1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in folio_try_share_anon_rmap_*(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 return no_page_table(vma, flags); 714 } 715 if (likely(!pmd_trans_huge(pmdval))) 716 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 717 718 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 719 return no_page_table(vma, flags); 720 721 ptl = pmd_lock(mm, pmd); 722 if (unlikely(!pmd_present(*pmd))) { 723 spin_unlock(ptl); 724 return no_page_table(vma, flags); 725 } 726 if (unlikely(!pmd_trans_huge(*pmd))) { 727 spin_unlock(ptl); 728 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 729 } 730 if (flags & FOLL_SPLIT_PMD) { 731 spin_unlock(ptl); 732 split_huge_pmd(vma, pmd, address); 733 /* If pmd was left empty, stuff a page table in there quickly */ 734 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 735 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 736 } 737 page = follow_trans_huge_pmd(vma, address, pmd, flags); 738 spin_unlock(ptl); 739 ctx->page_mask = HPAGE_PMD_NR - 1; 740 return page; 741 } 742 743 static struct page *follow_pud_mask(struct vm_area_struct *vma, 744 unsigned long address, p4d_t *p4dp, 745 unsigned int flags, 746 struct follow_page_context *ctx) 747 { 748 pud_t *pud; 749 spinlock_t *ptl; 750 struct page *page; 751 struct mm_struct *mm = vma->vm_mm; 752 753 pud = pud_offset(p4dp, address); 754 if (pud_none(*pud)) 755 return no_page_table(vma, flags); 756 if (pud_devmap(*pud)) { 757 ptl = pud_lock(mm, pud); 758 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 759 spin_unlock(ptl); 760 if (page) 761 return page; 762 return no_page_table(vma, flags); 763 } 764 if (unlikely(pud_bad(*pud))) 765 return no_page_table(vma, flags); 766 767 return follow_pmd_mask(vma, address, pud, flags, ctx); 768 } 769 770 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 771 unsigned long address, pgd_t *pgdp, 772 unsigned int flags, 773 struct follow_page_context *ctx) 774 { 775 p4d_t *p4dp, p4d; 776 777 p4dp = p4d_offset(pgdp, address); 778 p4d = READ_ONCE(*p4dp); 779 if (!p4d_present(p4d)) 780 return no_page_table(vma, flags); 781 BUILD_BUG_ON(p4d_leaf(p4d)); 782 if (unlikely(p4d_bad(p4d))) 783 return no_page_table(vma, flags); 784 785 return follow_pud_mask(vma, address, p4dp, flags, ctx); 786 } 787 788 /** 789 * follow_page_mask - look up a page descriptor from a user-virtual address 790 * @vma: vm_area_struct mapping @address 791 * @address: virtual address to look up 792 * @flags: flags modifying lookup behaviour 793 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 794 * pointer to output page_mask 795 * 796 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 797 * 798 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 799 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 800 * 801 * When getting an anonymous page and the caller has to trigger unsharing 802 * of a shared anonymous page first, -EMLINK is returned. The caller should 803 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 804 * relevant with FOLL_PIN and !FOLL_WRITE. 805 * 806 * On output, the @ctx->page_mask is set according to the size of the page. 807 * 808 * Return: the mapped (struct page *), %NULL if no mapping exists, or 809 * an error pointer if there is a mapping to something not represented 810 * by a page descriptor (see also vm_normal_page()). 811 */ 812 static struct page *follow_page_mask(struct vm_area_struct *vma, 813 unsigned long address, unsigned int flags, 814 struct follow_page_context *ctx) 815 { 816 pgd_t *pgd; 817 struct mm_struct *mm = vma->vm_mm; 818 819 ctx->page_mask = 0; 820 821 /* 822 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 823 * special hugetlb page table walking code. This eliminates the 824 * need to check for hugetlb entries in the general walking code. 825 */ 826 if (is_vm_hugetlb_page(vma)) 827 return hugetlb_follow_page_mask(vma, address, flags, 828 &ctx->page_mask); 829 830 pgd = pgd_offset(mm, address); 831 832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 833 return no_page_table(vma, flags); 834 835 return follow_p4d_mask(vma, address, pgd, flags, ctx); 836 } 837 838 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 839 unsigned int foll_flags) 840 { 841 struct follow_page_context ctx = { NULL }; 842 struct page *page; 843 844 if (vma_is_secretmem(vma)) 845 return NULL; 846 847 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 848 return NULL; 849 850 /* 851 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 852 * to fail on PROT_NONE-mapped pages. 853 */ 854 page = follow_page_mask(vma, address, foll_flags, &ctx); 855 if (ctx.pgmap) 856 put_dev_pagemap(ctx.pgmap); 857 return page; 858 } 859 860 static int get_gate_page(struct mm_struct *mm, unsigned long address, 861 unsigned int gup_flags, struct vm_area_struct **vma, 862 struct page **page) 863 { 864 pgd_t *pgd; 865 p4d_t *p4d; 866 pud_t *pud; 867 pmd_t *pmd; 868 pte_t *pte; 869 pte_t entry; 870 int ret = -EFAULT; 871 872 /* user gate pages are read-only */ 873 if (gup_flags & FOLL_WRITE) 874 return -EFAULT; 875 if (address > TASK_SIZE) 876 pgd = pgd_offset_k(address); 877 else 878 pgd = pgd_offset_gate(mm, address); 879 if (pgd_none(*pgd)) 880 return -EFAULT; 881 p4d = p4d_offset(pgd, address); 882 if (p4d_none(*p4d)) 883 return -EFAULT; 884 pud = pud_offset(p4d, address); 885 if (pud_none(*pud)) 886 return -EFAULT; 887 pmd = pmd_offset(pud, address); 888 if (!pmd_present(*pmd)) 889 return -EFAULT; 890 pte = pte_offset_map(pmd, address); 891 if (!pte) 892 return -EFAULT; 893 entry = ptep_get(pte); 894 if (pte_none(entry)) 895 goto unmap; 896 *vma = get_gate_vma(mm); 897 if (!page) 898 goto out; 899 *page = vm_normal_page(*vma, address, entry); 900 if (!*page) { 901 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 902 goto unmap; 903 *page = pte_page(entry); 904 } 905 ret = try_grab_page(*page, gup_flags); 906 if (unlikely(ret)) 907 goto unmap; 908 out: 909 ret = 0; 910 unmap: 911 pte_unmap(pte); 912 return ret; 913 } 914 915 /* 916 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 917 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 918 * to 0 and -EBUSY returned. 919 */ 920 static int faultin_page(struct vm_area_struct *vma, 921 unsigned long address, unsigned int *flags, bool unshare, 922 int *locked) 923 { 924 unsigned int fault_flags = 0; 925 vm_fault_t ret; 926 927 if (*flags & FOLL_NOFAULT) 928 return -EFAULT; 929 if (*flags & FOLL_WRITE) 930 fault_flags |= FAULT_FLAG_WRITE; 931 if (*flags & FOLL_REMOTE) 932 fault_flags |= FAULT_FLAG_REMOTE; 933 if (*flags & FOLL_UNLOCKABLE) { 934 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 935 /* 936 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 937 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 938 * That's because some callers may not be prepared to 939 * handle early exits caused by non-fatal signals. 940 */ 941 if (*flags & FOLL_INTERRUPTIBLE) 942 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 943 } 944 if (*flags & FOLL_NOWAIT) 945 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 946 if (*flags & FOLL_TRIED) { 947 /* 948 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 949 * can co-exist 950 */ 951 fault_flags |= FAULT_FLAG_TRIED; 952 } 953 if (unshare) { 954 fault_flags |= FAULT_FLAG_UNSHARE; 955 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 956 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 957 } 958 959 ret = handle_mm_fault(vma, address, fault_flags, NULL); 960 961 if (ret & VM_FAULT_COMPLETED) { 962 /* 963 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 964 * mmap lock in the page fault handler. Sanity check this. 965 */ 966 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 967 *locked = 0; 968 969 /* 970 * We should do the same as VM_FAULT_RETRY, but let's not 971 * return -EBUSY since that's not reflecting the reality of 972 * what has happened - we've just fully completed a page 973 * fault, with the mmap lock released. Use -EAGAIN to show 974 * that we want to take the mmap lock _again_. 975 */ 976 return -EAGAIN; 977 } 978 979 if (ret & VM_FAULT_ERROR) { 980 int err = vm_fault_to_errno(ret, *flags); 981 982 if (err) 983 return err; 984 BUG(); 985 } 986 987 if (ret & VM_FAULT_RETRY) { 988 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 989 *locked = 0; 990 return -EBUSY; 991 } 992 993 return 0; 994 } 995 996 /* 997 * Writing to file-backed mappings which require folio dirty tracking using GUP 998 * is a fundamentally broken operation, as kernel write access to GUP mappings 999 * do not adhere to the semantics expected by a file system. 1000 * 1001 * Consider the following scenario:- 1002 * 1003 * 1. A folio is written to via GUP which write-faults the memory, notifying 1004 * the file system and dirtying the folio. 1005 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1006 * the PTE being marked read-only. 1007 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1008 * direct mapping. 1009 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1010 * (though it does not have to). 1011 * 1012 * This results in both data being written to a folio without writenotify, and 1013 * the folio being dirtied unexpectedly (if the caller decides to do so). 1014 */ 1015 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1016 unsigned long gup_flags) 1017 { 1018 /* 1019 * If we aren't pinning then no problematic write can occur. A long term 1020 * pin is the most egregious case so this is the case we disallow. 1021 */ 1022 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1023 (FOLL_PIN | FOLL_LONGTERM)) 1024 return true; 1025 1026 /* 1027 * If the VMA does not require dirty tracking then no problematic write 1028 * can occur either. 1029 */ 1030 return !vma_needs_dirty_tracking(vma); 1031 } 1032 1033 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1034 { 1035 vm_flags_t vm_flags = vma->vm_flags; 1036 int write = (gup_flags & FOLL_WRITE); 1037 int foreign = (gup_flags & FOLL_REMOTE); 1038 bool vma_anon = vma_is_anonymous(vma); 1039 1040 if (vm_flags & (VM_IO | VM_PFNMAP)) 1041 return -EFAULT; 1042 1043 if ((gup_flags & FOLL_ANON) && !vma_anon) 1044 return -EFAULT; 1045 1046 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1047 return -EOPNOTSUPP; 1048 1049 if (vma_is_secretmem(vma)) 1050 return -EFAULT; 1051 1052 if (write) { 1053 if (!vma_anon && 1054 !writable_file_mapping_allowed(vma, gup_flags)) 1055 return -EFAULT; 1056 1057 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1058 if (!(gup_flags & FOLL_FORCE)) 1059 return -EFAULT; 1060 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1061 if (is_vm_hugetlb_page(vma)) 1062 return -EFAULT; 1063 /* 1064 * We used to let the write,force case do COW in a 1065 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1066 * set a breakpoint in a read-only mapping of an 1067 * executable, without corrupting the file (yet only 1068 * when that file had been opened for writing!). 1069 * Anon pages in shared mappings are surprising: now 1070 * just reject it. 1071 */ 1072 if (!is_cow_mapping(vm_flags)) 1073 return -EFAULT; 1074 } 1075 } else if (!(vm_flags & VM_READ)) { 1076 if (!(gup_flags & FOLL_FORCE)) 1077 return -EFAULT; 1078 /* 1079 * Is there actually any vma we can reach here which does not 1080 * have VM_MAYREAD set? 1081 */ 1082 if (!(vm_flags & VM_MAYREAD)) 1083 return -EFAULT; 1084 } 1085 /* 1086 * gups are always data accesses, not instruction 1087 * fetches, so execute=false here 1088 */ 1089 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1090 return -EFAULT; 1091 return 0; 1092 } 1093 1094 /* 1095 * This is "vma_lookup()", but with a warning if we would have 1096 * historically expanded the stack in the GUP code. 1097 */ 1098 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1099 unsigned long addr) 1100 { 1101 #ifdef CONFIG_STACK_GROWSUP 1102 return vma_lookup(mm, addr); 1103 #else 1104 static volatile unsigned long next_warn; 1105 struct vm_area_struct *vma; 1106 unsigned long now, next; 1107 1108 vma = find_vma(mm, addr); 1109 if (!vma || (addr >= vma->vm_start)) 1110 return vma; 1111 1112 /* Only warn for half-way relevant accesses */ 1113 if (!(vma->vm_flags & VM_GROWSDOWN)) 1114 return NULL; 1115 if (vma->vm_start - addr > 65536) 1116 return NULL; 1117 1118 /* Let's not warn more than once an hour.. */ 1119 now = jiffies; next = next_warn; 1120 if (next && time_before(now, next)) 1121 return NULL; 1122 next_warn = now + 60*60*HZ; 1123 1124 /* Let people know things may have changed. */ 1125 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1126 current->comm, task_pid_nr(current), 1127 vma->vm_start, vma->vm_end, addr); 1128 dump_stack(); 1129 return NULL; 1130 #endif 1131 } 1132 1133 /** 1134 * __get_user_pages() - pin user pages in memory 1135 * @mm: mm_struct of target mm 1136 * @start: starting user address 1137 * @nr_pages: number of pages from start to pin 1138 * @gup_flags: flags modifying pin behaviour 1139 * @pages: array that receives pointers to the pages pinned. 1140 * Should be at least nr_pages long. Or NULL, if caller 1141 * only intends to ensure the pages are faulted in. 1142 * @locked: whether we're still with the mmap_lock held 1143 * 1144 * Returns either number of pages pinned (which may be less than the 1145 * number requested), or an error. Details about the return value: 1146 * 1147 * -- If nr_pages is 0, returns 0. 1148 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1149 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1150 * pages pinned. Again, this may be less than nr_pages. 1151 * -- 0 return value is possible when the fault would need to be retried. 1152 * 1153 * The caller is responsible for releasing returned @pages, via put_page(). 1154 * 1155 * Must be called with mmap_lock held. It may be released. See below. 1156 * 1157 * __get_user_pages walks a process's page tables and takes a reference to 1158 * each struct page that each user address corresponds to at a given 1159 * instant. That is, it takes the page that would be accessed if a user 1160 * thread accesses the given user virtual address at that instant. 1161 * 1162 * This does not guarantee that the page exists in the user mappings when 1163 * __get_user_pages returns, and there may even be a completely different 1164 * page there in some cases (eg. if mmapped pagecache has been invalidated 1165 * and subsequently re-faulted). However it does guarantee that the page 1166 * won't be freed completely. And mostly callers simply care that the page 1167 * contains data that was valid *at some point in time*. Typically, an IO 1168 * or similar operation cannot guarantee anything stronger anyway because 1169 * locks can't be held over the syscall boundary. 1170 * 1171 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1172 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1173 * appropriate) must be called after the page is finished with, and 1174 * before put_page is called. 1175 * 1176 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1177 * be released. If this happens *@locked will be set to 0 on return. 1178 * 1179 * A caller using such a combination of @gup_flags must therefore hold the 1180 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1181 * it must be held for either reading or writing and will not be released. 1182 * 1183 * In most cases, get_user_pages or get_user_pages_fast should be used 1184 * instead of __get_user_pages. __get_user_pages should be used only if 1185 * you need some special @gup_flags. 1186 */ 1187 static long __get_user_pages(struct mm_struct *mm, 1188 unsigned long start, unsigned long nr_pages, 1189 unsigned int gup_flags, struct page **pages, 1190 int *locked) 1191 { 1192 long ret = 0, i = 0; 1193 struct vm_area_struct *vma = NULL; 1194 struct follow_page_context ctx = { NULL }; 1195 1196 if (!nr_pages) 1197 return 0; 1198 1199 start = untagged_addr_remote(mm, start); 1200 1201 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1202 1203 do { 1204 struct page *page; 1205 unsigned int foll_flags = gup_flags; 1206 unsigned int page_increm; 1207 1208 /* first iteration or cross vma bound */ 1209 if (!vma || start >= vma->vm_end) { 1210 /* 1211 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1212 * lookups+error reporting differently. 1213 */ 1214 if (gup_flags & FOLL_MADV_POPULATE) { 1215 vma = vma_lookup(mm, start); 1216 if (!vma) { 1217 ret = -ENOMEM; 1218 goto out; 1219 } 1220 if (check_vma_flags(vma, gup_flags)) { 1221 ret = -EINVAL; 1222 goto out; 1223 } 1224 goto retry; 1225 } 1226 vma = gup_vma_lookup(mm, start); 1227 if (!vma && in_gate_area(mm, start)) { 1228 ret = get_gate_page(mm, start & PAGE_MASK, 1229 gup_flags, &vma, 1230 pages ? &page : NULL); 1231 if (ret) 1232 goto out; 1233 ctx.page_mask = 0; 1234 goto next_page; 1235 } 1236 1237 if (!vma) { 1238 ret = -EFAULT; 1239 goto out; 1240 } 1241 ret = check_vma_flags(vma, gup_flags); 1242 if (ret) 1243 goto out; 1244 } 1245 retry: 1246 /* 1247 * If we have a pending SIGKILL, don't keep faulting pages and 1248 * potentially allocating memory. 1249 */ 1250 if (fatal_signal_pending(current)) { 1251 ret = -EINTR; 1252 goto out; 1253 } 1254 cond_resched(); 1255 1256 page = follow_page_mask(vma, start, foll_flags, &ctx); 1257 if (!page || PTR_ERR(page) == -EMLINK) { 1258 ret = faultin_page(vma, start, &foll_flags, 1259 PTR_ERR(page) == -EMLINK, locked); 1260 switch (ret) { 1261 case 0: 1262 goto retry; 1263 case -EBUSY: 1264 case -EAGAIN: 1265 ret = 0; 1266 fallthrough; 1267 case -EFAULT: 1268 case -ENOMEM: 1269 case -EHWPOISON: 1270 goto out; 1271 } 1272 BUG(); 1273 } else if (PTR_ERR(page) == -EEXIST) { 1274 /* 1275 * Proper page table entry exists, but no corresponding 1276 * struct page. If the caller expects **pages to be 1277 * filled in, bail out now, because that can't be done 1278 * for this page. 1279 */ 1280 if (pages) { 1281 ret = PTR_ERR(page); 1282 goto out; 1283 } 1284 } else if (IS_ERR(page)) { 1285 ret = PTR_ERR(page); 1286 goto out; 1287 } 1288 next_page: 1289 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1290 if (page_increm > nr_pages) 1291 page_increm = nr_pages; 1292 1293 if (pages) { 1294 struct page *subpage; 1295 unsigned int j; 1296 1297 /* 1298 * This must be a large folio (and doesn't need to 1299 * be the whole folio; it can be part of it), do 1300 * the refcount work for all the subpages too. 1301 * 1302 * NOTE: here the page may not be the head page 1303 * e.g. when start addr is not thp-size aligned. 1304 * try_grab_folio() should have taken care of tail 1305 * pages. 1306 */ 1307 if (page_increm > 1) { 1308 struct folio *folio; 1309 1310 /* 1311 * Since we already hold refcount on the 1312 * large folio, this should never fail. 1313 */ 1314 folio = try_grab_folio(page, page_increm - 1, 1315 foll_flags); 1316 if (WARN_ON_ONCE(!folio)) { 1317 /* 1318 * Release the 1st page ref if the 1319 * folio is problematic, fail hard. 1320 */ 1321 gup_put_folio(page_folio(page), 1, 1322 foll_flags); 1323 ret = -EFAULT; 1324 goto out; 1325 } 1326 } 1327 1328 for (j = 0; j < page_increm; j++) { 1329 subpage = nth_page(page, j); 1330 pages[i + j] = subpage; 1331 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1332 flush_dcache_page(subpage); 1333 } 1334 } 1335 1336 i += page_increm; 1337 start += page_increm * PAGE_SIZE; 1338 nr_pages -= page_increm; 1339 } while (nr_pages); 1340 out: 1341 if (ctx.pgmap) 1342 put_dev_pagemap(ctx.pgmap); 1343 return i ? i : ret; 1344 } 1345 1346 static bool vma_permits_fault(struct vm_area_struct *vma, 1347 unsigned int fault_flags) 1348 { 1349 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1350 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1351 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1352 1353 if (!(vm_flags & vma->vm_flags)) 1354 return false; 1355 1356 /* 1357 * The architecture might have a hardware protection 1358 * mechanism other than read/write that can deny access. 1359 * 1360 * gup always represents data access, not instruction 1361 * fetches, so execute=false here: 1362 */ 1363 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1364 return false; 1365 1366 return true; 1367 } 1368 1369 /** 1370 * fixup_user_fault() - manually resolve a user page fault 1371 * @mm: mm_struct of target mm 1372 * @address: user address 1373 * @fault_flags:flags to pass down to handle_mm_fault() 1374 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1375 * does not allow retry. If NULL, the caller must guarantee 1376 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1377 * 1378 * This is meant to be called in the specific scenario where for locking reasons 1379 * we try to access user memory in atomic context (within a pagefault_disable() 1380 * section), this returns -EFAULT, and we want to resolve the user fault before 1381 * trying again. 1382 * 1383 * Typically this is meant to be used by the futex code. 1384 * 1385 * The main difference with get_user_pages() is that this function will 1386 * unconditionally call handle_mm_fault() which will in turn perform all the 1387 * necessary SW fixup of the dirty and young bits in the PTE, while 1388 * get_user_pages() only guarantees to update these in the struct page. 1389 * 1390 * This is important for some architectures where those bits also gate the 1391 * access permission to the page because they are maintained in software. On 1392 * such architectures, gup() will not be enough to make a subsequent access 1393 * succeed. 1394 * 1395 * This function will not return with an unlocked mmap_lock. So it has not the 1396 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1397 */ 1398 int fixup_user_fault(struct mm_struct *mm, 1399 unsigned long address, unsigned int fault_flags, 1400 bool *unlocked) 1401 { 1402 struct vm_area_struct *vma; 1403 vm_fault_t ret; 1404 1405 address = untagged_addr_remote(mm, address); 1406 1407 if (unlocked) 1408 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1409 1410 retry: 1411 vma = gup_vma_lookup(mm, address); 1412 if (!vma) 1413 return -EFAULT; 1414 1415 if (!vma_permits_fault(vma, fault_flags)) 1416 return -EFAULT; 1417 1418 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1419 fatal_signal_pending(current)) 1420 return -EINTR; 1421 1422 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1423 1424 if (ret & VM_FAULT_COMPLETED) { 1425 /* 1426 * NOTE: it's a pity that we need to retake the lock here 1427 * to pair with the unlock() in the callers. Ideally we 1428 * could tell the callers so they do not need to unlock. 1429 */ 1430 mmap_read_lock(mm); 1431 *unlocked = true; 1432 return 0; 1433 } 1434 1435 if (ret & VM_FAULT_ERROR) { 1436 int err = vm_fault_to_errno(ret, 0); 1437 1438 if (err) 1439 return err; 1440 BUG(); 1441 } 1442 1443 if (ret & VM_FAULT_RETRY) { 1444 mmap_read_lock(mm); 1445 *unlocked = true; 1446 fault_flags |= FAULT_FLAG_TRIED; 1447 goto retry; 1448 } 1449 1450 return 0; 1451 } 1452 EXPORT_SYMBOL_GPL(fixup_user_fault); 1453 1454 /* 1455 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1456 * specified, it'll also respond to generic signals. The caller of GUP 1457 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1458 */ 1459 static bool gup_signal_pending(unsigned int flags) 1460 { 1461 if (fatal_signal_pending(current)) 1462 return true; 1463 1464 if (!(flags & FOLL_INTERRUPTIBLE)) 1465 return false; 1466 1467 return signal_pending(current); 1468 } 1469 1470 /* 1471 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1472 * the caller. This function may drop the mmap_lock. If it does so, then it will 1473 * set (*locked = 0). 1474 * 1475 * (*locked == 0) means that the caller expects this function to acquire and 1476 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1477 * the function returns, even though it may have changed temporarily during 1478 * function execution. 1479 * 1480 * Please note that this function, unlike __get_user_pages(), will not return 0 1481 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1482 */ 1483 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1484 unsigned long start, 1485 unsigned long nr_pages, 1486 struct page **pages, 1487 int *locked, 1488 unsigned int flags) 1489 { 1490 long ret, pages_done; 1491 bool must_unlock = false; 1492 1493 if (!nr_pages) 1494 return 0; 1495 1496 /* 1497 * The internal caller expects GUP to manage the lock internally and the 1498 * lock must be released when this returns. 1499 */ 1500 if (!*locked) { 1501 if (mmap_read_lock_killable(mm)) 1502 return -EAGAIN; 1503 must_unlock = true; 1504 *locked = 1; 1505 } 1506 else 1507 mmap_assert_locked(mm); 1508 1509 if (flags & FOLL_PIN) 1510 mm_set_has_pinned_flag(&mm->flags); 1511 1512 /* 1513 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1514 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1515 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1516 * for FOLL_GET, not for the newer FOLL_PIN. 1517 * 1518 * FOLL_PIN always expects pages to be non-null, but no need to assert 1519 * that here, as any failures will be obvious enough. 1520 */ 1521 if (pages && !(flags & FOLL_PIN)) 1522 flags |= FOLL_GET; 1523 1524 pages_done = 0; 1525 for (;;) { 1526 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1527 locked); 1528 if (!(flags & FOLL_UNLOCKABLE)) { 1529 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1530 pages_done = ret; 1531 break; 1532 } 1533 1534 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1535 if (!*locked) { 1536 BUG_ON(ret < 0); 1537 BUG_ON(ret >= nr_pages); 1538 } 1539 1540 if (ret > 0) { 1541 nr_pages -= ret; 1542 pages_done += ret; 1543 if (!nr_pages) 1544 break; 1545 } 1546 if (*locked) { 1547 /* 1548 * VM_FAULT_RETRY didn't trigger or it was a 1549 * FOLL_NOWAIT. 1550 */ 1551 if (!pages_done) 1552 pages_done = ret; 1553 break; 1554 } 1555 /* 1556 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1557 * For the prefault case (!pages) we only update counts. 1558 */ 1559 if (likely(pages)) 1560 pages += ret; 1561 start += ret << PAGE_SHIFT; 1562 1563 /* The lock was temporarily dropped, so we must unlock later */ 1564 must_unlock = true; 1565 1566 retry: 1567 /* 1568 * Repeat on the address that fired VM_FAULT_RETRY 1569 * with both FAULT_FLAG_ALLOW_RETRY and 1570 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1571 * by fatal signals of even common signals, depending on 1572 * the caller's request. So we need to check it before we 1573 * start trying again otherwise it can loop forever. 1574 */ 1575 if (gup_signal_pending(flags)) { 1576 if (!pages_done) 1577 pages_done = -EINTR; 1578 break; 1579 } 1580 1581 ret = mmap_read_lock_killable(mm); 1582 if (ret) { 1583 BUG_ON(ret > 0); 1584 if (!pages_done) 1585 pages_done = ret; 1586 break; 1587 } 1588 1589 *locked = 1; 1590 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1591 pages, locked); 1592 if (!*locked) { 1593 /* Continue to retry until we succeeded */ 1594 BUG_ON(ret != 0); 1595 goto retry; 1596 } 1597 if (ret != 1) { 1598 BUG_ON(ret > 1); 1599 if (!pages_done) 1600 pages_done = ret; 1601 break; 1602 } 1603 nr_pages--; 1604 pages_done++; 1605 if (!nr_pages) 1606 break; 1607 if (likely(pages)) 1608 pages++; 1609 start += PAGE_SIZE; 1610 } 1611 if (must_unlock && *locked) { 1612 /* 1613 * We either temporarily dropped the lock, or the caller 1614 * requested that we both acquire and drop the lock. Either way, 1615 * we must now unlock, and notify the caller of that state. 1616 */ 1617 mmap_read_unlock(mm); 1618 *locked = 0; 1619 } 1620 1621 /* 1622 * Failing to pin anything implies something has gone wrong (except when 1623 * FOLL_NOWAIT is specified). 1624 */ 1625 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1626 return -EFAULT; 1627 1628 return pages_done; 1629 } 1630 1631 /** 1632 * populate_vma_page_range() - populate a range of pages in the vma. 1633 * @vma: target vma 1634 * @start: start address 1635 * @end: end address 1636 * @locked: whether the mmap_lock is still held 1637 * 1638 * This takes care of mlocking the pages too if VM_LOCKED is set. 1639 * 1640 * Return either number of pages pinned in the vma, or a negative error 1641 * code on error. 1642 * 1643 * vma->vm_mm->mmap_lock must be held. 1644 * 1645 * If @locked is NULL, it may be held for read or write and will 1646 * be unperturbed. 1647 * 1648 * If @locked is non-NULL, it must held for read only and may be 1649 * released. If it's released, *@locked will be set to 0. 1650 */ 1651 long populate_vma_page_range(struct vm_area_struct *vma, 1652 unsigned long start, unsigned long end, int *locked) 1653 { 1654 struct mm_struct *mm = vma->vm_mm; 1655 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1656 int local_locked = 1; 1657 int gup_flags; 1658 long ret; 1659 1660 VM_BUG_ON(!PAGE_ALIGNED(start)); 1661 VM_BUG_ON(!PAGE_ALIGNED(end)); 1662 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1663 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1664 mmap_assert_locked(mm); 1665 1666 /* 1667 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1668 * faultin_page() to break COW, so it has no work to do here. 1669 */ 1670 if (vma->vm_flags & VM_LOCKONFAULT) 1671 return nr_pages; 1672 1673 /* ... similarly, we've never faulted in PROT_NONE pages */ 1674 if (!vma_is_accessible(vma)) 1675 return -EFAULT; 1676 1677 gup_flags = FOLL_TOUCH; 1678 /* 1679 * We want to touch writable mappings with a write fault in order 1680 * to break COW, except for shared mappings because these don't COW 1681 * and we would not want to dirty them for nothing. 1682 * 1683 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1684 * readable (ie write-only or executable). 1685 */ 1686 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1687 gup_flags |= FOLL_WRITE; 1688 else 1689 gup_flags |= FOLL_FORCE; 1690 1691 if (locked) 1692 gup_flags |= FOLL_UNLOCKABLE; 1693 1694 /* 1695 * We made sure addr is within a VMA, so the following will 1696 * not result in a stack expansion that recurses back here. 1697 */ 1698 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1699 NULL, locked ? locked : &local_locked); 1700 lru_add_drain(); 1701 return ret; 1702 } 1703 1704 /* 1705 * faultin_page_range() - populate (prefault) page tables inside the 1706 * given range readable/writable 1707 * 1708 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1709 * 1710 * @mm: the mm to populate page tables in 1711 * @start: start address 1712 * @end: end address 1713 * @write: whether to prefault readable or writable 1714 * @locked: whether the mmap_lock is still held 1715 * 1716 * Returns either number of processed pages in the MM, or a negative error 1717 * code on error (see __get_user_pages()). Note that this function reports 1718 * errors related to VMAs, such as incompatible mappings, as expected by 1719 * MADV_POPULATE_(READ|WRITE). 1720 * 1721 * The range must be page-aligned. 1722 * 1723 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1724 */ 1725 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1726 unsigned long end, bool write, int *locked) 1727 { 1728 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1729 int gup_flags; 1730 long ret; 1731 1732 VM_BUG_ON(!PAGE_ALIGNED(start)); 1733 VM_BUG_ON(!PAGE_ALIGNED(end)); 1734 mmap_assert_locked(mm); 1735 1736 /* 1737 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1738 * the page dirty with FOLL_WRITE -- which doesn't make a 1739 * difference with !FOLL_FORCE, because the page is writable 1740 * in the page table. 1741 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1742 * a poisoned page. 1743 * !FOLL_FORCE: Require proper access permissions. 1744 */ 1745 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1746 FOLL_MADV_POPULATE; 1747 if (write) 1748 gup_flags |= FOLL_WRITE; 1749 1750 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1751 gup_flags); 1752 lru_add_drain(); 1753 return ret; 1754 } 1755 1756 /* 1757 * __mm_populate - populate and/or mlock pages within a range of address space. 1758 * 1759 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1760 * flags. VMAs must be already marked with the desired vm_flags, and 1761 * mmap_lock must not be held. 1762 */ 1763 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1764 { 1765 struct mm_struct *mm = current->mm; 1766 unsigned long end, nstart, nend; 1767 struct vm_area_struct *vma = NULL; 1768 int locked = 0; 1769 long ret = 0; 1770 1771 end = start + len; 1772 1773 for (nstart = start; nstart < end; nstart = nend) { 1774 /* 1775 * We want to fault in pages for [nstart; end) address range. 1776 * Find first corresponding VMA. 1777 */ 1778 if (!locked) { 1779 locked = 1; 1780 mmap_read_lock(mm); 1781 vma = find_vma_intersection(mm, nstart, end); 1782 } else if (nstart >= vma->vm_end) 1783 vma = find_vma_intersection(mm, vma->vm_end, end); 1784 1785 if (!vma) 1786 break; 1787 /* 1788 * Set [nstart; nend) to intersection of desired address 1789 * range with the first VMA. Also, skip undesirable VMA types. 1790 */ 1791 nend = min(end, vma->vm_end); 1792 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1793 continue; 1794 if (nstart < vma->vm_start) 1795 nstart = vma->vm_start; 1796 /* 1797 * Now fault in a range of pages. populate_vma_page_range() 1798 * double checks the vma flags, so that it won't mlock pages 1799 * if the vma was already munlocked. 1800 */ 1801 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1802 if (ret < 0) { 1803 if (ignore_errors) { 1804 ret = 0; 1805 continue; /* continue at next VMA */ 1806 } 1807 break; 1808 } 1809 nend = nstart + ret * PAGE_SIZE; 1810 ret = 0; 1811 } 1812 if (locked) 1813 mmap_read_unlock(mm); 1814 return ret; /* 0 or negative error code */ 1815 } 1816 #else /* CONFIG_MMU */ 1817 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1818 unsigned long nr_pages, struct page **pages, 1819 int *locked, unsigned int foll_flags) 1820 { 1821 struct vm_area_struct *vma; 1822 bool must_unlock = false; 1823 unsigned long vm_flags; 1824 long i; 1825 1826 if (!nr_pages) 1827 return 0; 1828 1829 /* 1830 * The internal caller expects GUP to manage the lock internally and the 1831 * lock must be released when this returns. 1832 */ 1833 if (!*locked) { 1834 if (mmap_read_lock_killable(mm)) 1835 return -EAGAIN; 1836 must_unlock = true; 1837 *locked = 1; 1838 } 1839 1840 /* calculate required read or write permissions. 1841 * If FOLL_FORCE is set, we only require the "MAY" flags. 1842 */ 1843 vm_flags = (foll_flags & FOLL_WRITE) ? 1844 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1845 vm_flags &= (foll_flags & FOLL_FORCE) ? 1846 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1847 1848 for (i = 0; i < nr_pages; i++) { 1849 vma = find_vma(mm, start); 1850 if (!vma) 1851 break; 1852 1853 /* protect what we can, including chardevs */ 1854 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1855 !(vm_flags & vma->vm_flags)) 1856 break; 1857 1858 if (pages) { 1859 pages[i] = virt_to_page((void *)start); 1860 if (pages[i]) 1861 get_page(pages[i]); 1862 } 1863 1864 start = (start + PAGE_SIZE) & PAGE_MASK; 1865 } 1866 1867 if (must_unlock && *locked) { 1868 mmap_read_unlock(mm); 1869 *locked = 0; 1870 } 1871 1872 return i ? : -EFAULT; 1873 } 1874 #endif /* !CONFIG_MMU */ 1875 1876 /** 1877 * fault_in_writeable - fault in userspace address range for writing 1878 * @uaddr: start of address range 1879 * @size: size of address range 1880 * 1881 * Returns the number of bytes not faulted in (like copy_to_user() and 1882 * copy_from_user()). 1883 */ 1884 size_t fault_in_writeable(char __user *uaddr, size_t size) 1885 { 1886 char __user *start = uaddr, *end; 1887 1888 if (unlikely(size == 0)) 1889 return 0; 1890 if (!user_write_access_begin(uaddr, size)) 1891 return size; 1892 if (!PAGE_ALIGNED(uaddr)) { 1893 unsafe_put_user(0, uaddr, out); 1894 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1895 } 1896 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1897 if (unlikely(end < start)) 1898 end = NULL; 1899 while (uaddr != end) { 1900 unsafe_put_user(0, uaddr, out); 1901 uaddr += PAGE_SIZE; 1902 } 1903 1904 out: 1905 user_write_access_end(); 1906 if (size > uaddr - start) 1907 return size - (uaddr - start); 1908 return 0; 1909 } 1910 EXPORT_SYMBOL(fault_in_writeable); 1911 1912 /** 1913 * fault_in_subpage_writeable - fault in an address range for writing 1914 * @uaddr: start of address range 1915 * @size: size of address range 1916 * 1917 * Fault in a user address range for writing while checking for permissions at 1918 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1919 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1920 * 1921 * Returns the number of bytes not faulted in (like copy_to_user() and 1922 * copy_from_user()). 1923 */ 1924 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1925 { 1926 size_t faulted_in; 1927 1928 /* 1929 * Attempt faulting in at page granularity first for page table 1930 * permission checking. The arch-specific probe_subpage_writeable() 1931 * functions may not check for this. 1932 */ 1933 faulted_in = size - fault_in_writeable(uaddr, size); 1934 if (faulted_in) 1935 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1936 1937 return size - faulted_in; 1938 } 1939 EXPORT_SYMBOL(fault_in_subpage_writeable); 1940 1941 /* 1942 * fault_in_safe_writeable - fault in an address range for writing 1943 * @uaddr: start of address range 1944 * @size: length of address range 1945 * 1946 * Faults in an address range for writing. This is primarily useful when we 1947 * already know that some or all of the pages in the address range aren't in 1948 * memory. 1949 * 1950 * Unlike fault_in_writeable(), this function is non-destructive. 1951 * 1952 * Note that we don't pin or otherwise hold the pages referenced that we fault 1953 * in. There's no guarantee that they'll stay in memory for any duration of 1954 * time. 1955 * 1956 * Returns the number of bytes not faulted in, like copy_to_user() and 1957 * copy_from_user(). 1958 */ 1959 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1960 { 1961 unsigned long start = (unsigned long)uaddr, end; 1962 struct mm_struct *mm = current->mm; 1963 bool unlocked = false; 1964 1965 if (unlikely(size == 0)) 1966 return 0; 1967 end = PAGE_ALIGN(start + size); 1968 if (end < start) 1969 end = 0; 1970 1971 mmap_read_lock(mm); 1972 do { 1973 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1974 break; 1975 start = (start + PAGE_SIZE) & PAGE_MASK; 1976 } while (start != end); 1977 mmap_read_unlock(mm); 1978 1979 if (size > (unsigned long)uaddr - start) 1980 return size - ((unsigned long)uaddr - start); 1981 return 0; 1982 } 1983 EXPORT_SYMBOL(fault_in_safe_writeable); 1984 1985 /** 1986 * fault_in_readable - fault in userspace address range for reading 1987 * @uaddr: start of user address range 1988 * @size: size of user address range 1989 * 1990 * Returns the number of bytes not faulted in (like copy_to_user() and 1991 * copy_from_user()). 1992 */ 1993 size_t fault_in_readable(const char __user *uaddr, size_t size) 1994 { 1995 const char __user *start = uaddr, *end; 1996 volatile char c; 1997 1998 if (unlikely(size == 0)) 1999 return 0; 2000 if (!user_read_access_begin(uaddr, size)) 2001 return size; 2002 if (!PAGE_ALIGNED(uaddr)) { 2003 unsafe_get_user(c, uaddr, out); 2004 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2005 } 2006 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2007 if (unlikely(end < start)) 2008 end = NULL; 2009 while (uaddr != end) { 2010 unsafe_get_user(c, uaddr, out); 2011 uaddr += PAGE_SIZE; 2012 } 2013 2014 out: 2015 user_read_access_end(); 2016 (void)c; 2017 if (size > uaddr - start) 2018 return size - (uaddr - start); 2019 return 0; 2020 } 2021 EXPORT_SYMBOL(fault_in_readable); 2022 2023 /** 2024 * get_dump_page() - pin user page in memory while writing it to core dump 2025 * @addr: user address 2026 * 2027 * Returns struct page pointer of user page pinned for dump, 2028 * to be freed afterwards by put_page(). 2029 * 2030 * Returns NULL on any kind of failure - a hole must then be inserted into 2031 * the corefile, to preserve alignment with its headers; and also returns 2032 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2033 * allowing a hole to be left in the corefile to save disk space. 2034 * 2035 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2036 */ 2037 #ifdef CONFIG_ELF_CORE 2038 struct page *get_dump_page(unsigned long addr) 2039 { 2040 struct page *page; 2041 int locked = 0; 2042 int ret; 2043 2044 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2045 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2046 return (ret == 1) ? page : NULL; 2047 } 2048 #endif /* CONFIG_ELF_CORE */ 2049 2050 #ifdef CONFIG_MIGRATION 2051 /* 2052 * Returns the number of collected pages. Return value is always >= 0. 2053 */ 2054 static unsigned long collect_longterm_unpinnable_pages( 2055 struct list_head *movable_page_list, 2056 unsigned long nr_pages, 2057 struct page **pages) 2058 { 2059 unsigned long i, collected = 0; 2060 struct folio *prev_folio = NULL; 2061 bool drain_allow = true; 2062 2063 for (i = 0; i < nr_pages; i++) { 2064 struct folio *folio = page_folio(pages[i]); 2065 2066 if (folio == prev_folio) 2067 continue; 2068 prev_folio = folio; 2069 2070 if (folio_is_longterm_pinnable(folio)) 2071 continue; 2072 2073 collected++; 2074 2075 if (folio_is_device_coherent(folio)) 2076 continue; 2077 2078 if (folio_test_hugetlb(folio)) { 2079 isolate_hugetlb(folio, movable_page_list); 2080 continue; 2081 } 2082 2083 if (!folio_test_lru(folio) && drain_allow) { 2084 lru_add_drain_all(); 2085 drain_allow = false; 2086 } 2087 2088 if (!folio_isolate_lru(folio)) 2089 continue; 2090 2091 list_add_tail(&folio->lru, movable_page_list); 2092 node_stat_mod_folio(folio, 2093 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2094 folio_nr_pages(folio)); 2095 } 2096 2097 return collected; 2098 } 2099 2100 /* 2101 * Unpins all pages and migrates device coherent pages and movable_page_list. 2102 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2103 * (or partial success). 2104 */ 2105 static int migrate_longterm_unpinnable_pages( 2106 struct list_head *movable_page_list, 2107 unsigned long nr_pages, 2108 struct page **pages) 2109 { 2110 int ret; 2111 unsigned long i; 2112 2113 for (i = 0; i < nr_pages; i++) { 2114 struct folio *folio = page_folio(pages[i]); 2115 2116 if (folio_is_device_coherent(folio)) { 2117 /* 2118 * Migration will fail if the page is pinned, so convert 2119 * the pin on the source page to a normal reference. 2120 */ 2121 pages[i] = NULL; 2122 folio_get(folio); 2123 gup_put_folio(folio, 1, FOLL_PIN); 2124 2125 if (migrate_device_coherent_page(&folio->page)) { 2126 ret = -EBUSY; 2127 goto err; 2128 } 2129 2130 continue; 2131 } 2132 2133 /* 2134 * We can't migrate pages with unexpected references, so drop 2135 * the reference obtained by __get_user_pages_locked(). 2136 * Migrating pages have been added to movable_page_list after 2137 * calling folio_isolate_lru() which takes a reference so the 2138 * page won't be freed if it's migrating. 2139 */ 2140 unpin_user_page(pages[i]); 2141 pages[i] = NULL; 2142 } 2143 2144 if (!list_empty(movable_page_list)) { 2145 struct migration_target_control mtc = { 2146 .nid = NUMA_NO_NODE, 2147 .gfp_mask = GFP_USER | __GFP_NOWARN, 2148 }; 2149 2150 if (migrate_pages(movable_page_list, alloc_migration_target, 2151 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2152 MR_LONGTERM_PIN, NULL)) { 2153 ret = -ENOMEM; 2154 goto err; 2155 } 2156 } 2157 2158 putback_movable_pages(movable_page_list); 2159 2160 return -EAGAIN; 2161 2162 err: 2163 for (i = 0; i < nr_pages; i++) 2164 if (pages[i]) 2165 unpin_user_page(pages[i]); 2166 putback_movable_pages(movable_page_list); 2167 2168 return ret; 2169 } 2170 2171 /* 2172 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2173 * pages in the range are required to be pinned via FOLL_PIN, before calling 2174 * this routine. 2175 * 2176 * If any pages in the range are not allowed to be pinned, then this routine 2177 * will migrate those pages away, unpin all the pages in the range and return 2178 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2179 * call this routine again. 2180 * 2181 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2182 * The caller should give up, and propagate the error back up the call stack. 2183 * 2184 * If everything is OK and all pages in the range are allowed to be pinned, then 2185 * this routine leaves all pages pinned and returns zero for success. 2186 */ 2187 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2188 struct page **pages) 2189 { 2190 unsigned long collected; 2191 LIST_HEAD(movable_page_list); 2192 2193 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2194 nr_pages, pages); 2195 if (!collected) 2196 return 0; 2197 2198 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2199 pages); 2200 } 2201 #else 2202 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2203 struct page **pages) 2204 { 2205 return 0; 2206 } 2207 #endif /* CONFIG_MIGRATION */ 2208 2209 /* 2210 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2211 * allows us to process the FOLL_LONGTERM flag. 2212 */ 2213 static long __gup_longterm_locked(struct mm_struct *mm, 2214 unsigned long start, 2215 unsigned long nr_pages, 2216 struct page **pages, 2217 int *locked, 2218 unsigned int gup_flags) 2219 { 2220 unsigned int flags; 2221 long rc, nr_pinned_pages; 2222 2223 if (!(gup_flags & FOLL_LONGTERM)) 2224 return __get_user_pages_locked(mm, start, nr_pages, pages, 2225 locked, gup_flags); 2226 2227 flags = memalloc_pin_save(); 2228 do { 2229 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2230 pages, locked, 2231 gup_flags); 2232 if (nr_pinned_pages <= 0) { 2233 rc = nr_pinned_pages; 2234 break; 2235 } 2236 2237 /* FOLL_LONGTERM implies FOLL_PIN */ 2238 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2239 } while (rc == -EAGAIN); 2240 memalloc_pin_restore(flags); 2241 return rc ? rc : nr_pinned_pages; 2242 } 2243 2244 /* 2245 * Check that the given flags are valid for the exported gup/pup interface, and 2246 * update them with the required flags that the caller must have set. 2247 */ 2248 static bool is_valid_gup_args(struct page **pages, int *locked, 2249 unsigned int *gup_flags_p, unsigned int to_set) 2250 { 2251 unsigned int gup_flags = *gup_flags_p; 2252 2253 /* 2254 * These flags not allowed to be specified externally to the gup 2255 * interfaces: 2256 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2257 * - FOLL_REMOTE is internal only and used on follow_page() 2258 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2259 */ 2260 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2261 return false; 2262 2263 gup_flags |= to_set; 2264 if (locked) { 2265 /* At the external interface locked must be set */ 2266 if (WARN_ON_ONCE(*locked != 1)) 2267 return false; 2268 2269 gup_flags |= FOLL_UNLOCKABLE; 2270 } 2271 2272 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2273 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2274 (FOLL_PIN | FOLL_GET))) 2275 return false; 2276 2277 /* LONGTERM can only be specified when pinning */ 2278 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2279 return false; 2280 2281 /* Pages input must be given if using GET/PIN */ 2282 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2283 return false; 2284 2285 /* We want to allow the pgmap to be hot-unplugged at all times */ 2286 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2287 (gup_flags & FOLL_PCI_P2PDMA))) 2288 return false; 2289 2290 *gup_flags_p = gup_flags; 2291 return true; 2292 } 2293 2294 #ifdef CONFIG_MMU 2295 /** 2296 * get_user_pages_remote() - pin user pages in memory 2297 * @mm: mm_struct of target mm 2298 * @start: starting user address 2299 * @nr_pages: number of pages from start to pin 2300 * @gup_flags: flags modifying lookup behaviour 2301 * @pages: array that receives pointers to the pages pinned. 2302 * Should be at least nr_pages long. Or NULL, if caller 2303 * only intends to ensure the pages are faulted in. 2304 * @locked: pointer to lock flag indicating whether lock is held and 2305 * subsequently whether VM_FAULT_RETRY functionality can be 2306 * utilised. Lock must initially be held. 2307 * 2308 * Returns either number of pages pinned (which may be less than the 2309 * number requested), or an error. Details about the return value: 2310 * 2311 * -- If nr_pages is 0, returns 0. 2312 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2313 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2314 * pages pinned. Again, this may be less than nr_pages. 2315 * 2316 * The caller is responsible for releasing returned @pages, via put_page(). 2317 * 2318 * Must be called with mmap_lock held for read or write. 2319 * 2320 * get_user_pages_remote walks a process's page tables and takes a reference 2321 * to each struct page that each user address corresponds to at a given 2322 * instant. That is, it takes the page that would be accessed if a user 2323 * thread accesses the given user virtual address at that instant. 2324 * 2325 * This does not guarantee that the page exists in the user mappings when 2326 * get_user_pages_remote returns, and there may even be a completely different 2327 * page there in some cases (eg. if mmapped pagecache has been invalidated 2328 * and subsequently re-faulted). However it does guarantee that the page 2329 * won't be freed completely. And mostly callers simply care that the page 2330 * contains data that was valid *at some point in time*. Typically, an IO 2331 * or similar operation cannot guarantee anything stronger anyway because 2332 * locks can't be held over the syscall boundary. 2333 * 2334 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2335 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2336 * be called after the page is finished with, and before put_page is called. 2337 * 2338 * get_user_pages_remote is typically used for fewer-copy IO operations, 2339 * to get a handle on the memory by some means other than accesses 2340 * via the user virtual addresses. The pages may be submitted for 2341 * DMA to devices or accessed via their kernel linear mapping (via the 2342 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2343 * 2344 * See also get_user_pages_fast, for performance critical applications. 2345 * 2346 * get_user_pages_remote should be phased out in favor of 2347 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2348 * should use get_user_pages_remote because it cannot pass 2349 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2350 */ 2351 long get_user_pages_remote(struct mm_struct *mm, 2352 unsigned long start, unsigned long nr_pages, 2353 unsigned int gup_flags, struct page **pages, 2354 int *locked) 2355 { 2356 int local_locked = 1; 2357 2358 if (!is_valid_gup_args(pages, locked, &gup_flags, 2359 FOLL_TOUCH | FOLL_REMOTE)) 2360 return -EINVAL; 2361 2362 return __get_user_pages_locked(mm, start, nr_pages, pages, 2363 locked ? locked : &local_locked, 2364 gup_flags); 2365 } 2366 EXPORT_SYMBOL(get_user_pages_remote); 2367 2368 #else /* CONFIG_MMU */ 2369 long get_user_pages_remote(struct mm_struct *mm, 2370 unsigned long start, unsigned long nr_pages, 2371 unsigned int gup_flags, struct page **pages, 2372 int *locked) 2373 { 2374 return 0; 2375 } 2376 #endif /* !CONFIG_MMU */ 2377 2378 /** 2379 * get_user_pages() - pin user pages in memory 2380 * @start: starting user address 2381 * @nr_pages: number of pages from start to pin 2382 * @gup_flags: flags modifying lookup behaviour 2383 * @pages: array that receives pointers to the pages pinned. 2384 * Should be at least nr_pages long. Or NULL, if caller 2385 * only intends to ensure the pages are faulted in. 2386 * 2387 * This is the same as get_user_pages_remote(), just with a less-flexible 2388 * calling convention where we assume that the mm being operated on belongs to 2389 * the current task, and doesn't allow passing of a locked parameter. We also 2390 * obviously don't pass FOLL_REMOTE in here. 2391 */ 2392 long get_user_pages(unsigned long start, unsigned long nr_pages, 2393 unsigned int gup_flags, struct page **pages) 2394 { 2395 int locked = 1; 2396 2397 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2398 return -EINVAL; 2399 2400 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2401 &locked, gup_flags); 2402 } 2403 EXPORT_SYMBOL(get_user_pages); 2404 2405 /* 2406 * get_user_pages_unlocked() is suitable to replace the form: 2407 * 2408 * mmap_read_lock(mm); 2409 * get_user_pages(mm, ..., pages, NULL); 2410 * mmap_read_unlock(mm); 2411 * 2412 * with: 2413 * 2414 * get_user_pages_unlocked(mm, ..., pages); 2415 * 2416 * It is functionally equivalent to get_user_pages_fast so 2417 * get_user_pages_fast should be used instead if specific gup_flags 2418 * (e.g. FOLL_FORCE) are not required. 2419 */ 2420 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2421 struct page **pages, unsigned int gup_flags) 2422 { 2423 int locked = 0; 2424 2425 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2426 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2427 return -EINVAL; 2428 2429 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2430 &locked, gup_flags); 2431 } 2432 EXPORT_SYMBOL(get_user_pages_unlocked); 2433 2434 /* 2435 * Fast GUP 2436 * 2437 * get_user_pages_fast attempts to pin user pages by walking the page 2438 * tables directly and avoids taking locks. Thus the walker needs to be 2439 * protected from page table pages being freed from under it, and should 2440 * block any THP splits. 2441 * 2442 * One way to achieve this is to have the walker disable interrupts, and 2443 * rely on IPIs from the TLB flushing code blocking before the page table 2444 * pages are freed. This is unsuitable for architectures that do not need 2445 * to broadcast an IPI when invalidating TLBs. 2446 * 2447 * Another way to achieve this is to batch up page table containing pages 2448 * belonging to more than one mm_user, then rcu_sched a callback to free those 2449 * pages. Disabling interrupts will allow the fast_gup walker to both block 2450 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2451 * (which is a relatively rare event). The code below adopts this strategy. 2452 * 2453 * Before activating this code, please be aware that the following assumptions 2454 * are currently made: 2455 * 2456 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2457 * free pages containing page tables or TLB flushing requires IPI broadcast. 2458 * 2459 * *) ptes can be read atomically by the architecture. 2460 * 2461 * *) access_ok is sufficient to validate userspace address ranges. 2462 * 2463 * The last two assumptions can be relaxed by the addition of helper functions. 2464 * 2465 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2466 */ 2467 #ifdef CONFIG_HAVE_FAST_GUP 2468 2469 /* 2470 * Used in the GUP-fast path to determine whether a pin is permitted for a 2471 * specific folio. 2472 * 2473 * This call assumes the caller has pinned the folio, that the lowest page table 2474 * level still points to this folio, and that interrupts have been disabled. 2475 * 2476 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2477 * (see comment describing the writable_file_mapping_allowed() function). We 2478 * therefore try to avoid the most egregious case of a long-term mapping doing 2479 * so. 2480 * 2481 * This function cannot be as thorough as that one as the VMA is not available 2482 * in the fast path, so instead we whitelist known good cases and if in doubt, 2483 * fall back to the slow path. 2484 */ 2485 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2486 { 2487 struct address_space *mapping; 2488 unsigned long mapping_flags; 2489 2490 /* 2491 * If we aren't pinning then no problematic write can occur. A long term 2492 * pin is the most egregious case so this is the one we disallow. 2493 */ 2494 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2495 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2496 return true; 2497 2498 /* The folio is pinned, so we can safely access folio fields. */ 2499 2500 if (WARN_ON_ONCE(folio_test_slab(folio))) 2501 return false; 2502 2503 /* hugetlb mappings do not require dirty-tracking. */ 2504 if (folio_test_hugetlb(folio)) 2505 return true; 2506 2507 /* 2508 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2509 * cannot proceed, which means no actions performed under RCU can 2510 * proceed either. 2511 * 2512 * inodes and thus their mappings are freed under RCU, which means the 2513 * mapping cannot be freed beneath us and thus we can safely dereference 2514 * it. 2515 */ 2516 lockdep_assert_irqs_disabled(); 2517 2518 /* 2519 * However, there may be operations which _alter_ the mapping, so ensure 2520 * we read it once and only once. 2521 */ 2522 mapping = READ_ONCE(folio->mapping); 2523 2524 /* 2525 * The mapping may have been truncated, in any case we cannot determine 2526 * if this mapping is safe - fall back to slow path to determine how to 2527 * proceed. 2528 */ 2529 if (!mapping) 2530 return false; 2531 2532 /* Anonymous folios pose no problem. */ 2533 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2534 if (mapping_flags) 2535 return mapping_flags & PAGE_MAPPING_ANON; 2536 2537 /* 2538 * At this point, we know the mapping is non-null and points to an 2539 * address_space object. The only remaining whitelisted file system is 2540 * shmem. 2541 */ 2542 return shmem_mapping(mapping); 2543 } 2544 2545 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2546 unsigned int flags, 2547 struct page **pages) 2548 { 2549 while ((*nr) - nr_start) { 2550 struct page *page = pages[--(*nr)]; 2551 2552 ClearPageReferenced(page); 2553 if (flags & FOLL_PIN) 2554 unpin_user_page(page); 2555 else 2556 put_page(page); 2557 } 2558 } 2559 2560 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2561 /* 2562 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2563 * operations. 2564 * 2565 * To pin the page, fast-gup needs to do below in order: 2566 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2567 * 2568 * For the rest of pgtable operations where pgtable updates can be racy 2569 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2570 * is pinned. 2571 * 2572 * Above will work for all pte-level operations, including THP split. 2573 * 2574 * For THP collapse, it's a bit more complicated because fast-gup may be 2575 * walking a pgtable page that is being freed (pte is still valid but pmd 2576 * can be cleared already). To avoid race in such condition, we need to 2577 * also check pmd here to make sure pmd doesn't change (corresponds to 2578 * pmdp_collapse_flush() in the THP collapse code path). 2579 */ 2580 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2581 unsigned long end, unsigned int flags, 2582 struct page **pages, int *nr) 2583 { 2584 struct dev_pagemap *pgmap = NULL; 2585 int nr_start = *nr, ret = 0; 2586 pte_t *ptep, *ptem; 2587 2588 ptem = ptep = pte_offset_map(&pmd, addr); 2589 if (!ptep) 2590 return 0; 2591 do { 2592 pte_t pte = ptep_get_lockless(ptep); 2593 struct page *page; 2594 struct folio *folio; 2595 2596 /* 2597 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2598 * pte_access_permitted() better should reject these pages 2599 * either way: otherwise, GUP-fast might succeed in 2600 * cases where ordinary GUP would fail due to VMA access 2601 * permissions. 2602 */ 2603 if (pte_protnone(pte)) 2604 goto pte_unmap; 2605 2606 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2607 goto pte_unmap; 2608 2609 if (pte_devmap(pte)) { 2610 if (unlikely(flags & FOLL_LONGTERM)) 2611 goto pte_unmap; 2612 2613 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2614 if (unlikely(!pgmap)) { 2615 undo_dev_pagemap(nr, nr_start, flags, pages); 2616 goto pte_unmap; 2617 } 2618 } else if (pte_special(pte)) 2619 goto pte_unmap; 2620 2621 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2622 page = pte_page(pte); 2623 2624 folio = try_grab_folio(page, 1, flags); 2625 if (!folio) 2626 goto pte_unmap; 2627 2628 if (unlikely(folio_is_secretmem(folio))) { 2629 gup_put_folio(folio, 1, flags); 2630 goto pte_unmap; 2631 } 2632 2633 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2634 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2635 gup_put_folio(folio, 1, flags); 2636 goto pte_unmap; 2637 } 2638 2639 if (!folio_fast_pin_allowed(folio, flags)) { 2640 gup_put_folio(folio, 1, flags); 2641 goto pte_unmap; 2642 } 2643 2644 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2645 gup_put_folio(folio, 1, flags); 2646 goto pte_unmap; 2647 } 2648 2649 /* 2650 * We need to make the page accessible if and only if we are 2651 * going to access its content (the FOLL_PIN case). Please 2652 * see Documentation/core-api/pin_user_pages.rst for 2653 * details. 2654 */ 2655 if (flags & FOLL_PIN) { 2656 ret = arch_make_page_accessible(page); 2657 if (ret) { 2658 gup_put_folio(folio, 1, flags); 2659 goto pte_unmap; 2660 } 2661 } 2662 folio_set_referenced(folio); 2663 pages[*nr] = page; 2664 (*nr)++; 2665 } while (ptep++, addr += PAGE_SIZE, addr != end); 2666 2667 ret = 1; 2668 2669 pte_unmap: 2670 if (pgmap) 2671 put_dev_pagemap(pgmap); 2672 pte_unmap(ptem); 2673 return ret; 2674 } 2675 #else 2676 2677 /* 2678 * If we can't determine whether or not a pte is special, then fail immediately 2679 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2680 * to be special. 2681 * 2682 * For a futex to be placed on a THP tail page, get_futex_key requires a 2683 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2684 * useful to have gup_huge_pmd even if we can't operate on ptes. 2685 */ 2686 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2687 unsigned long end, unsigned int flags, 2688 struct page **pages, int *nr) 2689 { 2690 return 0; 2691 } 2692 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2693 2694 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2695 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2696 unsigned long end, unsigned int flags, 2697 struct page **pages, int *nr) 2698 { 2699 int nr_start = *nr; 2700 struct dev_pagemap *pgmap = NULL; 2701 2702 do { 2703 struct page *page = pfn_to_page(pfn); 2704 2705 pgmap = get_dev_pagemap(pfn, pgmap); 2706 if (unlikely(!pgmap)) { 2707 undo_dev_pagemap(nr, nr_start, flags, pages); 2708 break; 2709 } 2710 2711 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2712 undo_dev_pagemap(nr, nr_start, flags, pages); 2713 break; 2714 } 2715 2716 SetPageReferenced(page); 2717 pages[*nr] = page; 2718 if (unlikely(try_grab_page(page, flags))) { 2719 undo_dev_pagemap(nr, nr_start, flags, pages); 2720 break; 2721 } 2722 (*nr)++; 2723 pfn++; 2724 } while (addr += PAGE_SIZE, addr != end); 2725 2726 put_dev_pagemap(pgmap); 2727 return addr == end; 2728 } 2729 2730 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2731 unsigned long end, unsigned int flags, 2732 struct page **pages, int *nr) 2733 { 2734 unsigned long fault_pfn; 2735 int nr_start = *nr; 2736 2737 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2738 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2739 return 0; 2740 2741 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2742 undo_dev_pagemap(nr, nr_start, flags, pages); 2743 return 0; 2744 } 2745 return 1; 2746 } 2747 2748 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2749 unsigned long end, unsigned int flags, 2750 struct page **pages, int *nr) 2751 { 2752 unsigned long fault_pfn; 2753 int nr_start = *nr; 2754 2755 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2756 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2757 return 0; 2758 2759 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2760 undo_dev_pagemap(nr, nr_start, flags, pages); 2761 return 0; 2762 } 2763 return 1; 2764 } 2765 #else 2766 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2767 unsigned long end, unsigned int flags, 2768 struct page **pages, int *nr) 2769 { 2770 BUILD_BUG(); 2771 return 0; 2772 } 2773 2774 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2775 unsigned long end, unsigned int flags, 2776 struct page **pages, int *nr) 2777 { 2778 BUILD_BUG(); 2779 return 0; 2780 } 2781 #endif 2782 2783 static int record_subpages(struct page *page, unsigned long addr, 2784 unsigned long end, struct page **pages) 2785 { 2786 int nr; 2787 2788 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2789 pages[nr] = nth_page(page, nr); 2790 2791 return nr; 2792 } 2793 2794 #ifdef CONFIG_ARCH_HAS_HUGEPD 2795 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2796 unsigned long sz) 2797 { 2798 unsigned long __boundary = (addr + sz) & ~(sz-1); 2799 return (__boundary - 1 < end - 1) ? __boundary : end; 2800 } 2801 2802 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2803 unsigned long end, unsigned int flags, 2804 struct page **pages, int *nr) 2805 { 2806 unsigned long pte_end; 2807 struct page *page; 2808 struct folio *folio; 2809 pte_t pte; 2810 int refs; 2811 2812 pte_end = (addr + sz) & ~(sz-1); 2813 if (pte_end < end) 2814 end = pte_end; 2815 2816 pte = huge_ptep_get(ptep); 2817 2818 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2819 return 0; 2820 2821 /* hugepages are never "special" */ 2822 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2823 2824 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2825 refs = record_subpages(page, addr, end, pages + *nr); 2826 2827 folio = try_grab_folio(page, refs, flags); 2828 if (!folio) 2829 return 0; 2830 2831 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2832 gup_put_folio(folio, refs, flags); 2833 return 0; 2834 } 2835 2836 if (!folio_fast_pin_allowed(folio, flags)) { 2837 gup_put_folio(folio, refs, flags); 2838 return 0; 2839 } 2840 2841 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2842 gup_put_folio(folio, refs, flags); 2843 return 0; 2844 } 2845 2846 *nr += refs; 2847 folio_set_referenced(folio); 2848 return 1; 2849 } 2850 2851 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2852 unsigned int pdshift, unsigned long end, unsigned int flags, 2853 struct page **pages, int *nr) 2854 { 2855 pte_t *ptep; 2856 unsigned long sz = 1UL << hugepd_shift(hugepd); 2857 unsigned long next; 2858 2859 ptep = hugepte_offset(hugepd, addr, pdshift); 2860 do { 2861 next = hugepte_addr_end(addr, end, sz); 2862 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2863 return 0; 2864 } while (ptep++, addr = next, addr != end); 2865 2866 return 1; 2867 } 2868 #else 2869 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2870 unsigned int pdshift, unsigned long end, unsigned int flags, 2871 struct page **pages, int *nr) 2872 { 2873 return 0; 2874 } 2875 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2876 2877 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2878 unsigned long end, unsigned int flags, 2879 struct page **pages, int *nr) 2880 { 2881 struct page *page; 2882 struct folio *folio; 2883 int refs; 2884 2885 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2886 return 0; 2887 2888 if (pmd_devmap(orig)) { 2889 if (unlikely(flags & FOLL_LONGTERM)) 2890 return 0; 2891 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2892 pages, nr); 2893 } 2894 2895 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2896 refs = record_subpages(page, addr, end, pages + *nr); 2897 2898 folio = try_grab_folio(page, refs, flags); 2899 if (!folio) 2900 return 0; 2901 2902 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2903 gup_put_folio(folio, refs, flags); 2904 return 0; 2905 } 2906 2907 if (!folio_fast_pin_allowed(folio, flags)) { 2908 gup_put_folio(folio, refs, flags); 2909 return 0; 2910 } 2911 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2912 gup_put_folio(folio, refs, flags); 2913 return 0; 2914 } 2915 2916 *nr += refs; 2917 folio_set_referenced(folio); 2918 return 1; 2919 } 2920 2921 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2922 unsigned long end, unsigned int flags, 2923 struct page **pages, int *nr) 2924 { 2925 struct page *page; 2926 struct folio *folio; 2927 int refs; 2928 2929 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2930 return 0; 2931 2932 if (pud_devmap(orig)) { 2933 if (unlikely(flags & FOLL_LONGTERM)) 2934 return 0; 2935 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2936 pages, nr); 2937 } 2938 2939 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2940 refs = record_subpages(page, addr, end, pages + *nr); 2941 2942 folio = try_grab_folio(page, refs, flags); 2943 if (!folio) 2944 return 0; 2945 2946 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2947 gup_put_folio(folio, refs, flags); 2948 return 0; 2949 } 2950 2951 if (!folio_fast_pin_allowed(folio, flags)) { 2952 gup_put_folio(folio, refs, flags); 2953 return 0; 2954 } 2955 2956 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2957 gup_put_folio(folio, refs, flags); 2958 return 0; 2959 } 2960 2961 *nr += refs; 2962 folio_set_referenced(folio); 2963 return 1; 2964 } 2965 2966 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2967 unsigned long end, unsigned int flags, 2968 struct page **pages, int *nr) 2969 { 2970 int refs; 2971 struct page *page; 2972 struct folio *folio; 2973 2974 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2975 return 0; 2976 2977 BUILD_BUG_ON(pgd_devmap(orig)); 2978 2979 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2980 refs = record_subpages(page, addr, end, pages + *nr); 2981 2982 folio = try_grab_folio(page, refs, flags); 2983 if (!folio) 2984 return 0; 2985 2986 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2987 gup_put_folio(folio, refs, flags); 2988 return 0; 2989 } 2990 2991 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2992 gup_put_folio(folio, refs, flags); 2993 return 0; 2994 } 2995 2996 if (!folio_fast_pin_allowed(folio, flags)) { 2997 gup_put_folio(folio, refs, flags); 2998 return 0; 2999 } 3000 3001 *nr += refs; 3002 folio_set_referenced(folio); 3003 return 1; 3004 } 3005 3006 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 3007 unsigned int flags, struct page **pages, int *nr) 3008 { 3009 unsigned long next; 3010 pmd_t *pmdp; 3011 3012 pmdp = pmd_offset_lockless(pudp, pud, addr); 3013 do { 3014 pmd_t pmd = pmdp_get_lockless(pmdp); 3015 3016 next = pmd_addr_end(addr, end); 3017 if (!pmd_present(pmd)) 3018 return 0; 3019 3020 if (unlikely(pmd_leaf(pmd))) { 3021 /* See gup_pte_range() */ 3022 if (pmd_protnone(pmd)) 3023 return 0; 3024 3025 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 3026 pages, nr)) 3027 return 0; 3028 3029 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3030 /* 3031 * architecture have different format for hugetlbfs 3032 * pmd format and THP pmd format 3033 */ 3034 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 3035 PMD_SHIFT, next, flags, pages, nr)) 3036 return 0; 3037 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 3038 return 0; 3039 } while (pmdp++, addr = next, addr != end); 3040 3041 return 1; 3042 } 3043 3044 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 3045 unsigned int flags, struct page **pages, int *nr) 3046 { 3047 unsigned long next; 3048 pud_t *pudp; 3049 3050 pudp = pud_offset_lockless(p4dp, p4d, addr); 3051 do { 3052 pud_t pud = READ_ONCE(*pudp); 3053 3054 next = pud_addr_end(addr, end); 3055 if (unlikely(!pud_present(pud))) 3056 return 0; 3057 if (unlikely(pud_leaf(pud))) { 3058 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3059 pages, nr)) 3060 return 0; 3061 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3062 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3063 PUD_SHIFT, next, flags, pages, nr)) 3064 return 0; 3065 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3066 return 0; 3067 } while (pudp++, addr = next, addr != end); 3068 3069 return 1; 3070 } 3071 3072 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3073 unsigned int flags, struct page **pages, int *nr) 3074 { 3075 unsigned long next; 3076 p4d_t *p4dp; 3077 3078 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3079 do { 3080 p4d_t p4d = READ_ONCE(*p4dp); 3081 3082 next = p4d_addr_end(addr, end); 3083 if (!p4d_present(p4d)) 3084 return 0; 3085 BUILD_BUG_ON(p4d_leaf(p4d)); 3086 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3087 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3088 P4D_SHIFT, next, flags, pages, nr)) 3089 return 0; 3090 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3091 return 0; 3092 } while (p4dp++, addr = next, addr != end); 3093 3094 return 1; 3095 } 3096 3097 static void gup_pgd_range(unsigned long addr, unsigned long end, 3098 unsigned int flags, struct page **pages, int *nr) 3099 { 3100 unsigned long next; 3101 pgd_t *pgdp; 3102 3103 pgdp = pgd_offset(current->mm, addr); 3104 do { 3105 pgd_t pgd = READ_ONCE(*pgdp); 3106 3107 next = pgd_addr_end(addr, end); 3108 if (pgd_none(pgd)) 3109 return; 3110 if (unlikely(pgd_leaf(pgd))) { 3111 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3112 pages, nr)) 3113 return; 3114 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3115 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3116 PGDIR_SHIFT, next, flags, pages, nr)) 3117 return; 3118 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3119 return; 3120 } while (pgdp++, addr = next, addr != end); 3121 } 3122 #else 3123 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3124 unsigned int flags, struct page **pages, int *nr) 3125 { 3126 } 3127 #endif /* CONFIG_HAVE_FAST_GUP */ 3128 3129 #ifndef gup_fast_permitted 3130 /* 3131 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3132 * we need to fall back to the slow version: 3133 */ 3134 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3135 { 3136 return true; 3137 } 3138 #endif 3139 3140 static unsigned long lockless_pages_from_mm(unsigned long start, 3141 unsigned long end, 3142 unsigned int gup_flags, 3143 struct page **pages) 3144 { 3145 unsigned long flags; 3146 int nr_pinned = 0; 3147 unsigned seq; 3148 3149 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3150 !gup_fast_permitted(start, end)) 3151 return 0; 3152 3153 if (gup_flags & FOLL_PIN) { 3154 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3155 if (seq & 1) 3156 return 0; 3157 } 3158 3159 /* 3160 * Disable interrupts. The nested form is used, in order to allow full, 3161 * general purpose use of this routine. 3162 * 3163 * With interrupts disabled, we block page table pages from being freed 3164 * from under us. See struct mmu_table_batch comments in 3165 * include/asm-generic/tlb.h for more details. 3166 * 3167 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3168 * that come from THPs splitting. 3169 */ 3170 local_irq_save(flags); 3171 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3172 local_irq_restore(flags); 3173 3174 /* 3175 * When pinning pages for DMA there could be a concurrent write protect 3176 * from fork() via copy_page_range(), in this case always fail fast GUP. 3177 */ 3178 if (gup_flags & FOLL_PIN) { 3179 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3180 unpin_user_pages_lockless(pages, nr_pinned); 3181 return 0; 3182 } else { 3183 sanity_check_pinned_pages(pages, nr_pinned); 3184 } 3185 } 3186 return nr_pinned; 3187 } 3188 3189 static int internal_get_user_pages_fast(unsigned long start, 3190 unsigned long nr_pages, 3191 unsigned int gup_flags, 3192 struct page **pages) 3193 { 3194 unsigned long len, end; 3195 unsigned long nr_pinned; 3196 int locked = 0; 3197 int ret; 3198 3199 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3200 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3201 FOLL_FAST_ONLY | FOLL_NOFAULT | 3202 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3203 return -EINVAL; 3204 3205 if (gup_flags & FOLL_PIN) 3206 mm_set_has_pinned_flag(¤t->mm->flags); 3207 3208 if (!(gup_flags & FOLL_FAST_ONLY)) 3209 might_lock_read(¤t->mm->mmap_lock); 3210 3211 start = untagged_addr(start) & PAGE_MASK; 3212 len = nr_pages << PAGE_SHIFT; 3213 if (check_add_overflow(start, len, &end)) 3214 return -EOVERFLOW; 3215 if (end > TASK_SIZE_MAX) 3216 return -EFAULT; 3217 if (unlikely(!access_ok((void __user *)start, len))) 3218 return -EFAULT; 3219 3220 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3221 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3222 return nr_pinned; 3223 3224 /* Slow path: try to get the remaining pages with get_user_pages */ 3225 start += nr_pinned << PAGE_SHIFT; 3226 pages += nr_pinned; 3227 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3228 pages, &locked, 3229 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3230 if (ret < 0) { 3231 /* 3232 * The caller has to unpin the pages we already pinned so 3233 * returning -errno is not an option 3234 */ 3235 if (nr_pinned) 3236 return nr_pinned; 3237 return ret; 3238 } 3239 return ret + nr_pinned; 3240 } 3241 3242 /** 3243 * get_user_pages_fast_only() - pin user pages in memory 3244 * @start: starting user address 3245 * @nr_pages: number of pages from start to pin 3246 * @gup_flags: flags modifying pin behaviour 3247 * @pages: array that receives pointers to the pages pinned. 3248 * Should be at least nr_pages long. 3249 * 3250 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3251 * the regular GUP. 3252 * 3253 * If the architecture does not support this function, simply return with no 3254 * pages pinned. 3255 * 3256 * Careful, careful! COW breaking can go either way, so a non-write 3257 * access can get ambiguous page results. If you call this function without 3258 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3259 */ 3260 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3261 unsigned int gup_flags, struct page **pages) 3262 { 3263 /* 3264 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3265 * because gup fast is always a "pin with a +1 page refcount" request. 3266 * 3267 * FOLL_FAST_ONLY is required in order to match the API description of 3268 * this routine: no fall back to regular ("slow") GUP. 3269 */ 3270 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3271 FOLL_GET | FOLL_FAST_ONLY)) 3272 return -EINVAL; 3273 3274 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3275 } 3276 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3277 3278 /** 3279 * get_user_pages_fast() - pin user pages in memory 3280 * @start: starting user address 3281 * @nr_pages: number of pages from start to pin 3282 * @gup_flags: flags modifying pin behaviour 3283 * @pages: array that receives pointers to the pages pinned. 3284 * Should be at least nr_pages long. 3285 * 3286 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3287 * If not successful, it will fall back to taking the lock and 3288 * calling get_user_pages(). 3289 * 3290 * Returns number of pages pinned. This may be fewer than the number requested. 3291 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3292 * -errno. 3293 */ 3294 int get_user_pages_fast(unsigned long start, int nr_pages, 3295 unsigned int gup_flags, struct page **pages) 3296 { 3297 /* 3298 * The caller may or may not have explicitly set FOLL_GET; either way is 3299 * OK. However, internally (within mm/gup.c), gup fast variants must set 3300 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3301 * request. 3302 */ 3303 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3304 return -EINVAL; 3305 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3306 } 3307 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3308 3309 /** 3310 * pin_user_pages_fast() - pin user pages in memory without taking locks 3311 * 3312 * @start: starting user address 3313 * @nr_pages: number of pages from start to pin 3314 * @gup_flags: flags modifying pin behaviour 3315 * @pages: array that receives pointers to the pages pinned. 3316 * Should be at least nr_pages long. 3317 * 3318 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3319 * get_user_pages_fast() for documentation on the function arguments, because 3320 * the arguments here are identical. 3321 * 3322 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3323 * see Documentation/core-api/pin_user_pages.rst for further details. 3324 * 3325 * Note that if a zero_page is amongst the returned pages, it will not have 3326 * pins in it and unpin_user_page() will not remove pins from it. 3327 */ 3328 int pin_user_pages_fast(unsigned long start, int nr_pages, 3329 unsigned int gup_flags, struct page **pages) 3330 { 3331 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3332 return -EINVAL; 3333 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3334 } 3335 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3336 3337 /** 3338 * pin_user_pages_remote() - pin pages of a remote process 3339 * 3340 * @mm: mm_struct of target mm 3341 * @start: starting user address 3342 * @nr_pages: number of pages from start to pin 3343 * @gup_flags: flags modifying lookup behaviour 3344 * @pages: array that receives pointers to the pages pinned. 3345 * Should be at least nr_pages long. 3346 * @locked: pointer to lock flag indicating whether lock is held and 3347 * subsequently whether VM_FAULT_RETRY functionality can be 3348 * utilised. Lock must initially be held. 3349 * 3350 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3351 * get_user_pages_remote() for documentation on the function arguments, because 3352 * the arguments here are identical. 3353 * 3354 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3355 * see Documentation/core-api/pin_user_pages.rst for details. 3356 * 3357 * Note that if a zero_page is amongst the returned pages, it will not have 3358 * pins in it and unpin_user_page*() will not remove pins from it. 3359 */ 3360 long pin_user_pages_remote(struct mm_struct *mm, 3361 unsigned long start, unsigned long nr_pages, 3362 unsigned int gup_flags, struct page **pages, 3363 int *locked) 3364 { 3365 int local_locked = 1; 3366 3367 if (!is_valid_gup_args(pages, locked, &gup_flags, 3368 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3369 return 0; 3370 return __gup_longterm_locked(mm, start, nr_pages, pages, 3371 locked ? locked : &local_locked, 3372 gup_flags); 3373 } 3374 EXPORT_SYMBOL(pin_user_pages_remote); 3375 3376 /** 3377 * pin_user_pages() - pin user pages in memory for use by other devices 3378 * 3379 * @start: starting user address 3380 * @nr_pages: number of pages from start to pin 3381 * @gup_flags: flags modifying lookup behaviour 3382 * @pages: array that receives pointers to the pages pinned. 3383 * Should be at least nr_pages long. 3384 * 3385 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3386 * FOLL_PIN is set. 3387 * 3388 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3389 * see Documentation/core-api/pin_user_pages.rst for details. 3390 * 3391 * Note that if a zero_page is amongst the returned pages, it will not have 3392 * pins in it and unpin_user_page*() will not remove pins from it. 3393 */ 3394 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3395 unsigned int gup_flags, struct page **pages) 3396 { 3397 int locked = 1; 3398 3399 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3400 return 0; 3401 return __gup_longterm_locked(current->mm, start, nr_pages, 3402 pages, &locked, gup_flags); 3403 } 3404 EXPORT_SYMBOL(pin_user_pages); 3405 3406 /* 3407 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3408 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3409 * FOLL_PIN and rejects FOLL_GET. 3410 * 3411 * Note that if a zero_page is amongst the returned pages, it will not have 3412 * pins in it and unpin_user_page*() will not remove pins from it. 3413 */ 3414 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3415 struct page **pages, unsigned int gup_flags) 3416 { 3417 int locked = 0; 3418 3419 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3420 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3421 return 0; 3422 3423 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3424 &locked, gup_flags); 3425 } 3426 EXPORT_SYMBOL(pin_user_pages_unlocked); 3427