xref: /linux/mm/gup.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in folio_try_share_anon_rmap_*().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 		return no_page_table(vma, flags);
714 	}
715 	if (likely(!pmd_trans_huge(pmdval)))
716 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
717 
718 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
719 		return no_page_table(vma, flags);
720 
721 	ptl = pmd_lock(mm, pmd);
722 	if (unlikely(!pmd_present(*pmd))) {
723 		spin_unlock(ptl);
724 		return no_page_table(vma, flags);
725 	}
726 	if (unlikely(!pmd_trans_huge(*pmd))) {
727 		spin_unlock(ptl);
728 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
729 	}
730 	if (flags & FOLL_SPLIT_PMD) {
731 		spin_unlock(ptl);
732 		split_huge_pmd(vma, pmd, address);
733 		/* If pmd was left empty, stuff a page table in there quickly */
734 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
735 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
736 	}
737 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
738 	spin_unlock(ptl);
739 	ctx->page_mask = HPAGE_PMD_NR - 1;
740 	return page;
741 }
742 
743 static struct page *follow_pud_mask(struct vm_area_struct *vma,
744 				    unsigned long address, p4d_t *p4dp,
745 				    unsigned int flags,
746 				    struct follow_page_context *ctx)
747 {
748 	pud_t *pud;
749 	spinlock_t *ptl;
750 	struct page *page;
751 	struct mm_struct *mm = vma->vm_mm;
752 
753 	pud = pud_offset(p4dp, address);
754 	if (pud_none(*pud))
755 		return no_page_table(vma, flags);
756 	if (pud_devmap(*pud)) {
757 		ptl = pud_lock(mm, pud);
758 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
759 		spin_unlock(ptl);
760 		if (page)
761 			return page;
762 		return no_page_table(vma, flags);
763 	}
764 	if (unlikely(pud_bad(*pud)))
765 		return no_page_table(vma, flags);
766 
767 	return follow_pmd_mask(vma, address, pud, flags, ctx);
768 }
769 
770 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
771 				    unsigned long address, pgd_t *pgdp,
772 				    unsigned int flags,
773 				    struct follow_page_context *ctx)
774 {
775 	p4d_t *p4dp, p4d;
776 
777 	p4dp = p4d_offset(pgdp, address);
778 	p4d = READ_ONCE(*p4dp);
779 	if (!p4d_present(p4d))
780 		return no_page_table(vma, flags);
781 	BUILD_BUG_ON(p4d_leaf(p4d));
782 	if (unlikely(p4d_bad(p4d)))
783 		return no_page_table(vma, flags);
784 
785 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
786 }
787 
788 /**
789  * follow_page_mask - look up a page descriptor from a user-virtual address
790  * @vma: vm_area_struct mapping @address
791  * @address: virtual address to look up
792  * @flags: flags modifying lookup behaviour
793  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
794  *       pointer to output page_mask
795  *
796  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
797  *
798  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
799  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
800  *
801  * When getting an anonymous page and the caller has to trigger unsharing
802  * of a shared anonymous page first, -EMLINK is returned. The caller should
803  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
804  * relevant with FOLL_PIN and !FOLL_WRITE.
805  *
806  * On output, the @ctx->page_mask is set according to the size of the page.
807  *
808  * Return: the mapped (struct page *), %NULL if no mapping exists, or
809  * an error pointer if there is a mapping to something not represented
810  * by a page descriptor (see also vm_normal_page()).
811  */
812 static struct page *follow_page_mask(struct vm_area_struct *vma,
813 			      unsigned long address, unsigned int flags,
814 			      struct follow_page_context *ctx)
815 {
816 	pgd_t *pgd;
817 	struct mm_struct *mm = vma->vm_mm;
818 
819 	ctx->page_mask = 0;
820 
821 	/*
822 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
823 	 * special hugetlb page table walking code.  This eliminates the
824 	 * need to check for hugetlb entries in the general walking code.
825 	 */
826 	if (is_vm_hugetlb_page(vma))
827 		return hugetlb_follow_page_mask(vma, address, flags,
828 						&ctx->page_mask);
829 
830 	pgd = pgd_offset(mm, address);
831 
832 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 		return no_page_table(vma, flags);
834 
835 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
836 }
837 
838 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
839 			 unsigned int foll_flags)
840 {
841 	struct follow_page_context ctx = { NULL };
842 	struct page *page;
843 
844 	if (vma_is_secretmem(vma))
845 		return NULL;
846 
847 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
848 		return NULL;
849 
850 	/*
851 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
852 	 * to fail on PROT_NONE-mapped pages.
853 	 */
854 	page = follow_page_mask(vma, address, foll_flags, &ctx);
855 	if (ctx.pgmap)
856 		put_dev_pagemap(ctx.pgmap);
857 	return page;
858 }
859 
860 static int get_gate_page(struct mm_struct *mm, unsigned long address,
861 		unsigned int gup_flags, struct vm_area_struct **vma,
862 		struct page **page)
863 {
864 	pgd_t *pgd;
865 	p4d_t *p4d;
866 	pud_t *pud;
867 	pmd_t *pmd;
868 	pte_t *pte;
869 	pte_t entry;
870 	int ret = -EFAULT;
871 
872 	/* user gate pages are read-only */
873 	if (gup_flags & FOLL_WRITE)
874 		return -EFAULT;
875 	if (address > TASK_SIZE)
876 		pgd = pgd_offset_k(address);
877 	else
878 		pgd = pgd_offset_gate(mm, address);
879 	if (pgd_none(*pgd))
880 		return -EFAULT;
881 	p4d = p4d_offset(pgd, address);
882 	if (p4d_none(*p4d))
883 		return -EFAULT;
884 	pud = pud_offset(p4d, address);
885 	if (pud_none(*pud))
886 		return -EFAULT;
887 	pmd = pmd_offset(pud, address);
888 	if (!pmd_present(*pmd))
889 		return -EFAULT;
890 	pte = pte_offset_map(pmd, address);
891 	if (!pte)
892 		return -EFAULT;
893 	entry = ptep_get(pte);
894 	if (pte_none(entry))
895 		goto unmap;
896 	*vma = get_gate_vma(mm);
897 	if (!page)
898 		goto out;
899 	*page = vm_normal_page(*vma, address, entry);
900 	if (!*page) {
901 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
902 			goto unmap;
903 		*page = pte_page(entry);
904 	}
905 	ret = try_grab_page(*page, gup_flags);
906 	if (unlikely(ret))
907 		goto unmap;
908 out:
909 	ret = 0;
910 unmap:
911 	pte_unmap(pte);
912 	return ret;
913 }
914 
915 /*
916  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
917  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
918  * to 0 and -EBUSY returned.
919  */
920 static int faultin_page(struct vm_area_struct *vma,
921 		unsigned long address, unsigned int *flags, bool unshare,
922 		int *locked)
923 {
924 	unsigned int fault_flags = 0;
925 	vm_fault_t ret;
926 
927 	if (*flags & FOLL_NOFAULT)
928 		return -EFAULT;
929 	if (*flags & FOLL_WRITE)
930 		fault_flags |= FAULT_FLAG_WRITE;
931 	if (*flags & FOLL_REMOTE)
932 		fault_flags |= FAULT_FLAG_REMOTE;
933 	if (*flags & FOLL_UNLOCKABLE) {
934 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
935 		/*
936 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
937 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
938 		 * That's because some callers may not be prepared to
939 		 * handle early exits caused by non-fatal signals.
940 		 */
941 		if (*flags & FOLL_INTERRUPTIBLE)
942 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
943 	}
944 	if (*flags & FOLL_NOWAIT)
945 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
946 	if (*flags & FOLL_TRIED) {
947 		/*
948 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
949 		 * can co-exist
950 		 */
951 		fault_flags |= FAULT_FLAG_TRIED;
952 	}
953 	if (unshare) {
954 		fault_flags |= FAULT_FLAG_UNSHARE;
955 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
956 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
957 	}
958 
959 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
960 
961 	if (ret & VM_FAULT_COMPLETED) {
962 		/*
963 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
964 		 * mmap lock in the page fault handler. Sanity check this.
965 		 */
966 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
967 		*locked = 0;
968 
969 		/*
970 		 * We should do the same as VM_FAULT_RETRY, but let's not
971 		 * return -EBUSY since that's not reflecting the reality of
972 		 * what has happened - we've just fully completed a page
973 		 * fault, with the mmap lock released.  Use -EAGAIN to show
974 		 * that we want to take the mmap lock _again_.
975 		 */
976 		return -EAGAIN;
977 	}
978 
979 	if (ret & VM_FAULT_ERROR) {
980 		int err = vm_fault_to_errno(ret, *flags);
981 
982 		if (err)
983 			return err;
984 		BUG();
985 	}
986 
987 	if (ret & VM_FAULT_RETRY) {
988 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
989 			*locked = 0;
990 		return -EBUSY;
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * Writing to file-backed mappings which require folio dirty tracking using GUP
998  * is a fundamentally broken operation, as kernel write access to GUP mappings
999  * do not adhere to the semantics expected by a file system.
1000  *
1001  * Consider the following scenario:-
1002  *
1003  * 1. A folio is written to via GUP which write-faults the memory, notifying
1004  *    the file system and dirtying the folio.
1005  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1006  *    the PTE being marked read-only.
1007  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1008  *    direct mapping.
1009  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1010  *    (though it does not have to).
1011  *
1012  * This results in both data being written to a folio without writenotify, and
1013  * the folio being dirtied unexpectedly (if the caller decides to do so).
1014  */
1015 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1016 					  unsigned long gup_flags)
1017 {
1018 	/*
1019 	 * If we aren't pinning then no problematic write can occur. A long term
1020 	 * pin is the most egregious case so this is the case we disallow.
1021 	 */
1022 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1023 	    (FOLL_PIN | FOLL_LONGTERM))
1024 		return true;
1025 
1026 	/*
1027 	 * If the VMA does not require dirty tracking then no problematic write
1028 	 * can occur either.
1029 	 */
1030 	return !vma_needs_dirty_tracking(vma);
1031 }
1032 
1033 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1034 {
1035 	vm_flags_t vm_flags = vma->vm_flags;
1036 	int write = (gup_flags & FOLL_WRITE);
1037 	int foreign = (gup_flags & FOLL_REMOTE);
1038 	bool vma_anon = vma_is_anonymous(vma);
1039 
1040 	if (vm_flags & (VM_IO | VM_PFNMAP))
1041 		return -EFAULT;
1042 
1043 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1044 		return -EFAULT;
1045 
1046 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047 		return -EOPNOTSUPP;
1048 
1049 	if (vma_is_secretmem(vma))
1050 		return -EFAULT;
1051 
1052 	if (write) {
1053 		if (!vma_anon &&
1054 		    !writable_file_mapping_allowed(vma, gup_flags))
1055 			return -EFAULT;
1056 
1057 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1058 			if (!(gup_flags & FOLL_FORCE))
1059 				return -EFAULT;
1060 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1061 			if (is_vm_hugetlb_page(vma))
1062 				return -EFAULT;
1063 			/*
1064 			 * We used to let the write,force case do COW in a
1065 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1066 			 * set a breakpoint in a read-only mapping of an
1067 			 * executable, without corrupting the file (yet only
1068 			 * when that file had been opened for writing!).
1069 			 * Anon pages in shared mappings are surprising: now
1070 			 * just reject it.
1071 			 */
1072 			if (!is_cow_mapping(vm_flags))
1073 				return -EFAULT;
1074 		}
1075 	} else if (!(vm_flags & VM_READ)) {
1076 		if (!(gup_flags & FOLL_FORCE))
1077 			return -EFAULT;
1078 		/*
1079 		 * Is there actually any vma we can reach here which does not
1080 		 * have VM_MAYREAD set?
1081 		 */
1082 		if (!(vm_flags & VM_MAYREAD))
1083 			return -EFAULT;
1084 	}
1085 	/*
1086 	 * gups are always data accesses, not instruction
1087 	 * fetches, so execute=false here
1088 	 */
1089 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1090 		return -EFAULT;
1091 	return 0;
1092 }
1093 
1094 /*
1095  * This is "vma_lookup()", but with a warning if we would have
1096  * historically expanded the stack in the GUP code.
1097  */
1098 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1099 	 unsigned long addr)
1100 {
1101 #ifdef CONFIG_STACK_GROWSUP
1102 	return vma_lookup(mm, addr);
1103 #else
1104 	static volatile unsigned long next_warn;
1105 	struct vm_area_struct *vma;
1106 	unsigned long now, next;
1107 
1108 	vma = find_vma(mm, addr);
1109 	if (!vma || (addr >= vma->vm_start))
1110 		return vma;
1111 
1112 	/* Only warn for half-way relevant accesses */
1113 	if (!(vma->vm_flags & VM_GROWSDOWN))
1114 		return NULL;
1115 	if (vma->vm_start - addr > 65536)
1116 		return NULL;
1117 
1118 	/* Let's not warn more than once an hour.. */
1119 	now = jiffies; next = next_warn;
1120 	if (next && time_before(now, next))
1121 		return NULL;
1122 	next_warn = now + 60*60*HZ;
1123 
1124 	/* Let people know things may have changed. */
1125 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1126 		current->comm, task_pid_nr(current),
1127 		vma->vm_start, vma->vm_end, addr);
1128 	dump_stack();
1129 	return NULL;
1130 #endif
1131 }
1132 
1133 /**
1134  * __get_user_pages() - pin user pages in memory
1135  * @mm:		mm_struct of target mm
1136  * @start:	starting user address
1137  * @nr_pages:	number of pages from start to pin
1138  * @gup_flags:	flags modifying pin behaviour
1139  * @pages:	array that receives pointers to the pages pinned.
1140  *		Should be at least nr_pages long. Or NULL, if caller
1141  *		only intends to ensure the pages are faulted in.
1142  * @locked:     whether we're still with the mmap_lock held
1143  *
1144  * Returns either number of pages pinned (which may be less than the
1145  * number requested), or an error. Details about the return value:
1146  *
1147  * -- If nr_pages is 0, returns 0.
1148  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1149  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1150  *    pages pinned. Again, this may be less than nr_pages.
1151  * -- 0 return value is possible when the fault would need to be retried.
1152  *
1153  * The caller is responsible for releasing returned @pages, via put_page().
1154  *
1155  * Must be called with mmap_lock held.  It may be released.  See below.
1156  *
1157  * __get_user_pages walks a process's page tables and takes a reference to
1158  * each struct page that each user address corresponds to at a given
1159  * instant. That is, it takes the page that would be accessed if a user
1160  * thread accesses the given user virtual address at that instant.
1161  *
1162  * This does not guarantee that the page exists in the user mappings when
1163  * __get_user_pages returns, and there may even be a completely different
1164  * page there in some cases (eg. if mmapped pagecache has been invalidated
1165  * and subsequently re-faulted). However it does guarantee that the page
1166  * won't be freed completely. And mostly callers simply care that the page
1167  * contains data that was valid *at some point in time*. Typically, an IO
1168  * or similar operation cannot guarantee anything stronger anyway because
1169  * locks can't be held over the syscall boundary.
1170  *
1171  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1172  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1173  * appropriate) must be called after the page is finished with, and
1174  * before put_page is called.
1175  *
1176  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1177  * be released. If this happens *@locked will be set to 0 on return.
1178  *
1179  * A caller using such a combination of @gup_flags must therefore hold the
1180  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1181  * it must be held for either reading or writing and will not be released.
1182  *
1183  * In most cases, get_user_pages or get_user_pages_fast should be used
1184  * instead of __get_user_pages. __get_user_pages should be used only if
1185  * you need some special @gup_flags.
1186  */
1187 static long __get_user_pages(struct mm_struct *mm,
1188 		unsigned long start, unsigned long nr_pages,
1189 		unsigned int gup_flags, struct page **pages,
1190 		int *locked)
1191 {
1192 	long ret = 0, i = 0;
1193 	struct vm_area_struct *vma = NULL;
1194 	struct follow_page_context ctx = { NULL };
1195 
1196 	if (!nr_pages)
1197 		return 0;
1198 
1199 	start = untagged_addr_remote(mm, start);
1200 
1201 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1202 
1203 	do {
1204 		struct page *page;
1205 		unsigned int foll_flags = gup_flags;
1206 		unsigned int page_increm;
1207 
1208 		/* first iteration or cross vma bound */
1209 		if (!vma || start >= vma->vm_end) {
1210 			/*
1211 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1212 			 * lookups+error reporting differently.
1213 			 */
1214 			if (gup_flags & FOLL_MADV_POPULATE) {
1215 				vma = vma_lookup(mm, start);
1216 				if (!vma) {
1217 					ret = -ENOMEM;
1218 					goto out;
1219 				}
1220 				if (check_vma_flags(vma, gup_flags)) {
1221 					ret = -EINVAL;
1222 					goto out;
1223 				}
1224 				goto retry;
1225 			}
1226 			vma = gup_vma_lookup(mm, start);
1227 			if (!vma && in_gate_area(mm, start)) {
1228 				ret = get_gate_page(mm, start & PAGE_MASK,
1229 						gup_flags, &vma,
1230 						pages ? &page : NULL);
1231 				if (ret)
1232 					goto out;
1233 				ctx.page_mask = 0;
1234 				goto next_page;
1235 			}
1236 
1237 			if (!vma) {
1238 				ret = -EFAULT;
1239 				goto out;
1240 			}
1241 			ret = check_vma_flags(vma, gup_flags);
1242 			if (ret)
1243 				goto out;
1244 		}
1245 retry:
1246 		/*
1247 		 * If we have a pending SIGKILL, don't keep faulting pages and
1248 		 * potentially allocating memory.
1249 		 */
1250 		if (fatal_signal_pending(current)) {
1251 			ret = -EINTR;
1252 			goto out;
1253 		}
1254 		cond_resched();
1255 
1256 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1257 		if (!page || PTR_ERR(page) == -EMLINK) {
1258 			ret = faultin_page(vma, start, &foll_flags,
1259 					   PTR_ERR(page) == -EMLINK, locked);
1260 			switch (ret) {
1261 			case 0:
1262 				goto retry;
1263 			case -EBUSY:
1264 			case -EAGAIN:
1265 				ret = 0;
1266 				fallthrough;
1267 			case -EFAULT:
1268 			case -ENOMEM:
1269 			case -EHWPOISON:
1270 				goto out;
1271 			}
1272 			BUG();
1273 		} else if (PTR_ERR(page) == -EEXIST) {
1274 			/*
1275 			 * Proper page table entry exists, but no corresponding
1276 			 * struct page. If the caller expects **pages to be
1277 			 * filled in, bail out now, because that can't be done
1278 			 * for this page.
1279 			 */
1280 			if (pages) {
1281 				ret = PTR_ERR(page);
1282 				goto out;
1283 			}
1284 		} else if (IS_ERR(page)) {
1285 			ret = PTR_ERR(page);
1286 			goto out;
1287 		}
1288 next_page:
1289 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1290 		if (page_increm > nr_pages)
1291 			page_increm = nr_pages;
1292 
1293 		if (pages) {
1294 			struct page *subpage;
1295 			unsigned int j;
1296 
1297 			/*
1298 			 * This must be a large folio (and doesn't need to
1299 			 * be the whole folio; it can be part of it), do
1300 			 * the refcount work for all the subpages too.
1301 			 *
1302 			 * NOTE: here the page may not be the head page
1303 			 * e.g. when start addr is not thp-size aligned.
1304 			 * try_grab_folio() should have taken care of tail
1305 			 * pages.
1306 			 */
1307 			if (page_increm > 1) {
1308 				struct folio *folio;
1309 
1310 				/*
1311 				 * Since we already hold refcount on the
1312 				 * large folio, this should never fail.
1313 				 */
1314 				folio = try_grab_folio(page, page_increm - 1,
1315 						       foll_flags);
1316 				if (WARN_ON_ONCE(!folio)) {
1317 					/*
1318 					 * Release the 1st page ref if the
1319 					 * folio is problematic, fail hard.
1320 					 */
1321 					gup_put_folio(page_folio(page), 1,
1322 						      foll_flags);
1323 					ret = -EFAULT;
1324 					goto out;
1325 				}
1326 			}
1327 
1328 			for (j = 0; j < page_increm; j++) {
1329 				subpage = nth_page(page, j);
1330 				pages[i + j] = subpage;
1331 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1332 				flush_dcache_page(subpage);
1333 			}
1334 		}
1335 
1336 		i += page_increm;
1337 		start += page_increm * PAGE_SIZE;
1338 		nr_pages -= page_increm;
1339 	} while (nr_pages);
1340 out:
1341 	if (ctx.pgmap)
1342 		put_dev_pagemap(ctx.pgmap);
1343 	return i ? i : ret;
1344 }
1345 
1346 static bool vma_permits_fault(struct vm_area_struct *vma,
1347 			      unsigned int fault_flags)
1348 {
1349 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1350 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1351 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1352 
1353 	if (!(vm_flags & vma->vm_flags))
1354 		return false;
1355 
1356 	/*
1357 	 * The architecture might have a hardware protection
1358 	 * mechanism other than read/write that can deny access.
1359 	 *
1360 	 * gup always represents data access, not instruction
1361 	 * fetches, so execute=false here:
1362 	 */
1363 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1364 		return false;
1365 
1366 	return true;
1367 }
1368 
1369 /**
1370  * fixup_user_fault() - manually resolve a user page fault
1371  * @mm:		mm_struct of target mm
1372  * @address:	user address
1373  * @fault_flags:flags to pass down to handle_mm_fault()
1374  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1375  *		does not allow retry. If NULL, the caller must guarantee
1376  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1377  *
1378  * This is meant to be called in the specific scenario where for locking reasons
1379  * we try to access user memory in atomic context (within a pagefault_disable()
1380  * section), this returns -EFAULT, and we want to resolve the user fault before
1381  * trying again.
1382  *
1383  * Typically this is meant to be used by the futex code.
1384  *
1385  * The main difference with get_user_pages() is that this function will
1386  * unconditionally call handle_mm_fault() which will in turn perform all the
1387  * necessary SW fixup of the dirty and young bits in the PTE, while
1388  * get_user_pages() only guarantees to update these in the struct page.
1389  *
1390  * This is important for some architectures where those bits also gate the
1391  * access permission to the page because they are maintained in software.  On
1392  * such architectures, gup() will not be enough to make a subsequent access
1393  * succeed.
1394  *
1395  * This function will not return with an unlocked mmap_lock. So it has not the
1396  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1397  */
1398 int fixup_user_fault(struct mm_struct *mm,
1399 		     unsigned long address, unsigned int fault_flags,
1400 		     bool *unlocked)
1401 {
1402 	struct vm_area_struct *vma;
1403 	vm_fault_t ret;
1404 
1405 	address = untagged_addr_remote(mm, address);
1406 
1407 	if (unlocked)
1408 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1409 
1410 retry:
1411 	vma = gup_vma_lookup(mm, address);
1412 	if (!vma)
1413 		return -EFAULT;
1414 
1415 	if (!vma_permits_fault(vma, fault_flags))
1416 		return -EFAULT;
1417 
1418 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1419 	    fatal_signal_pending(current))
1420 		return -EINTR;
1421 
1422 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1423 
1424 	if (ret & VM_FAULT_COMPLETED) {
1425 		/*
1426 		 * NOTE: it's a pity that we need to retake the lock here
1427 		 * to pair with the unlock() in the callers. Ideally we
1428 		 * could tell the callers so they do not need to unlock.
1429 		 */
1430 		mmap_read_lock(mm);
1431 		*unlocked = true;
1432 		return 0;
1433 	}
1434 
1435 	if (ret & VM_FAULT_ERROR) {
1436 		int err = vm_fault_to_errno(ret, 0);
1437 
1438 		if (err)
1439 			return err;
1440 		BUG();
1441 	}
1442 
1443 	if (ret & VM_FAULT_RETRY) {
1444 		mmap_read_lock(mm);
1445 		*unlocked = true;
1446 		fault_flags |= FAULT_FLAG_TRIED;
1447 		goto retry;
1448 	}
1449 
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(fixup_user_fault);
1453 
1454 /*
1455  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1456  * specified, it'll also respond to generic signals.  The caller of GUP
1457  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1458  */
1459 static bool gup_signal_pending(unsigned int flags)
1460 {
1461 	if (fatal_signal_pending(current))
1462 		return true;
1463 
1464 	if (!(flags & FOLL_INTERRUPTIBLE))
1465 		return false;
1466 
1467 	return signal_pending(current);
1468 }
1469 
1470 /*
1471  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1472  * the caller. This function may drop the mmap_lock. If it does so, then it will
1473  * set (*locked = 0).
1474  *
1475  * (*locked == 0) means that the caller expects this function to acquire and
1476  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1477  * the function returns, even though it may have changed temporarily during
1478  * function execution.
1479  *
1480  * Please note that this function, unlike __get_user_pages(), will not return 0
1481  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1482  */
1483 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1484 						unsigned long start,
1485 						unsigned long nr_pages,
1486 						struct page **pages,
1487 						int *locked,
1488 						unsigned int flags)
1489 {
1490 	long ret, pages_done;
1491 	bool must_unlock = false;
1492 
1493 	if (!nr_pages)
1494 		return 0;
1495 
1496 	/*
1497 	 * The internal caller expects GUP to manage the lock internally and the
1498 	 * lock must be released when this returns.
1499 	 */
1500 	if (!*locked) {
1501 		if (mmap_read_lock_killable(mm))
1502 			return -EAGAIN;
1503 		must_unlock = true;
1504 		*locked = 1;
1505 	}
1506 	else
1507 		mmap_assert_locked(mm);
1508 
1509 	if (flags & FOLL_PIN)
1510 		mm_set_has_pinned_flag(&mm->flags);
1511 
1512 	/*
1513 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1514 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1515 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1516 	 * for FOLL_GET, not for the newer FOLL_PIN.
1517 	 *
1518 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1519 	 * that here, as any failures will be obvious enough.
1520 	 */
1521 	if (pages && !(flags & FOLL_PIN))
1522 		flags |= FOLL_GET;
1523 
1524 	pages_done = 0;
1525 	for (;;) {
1526 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1527 				       locked);
1528 		if (!(flags & FOLL_UNLOCKABLE)) {
1529 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1530 			pages_done = ret;
1531 			break;
1532 		}
1533 
1534 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1535 		if (!*locked) {
1536 			BUG_ON(ret < 0);
1537 			BUG_ON(ret >= nr_pages);
1538 		}
1539 
1540 		if (ret > 0) {
1541 			nr_pages -= ret;
1542 			pages_done += ret;
1543 			if (!nr_pages)
1544 				break;
1545 		}
1546 		if (*locked) {
1547 			/*
1548 			 * VM_FAULT_RETRY didn't trigger or it was a
1549 			 * FOLL_NOWAIT.
1550 			 */
1551 			if (!pages_done)
1552 				pages_done = ret;
1553 			break;
1554 		}
1555 		/*
1556 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1557 		 * For the prefault case (!pages) we only update counts.
1558 		 */
1559 		if (likely(pages))
1560 			pages += ret;
1561 		start += ret << PAGE_SHIFT;
1562 
1563 		/* The lock was temporarily dropped, so we must unlock later */
1564 		must_unlock = true;
1565 
1566 retry:
1567 		/*
1568 		 * Repeat on the address that fired VM_FAULT_RETRY
1569 		 * with both FAULT_FLAG_ALLOW_RETRY and
1570 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1571 		 * by fatal signals of even common signals, depending on
1572 		 * the caller's request. So we need to check it before we
1573 		 * start trying again otherwise it can loop forever.
1574 		 */
1575 		if (gup_signal_pending(flags)) {
1576 			if (!pages_done)
1577 				pages_done = -EINTR;
1578 			break;
1579 		}
1580 
1581 		ret = mmap_read_lock_killable(mm);
1582 		if (ret) {
1583 			BUG_ON(ret > 0);
1584 			if (!pages_done)
1585 				pages_done = ret;
1586 			break;
1587 		}
1588 
1589 		*locked = 1;
1590 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1591 				       pages, locked);
1592 		if (!*locked) {
1593 			/* Continue to retry until we succeeded */
1594 			BUG_ON(ret != 0);
1595 			goto retry;
1596 		}
1597 		if (ret != 1) {
1598 			BUG_ON(ret > 1);
1599 			if (!pages_done)
1600 				pages_done = ret;
1601 			break;
1602 		}
1603 		nr_pages--;
1604 		pages_done++;
1605 		if (!nr_pages)
1606 			break;
1607 		if (likely(pages))
1608 			pages++;
1609 		start += PAGE_SIZE;
1610 	}
1611 	if (must_unlock && *locked) {
1612 		/*
1613 		 * We either temporarily dropped the lock, or the caller
1614 		 * requested that we both acquire and drop the lock. Either way,
1615 		 * we must now unlock, and notify the caller of that state.
1616 		 */
1617 		mmap_read_unlock(mm);
1618 		*locked = 0;
1619 	}
1620 
1621 	/*
1622 	 * Failing to pin anything implies something has gone wrong (except when
1623 	 * FOLL_NOWAIT is specified).
1624 	 */
1625 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1626 		return -EFAULT;
1627 
1628 	return pages_done;
1629 }
1630 
1631 /**
1632  * populate_vma_page_range() -  populate a range of pages in the vma.
1633  * @vma:   target vma
1634  * @start: start address
1635  * @end:   end address
1636  * @locked: whether the mmap_lock is still held
1637  *
1638  * This takes care of mlocking the pages too if VM_LOCKED is set.
1639  *
1640  * Return either number of pages pinned in the vma, or a negative error
1641  * code on error.
1642  *
1643  * vma->vm_mm->mmap_lock must be held.
1644  *
1645  * If @locked is NULL, it may be held for read or write and will
1646  * be unperturbed.
1647  *
1648  * If @locked is non-NULL, it must held for read only and may be
1649  * released.  If it's released, *@locked will be set to 0.
1650  */
1651 long populate_vma_page_range(struct vm_area_struct *vma,
1652 		unsigned long start, unsigned long end, int *locked)
1653 {
1654 	struct mm_struct *mm = vma->vm_mm;
1655 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1656 	int local_locked = 1;
1657 	int gup_flags;
1658 	long ret;
1659 
1660 	VM_BUG_ON(!PAGE_ALIGNED(start));
1661 	VM_BUG_ON(!PAGE_ALIGNED(end));
1662 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1663 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1664 	mmap_assert_locked(mm);
1665 
1666 	/*
1667 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1668 	 * faultin_page() to break COW, so it has no work to do here.
1669 	 */
1670 	if (vma->vm_flags & VM_LOCKONFAULT)
1671 		return nr_pages;
1672 
1673 	/* ... similarly, we've never faulted in PROT_NONE pages */
1674 	if (!vma_is_accessible(vma))
1675 		return -EFAULT;
1676 
1677 	gup_flags = FOLL_TOUCH;
1678 	/*
1679 	 * We want to touch writable mappings with a write fault in order
1680 	 * to break COW, except for shared mappings because these don't COW
1681 	 * and we would not want to dirty them for nothing.
1682 	 *
1683 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1684 	 * readable (ie write-only or executable).
1685 	 */
1686 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1687 		gup_flags |= FOLL_WRITE;
1688 	else
1689 		gup_flags |= FOLL_FORCE;
1690 
1691 	if (locked)
1692 		gup_flags |= FOLL_UNLOCKABLE;
1693 
1694 	/*
1695 	 * We made sure addr is within a VMA, so the following will
1696 	 * not result in a stack expansion that recurses back here.
1697 	 */
1698 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1699 			       NULL, locked ? locked : &local_locked);
1700 	lru_add_drain();
1701 	return ret;
1702 }
1703 
1704 /*
1705  * faultin_page_range() - populate (prefault) page tables inside the
1706  *			  given range readable/writable
1707  *
1708  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1709  *
1710  * @mm: the mm to populate page tables in
1711  * @start: start address
1712  * @end: end address
1713  * @write: whether to prefault readable or writable
1714  * @locked: whether the mmap_lock is still held
1715  *
1716  * Returns either number of processed pages in the MM, or a negative error
1717  * code on error (see __get_user_pages()). Note that this function reports
1718  * errors related to VMAs, such as incompatible mappings, as expected by
1719  * MADV_POPULATE_(READ|WRITE).
1720  *
1721  * The range must be page-aligned.
1722  *
1723  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1724  */
1725 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1726 			unsigned long end, bool write, int *locked)
1727 {
1728 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1729 	int gup_flags;
1730 	long ret;
1731 
1732 	VM_BUG_ON(!PAGE_ALIGNED(start));
1733 	VM_BUG_ON(!PAGE_ALIGNED(end));
1734 	mmap_assert_locked(mm);
1735 
1736 	/*
1737 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1738 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1739 	 *	       difference with !FOLL_FORCE, because the page is writable
1740 	 *	       in the page table.
1741 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1742 	 *		  a poisoned page.
1743 	 * !FOLL_FORCE: Require proper access permissions.
1744 	 */
1745 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1746 		    FOLL_MADV_POPULATE;
1747 	if (write)
1748 		gup_flags |= FOLL_WRITE;
1749 
1750 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1751 				      gup_flags);
1752 	lru_add_drain();
1753 	return ret;
1754 }
1755 
1756 /*
1757  * __mm_populate - populate and/or mlock pages within a range of address space.
1758  *
1759  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1760  * flags. VMAs must be already marked with the desired vm_flags, and
1761  * mmap_lock must not be held.
1762  */
1763 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1764 {
1765 	struct mm_struct *mm = current->mm;
1766 	unsigned long end, nstart, nend;
1767 	struct vm_area_struct *vma = NULL;
1768 	int locked = 0;
1769 	long ret = 0;
1770 
1771 	end = start + len;
1772 
1773 	for (nstart = start; nstart < end; nstart = nend) {
1774 		/*
1775 		 * We want to fault in pages for [nstart; end) address range.
1776 		 * Find first corresponding VMA.
1777 		 */
1778 		if (!locked) {
1779 			locked = 1;
1780 			mmap_read_lock(mm);
1781 			vma = find_vma_intersection(mm, nstart, end);
1782 		} else if (nstart >= vma->vm_end)
1783 			vma = find_vma_intersection(mm, vma->vm_end, end);
1784 
1785 		if (!vma)
1786 			break;
1787 		/*
1788 		 * Set [nstart; nend) to intersection of desired address
1789 		 * range with the first VMA. Also, skip undesirable VMA types.
1790 		 */
1791 		nend = min(end, vma->vm_end);
1792 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1793 			continue;
1794 		if (nstart < vma->vm_start)
1795 			nstart = vma->vm_start;
1796 		/*
1797 		 * Now fault in a range of pages. populate_vma_page_range()
1798 		 * double checks the vma flags, so that it won't mlock pages
1799 		 * if the vma was already munlocked.
1800 		 */
1801 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1802 		if (ret < 0) {
1803 			if (ignore_errors) {
1804 				ret = 0;
1805 				continue;	/* continue at next VMA */
1806 			}
1807 			break;
1808 		}
1809 		nend = nstart + ret * PAGE_SIZE;
1810 		ret = 0;
1811 	}
1812 	if (locked)
1813 		mmap_read_unlock(mm);
1814 	return ret;	/* 0 or negative error code */
1815 }
1816 #else /* CONFIG_MMU */
1817 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1818 		unsigned long nr_pages, struct page **pages,
1819 		int *locked, unsigned int foll_flags)
1820 {
1821 	struct vm_area_struct *vma;
1822 	bool must_unlock = false;
1823 	unsigned long vm_flags;
1824 	long i;
1825 
1826 	if (!nr_pages)
1827 		return 0;
1828 
1829 	/*
1830 	 * The internal caller expects GUP to manage the lock internally and the
1831 	 * lock must be released when this returns.
1832 	 */
1833 	if (!*locked) {
1834 		if (mmap_read_lock_killable(mm))
1835 			return -EAGAIN;
1836 		must_unlock = true;
1837 		*locked = 1;
1838 	}
1839 
1840 	/* calculate required read or write permissions.
1841 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1842 	 */
1843 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1844 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1845 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1846 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1847 
1848 	for (i = 0; i < nr_pages; i++) {
1849 		vma = find_vma(mm, start);
1850 		if (!vma)
1851 			break;
1852 
1853 		/* protect what we can, including chardevs */
1854 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1855 		    !(vm_flags & vma->vm_flags))
1856 			break;
1857 
1858 		if (pages) {
1859 			pages[i] = virt_to_page((void *)start);
1860 			if (pages[i])
1861 				get_page(pages[i]);
1862 		}
1863 
1864 		start = (start + PAGE_SIZE) & PAGE_MASK;
1865 	}
1866 
1867 	if (must_unlock && *locked) {
1868 		mmap_read_unlock(mm);
1869 		*locked = 0;
1870 	}
1871 
1872 	return i ? : -EFAULT;
1873 }
1874 #endif /* !CONFIG_MMU */
1875 
1876 /**
1877  * fault_in_writeable - fault in userspace address range for writing
1878  * @uaddr: start of address range
1879  * @size: size of address range
1880  *
1881  * Returns the number of bytes not faulted in (like copy_to_user() and
1882  * copy_from_user()).
1883  */
1884 size_t fault_in_writeable(char __user *uaddr, size_t size)
1885 {
1886 	char __user *start = uaddr, *end;
1887 
1888 	if (unlikely(size == 0))
1889 		return 0;
1890 	if (!user_write_access_begin(uaddr, size))
1891 		return size;
1892 	if (!PAGE_ALIGNED(uaddr)) {
1893 		unsafe_put_user(0, uaddr, out);
1894 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1895 	}
1896 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1897 	if (unlikely(end < start))
1898 		end = NULL;
1899 	while (uaddr != end) {
1900 		unsafe_put_user(0, uaddr, out);
1901 		uaddr += PAGE_SIZE;
1902 	}
1903 
1904 out:
1905 	user_write_access_end();
1906 	if (size > uaddr - start)
1907 		return size - (uaddr - start);
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL(fault_in_writeable);
1911 
1912 /**
1913  * fault_in_subpage_writeable - fault in an address range for writing
1914  * @uaddr: start of address range
1915  * @size: size of address range
1916  *
1917  * Fault in a user address range for writing while checking for permissions at
1918  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1919  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1920  *
1921  * Returns the number of bytes not faulted in (like copy_to_user() and
1922  * copy_from_user()).
1923  */
1924 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1925 {
1926 	size_t faulted_in;
1927 
1928 	/*
1929 	 * Attempt faulting in at page granularity first for page table
1930 	 * permission checking. The arch-specific probe_subpage_writeable()
1931 	 * functions may not check for this.
1932 	 */
1933 	faulted_in = size - fault_in_writeable(uaddr, size);
1934 	if (faulted_in)
1935 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1936 
1937 	return size - faulted_in;
1938 }
1939 EXPORT_SYMBOL(fault_in_subpage_writeable);
1940 
1941 /*
1942  * fault_in_safe_writeable - fault in an address range for writing
1943  * @uaddr: start of address range
1944  * @size: length of address range
1945  *
1946  * Faults in an address range for writing.  This is primarily useful when we
1947  * already know that some or all of the pages in the address range aren't in
1948  * memory.
1949  *
1950  * Unlike fault_in_writeable(), this function is non-destructive.
1951  *
1952  * Note that we don't pin or otherwise hold the pages referenced that we fault
1953  * in.  There's no guarantee that they'll stay in memory for any duration of
1954  * time.
1955  *
1956  * Returns the number of bytes not faulted in, like copy_to_user() and
1957  * copy_from_user().
1958  */
1959 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1960 {
1961 	unsigned long start = (unsigned long)uaddr, end;
1962 	struct mm_struct *mm = current->mm;
1963 	bool unlocked = false;
1964 
1965 	if (unlikely(size == 0))
1966 		return 0;
1967 	end = PAGE_ALIGN(start + size);
1968 	if (end < start)
1969 		end = 0;
1970 
1971 	mmap_read_lock(mm);
1972 	do {
1973 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1974 			break;
1975 		start = (start + PAGE_SIZE) & PAGE_MASK;
1976 	} while (start != end);
1977 	mmap_read_unlock(mm);
1978 
1979 	if (size > (unsigned long)uaddr - start)
1980 		return size - ((unsigned long)uaddr - start);
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL(fault_in_safe_writeable);
1984 
1985 /**
1986  * fault_in_readable - fault in userspace address range for reading
1987  * @uaddr: start of user address range
1988  * @size: size of user address range
1989  *
1990  * Returns the number of bytes not faulted in (like copy_to_user() and
1991  * copy_from_user()).
1992  */
1993 size_t fault_in_readable(const char __user *uaddr, size_t size)
1994 {
1995 	const char __user *start = uaddr, *end;
1996 	volatile char c;
1997 
1998 	if (unlikely(size == 0))
1999 		return 0;
2000 	if (!user_read_access_begin(uaddr, size))
2001 		return size;
2002 	if (!PAGE_ALIGNED(uaddr)) {
2003 		unsafe_get_user(c, uaddr, out);
2004 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2005 	}
2006 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2007 	if (unlikely(end < start))
2008 		end = NULL;
2009 	while (uaddr != end) {
2010 		unsafe_get_user(c, uaddr, out);
2011 		uaddr += PAGE_SIZE;
2012 	}
2013 
2014 out:
2015 	user_read_access_end();
2016 	(void)c;
2017 	if (size > uaddr - start)
2018 		return size - (uaddr - start);
2019 	return 0;
2020 }
2021 EXPORT_SYMBOL(fault_in_readable);
2022 
2023 /**
2024  * get_dump_page() - pin user page in memory while writing it to core dump
2025  * @addr: user address
2026  *
2027  * Returns struct page pointer of user page pinned for dump,
2028  * to be freed afterwards by put_page().
2029  *
2030  * Returns NULL on any kind of failure - a hole must then be inserted into
2031  * the corefile, to preserve alignment with its headers; and also returns
2032  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2033  * allowing a hole to be left in the corefile to save disk space.
2034  *
2035  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2036  */
2037 #ifdef CONFIG_ELF_CORE
2038 struct page *get_dump_page(unsigned long addr)
2039 {
2040 	struct page *page;
2041 	int locked = 0;
2042 	int ret;
2043 
2044 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2045 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2046 	return (ret == 1) ? page : NULL;
2047 }
2048 #endif /* CONFIG_ELF_CORE */
2049 
2050 #ifdef CONFIG_MIGRATION
2051 /*
2052  * Returns the number of collected pages. Return value is always >= 0.
2053  */
2054 static unsigned long collect_longterm_unpinnable_pages(
2055 					struct list_head *movable_page_list,
2056 					unsigned long nr_pages,
2057 					struct page **pages)
2058 {
2059 	unsigned long i, collected = 0;
2060 	struct folio *prev_folio = NULL;
2061 	bool drain_allow = true;
2062 
2063 	for (i = 0; i < nr_pages; i++) {
2064 		struct folio *folio = page_folio(pages[i]);
2065 
2066 		if (folio == prev_folio)
2067 			continue;
2068 		prev_folio = folio;
2069 
2070 		if (folio_is_longterm_pinnable(folio))
2071 			continue;
2072 
2073 		collected++;
2074 
2075 		if (folio_is_device_coherent(folio))
2076 			continue;
2077 
2078 		if (folio_test_hugetlb(folio)) {
2079 			isolate_hugetlb(folio, movable_page_list);
2080 			continue;
2081 		}
2082 
2083 		if (!folio_test_lru(folio) && drain_allow) {
2084 			lru_add_drain_all();
2085 			drain_allow = false;
2086 		}
2087 
2088 		if (!folio_isolate_lru(folio))
2089 			continue;
2090 
2091 		list_add_tail(&folio->lru, movable_page_list);
2092 		node_stat_mod_folio(folio,
2093 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2094 				    folio_nr_pages(folio));
2095 	}
2096 
2097 	return collected;
2098 }
2099 
2100 /*
2101  * Unpins all pages and migrates device coherent pages and movable_page_list.
2102  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2103  * (or partial success).
2104  */
2105 static int migrate_longterm_unpinnable_pages(
2106 					struct list_head *movable_page_list,
2107 					unsigned long nr_pages,
2108 					struct page **pages)
2109 {
2110 	int ret;
2111 	unsigned long i;
2112 
2113 	for (i = 0; i < nr_pages; i++) {
2114 		struct folio *folio = page_folio(pages[i]);
2115 
2116 		if (folio_is_device_coherent(folio)) {
2117 			/*
2118 			 * Migration will fail if the page is pinned, so convert
2119 			 * the pin on the source page to a normal reference.
2120 			 */
2121 			pages[i] = NULL;
2122 			folio_get(folio);
2123 			gup_put_folio(folio, 1, FOLL_PIN);
2124 
2125 			if (migrate_device_coherent_page(&folio->page)) {
2126 				ret = -EBUSY;
2127 				goto err;
2128 			}
2129 
2130 			continue;
2131 		}
2132 
2133 		/*
2134 		 * We can't migrate pages with unexpected references, so drop
2135 		 * the reference obtained by __get_user_pages_locked().
2136 		 * Migrating pages have been added to movable_page_list after
2137 		 * calling folio_isolate_lru() which takes a reference so the
2138 		 * page won't be freed if it's migrating.
2139 		 */
2140 		unpin_user_page(pages[i]);
2141 		pages[i] = NULL;
2142 	}
2143 
2144 	if (!list_empty(movable_page_list)) {
2145 		struct migration_target_control mtc = {
2146 			.nid = NUMA_NO_NODE,
2147 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2148 		};
2149 
2150 		if (migrate_pages(movable_page_list, alloc_migration_target,
2151 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2152 				  MR_LONGTERM_PIN, NULL)) {
2153 			ret = -ENOMEM;
2154 			goto err;
2155 		}
2156 	}
2157 
2158 	putback_movable_pages(movable_page_list);
2159 
2160 	return -EAGAIN;
2161 
2162 err:
2163 	for (i = 0; i < nr_pages; i++)
2164 		if (pages[i])
2165 			unpin_user_page(pages[i]);
2166 	putback_movable_pages(movable_page_list);
2167 
2168 	return ret;
2169 }
2170 
2171 /*
2172  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2173  * pages in the range are required to be pinned via FOLL_PIN, before calling
2174  * this routine.
2175  *
2176  * If any pages in the range are not allowed to be pinned, then this routine
2177  * will migrate those pages away, unpin all the pages in the range and return
2178  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2179  * call this routine again.
2180  *
2181  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2182  * The caller should give up, and propagate the error back up the call stack.
2183  *
2184  * If everything is OK and all pages in the range are allowed to be pinned, then
2185  * this routine leaves all pages pinned and returns zero for success.
2186  */
2187 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2188 					    struct page **pages)
2189 {
2190 	unsigned long collected;
2191 	LIST_HEAD(movable_page_list);
2192 
2193 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2194 						nr_pages, pages);
2195 	if (!collected)
2196 		return 0;
2197 
2198 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2199 						pages);
2200 }
2201 #else
2202 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2203 					    struct page **pages)
2204 {
2205 	return 0;
2206 }
2207 #endif /* CONFIG_MIGRATION */
2208 
2209 /*
2210  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2211  * allows us to process the FOLL_LONGTERM flag.
2212  */
2213 static long __gup_longterm_locked(struct mm_struct *mm,
2214 				  unsigned long start,
2215 				  unsigned long nr_pages,
2216 				  struct page **pages,
2217 				  int *locked,
2218 				  unsigned int gup_flags)
2219 {
2220 	unsigned int flags;
2221 	long rc, nr_pinned_pages;
2222 
2223 	if (!(gup_flags & FOLL_LONGTERM))
2224 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2225 					       locked, gup_flags);
2226 
2227 	flags = memalloc_pin_save();
2228 	do {
2229 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2230 							  pages, locked,
2231 							  gup_flags);
2232 		if (nr_pinned_pages <= 0) {
2233 			rc = nr_pinned_pages;
2234 			break;
2235 		}
2236 
2237 		/* FOLL_LONGTERM implies FOLL_PIN */
2238 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2239 	} while (rc == -EAGAIN);
2240 	memalloc_pin_restore(flags);
2241 	return rc ? rc : nr_pinned_pages;
2242 }
2243 
2244 /*
2245  * Check that the given flags are valid for the exported gup/pup interface, and
2246  * update them with the required flags that the caller must have set.
2247  */
2248 static bool is_valid_gup_args(struct page **pages, int *locked,
2249 			      unsigned int *gup_flags_p, unsigned int to_set)
2250 {
2251 	unsigned int gup_flags = *gup_flags_p;
2252 
2253 	/*
2254 	 * These flags not allowed to be specified externally to the gup
2255 	 * interfaces:
2256 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2257 	 * - FOLL_REMOTE is internal only and used on follow_page()
2258 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2259 	 */
2260 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2261 		return false;
2262 
2263 	gup_flags |= to_set;
2264 	if (locked) {
2265 		/* At the external interface locked must be set */
2266 		if (WARN_ON_ONCE(*locked != 1))
2267 			return false;
2268 
2269 		gup_flags |= FOLL_UNLOCKABLE;
2270 	}
2271 
2272 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2273 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2274 			 (FOLL_PIN | FOLL_GET)))
2275 		return false;
2276 
2277 	/* LONGTERM can only be specified when pinning */
2278 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2279 		return false;
2280 
2281 	/* Pages input must be given if using GET/PIN */
2282 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2283 		return false;
2284 
2285 	/* We want to allow the pgmap to be hot-unplugged at all times */
2286 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2287 			 (gup_flags & FOLL_PCI_P2PDMA)))
2288 		return false;
2289 
2290 	*gup_flags_p = gup_flags;
2291 	return true;
2292 }
2293 
2294 #ifdef CONFIG_MMU
2295 /**
2296  * get_user_pages_remote() - pin user pages in memory
2297  * @mm:		mm_struct of target mm
2298  * @start:	starting user address
2299  * @nr_pages:	number of pages from start to pin
2300  * @gup_flags:	flags modifying lookup behaviour
2301  * @pages:	array that receives pointers to the pages pinned.
2302  *		Should be at least nr_pages long. Or NULL, if caller
2303  *		only intends to ensure the pages are faulted in.
2304  * @locked:	pointer to lock flag indicating whether lock is held and
2305  *		subsequently whether VM_FAULT_RETRY functionality can be
2306  *		utilised. Lock must initially be held.
2307  *
2308  * Returns either number of pages pinned (which may be less than the
2309  * number requested), or an error. Details about the return value:
2310  *
2311  * -- If nr_pages is 0, returns 0.
2312  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2313  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2314  *    pages pinned. Again, this may be less than nr_pages.
2315  *
2316  * The caller is responsible for releasing returned @pages, via put_page().
2317  *
2318  * Must be called with mmap_lock held for read or write.
2319  *
2320  * get_user_pages_remote walks a process's page tables and takes a reference
2321  * to each struct page that each user address corresponds to at a given
2322  * instant. That is, it takes the page that would be accessed if a user
2323  * thread accesses the given user virtual address at that instant.
2324  *
2325  * This does not guarantee that the page exists in the user mappings when
2326  * get_user_pages_remote returns, and there may even be a completely different
2327  * page there in some cases (eg. if mmapped pagecache has been invalidated
2328  * and subsequently re-faulted). However it does guarantee that the page
2329  * won't be freed completely. And mostly callers simply care that the page
2330  * contains data that was valid *at some point in time*. Typically, an IO
2331  * or similar operation cannot guarantee anything stronger anyway because
2332  * locks can't be held over the syscall boundary.
2333  *
2334  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2335  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2336  * be called after the page is finished with, and before put_page is called.
2337  *
2338  * get_user_pages_remote is typically used for fewer-copy IO operations,
2339  * to get a handle on the memory by some means other than accesses
2340  * via the user virtual addresses. The pages may be submitted for
2341  * DMA to devices or accessed via their kernel linear mapping (via the
2342  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2343  *
2344  * See also get_user_pages_fast, for performance critical applications.
2345  *
2346  * get_user_pages_remote should be phased out in favor of
2347  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2348  * should use get_user_pages_remote because it cannot pass
2349  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2350  */
2351 long get_user_pages_remote(struct mm_struct *mm,
2352 		unsigned long start, unsigned long nr_pages,
2353 		unsigned int gup_flags, struct page **pages,
2354 		int *locked)
2355 {
2356 	int local_locked = 1;
2357 
2358 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2359 			       FOLL_TOUCH | FOLL_REMOTE))
2360 		return -EINVAL;
2361 
2362 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2363 				       locked ? locked : &local_locked,
2364 				       gup_flags);
2365 }
2366 EXPORT_SYMBOL(get_user_pages_remote);
2367 
2368 #else /* CONFIG_MMU */
2369 long get_user_pages_remote(struct mm_struct *mm,
2370 			   unsigned long start, unsigned long nr_pages,
2371 			   unsigned int gup_flags, struct page **pages,
2372 			   int *locked)
2373 {
2374 	return 0;
2375 }
2376 #endif /* !CONFIG_MMU */
2377 
2378 /**
2379  * get_user_pages() - pin user pages in memory
2380  * @start:      starting user address
2381  * @nr_pages:   number of pages from start to pin
2382  * @gup_flags:  flags modifying lookup behaviour
2383  * @pages:      array that receives pointers to the pages pinned.
2384  *              Should be at least nr_pages long. Or NULL, if caller
2385  *              only intends to ensure the pages are faulted in.
2386  *
2387  * This is the same as get_user_pages_remote(), just with a less-flexible
2388  * calling convention where we assume that the mm being operated on belongs to
2389  * the current task, and doesn't allow passing of a locked parameter.  We also
2390  * obviously don't pass FOLL_REMOTE in here.
2391  */
2392 long get_user_pages(unsigned long start, unsigned long nr_pages,
2393 		    unsigned int gup_flags, struct page **pages)
2394 {
2395 	int locked = 1;
2396 
2397 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2398 		return -EINVAL;
2399 
2400 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2401 				       &locked, gup_flags);
2402 }
2403 EXPORT_SYMBOL(get_user_pages);
2404 
2405 /*
2406  * get_user_pages_unlocked() is suitable to replace the form:
2407  *
2408  *      mmap_read_lock(mm);
2409  *      get_user_pages(mm, ..., pages, NULL);
2410  *      mmap_read_unlock(mm);
2411  *
2412  *  with:
2413  *
2414  *      get_user_pages_unlocked(mm, ..., pages);
2415  *
2416  * It is functionally equivalent to get_user_pages_fast so
2417  * get_user_pages_fast should be used instead if specific gup_flags
2418  * (e.g. FOLL_FORCE) are not required.
2419  */
2420 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2421 			     struct page **pages, unsigned int gup_flags)
2422 {
2423 	int locked = 0;
2424 
2425 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2426 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2427 		return -EINVAL;
2428 
2429 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2430 				       &locked, gup_flags);
2431 }
2432 EXPORT_SYMBOL(get_user_pages_unlocked);
2433 
2434 /*
2435  * Fast GUP
2436  *
2437  * get_user_pages_fast attempts to pin user pages by walking the page
2438  * tables directly and avoids taking locks. Thus the walker needs to be
2439  * protected from page table pages being freed from under it, and should
2440  * block any THP splits.
2441  *
2442  * One way to achieve this is to have the walker disable interrupts, and
2443  * rely on IPIs from the TLB flushing code blocking before the page table
2444  * pages are freed. This is unsuitable for architectures that do not need
2445  * to broadcast an IPI when invalidating TLBs.
2446  *
2447  * Another way to achieve this is to batch up page table containing pages
2448  * belonging to more than one mm_user, then rcu_sched a callback to free those
2449  * pages. Disabling interrupts will allow the fast_gup walker to both block
2450  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2451  * (which is a relatively rare event). The code below adopts this strategy.
2452  *
2453  * Before activating this code, please be aware that the following assumptions
2454  * are currently made:
2455  *
2456  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2457  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2458  *
2459  *  *) ptes can be read atomically by the architecture.
2460  *
2461  *  *) access_ok is sufficient to validate userspace address ranges.
2462  *
2463  * The last two assumptions can be relaxed by the addition of helper functions.
2464  *
2465  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2466  */
2467 #ifdef CONFIG_HAVE_FAST_GUP
2468 
2469 /*
2470  * Used in the GUP-fast path to determine whether a pin is permitted for a
2471  * specific folio.
2472  *
2473  * This call assumes the caller has pinned the folio, that the lowest page table
2474  * level still points to this folio, and that interrupts have been disabled.
2475  *
2476  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2477  * (see comment describing the writable_file_mapping_allowed() function). We
2478  * therefore try to avoid the most egregious case of a long-term mapping doing
2479  * so.
2480  *
2481  * This function cannot be as thorough as that one as the VMA is not available
2482  * in the fast path, so instead we whitelist known good cases and if in doubt,
2483  * fall back to the slow path.
2484  */
2485 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2486 {
2487 	struct address_space *mapping;
2488 	unsigned long mapping_flags;
2489 
2490 	/*
2491 	 * If we aren't pinning then no problematic write can occur. A long term
2492 	 * pin is the most egregious case so this is the one we disallow.
2493 	 */
2494 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2495 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2496 		return true;
2497 
2498 	/* The folio is pinned, so we can safely access folio fields. */
2499 
2500 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2501 		return false;
2502 
2503 	/* hugetlb mappings do not require dirty-tracking. */
2504 	if (folio_test_hugetlb(folio))
2505 		return true;
2506 
2507 	/*
2508 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2509 	 * cannot proceed, which means no actions performed under RCU can
2510 	 * proceed either.
2511 	 *
2512 	 * inodes and thus their mappings are freed under RCU, which means the
2513 	 * mapping cannot be freed beneath us and thus we can safely dereference
2514 	 * it.
2515 	 */
2516 	lockdep_assert_irqs_disabled();
2517 
2518 	/*
2519 	 * However, there may be operations which _alter_ the mapping, so ensure
2520 	 * we read it once and only once.
2521 	 */
2522 	mapping = READ_ONCE(folio->mapping);
2523 
2524 	/*
2525 	 * The mapping may have been truncated, in any case we cannot determine
2526 	 * if this mapping is safe - fall back to slow path to determine how to
2527 	 * proceed.
2528 	 */
2529 	if (!mapping)
2530 		return false;
2531 
2532 	/* Anonymous folios pose no problem. */
2533 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2534 	if (mapping_flags)
2535 		return mapping_flags & PAGE_MAPPING_ANON;
2536 
2537 	/*
2538 	 * At this point, we know the mapping is non-null and points to an
2539 	 * address_space object. The only remaining whitelisted file system is
2540 	 * shmem.
2541 	 */
2542 	return shmem_mapping(mapping);
2543 }
2544 
2545 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2546 					    unsigned int flags,
2547 					    struct page **pages)
2548 {
2549 	while ((*nr) - nr_start) {
2550 		struct page *page = pages[--(*nr)];
2551 
2552 		ClearPageReferenced(page);
2553 		if (flags & FOLL_PIN)
2554 			unpin_user_page(page);
2555 		else
2556 			put_page(page);
2557 	}
2558 }
2559 
2560 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2561 /*
2562  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2563  * operations.
2564  *
2565  * To pin the page, fast-gup needs to do below in order:
2566  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2567  *
2568  * For the rest of pgtable operations where pgtable updates can be racy
2569  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2570  * is pinned.
2571  *
2572  * Above will work for all pte-level operations, including THP split.
2573  *
2574  * For THP collapse, it's a bit more complicated because fast-gup may be
2575  * walking a pgtable page that is being freed (pte is still valid but pmd
2576  * can be cleared already).  To avoid race in such condition, we need to
2577  * also check pmd here to make sure pmd doesn't change (corresponds to
2578  * pmdp_collapse_flush() in the THP collapse code path).
2579  */
2580 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2581 			 unsigned long end, unsigned int flags,
2582 			 struct page **pages, int *nr)
2583 {
2584 	struct dev_pagemap *pgmap = NULL;
2585 	int nr_start = *nr, ret = 0;
2586 	pte_t *ptep, *ptem;
2587 
2588 	ptem = ptep = pte_offset_map(&pmd, addr);
2589 	if (!ptep)
2590 		return 0;
2591 	do {
2592 		pte_t pte = ptep_get_lockless(ptep);
2593 		struct page *page;
2594 		struct folio *folio;
2595 
2596 		/*
2597 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2598 		 * pte_access_permitted() better should reject these pages
2599 		 * either way: otherwise, GUP-fast might succeed in
2600 		 * cases where ordinary GUP would fail due to VMA access
2601 		 * permissions.
2602 		 */
2603 		if (pte_protnone(pte))
2604 			goto pte_unmap;
2605 
2606 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2607 			goto pte_unmap;
2608 
2609 		if (pte_devmap(pte)) {
2610 			if (unlikely(flags & FOLL_LONGTERM))
2611 				goto pte_unmap;
2612 
2613 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2614 			if (unlikely(!pgmap)) {
2615 				undo_dev_pagemap(nr, nr_start, flags, pages);
2616 				goto pte_unmap;
2617 			}
2618 		} else if (pte_special(pte))
2619 			goto pte_unmap;
2620 
2621 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2622 		page = pte_page(pte);
2623 
2624 		folio = try_grab_folio(page, 1, flags);
2625 		if (!folio)
2626 			goto pte_unmap;
2627 
2628 		if (unlikely(folio_is_secretmem(folio))) {
2629 			gup_put_folio(folio, 1, flags);
2630 			goto pte_unmap;
2631 		}
2632 
2633 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2634 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2635 			gup_put_folio(folio, 1, flags);
2636 			goto pte_unmap;
2637 		}
2638 
2639 		if (!folio_fast_pin_allowed(folio, flags)) {
2640 			gup_put_folio(folio, 1, flags);
2641 			goto pte_unmap;
2642 		}
2643 
2644 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2645 			gup_put_folio(folio, 1, flags);
2646 			goto pte_unmap;
2647 		}
2648 
2649 		/*
2650 		 * We need to make the page accessible if and only if we are
2651 		 * going to access its content (the FOLL_PIN case).  Please
2652 		 * see Documentation/core-api/pin_user_pages.rst for
2653 		 * details.
2654 		 */
2655 		if (flags & FOLL_PIN) {
2656 			ret = arch_make_page_accessible(page);
2657 			if (ret) {
2658 				gup_put_folio(folio, 1, flags);
2659 				goto pte_unmap;
2660 			}
2661 		}
2662 		folio_set_referenced(folio);
2663 		pages[*nr] = page;
2664 		(*nr)++;
2665 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2666 
2667 	ret = 1;
2668 
2669 pte_unmap:
2670 	if (pgmap)
2671 		put_dev_pagemap(pgmap);
2672 	pte_unmap(ptem);
2673 	return ret;
2674 }
2675 #else
2676 
2677 /*
2678  * If we can't determine whether or not a pte is special, then fail immediately
2679  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2680  * to be special.
2681  *
2682  * For a futex to be placed on a THP tail page, get_futex_key requires a
2683  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2684  * useful to have gup_huge_pmd even if we can't operate on ptes.
2685  */
2686 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2687 			 unsigned long end, unsigned int flags,
2688 			 struct page **pages, int *nr)
2689 {
2690 	return 0;
2691 }
2692 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2693 
2694 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2695 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2696 			     unsigned long end, unsigned int flags,
2697 			     struct page **pages, int *nr)
2698 {
2699 	int nr_start = *nr;
2700 	struct dev_pagemap *pgmap = NULL;
2701 
2702 	do {
2703 		struct page *page = pfn_to_page(pfn);
2704 
2705 		pgmap = get_dev_pagemap(pfn, pgmap);
2706 		if (unlikely(!pgmap)) {
2707 			undo_dev_pagemap(nr, nr_start, flags, pages);
2708 			break;
2709 		}
2710 
2711 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2712 			undo_dev_pagemap(nr, nr_start, flags, pages);
2713 			break;
2714 		}
2715 
2716 		SetPageReferenced(page);
2717 		pages[*nr] = page;
2718 		if (unlikely(try_grab_page(page, flags))) {
2719 			undo_dev_pagemap(nr, nr_start, flags, pages);
2720 			break;
2721 		}
2722 		(*nr)++;
2723 		pfn++;
2724 	} while (addr += PAGE_SIZE, addr != end);
2725 
2726 	put_dev_pagemap(pgmap);
2727 	return addr == end;
2728 }
2729 
2730 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2731 				 unsigned long end, unsigned int flags,
2732 				 struct page **pages, int *nr)
2733 {
2734 	unsigned long fault_pfn;
2735 	int nr_start = *nr;
2736 
2737 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2738 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2739 		return 0;
2740 
2741 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2742 		undo_dev_pagemap(nr, nr_start, flags, pages);
2743 		return 0;
2744 	}
2745 	return 1;
2746 }
2747 
2748 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2749 				 unsigned long end, unsigned int flags,
2750 				 struct page **pages, int *nr)
2751 {
2752 	unsigned long fault_pfn;
2753 	int nr_start = *nr;
2754 
2755 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2756 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2757 		return 0;
2758 
2759 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2760 		undo_dev_pagemap(nr, nr_start, flags, pages);
2761 		return 0;
2762 	}
2763 	return 1;
2764 }
2765 #else
2766 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2767 				 unsigned long end, unsigned int flags,
2768 				 struct page **pages, int *nr)
2769 {
2770 	BUILD_BUG();
2771 	return 0;
2772 }
2773 
2774 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2775 				 unsigned long end, unsigned int flags,
2776 				 struct page **pages, int *nr)
2777 {
2778 	BUILD_BUG();
2779 	return 0;
2780 }
2781 #endif
2782 
2783 static int record_subpages(struct page *page, unsigned long addr,
2784 			   unsigned long end, struct page **pages)
2785 {
2786 	int nr;
2787 
2788 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2789 		pages[nr] = nth_page(page, nr);
2790 
2791 	return nr;
2792 }
2793 
2794 #ifdef CONFIG_ARCH_HAS_HUGEPD
2795 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2796 				      unsigned long sz)
2797 {
2798 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2799 	return (__boundary - 1 < end - 1) ? __boundary : end;
2800 }
2801 
2802 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2803 		       unsigned long end, unsigned int flags,
2804 		       struct page **pages, int *nr)
2805 {
2806 	unsigned long pte_end;
2807 	struct page *page;
2808 	struct folio *folio;
2809 	pte_t pte;
2810 	int refs;
2811 
2812 	pte_end = (addr + sz) & ~(sz-1);
2813 	if (pte_end < end)
2814 		end = pte_end;
2815 
2816 	pte = huge_ptep_get(ptep);
2817 
2818 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2819 		return 0;
2820 
2821 	/* hugepages are never "special" */
2822 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2823 
2824 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2825 	refs = record_subpages(page, addr, end, pages + *nr);
2826 
2827 	folio = try_grab_folio(page, refs, flags);
2828 	if (!folio)
2829 		return 0;
2830 
2831 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2832 		gup_put_folio(folio, refs, flags);
2833 		return 0;
2834 	}
2835 
2836 	if (!folio_fast_pin_allowed(folio, flags)) {
2837 		gup_put_folio(folio, refs, flags);
2838 		return 0;
2839 	}
2840 
2841 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2842 		gup_put_folio(folio, refs, flags);
2843 		return 0;
2844 	}
2845 
2846 	*nr += refs;
2847 	folio_set_referenced(folio);
2848 	return 1;
2849 }
2850 
2851 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2852 		unsigned int pdshift, unsigned long end, unsigned int flags,
2853 		struct page **pages, int *nr)
2854 {
2855 	pte_t *ptep;
2856 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2857 	unsigned long next;
2858 
2859 	ptep = hugepte_offset(hugepd, addr, pdshift);
2860 	do {
2861 		next = hugepte_addr_end(addr, end, sz);
2862 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2863 			return 0;
2864 	} while (ptep++, addr = next, addr != end);
2865 
2866 	return 1;
2867 }
2868 #else
2869 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2870 		unsigned int pdshift, unsigned long end, unsigned int flags,
2871 		struct page **pages, int *nr)
2872 {
2873 	return 0;
2874 }
2875 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2876 
2877 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2878 			unsigned long end, unsigned int flags,
2879 			struct page **pages, int *nr)
2880 {
2881 	struct page *page;
2882 	struct folio *folio;
2883 	int refs;
2884 
2885 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2886 		return 0;
2887 
2888 	if (pmd_devmap(orig)) {
2889 		if (unlikely(flags & FOLL_LONGTERM))
2890 			return 0;
2891 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2892 					     pages, nr);
2893 	}
2894 
2895 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2896 	refs = record_subpages(page, addr, end, pages + *nr);
2897 
2898 	folio = try_grab_folio(page, refs, flags);
2899 	if (!folio)
2900 		return 0;
2901 
2902 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2903 		gup_put_folio(folio, refs, flags);
2904 		return 0;
2905 	}
2906 
2907 	if (!folio_fast_pin_allowed(folio, flags)) {
2908 		gup_put_folio(folio, refs, flags);
2909 		return 0;
2910 	}
2911 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2912 		gup_put_folio(folio, refs, flags);
2913 		return 0;
2914 	}
2915 
2916 	*nr += refs;
2917 	folio_set_referenced(folio);
2918 	return 1;
2919 }
2920 
2921 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2922 			unsigned long end, unsigned int flags,
2923 			struct page **pages, int *nr)
2924 {
2925 	struct page *page;
2926 	struct folio *folio;
2927 	int refs;
2928 
2929 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2930 		return 0;
2931 
2932 	if (pud_devmap(orig)) {
2933 		if (unlikely(flags & FOLL_LONGTERM))
2934 			return 0;
2935 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2936 					     pages, nr);
2937 	}
2938 
2939 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2940 	refs = record_subpages(page, addr, end, pages + *nr);
2941 
2942 	folio = try_grab_folio(page, refs, flags);
2943 	if (!folio)
2944 		return 0;
2945 
2946 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2947 		gup_put_folio(folio, refs, flags);
2948 		return 0;
2949 	}
2950 
2951 	if (!folio_fast_pin_allowed(folio, flags)) {
2952 		gup_put_folio(folio, refs, flags);
2953 		return 0;
2954 	}
2955 
2956 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2957 		gup_put_folio(folio, refs, flags);
2958 		return 0;
2959 	}
2960 
2961 	*nr += refs;
2962 	folio_set_referenced(folio);
2963 	return 1;
2964 }
2965 
2966 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2967 			unsigned long end, unsigned int flags,
2968 			struct page **pages, int *nr)
2969 {
2970 	int refs;
2971 	struct page *page;
2972 	struct folio *folio;
2973 
2974 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2975 		return 0;
2976 
2977 	BUILD_BUG_ON(pgd_devmap(orig));
2978 
2979 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2980 	refs = record_subpages(page, addr, end, pages + *nr);
2981 
2982 	folio = try_grab_folio(page, refs, flags);
2983 	if (!folio)
2984 		return 0;
2985 
2986 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2987 		gup_put_folio(folio, refs, flags);
2988 		return 0;
2989 	}
2990 
2991 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2992 		gup_put_folio(folio, refs, flags);
2993 		return 0;
2994 	}
2995 
2996 	if (!folio_fast_pin_allowed(folio, flags)) {
2997 		gup_put_folio(folio, refs, flags);
2998 		return 0;
2999 	}
3000 
3001 	*nr += refs;
3002 	folio_set_referenced(folio);
3003 	return 1;
3004 }
3005 
3006 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
3007 		unsigned int flags, struct page **pages, int *nr)
3008 {
3009 	unsigned long next;
3010 	pmd_t *pmdp;
3011 
3012 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3013 	do {
3014 		pmd_t pmd = pmdp_get_lockless(pmdp);
3015 
3016 		next = pmd_addr_end(addr, end);
3017 		if (!pmd_present(pmd))
3018 			return 0;
3019 
3020 		if (unlikely(pmd_leaf(pmd))) {
3021 			/* See gup_pte_range() */
3022 			if (pmd_protnone(pmd))
3023 				return 0;
3024 
3025 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3026 				pages, nr))
3027 				return 0;
3028 
3029 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3030 			/*
3031 			 * architecture have different format for hugetlbfs
3032 			 * pmd format and THP pmd format
3033 			 */
3034 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3035 					 PMD_SHIFT, next, flags, pages, nr))
3036 				return 0;
3037 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3038 			return 0;
3039 	} while (pmdp++, addr = next, addr != end);
3040 
3041 	return 1;
3042 }
3043 
3044 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3045 			 unsigned int flags, struct page **pages, int *nr)
3046 {
3047 	unsigned long next;
3048 	pud_t *pudp;
3049 
3050 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3051 	do {
3052 		pud_t pud = READ_ONCE(*pudp);
3053 
3054 		next = pud_addr_end(addr, end);
3055 		if (unlikely(!pud_present(pud)))
3056 			return 0;
3057 		if (unlikely(pud_leaf(pud))) {
3058 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3059 					  pages, nr))
3060 				return 0;
3061 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3062 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3063 					 PUD_SHIFT, next, flags, pages, nr))
3064 				return 0;
3065 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3066 			return 0;
3067 	} while (pudp++, addr = next, addr != end);
3068 
3069 	return 1;
3070 }
3071 
3072 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3073 			 unsigned int flags, struct page **pages, int *nr)
3074 {
3075 	unsigned long next;
3076 	p4d_t *p4dp;
3077 
3078 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3079 	do {
3080 		p4d_t p4d = READ_ONCE(*p4dp);
3081 
3082 		next = p4d_addr_end(addr, end);
3083 		if (!p4d_present(p4d))
3084 			return 0;
3085 		BUILD_BUG_ON(p4d_leaf(p4d));
3086 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3087 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3088 					 P4D_SHIFT, next, flags, pages, nr))
3089 				return 0;
3090 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3091 			return 0;
3092 	} while (p4dp++, addr = next, addr != end);
3093 
3094 	return 1;
3095 }
3096 
3097 static void gup_pgd_range(unsigned long addr, unsigned long end,
3098 		unsigned int flags, struct page **pages, int *nr)
3099 {
3100 	unsigned long next;
3101 	pgd_t *pgdp;
3102 
3103 	pgdp = pgd_offset(current->mm, addr);
3104 	do {
3105 		pgd_t pgd = READ_ONCE(*pgdp);
3106 
3107 		next = pgd_addr_end(addr, end);
3108 		if (pgd_none(pgd))
3109 			return;
3110 		if (unlikely(pgd_leaf(pgd))) {
3111 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3112 					  pages, nr))
3113 				return;
3114 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3115 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3116 					 PGDIR_SHIFT, next, flags, pages, nr))
3117 				return;
3118 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3119 			return;
3120 	} while (pgdp++, addr = next, addr != end);
3121 }
3122 #else
3123 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3124 		unsigned int flags, struct page **pages, int *nr)
3125 {
3126 }
3127 #endif /* CONFIG_HAVE_FAST_GUP */
3128 
3129 #ifndef gup_fast_permitted
3130 /*
3131  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3132  * we need to fall back to the slow version:
3133  */
3134 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3135 {
3136 	return true;
3137 }
3138 #endif
3139 
3140 static unsigned long lockless_pages_from_mm(unsigned long start,
3141 					    unsigned long end,
3142 					    unsigned int gup_flags,
3143 					    struct page **pages)
3144 {
3145 	unsigned long flags;
3146 	int nr_pinned = 0;
3147 	unsigned seq;
3148 
3149 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3150 	    !gup_fast_permitted(start, end))
3151 		return 0;
3152 
3153 	if (gup_flags & FOLL_PIN) {
3154 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3155 		if (seq & 1)
3156 			return 0;
3157 	}
3158 
3159 	/*
3160 	 * Disable interrupts. The nested form is used, in order to allow full,
3161 	 * general purpose use of this routine.
3162 	 *
3163 	 * With interrupts disabled, we block page table pages from being freed
3164 	 * from under us. See struct mmu_table_batch comments in
3165 	 * include/asm-generic/tlb.h for more details.
3166 	 *
3167 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3168 	 * that come from THPs splitting.
3169 	 */
3170 	local_irq_save(flags);
3171 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3172 	local_irq_restore(flags);
3173 
3174 	/*
3175 	 * When pinning pages for DMA there could be a concurrent write protect
3176 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3177 	 */
3178 	if (gup_flags & FOLL_PIN) {
3179 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3180 			unpin_user_pages_lockless(pages, nr_pinned);
3181 			return 0;
3182 		} else {
3183 			sanity_check_pinned_pages(pages, nr_pinned);
3184 		}
3185 	}
3186 	return nr_pinned;
3187 }
3188 
3189 static int internal_get_user_pages_fast(unsigned long start,
3190 					unsigned long nr_pages,
3191 					unsigned int gup_flags,
3192 					struct page **pages)
3193 {
3194 	unsigned long len, end;
3195 	unsigned long nr_pinned;
3196 	int locked = 0;
3197 	int ret;
3198 
3199 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3200 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3201 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3202 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3203 		return -EINVAL;
3204 
3205 	if (gup_flags & FOLL_PIN)
3206 		mm_set_has_pinned_flag(&current->mm->flags);
3207 
3208 	if (!(gup_flags & FOLL_FAST_ONLY))
3209 		might_lock_read(&current->mm->mmap_lock);
3210 
3211 	start = untagged_addr(start) & PAGE_MASK;
3212 	len = nr_pages << PAGE_SHIFT;
3213 	if (check_add_overflow(start, len, &end))
3214 		return -EOVERFLOW;
3215 	if (end > TASK_SIZE_MAX)
3216 		return -EFAULT;
3217 	if (unlikely(!access_ok((void __user *)start, len)))
3218 		return -EFAULT;
3219 
3220 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3221 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3222 		return nr_pinned;
3223 
3224 	/* Slow path: try to get the remaining pages with get_user_pages */
3225 	start += nr_pinned << PAGE_SHIFT;
3226 	pages += nr_pinned;
3227 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3228 				    pages, &locked,
3229 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3230 	if (ret < 0) {
3231 		/*
3232 		 * The caller has to unpin the pages we already pinned so
3233 		 * returning -errno is not an option
3234 		 */
3235 		if (nr_pinned)
3236 			return nr_pinned;
3237 		return ret;
3238 	}
3239 	return ret + nr_pinned;
3240 }
3241 
3242 /**
3243  * get_user_pages_fast_only() - pin user pages in memory
3244  * @start:      starting user address
3245  * @nr_pages:   number of pages from start to pin
3246  * @gup_flags:  flags modifying pin behaviour
3247  * @pages:      array that receives pointers to the pages pinned.
3248  *              Should be at least nr_pages long.
3249  *
3250  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3251  * the regular GUP.
3252  *
3253  * If the architecture does not support this function, simply return with no
3254  * pages pinned.
3255  *
3256  * Careful, careful! COW breaking can go either way, so a non-write
3257  * access can get ambiguous page results. If you call this function without
3258  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3259  */
3260 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3261 			     unsigned int gup_flags, struct page **pages)
3262 {
3263 	/*
3264 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3265 	 * because gup fast is always a "pin with a +1 page refcount" request.
3266 	 *
3267 	 * FOLL_FAST_ONLY is required in order to match the API description of
3268 	 * this routine: no fall back to regular ("slow") GUP.
3269 	 */
3270 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3271 			       FOLL_GET | FOLL_FAST_ONLY))
3272 		return -EINVAL;
3273 
3274 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3275 }
3276 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3277 
3278 /**
3279  * get_user_pages_fast() - pin user pages in memory
3280  * @start:      starting user address
3281  * @nr_pages:   number of pages from start to pin
3282  * @gup_flags:  flags modifying pin behaviour
3283  * @pages:      array that receives pointers to the pages pinned.
3284  *              Should be at least nr_pages long.
3285  *
3286  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3287  * If not successful, it will fall back to taking the lock and
3288  * calling get_user_pages().
3289  *
3290  * Returns number of pages pinned. This may be fewer than the number requested.
3291  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3292  * -errno.
3293  */
3294 int get_user_pages_fast(unsigned long start, int nr_pages,
3295 			unsigned int gup_flags, struct page **pages)
3296 {
3297 	/*
3298 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3299 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3300 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3301 	 * request.
3302 	 */
3303 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3304 		return -EINVAL;
3305 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3306 }
3307 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3308 
3309 /**
3310  * pin_user_pages_fast() - pin user pages in memory without taking locks
3311  *
3312  * @start:      starting user address
3313  * @nr_pages:   number of pages from start to pin
3314  * @gup_flags:  flags modifying pin behaviour
3315  * @pages:      array that receives pointers to the pages pinned.
3316  *              Should be at least nr_pages long.
3317  *
3318  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3319  * get_user_pages_fast() for documentation on the function arguments, because
3320  * the arguments here are identical.
3321  *
3322  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3323  * see Documentation/core-api/pin_user_pages.rst for further details.
3324  *
3325  * Note that if a zero_page is amongst the returned pages, it will not have
3326  * pins in it and unpin_user_page() will not remove pins from it.
3327  */
3328 int pin_user_pages_fast(unsigned long start, int nr_pages,
3329 			unsigned int gup_flags, struct page **pages)
3330 {
3331 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3332 		return -EINVAL;
3333 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3334 }
3335 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3336 
3337 /**
3338  * pin_user_pages_remote() - pin pages of a remote process
3339  *
3340  * @mm:		mm_struct of target mm
3341  * @start:	starting user address
3342  * @nr_pages:	number of pages from start to pin
3343  * @gup_flags:	flags modifying lookup behaviour
3344  * @pages:	array that receives pointers to the pages pinned.
3345  *		Should be at least nr_pages long.
3346  * @locked:	pointer to lock flag indicating whether lock is held and
3347  *		subsequently whether VM_FAULT_RETRY functionality can be
3348  *		utilised. Lock must initially be held.
3349  *
3350  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3351  * get_user_pages_remote() for documentation on the function arguments, because
3352  * the arguments here are identical.
3353  *
3354  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3355  * see Documentation/core-api/pin_user_pages.rst for details.
3356  *
3357  * Note that if a zero_page is amongst the returned pages, it will not have
3358  * pins in it and unpin_user_page*() will not remove pins from it.
3359  */
3360 long pin_user_pages_remote(struct mm_struct *mm,
3361 			   unsigned long start, unsigned long nr_pages,
3362 			   unsigned int gup_flags, struct page **pages,
3363 			   int *locked)
3364 {
3365 	int local_locked = 1;
3366 
3367 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3368 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3369 		return 0;
3370 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3371 				     locked ? locked : &local_locked,
3372 				     gup_flags);
3373 }
3374 EXPORT_SYMBOL(pin_user_pages_remote);
3375 
3376 /**
3377  * pin_user_pages() - pin user pages in memory for use by other devices
3378  *
3379  * @start:	starting user address
3380  * @nr_pages:	number of pages from start to pin
3381  * @gup_flags:	flags modifying lookup behaviour
3382  * @pages:	array that receives pointers to the pages pinned.
3383  *		Should be at least nr_pages long.
3384  *
3385  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3386  * FOLL_PIN is set.
3387  *
3388  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3389  * see Documentation/core-api/pin_user_pages.rst for details.
3390  *
3391  * Note that if a zero_page is amongst the returned pages, it will not have
3392  * pins in it and unpin_user_page*() will not remove pins from it.
3393  */
3394 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3395 		    unsigned int gup_flags, struct page **pages)
3396 {
3397 	int locked = 1;
3398 
3399 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3400 		return 0;
3401 	return __gup_longterm_locked(current->mm, start, nr_pages,
3402 				     pages, &locked, gup_flags);
3403 }
3404 EXPORT_SYMBOL(pin_user_pages);
3405 
3406 /*
3407  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3408  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3409  * FOLL_PIN and rejects FOLL_GET.
3410  *
3411  * Note that if a zero_page is amongst the returned pages, it will not have
3412  * pins in it and unpin_user_page*() will not remove pins from it.
3413  */
3414 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3415 			     struct page **pages, unsigned int gup_flags)
3416 {
3417 	int locked = 0;
3418 
3419 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3420 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3421 		return 0;
3422 
3423 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3424 				     &locked, gup_flags);
3425 }
3426 EXPORT_SYMBOL(pin_user_pages_unlocked);
3427