1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_folio_refs(folio, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 101 { 102 if (flags & FOLL_PIN) { 103 if (is_zero_folio(folio)) 104 return; 105 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 106 if (folio_test_large(folio)) 107 atomic_sub(refs, &folio->_pincount); 108 else 109 refs *= GUP_PIN_COUNTING_BIAS; 110 } 111 112 if (!put_devmap_managed_folio_refs(folio, refs)) 113 folio_put_refs(folio, refs); 114 } 115 116 /** 117 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 118 * @folio: pointer to folio to be grabbed 119 * @refs: the value to (effectively) add to the folio's refcount 120 * @flags: gup flags: these are the FOLL_* flag values 121 * 122 * This might not do anything at all, depending on the flags argument. 123 * 124 * "grab" names in this file mean, "look at flags to decide whether to use 125 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 126 * 127 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 128 * time. 129 * 130 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 131 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 132 * 133 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 134 * be grabbed. 135 * 136 * It is called when we have a stable reference for the folio, typically in 137 * GUP slow path. 138 */ 139 int __must_check try_grab_folio(struct folio *folio, int refs, 140 unsigned int flags) 141 { 142 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 143 return -ENOMEM; 144 145 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 146 return -EREMOTEIO; 147 148 if (flags & FOLL_GET) 149 folio_ref_add(folio, refs); 150 else if (flags & FOLL_PIN) { 151 /* 152 * Don't take a pin on the zero page - it's not going anywhere 153 * and it is used in a *lot* of places. 154 */ 155 if (is_zero_folio(folio)) 156 return 0; 157 158 /* 159 * Increment the normal page refcount field at least once, 160 * so that the page really is pinned. 161 */ 162 if (folio_test_large(folio)) { 163 folio_ref_add(folio, refs); 164 atomic_add(refs, &folio->_pincount); 165 } else { 166 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 167 } 168 169 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 170 } 171 172 return 0; 173 } 174 175 /** 176 * unpin_user_page() - release a dma-pinned page 177 * @page: pointer to page to be released 178 * 179 * Pages that were pinned via pin_user_pages*() must be released via either 180 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 181 * that such pages can be separately tracked and uniquely handled. In 182 * particular, interactions with RDMA and filesystems need special handling. 183 */ 184 void unpin_user_page(struct page *page) 185 { 186 sanity_check_pinned_pages(&page, 1); 187 gup_put_folio(page_folio(page), 1, FOLL_PIN); 188 } 189 EXPORT_SYMBOL(unpin_user_page); 190 191 /** 192 * folio_add_pin - Try to get an additional pin on a pinned folio 193 * @folio: The folio to be pinned 194 * 195 * Get an additional pin on a folio we already have a pin on. Makes no change 196 * if the folio is a zero_page. 197 */ 198 void folio_add_pin(struct folio *folio) 199 { 200 if (is_zero_folio(folio)) 201 return; 202 203 /* 204 * Similar to try_grab_folio(): be sure to *also* increment the normal 205 * page refcount field at least once, so that the page really is 206 * pinned. 207 */ 208 if (folio_test_large(folio)) { 209 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 210 folio_ref_inc(folio); 211 atomic_inc(&folio->_pincount); 212 } else { 213 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 214 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 215 } 216 } 217 218 static inline struct folio *gup_folio_range_next(struct page *start, 219 unsigned long npages, unsigned long i, unsigned int *ntails) 220 { 221 struct page *next = nth_page(start, i); 222 struct folio *folio = page_folio(next); 223 unsigned int nr = 1; 224 225 if (folio_test_large(folio)) 226 nr = min_t(unsigned int, npages - i, 227 folio_nr_pages(folio) - folio_page_idx(folio, next)); 228 229 *ntails = nr; 230 return folio; 231 } 232 233 static inline struct folio *gup_folio_next(struct page **list, 234 unsigned long npages, unsigned long i, unsigned int *ntails) 235 { 236 struct folio *folio = page_folio(list[i]); 237 unsigned int nr; 238 239 for (nr = i + 1; nr < npages; nr++) { 240 if (page_folio(list[nr]) != folio) 241 break; 242 } 243 244 *ntails = nr - i; 245 return folio; 246 } 247 248 /** 249 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 250 * @pages: array of pages to be maybe marked dirty, and definitely released. 251 * @npages: number of pages in the @pages array. 252 * @make_dirty: whether to mark the pages dirty 253 * 254 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 255 * variants called on that page. 256 * 257 * For each page in the @pages array, make that page (or its head page, if a 258 * compound page) dirty, if @make_dirty is true, and if the page was previously 259 * listed as clean. In any case, releases all pages using unpin_user_page(), 260 * possibly via unpin_user_pages(), for the non-dirty case. 261 * 262 * Please see the unpin_user_page() documentation for details. 263 * 264 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 265 * required, then the caller should a) verify that this is really correct, 266 * because _lock() is usually required, and b) hand code it: 267 * set_page_dirty_lock(), unpin_user_page(). 268 * 269 */ 270 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 271 bool make_dirty) 272 { 273 unsigned long i; 274 struct folio *folio; 275 unsigned int nr; 276 277 if (!make_dirty) { 278 unpin_user_pages(pages, npages); 279 return; 280 } 281 282 sanity_check_pinned_pages(pages, npages); 283 for (i = 0; i < npages; i += nr) { 284 folio = gup_folio_next(pages, npages, i, &nr); 285 /* 286 * Checking PageDirty at this point may race with 287 * clear_page_dirty_for_io(), but that's OK. Two key 288 * cases: 289 * 290 * 1) This code sees the page as already dirty, so it 291 * skips the call to set_page_dirty(). That could happen 292 * because clear_page_dirty_for_io() called 293 * page_mkclean(), followed by set_page_dirty(). 294 * However, now the page is going to get written back, 295 * which meets the original intention of setting it 296 * dirty, so all is well: clear_page_dirty_for_io() goes 297 * on to call TestClearPageDirty(), and write the page 298 * back. 299 * 300 * 2) This code sees the page as clean, so it calls 301 * set_page_dirty(). The page stays dirty, despite being 302 * written back, so it gets written back again in the 303 * next writeback cycle. This is harmless. 304 */ 305 if (!folio_test_dirty(folio)) { 306 folio_lock(folio); 307 folio_mark_dirty(folio); 308 folio_unlock(folio); 309 } 310 gup_put_folio(folio, nr, FOLL_PIN); 311 } 312 } 313 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 314 315 /** 316 * unpin_user_page_range_dirty_lock() - release and optionally dirty 317 * gup-pinned page range 318 * 319 * @page: the starting page of a range maybe marked dirty, and definitely released. 320 * @npages: number of consecutive pages to release. 321 * @make_dirty: whether to mark the pages dirty 322 * 323 * "gup-pinned page range" refers to a range of pages that has had one of the 324 * pin_user_pages() variants called on that page. 325 * 326 * For the page ranges defined by [page .. page+npages], make that range (or 327 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 328 * page range was previously listed as clean. 329 * 330 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 331 * required, then the caller should a) verify that this is really correct, 332 * because _lock() is usually required, and b) hand code it: 333 * set_page_dirty_lock(), unpin_user_page(). 334 * 335 */ 336 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 337 bool make_dirty) 338 { 339 unsigned long i; 340 struct folio *folio; 341 unsigned int nr; 342 343 for (i = 0; i < npages; i += nr) { 344 folio = gup_folio_range_next(page, npages, i, &nr); 345 if (make_dirty && !folio_test_dirty(folio)) { 346 folio_lock(folio); 347 folio_mark_dirty(folio); 348 folio_unlock(folio); 349 } 350 gup_put_folio(folio, nr, FOLL_PIN); 351 } 352 } 353 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 354 355 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 356 { 357 unsigned long i; 358 struct folio *folio; 359 unsigned int nr; 360 361 /* 362 * Don't perform any sanity checks because we might have raced with 363 * fork() and some anonymous pages might now actually be shared -- 364 * which is why we're unpinning after all. 365 */ 366 for (i = 0; i < npages; i += nr) { 367 folio = gup_folio_next(pages, npages, i, &nr); 368 gup_put_folio(folio, nr, FOLL_PIN); 369 } 370 } 371 372 /** 373 * unpin_user_pages() - release an array of gup-pinned pages. 374 * @pages: array of pages to be marked dirty and released. 375 * @npages: number of pages in the @pages array. 376 * 377 * For each page in the @pages array, release the page using unpin_user_page(). 378 * 379 * Please see the unpin_user_page() documentation for details. 380 */ 381 void unpin_user_pages(struct page **pages, unsigned long npages) 382 { 383 unsigned long i; 384 struct folio *folio; 385 unsigned int nr; 386 387 /* 388 * If this WARN_ON() fires, then the system *might* be leaking pages (by 389 * leaving them pinned), but probably not. More likely, gup/pup returned 390 * a hard -ERRNO error to the caller, who erroneously passed it here. 391 */ 392 if (WARN_ON(IS_ERR_VALUE(npages))) 393 return; 394 395 sanity_check_pinned_pages(pages, npages); 396 for (i = 0; i < npages; i += nr) { 397 folio = gup_folio_next(pages, npages, i, &nr); 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages); 402 403 /* 404 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 405 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 406 * cache bouncing on large SMP machines for concurrent pinned gups. 407 */ 408 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 409 { 410 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 411 set_bit(MMF_HAS_PINNED, mm_flags); 412 } 413 414 #ifdef CONFIG_MMU 415 416 #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST) 417 static int record_subpages(struct page *page, unsigned long sz, 418 unsigned long addr, unsigned long end, 419 struct page **pages) 420 { 421 struct page *start_page; 422 int nr; 423 424 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 425 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 426 pages[nr] = nth_page(start_page, nr); 427 428 return nr; 429 } 430 431 /** 432 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 433 * @page: pointer to page to be grabbed 434 * @refs: the value to (effectively) add to the folio's refcount 435 * @flags: gup flags: these are the FOLL_* flag values. 436 * 437 * "grab" names in this file mean, "look at flags to decide whether to use 438 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 439 * 440 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 441 * same time. (That's true throughout the get_user_pages*() and 442 * pin_user_pages*() APIs.) Cases: 443 * 444 * FOLL_GET: folio's refcount will be incremented by @refs. 445 * 446 * FOLL_PIN on large folios: folio's refcount will be incremented by 447 * @refs, and its pincount will be incremented by @refs. 448 * 449 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 450 * @refs * GUP_PIN_COUNTING_BIAS. 451 * 452 * Return: The folio containing @page (with refcount appropriately 453 * incremented) for success, or NULL upon failure. If neither FOLL_GET 454 * nor FOLL_PIN was set, that's considered failure, and furthermore, 455 * a likely bug in the caller, so a warning is also emitted. 456 * 457 * It uses add ref unless zero to elevate the folio refcount and must be called 458 * in fast path only. 459 */ 460 static struct folio *try_grab_folio_fast(struct page *page, int refs, 461 unsigned int flags) 462 { 463 struct folio *folio; 464 465 /* Raise warn if it is not called in fast GUP */ 466 VM_WARN_ON_ONCE(!irqs_disabled()); 467 468 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 469 return NULL; 470 471 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 472 return NULL; 473 474 if (flags & FOLL_GET) 475 return try_get_folio(page, refs); 476 477 /* FOLL_PIN is set */ 478 479 /* 480 * Don't take a pin on the zero page - it's not going anywhere 481 * and it is used in a *lot* of places. 482 */ 483 if (is_zero_page(page)) 484 return page_folio(page); 485 486 folio = try_get_folio(page, refs); 487 if (!folio) 488 return NULL; 489 490 /* 491 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 492 * right zone, so fail and let the caller fall back to the slow 493 * path. 494 */ 495 if (unlikely((flags & FOLL_LONGTERM) && 496 !folio_is_longterm_pinnable(folio))) { 497 if (!put_devmap_managed_folio_refs(folio, refs)) 498 folio_put_refs(folio, refs); 499 return NULL; 500 } 501 502 /* 503 * When pinning a large folio, use an exact count to track it. 504 * 505 * However, be sure to *also* increment the normal folio 506 * refcount field at least once, so that the folio really 507 * is pinned. That's why the refcount from the earlier 508 * try_get_folio() is left intact. 509 */ 510 if (folio_test_large(folio)) 511 atomic_add(refs, &folio->_pincount); 512 else 513 folio_ref_add(folio, 514 refs * (GUP_PIN_COUNTING_BIAS - 1)); 515 /* 516 * Adjust the pincount before re-checking the PTE for changes. 517 * This is essentially a smp_mb() and is paired with a memory 518 * barrier in folio_try_share_anon_rmap_*(). 519 */ 520 smp_mb__after_atomic(); 521 522 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 523 524 return folio; 525 } 526 #endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */ 527 528 #ifdef CONFIG_ARCH_HAS_HUGEPD 529 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 530 unsigned long sz) 531 { 532 unsigned long __boundary = (addr + sz) & ~(sz-1); 533 return (__boundary - 1 < end - 1) ? __boundary : end; 534 } 535 536 /* 537 * Returns 1 if succeeded, 0 if failed, -EMLINK if unshare needed. 538 * 539 * NOTE: for the same entry, gup-fast and gup-slow can return different 540 * results (0 v.s. -EMLINK) depending on whether vma is available. This is 541 * the expected behavior, where we simply want gup-fast to fallback to 542 * gup-slow to take the vma reference first. 543 */ 544 static int gup_hugepte(struct vm_area_struct *vma, pte_t *ptep, unsigned long sz, 545 unsigned long addr, unsigned long end, unsigned int flags, 546 struct page **pages, int *nr, bool fast) 547 { 548 unsigned long pte_end; 549 struct page *page; 550 struct folio *folio; 551 pte_t pte; 552 int refs; 553 554 pte_end = (addr + sz) & ~(sz-1); 555 if (pte_end < end) 556 end = pte_end; 557 558 pte = huge_ptep_get(ptep); 559 560 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 561 return 0; 562 563 /* hugepages are never "special" */ 564 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 565 566 page = pte_page(pte); 567 refs = record_subpages(page, sz, addr, end, pages + *nr); 568 569 if (fast) { 570 folio = try_grab_folio_fast(page, refs, flags); 571 if (!folio) 572 return 0; 573 } else { 574 folio = page_folio(page); 575 if (try_grab_folio(folio, refs, flags)) 576 return 0; 577 } 578 579 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 580 gup_put_folio(folio, refs, flags); 581 return 0; 582 } 583 584 if (!pte_write(pte) && gup_must_unshare(vma, flags, &folio->page)) { 585 gup_put_folio(folio, refs, flags); 586 return -EMLINK; 587 } 588 589 *nr += refs; 590 folio_set_referenced(folio); 591 return 1; 592 } 593 594 /* 595 * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file 596 * systems on Power, which does not have issue with folio writeback against 597 * GUP updates. When hugepd will be extended to support non-hugetlbfs or 598 * even anonymous memory, we need to do extra check as what we do with most 599 * of the other folios. See writable_file_mapping_allowed() and 600 * gup_fast_folio_allowed() for more information. 601 */ 602 static int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 603 unsigned long addr, unsigned int pdshift, 604 unsigned long end, unsigned int flags, 605 struct page **pages, int *nr, bool fast) 606 { 607 pte_t *ptep; 608 unsigned long sz = 1UL << hugepd_shift(hugepd); 609 unsigned long next; 610 int ret; 611 612 ptep = hugepte_offset(hugepd, addr, pdshift); 613 do { 614 next = hugepte_addr_end(addr, end, sz); 615 ret = gup_hugepte(vma, ptep, sz, addr, end, flags, pages, nr, 616 fast); 617 if (ret != 1) 618 return ret; 619 } while (ptep++, addr = next, addr != end); 620 621 return 1; 622 } 623 624 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 625 unsigned long addr, unsigned int pdshift, 626 unsigned int flags, 627 struct follow_page_context *ctx) 628 { 629 struct page *page; 630 struct hstate *h; 631 spinlock_t *ptl; 632 int nr = 0, ret; 633 pte_t *ptep; 634 635 /* Only hugetlb supports hugepd */ 636 if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma))) 637 return ERR_PTR(-EFAULT); 638 639 h = hstate_vma(vma); 640 ptep = hugepte_offset(hugepd, addr, pdshift); 641 ptl = huge_pte_lock(h, vma->vm_mm, ptep); 642 ret = gup_hugepd(vma, hugepd, addr, pdshift, addr + PAGE_SIZE, 643 flags, &page, &nr, false); 644 spin_unlock(ptl); 645 646 if (ret == 1) { 647 /* GUP succeeded */ 648 WARN_ON_ONCE(nr != 1); 649 ctx->page_mask = (1U << huge_page_order(h)) - 1; 650 return page; 651 } 652 653 /* ret can be either 0 (translates to NULL) or negative */ 654 return ERR_PTR(ret); 655 } 656 #else /* CONFIG_ARCH_HAS_HUGEPD */ 657 static inline int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 658 unsigned long addr, unsigned int pdshift, 659 unsigned long end, unsigned int flags, 660 struct page **pages, int *nr, bool fast) 661 { 662 return 0; 663 } 664 665 static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, 666 unsigned long addr, unsigned int pdshift, 667 unsigned int flags, 668 struct follow_page_context *ctx) 669 { 670 return NULL; 671 } 672 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 673 674 675 static struct page *no_page_table(struct vm_area_struct *vma, 676 unsigned int flags, unsigned long address) 677 { 678 if (!(flags & FOLL_DUMP)) 679 return NULL; 680 681 /* 682 * When core dumping, we don't want to allocate unnecessary pages or 683 * page tables. Return error instead of NULL to skip handle_mm_fault, 684 * then get_dump_page() will return NULL to leave a hole in the dump. 685 * But we can only make this optimization where a hole would surely 686 * be zero-filled if handle_mm_fault() actually did handle it. 687 */ 688 if (is_vm_hugetlb_page(vma)) { 689 struct hstate *h = hstate_vma(vma); 690 691 if (!hugetlbfs_pagecache_present(h, vma, address)) 692 return ERR_PTR(-EFAULT); 693 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 694 return ERR_PTR(-EFAULT); 695 } 696 697 return NULL; 698 } 699 700 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 701 static struct page *follow_huge_pud(struct vm_area_struct *vma, 702 unsigned long addr, pud_t *pudp, 703 int flags, struct follow_page_context *ctx) 704 { 705 struct mm_struct *mm = vma->vm_mm; 706 struct page *page; 707 pud_t pud = *pudp; 708 unsigned long pfn = pud_pfn(pud); 709 int ret; 710 711 assert_spin_locked(pud_lockptr(mm, pudp)); 712 713 if ((flags & FOLL_WRITE) && !pud_write(pud)) 714 return NULL; 715 716 if (!pud_present(pud)) 717 return NULL; 718 719 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 720 721 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 722 pud_devmap(pud)) { 723 /* 724 * device mapped pages can only be returned if the caller 725 * will manage the page reference count. 726 * 727 * At least one of FOLL_GET | FOLL_PIN must be set, so 728 * assert that here: 729 */ 730 if (!(flags & (FOLL_GET | FOLL_PIN))) 731 return ERR_PTR(-EEXIST); 732 733 if (flags & FOLL_TOUCH) 734 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 735 736 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 737 if (!ctx->pgmap) 738 return ERR_PTR(-EFAULT); 739 } 740 741 page = pfn_to_page(pfn); 742 743 if (!pud_devmap(pud) && !pud_write(pud) && 744 gup_must_unshare(vma, flags, page)) 745 return ERR_PTR(-EMLINK); 746 747 ret = try_grab_folio(page_folio(page), 1, flags); 748 if (ret) 749 page = ERR_PTR(ret); 750 else 751 ctx->page_mask = HPAGE_PUD_NR - 1; 752 753 return page; 754 } 755 756 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 757 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 758 struct vm_area_struct *vma, 759 unsigned int flags) 760 { 761 /* If the pmd is writable, we can write to the page. */ 762 if (pmd_write(pmd)) 763 return true; 764 765 /* Maybe FOLL_FORCE is set to override it? */ 766 if (!(flags & FOLL_FORCE)) 767 return false; 768 769 /* But FOLL_FORCE has no effect on shared mappings */ 770 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 771 return false; 772 773 /* ... or read-only private ones */ 774 if (!(vma->vm_flags & VM_MAYWRITE)) 775 return false; 776 777 /* ... or already writable ones that just need to take a write fault */ 778 if (vma->vm_flags & VM_WRITE) 779 return false; 780 781 /* 782 * See can_change_pte_writable(): we broke COW and could map the page 783 * writable if we have an exclusive anonymous page ... 784 */ 785 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 786 return false; 787 788 /* ... and a write-fault isn't required for other reasons. */ 789 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 790 return false; 791 return !userfaultfd_huge_pmd_wp(vma, pmd); 792 } 793 794 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 795 unsigned long addr, pmd_t *pmd, 796 unsigned int flags, 797 struct follow_page_context *ctx) 798 { 799 struct mm_struct *mm = vma->vm_mm; 800 pmd_t pmdval = *pmd; 801 struct page *page; 802 int ret; 803 804 assert_spin_locked(pmd_lockptr(mm, pmd)); 805 806 page = pmd_page(pmdval); 807 if ((flags & FOLL_WRITE) && 808 !can_follow_write_pmd(pmdval, page, vma, flags)) 809 return NULL; 810 811 /* Avoid dumping huge zero page */ 812 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 813 return ERR_PTR(-EFAULT); 814 815 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 816 return NULL; 817 818 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 819 return ERR_PTR(-EMLINK); 820 821 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 822 !PageAnonExclusive(page), page); 823 824 ret = try_grab_folio(page_folio(page), 1, flags); 825 if (ret) 826 return ERR_PTR(ret); 827 828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 829 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 830 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 831 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 832 833 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 834 ctx->page_mask = HPAGE_PMD_NR - 1; 835 836 return page; 837 } 838 839 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 840 static struct page *follow_huge_pud(struct vm_area_struct *vma, 841 unsigned long addr, pud_t *pudp, 842 int flags, struct follow_page_context *ctx) 843 { 844 return NULL; 845 } 846 847 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 848 unsigned long addr, pmd_t *pmd, 849 unsigned int flags, 850 struct follow_page_context *ctx) 851 { 852 return NULL; 853 } 854 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 855 856 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 857 pte_t *pte, unsigned int flags) 858 { 859 if (flags & FOLL_TOUCH) { 860 pte_t orig_entry = ptep_get(pte); 861 pte_t entry = orig_entry; 862 863 if (flags & FOLL_WRITE) 864 entry = pte_mkdirty(entry); 865 entry = pte_mkyoung(entry); 866 867 if (!pte_same(orig_entry, entry)) { 868 set_pte_at(vma->vm_mm, address, pte, entry); 869 update_mmu_cache(vma, address, pte); 870 } 871 } 872 873 /* Proper page table entry exists, but no corresponding struct page */ 874 return -EEXIST; 875 } 876 877 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 878 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 879 struct vm_area_struct *vma, 880 unsigned int flags) 881 { 882 /* If the pte is writable, we can write to the page. */ 883 if (pte_write(pte)) 884 return true; 885 886 /* Maybe FOLL_FORCE is set to override it? */ 887 if (!(flags & FOLL_FORCE)) 888 return false; 889 890 /* But FOLL_FORCE has no effect on shared mappings */ 891 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 892 return false; 893 894 /* ... or read-only private ones */ 895 if (!(vma->vm_flags & VM_MAYWRITE)) 896 return false; 897 898 /* ... or already writable ones that just need to take a write fault */ 899 if (vma->vm_flags & VM_WRITE) 900 return false; 901 902 /* 903 * See can_change_pte_writable(): we broke COW and could map the page 904 * writable if we have an exclusive anonymous page ... 905 */ 906 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 907 return false; 908 909 /* ... and a write-fault isn't required for other reasons. */ 910 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 911 return false; 912 return !userfaultfd_pte_wp(vma, pte); 913 } 914 915 static struct page *follow_page_pte(struct vm_area_struct *vma, 916 unsigned long address, pmd_t *pmd, unsigned int flags, 917 struct dev_pagemap **pgmap) 918 { 919 struct mm_struct *mm = vma->vm_mm; 920 struct page *page; 921 spinlock_t *ptl; 922 pte_t *ptep, pte; 923 int ret; 924 925 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 926 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 927 (FOLL_PIN | FOLL_GET))) 928 return ERR_PTR(-EINVAL); 929 930 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 931 if (!ptep) 932 return no_page_table(vma, flags, address); 933 pte = ptep_get(ptep); 934 if (!pte_present(pte)) 935 goto no_page; 936 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 937 goto no_page; 938 939 page = vm_normal_page(vma, address, pte); 940 941 /* 942 * We only care about anon pages in can_follow_write_pte() and don't 943 * have to worry about pte_devmap() because they are never anon. 944 */ 945 if ((flags & FOLL_WRITE) && 946 !can_follow_write_pte(pte, page, vma, flags)) { 947 page = NULL; 948 goto out; 949 } 950 951 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 952 /* 953 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 954 * case since they are only valid while holding the pgmap 955 * reference. 956 */ 957 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 958 if (*pgmap) 959 page = pte_page(pte); 960 else 961 goto no_page; 962 } else if (unlikely(!page)) { 963 if (flags & FOLL_DUMP) { 964 /* Avoid special (like zero) pages in core dumps */ 965 page = ERR_PTR(-EFAULT); 966 goto out; 967 } 968 969 if (is_zero_pfn(pte_pfn(pte))) { 970 page = pte_page(pte); 971 } else { 972 ret = follow_pfn_pte(vma, address, ptep, flags); 973 page = ERR_PTR(ret); 974 goto out; 975 } 976 } 977 978 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 979 page = ERR_PTR(-EMLINK); 980 goto out; 981 } 982 983 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 984 !PageAnonExclusive(page), page); 985 986 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 987 ret = try_grab_folio(page_folio(page), 1, flags); 988 if (unlikely(ret)) { 989 page = ERR_PTR(ret); 990 goto out; 991 } 992 993 /* 994 * We need to make the page accessible if and only if we are going 995 * to access its content (the FOLL_PIN case). Please see 996 * Documentation/core-api/pin_user_pages.rst for details. 997 */ 998 if (flags & FOLL_PIN) { 999 ret = arch_make_page_accessible(page); 1000 if (ret) { 1001 unpin_user_page(page); 1002 page = ERR_PTR(ret); 1003 goto out; 1004 } 1005 } 1006 if (flags & FOLL_TOUCH) { 1007 if ((flags & FOLL_WRITE) && 1008 !pte_dirty(pte) && !PageDirty(page)) 1009 set_page_dirty(page); 1010 /* 1011 * pte_mkyoung() would be more correct here, but atomic care 1012 * is needed to avoid losing the dirty bit: it is easier to use 1013 * mark_page_accessed(). 1014 */ 1015 mark_page_accessed(page); 1016 } 1017 out: 1018 pte_unmap_unlock(ptep, ptl); 1019 return page; 1020 no_page: 1021 pte_unmap_unlock(ptep, ptl); 1022 if (!pte_none(pte)) 1023 return NULL; 1024 return no_page_table(vma, flags, address); 1025 } 1026 1027 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 1028 unsigned long address, pud_t *pudp, 1029 unsigned int flags, 1030 struct follow_page_context *ctx) 1031 { 1032 pmd_t *pmd, pmdval; 1033 spinlock_t *ptl; 1034 struct page *page; 1035 struct mm_struct *mm = vma->vm_mm; 1036 1037 pmd = pmd_offset(pudp, address); 1038 pmdval = pmdp_get_lockless(pmd); 1039 if (pmd_none(pmdval)) 1040 return no_page_table(vma, flags, address); 1041 if (!pmd_present(pmdval)) 1042 return no_page_table(vma, flags, address); 1043 if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval))))) 1044 return follow_hugepd(vma, __hugepd(pmd_val(pmdval)), 1045 address, PMD_SHIFT, flags, ctx); 1046 if (pmd_devmap(pmdval)) { 1047 ptl = pmd_lock(mm, pmd); 1048 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 1049 spin_unlock(ptl); 1050 if (page) 1051 return page; 1052 return no_page_table(vma, flags, address); 1053 } 1054 if (likely(!pmd_leaf(pmdval))) 1055 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1056 1057 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 1058 return no_page_table(vma, flags, address); 1059 1060 ptl = pmd_lock(mm, pmd); 1061 pmdval = *pmd; 1062 if (unlikely(!pmd_present(pmdval))) { 1063 spin_unlock(ptl); 1064 return no_page_table(vma, flags, address); 1065 } 1066 if (unlikely(!pmd_leaf(pmdval))) { 1067 spin_unlock(ptl); 1068 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1069 } 1070 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 1071 spin_unlock(ptl); 1072 split_huge_pmd(vma, pmd, address); 1073 /* If pmd was left empty, stuff a page table in there quickly */ 1074 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 1075 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 1076 } 1077 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 1078 spin_unlock(ptl); 1079 return page; 1080 } 1081 1082 static struct page *follow_pud_mask(struct vm_area_struct *vma, 1083 unsigned long address, p4d_t *p4dp, 1084 unsigned int flags, 1085 struct follow_page_context *ctx) 1086 { 1087 pud_t *pudp, pud; 1088 spinlock_t *ptl; 1089 struct page *page; 1090 struct mm_struct *mm = vma->vm_mm; 1091 1092 pudp = pud_offset(p4dp, address); 1093 pud = READ_ONCE(*pudp); 1094 if (!pud_present(pud)) 1095 return no_page_table(vma, flags, address); 1096 if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) 1097 return follow_hugepd(vma, __hugepd(pud_val(pud)), 1098 address, PUD_SHIFT, flags, ctx); 1099 if (pud_leaf(pud)) { 1100 ptl = pud_lock(mm, pudp); 1101 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1102 spin_unlock(ptl); 1103 if (page) 1104 return page; 1105 return no_page_table(vma, flags, address); 1106 } 1107 if (unlikely(pud_bad(pud))) 1108 return no_page_table(vma, flags, address); 1109 1110 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1111 } 1112 1113 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1114 unsigned long address, pgd_t *pgdp, 1115 unsigned int flags, 1116 struct follow_page_context *ctx) 1117 { 1118 p4d_t *p4dp, p4d; 1119 1120 p4dp = p4d_offset(pgdp, address); 1121 p4d = READ_ONCE(*p4dp); 1122 BUILD_BUG_ON(p4d_leaf(p4d)); 1123 1124 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) 1125 return follow_hugepd(vma, __hugepd(p4d_val(p4d)), 1126 address, P4D_SHIFT, flags, ctx); 1127 1128 if (!p4d_present(p4d) || p4d_bad(p4d)) 1129 return no_page_table(vma, flags, address); 1130 1131 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1132 } 1133 1134 /** 1135 * follow_page_mask - look up a page descriptor from a user-virtual address 1136 * @vma: vm_area_struct mapping @address 1137 * @address: virtual address to look up 1138 * @flags: flags modifying lookup behaviour 1139 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1140 * pointer to output page_mask 1141 * 1142 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1143 * 1144 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1145 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1146 * 1147 * When getting an anonymous page and the caller has to trigger unsharing 1148 * of a shared anonymous page first, -EMLINK is returned. The caller should 1149 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1150 * relevant with FOLL_PIN and !FOLL_WRITE. 1151 * 1152 * On output, the @ctx->page_mask is set according to the size of the page. 1153 * 1154 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1155 * an error pointer if there is a mapping to something not represented 1156 * by a page descriptor (see also vm_normal_page()). 1157 */ 1158 static struct page *follow_page_mask(struct vm_area_struct *vma, 1159 unsigned long address, unsigned int flags, 1160 struct follow_page_context *ctx) 1161 { 1162 pgd_t *pgd; 1163 struct mm_struct *mm = vma->vm_mm; 1164 struct page *page; 1165 1166 vma_pgtable_walk_begin(vma); 1167 1168 ctx->page_mask = 0; 1169 pgd = pgd_offset(mm, address); 1170 1171 if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd))))) 1172 page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)), 1173 address, PGDIR_SHIFT, flags, ctx); 1174 else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1175 page = no_page_table(vma, flags, address); 1176 else 1177 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1178 1179 vma_pgtable_walk_end(vma); 1180 1181 return page; 1182 } 1183 1184 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1185 unsigned int foll_flags) 1186 { 1187 struct follow_page_context ctx = { NULL }; 1188 struct page *page; 1189 1190 if (vma_is_secretmem(vma)) 1191 return NULL; 1192 1193 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 1194 return NULL; 1195 1196 /* 1197 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 1198 * to fail on PROT_NONE-mapped pages. 1199 */ 1200 page = follow_page_mask(vma, address, foll_flags, &ctx); 1201 if (ctx.pgmap) 1202 put_dev_pagemap(ctx.pgmap); 1203 return page; 1204 } 1205 1206 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1207 unsigned int gup_flags, struct vm_area_struct **vma, 1208 struct page **page) 1209 { 1210 pgd_t *pgd; 1211 p4d_t *p4d; 1212 pud_t *pud; 1213 pmd_t *pmd; 1214 pte_t *pte; 1215 pte_t entry; 1216 int ret = -EFAULT; 1217 1218 /* user gate pages are read-only */ 1219 if (gup_flags & FOLL_WRITE) 1220 return -EFAULT; 1221 if (address > TASK_SIZE) 1222 pgd = pgd_offset_k(address); 1223 else 1224 pgd = pgd_offset_gate(mm, address); 1225 if (pgd_none(*pgd)) 1226 return -EFAULT; 1227 p4d = p4d_offset(pgd, address); 1228 if (p4d_none(*p4d)) 1229 return -EFAULT; 1230 pud = pud_offset(p4d, address); 1231 if (pud_none(*pud)) 1232 return -EFAULT; 1233 pmd = pmd_offset(pud, address); 1234 if (!pmd_present(*pmd)) 1235 return -EFAULT; 1236 pte = pte_offset_map(pmd, address); 1237 if (!pte) 1238 return -EFAULT; 1239 entry = ptep_get(pte); 1240 if (pte_none(entry)) 1241 goto unmap; 1242 *vma = get_gate_vma(mm); 1243 if (!page) 1244 goto out; 1245 *page = vm_normal_page(*vma, address, entry); 1246 if (!*page) { 1247 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1248 goto unmap; 1249 *page = pte_page(entry); 1250 } 1251 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1252 if (unlikely(ret)) 1253 goto unmap; 1254 out: 1255 ret = 0; 1256 unmap: 1257 pte_unmap(pte); 1258 return ret; 1259 } 1260 1261 /* 1262 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1263 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1264 * to 0 and -EBUSY returned. 1265 */ 1266 static int faultin_page(struct vm_area_struct *vma, 1267 unsigned long address, unsigned int *flags, bool unshare, 1268 int *locked) 1269 { 1270 unsigned int fault_flags = 0; 1271 vm_fault_t ret; 1272 1273 if (*flags & FOLL_NOFAULT) 1274 return -EFAULT; 1275 if (*flags & FOLL_WRITE) 1276 fault_flags |= FAULT_FLAG_WRITE; 1277 if (*flags & FOLL_REMOTE) 1278 fault_flags |= FAULT_FLAG_REMOTE; 1279 if (*flags & FOLL_UNLOCKABLE) { 1280 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1281 /* 1282 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1283 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1284 * That's because some callers may not be prepared to 1285 * handle early exits caused by non-fatal signals. 1286 */ 1287 if (*flags & FOLL_INTERRUPTIBLE) 1288 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1289 } 1290 if (*flags & FOLL_NOWAIT) 1291 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1292 if (*flags & FOLL_TRIED) { 1293 /* 1294 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1295 * can co-exist 1296 */ 1297 fault_flags |= FAULT_FLAG_TRIED; 1298 } 1299 if (unshare) { 1300 fault_flags |= FAULT_FLAG_UNSHARE; 1301 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1302 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1303 } 1304 1305 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1306 1307 if (ret & VM_FAULT_COMPLETED) { 1308 /* 1309 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1310 * mmap lock in the page fault handler. Sanity check this. 1311 */ 1312 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1313 *locked = 0; 1314 1315 /* 1316 * We should do the same as VM_FAULT_RETRY, but let's not 1317 * return -EBUSY since that's not reflecting the reality of 1318 * what has happened - we've just fully completed a page 1319 * fault, with the mmap lock released. Use -EAGAIN to show 1320 * that we want to take the mmap lock _again_. 1321 */ 1322 return -EAGAIN; 1323 } 1324 1325 if (ret & VM_FAULT_ERROR) { 1326 int err = vm_fault_to_errno(ret, *flags); 1327 1328 if (err) 1329 return err; 1330 BUG(); 1331 } 1332 1333 if (ret & VM_FAULT_RETRY) { 1334 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1335 *locked = 0; 1336 return -EBUSY; 1337 } 1338 1339 return 0; 1340 } 1341 1342 /* 1343 * Writing to file-backed mappings which require folio dirty tracking using GUP 1344 * is a fundamentally broken operation, as kernel write access to GUP mappings 1345 * do not adhere to the semantics expected by a file system. 1346 * 1347 * Consider the following scenario:- 1348 * 1349 * 1. A folio is written to via GUP which write-faults the memory, notifying 1350 * the file system and dirtying the folio. 1351 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1352 * the PTE being marked read-only. 1353 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1354 * direct mapping. 1355 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1356 * (though it does not have to). 1357 * 1358 * This results in both data being written to a folio without writenotify, and 1359 * the folio being dirtied unexpectedly (if the caller decides to do so). 1360 */ 1361 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1362 unsigned long gup_flags) 1363 { 1364 /* 1365 * If we aren't pinning then no problematic write can occur. A long term 1366 * pin is the most egregious case so this is the case we disallow. 1367 */ 1368 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1369 (FOLL_PIN | FOLL_LONGTERM)) 1370 return true; 1371 1372 /* 1373 * If the VMA does not require dirty tracking then no problematic write 1374 * can occur either. 1375 */ 1376 return !vma_needs_dirty_tracking(vma); 1377 } 1378 1379 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1380 { 1381 vm_flags_t vm_flags = vma->vm_flags; 1382 int write = (gup_flags & FOLL_WRITE); 1383 int foreign = (gup_flags & FOLL_REMOTE); 1384 bool vma_anon = vma_is_anonymous(vma); 1385 1386 if (vm_flags & (VM_IO | VM_PFNMAP)) 1387 return -EFAULT; 1388 1389 if ((gup_flags & FOLL_ANON) && !vma_anon) 1390 return -EFAULT; 1391 1392 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1393 return -EOPNOTSUPP; 1394 1395 if (vma_is_secretmem(vma)) 1396 return -EFAULT; 1397 1398 if (write) { 1399 if (!vma_anon && 1400 !writable_file_mapping_allowed(vma, gup_flags)) 1401 return -EFAULT; 1402 1403 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1404 if (!(gup_flags & FOLL_FORCE)) 1405 return -EFAULT; 1406 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1407 if (is_vm_hugetlb_page(vma)) 1408 return -EFAULT; 1409 /* 1410 * We used to let the write,force case do COW in a 1411 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1412 * set a breakpoint in a read-only mapping of an 1413 * executable, without corrupting the file (yet only 1414 * when that file had been opened for writing!). 1415 * Anon pages in shared mappings are surprising: now 1416 * just reject it. 1417 */ 1418 if (!is_cow_mapping(vm_flags)) 1419 return -EFAULT; 1420 } 1421 } else if (!(vm_flags & VM_READ)) { 1422 if (!(gup_flags & FOLL_FORCE)) 1423 return -EFAULT; 1424 /* 1425 * Is there actually any vma we can reach here which does not 1426 * have VM_MAYREAD set? 1427 */ 1428 if (!(vm_flags & VM_MAYREAD)) 1429 return -EFAULT; 1430 } 1431 /* 1432 * gups are always data accesses, not instruction 1433 * fetches, so execute=false here 1434 */ 1435 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1436 return -EFAULT; 1437 return 0; 1438 } 1439 1440 /* 1441 * This is "vma_lookup()", but with a warning if we would have 1442 * historically expanded the stack in the GUP code. 1443 */ 1444 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1445 unsigned long addr) 1446 { 1447 #ifdef CONFIG_STACK_GROWSUP 1448 return vma_lookup(mm, addr); 1449 #else 1450 static volatile unsigned long next_warn; 1451 struct vm_area_struct *vma; 1452 unsigned long now, next; 1453 1454 vma = find_vma(mm, addr); 1455 if (!vma || (addr >= vma->vm_start)) 1456 return vma; 1457 1458 /* Only warn for half-way relevant accesses */ 1459 if (!(vma->vm_flags & VM_GROWSDOWN)) 1460 return NULL; 1461 if (vma->vm_start - addr > 65536) 1462 return NULL; 1463 1464 /* Let's not warn more than once an hour.. */ 1465 now = jiffies; next = next_warn; 1466 if (next && time_before(now, next)) 1467 return NULL; 1468 next_warn = now + 60*60*HZ; 1469 1470 /* Let people know things may have changed. */ 1471 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1472 current->comm, task_pid_nr(current), 1473 vma->vm_start, vma->vm_end, addr); 1474 dump_stack(); 1475 return NULL; 1476 #endif 1477 } 1478 1479 /** 1480 * __get_user_pages() - pin user pages in memory 1481 * @mm: mm_struct of target mm 1482 * @start: starting user address 1483 * @nr_pages: number of pages from start to pin 1484 * @gup_flags: flags modifying pin behaviour 1485 * @pages: array that receives pointers to the pages pinned. 1486 * Should be at least nr_pages long. Or NULL, if caller 1487 * only intends to ensure the pages are faulted in. 1488 * @locked: whether we're still with the mmap_lock held 1489 * 1490 * Returns either number of pages pinned (which may be less than the 1491 * number requested), or an error. Details about the return value: 1492 * 1493 * -- If nr_pages is 0, returns 0. 1494 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1495 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1496 * pages pinned. Again, this may be less than nr_pages. 1497 * -- 0 return value is possible when the fault would need to be retried. 1498 * 1499 * The caller is responsible for releasing returned @pages, via put_page(). 1500 * 1501 * Must be called with mmap_lock held. It may be released. See below. 1502 * 1503 * __get_user_pages walks a process's page tables and takes a reference to 1504 * each struct page that each user address corresponds to at a given 1505 * instant. That is, it takes the page that would be accessed if a user 1506 * thread accesses the given user virtual address at that instant. 1507 * 1508 * This does not guarantee that the page exists in the user mappings when 1509 * __get_user_pages returns, and there may even be a completely different 1510 * page there in some cases (eg. if mmapped pagecache has been invalidated 1511 * and subsequently re-faulted). However it does guarantee that the page 1512 * won't be freed completely. And mostly callers simply care that the page 1513 * contains data that was valid *at some point in time*. Typically, an IO 1514 * or similar operation cannot guarantee anything stronger anyway because 1515 * locks can't be held over the syscall boundary. 1516 * 1517 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1518 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1519 * appropriate) must be called after the page is finished with, and 1520 * before put_page is called. 1521 * 1522 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1523 * be released. If this happens *@locked will be set to 0 on return. 1524 * 1525 * A caller using such a combination of @gup_flags must therefore hold the 1526 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1527 * it must be held for either reading or writing and will not be released. 1528 * 1529 * In most cases, get_user_pages or get_user_pages_fast should be used 1530 * instead of __get_user_pages. __get_user_pages should be used only if 1531 * you need some special @gup_flags. 1532 */ 1533 static long __get_user_pages(struct mm_struct *mm, 1534 unsigned long start, unsigned long nr_pages, 1535 unsigned int gup_flags, struct page **pages, 1536 int *locked) 1537 { 1538 long ret = 0, i = 0; 1539 struct vm_area_struct *vma = NULL; 1540 struct follow_page_context ctx = { NULL }; 1541 1542 if (!nr_pages) 1543 return 0; 1544 1545 start = untagged_addr_remote(mm, start); 1546 1547 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1548 1549 do { 1550 struct page *page; 1551 unsigned int foll_flags = gup_flags; 1552 unsigned int page_increm; 1553 1554 /* first iteration or cross vma bound */ 1555 if (!vma || start >= vma->vm_end) { 1556 /* 1557 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1558 * lookups+error reporting differently. 1559 */ 1560 if (gup_flags & FOLL_MADV_POPULATE) { 1561 vma = vma_lookup(mm, start); 1562 if (!vma) { 1563 ret = -ENOMEM; 1564 goto out; 1565 } 1566 if (check_vma_flags(vma, gup_flags)) { 1567 ret = -EINVAL; 1568 goto out; 1569 } 1570 goto retry; 1571 } 1572 vma = gup_vma_lookup(mm, start); 1573 if (!vma && in_gate_area(mm, start)) { 1574 ret = get_gate_page(mm, start & PAGE_MASK, 1575 gup_flags, &vma, 1576 pages ? &page : NULL); 1577 if (ret) 1578 goto out; 1579 ctx.page_mask = 0; 1580 goto next_page; 1581 } 1582 1583 if (!vma) { 1584 ret = -EFAULT; 1585 goto out; 1586 } 1587 ret = check_vma_flags(vma, gup_flags); 1588 if (ret) 1589 goto out; 1590 } 1591 retry: 1592 /* 1593 * If we have a pending SIGKILL, don't keep faulting pages and 1594 * potentially allocating memory. 1595 */ 1596 if (fatal_signal_pending(current)) { 1597 ret = -EINTR; 1598 goto out; 1599 } 1600 cond_resched(); 1601 1602 page = follow_page_mask(vma, start, foll_flags, &ctx); 1603 if (!page || PTR_ERR(page) == -EMLINK) { 1604 ret = faultin_page(vma, start, &foll_flags, 1605 PTR_ERR(page) == -EMLINK, locked); 1606 switch (ret) { 1607 case 0: 1608 goto retry; 1609 case -EBUSY: 1610 case -EAGAIN: 1611 ret = 0; 1612 fallthrough; 1613 case -EFAULT: 1614 case -ENOMEM: 1615 case -EHWPOISON: 1616 goto out; 1617 } 1618 BUG(); 1619 } else if (PTR_ERR(page) == -EEXIST) { 1620 /* 1621 * Proper page table entry exists, but no corresponding 1622 * struct page. If the caller expects **pages to be 1623 * filled in, bail out now, because that can't be done 1624 * for this page. 1625 */ 1626 if (pages) { 1627 ret = PTR_ERR(page); 1628 goto out; 1629 } 1630 } else if (IS_ERR(page)) { 1631 ret = PTR_ERR(page); 1632 goto out; 1633 } 1634 next_page: 1635 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1636 if (page_increm > nr_pages) 1637 page_increm = nr_pages; 1638 1639 if (pages) { 1640 struct page *subpage; 1641 unsigned int j; 1642 1643 /* 1644 * This must be a large folio (and doesn't need to 1645 * be the whole folio; it can be part of it), do 1646 * the refcount work for all the subpages too. 1647 * 1648 * NOTE: here the page may not be the head page 1649 * e.g. when start addr is not thp-size aligned. 1650 * try_grab_folio() should have taken care of tail 1651 * pages. 1652 */ 1653 if (page_increm > 1) { 1654 struct folio *folio = page_folio(page); 1655 1656 /* 1657 * Since we already hold refcount on the 1658 * large folio, this should never fail. 1659 */ 1660 if (try_grab_folio(folio, page_increm - 1, 1661 foll_flags)) { 1662 /* 1663 * Release the 1st page ref if the 1664 * folio is problematic, fail hard. 1665 */ 1666 gup_put_folio(folio, 1, 1667 foll_flags); 1668 ret = -EFAULT; 1669 goto out; 1670 } 1671 } 1672 1673 for (j = 0; j < page_increm; j++) { 1674 subpage = nth_page(page, j); 1675 pages[i + j] = subpage; 1676 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1677 flush_dcache_page(subpage); 1678 } 1679 } 1680 1681 i += page_increm; 1682 start += page_increm * PAGE_SIZE; 1683 nr_pages -= page_increm; 1684 } while (nr_pages); 1685 out: 1686 if (ctx.pgmap) 1687 put_dev_pagemap(ctx.pgmap); 1688 return i ? i : ret; 1689 } 1690 1691 static bool vma_permits_fault(struct vm_area_struct *vma, 1692 unsigned int fault_flags) 1693 { 1694 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1695 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1696 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1697 1698 if (!(vm_flags & vma->vm_flags)) 1699 return false; 1700 1701 /* 1702 * The architecture might have a hardware protection 1703 * mechanism other than read/write that can deny access. 1704 * 1705 * gup always represents data access, not instruction 1706 * fetches, so execute=false here: 1707 */ 1708 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1709 return false; 1710 1711 return true; 1712 } 1713 1714 /** 1715 * fixup_user_fault() - manually resolve a user page fault 1716 * @mm: mm_struct of target mm 1717 * @address: user address 1718 * @fault_flags:flags to pass down to handle_mm_fault() 1719 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1720 * does not allow retry. If NULL, the caller must guarantee 1721 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1722 * 1723 * This is meant to be called in the specific scenario where for locking reasons 1724 * we try to access user memory in atomic context (within a pagefault_disable() 1725 * section), this returns -EFAULT, and we want to resolve the user fault before 1726 * trying again. 1727 * 1728 * Typically this is meant to be used by the futex code. 1729 * 1730 * The main difference with get_user_pages() is that this function will 1731 * unconditionally call handle_mm_fault() which will in turn perform all the 1732 * necessary SW fixup of the dirty and young bits in the PTE, while 1733 * get_user_pages() only guarantees to update these in the struct page. 1734 * 1735 * This is important for some architectures where those bits also gate the 1736 * access permission to the page because they are maintained in software. On 1737 * such architectures, gup() will not be enough to make a subsequent access 1738 * succeed. 1739 * 1740 * This function will not return with an unlocked mmap_lock. So it has not the 1741 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1742 */ 1743 int fixup_user_fault(struct mm_struct *mm, 1744 unsigned long address, unsigned int fault_flags, 1745 bool *unlocked) 1746 { 1747 struct vm_area_struct *vma; 1748 vm_fault_t ret; 1749 1750 address = untagged_addr_remote(mm, address); 1751 1752 if (unlocked) 1753 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1754 1755 retry: 1756 vma = gup_vma_lookup(mm, address); 1757 if (!vma) 1758 return -EFAULT; 1759 1760 if (!vma_permits_fault(vma, fault_flags)) 1761 return -EFAULT; 1762 1763 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1764 fatal_signal_pending(current)) 1765 return -EINTR; 1766 1767 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1768 1769 if (ret & VM_FAULT_COMPLETED) { 1770 /* 1771 * NOTE: it's a pity that we need to retake the lock here 1772 * to pair with the unlock() in the callers. Ideally we 1773 * could tell the callers so they do not need to unlock. 1774 */ 1775 mmap_read_lock(mm); 1776 *unlocked = true; 1777 return 0; 1778 } 1779 1780 if (ret & VM_FAULT_ERROR) { 1781 int err = vm_fault_to_errno(ret, 0); 1782 1783 if (err) 1784 return err; 1785 BUG(); 1786 } 1787 1788 if (ret & VM_FAULT_RETRY) { 1789 mmap_read_lock(mm); 1790 *unlocked = true; 1791 fault_flags |= FAULT_FLAG_TRIED; 1792 goto retry; 1793 } 1794 1795 return 0; 1796 } 1797 EXPORT_SYMBOL_GPL(fixup_user_fault); 1798 1799 /* 1800 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1801 * specified, it'll also respond to generic signals. The caller of GUP 1802 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1803 */ 1804 static bool gup_signal_pending(unsigned int flags) 1805 { 1806 if (fatal_signal_pending(current)) 1807 return true; 1808 1809 if (!(flags & FOLL_INTERRUPTIBLE)) 1810 return false; 1811 1812 return signal_pending(current); 1813 } 1814 1815 /* 1816 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1817 * the caller. This function may drop the mmap_lock. If it does so, then it will 1818 * set (*locked = 0). 1819 * 1820 * (*locked == 0) means that the caller expects this function to acquire and 1821 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1822 * the function returns, even though it may have changed temporarily during 1823 * function execution. 1824 * 1825 * Please note that this function, unlike __get_user_pages(), will not return 0 1826 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1827 */ 1828 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1829 unsigned long start, 1830 unsigned long nr_pages, 1831 struct page **pages, 1832 int *locked, 1833 unsigned int flags) 1834 { 1835 long ret, pages_done; 1836 bool must_unlock = false; 1837 1838 if (!nr_pages) 1839 return 0; 1840 1841 /* 1842 * The internal caller expects GUP to manage the lock internally and the 1843 * lock must be released when this returns. 1844 */ 1845 if (!*locked) { 1846 if (mmap_read_lock_killable(mm)) 1847 return -EAGAIN; 1848 must_unlock = true; 1849 *locked = 1; 1850 } 1851 else 1852 mmap_assert_locked(mm); 1853 1854 if (flags & FOLL_PIN) 1855 mm_set_has_pinned_flag(&mm->flags); 1856 1857 /* 1858 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1859 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1860 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1861 * for FOLL_GET, not for the newer FOLL_PIN. 1862 * 1863 * FOLL_PIN always expects pages to be non-null, but no need to assert 1864 * that here, as any failures will be obvious enough. 1865 */ 1866 if (pages && !(flags & FOLL_PIN)) 1867 flags |= FOLL_GET; 1868 1869 pages_done = 0; 1870 for (;;) { 1871 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1872 locked); 1873 if (!(flags & FOLL_UNLOCKABLE)) { 1874 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1875 pages_done = ret; 1876 break; 1877 } 1878 1879 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1880 if (!*locked) { 1881 BUG_ON(ret < 0); 1882 BUG_ON(ret >= nr_pages); 1883 } 1884 1885 if (ret > 0) { 1886 nr_pages -= ret; 1887 pages_done += ret; 1888 if (!nr_pages) 1889 break; 1890 } 1891 if (*locked) { 1892 /* 1893 * VM_FAULT_RETRY didn't trigger or it was a 1894 * FOLL_NOWAIT. 1895 */ 1896 if (!pages_done) 1897 pages_done = ret; 1898 break; 1899 } 1900 /* 1901 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1902 * For the prefault case (!pages) we only update counts. 1903 */ 1904 if (likely(pages)) 1905 pages += ret; 1906 start += ret << PAGE_SHIFT; 1907 1908 /* The lock was temporarily dropped, so we must unlock later */ 1909 must_unlock = true; 1910 1911 retry: 1912 /* 1913 * Repeat on the address that fired VM_FAULT_RETRY 1914 * with both FAULT_FLAG_ALLOW_RETRY and 1915 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1916 * by fatal signals of even common signals, depending on 1917 * the caller's request. So we need to check it before we 1918 * start trying again otherwise it can loop forever. 1919 */ 1920 if (gup_signal_pending(flags)) { 1921 if (!pages_done) 1922 pages_done = -EINTR; 1923 break; 1924 } 1925 1926 ret = mmap_read_lock_killable(mm); 1927 if (ret) { 1928 BUG_ON(ret > 0); 1929 if (!pages_done) 1930 pages_done = ret; 1931 break; 1932 } 1933 1934 *locked = 1; 1935 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1936 pages, locked); 1937 if (!*locked) { 1938 /* Continue to retry until we succeeded */ 1939 BUG_ON(ret != 0); 1940 goto retry; 1941 } 1942 if (ret != 1) { 1943 BUG_ON(ret > 1); 1944 if (!pages_done) 1945 pages_done = ret; 1946 break; 1947 } 1948 nr_pages--; 1949 pages_done++; 1950 if (!nr_pages) 1951 break; 1952 if (likely(pages)) 1953 pages++; 1954 start += PAGE_SIZE; 1955 } 1956 if (must_unlock && *locked) { 1957 /* 1958 * We either temporarily dropped the lock, or the caller 1959 * requested that we both acquire and drop the lock. Either way, 1960 * we must now unlock, and notify the caller of that state. 1961 */ 1962 mmap_read_unlock(mm); 1963 *locked = 0; 1964 } 1965 1966 /* 1967 * Failing to pin anything implies something has gone wrong (except when 1968 * FOLL_NOWAIT is specified). 1969 */ 1970 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1971 return -EFAULT; 1972 1973 return pages_done; 1974 } 1975 1976 /** 1977 * populate_vma_page_range() - populate a range of pages in the vma. 1978 * @vma: target vma 1979 * @start: start address 1980 * @end: end address 1981 * @locked: whether the mmap_lock is still held 1982 * 1983 * This takes care of mlocking the pages too if VM_LOCKED is set. 1984 * 1985 * Return either number of pages pinned in the vma, or a negative error 1986 * code on error. 1987 * 1988 * vma->vm_mm->mmap_lock must be held. 1989 * 1990 * If @locked is NULL, it may be held for read or write and will 1991 * be unperturbed. 1992 * 1993 * If @locked is non-NULL, it must held for read only and may be 1994 * released. If it's released, *@locked will be set to 0. 1995 */ 1996 long populate_vma_page_range(struct vm_area_struct *vma, 1997 unsigned long start, unsigned long end, int *locked) 1998 { 1999 struct mm_struct *mm = vma->vm_mm; 2000 unsigned long nr_pages = (end - start) / PAGE_SIZE; 2001 int local_locked = 1; 2002 int gup_flags; 2003 long ret; 2004 2005 VM_BUG_ON(!PAGE_ALIGNED(start)); 2006 VM_BUG_ON(!PAGE_ALIGNED(end)); 2007 VM_BUG_ON_VMA(start < vma->vm_start, vma); 2008 VM_BUG_ON_VMA(end > vma->vm_end, vma); 2009 mmap_assert_locked(mm); 2010 2011 /* 2012 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 2013 * faultin_page() to break COW, so it has no work to do here. 2014 */ 2015 if (vma->vm_flags & VM_LOCKONFAULT) 2016 return nr_pages; 2017 2018 /* ... similarly, we've never faulted in PROT_NONE pages */ 2019 if (!vma_is_accessible(vma)) 2020 return -EFAULT; 2021 2022 gup_flags = FOLL_TOUCH; 2023 /* 2024 * We want to touch writable mappings with a write fault in order 2025 * to break COW, except for shared mappings because these don't COW 2026 * and we would not want to dirty them for nothing. 2027 * 2028 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 2029 * readable (ie write-only or executable). 2030 */ 2031 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 2032 gup_flags |= FOLL_WRITE; 2033 else 2034 gup_flags |= FOLL_FORCE; 2035 2036 if (locked) 2037 gup_flags |= FOLL_UNLOCKABLE; 2038 2039 /* 2040 * We made sure addr is within a VMA, so the following will 2041 * not result in a stack expansion that recurses back here. 2042 */ 2043 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 2044 NULL, locked ? locked : &local_locked); 2045 lru_add_drain(); 2046 return ret; 2047 } 2048 2049 /* 2050 * faultin_page_range() - populate (prefault) page tables inside the 2051 * given range readable/writable 2052 * 2053 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 2054 * 2055 * @mm: the mm to populate page tables in 2056 * @start: start address 2057 * @end: end address 2058 * @write: whether to prefault readable or writable 2059 * @locked: whether the mmap_lock is still held 2060 * 2061 * Returns either number of processed pages in the MM, or a negative error 2062 * code on error (see __get_user_pages()). Note that this function reports 2063 * errors related to VMAs, such as incompatible mappings, as expected by 2064 * MADV_POPULATE_(READ|WRITE). 2065 * 2066 * The range must be page-aligned. 2067 * 2068 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 2069 */ 2070 long faultin_page_range(struct mm_struct *mm, unsigned long start, 2071 unsigned long end, bool write, int *locked) 2072 { 2073 unsigned long nr_pages = (end - start) / PAGE_SIZE; 2074 int gup_flags; 2075 long ret; 2076 2077 VM_BUG_ON(!PAGE_ALIGNED(start)); 2078 VM_BUG_ON(!PAGE_ALIGNED(end)); 2079 mmap_assert_locked(mm); 2080 2081 /* 2082 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 2083 * the page dirty with FOLL_WRITE -- which doesn't make a 2084 * difference with !FOLL_FORCE, because the page is writable 2085 * in the page table. 2086 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 2087 * a poisoned page. 2088 * !FOLL_FORCE: Require proper access permissions. 2089 */ 2090 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 2091 FOLL_MADV_POPULATE; 2092 if (write) 2093 gup_flags |= FOLL_WRITE; 2094 2095 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 2096 gup_flags); 2097 lru_add_drain(); 2098 return ret; 2099 } 2100 2101 /* 2102 * __mm_populate - populate and/or mlock pages within a range of address space. 2103 * 2104 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 2105 * flags. VMAs must be already marked with the desired vm_flags, and 2106 * mmap_lock must not be held. 2107 */ 2108 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 2109 { 2110 struct mm_struct *mm = current->mm; 2111 unsigned long end, nstart, nend; 2112 struct vm_area_struct *vma = NULL; 2113 int locked = 0; 2114 long ret = 0; 2115 2116 end = start + len; 2117 2118 for (nstart = start; nstart < end; nstart = nend) { 2119 /* 2120 * We want to fault in pages for [nstart; end) address range. 2121 * Find first corresponding VMA. 2122 */ 2123 if (!locked) { 2124 locked = 1; 2125 mmap_read_lock(mm); 2126 vma = find_vma_intersection(mm, nstart, end); 2127 } else if (nstart >= vma->vm_end) 2128 vma = find_vma_intersection(mm, vma->vm_end, end); 2129 2130 if (!vma) 2131 break; 2132 /* 2133 * Set [nstart; nend) to intersection of desired address 2134 * range with the first VMA. Also, skip undesirable VMA types. 2135 */ 2136 nend = min(end, vma->vm_end); 2137 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2138 continue; 2139 if (nstart < vma->vm_start) 2140 nstart = vma->vm_start; 2141 /* 2142 * Now fault in a range of pages. populate_vma_page_range() 2143 * double checks the vma flags, so that it won't mlock pages 2144 * if the vma was already munlocked. 2145 */ 2146 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2147 if (ret < 0) { 2148 if (ignore_errors) { 2149 ret = 0; 2150 continue; /* continue at next VMA */ 2151 } 2152 break; 2153 } 2154 nend = nstart + ret * PAGE_SIZE; 2155 ret = 0; 2156 } 2157 if (locked) 2158 mmap_read_unlock(mm); 2159 return ret; /* 0 or negative error code */ 2160 } 2161 #else /* CONFIG_MMU */ 2162 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2163 unsigned long nr_pages, struct page **pages, 2164 int *locked, unsigned int foll_flags) 2165 { 2166 struct vm_area_struct *vma; 2167 bool must_unlock = false; 2168 unsigned long vm_flags; 2169 long i; 2170 2171 if (!nr_pages) 2172 return 0; 2173 2174 /* 2175 * The internal caller expects GUP to manage the lock internally and the 2176 * lock must be released when this returns. 2177 */ 2178 if (!*locked) { 2179 if (mmap_read_lock_killable(mm)) 2180 return -EAGAIN; 2181 must_unlock = true; 2182 *locked = 1; 2183 } 2184 2185 /* calculate required read or write permissions. 2186 * If FOLL_FORCE is set, we only require the "MAY" flags. 2187 */ 2188 vm_flags = (foll_flags & FOLL_WRITE) ? 2189 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2190 vm_flags &= (foll_flags & FOLL_FORCE) ? 2191 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2192 2193 for (i = 0; i < nr_pages; i++) { 2194 vma = find_vma(mm, start); 2195 if (!vma) 2196 break; 2197 2198 /* protect what we can, including chardevs */ 2199 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2200 !(vm_flags & vma->vm_flags)) 2201 break; 2202 2203 if (pages) { 2204 pages[i] = virt_to_page((void *)start); 2205 if (pages[i]) 2206 get_page(pages[i]); 2207 } 2208 2209 start = (start + PAGE_SIZE) & PAGE_MASK; 2210 } 2211 2212 if (must_unlock && *locked) { 2213 mmap_read_unlock(mm); 2214 *locked = 0; 2215 } 2216 2217 return i ? : -EFAULT; 2218 } 2219 #endif /* !CONFIG_MMU */ 2220 2221 /** 2222 * fault_in_writeable - fault in userspace address range for writing 2223 * @uaddr: start of address range 2224 * @size: size of address range 2225 * 2226 * Returns the number of bytes not faulted in (like copy_to_user() and 2227 * copy_from_user()). 2228 */ 2229 size_t fault_in_writeable(char __user *uaddr, size_t size) 2230 { 2231 char __user *start = uaddr, *end; 2232 2233 if (unlikely(size == 0)) 2234 return 0; 2235 if (!user_write_access_begin(uaddr, size)) 2236 return size; 2237 if (!PAGE_ALIGNED(uaddr)) { 2238 unsafe_put_user(0, uaddr, out); 2239 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2240 } 2241 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2242 if (unlikely(end < start)) 2243 end = NULL; 2244 while (uaddr != end) { 2245 unsafe_put_user(0, uaddr, out); 2246 uaddr += PAGE_SIZE; 2247 } 2248 2249 out: 2250 user_write_access_end(); 2251 if (size > uaddr - start) 2252 return size - (uaddr - start); 2253 return 0; 2254 } 2255 EXPORT_SYMBOL(fault_in_writeable); 2256 2257 /** 2258 * fault_in_subpage_writeable - fault in an address range for writing 2259 * @uaddr: start of address range 2260 * @size: size of address range 2261 * 2262 * Fault in a user address range for writing while checking for permissions at 2263 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2264 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2265 * 2266 * Returns the number of bytes not faulted in (like copy_to_user() and 2267 * copy_from_user()). 2268 */ 2269 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2270 { 2271 size_t faulted_in; 2272 2273 /* 2274 * Attempt faulting in at page granularity first for page table 2275 * permission checking. The arch-specific probe_subpage_writeable() 2276 * functions may not check for this. 2277 */ 2278 faulted_in = size - fault_in_writeable(uaddr, size); 2279 if (faulted_in) 2280 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2281 2282 return size - faulted_in; 2283 } 2284 EXPORT_SYMBOL(fault_in_subpage_writeable); 2285 2286 /* 2287 * fault_in_safe_writeable - fault in an address range for writing 2288 * @uaddr: start of address range 2289 * @size: length of address range 2290 * 2291 * Faults in an address range for writing. This is primarily useful when we 2292 * already know that some or all of the pages in the address range aren't in 2293 * memory. 2294 * 2295 * Unlike fault_in_writeable(), this function is non-destructive. 2296 * 2297 * Note that we don't pin or otherwise hold the pages referenced that we fault 2298 * in. There's no guarantee that they'll stay in memory for any duration of 2299 * time. 2300 * 2301 * Returns the number of bytes not faulted in, like copy_to_user() and 2302 * copy_from_user(). 2303 */ 2304 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2305 { 2306 unsigned long start = (unsigned long)uaddr, end; 2307 struct mm_struct *mm = current->mm; 2308 bool unlocked = false; 2309 2310 if (unlikely(size == 0)) 2311 return 0; 2312 end = PAGE_ALIGN(start + size); 2313 if (end < start) 2314 end = 0; 2315 2316 mmap_read_lock(mm); 2317 do { 2318 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2319 break; 2320 start = (start + PAGE_SIZE) & PAGE_MASK; 2321 } while (start != end); 2322 mmap_read_unlock(mm); 2323 2324 if (size > (unsigned long)uaddr - start) 2325 return size - ((unsigned long)uaddr - start); 2326 return 0; 2327 } 2328 EXPORT_SYMBOL(fault_in_safe_writeable); 2329 2330 /** 2331 * fault_in_readable - fault in userspace address range for reading 2332 * @uaddr: start of user address range 2333 * @size: size of user address range 2334 * 2335 * Returns the number of bytes not faulted in (like copy_to_user() and 2336 * copy_from_user()). 2337 */ 2338 size_t fault_in_readable(const char __user *uaddr, size_t size) 2339 { 2340 const char __user *start = uaddr, *end; 2341 volatile char c; 2342 2343 if (unlikely(size == 0)) 2344 return 0; 2345 if (!user_read_access_begin(uaddr, size)) 2346 return size; 2347 if (!PAGE_ALIGNED(uaddr)) { 2348 unsafe_get_user(c, uaddr, out); 2349 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2350 } 2351 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2352 if (unlikely(end < start)) 2353 end = NULL; 2354 while (uaddr != end) { 2355 unsafe_get_user(c, uaddr, out); 2356 uaddr += PAGE_SIZE; 2357 } 2358 2359 out: 2360 user_read_access_end(); 2361 (void)c; 2362 if (size > uaddr - start) 2363 return size - (uaddr - start); 2364 return 0; 2365 } 2366 EXPORT_SYMBOL(fault_in_readable); 2367 2368 /** 2369 * get_dump_page() - pin user page in memory while writing it to core dump 2370 * @addr: user address 2371 * 2372 * Returns struct page pointer of user page pinned for dump, 2373 * to be freed afterwards by put_page(). 2374 * 2375 * Returns NULL on any kind of failure - a hole must then be inserted into 2376 * the corefile, to preserve alignment with its headers; and also returns 2377 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2378 * allowing a hole to be left in the corefile to save disk space. 2379 * 2380 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2381 */ 2382 #ifdef CONFIG_ELF_CORE 2383 struct page *get_dump_page(unsigned long addr) 2384 { 2385 struct page *page; 2386 int locked = 0; 2387 int ret; 2388 2389 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2390 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2391 return (ret == 1) ? page : NULL; 2392 } 2393 #endif /* CONFIG_ELF_CORE */ 2394 2395 #ifdef CONFIG_MIGRATION 2396 /* 2397 * Returns the number of collected pages. Return value is always >= 0. 2398 */ 2399 static unsigned long collect_longterm_unpinnable_pages( 2400 struct list_head *movable_page_list, 2401 unsigned long nr_pages, 2402 struct page **pages) 2403 { 2404 unsigned long i, collected = 0; 2405 struct folio *prev_folio = NULL; 2406 bool drain_allow = true; 2407 2408 for (i = 0; i < nr_pages; i++) { 2409 struct folio *folio = page_folio(pages[i]); 2410 2411 if (folio == prev_folio) 2412 continue; 2413 prev_folio = folio; 2414 2415 if (folio_is_longterm_pinnable(folio)) 2416 continue; 2417 2418 collected++; 2419 2420 if (folio_is_device_coherent(folio)) 2421 continue; 2422 2423 if (folio_test_hugetlb(folio)) { 2424 isolate_hugetlb(folio, movable_page_list); 2425 continue; 2426 } 2427 2428 if (!folio_test_lru(folio) && drain_allow) { 2429 lru_add_drain_all(); 2430 drain_allow = false; 2431 } 2432 2433 if (!folio_isolate_lru(folio)) 2434 continue; 2435 2436 list_add_tail(&folio->lru, movable_page_list); 2437 node_stat_mod_folio(folio, 2438 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2439 folio_nr_pages(folio)); 2440 } 2441 2442 return collected; 2443 } 2444 2445 /* 2446 * Unpins all pages and migrates device coherent pages and movable_page_list. 2447 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2448 * (or partial success). 2449 */ 2450 static int migrate_longterm_unpinnable_pages( 2451 struct list_head *movable_page_list, 2452 unsigned long nr_pages, 2453 struct page **pages) 2454 { 2455 int ret; 2456 unsigned long i; 2457 2458 for (i = 0; i < nr_pages; i++) { 2459 struct folio *folio = page_folio(pages[i]); 2460 2461 if (folio_is_device_coherent(folio)) { 2462 /* 2463 * Migration will fail if the page is pinned, so convert 2464 * the pin on the source page to a normal reference. 2465 */ 2466 pages[i] = NULL; 2467 folio_get(folio); 2468 gup_put_folio(folio, 1, FOLL_PIN); 2469 2470 if (migrate_device_coherent_page(&folio->page)) { 2471 ret = -EBUSY; 2472 goto err; 2473 } 2474 2475 continue; 2476 } 2477 2478 /* 2479 * We can't migrate pages with unexpected references, so drop 2480 * the reference obtained by __get_user_pages_locked(). 2481 * Migrating pages have been added to movable_page_list after 2482 * calling folio_isolate_lru() which takes a reference so the 2483 * page won't be freed if it's migrating. 2484 */ 2485 unpin_user_page(pages[i]); 2486 pages[i] = NULL; 2487 } 2488 2489 if (!list_empty(movable_page_list)) { 2490 struct migration_target_control mtc = { 2491 .nid = NUMA_NO_NODE, 2492 .gfp_mask = GFP_USER | __GFP_NOWARN, 2493 .reason = MR_LONGTERM_PIN, 2494 }; 2495 2496 if (migrate_pages(movable_page_list, alloc_migration_target, 2497 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2498 MR_LONGTERM_PIN, NULL)) { 2499 ret = -ENOMEM; 2500 goto err; 2501 } 2502 } 2503 2504 putback_movable_pages(movable_page_list); 2505 2506 return -EAGAIN; 2507 2508 err: 2509 for (i = 0; i < nr_pages; i++) 2510 if (pages[i]) 2511 unpin_user_page(pages[i]); 2512 putback_movable_pages(movable_page_list); 2513 2514 return ret; 2515 } 2516 2517 /* 2518 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2519 * pages in the range are required to be pinned via FOLL_PIN, before calling 2520 * this routine. 2521 * 2522 * If any pages in the range are not allowed to be pinned, then this routine 2523 * will migrate those pages away, unpin all the pages in the range and return 2524 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2525 * call this routine again. 2526 * 2527 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2528 * The caller should give up, and propagate the error back up the call stack. 2529 * 2530 * If everything is OK and all pages in the range are allowed to be pinned, then 2531 * this routine leaves all pages pinned and returns zero for success. 2532 */ 2533 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2534 struct page **pages) 2535 { 2536 unsigned long collected; 2537 LIST_HEAD(movable_page_list); 2538 2539 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2540 nr_pages, pages); 2541 if (!collected) 2542 return 0; 2543 2544 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2545 pages); 2546 } 2547 #else 2548 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2549 struct page **pages) 2550 { 2551 return 0; 2552 } 2553 #endif /* CONFIG_MIGRATION */ 2554 2555 /* 2556 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2557 * allows us to process the FOLL_LONGTERM flag. 2558 */ 2559 static long __gup_longterm_locked(struct mm_struct *mm, 2560 unsigned long start, 2561 unsigned long nr_pages, 2562 struct page **pages, 2563 int *locked, 2564 unsigned int gup_flags) 2565 { 2566 unsigned int flags; 2567 long rc, nr_pinned_pages; 2568 2569 if (!(gup_flags & FOLL_LONGTERM)) 2570 return __get_user_pages_locked(mm, start, nr_pages, pages, 2571 locked, gup_flags); 2572 2573 flags = memalloc_pin_save(); 2574 do { 2575 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2576 pages, locked, 2577 gup_flags); 2578 if (nr_pinned_pages <= 0) { 2579 rc = nr_pinned_pages; 2580 break; 2581 } 2582 2583 /* FOLL_LONGTERM implies FOLL_PIN */ 2584 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2585 } while (rc == -EAGAIN); 2586 memalloc_pin_restore(flags); 2587 return rc ? rc : nr_pinned_pages; 2588 } 2589 2590 /* 2591 * Check that the given flags are valid for the exported gup/pup interface, and 2592 * update them with the required flags that the caller must have set. 2593 */ 2594 static bool is_valid_gup_args(struct page **pages, int *locked, 2595 unsigned int *gup_flags_p, unsigned int to_set) 2596 { 2597 unsigned int gup_flags = *gup_flags_p; 2598 2599 /* 2600 * These flags not allowed to be specified externally to the gup 2601 * interfaces: 2602 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2603 * - FOLL_REMOTE is internal only and used on follow_page() 2604 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2605 */ 2606 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2607 return false; 2608 2609 gup_flags |= to_set; 2610 if (locked) { 2611 /* At the external interface locked must be set */ 2612 if (WARN_ON_ONCE(*locked != 1)) 2613 return false; 2614 2615 gup_flags |= FOLL_UNLOCKABLE; 2616 } 2617 2618 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2619 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2620 (FOLL_PIN | FOLL_GET))) 2621 return false; 2622 2623 /* LONGTERM can only be specified when pinning */ 2624 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2625 return false; 2626 2627 /* Pages input must be given if using GET/PIN */ 2628 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2629 return false; 2630 2631 /* We want to allow the pgmap to be hot-unplugged at all times */ 2632 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2633 (gup_flags & FOLL_PCI_P2PDMA))) 2634 return false; 2635 2636 *gup_flags_p = gup_flags; 2637 return true; 2638 } 2639 2640 #ifdef CONFIG_MMU 2641 /** 2642 * get_user_pages_remote() - pin user pages in memory 2643 * @mm: mm_struct of target mm 2644 * @start: starting user address 2645 * @nr_pages: number of pages from start to pin 2646 * @gup_flags: flags modifying lookup behaviour 2647 * @pages: array that receives pointers to the pages pinned. 2648 * Should be at least nr_pages long. Or NULL, if caller 2649 * only intends to ensure the pages are faulted in. 2650 * @locked: pointer to lock flag indicating whether lock is held and 2651 * subsequently whether VM_FAULT_RETRY functionality can be 2652 * utilised. Lock must initially be held. 2653 * 2654 * Returns either number of pages pinned (which may be less than the 2655 * number requested), or an error. Details about the return value: 2656 * 2657 * -- If nr_pages is 0, returns 0. 2658 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2659 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2660 * pages pinned. Again, this may be less than nr_pages. 2661 * 2662 * The caller is responsible for releasing returned @pages, via put_page(). 2663 * 2664 * Must be called with mmap_lock held for read or write. 2665 * 2666 * get_user_pages_remote walks a process's page tables and takes a reference 2667 * to each struct page that each user address corresponds to at a given 2668 * instant. That is, it takes the page that would be accessed if a user 2669 * thread accesses the given user virtual address at that instant. 2670 * 2671 * This does not guarantee that the page exists in the user mappings when 2672 * get_user_pages_remote returns, and there may even be a completely different 2673 * page there in some cases (eg. if mmapped pagecache has been invalidated 2674 * and subsequently re-faulted). However it does guarantee that the page 2675 * won't be freed completely. And mostly callers simply care that the page 2676 * contains data that was valid *at some point in time*. Typically, an IO 2677 * or similar operation cannot guarantee anything stronger anyway because 2678 * locks can't be held over the syscall boundary. 2679 * 2680 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2681 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2682 * be called after the page is finished with, and before put_page is called. 2683 * 2684 * get_user_pages_remote is typically used for fewer-copy IO operations, 2685 * to get a handle on the memory by some means other than accesses 2686 * via the user virtual addresses. The pages may be submitted for 2687 * DMA to devices or accessed via their kernel linear mapping (via the 2688 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2689 * 2690 * See also get_user_pages_fast, for performance critical applications. 2691 * 2692 * get_user_pages_remote should be phased out in favor of 2693 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2694 * should use get_user_pages_remote because it cannot pass 2695 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2696 */ 2697 long get_user_pages_remote(struct mm_struct *mm, 2698 unsigned long start, unsigned long nr_pages, 2699 unsigned int gup_flags, struct page **pages, 2700 int *locked) 2701 { 2702 int local_locked = 1; 2703 2704 if (!is_valid_gup_args(pages, locked, &gup_flags, 2705 FOLL_TOUCH | FOLL_REMOTE)) 2706 return -EINVAL; 2707 2708 return __get_user_pages_locked(mm, start, nr_pages, pages, 2709 locked ? locked : &local_locked, 2710 gup_flags); 2711 } 2712 EXPORT_SYMBOL(get_user_pages_remote); 2713 2714 #else /* CONFIG_MMU */ 2715 long get_user_pages_remote(struct mm_struct *mm, 2716 unsigned long start, unsigned long nr_pages, 2717 unsigned int gup_flags, struct page **pages, 2718 int *locked) 2719 { 2720 return 0; 2721 } 2722 #endif /* !CONFIG_MMU */ 2723 2724 /** 2725 * get_user_pages() - pin user pages in memory 2726 * @start: starting user address 2727 * @nr_pages: number of pages from start to pin 2728 * @gup_flags: flags modifying lookup behaviour 2729 * @pages: array that receives pointers to the pages pinned. 2730 * Should be at least nr_pages long. Or NULL, if caller 2731 * only intends to ensure the pages are faulted in. 2732 * 2733 * This is the same as get_user_pages_remote(), just with a less-flexible 2734 * calling convention where we assume that the mm being operated on belongs to 2735 * the current task, and doesn't allow passing of a locked parameter. We also 2736 * obviously don't pass FOLL_REMOTE in here. 2737 */ 2738 long get_user_pages(unsigned long start, unsigned long nr_pages, 2739 unsigned int gup_flags, struct page **pages) 2740 { 2741 int locked = 1; 2742 2743 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2744 return -EINVAL; 2745 2746 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2747 &locked, gup_flags); 2748 } 2749 EXPORT_SYMBOL(get_user_pages); 2750 2751 /* 2752 * get_user_pages_unlocked() is suitable to replace the form: 2753 * 2754 * mmap_read_lock(mm); 2755 * get_user_pages(mm, ..., pages, NULL); 2756 * mmap_read_unlock(mm); 2757 * 2758 * with: 2759 * 2760 * get_user_pages_unlocked(mm, ..., pages); 2761 * 2762 * It is functionally equivalent to get_user_pages_fast so 2763 * get_user_pages_fast should be used instead if specific gup_flags 2764 * (e.g. FOLL_FORCE) are not required. 2765 */ 2766 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2767 struct page **pages, unsigned int gup_flags) 2768 { 2769 int locked = 0; 2770 2771 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2772 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2773 return -EINVAL; 2774 2775 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2776 &locked, gup_flags); 2777 } 2778 EXPORT_SYMBOL(get_user_pages_unlocked); 2779 2780 /* 2781 * GUP-fast 2782 * 2783 * get_user_pages_fast attempts to pin user pages by walking the page 2784 * tables directly and avoids taking locks. Thus the walker needs to be 2785 * protected from page table pages being freed from under it, and should 2786 * block any THP splits. 2787 * 2788 * One way to achieve this is to have the walker disable interrupts, and 2789 * rely on IPIs from the TLB flushing code blocking before the page table 2790 * pages are freed. This is unsuitable for architectures that do not need 2791 * to broadcast an IPI when invalidating TLBs. 2792 * 2793 * Another way to achieve this is to batch up page table containing pages 2794 * belonging to more than one mm_user, then rcu_sched a callback to free those 2795 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2796 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2797 * (which is a relatively rare event). The code below adopts this strategy. 2798 * 2799 * Before activating this code, please be aware that the following assumptions 2800 * are currently made: 2801 * 2802 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2803 * free pages containing page tables or TLB flushing requires IPI broadcast. 2804 * 2805 * *) ptes can be read atomically by the architecture. 2806 * 2807 * *) access_ok is sufficient to validate userspace address ranges. 2808 * 2809 * The last two assumptions can be relaxed by the addition of helper functions. 2810 * 2811 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2812 */ 2813 #ifdef CONFIG_HAVE_GUP_FAST 2814 /* 2815 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2816 * a specific folio. 2817 * 2818 * This call assumes the caller has pinned the folio, that the lowest page table 2819 * level still points to this folio, and that interrupts have been disabled. 2820 * 2821 * GUP-fast must reject all secretmem folios. 2822 * 2823 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2824 * (see comment describing the writable_file_mapping_allowed() function). We 2825 * therefore try to avoid the most egregious case of a long-term mapping doing 2826 * so. 2827 * 2828 * This function cannot be as thorough as that one as the VMA is not available 2829 * in the fast path, so instead we whitelist known good cases and if in doubt, 2830 * fall back to the slow path. 2831 */ 2832 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2833 { 2834 bool reject_file_backed = false; 2835 struct address_space *mapping; 2836 bool check_secretmem = false; 2837 unsigned long mapping_flags; 2838 2839 /* 2840 * If we aren't pinning then no problematic write can occur. A long term 2841 * pin is the most egregious case so this is the one we disallow. 2842 */ 2843 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2844 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2845 reject_file_backed = true; 2846 2847 /* We hold a folio reference, so we can safely access folio fields. */ 2848 2849 /* secretmem folios are always order-0 folios. */ 2850 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2851 check_secretmem = true; 2852 2853 if (!reject_file_backed && !check_secretmem) 2854 return true; 2855 2856 if (WARN_ON_ONCE(folio_test_slab(folio))) 2857 return false; 2858 2859 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2860 if (folio_test_hugetlb(folio)) 2861 return true; 2862 2863 /* 2864 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2865 * cannot proceed, which means no actions performed under RCU can 2866 * proceed either. 2867 * 2868 * inodes and thus their mappings are freed under RCU, which means the 2869 * mapping cannot be freed beneath us and thus we can safely dereference 2870 * it. 2871 */ 2872 lockdep_assert_irqs_disabled(); 2873 2874 /* 2875 * However, there may be operations which _alter_ the mapping, so ensure 2876 * we read it once and only once. 2877 */ 2878 mapping = READ_ONCE(folio->mapping); 2879 2880 /* 2881 * The mapping may have been truncated, in any case we cannot determine 2882 * if this mapping is safe - fall back to slow path to determine how to 2883 * proceed. 2884 */ 2885 if (!mapping) 2886 return false; 2887 2888 /* Anonymous folios pose no problem. */ 2889 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2890 if (mapping_flags) 2891 return mapping_flags & PAGE_MAPPING_ANON; 2892 2893 /* 2894 * At this point, we know the mapping is non-null and points to an 2895 * address_space object. 2896 */ 2897 if (check_secretmem && secretmem_mapping(mapping)) 2898 return false; 2899 /* The only remaining allowed file system is shmem. */ 2900 return !reject_file_backed || shmem_mapping(mapping); 2901 } 2902 2903 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2904 unsigned int flags, struct page **pages) 2905 { 2906 while ((*nr) - nr_start) { 2907 struct folio *folio = page_folio(pages[--(*nr)]); 2908 2909 folio_clear_referenced(folio); 2910 gup_put_folio(folio, 1, flags); 2911 } 2912 } 2913 2914 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2915 /* 2916 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2917 * operations. 2918 * 2919 * To pin the page, GUP-fast needs to do below in order: 2920 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2921 * 2922 * For the rest of pgtable operations where pgtable updates can be racy 2923 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2924 * is pinned. 2925 * 2926 * Above will work for all pte-level operations, including THP split. 2927 * 2928 * For THP collapse, it's a bit more complicated because GUP-fast may be 2929 * walking a pgtable page that is being freed (pte is still valid but pmd 2930 * can be cleared already). To avoid race in such condition, we need to 2931 * also check pmd here to make sure pmd doesn't change (corresponds to 2932 * pmdp_collapse_flush() in the THP collapse code path). 2933 */ 2934 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2935 unsigned long end, unsigned int flags, struct page **pages, 2936 int *nr) 2937 { 2938 struct dev_pagemap *pgmap = NULL; 2939 int nr_start = *nr, ret = 0; 2940 pte_t *ptep, *ptem; 2941 2942 ptem = ptep = pte_offset_map(&pmd, addr); 2943 if (!ptep) 2944 return 0; 2945 do { 2946 pte_t pte = ptep_get_lockless(ptep); 2947 struct page *page; 2948 struct folio *folio; 2949 2950 /* 2951 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2952 * pte_access_permitted() better should reject these pages 2953 * either way: otherwise, GUP-fast might succeed in 2954 * cases where ordinary GUP would fail due to VMA access 2955 * permissions. 2956 */ 2957 if (pte_protnone(pte)) 2958 goto pte_unmap; 2959 2960 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2961 goto pte_unmap; 2962 2963 if (pte_devmap(pte)) { 2964 if (unlikely(flags & FOLL_LONGTERM)) 2965 goto pte_unmap; 2966 2967 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2968 if (unlikely(!pgmap)) { 2969 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2970 goto pte_unmap; 2971 } 2972 } else if (pte_special(pte)) 2973 goto pte_unmap; 2974 2975 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2976 page = pte_page(pte); 2977 2978 folio = try_grab_folio_fast(page, 1, flags); 2979 if (!folio) 2980 goto pte_unmap; 2981 2982 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2983 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2984 gup_put_folio(folio, 1, flags); 2985 goto pte_unmap; 2986 } 2987 2988 if (!gup_fast_folio_allowed(folio, flags)) { 2989 gup_put_folio(folio, 1, flags); 2990 goto pte_unmap; 2991 } 2992 2993 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2994 gup_put_folio(folio, 1, flags); 2995 goto pte_unmap; 2996 } 2997 2998 /* 2999 * We need to make the page accessible if and only if we are 3000 * going to access its content (the FOLL_PIN case). Please 3001 * see Documentation/core-api/pin_user_pages.rst for 3002 * details. 3003 */ 3004 if (flags & FOLL_PIN) { 3005 ret = arch_make_page_accessible(page); 3006 if (ret) { 3007 gup_put_folio(folio, 1, flags); 3008 goto pte_unmap; 3009 } 3010 } 3011 folio_set_referenced(folio); 3012 pages[*nr] = page; 3013 (*nr)++; 3014 } while (ptep++, addr += PAGE_SIZE, addr != end); 3015 3016 ret = 1; 3017 3018 pte_unmap: 3019 if (pgmap) 3020 put_dev_pagemap(pgmap); 3021 pte_unmap(ptem); 3022 return ret; 3023 } 3024 #else 3025 3026 /* 3027 * If we can't determine whether or not a pte is special, then fail immediately 3028 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 3029 * to be special. 3030 * 3031 * For a futex to be placed on a THP tail page, get_futex_key requires a 3032 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 3033 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 3034 */ 3035 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 3036 unsigned long end, unsigned int flags, struct page **pages, 3037 int *nr) 3038 { 3039 return 0; 3040 } 3041 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 3042 3043 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 3044 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 3045 unsigned long end, unsigned int flags, struct page **pages, int *nr) 3046 { 3047 int nr_start = *nr; 3048 struct dev_pagemap *pgmap = NULL; 3049 3050 do { 3051 struct folio *folio; 3052 struct page *page = pfn_to_page(pfn); 3053 3054 pgmap = get_dev_pagemap(pfn, pgmap); 3055 if (unlikely(!pgmap)) { 3056 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3057 break; 3058 } 3059 3060 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 3061 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3062 break; 3063 } 3064 3065 folio = try_grab_folio_fast(page, 1, flags); 3066 if (!folio) { 3067 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3068 break; 3069 } 3070 folio_set_referenced(folio); 3071 pages[*nr] = page; 3072 (*nr)++; 3073 pfn++; 3074 } while (addr += PAGE_SIZE, addr != end); 3075 3076 put_dev_pagemap(pgmap); 3077 return addr == end; 3078 } 3079 3080 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3081 unsigned long end, unsigned int flags, struct page **pages, 3082 int *nr) 3083 { 3084 unsigned long fault_pfn; 3085 int nr_start = *nr; 3086 3087 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3088 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3089 return 0; 3090 3091 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3092 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3093 return 0; 3094 } 3095 return 1; 3096 } 3097 3098 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3099 unsigned long end, unsigned int flags, struct page **pages, 3100 int *nr) 3101 { 3102 unsigned long fault_pfn; 3103 int nr_start = *nr; 3104 3105 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3106 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3107 return 0; 3108 3109 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3110 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3111 return 0; 3112 } 3113 return 1; 3114 } 3115 #else 3116 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3117 unsigned long end, unsigned int flags, struct page **pages, 3118 int *nr) 3119 { 3120 BUILD_BUG(); 3121 return 0; 3122 } 3123 3124 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3125 unsigned long end, unsigned int flags, struct page **pages, 3126 int *nr) 3127 { 3128 BUILD_BUG(); 3129 return 0; 3130 } 3131 #endif 3132 3133 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3134 unsigned long end, unsigned int flags, struct page **pages, 3135 int *nr) 3136 { 3137 struct page *page; 3138 struct folio *folio; 3139 int refs; 3140 3141 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3142 return 0; 3143 3144 if (pmd_devmap(orig)) { 3145 if (unlikely(flags & FOLL_LONGTERM)) 3146 return 0; 3147 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3148 pages, nr); 3149 } 3150 3151 page = pmd_page(orig); 3152 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3153 3154 folio = try_grab_folio_fast(page, refs, flags); 3155 if (!folio) 3156 return 0; 3157 3158 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3159 gup_put_folio(folio, refs, flags); 3160 return 0; 3161 } 3162 3163 if (!gup_fast_folio_allowed(folio, flags)) { 3164 gup_put_folio(folio, refs, flags); 3165 return 0; 3166 } 3167 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3168 gup_put_folio(folio, refs, flags); 3169 return 0; 3170 } 3171 3172 *nr += refs; 3173 folio_set_referenced(folio); 3174 return 1; 3175 } 3176 3177 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3178 unsigned long end, unsigned int flags, struct page **pages, 3179 int *nr) 3180 { 3181 struct page *page; 3182 struct folio *folio; 3183 int refs; 3184 3185 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3186 return 0; 3187 3188 if (pud_devmap(orig)) { 3189 if (unlikely(flags & FOLL_LONGTERM)) 3190 return 0; 3191 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3192 pages, nr); 3193 } 3194 3195 page = pud_page(orig); 3196 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3197 3198 folio = try_grab_folio_fast(page, refs, flags); 3199 if (!folio) 3200 return 0; 3201 3202 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3203 gup_put_folio(folio, refs, flags); 3204 return 0; 3205 } 3206 3207 if (!gup_fast_folio_allowed(folio, flags)) { 3208 gup_put_folio(folio, refs, flags); 3209 return 0; 3210 } 3211 3212 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3213 gup_put_folio(folio, refs, flags); 3214 return 0; 3215 } 3216 3217 *nr += refs; 3218 folio_set_referenced(folio); 3219 return 1; 3220 } 3221 3222 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3223 unsigned long end, unsigned int flags, struct page **pages, 3224 int *nr) 3225 { 3226 int refs; 3227 struct page *page; 3228 struct folio *folio; 3229 3230 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3231 return 0; 3232 3233 BUILD_BUG_ON(pgd_devmap(orig)); 3234 3235 page = pgd_page(orig); 3236 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3237 3238 folio = try_grab_folio_fast(page, refs, flags); 3239 if (!folio) 3240 return 0; 3241 3242 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3243 gup_put_folio(folio, refs, flags); 3244 return 0; 3245 } 3246 3247 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3248 gup_put_folio(folio, refs, flags); 3249 return 0; 3250 } 3251 3252 if (!gup_fast_folio_allowed(folio, flags)) { 3253 gup_put_folio(folio, refs, flags); 3254 return 0; 3255 } 3256 3257 *nr += refs; 3258 folio_set_referenced(folio); 3259 return 1; 3260 } 3261 3262 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3263 unsigned long end, unsigned int flags, struct page **pages, 3264 int *nr) 3265 { 3266 unsigned long next; 3267 pmd_t *pmdp; 3268 3269 pmdp = pmd_offset_lockless(pudp, pud, addr); 3270 do { 3271 pmd_t pmd = pmdp_get_lockless(pmdp); 3272 3273 next = pmd_addr_end(addr, end); 3274 if (!pmd_present(pmd)) 3275 return 0; 3276 3277 if (unlikely(pmd_leaf(pmd))) { 3278 /* See gup_fast_pte_range() */ 3279 if (pmd_protnone(pmd)) 3280 return 0; 3281 3282 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3283 pages, nr)) 3284 return 0; 3285 3286 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3287 /* 3288 * architecture have different format for hugetlbfs 3289 * pmd format and THP pmd format 3290 */ 3291 if (gup_hugepd(NULL, __hugepd(pmd_val(pmd)), addr, 3292 PMD_SHIFT, next, flags, pages, nr, 3293 true) != 1) 3294 return 0; 3295 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3296 pages, nr)) 3297 return 0; 3298 } while (pmdp++, addr = next, addr != end); 3299 3300 return 1; 3301 } 3302 3303 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3304 unsigned long end, unsigned int flags, struct page **pages, 3305 int *nr) 3306 { 3307 unsigned long next; 3308 pud_t *pudp; 3309 3310 pudp = pud_offset_lockless(p4dp, p4d, addr); 3311 do { 3312 pud_t pud = READ_ONCE(*pudp); 3313 3314 next = pud_addr_end(addr, end); 3315 if (unlikely(!pud_present(pud))) 3316 return 0; 3317 if (unlikely(pud_leaf(pud))) { 3318 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3319 pages, nr)) 3320 return 0; 3321 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3322 if (gup_hugepd(NULL, __hugepd(pud_val(pud)), addr, 3323 PUD_SHIFT, next, flags, pages, nr, 3324 true) != 1) 3325 return 0; 3326 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3327 pages, nr)) 3328 return 0; 3329 } while (pudp++, addr = next, addr != end); 3330 3331 return 1; 3332 } 3333 3334 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3335 unsigned long end, unsigned int flags, struct page **pages, 3336 int *nr) 3337 { 3338 unsigned long next; 3339 p4d_t *p4dp; 3340 3341 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3342 do { 3343 p4d_t p4d = READ_ONCE(*p4dp); 3344 3345 next = p4d_addr_end(addr, end); 3346 if (!p4d_present(p4d)) 3347 return 0; 3348 BUILD_BUG_ON(p4d_leaf(p4d)); 3349 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3350 if (gup_hugepd(NULL, __hugepd(p4d_val(p4d)), addr, 3351 P4D_SHIFT, next, flags, pages, nr, 3352 true) != 1) 3353 return 0; 3354 } else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3355 pages, nr)) 3356 return 0; 3357 } while (p4dp++, addr = next, addr != end); 3358 3359 return 1; 3360 } 3361 3362 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3363 unsigned int flags, struct page **pages, int *nr) 3364 { 3365 unsigned long next; 3366 pgd_t *pgdp; 3367 3368 pgdp = pgd_offset(current->mm, addr); 3369 do { 3370 pgd_t pgd = READ_ONCE(*pgdp); 3371 3372 next = pgd_addr_end(addr, end); 3373 if (pgd_none(pgd)) 3374 return; 3375 if (unlikely(pgd_leaf(pgd))) { 3376 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3377 pages, nr)) 3378 return; 3379 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3380 if (gup_hugepd(NULL, __hugepd(pgd_val(pgd)), addr, 3381 PGDIR_SHIFT, next, flags, pages, nr, 3382 true) != 1) 3383 return; 3384 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3385 pages, nr)) 3386 return; 3387 } while (pgdp++, addr = next, addr != end); 3388 } 3389 #else 3390 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3391 unsigned int flags, struct page **pages, int *nr) 3392 { 3393 } 3394 #endif /* CONFIG_HAVE_GUP_FAST */ 3395 3396 #ifndef gup_fast_permitted 3397 /* 3398 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3399 * we need to fall back to the slow version: 3400 */ 3401 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3402 { 3403 return true; 3404 } 3405 #endif 3406 3407 static unsigned long gup_fast(unsigned long start, unsigned long end, 3408 unsigned int gup_flags, struct page **pages) 3409 { 3410 unsigned long flags; 3411 int nr_pinned = 0; 3412 unsigned seq; 3413 3414 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3415 !gup_fast_permitted(start, end)) 3416 return 0; 3417 3418 if (gup_flags & FOLL_PIN) { 3419 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3420 if (seq & 1) 3421 return 0; 3422 } 3423 3424 /* 3425 * Disable interrupts. The nested form is used, in order to allow full, 3426 * general purpose use of this routine. 3427 * 3428 * With interrupts disabled, we block page table pages from being freed 3429 * from under us. See struct mmu_table_batch comments in 3430 * include/asm-generic/tlb.h for more details. 3431 * 3432 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3433 * that come from THPs splitting. 3434 */ 3435 local_irq_save(flags); 3436 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3437 local_irq_restore(flags); 3438 3439 /* 3440 * When pinning pages for DMA there could be a concurrent write protect 3441 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3442 */ 3443 if (gup_flags & FOLL_PIN) { 3444 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3445 gup_fast_unpin_user_pages(pages, nr_pinned); 3446 return 0; 3447 } else { 3448 sanity_check_pinned_pages(pages, nr_pinned); 3449 } 3450 } 3451 return nr_pinned; 3452 } 3453 3454 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3455 unsigned int gup_flags, struct page **pages) 3456 { 3457 unsigned long len, end; 3458 unsigned long nr_pinned; 3459 int locked = 0; 3460 int ret; 3461 3462 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3463 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3464 FOLL_FAST_ONLY | FOLL_NOFAULT | 3465 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3466 return -EINVAL; 3467 3468 if (gup_flags & FOLL_PIN) 3469 mm_set_has_pinned_flag(¤t->mm->flags); 3470 3471 if (!(gup_flags & FOLL_FAST_ONLY)) 3472 might_lock_read(¤t->mm->mmap_lock); 3473 3474 start = untagged_addr(start) & PAGE_MASK; 3475 len = nr_pages << PAGE_SHIFT; 3476 if (check_add_overflow(start, len, &end)) 3477 return -EOVERFLOW; 3478 if (end > TASK_SIZE_MAX) 3479 return -EFAULT; 3480 if (unlikely(!access_ok((void __user *)start, len))) 3481 return -EFAULT; 3482 3483 nr_pinned = gup_fast(start, end, gup_flags, pages); 3484 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3485 return nr_pinned; 3486 3487 /* Slow path: try to get the remaining pages with get_user_pages */ 3488 start += nr_pinned << PAGE_SHIFT; 3489 pages += nr_pinned; 3490 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3491 pages, &locked, 3492 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3493 if (ret < 0) { 3494 /* 3495 * The caller has to unpin the pages we already pinned so 3496 * returning -errno is not an option 3497 */ 3498 if (nr_pinned) 3499 return nr_pinned; 3500 return ret; 3501 } 3502 return ret + nr_pinned; 3503 } 3504 3505 /** 3506 * get_user_pages_fast_only() - pin user pages in memory 3507 * @start: starting user address 3508 * @nr_pages: number of pages from start to pin 3509 * @gup_flags: flags modifying pin behaviour 3510 * @pages: array that receives pointers to the pages pinned. 3511 * Should be at least nr_pages long. 3512 * 3513 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3514 * the regular GUP. 3515 * 3516 * If the architecture does not support this function, simply return with no 3517 * pages pinned. 3518 * 3519 * Careful, careful! COW breaking can go either way, so a non-write 3520 * access can get ambiguous page results. If you call this function without 3521 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3522 */ 3523 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3524 unsigned int gup_flags, struct page **pages) 3525 { 3526 /* 3527 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3528 * because gup fast is always a "pin with a +1 page refcount" request. 3529 * 3530 * FOLL_FAST_ONLY is required in order to match the API description of 3531 * this routine: no fall back to regular ("slow") GUP. 3532 */ 3533 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3534 FOLL_GET | FOLL_FAST_ONLY)) 3535 return -EINVAL; 3536 3537 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3538 } 3539 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3540 3541 /** 3542 * get_user_pages_fast() - pin user pages in memory 3543 * @start: starting user address 3544 * @nr_pages: number of pages from start to pin 3545 * @gup_flags: flags modifying pin behaviour 3546 * @pages: array that receives pointers to the pages pinned. 3547 * Should be at least nr_pages long. 3548 * 3549 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3550 * If not successful, it will fall back to taking the lock and 3551 * calling get_user_pages(). 3552 * 3553 * Returns number of pages pinned. This may be fewer than the number requested. 3554 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3555 * -errno. 3556 */ 3557 int get_user_pages_fast(unsigned long start, int nr_pages, 3558 unsigned int gup_flags, struct page **pages) 3559 { 3560 /* 3561 * The caller may or may not have explicitly set FOLL_GET; either way is 3562 * OK. However, internally (within mm/gup.c), gup fast variants must set 3563 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3564 * request. 3565 */ 3566 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3567 return -EINVAL; 3568 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3569 } 3570 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3571 3572 /** 3573 * pin_user_pages_fast() - pin user pages in memory without taking locks 3574 * 3575 * @start: starting user address 3576 * @nr_pages: number of pages from start to pin 3577 * @gup_flags: flags modifying pin behaviour 3578 * @pages: array that receives pointers to the pages pinned. 3579 * Should be at least nr_pages long. 3580 * 3581 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3582 * get_user_pages_fast() for documentation on the function arguments, because 3583 * the arguments here are identical. 3584 * 3585 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3586 * see Documentation/core-api/pin_user_pages.rst for further details. 3587 * 3588 * Note that if a zero_page is amongst the returned pages, it will not have 3589 * pins in it and unpin_user_page() will not remove pins from it. 3590 */ 3591 int pin_user_pages_fast(unsigned long start, int nr_pages, 3592 unsigned int gup_flags, struct page **pages) 3593 { 3594 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3595 return -EINVAL; 3596 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3597 } 3598 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3599 3600 /** 3601 * pin_user_pages_remote() - pin pages of a remote process 3602 * 3603 * @mm: mm_struct of target mm 3604 * @start: starting user address 3605 * @nr_pages: number of pages from start to pin 3606 * @gup_flags: flags modifying lookup behaviour 3607 * @pages: array that receives pointers to the pages pinned. 3608 * Should be at least nr_pages long. 3609 * @locked: pointer to lock flag indicating whether lock is held and 3610 * subsequently whether VM_FAULT_RETRY functionality can be 3611 * utilised. Lock must initially be held. 3612 * 3613 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3614 * get_user_pages_remote() for documentation on the function arguments, because 3615 * the arguments here are identical. 3616 * 3617 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3618 * see Documentation/core-api/pin_user_pages.rst for details. 3619 * 3620 * Note that if a zero_page is amongst the returned pages, it will not have 3621 * pins in it and unpin_user_page*() will not remove pins from it. 3622 */ 3623 long pin_user_pages_remote(struct mm_struct *mm, 3624 unsigned long start, unsigned long nr_pages, 3625 unsigned int gup_flags, struct page **pages, 3626 int *locked) 3627 { 3628 int local_locked = 1; 3629 3630 if (!is_valid_gup_args(pages, locked, &gup_flags, 3631 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3632 return 0; 3633 return __gup_longterm_locked(mm, start, nr_pages, pages, 3634 locked ? locked : &local_locked, 3635 gup_flags); 3636 } 3637 EXPORT_SYMBOL(pin_user_pages_remote); 3638 3639 /** 3640 * pin_user_pages() - pin user pages in memory for use by other devices 3641 * 3642 * @start: starting user address 3643 * @nr_pages: number of pages from start to pin 3644 * @gup_flags: flags modifying lookup behaviour 3645 * @pages: array that receives pointers to the pages pinned. 3646 * Should be at least nr_pages long. 3647 * 3648 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3649 * FOLL_PIN is set. 3650 * 3651 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3652 * see Documentation/core-api/pin_user_pages.rst for details. 3653 * 3654 * Note that if a zero_page is amongst the returned pages, it will not have 3655 * pins in it and unpin_user_page*() will not remove pins from it. 3656 */ 3657 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3658 unsigned int gup_flags, struct page **pages) 3659 { 3660 int locked = 1; 3661 3662 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3663 return 0; 3664 return __gup_longterm_locked(current->mm, start, nr_pages, 3665 pages, &locked, gup_flags); 3666 } 3667 EXPORT_SYMBOL(pin_user_pages); 3668 3669 /* 3670 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3671 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3672 * FOLL_PIN and rejects FOLL_GET. 3673 * 3674 * Note that if a zero_page is amongst the returned pages, it will not have 3675 * pins in it and unpin_user_page*() will not remove pins from it. 3676 */ 3677 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3678 struct page **pages, unsigned int gup_flags) 3679 { 3680 int locked = 0; 3681 3682 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3683 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3684 return 0; 3685 3686 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3687 &locked, gup_flags); 3688 } 3689 EXPORT_SYMBOL(pin_user_pages_unlocked); 3690