfd_alloc_folio(memfd, start_idx); 3702 if (IS_ERR(folio)) { 3703 ret = PTR_ERR(folio); 3704 if (ret != -EEXIST) 3705 goto err; 3706 } 3707 } 3708 } 3709 3710 ret = check_and_migrate_movable_folios(nr_folios, folios); 3711 } while (ret == -EAGAIN); 3712 3713 memalloc_pin_restore(flags); 3714 return ret ? ret : nr_folios; 3715 err: 3716 memalloc_pin_restore(flags); 3717 unpin_folios(folios, nr_folios); 3718 3719 return ret; 3720 } 3721 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3722