1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_folio_refs(folio, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_folio_refs(folio, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in folio_try_share_anon_rmap_*(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_folio_refs(folio, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 504 #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST) 505 static int record_subpages(struct page *page, unsigned long sz, 506 unsigned long addr, unsigned long end, 507 struct page **pages) 508 { 509 struct page *start_page; 510 int nr; 511 512 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 513 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 514 pages[nr] = nth_page(start_page, nr); 515 516 return nr; 517 } 518 #endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */ 519 520 #ifdef CONFIG_ARCH_HAS_HUGEPD 521 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 522 unsigned long sz) 523 { 524 unsigned long __boundary = (addr + sz) & ~(sz-1); 525 return (__boundary - 1 < end - 1) ? __boundary : end; 526 } 527 528 /* 529 * Returns 1 if succeeded, 0 if failed, -EMLINK if unshare needed. 530 * 531 * NOTE: for the same entry, gup-fast and gup-slow can return different 532 * results (0 v.s. -EMLINK) depending on whether vma is available. This is 533 * the expected behavior, where we simply want gup-fast to fallback to 534 * gup-slow to take the vma reference first. 535 */ 536 static int gup_hugepte(struct vm_area_struct *vma, pte_t *ptep, unsigned long sz, 537 unsigned long addr, unsigned long end, unsigned int flags, 538 struct page **pages, int *nr) 539 { 540 unsigned long pte_end; 541 struct page *page; 542 struct folio *folio; 543 pte_t pte; 544 int refs; 545 546 pte_end = (addr + sz) & ~(sz-1); 547 if (pte_end < end) 548 end = pte_end; 549 550 pte = huge_ptep_get(ptep); 551 552 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 553 return 0; 554 555 /* hugepages are never "special" */ 556 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 557 558 page = pte_page(pte); 559 refs = record_subpages(page, sz, addr, end, pages + *nr); 560 561 folio = try_grab_folio(page, refs, flags); 562 if (!folio) 563 return 0; 564 565 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 566 gup_put_folio(folio, refs, flags); 567 return 0; 568 } 569 570 if (!pte_write(pte) && gup_must_unshare(vma, flags, &folio->page)) { 571 gup_put_folio(folio, refs, flags); 572 return -EMLINK; 573 } 574 575 *nr += refs; 576 folio_set_referenced(folio); 577 return 1; 578 } 579 580 /* 581 * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file 582 * systems on Power, which does not have issue with folio writeback against 583 * GUP updates. When hugepd will be extended to support non-hugetlbfs or 584 * even anonymous memory, we need to do extra check as what we do with most 585 * of the other folios. See writable_file_mapping_allowed() and 586 * gup_fast_folio_allowed() for more information. 587 */ 588 static int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 589 unsigned long addr, unsigned int pdshift, 590 unsigned long end, unsigned int flags, 591 struct page **pages, int *nr) 592 { 593 pte_t *ptep; 594 unsigned long sz = 1UL << hugepd_shift(hugepd); 595 unsigned long next; 596 int ret; 597 598 ptep = hugepte_offset(hugepd, addr, pdshift); 599 do { 600 next = hugepte_addr_end(addr, end, sz); 601 ret = gup_hugepte(vma, ptep, sz, addr, end, flags, pages, nr); 602 if (ret != 1) 603 return ret; 604 } while (ptep++, addr = next, addr != end); 605 606 return 1; 607 } 608 609 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 610 unsigned long addr, unsigned int pdshift, 611 unsigned int flags, 612 struct follow_page_context *ctx) 613 { 614 struct page *page; 615 struct hstate *h; 616 spinlock_t *ptl; 617 int nr = 0, ret; 618 pte_t *ptep; 619 620 /* Only hugetlb supports hugepd */ 621 if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma))) 622 return ERR_PTR(-EFAULT); 623 624 h = hstate_vma(vma); 625 ptep = hugepte_offset(hugepd, addr, pdshift); 626 ptl = huge_pte_lock(h, vma->vm_mm, ptep); 627 ret = gup_hugepd(vma, hugepd, addr, pdshift, addr + PAGE_SIZE, 628 flags, &page, &nr); 629 spin_unlock(ptl); 630 631 if (ret == 1) { 632 /* GUP succeeded */ 633 WARN_ON_ONCE(nr != 1); 634 ctx->page_mask = (1U << huge_page_order(h)) - 1; 635 return page; 636 } 637 638 /* ret can be either 0 (translates to NULL) or negative */ 639 return ERR_PTR(ret); 640 } 641 #else /* CONFIG_ARCH_HAS_HUGEPD */ 642 static inline int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 643 unsigned long addr, unsigned int pdshift, 644 unsigned long end, unsigned int flags, 645 struct page **pages, int *nr) 646 { 647 return 0; 648 } 649 650 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 651 unsigned long addr, unsigned int pdshift, 652 unsigned int flags, 653 struct follow_page_context *ctx) 654 { 655 return NULL; 656 } 657 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 658 659 660 static struct page *no_page_table(struct vm_area_struct *vma, 661 unsigned int flags, unsigned long address) 662 { 663 if (!(flags & FOLL_DUMP)) 664 return NULL; 665 666 /* 667 * When core dumping, we don't want to allocate unnecessary pages or 668 * page tables. Return error instead of NULL to skip handle_mm_fault, 669 * then get_dump_page() will return NULL to leave a hole in the dump. 670 * But we can only make this optimization where a hole would surely 671 * be zero-filled if handle_mm_fault() actually did handle it. 672 */ 673 if (is_vm_hugetlb_page(vma)) { 674 struct hstate *h = hstate_vma(vma); 675 676 if (!hugetlbfs_pagecache_present(h, vma, address)) 677 return ERR_PTR(-EFAULT); 678 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 679 return ERR_PTR(-EFAULT); 680 } 681 682 return NULL; 683 } 684 685 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 686 static struct page *follow_huge_pud(struct vm_area_struct *vma, 687 unsigned long addr, pud_t *pudp, 688 int flags, struct follow_page_context *ctx) 689 { 690 struct mm_struct *mm = vma->vm_mm; 691 struct page *page; 692 pud_t pud = *pudp; 693 unsigned long pfn = pud_pfn(pud); 694 int ret; 695 696 assert_spin_locked(pud_lockptr(mm, pudp)); 697 698 if ((flags & FOLL_WRITE) && !pud_write(pud)) 699 return NULL; 700 701 if (!pud_present(pud)) 702 return NULL; 703 704 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 705 706 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 707 pud_devmap(pud)) { 708 /* 709 * device mapped pages can only be returned if the caller 710 * will manage the page reference count. 711 * 712 * At least one of FOLL_GET | FOLL_PIN must be set, so 713 * assert that here: 714 */ 715 if (!(flags & (FOLL_GET | FOLL_PIN))) 716 return ERR_PTR(-EEXIST); 717 718 if (flags & FOLL_TOUCH) 719 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 720 721 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 722 if (!ctx->pgmap) 723 return ERR_PTR(-EFAULT); 724 } 725 726 page = pfn_to_page(pfn); 727 728 if (!pud_devmap(pud) && !pud_write(pud) && 729 gup_must_unshare(vma, flags, page)) 730 return ERR_PTR(-EMLINK); 731 732 ret = try_grab_page(page, flags); 733 if (ret) 734 page = ERR_PTR(ret); 735 else 736 ctx->page_mask = HPAGE_PUD_NR - 1; 737 738 return page; 739 } 740 741 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 742 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 743 struct vm_area_struct *vma, 744 unsigned int flags) 745 { 746 /* If the pmd is writable, we can write to the page. */ 747 if (pmd_write(pmd)) 748 return true; 749 750 /* Maybe FOLL_FORCE is set to override it? */ 751 if (!(flags & FOLL_FORCE)) 752 return false; 753 754 /* But FOLL_FORCE has no effect on shared mappings */ 755 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 756 return false; 757 758 /* ... or read-only private ones */ 759 if (!(vma->vm_flags & VM_MAYWRITE)) 760 return false; 761 762 /* ... or already writable ones that just need to take a write fault */ 763 if (vma->vm_flags & VM_WRITE) 764 return false; 765 766 /* 767 * See can_change_pte_writable(): we broke COW and could map the page 768 * writable if we have an exclusive anonymous page ... 769 */ 770 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 771 return false; 772 773 /* ... and a write-fault isn't required for other reasons. */ 774 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 775 return false; 776 return !userfaultfd_huge_pmd_wp(vma, pmd); 777 } 778 779 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 780 unsigned long addr, pmd_t *pmd, 781 unsigned int flags, 782 struct follow_page_context *ctx) 783 { 784 struct mm_struct *mm = vma->vm_mm; 785 pmd_t pmdval = *pmd; 786 struct page *page; 787 int ret; 788 789 assert_spin_locked(pmd_lockptr(mm, pmd)); 790 791 page = pmd_page(pmdval); 792 if ((flags & FOLL_WRITE) && 793 !can_follow_write_pmd(pmdval, page, vma, flags)) 794 return NULL; 795 796 /* Avoid dumping huge zero page */ 797 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 798 return ERR_PTR(-EFAULT); 799 800 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 801 return NULL; 802 803 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 804 return ERR_PTR(-EMLINK); 805 806 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 807 !PageAnonExclusive(page), page); 808 809 ret = try_grab_page(page, flags); 810 if (ret) 811 return ERR_PTR(ret); 812 813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 814 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 815 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 816 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 817 818 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 819 ctx->page_mask = HPAGE_PMD_NR - 1; 820 821 return page; 822 } 823 824 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 825 static struct page *follow_huge_pud(struct vm_area_struct *vma, 826 unsigned long addr, pud_t *pudp, 827 int flags, struct follow_page_context *ctx) 828 { 829 return NULL; 830 } 831 832 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 833 unsigned long addr, pmd_t *pmd, 834 unsigned int flags, 835 struct follow_page_context *ctx) 836 { 837 return NULL; 838 } 839 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 840 841 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 842 pte_t *pte, unsigned int flags) 843 { 844 if (flags & FOLL_TOUCH) { 845 pte_t orig_entry = ptep_get(pte); 846 pte_t entry = orig_entry; 847 848 if (flags & FOLL_WRITE) 849 entry = pte_mkdirty(entry); 850 entry = pte_mkyoung(entry); 851 852 if (!pte_same(orig_entry, entry)) { 853 set_pte_at(vma->vm_mm, address, pte, entry); 854 update_mmu_cache(vma, address, pte); 855 } 856 } 857 858 /* Proper page table entry exists, but no corresponding struct page */ 859 return -EEXIST; 860 } 861 862 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 863 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 864 struct vm_area_struct *vma, 865 unsigned int flags) 866 { 867 /* If the pte is writable, we can write to the page. */ 868 if (pte_write(pte)) 869 return true; 870 871 /* Maybe FOLL_FORCE is set to override it? */ 872 if (!(flags & FOLL_FORCE)) 873 return false; 874 875 /* But FOLL_FORCE has no effect on shared mappings */ 876 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 877 return false; 878 879 /* ... or read-only private ones */ 880 if (!(vma->vm_flags & VM_MAYWRITE)) 881 return false; 882 883 /* ... or already writable ones that just need to take a write fault */ 884 if (vma->vm_flags & VM_WRITE) 885 return false; 886 887 /* 888 * See can_change_pte_writable(): we broke COW and could map the page 889 * writable if we have an exclusive anonymous page ... 890 */ 891 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 892 return false; 893 894 /* ... and a write-fault isn't required for other reasons. */ 895 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 896 return false; 897 return !userfaultfd_pte_wp(vma, pte); 898 } 899 900 static struct page *follow_page_pte(struct vm_area_struct *vma, 901 unsigned long address, pmd_t *pmd, unsigned int flags, 902 struct dev_pagemap **pgmap) 903 { 904 struct mm_struct *mm = vma->vm_mm; 905 struct page *page; 906 spinlock_t *ptl; 907 pte_t *ptep, pte; 908 int ret; 909 910 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 911 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 912 (FOLL_PIN | FOLL_GET))) 913 return ERR_PTR(-EINVAL); 914 915 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 916 if (!ptep) 917 return no_page_table(vma, flags, address); 918 pte = ptep_get(ptep); 919 if (!pte_present(pte)) 920 goto no_page; 921 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 922 goto no_page; 923 924 page = vm_normal_page(vma, address, pte); 925 926 /* 927 * We only care about anon pages in can_follow_write_pte() and don't 928 * have to worry about pte_devmap() because they are never anon. 929 */ 930 if ((flags & FOLL_WRITE) && 931 !can_follow_write_pte(pte, page, vma, flags)) { 932 page = NULL; 933 goto out; 934 } 935 936 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 937 /* 938 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 939 * case since they are only valid while holding the pgmap 940 * reference. 941 */ 942 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 943 if (*pgmap) 944 page = pte_page(pte); 945 else 946 goto no_page; 947 } else if (unlikely(!page)) { 948 if (flags & FOLL_DUMP) { 949 /* Avoid special (like zero) pages in core dumps */ 950 page = ERR_PTR(-EFAULT); 951 goto out; 952 } 953 954 if (is_zero_pfn(pte_pfn(pte))) { 955 page = pte_page(pte); 956 } else { 957 ret = follow_pfn_pte(vma, address, ptep, flags); 958 page = ERR_PTR(ret); 959 goto out; 960 } 961 } 962 963 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 964 page = ERR_PTR(-EMLINK); 965 goto out; 966 } 967 968 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 969 !PageAnonExclusive(page), page); 970 971 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 972 ret = try_grab_page(page, flags); 973 if (unlikely(ret)) { 974 page = ERR_PTR(ret); 975 goto out; 976 } 977 978 /* 979 * We need to make the page accessible if and only if we are going 980 * to access its content (the FOLL_PIN case). Please see 981 * Documentation/core-api/pin_user_pages.rst for details. 982 */ 983 if (flags & FOLL_PIN) { 984 ret = arch_make_page_accessible(page); 985 if (ret) { 986 unpin_user_page(page); 987 page = ERR_PTR(ret); 988 goto out; 989 } 990 } 991 if (flags & FOLL_TOUCH) { 992 if ((flags & FOLL_WRITE) && 993 !pte_dirty(pte) && !PageDirty(page)) 994 set_page_dirty(page); 995 /* 996 * pte_mkyoung() would be more correct here, but atomic care 997 * is needed to avoid losing the dirty bit: it is easier to use 998 * mark_page_accessed(). 999 */ 1000 mark_page_accessed(page); 1001 } 1002 out: 1003 pte_unmap_unlock(ptep, ptl); 1004 return page; 1005 no_page: 1006 pte_unmap_unlock(ptep, ptl); 1007 if (!pte_none(pte)) 1008 return NULL; 1009 return no_page_table(vma, flags, address); 1010 } 1011 1012 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 1013 unsigned long address, pud_t *pudp, 1014 unsigned int flags, 1015 struct follow_page_context *ctx) 1016 { 1017 pmd_t *pmd, pmdval; 1018 spinlock_t *ptl; 1019 struct page *page; 1020 struct mm_struct *mm = vma->vm_mm; 1021 1022 pmd = pmd_offset(pudp, address); 1023 pmdval = pmdp_get_lockless(pmd); 1024 if (pmd_none(pmdval)) 1025 return no_page_table(vma, flags, address); 1026 if (!pmd_present(pmdval)) 1027 return no_page_table(vma, flags, address); 1028 if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval))))) 1029 return follow_hugepd(vma, __hugepd(pmd_val(pmdval)), 1030 address, PMD_SHIFT, flags, ctx); 1031 if (pmd_devmap(pmdval)) { 1032 ptl = pmd_lock(mm, pmd); 1033 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 1034 spin_unlock(ptl); 1035 if (page) 1036 return page; 1037 return no_page_table(vma, flags, address); 1038 } 1039 if (likely(!pmd_leaf(pmdval))) 1040 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1041 1042 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 1043 return no_page_table(vma, flags, address); 1044 1045 ptl = pmd_lock(mm, pmd); 1046 pmdval = *pmd; 1047 if (unlikely(!pmd_present(pmdval))) { 1048 spin_unlock(ptl); 1049 return no_page_table(vma, flags, address); 1050 } 1051 if (unlikely(!pmd_leaf(pmdval))) { 1052 spin_unlock(ptl); 1053 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1054 } 1055 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 1056 spin_unlock(ptl); 1057 split_huge_pmd(vma, pmd, address); 1058 /* If pmd was left empty, stuff a page table in there quickly */ 1059 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 1060 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1061 } 1062 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 1063 spin_unlock(ptl); 1064 return page; 1065 } 1066 1067 static struct page *follow_pud_mask(struct vm_area_struct *vma, 1068 unsigned long address, p4d_t *p4dp, 1069 unsigned int flags, 1070 struct follow_page_context *ctx) 1071 { 1072 pud_t *pudp, pud; 1073 spinlock_t *ptl; 1074 struct page *page; 1075 struct mm_struct *mm = vma->vm_mm; 1076 1077 pudp = pud_offset(p4dp, address); 1078 pud = READ_ONCE(*pudp); 1079 if (!pud_present(pud)) 1080 return no_page_table(vma, flags, address); 1081 if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) 1082 return follow_hugepd(vma, __hugepd(pud_val(pud)), 1083 address, PUD_SHIFT, flags, ctx); 1084 if (pud_leaf(pud)) { 1085 ptl = pud_lock(mm, pudp); 1086 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1087 spin_unlock(ptl); 1088 if (page) 1089 return page; 1090 return no_page_table(vma, flags, address); 1091 } 1092 if (unlikely(pud_bad(pud))) 1093 return no_page_table(vma, flags, address); 1094 1095 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1096 } 1097 1098 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1099 unsigned long address, pgd_t *pgdp, 1100 unsigned int flags, 1101 struct follow_page_context *ctx) 1102 { 1103 p4d_t *p4dp, p4d; 1104 1105 p4dp = p4d_offset(pgdp, address); 1106 p4d = READ_ONCE(*p4dp); 1107 BUILD_BUG_ON(p4d_leaf(p4d)); 1108 1109 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) 1110 return follow_hugepd(vma, __hugepd(p4d_val(p4d)), 1111 address, P4D_SHIFT, flags, ctx); 1112 1113 if (!p4d_present(p4d) || p4d_bad(p4d)) 1114 return no_page_table(vma, flags, address); 1115 1116 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1117 } 1118 1119 /** 1120 * follow_page_mask - look up a page descriptor from a user-virtual address 1121 * @vma: vm_area_struct mapping @address 1122 * @address: virtual address to look up 1123 * @flags: flags modifying lookup behaviour 1124 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1125 * pointer to output page_mask 1126 * 1127 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1128 * 1129 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1130 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1131 * 1132 * When getting an anonymous page and the caller has to trigger unsharing 1133 * of a shared anonymous page first, -EMLINK is returned. The caller should 1134 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1135 * relevant with FOLL_PIN and !FOLL_WRITE. 1136 * 1137 * On output, the @ctx->page_mask is set according to the size of the page. 1138 * 1139 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1140 * an error pointer if there is a mapping to something not represented 1141 * by a page descriptor (see also vm_normal_page()). 1142 */ 1143 static struct page *follow_page_mask(struct vm_area_struct *vma, 1144 unsigned long address, unsigned int flags, 1145 struct follow_page_context *ctx) 1146 { 1147 pgd_t *pgd; 1148 struct mm_struct *mm = vma->vm_mm; 1149 struct page *page; 1150 1151 vma_pgtable_walk_begin(vma); 1152 1153 ctx->page_mask = 0; 1154 pgd = pgd_offset(mm, address); 1155 1156 if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd))))) 1157 page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)), 1158 address, PGDIR_SHIFT, flags, ctx); 1159 else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1160 page = no_page_table(vma, flags, address); 1161 else 1162 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1163 1164 vma_pgtable_walk_end(vma); 1165 1166 return page; 1167 } 1168 1169 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1170 unsigned int foll_flags) 1171 { 1172 struct follow_page_context ctx = { NULL }; 1173 struct page *page; 1174 1175 if (vma_is_secretmem(vma)) 1176 return NULL; 1177 1178 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 1179 return NULL; 1180 1181 /* 1182 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 1183 * to fail on PROT_NONE-mapped pages. 1184 */ 1185 page = follow_page_mask(vma, address, foll_flags, &ctx); 1186 if (ctx.pgmap) 1187 put_dev_pagemap(ctx.pgmap); 1188 return page; 1189 } 1190 1191 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1192 unsigned int gup_flags, struct vm_area_struct **vma, 1193 struct page **page) 1194 { 1195 pgd_t *pgd; 1196 p4d_t *p4d; 1197 pud_t *pud; 1198 pmd_t *pmd; 1199 pte_t *pte; 1200 pte_t entry; 1201 int ret = -EFAULT; 1202 1203 /* user gate pages are read-only */ 1204 if (gup_flags & FOLL_WRITE) 1205 return -EFAULT; 1206 if (address > TASK_SIZE) 1207 pgd = pgd_offset_k(address); 1208 else 1209 pgd = pgd_offset_gate(mm, address); 1210 if (pgd_none(*pgd)) 1211 return -EFAULT; 1212 p4d = p4d_offset(pgd, address); 1213 if (p4d_none(*p4d)) 1214 return -EFAULT; 1215 pud = pud_offset(p4d, address); 1216 if (pud_none(*pud)) 1217 return -EFAULT; 1218 pmd = pmd_offset(pud, address); 1219 if (!pmd_present(*pmd)) 1220 return -EFAULT; 1221 pte = pte_offset_map(pmd, address); 1222 if (!pte) 1223 return -EFAULT; 1224 entry = ptep_get(pte); 1225 if (pte_none(entry)) 1226 goto unmap; 1227 *vma = get_gate_vma(mm); 1228 if (!page) 1229 goto out; 1230 *page = vm_normal_page(*vma, address, entry); 1231 if (!*page) { 1232 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1233 goto unmap; 1234 *page = pte_page(entry); 1235 } 1236 ret = try_grab_page(*page, gup_flags); 1237 if (unlikely(ret)) 1238 goto unmap; 1239 out: 1240 ret = 0; 1241 unmap: 1242 pte_unmap(pte); 1243 return ret; 1244 } 1245 1246 /* 1247 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1248 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1249 * to 0 and -EBUSY returned. 1250 */ 1251 static int faultin_page(struct vm_area_struct *vma, 1252 unsigned long address, unsigned int *flags, bool unshare, 1253 int *locked) 1254 { 1255 unsigned int fault_flags = 0; 1256 vm_fault_t ret; 1257 1258 if (*flags & FOLL_NOFAULT) 1259 return -EFAULT; 1260 if (*flags & FOLL_WRITE) 1261 fault_flags |= FAULT_FLAG_WRITE; 1262 if (*flags & FOLL_REMOTE) 1263 fault_flags |= FAULT_FLAG_REMOTE; 1264 if (*flags & FOLL_UNLOCKABLE) { 1265 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1266 /* 1267 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1268 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1269 * That's because some callers may not be prepared to 1270 * handle early exits caused by non-fatal signals. 1271 */ 1272 if (*flags & FOLL_INTERRUPTIBLE) 1273 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1274 } 1275 if (*flags & FOLL_NOWAIT) 1276 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1277 if (*flags & FOLL_TRIED) { 1278 /* 1279 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1280 * can co-exist 1281 */ 1282 fault_flags |= FAULT_FLAG_TRIED; 1283 } 1284 if (unshare) { 1285 fault_flags |= FAULT_FLAG_UNSHARE; 1286 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1287 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1288 } 1289 1290 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1291 1292 if (ret & VM_FAULT_COMPLETED) { 1293 /* 1294 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1295 * mmap lock in the page fault handler. Sanity check this. 1296 */ 1297 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1298 *locked = 0; 1299 1300 /* 1301 * We should do the same as VM_FAULT_RETRY, but let's not 1302 * return -EBUSY since that's not reflecting the reality of 1303 * what has happened - we've just fully completed a page 1304 * fault, with the mmap lock released. Use -EAGAIN to show 1305 * that we want to take the mmap lock _again_. 1306 */ 1307 return -EAGAIN; 1308 } 1309 1310 if (ret & VM_FAULT_ERROR) { 1311 int err = vm_fault_to_errno(ret, *flags); 1312 1313 if (err) 1314 return err; 1315 BUG(); 1316 } 1317 1318 if (ret & VM_FAULT_RETRY) { 1319 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1320 *locked = 0; 1321 return -EBUSY; 1322 } 1323 1324 return 0; 1325 } 1326 1327 /* 1328 * Writing to file-backed mappings which require folio dirty tracking using GUP 1329 * is a fundamentally broken operation, as kernel write access to GUP mappings 1330 * do not adhere to the semantics expected by a file system. 1331 * 1332 * Consider the following scenario:- 1333 * 1334 * 1. A folio is written to via GUP which write-faults the memory, notifying 1335 * the file system and dirtying the folio. 1336 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1337 * the PTE being marked read-only. 1338 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1339 * direct mapping. 1340 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1341 * (though it does not have to). 1342 * 1343 * This results in both data being written to a folio without writenotify, and 1344 * the folio being dirtied unexpectedly (if the caller decides to do so). 1345 */ 1346 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1347 unsigned long gup_flags) 1348 { 1349 /* 1350 * If we aren't pinning then no problematic write can occur. A long term 1351 * pin is the most egregious case so this is the case we disallow. 1352 */ 1353 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1354 (FOLL_PIN | FOLL_LONGTERM)) 1355 return true; 1356 1357 /* 1358 * If the VMA does not require dirty tracking then no problematic write 1359 * can occur either. 1360 */ 1361 return !vma_needs_dirty_tracking(vma); 1362 } 1363 1364 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1365 { 1366 vm_flags_t vm_flags = vma->vm_flags; 1367 int write = (gup_flags & FOLL_WRITE); 1368 int foreign = (gup_flags & FOLL_REMOTE); 1369 bool vma_anon = vma_is_anonymous(vma); 1370 1371 if (vm_flags & (VM_IO | VM_PFNMAP)) 1372 return -EFAULT; 1373 1374 if ((gup_flags & FOLL_ANON) && !vma_anon) 1375 return -EFAULT; 1376 1377 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1378 return -EOPNOTSUPP; 1379 1380 if (vma_is_secretmem(vma)) 1381 return -EFAULT; 1382 1383 if (write) { 1384 if (!vma_anon && 1385 !writable_file_mapping_allowed(vma, gup_flags)) 1386 return -EFAULT; 1387 1388 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1389 if (!(gup_flags & FOLL_FORCE)) 1390 return -EFAULT; 1391 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1392 if (is_vm_hugetlb_page(vma)) 1393 return -EFAULT; 1394 /* 1395 * We used to let the write,force case do COW in a 1396 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1397 * set a breakpoint in a read-only mapping of an 1398 * executable, without corrupting the file (yet only 1399 * when that file had been opened for writing!). 1400 * Anon pages in shared mappings are surprising: now 1401 * just reject it. 1402 */ 1403 if (!is_cow_mapping(vm_flags)) 1404 return -EFAULT; 1405 } 1406 } else if (!(vm_flags & VM_READ)) { 1407 if (!(gup_flags & FOLL_FORCE)) 1408 return -EFAULT; 1409 /* 1410 * Is there actually any vma we can reach here which does not 1411 * have VM_MAYREAD set? 1412 */ 1413 if (!(vm_flags & VM_MAYREAD)) 1414 return -EFAULT; 1415 } 1416 /* 1417 * gups are always data accesses, not instruction 1418 * fetches, so execute=false here 1419 */ 1420 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1421 return -EFAULT; 1422 return 0; 1423 } 1424 1425 /* 1426 * This is "vma_lookup()", but with a warning if we would have 1427 * historically expanded the stack in the GUP code. 1428 */ 1429 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1430 unsigned long addr) 1431 { 1432 #ifdef CONFIG_STACK_GROWSUP 1433 return vma_lookup(mm, addr); 1434 #else 1435 static volatile unsigned long next_warn; 1436 struct vm_area_struct *vma; 1437 unsigned long now, next; 1438 1439 vma = find_vma(mm, addr); 1440 if (!vma || (addr >= vma->vm_start)) 1441 return vma; 1442 1443 /* Only warn for half-way relevant accesses */ 1444 if (!(vma->vm_flags & VM_GROWSDOWN)) 1445 return NULL; 1446 if (vma->vm_start - addr > 65536) 1447 return NULL; 1448 1449 /* Let's not warn more than once an hour.. */ 1450 now = jiffies; next = next_warn; 1451 if (next && time_before(now, next)) 1452 return NULL; 1453 next_warn = now + 60*60*HZ; 1454 1455 /* Let people know things may have changed. */ 1456 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1457 current->comm, task_pid_nr(current), 1458 vma->vm_start, vma->vm_end, addr); 1459 dump_stack(); 1460 return NULL; 1461 #endif 1462 } 1463 1464 /** 1465 * __get_user_pages() - pin user pages in memory 1466 * @mm: mm_struct of target mm 1467 * @start: starting user address 1468 * @nr_pages: number of pages from start to pin 1469 * @gup_flags: flags modifying pin behaviour 1470 * @pages: array that receives pointers to the pages pinned. 1471 * Should be at least nr_pages long. Or NULL, if caller 1472 * only intends to ensure the pages are faulted in. 1473 * @locked: whether we're still with the mmap_lock held 1474 * 1475 * Returns either number of pages pinned (which may be less than the 1476 * number requested), or an error. Details about the return value: 1477 * 1478 * -- If nr_pages is 0, returns 0. 1479 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1480 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1481 * pages pinned. Again, this may be less than nr_pages. 1482 * -- 0 return value is possible when the fault would need to be retried. 1483 * 1484 * The caller is responsible for releasing returned @pages, via put_page(). 1485 * 1486 * Must be called with mmap_lock held. It may be released. See below. 1487 * 1488 * __get_user_pages walks a process's page tables and takes a reference to 1489 * each struct page that each user address corresponds to at a given 1490 * instant. That is, it takes the page that would be accessed if a user 1491 * thread accesses the given user virtual address at that instant. 1492 * 1493 * This does not guarantee that the page exists in the user mappings when 1494 * __get_user_pages returns, and there may even be a completely different 1495 * page there in some cases (eg. if mmapped pagecache has been invalidated 1496 * and subsequently re-faulted). However it does guarantee that the page 1497 * won't be freed completely. And mostly callers simply care that the page 1498 * contains data that was valid *at some point in time*. Typically, an IO 1499 * or similar operation cannot guarantee anything stronger anyway because 1500 * locks can't be held over the syscall boundary. 1501 * 1502 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1503 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1504 * appropriate) must be called after the page is finished with, and 1505 * before put_page is called. 1506 * 1507 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1508 * be released. If this happens *@locked will be set to 0 on return. 1509 * 1510 * A caller using such a combination of @gup_flags must therefore hold the 1511 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1512 * it must be held for either reading or writing and will not be released. 1513 * 1514 * In most cases, get_user_pages or get_user_pages_fast should be used 1515 * instead of __get_user_pages. __get_user_pages should be used only if 1516 * you need some special @gup_flags. 1517 */ 1518 static long __get_user_pages(struct mm_struct *mm, 1519 unsigned long start, unsigned long nr_pages, 1520 unsigned int gup_flags, struct page **pages, 1521 int *locked) 1522 { 1523 long ret = 0, i = 0; 1524 struct vm_area_struct *vma = NULL; 1525 struct follow_page_context ctx = { NULL }; 1526 1527 if (!nr_pages) 1528 return 0; 1529 1530 start = untagged_addr_remote(mm, start); 1531 1532 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1533 1534 do { 1535 struct page *page; 1536 unsigned int foll_flags = gup_flags; 1537 unsigned int page_increm; 1538 1539 /* first iteration or cross vma bound */ 1540 if (!vma || start >= vma->vm_end) { 1541 /* 1542 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1543 * lookups+error reporting differently. 1544 */ 1545 if (gup_flags & FOLL_MADV_POPULATE) { 1546 vma = vma_lookup(mm, start); 1547 if (!vma) { 1548 ret = -ENOMEM; 1549 goto out; 1550 } 1551 if (check_vma_flags(vma, gup_flags)) { 1552 ret = -EINVAL; 1553 goto out; 1554 } 1555 goto retry; 1556 } 1557 vma = gup_vma_lookup(mm, start); 1558 if (!vma && in_gate_area(mm, start)) { 1559 ret = get_gate_page(mm, start & PAGE_MASK, 1560 gup_flags, &vma, 1561 pages ? &page : NULL); 1562 if (ret) 1563 goto out; 1564 ctx.page_mask = 0; 1565 goto next_page; 1566 } 1567 1568 if (!vma) { 1569 ret = -EFAULT; 1570 goto out; 1571 } 1572 ret = check_vma_flags(vma, gup_flags); 1573 if (ret) 1574 goto out; 1575 } 1576 retry: 1577 /* 1578 * If we have a pending SIGKILL, don't keep faulting pages and 1579 * potentially allocating memory. 1580 */ 1581 if (fatal_signal_pending(current)) { 1582 ret = -EINTR; 1583 goto out; 1584 } 1585 cond_resched(); 1586 1587 page = follow_page_mask(vma, start, foll_flags, &ctx); 1588 if (!page || PTR_ERR(page) == -EMLINK) { 1589 ret = faultin_page(vma, start, &foll_flags, 1590 PTR_ERR(page) == -EMLINK, locked); 1591 switch (ret) { 1592 case 0: 1593 goto retry; 1594 case -EBUSY: 1595 case -EAGAIN: 1596 ret = 0; 1597 fallthrough; 1598 case -EFAULT: 1599 case -ENOMEM: 1600 case -EHWPOISON: 1601 goto out; 1602 } 1603 BUG(); 1604 } else if (PTR_ERR(page) == -EEXIST) { 1605 /* 1606 * Proper page table entry exists, but no corresponding 1607 * struct page. If the caller expects **pages to be 1608 * filled in, bail out now, because that can't be done 1609 * for this page. 1610 */ 1611 if (pages) { 1612 ret = PTR_ERR(page); 1613 goto out; 1614 } 1615 } else if (IS_ERR(page)) { 1616 ret = PTR_ERR(page); 1617 goto out; 1618 } 1619 next_page: 1620 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1621 if (page_increm > nr_pages) 1622 page_increm = nr_pages; 1623 1624 if (pages) { 1625 struct page *subpage; 1626 unsigned int j; 1627 1628 /* 1629 * This must be a large folio (and doesn't need to 1630 * be the whole folio; it can be part of it), do 1631 * the refcount work for all the subpages too. 1632 * 1633 * NOTE: here the page may not be the head page 1634 * e.g. when start addr is not thp-size aligned. 1635 * try_grab_folio() should have taken care of tail 1636 * pages. 1637 */ 1638 if (page_increm > 1) { 1639 struct folio *folio; 1640 1641 /* 1642 * Since we already hold refcount on the 1643 * large folio, this should never fail. 1644 */ 1645 folio = try_grab_folio(page, page_increm - 1, 1646 foll_flags); 1647 if (WARN_ON_ONCE(!folio)) { 1648 /* 1649 * Release the 1st page ref if the 1650 * folio is problematic, fail hard. 1651 */ 1652 gup_put_folio(page_folio(page), 1, 1653 foll_flags); 1654 ret = -EFAULT; 1655 goto out; 1656 } 1657 } 1658 1659 for (j = 0; j < page_increm; j++) { 1660 subpage = nth_page(page, j); 1661 pages[i + j] = subpage; 1662 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1663 flush_dcache_page(subpage); 1664 } 1665 } 1666 1667 i += page_increm; 1668 start += page_increm * PAGE_SIZE; 1669 nr_pages -= page_increm; 1670 } while (nr_pages); 1671 out: 1672 if (ctx.pgmap) 1673 put_dev_pagemap(ctx.pgmap); 1674 return i ? i : ret; 1675 } 1676 1677 static bool vma_permits_fault(struct vm_area_struct *vma, 1678 unsigned int fault_flags) 1679 { 1680 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1681 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1682 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1683 1684 if (!(vm_flags & vma->vm_flags)) 1685 return false; 1686 1687 /* 1688 * The architecture might have a hardware protection 1689 * mechanism other than read/write that can deny access. 1690 * 1691 * gup always represents data access, not instruction 1692 * fetches, so execute=false here: 1693 */ 1694 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1695 return false; 1696 1697 return true; 1698 } 1699 1700 /** 1701 * fixup_user_fault() - manually resolve a user page fault 1702 * @mm: mm_struct of target mm 1703 * @address: user address 1704 * @fault_flags:flags to pass down to handle_mm_fault() 1705 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1706 * does not allow retry. If NULL, the caller must guarantee 1707 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1708 * 1709 * This is meant to be called in the specific scenario where for locking reasons 1710 * we try to access user memory in atomic context (within a pagefault_disable() 1711 * section), this returns -EFAULT, and we want to resolve the user fault before 1712 * trying again. 1713 * 1714 * Typically this is meant to be used by the futex code. 1715 * 1716 * The main difference with get_user_pages() is that this function will 1717 * unconditionally call handle_mm_fault() which will in turn perform all the 1718 * necessary SW fixup of the dirty and young bits in the PTE, while 1719 * get_user_pages() only guarantees to update these in the struct page. 1720 * 1721 * This is important for some architectures where those bits also gate the 1722 * access permission to the page because they are maintained in software. On 1723 * such architectures, gup() will not be enough to make a subsequent access 1724 * succeed. 1725 * 1726 * This function will not return with an unlocked mmap_lock. So it has not the 1727 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1728 */ 1729 int fixup_user_fault(struct mm_struct *mm, 1730 unsigned long address, unsigned int fault_flags, 1731 bool *unlocked) 1732 { 1733 struct vm_area_struct *vma; 1734 vm_fault_t ret; 1735 1736 address = untagged_addr_remote(mm, address); 1737 1738 if (unlocked) 1739 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1740 1741 retry: 1742 vma = gup_vma_lookup(mm, address); 1743 if (!vma) 1744 return -EFAULT; 1745 1746 if (!vma_permits_fault(vma, fault_flags)) 1747 return -EFAULT; 1748 1749 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1750 fatal_signal_pending(current)) 1751 return -EINTR; 1752 1753 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1754 1755 if (ret & VM_FAULT_COMPLETED) { 1756 /* 1757 * NOTE: it's a pity that we need to retake the lock here 1758 * to pair with the unlock() in the callers. Ideally we 1759 * could tell the callers so they do not need to unlock. 1760 */ 1761 mmap_read_lock(mm); 1762 *unlocked = true; 1763 return 0; 1764 } 1765 1766 if (ret & VM_FAULT_ERROR) { 1767 int err = vm_fault_to_errno(ret, 0); 1768 1769 if (err) 1770 return err; 1771 BUG(); 1772 } 1773 1774 if (ret & VM_FAULT_RETRY) { 1775 mmap_read_lock(mm); 1776 *unlocked = true; 1777 fault_flags |= FAULT_FLAG_TRIED; 1778 goto retry; 1779 } 1780 1781 return 0; 1782 } 1783 EXPORT_SYMBOL_GPL(fixup_user_fault); 1784 1785 /* 1786 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1787 * specified, it'll also respond to generic signals. The caller of GUP 1788 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1789 */ 1790 static bool gup_signal_pending(unsigned int flags) 1791 { 1792 if (fatal_signal_pending(current)) 1793 return true; 1794 1795 if (!(flags & FOLL_INTERRUPTIBLE)) 1796 return false; 1797 1798 return signal_pending(current); 1799 } 1800 1801 /* 1802 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1803 * the caller. This function may drop the mmap_lock. If it does so, then it will 1804 * set (*locked = 0). 1805 * 1806 * (*locked == 0) means that the caller expects this function to acquire and 1807 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1808 * the function returns, even though it may have changed temporarily during 1809 * function execution. 1810 * 1811 * Please note that this function, unlike __get_user_pages(), will not return 0 1812 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1813 */ 1814 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1815 unsigned long start, 1816 unsigned long nr_pages, 1817 struct page **pages, 1818 int *locked, 1819 unsigned int flags) 1820 { 1821 long ret, pages_done; 1822 bool must_unlock = false; 1823 1824 if (!nr_pages) 1825 return 0; 1826 1827 /* 1828 * The internal caller expects GUP to manage the lock internally and the 1829 * lock must be released when this returns. 1830 */ 1831 if (!*locked) { 1832 if (mmap_read_lock_killable(mm)) 1833 return -EAGAIN; 1834 must_unlock = true; 1835 *locked = 1; 1836 } 1837 else 1838 mmap_assert_locked(mm); 1839 1840 if (flags & FOLL_PIN) 1841 mm_set_has_pinned_flag(&mm->flags); 1842 1843 /* 1844 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1845 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1846 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1847 * for FOLL_GET, not for the newer FOLL_PIN. 1848 * 1849 * FOLL_PIN always expects pages to be non-null, but no need to assert 1850 * that here, as any failures will be obvious enough. 1851 */ 1852 if (pages && !(flags & FOLL_PIN)) 1853 flags |= FOLL_GET; 1854 1855 pages_done = 0; 1856 for (;;) { 1857 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1858 locked); 1859 if (!(flags & FOLL_UNLOCKABLE)) { 1860 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1861 pages_done = ret; 1862 break; 1863 } 1864 1865 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1866 if (!*locked) { 1867 BUG_ON(ret < 0); 1868 BUG_ON(ret >= nr_pages); 1869 } 1870 1871 if (ret > 0) { 1872 nr_pages -= ret; 1873 pages_done += ret; 1874 if (!nr_pages) 1875 break; 1876 } 1877 if (*locked) { 1878 /* 1879 * VM_FAULT_RETRY didn't trigger or it was a 1880 * FOLL_NOWAIT. 1881 */ 1882 if (!pages_done) 1883 pages_done = ret; 1884 break; 1885 } 1886 /* 1887 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1888 * For the prefault case (!pages) we only update counts. 1889 */ 1890 if (likely(pages)) 1891 pages += ret; 1892 start += ret << PAGE_SHIFT; 1893 1894 /* The lock was temporarily dropped, so we must unlock later */ 1895 must_unlock = true; 1896 1897 retry: 1898 /* 1899 * Repeat on the address that fired VM_FAULT_RETRY 1900 * with both FAULT_FLAG_ALLOW_RETRY and 1901 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1902 * by fatal signals of even common signals, depending on 1903 * the caller's request. So we need to check it before we 1904 * start trying again otherwise it can loop forever. 1905 */ 1906 if (gup_signal_pending(flags)) { 1907 if (!pages_done) 1908 pages_done = -EINTR; 1909 break; 1910 } 1911 1912 ret = mmap_read_lock_killable(mm); 1913 if (ret) { 1914 BUG_ON(ret > 0); 1915 if (!pages_done) 1916 pages_done = ret; 1917 break; 1918 } 1919 1920 *locked = 1; 1921 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1922 pages, locked); 1923 if (!*locked) { 1924 /* Continue to retry until we succeeded */ 1925 BUG_ON(ret != 0); 1926 goto retry; 1927 } 1928 if (ret != 1) { 1929 BUG_ON(ret > 1); 1930 if (!pages_done) 1931 pages_done = ret; 1932 break; 1933 } 1934 nr_pages--; 1935 pages_done++; 1936 if (!nr_pages) 1937 break; 1938 if (likely(pages)) 1939 pages++; 1940 start += PAGE_SIZE; 1941 } 1942 if (must_unlock && *locked) { 1943 /* 1944 * We either temporarily dropped the lock, or the caller 1945 * requested that we both acquire and drop the lock. Either way, 1946 * we must now unlock, and notify the caller of that state. 1947 */ 1948 mmap_read_unlock(mm); 1949 *locked = 0; 1950 } 1951 1952 /* 1953 * Failing to pin anything implies something has gone wrong (except when 1954 * FOLL_NOWAIT is specified). 1955 */ 1956 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1957 return -EFAULT; 1958 1959 return pages_done; 1960 } 1961 1962 /** 1963 * populate_vma_page_range() - populate a range of pages in the vma. 1964 * @vma: target vma 1965 * @start: start address 1966 * @end: end address 1967 * @locked: whether the mmap_lock is still held 1968 * 1969 * This takes care of mlocking the pages too if VM_LOCKED is set. 1970 * 1971 * Return either number of pages pinned in the vma, or a negative error 1972 * code on error. 1973 * 1974 * vma->vm_mm->mmap_lock must be held. 1975 * 1976 * If @locked is NULL, it may be held for read or write and will 1977 * be unperturbed. 1978 * 1979 * If @locked is non-NULL, it must held for read only and may be 1980 * released. If it's released, *@locked will be set to 0. 1981 */ 1982 long populate_vma_page_range(struct vm_area_struct *vma, 1983 unsigned long start, unsigned long end, int *locked) 1984 { 1985 struct mm_struct *mm = vma->vm_mm; 1986 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1987 int local_locked = 1; 1988 int gup_flags; 1989 long ret; 1990 1991 VM_BUG_ON(!PAGE_ALIGNED(start)); 1992 VM_BUG_ON(!PAGE_ALIGNED(end)); 1993 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1994 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1995 mmap_assert_locked(mm); 1996 1997 /* 1998 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1999 * faultin_page() to break COW, so it has no work to do here. 2000 */ 2001 if (vma->vm_flags & VM_LOCKONFAULT) 2002 return nr_pages; 2003 2004 /* ... similarly, we've never faulted in PROT_NONE pages */ 2005 if (!vma_is_accessible(vma)) 2006 return -EFAULT; 2007 2008 gup_flags = FOLL_TOUCH; 2009 /* 2010 * We want to touch writable mappings with a write fault in order 2011 * to break COW, except for shared mappings because these don't COW 2012 * and we would not want to dirty them for nothing. 2013 * 2014 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 2015 * readable (ie write-only or executable). 2016 */ 2017 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 2018 gup_flags |= FOLL_WRITE; 2019 else 2020 gup_flags |= FOLL_FORCE; 2021 2022 if (locked) 2023 gup_flags |= FOLL_UNLOCKABLE; 2024 2025 /* 2026 * We made sure addr is within a VMA, so the following will 2027 * not result in a stack expansion that recurses back here. 2028 */ 2029 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 2030 NULL, locked ? locked : &local_locked); 2031 lru_add_drain(); 2032 return ret; 2033 } 2034 2035 /* 2036 * faultin_page_range() - populate (prefault) page tables inside the 2037 * given range readable/writable 2038 * 2039 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 2040 * 2041 * @mm: the mm to populate page tables in 2042 * @start: start address 2043 * @end: end address 2044 * @write: whether to prefault readable or writable 2045 * @locked: whether the mmap_lock is still held 2046 * 2047 * Returns either number of processed pages in the MM, or a negative error 2048 * code on error (see __get_user_pages()). Note that this function reports 2049 * errors related to VMAs, such as incompatible mappings, as expected by 2050 * MADV_POPULATE_(READ|WRITE). 2051 * 2052 * The range must be page-aligned. 2053 * 2054 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 2055 */ 2056 long faultin_page_range(struct mm_struct *mm, unsigned long start, 2057 unsigned long end, bool write, int *locked) 2058 { 2059 unsigned long nr_pages = (end - start) / PAGE_SIZE; 2060 int gup_flags; 2061 long ret; 2062 2063 VM_BUG_ON(!PAGE_ALIGNED(start)); 2064 VM_BUG_ON(!PAGE_ALIGNED(end)); 2065 mmap_assert_locked(mm); 2066 2067 /* 2068 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 2069 * the page dirty with FOLL_WRITE -- which doesn't make a 2070 * difference with !FOLL_FORCE, because the page is writable 2071 * in the page table. 2072 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 2073 * a poisoned page. 2074 * !FOLL_FORCE: Require proper access permissions. 2075 */ 2076 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 2077 FOLL_MADV_POPULATE; 2078 if (write) 2079 gup_flags |= FOLL_WRITE; 2080 2081 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 2082 gup_flags); 2083 lru_add_drain(); 2084 return ret; 2085 } 2086 2087 /* 2088 * __mm_populate - populate and/or mlock pages within a range of address space. 2089 * 2090 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 2091 * flags. VMAs must be already marked with the desired vm_flags, and 2092 * mmap_lock must not be held. 2093 */ 2094 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 2095 { 2096 struct mm_struct *mm = current->mm; 2097 unsigned long end, nstart, nend; 2098 struct vm_area_struct *vma = NULL; 2099 int locked = 0; 2100 long ret = 0; 2101 2102 end = start + len; 2103 2104 for (nstart = start; nstart < end; nstart = nend) { 2105 /* 2106 * We want to fault in pages for [nstart; end) address range. 2107 * Find first corresponding VMA. 2108 */ 2109 if (!locked) { 2110 locked = 1; 2111 mmap_read_lock(mm); 2112 vma = find_vma_intersection(mm, nstart, end); 2113 } else if (nstart >= vma->vm_end) 2114 vma = find_vma_intersection(mm, vma->vm_end, end); 2115 2116 if (!vma) 2117 break; 2118 /* 2119 * Set [nstart; nend) to intersection of desired address 2120 * range with the first VMA. Also, skip undesirable VMA types. 2121 */ 2122 nend = min(end, vma->vm_end); 2123 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2124 continue; 2125 if (nstart < vma->vm_start) 2126 nstart = vma->vm_start; 2127 /* 2128 * Now fault in a range of pages. populate_vma_page_range() 2129 * double checks the vma flags, so that it won't mlock pages 2130 * if the vma was already munlocked. 2131 */ 2132 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2133 if (ret < 0) { 2134 if (ignore_errors) { 2135 ret = 0; 2136 continue; /* continue at next VMA */ 2137 } 2138 break; 2139 } 2140 nend = nstart + ret * PAGE_SIZE; 2141 ret = 0; 2142 } 2143 if (locked) 2144 mmap_read_unlock(mm); 2145 return ret; /* 0 or negative error code */ 2146 } 2147 #else /* CONFIG_MMU */ 2148 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2149 unsigned long nr_pages, struct page **pages, 2150 int *locked, unsigned int foll_flags) 2151 { 2152 struct vm_area_struct *vma; 2153 bool must_unlock = false; 2154 unsigned long vm_flags; 2155 long i; 2156 2157 if (!nr_pages) 2158 return 0; 2159 2160 /* 2161 * The internal caller expects GUP to manage the lock internally and the 2162 * lock must be released when this returns. 2163 */ 2164 if (!*locked) { 2165 if (mmap_read_lock_killable(mm)) 2166 return -EAGAIN; 2167 must_unlock = true; 2168 *locked = 1; 2169 } 2170 2171 /* calculate required read or write permissions. 2172 * If FOLL_FORCE is set, we only require the "MAY" flags. 2173 */ 2174 vm_flags = (foll_flags & FOLL_WRITE) ? 2175 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2176 vm_flags &= (foll_flags & FOLL_FORCE) ? 2177 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2178 2179 for (i = 0; i < nr_pages; i++) { 2180 vma = find_vma(mm, start); 2181 if (!vma) 2182 break; 2183 2184 /* protect what we can, including chardevs */ 2185 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2186 !(vm_flags & vma->vm_flags)) 2187 break; 2188 2189 if (pages) { 2190 pages[i] = virt_to_page((void *)start); 2191 if (pages[i]) 2192 get_page(pages[i]); 2193 } 2194 2195 start = (start + PAGE_SIZE) & PAGE_MASK; 2196 } 2197 2198 if (must_unlock && *locked) { 2199 mmap_read_unlock(mm); 2200 *locked = 0; 2201 } 2202 2203 return i ? : -EFAULT; 2204 } 2205 #endif /* !CONFIG_MMU */ 2206 2207 /** 2208 * fault_in_writeable - fault in userspace address range for writing 2209 * @uaddr: start of address range 2210 * @size: size of address range 2211 * 2212 * Returns the number of bytes not faulted in (like copy_to_user() and 2213 * copy_from_user()). 2214 */ 2215 size_t fault_in_writeable(char __user *uaddr, size_t size) 2216 { 2217 char __user *start = uaddr, *end; 2218 2219 if (unlikely(size == 0)) 2220 return 0; 2221 if (!user_write_access_begin(uaddr, size)) 2222 return size; 2223 if (!PAGE_ALIGNED(uaddr)) { 2224 unsafe_put_user(0, uaddr, out); 2225 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2226 } 2227 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2228 if (unlikely(end < start)) 2229 end = NULL; 2230 while (uaddr != end) { 2231 unsafe_put_user(0, uaddr, out); 2232 uaddr += PAGE_SIZE; 2233 } 2234 2235 out: 2236 user_write_access_end(); 2237 if (size > uaddr - start) 2238 return size - (uaddr - start); 2239 return 0; 2240 } 2241 EXPORT_SYMBOL(fault_in_writeable); 2242 2243 /** 2244 * fault_in_subpage_writeable - fault in an address range for writing 2245 * @uaddr: start of address range 2246 * @size: size of address range 2247 * 2248 * Fault in a user address range for writing while checking for permissions at 2249 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2250 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2251 * 2252 * Returns the number of bytes not faulted in (like copy_to_user() and 2253 * copy_from_user()). 2254 */ 2255 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2256 { 2257 size_t faulted_in; 2258 2259 /* 2260 * Attempt faulting in at page granularity first for page table 2261 * permission checking. The arch-specific probe_subpage_writeable() 2262 * functions may not check for this. 2263 */ 2264 faulted_in = size - fault_in_writeable(uaddr, size); 2265 if (faulted_in) 2266 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2267 2268 return size - faulted_in; 2269 } 2270 EXPORT_SYMBOL(fault_in_subpage_writeable); 2271 2272 /* 2273 * fault_in_safe_writeable - fault in an address range for writing 2274 * @uaddr: start of address range 2275 * @size: length of address range 2276 * 2277 * Faults in an address range for writing. This is primarily useful when we 2278 * already know that some or all of the pages in the address range aren't in 2279 * memory. 2280 * 2281 * Unlike fault_in_writeable(), this function is non-destructive. 2282 * 2283 * Note that we don't pin or otherwise hold the pages referenced that we fault 2284 * in. There's no guarantee that they'll stay in memory for any duration of 2285 * time. 2286 * 2287 * Returns the number of bytes not faulted in, like copy_to_user() and 2288 * copy_from_user(). 2289 */ 2290 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2291 { 2292 unsigned long start = (unsigned long)uaddr, end; 2293 struct mm_struct *mm = current->mm; 2294 bool unlocked = false; 2295 2296 if (unlikely(size == 0)) 2297 return 0; 2298 end = PAGE_ALIGN(start + size); 2299 if (end < start) 2300 end = 0; 2301 2302 mmap_read_lock(mm); 2303 do { 2304 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2305 break; 2306 start = (start + PAGE_SIZE) & PAGE_MASK; 2307 } while (start != end); 2308 mmap_read_unlock(mm); 2309 2310 if (size > (unsigned long)uaddr - start) 2311 return size - ((unsigned long)uaddr - start); 2312 return 0; 2313 } 2314 EXPORT_SYMBOL(fault_in_safe_writeable); 2315 2316 /** 2317 * fault_in_readable - fault in userspace address range for reading 2318 * @uaddr: start of user address range 2319 * @size: size of user address range 2320 * 2321 * Returns the number of bytes not faulted in (like copy_to_user() and 2322 * copy_from_user()). 2323 */ 2324 size_t fault_in_readable(const char __user *uaddr, size_t size) 2325 { 2326 const char __user *start = uaddr, *end; 2327 volatile char c; 2328 2329 if (unlikely(size == 0)) 2330 return 0; 2331 if (!user_read_access_begin(uaddr, size)) 2332 return size; 2333 if (!PAGE_ALIGNED(uaddr)) { 2334 unsafe_get_user(c, uaddr, out); 2335 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2336 } 2337 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2338 if (unlikely(end < start)) 2339 end = NULL; 2340 while (uaddr != end) { 2341 unsafe_get_user(c, uaddr, out); 2342 uaddr += PAGE_SIZE; 2343 } 2344 2345 out: 2346 user_read_access_end(); 2347 (void)c; 2348 if (size > uaddr - start) 2349 return size - (uaddr - start); 2350 return 0; 2351 } 2352 EXPORT_SYMBOL(fault_in_readable); 2353 2354 /** 2355 * get_dump_page() - pin user page in memory while writing it to core dump 2356 * @addr: user address 2357 * 2358 * Returns struct page pointer of user page pinned for dump, 2359 * to be freed afterwards by put_page(). 2360 * 2361 * Returns NULL on any kind of failure - a hole must then be inserted into 2362 * the corefile, to preserve alignment with its headers; and also returns 2363 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2364 * allowing a hole to be left in the corefile to save disk space. 2365 * 2366 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2367 */ 2368 #ifdef CONFIG_ELF_CORE 2369 struct page *get_dump_page(unsigned long addr) 2370 { 2371 struct page *page; 2372 int locked = 0; 2373 int ret; 2374 2375 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2376 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2377 return (ret == 1) ? page : NULL; 2378 } 2379 #endif /* CONFIG_ELF_CORE */ 2380 2381 #ifdef CONFIG_MIGRATION 2382 /* 2383 * Returns the number of collected pages. Return value is always >= 0. 2384 */ 2385 static unsigned long collect_longterm_unpinnable_pages( 2386 struct list_head *movable_page_list, 2387 unsigned long nr_pages, 2388 struct page **pages) 2389 { 2390 unsigned long i, collected = 0; 2391 struct folio *prev_folio = NULL; 2392 bool drain_allow = true; 2393 2394 for (i = 0; i < nr_pages; i++) { 2395 struct folio *folio = page_folio(pages[i]); 2396 2397 if (folio == prev_folio) 2398 continue; 2399 prev_folio = folio; 2400 2401 if (folio_is_longterm_pinnable(folio)) 2402 continue; 2403 2404 collected++; 2405 2406 if (folio_is_device_coherent(folio)) 2407 continue; 2408 2409 if (folio_test_hugetlb(folio)) { 2410 isolate_hugetlb(folio, movable_page_list); 2411 continue; 2412 } 2413 2414 if (!folio_test_lru(folio) && drain_allow) { 2415 lru_add_drain_all(); 2416 drain_allow = false; 2417 } 2418 2419 if (!folio_isolate_lru(folio)) 2420 continue; 2421 2422 list_add_tail(&folio->lru, movable_page_list); 2423 node_stat_mod_folio(folio, 2424 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2425 folio_nr_pages(folio)); 2426 } 2427 2428 return collected; 2429 } 2430 2431 /* 2432 * Unpins all pages and migrates device coherent pages and movable_page_list. 2433 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2434 * (or partial success). 2435 */ 2436 static int migrate_longterm_unpinnable_pages( 2437 struct list_head *movable_page_list, 2438 unsigned long nr_pages, 2439 struct page **pages) 2440 { 2441 int ret; 2442 unsigned long i; 2443 2444 for (i = 0; i < nr_pages; i++) { 2445 struct folio *folio = page_folio(pages[i]); 2446 2447 if (folio_is_device_coherent(folio)) { 2448 /* 2449 * Migration will fail if the page is pinned, so convert 2450 * the pin on the source page to a normal reference. 2451 */ 2452 pages[i] = NULL; 2453 folio_get(folio); 2454 gup_put_folio(folio, 1, FOLL_PIN); 2455 2456 if (migrate_device_coherent_page(&folio->page)) { 2457 ret = -EBUSY; 2458 goto err; 2459 } 2460 2461 continue; 2462 } 2463 2464 /* 2465 * We can't migrate pages with unexpected references, so drop 2466 * the reference obtained by __get_user_pages_locked(). 2467 * Migrating pages have been added to movable_page_list after 2468 * calling folio_isolate_lru() which takes a reference so the 2469 * page won't be freed if it's migrating. 2470 */ 2471 unpin_user_page(pages[i]); 2472 pages[i] = NULL; 2473 } 2474 2475 if (!list_empty(movable_page_list)) { 2476 struct migration_target_control mtc = { 2477 .nid = NUMA_NO_NODE, 2478 .gfp_mask = GFP_USER | __GFP_NOWARN, 2479 .reason = MR_LONGTERM_PIN, 2480 }; 2481 2482 if (migrate_pages(movable_page_list, alloc_migration_target, 2483 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2484 MR_LONGTERM_PIN, NULL)) { 2485 ret = -ENOMEM; 2486 goto err; 2487 } 2488 } 2489 2490 putback_movable_pages(movable_page_list); 2491 2492 return -EAGAIN; 2493 2494 err: 2495 for (i = 0; i < nr_pages; i++) 2496 if (pages[i]) 2497 unpin_user_page(pages[i]); 2498 putback_movable_pages(movable_page_list); 2499 2500 return ret; 2501 } 2502 2503 /* 2504 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2505 * pages in the range are required to be pinned via FOLL_PIN, before calling 2506 * this routine. 2507 * 2508 * If any pages in the range are not allowed to be pinned, then this routine 2509 * will migrate those pages away, unpin all the pages in the range and return 2510 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2511 * call this routine again. 2512 * 2513 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2514 * The caller should give up, and propagate the error back up the call stack. 2515 * 2516 * If everything is OK and all pages in the range are allowed to be pinned, then 2517 * this routine leaves all pages pinned and returns zero for success. 2518 */ 2519 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2520 struct page **pages) 2521 { 2522 unsigned long collected; 2523 LIST_HEAD(movable_page_list); 2524 2525 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2526 nr_pages, pages); 2527 if (!collected) 2528 return 0; 2529 2530 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2531 pages); 2532 } 2533 #else 2534 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2535 struct page **pages) 2536 { 2537 return 0; 2538 } 2539 #endif /* CONFIG_MIGRATION */ 2540 2541 /* 2542 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2543 * allows us to process the FOLL_LONGTERM flag. 2544 */ 2545 static long __gup_longterm_locked(struct mm_struct *mm, 2546 unsigned long start, 2547 unsigned long nr_pages, 2548 struct page **pages, 2549 int *locked, 2550 unsigned int gup_flags) 2551 { 2552 unsigned int flags; 2553 long rc, nr_pinned_pages; 2554 2555 if (!(gup_flags & FOLL_LONGTERM)) 2556 return __get_user_pages_locked(mm, start, nr_pages, pages, 2557 locked, gup_flags); 2558 2559 flags = memalloc_pin_save(); 2560 do { 2561 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2562 pages, locked, 2563 gup_flags); 2564 if (nr_pinned_pages <= 0) { 2565 rc = nr_pinned_pages; 2566 break; 2567 } 2568 2569 /* FOLL_LONGTERM implies FOLL_PIN */ 2570 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2571 } while (rc == -EAGAIN); 2572 memalloc_pin_restore(flags); 2573 return rc ? rc : nr_pinned_pages; 2574 } 2575 2576 /* 2577 * Check that the given flags are valid for the exported gup/pup interface, and 2578 * update them with the required flags that the caller must have set. 2579 */ 2580 static bool is_valid_gup_args(struct page **pages, int *locked, 2581 unsigned int *gup_flags_p, unsigned int to_set) 2582 { 2583 unsigned int gup_flags = *gup_flags_p; 2584 2585 /* 2586 * These flags not allowed to be specified externally to the gup 2587 * interfaces: 2588 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2589 * - FOLL_REMOTE is internal only and used on follow_page() 2590 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2591 */ 2592 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2593 return false; 2594 2595 gup_flags |= to_set; 2596 if (locked) { 2597 /* At the external interface locked must be set */ 2598 if (WARN_ON_ONCE(*locked != 1)) 2599 return false; 2600 2601 gup_flags |= FOLL_UNLOCKABLE; 2602 } 2603 2604 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2605 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2606 (FOLL_PIN | FOLL_GET))) 2607 return false; 2608 2609 /* LONGTERM can only be specified when pinning */ 2610 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2611 return false; 2612 2613 /* Pages input must be given if using GET/PIN */ 2614 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2615 return false; 2616 2617 /* We want to allow the pgmap to be hot-unplugged at all times */ 2618 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2619 (gup_flags & FOLL_PCI_P2PDMA))) 2620 return false; 2621 2622 *gup_flags_p = gup_flags; 2623 return true; 2624 } 2625 2626 #ifdef CONFIG_MMU 2627 /** 2628 * get_user_pages_remote() - pin user pages in memory 2629 * @mm: mm_struct of target mm 2630 * @start: starting user address 2631 * @nr_pages: number of pages from start to pin 2632 * @gup_flags: flags modifying lookup behaviour 2633 * @pages: array that receives pointers to the pages pinned. 2634 * Should be at least nr_pages long. Or NULL, if caller 2635 * only intends to ensure the pages are faulted in. 2636 * @locked: pointer to lock flag indicating whether lock is held and 2637 * subsequently whether VM_FAULT_RETRY functionality can be 2638 * utilised. Lock must initially be held. 2639 * 2640 * Returns either number of pages pinned (which may be less than the 2641 * number requested), or an error. Details about the return value: 2642 * 2643 * -- If nr_pages is 0, returns 0. 2644 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2645 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2646 * pages pinned. Again, this may be less than nr_pages. 2647 * 2648 * The caller is responsible for releasing returned @pages, via put_page(). 2649 * 2650 * Must be called with mmap_lock held for read or write. 2651 * 2652 * get_user_pages_remote walks a process's page tables and takes a reference 2653 * to each struct page that each user address corresponds to at a given 2654 * instant. That is, it takes the page that would be accessed if a user 2655 * thread accesses the given user virtual address at that instant. 2656 * 2657 * This does not guarantee that the page exists in the user mappings when 2658 * get_user_pages_remote returns, and there may even be a completely different 2659 * page there in some cases (eg. if mmapped pagecache has been invalidated 2660 * and subsequently re-faulted). However it does guarantee that the page 2661 * won't be freed completely. And mostly callers simply care that the page 2662 * contains data that was valid *at some point in time*. Typically, an IO 2663 * or similar operation cannot guarantee anything stronger anyway because 2664 * locks can't be held over the syscall boundary. 2665 * 2666 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2667 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2668 * be called after the page is finished with, and before put_page is called. 2669 * 2670 * get_user_pages_remote is typically used for fewer-copy IO operations, 2671 * to get a handle on the memory by some means other than accesses 2672 * via the user virtual addresses. The pages may be submitted for 2673 * DMA to devices or accessed via their kernel linear mapping (via the 2674 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2675 * 2676 * See also get_user_pages_fast, for performance critical applications. 2677 * 2678 * get_user_pages_remote should be phased out in favor of 2679 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2680 * should use get_user_pages_remote because it cannot pass 2681 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2682 */ 2683 long get_user_pages_remote(struct mm_struct *mm, 2684 unsigned long start, unsigned long nr_pages, 2685 unsigned int gup_flags, struct page **pages, 2686 int *locked) 2687 { 2688 int local_locked = 1; 2689 2690 if (!is_valid_gup_args(pages, locked, &gup_flags, 2691 FOLL_TOUCH | FOLL_REMOTE)) 2692 return -EINVAL; 2693 2694 return __get_user_pages_locked(mm, start, nr_pages, pages, 2695 locked ? locked : &local_locked, 2696 gup_flags); 2697 } 2698 EXPORT_SYMBOL(get_user_pages_remote); 2699 2700 #else /* CONFIG_MMU */ 2701 long get_user_pages_remote(struct mm_struct *mm, 2702 unsigned long start, unsigned long nr_pages, 2703 unsigned int gup_flags, struct page **pages, 2704 int *locked) 2705 { 2706 return 0; 2707 } 2708 #endif /* !CONFIG_MMU */ 2709 2710 /** 2711 * get_user_pages() - pin user pages in memory 2712 * @start: starting user address 2713 * @nr_pages: number of pages from start to pin 2714 * @gup_flags: flags modifying lookup behaviour 2715 * @pages: array that receives pointers to the pages pinned. 2716 * Should be at least nr_pages long. Or NULL, if caller 2717 * only intends to ensure the pages are faulted in. 2718 * 2719 * This is the same as get_user_pages_remote(), just with a less-flexible 2720 * calling convention where we assume that the mm being operated on belongs to 2721 * the current task, and doesn't allow passing of a locked parameter. We also 2722 * obviously don't pass FOLL_REMOTE in here. 2723 */ 2724 long get_user_pages(unsigned long start, unsigned long nr_pages, 2725 unsigned int gup_flags, struct page **pages) 2726 { 2727 int locked = 1; 2728 2729 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2730 return -EINVAL; 2731 2732 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2733 &locked, gup_flags); 2734 } 2735 EXPORT_SYMBOL(get_user_pages); 2736 2737 /* 2738 * get_user_pages_unlocked() is suitable to replace the form: 2739 * 2740 * mmap_read_lock(mm); 2741 * get_user_pages(mm, ..., pages, NULL); 2742 * mmap_read_unlock(mm); 2743 * 2744 * with: 2745 * 2746 * get_user_pages_unlocked(mm, ..., pages); 2747 * 2748 * It is functionally equivalent to get_user_pages_fast so 2749 * get_user_pages_fast should be used instead if specific gup_flags 2750 * (e.g. FOLL_FORCE) are not required. 2751 */ 2752 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2753 struct page **pages, unsigned int gup_flags) 2754 { 2755 int locked = 0; 2756 2757 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2758 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2759 return -EINVAL; 2760 2761 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2762 &locked, gup_flags); 2763 } 2764 EXPORT_SYMBOL(get_user_pages_unlocked); 2765 2766 /* 2767 * GUP-fast 2768 * 2769 * get_user_pages_fast attempts to pin user pages by walking the page 2770 * tables directly and avoids taking locks. Thus the walker needs to be 2771 * protected from page table pages being freed from under it, and should 2772 * block any THP splits. 2773 * 2774 * One way to achieve this is to have the walker disable interrupts, and 2775 * rely on IPIs from the TLB flushing code blocking before the page table 2776 * pages are freed. This is unsuitable for architectures that do not need 2777 * to broadcast an IPI when invalidating TLBs. 2778 * 2779 * Another way to achieve this is to batch up page table containing pages 2780 * belonging to more than one mm_user, then rcu_sched a callback to free those 2781 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2782 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2783 * (which is a relatively rare event). The code below adopts this strategy. 2784 * 2785 * Before activating this code, please be aware that the following assumptions 2786 * are currently made: 2787 * 2788 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2789 * free pages containing page tables or TLB flushing requires IPI broadcast. 2790 * 2791 * *) ptes can be read atomically by the architecture. 2792 * 2793 * *) access_ok is sufficient to validate userspace address ranges. 2794 * 2795 * The last two assumptions can be relaxed by the addition of helper functions. 2796 * 2797 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2798 */ 2799 #ifdef CONFIG_HAVE_GUP_FAST 2800 2801 /* 2802 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2803 * a specific folio. 2804 * 2805 * This call assumes the caller has pinned the folio, that the lowest page table 2806 * level still points to this folio, and that interrupts have been disabled. 2807 * 2808 * GUP-fast must reject all secretmem folios. 2809 * 2810 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2811 * (see comment describing the writable_file_mapping_allowed() function). We 2812 * therefore try to avoid the most egregious case of a long-term mapping doing 2813 * so. 2814 * 2815 * This function cannot be as thorough as that one as the VMA is not available 2816 * in the fast path, so instead we whitelist known good cases and if in doubt, 2817 * fall back to the slow path. 2818 */ 2819 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2820 { 2821 bool reject_file_backed = false; 2822 struct address_space *mapping; 2823 bool check_secretmem = false; 2824 unsigned long mapping_flags; 2825 2826 /* 2827 * If we aren't pinning then no problematic write can occur. A long term 2828 * pin is the most egregious case so this is the one we disallow. 2829 */ 2830 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2831 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2832 reject_file_backed = true; 2833 2834 /* We hold a folio reference, so we can safely access folio fields. */ 2835 2836 /* secretmem folios are always order-0 folios. */ 2837 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2838 check_secretmem = true; 2839 2840 if (!reject_file_backed && !check_secretmem) 2841 return true; 2842 2843 if (WARN_ON_ONCE(folio_test_slab(folio))) 2844 return false; 2845 2846 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2847 if (folio_test_hugetlb(folio)) 2848 return true; 2849 2850 /* 2851 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2852 * cannot proceed, which means no actions performed under RCU can 2853 * proceed either. 2854 * 2855 * inodes and thus their mappings are freed under RCU, which means the 2856 * mapping cannot be freed beneath us and thus we can safely dereference 2857 * it. 2858 */ 2859 lockdep_assert_irqs_disabled(); 2860 2861 /* 2862 * However, there may be operations which _alter_ the mapping, so ensure 2863 * we read it once and only once. 2864 */ 2865 mapping = READ_ONCE(folio->mapping); 2866 2867 /* 2868 * The mapping may have been truncated, in any case we cannot determine 2869 * if this mapping is safe - fall back to slow path to determine how to 2870 * proceed. 2871 */ 2872 if (!mapping) 2873 return false; 2874 2875 /* Anonymous folios pose no problem. */ 2876 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2877 if (mapping_flags) 2878 return mapping_flags & PAGE_MAPPING_ANON; 2879 2880 /* 2881 * At this point, we know the mapping is non-null and points to an 2882 * address_space object. 2883 */ 2884 if (check_secretmem && secretmem_mapping(mapping)) 2885 return false; 2886 /* The only remaining allowed file system is shmem. */ 2887 return !reject_file_backed || shmem_mapping(mapping); 2888 } 2889 2890 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2891 unsigned int flags, struct page **pages) 2892 { 2893 while ((*nr) - nr_start) { 2894 struct folio *folio = page_folio(pages[--(*nr)]); 2895 2896 folio_clear_referenced(folio); 2897 gup_put_folio(folio, 1, flags); 2898 } 2899 } 2900 2901 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2902 /* 2903 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2904 * operations. 2905 * 2906 * To pin the page, GUP-fast needs to do below in order: 2907 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2908 * 2909 * For the rest of pgtable operations where pgtable updates can be racy 2910 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2911 * is pinned. 2912 * 2913 * Above will work for all pte-level operations, including THP split. 2914 * 2915 * For THP collapse, it's a bit more complicated because GUP-fast may be 2916 * walking a pgtable page that is being freed (pte is still valid but pmd 2917 * can be cleared already). To avoid race in such condition, we need to 2918 * also check pmd here to make sure pmd doesn't change (corresponds to 2919 * pmdp_collapse_flush() in the THP collapse code path). 2920 */ 2921 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2922 unsigned long end, unsigned int flags, struct page **pages, 2923 int *nr) 2924 { 2925 struct dev_pagemap *pgmap = NULL; 2926 int nr_start = *nr, ret = 0; 2927 pte_t *ptep, *ptem; 2928 2929 ptem = ptep = pte_offset_map(&pmd, addr); 2930 if (!ptep) 2931 return 0; 2932 do { 2933 pte_t pte = ptep_get_lockless(ptep); 2934 struct page *page; 2935 struct folio *folio; 2936 2937 /* 2938 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2939 * pte_access_permitted() better should reject these pages 2940 * either way: otherwise, GUP-fast might succeed in 2941 * cases where ordinary GUP would fail due to VMA access 2942 * permissions. 2943 */ 2944 if (pte_protnone(pte)) 2945 goto pte_unmap; 2946 2947 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2948 goto pte_unmap; 2949 2950 if (pte_devmap(pte)) { 2951 if (unlikely(flags & FOLL_LONGTERM)) 2952 goto pte_unmap; 2953 2954 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2955 if (unlikely(!pgmap)) { 2956 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2957 goto pte_unmap; 2958 } 2959 } else if (pte_special(pte)) 2960 goto pte_unmap; 2961 2962 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2963 page = pte_page(pte); 2964 2965 folio = try_grab_folio(page, 1, flags); 2966 if (!folio) 2967 goto pte_unmap; 2968 2969 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2970 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2971 gup_put_folio(folio, 1, flags); 2972 goto pte_unmap; 2973 } 2974 2975 if (!gup_fast_folio_allowed(folio, flags)) { 2976 gup_put_folio(folio, 1, flags); 2977 goto pte_unmap; 2978 } 2979 2980 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2981 gup_put_folio(folio, 1, flags); 2982 goto pte_unmap; 2983 } 2984 2985 /* 2986 * We need to make the page accessible if and only if we are 2987 * going to access its content (the FOLL_PIN case). Please 2988 * see Documentation/core-api/pin_user_pages.rst for 2989 * details. 2990 */ 2991 if (flags & FOLL_PIN) { 2992 ret = arch_make_page_accessible(page); 2993 if (ret) { 2994 gup_put_folio(folio, 1, flags); 2995 goto pte_unmap; 2996 } 2997 } 2998 folio_set_referenced(folio); 2999 pages[*nr] = page; 3000 (*nr)++; 3001 } while (ptep++, addr += PAGE_SIZE, addr != end); 3002 3003 ret = 1; 3004 3005 pte_unmap: 3006 if (pgmap) 3007 put_dev_pagemap(pgmap); 3008 pte_unmap(ptem); 3009 return ret; 3010 } 3011 #else 3012 3013 /* 3014 * If we can't determine whether or not a pte is special, then fail immediately 3015 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 3016 * to be special. 3017 * 3018 * For a futex to be placed on a THP tail page, get_futex_key requires a 3019 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 3020 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 3021 */ 3022 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 3023 unsigned long end, unsigned int flags, struct page **pages, 3024 int *nr) 3025 { 3026 return 0; 3027 } 3028 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 3029 3030 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 3031 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 3032 unsigned long end, unsigned int flags, struct page **pages, int *nr) 3033 { 3034 int nr_start = *nr; 3035 struct dev_pagemap *pgmap = NULL; 3036 3037 do { 3038 struct folio *folio; 3039 struct page *page = pfn_to_page(pfn); 3040 3041 pgmap = get_dev_pagemap(pfn, pgmap); 3042 if (unlikely(!pgmap)) { 3043 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3044 break; 3045 } 3046 3047 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 3048 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3049 break; 3050 } 3051 3052 folio = try_grab_folio(page, 1, flags); 3053 if (!folio) { 3054 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3055 break; 3056 } 3057 folio_set_referenced(folio); 3058 pages[*nr] = page; 3059 (*nr)++; 3060 pfn++; 3061 } while (addr += PAGE_SIZE, addr != end); 3062 3063 put_dev_pagemap(pgmap); 3064 return addr == end; 3065 } 3066 3067 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3068 unsigned long end, unsigned int flags, struct page **pages, 3069 int *nr) 3070 { 3071 unsigned long fault_pfn; 3072 int nr_start = *nr; 3073 3074 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3075 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3076 return 0; 3077 3078 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3079 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3080 return 0; 3081 } 3082 return 1; 3083 } 3084 3085 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3086 unsigned long end, unsigned int flags, struct page **pages, 3087 int *nr) 3088 { 3089 unsigned long fault_pfn; 3090 int nr_start = *nr; 3091 3092 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3093 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3094 return 0; 3095 3096 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3097 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3098 return 0; 3099 } 3100 return 1; 3101 } 3102 #else 3103 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3104 unsigned long end, unsigned int flags, struct page **pages, 3105 int *nr) 3106 { 3107 BUILD_BUG(); 3108 return 0; 3109 } 3110 3111 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3112 unsigned long end, unsigned int flags, struct page **pages, 3113 int *nr) 3114 { 3115 BUILD_BUG(); 3116 return 0; 3117 } 3118 #endif 3119 3120 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3121 unsigned long end, unsigned int flags, struct page **pages, 3122 int *nr) 3123 { 3124 struct page *page; 3125 struct folio *folio; 3126 int refs; 3127 3128 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3129 return 0; 3130 3131 if (pmd_devmap(orig)) { 3132 if (unlikely(flags & FOLL_LONGTERM)) 3133 return 0; 3134 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3135 pages, nr); 3136 } 3137 3138 page = pmd_page(orig); 3139 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3140 3141 folio = try_grab_folio(page, refs, flags); 3142 if (!folio) 3143 return 0; 3144 3145 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3146 gup_put_folio(folio, refs, flags); 3147 return 0; 3148 } 3149 3150 if (!gup_fast_folio_allowed(folio, flags)) { 3151 gup_put_folio(folio, refs, flags); 3152 return 0; 3153 } 3154 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3155 gup_put_folio(folio, refs, flags); 3156 return 0; 3157 } 3158 3159 *nr += refs; 3160 folio_set_referenced(folio); 3161 return 1; 3162 } 3163 3164 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3165 unsigned long end, unsigned int flags, struct page **pages, 3166 int *nr) 3167 { 3168 struct page *page; 3169 struct folio *folio; 3170 int refs; 3171 3172 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3173 return 0; 3174 3175 if (pud_devmap(orig)) { 3176 if (unlikely(flags & FOLL_LONGTERM)) 3177 return 0; 3178 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3179 pages, nr); 3180 } 3181 3182 page = pud_page(orig); 3183 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3184 3185 folio = try_grab_folio(page, refs, flags); 3186 if (!folio) 3187 return 0; 3188 3189 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3190 gup_put_folio(folio, refs, flags); 3191 return 0; 3192 } 3193 3194 if (!gup_fast_folio_allowed(folio, flags)) { 3195 gup_put_folio(folio, refs, flags); 3196 return 0; 3197 } 3198 3199 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3200 gup_put_folio(folio, refs, flags); 3201 return 0; 3202 } 3203 3204 *nr += refs; 3205 folio_set_referenced(folio); 3206 return 1; 3207 } 3208 3209 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3210 unsigned long end, unsigned int flags, struct page **pages, 3211 int *nr) 3212 { 3213 int refs; 3214 struct page *page; 3215 struct folio *folio; 3216 3217 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3218 return 0; 3219 3220 BUILD_BUG_ON(pgd_devmap(orig)); 3221 3222 page = pgd_page(orig); 3223 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3224 3225 folio = try_grab_folio(page, refs, flags); 3226 if (!folio) 3227 return 0; 3228 3229 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3230 gup_put_folio(folio, refs, flags); 3231 return 0; 3232 } 3233 3234 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3235 gup_put_folio(folio, refs, flags); 3236 return 0; 3237 } 3238 3239 if (!gup_fast_folio_allowed(folio, flags)) { 3240 gup_put_folio(folio, refs, flags); 3241 return 0; 3242 } 3243 3244 *nr += refs; 3245 folio_set_referenced(folio); 3246 return 1; 3247 } 3248 3249 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3250 unsigned long end, unsigned int flags, struct page **pages, 3251 int *nr) 3252 { 3253 unsigned long next; 3254 pmd_t *pmdp; 3255 3256 pmdp = pmd_offset_lockless(pudp, pud, addr); 3257 do { 3258 pmd_t pmd = pmdp_get_lockless(pmdp); 3259 3260 next = pmd_addr_end(addr, end); 3261 if (!pmd_present(pmd)) 3262 return 0; 3263 3264 if (unlikely(pmd_leaf(pmd))) { 3265 /* See gup_fast_pte_range() */ 3266 if (pmd_protnone(pmd)) 3267 return 0; 3268 3269 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3270 pages, nr)) 3271 return 0; 3272 3273 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3274 /* 3275 * architecture have different format for hugetlbfs 3276 * pmd format and THP pmd format 3277 */ 3278 if (gup_hugepd(NULL, __hugepd(pmd_val(pmd)), addr, 3279 PMD_SHIFT, next, flags, pages, nr) != 1) 3280 return 0; 3281 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3282 pages, nr)) 3283 return 0; 3284 } while (pmdp++, addr = next, addr != end); 3285 3286 return 1; 3287 } 3288 3289 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3290 unsigned long end, unsigned int flags, struct page **pages, 3291 int *nr) 3292 { 3293 unsigned long next; 3294 pud_t *pudp; 3295 3296 pudp = pud_offset_lockless(p4dp, p4d, addr); 3297 do { 3298 pud_t pud = READ_ONCE(*pudp); 3299 3300 next = pud_addr_end(addr, end); 3301 if (unlikely(!pud_present(pud))) 3302 return 0; 3303 if (unlikely(pud_leaf(pud))) { 3304 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3305 pages, nr)) 3306 return 0; 3307 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3308 if (gup_hugepd(NULL, __hugepd(pud_val(pud)), addr, 3309 PUD_SHIFT, next, flags, pages, nr) != 1) 3310 return 0; 3311 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3312 pages, nr)) 3313 return 0; 3314 } while (pudp++, addr = next, addr != end); 3315 3316 return 1; 3317 } 3318 3319 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3320 unsigned long end, unsigned int flags, struct page **pages, 3321 int *nr) 3322 { 3323 unsigned long next; 3324 p4d_t *p4dp; 3325 3326 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3327 do { 3328 p4d_t p4d = READ_ONCE(*p4dp); 3329 3330 next = p4d_addr_end(addr, end); 3331 if (!p4d_present(p4d)) 3332 return 0; 3333 BUILD_BUG_ON(p4d_leaf(p4d)); 3334 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3335 if (gup_hugepd(NULL, __hugepd(p4d_val(p4d)), addr, 3336 P4D_SHIFT, next, flags, pages, nr) != 1) 3337 return 0; 3338 } else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3339 pages, nr)) 3340 return 0; 3341 } while (p4dp++, addr = next, addr != end); 3342 3343 return 1; 3344 } 3345 3346 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3347 unsigned int flags, struct page **pages, int *nr) 3348 { 3349 unsigned long next; 3350 pgd_t *pgdp; 3351 3352 pgdp = pgd_offset(current->mm, addr); 3353 do { 3354 pgd_t pgd = READ_ONCE(*pgdp); 3355 3356 next = pgd_addr_end(addr, end); 3357 if (pgd_none(pgd)) 3358 return; 3359 if (unlikely(pgd_leaf(pgd))) { 3360 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3361 pages, nr)) 3362 return; 3363 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3364 if (gup_hugepd(NULL, __hugepd(pgd_val(pgd)), addr, 3365 PGDIR_SHIFT, next, flags, pages, nr) != 1) 3366 return; 3367 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3368 pages, nr)) 3369 return; 3370 } while (pgdp++, addr = next, addr != end); 3371 } 3372 #else 3373 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3374 unsigned int flags, struct page **pages, int *nr) 3375 { 3376 } 3377 #endif /* CONFIG_HAVE_GUP_FAST */ 3378 3379 #ifndef gup_fast_permitted 3380 /* 3381 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3382 * we need to fall back to the slow version: 3383 */ 3384 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3385 { 3386 return true; 3387 } 3388 #endif 3389 3390 static unsigned long gup_fast(unsigned long start, unsigned long end, 3391 unsigned int gup_flags, struct page **pages) 3392 { 3393 unsigned long flags; 3394 int nr_pinned = 0; 3395 unsigned seq; 3396 3397 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3398 !gup_fast_permitted(start, end)) 3399 return 0; 3400 3401 if (gup_flags & FOLL_PIN) { 3402 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3403 if (seq & 1) 3404 return 0; 3405 } 3406 3407 /* 3408 * Disable interrupts. The nested form is used, in order to allow full, 3409 * general purpose use of this routine. 3410 * 3411 * With interrupts disabled, we block page table pages from being freed 3412 * from under us. See struct mmu_table_batch comments in 3413 * include/asm-generic/tlb.h for more details. 3414 * 3415 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3416 * that come from THPs splitting. 3417 */ 3418 local_irq_save(flags); 3419 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3420 local_irq_restore(flags); 3421 3422 /* 3423 * When pinning pages for DMA there could be a concurrent write protect 3424 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3425 */ 3426 if (gup_flags & FOLL_PIN) { 3427 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3428 gup_fast_unpin_user_pages(pages, nr_pinned); 3429 return 0; 3430 } else { 3431 sanity_check_pinned_pages(pages, nr_pinned); 3432 } 3433 } 3434 return nr_pinned; 3435 } 3436 3437 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3438 unsigned int gup_flags, struct page **pages) 3439 { 3440 unsigned long len, end; 3441 unsigned long nr_pinned; 3442 int locked = 0; 3443 int ret; 3444 3445 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3446 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3447 FOLL_FAST_ONLY | FOLL_NOFAULT | 3448 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3449 return -EINVAL; 3450 3451 if (gup_flags & FOLL_PIN) 3452 mm_set_has_pinned_flag(¤t->mm->flags); 3453 3454 if (!(gup_flags & FOLL_FAST_ONLY)) 3455 might_lock_read(¤t->mm->mmap_lock); 3456 3457 start = untagged_addr(start) & PAGE_MASK; 3458 len = nr_pages << PAGE_SHIFT; 3459 if (check_add_overflow(start, len, &end)) 3460 return -EOVERFLOW; 3461 if (end > TASK_SIZE_MAX) 3462 return -EFAULT; 3463 if (unlikely(!access_ok((void __user *)start, len))) 3464 return -EFAULT; 3465 3466 nr_pinned = gup_fast(start, end, gup_flags, pages); 3467 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3468 return nr_pinned; 3469 3470 /* Slow path: try to get the remaining pages with get_user_pages */ 3471 start += nr_pinned << PAGE_SHIFT; 3472 pages += nr_pinned; 3473 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3474 pages, &locked, 3475 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3476 if (ret < 0) { 3477 /* 3478 * The caller has to unpin the pages we already pinned so 3479 * returning -errno is not an option 3480 */ 3481 if (nr_pinned) 3482 return nr_pinned; 3483 return ret; 3484 } 3485 return ret + nr_pinned; 3486 } 3487 3488 /** 3489 * get_user_pages_fast_only() - pin user pages in memory 3490 * @start: starting user address 3491 * @nr_pages: number of pages from start to pin 3492 * @gup_flags: flags modifying pin behaviour 3493 * @pages: array that receives pointers to the pages pinned. 3494 * Should be at least nr_pages long. 3495 * 3496 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3497 * the regular GUP. 3498 * 3499 * If the architecture does not support this function, simply return with no 3500 * pages pinned. 3501 * 3502 * Careful, careful! COW breaking can go either way, so a non-write 3503 * access can get ambiguous page results. If you call this function without 3504 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3505 */ 3506 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3507 unsigned int gup_flags, struct page **pages) 3508 { 3509 /* 3510 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3511 * because gup fast is always a "pin with a +1 page refcount" request. 3512 * 3513 * FOLL_FAST_ONLY is required in order to match the API description of 3514 * this routine: no fall back to regular ("slow") GUP. 3515 */ 3516 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3517 FOLL_GET | FOLL_FAST_ONLY)) 3518 return -EINVAL; 3519 3520 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3521 } 3522 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3523 3524 /** 3525 * get_user_pages_fast() - pin user pages in memory 3526 * @start: starting user address 3527 * @nr_pages: number of pages from start to pin 3528 * @gup_flags: flags modifying pin behaviour 3529 * @pages: array that receives pointers to the pages pinned. 3530 * Should be at least nr_pages long. 3531 * 3532 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3533 * If not successful, it will fall back to taking the lock and 3534 * calling get_user_pages(). 3535 * 3536 * Returns number of pages pinned. This may be fewer than the number requested. 3537 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3538 * -errno. 3539 */ 3540 int get_user_pages_fast(unsigned long start, int nr_pages, 3541 unsigned int gup_flags, struct page **pages) 3542 { 3543 /* 3544 * The caller may or may not have explicitly set FOLL_GET; either way is 3545 * OK. However, internally (within mm/gup.c), gup fast variants must set 3546 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3547 * request. 3548 */ 3549 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3550 return -EINVAL; 3551 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3552 } 3553 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3554 3555 /** 3556 * pin_user_pages_fast() - pin user pages in memory without taking locks 3557 * 3558 * @start: starting user address 3559 * @nr_pages: number of pages from start to pin 3560 * @gup_flags: flags modifying pin behaviour 3561 * @pages: array that receives pointers to the pages pinned. 3562 * Should be at least nr_pages long. 3563 * 3564 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3565 * get_user_pages_fast() for documentation on the function arguments, because 3566 * the arguments here are identical. 3567 * 3568 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3569 * see Documentation/core-api/pin_user_pages.rst for further details. 3570 * 3571 * Note that if a zero_page is amongst the returned pages, it will not have 3572 * pins in it and unpin_user_page() will not remove pins from it. 3573 */ 3574 int pin_user_pages_fast(unsigned long start, int nr_pages, 3575 unsigned int gup_flags, struct page **pages) 3576 { 3577 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3578 return -EINVAL; 3579 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3580 } 3581 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3582 3583 /** 3584 * pin_user_pages_remote() - pin pages of a remote process 3585 * 3586 * @mm: mm_struct of target mm 3587 * @start: starting user address 3588 * @nr_pages: number of pages from start to pin 3589 * @gup_flags: flags modifying lookup behaviour 3590 * @pages: array that receives pointers to the pages pinned. 3591 * Should be at least nr_pages long. 3592 * @locked: pointer to lock flag indicating whether lock is held and 3593 * subsequently whether VM_FAULT_RETRY functionality can be 3594 * utilised. Lock must initially be held. 3595 * 3596 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3597 * get_user_pages_remote() for documentation on the function arguments, because 3598 * the arguments here are identical. 3599 * 3600 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3601 * see Documentation/core-api/pin_user_pages.rst for details. 3602 * 3603 * Note that if a zero_page is amongst the returned pages, it will not have 3604 * pins in it and unpin_user_page*() will not remove pins from it. 3605 */ 3606 long pin_user_pages_remote(struct mm_struct *mm, 3607 unsigned long start, unsigned long nr_pages, 3608 unsigned int gup_flags, struct page **pages, 3609 int *locked) 3610 { 3611 int local_locked = 1; 3612 3613 if (!is_valid_gup_args(pages, locked, &gup_flags, 3614 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3615 return 0; 3616 return __gup_longterm_locked(mm, start, nr_pages, pages, 3617 locked ? locked : &local_locked, 3618 gup_flags); 3619 } 3620 EXPORT_SYMBOL(pin_user_pages_remote); 3621 3622 /** 3623 * pin_user_pages() - pin user pages in memory for use by other devices 3624 * 3625 * @start: starting user address 3626 * @nr_pages: number of pages from start to pin 3627 * @gup_flags: flags modifying lookup behaviour 3628 * @pages: array that receives pointers to the pages pinned. 3629 * Should be at least nr_pages long. 3630 * 3631 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3632 * FOLL_PIN is set. 3633 * 3634 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3635 * see Documentation/core-api/pin_user_pages.rst for details. 3636 * 3637 * Note that if a zero_page is amongst the returned pages, it will not have 3638 * pins in it and unpin_user_page*() will not remove pins from it. 3639 */ 3640 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3641 unsigned int gup_flags, struct page **pages) 3642 { 3643 int locked = 1; 3644 3645 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3646 return 0; 3647 return __gup_longterm_locked(current->mm, start, nr_pages, 3648 pages, &locked, gup_flags); 3649 } 3650 EXPORT_SYMBOL(pin_user_pages); 3651 3652 /* 3653 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3654 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3655 * FOLL_PIN and rejects FOLL_GET. 3656 * 3657 * Note that if a zero_page is amongst the returned pages, it will not have 3658 * pins in it and unpin_user_page*() will not remove pins from it. 3659 */ 3660 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3661 struct page **pages, unsigned int gup_flags) 3662 { 3663 int locked = 0; 3664 3665 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3666 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3667 return 0; 3668 3669 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3670 &locked, gup_flags); 3671 } 3672 EXPORT_SYMBOL(pin_user_pages_unlocked); 3673