xref: /linux/mm/gup.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /*
49  * Return the compound head page with ref appropriately incremented,
50  * or NULL if that failed.
51  */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 	struct page *head = compound_head(page);
55 
56 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 		return NULL;
58 	if (unlikely(!page_cache_add_speculative(head, refs)))
59 		return NULL;
60 	return head;
61 }
62 
63 /*
64  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65  * flags-dependent amount.
66  *
67  * "grab" names in this file mean, "look at flags to decide whether to use
68  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69  *
70  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71  * same time. (That's true throughout the get_user_pages*() and
72  * pin_user_pages*() APIs.) Cases:
73  *
74  *    FOLL_GET: page's refcount will be incremented by 1.
75  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76  *
77  * Return: head page (with refcount appropriately incremented) for success, or
78  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79  * considered failure, and furthermore, a likely bug in the caller, so a warning
80  * is also emitted.
81  */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 							  int refs,
84 							  unsigned int flags)
85 {
86 	if (flags & FOLL_GET)
87 		return try_get_compound_head(page, refs);
88 	else if (flags & FOLL_PIN) {
89 		int orig_refs = refs;
90 
91 		/*
92 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 		 * path, so fail and let the caller fall back to the slow path.
94 		 */
95 		if (unlikely(flags & FOLL_LONGTERM) &&
96 				is_migrate_cma_page(page))
97 			return NULL;
98 
99 		/*
100 		 * When pinning a compound page of order > 1 (which is what
101 		 * hpage_pincount_available() checks for), use an exact count to
102 		 * track it, via hpage_pincount_add/_sub().
103 		 *
104 		 * However, be sure to *also* increment the normal page refcount
105 		 * field at least once, so that the page really is pinned.
106 		 */
107 		if (!hpage_pincount_available(page))
108 			refs *= GUP_PIN_COUNTING_BIAS;
109 
110 		page = try_get_compound_head(page, refs);
111 		if (!page)
112 			return NULL;
113 
114 		if (hpage_pincount_available(page))
115 			hpage_pincount_add(page, refs);
116 
117 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 				    orig_refs);
119 
120 		return page;
121 	}
122 
123 	WARN_ON_ONCE(1);
124 	return NULL;
125 }
126 
127 /**
128  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129  *
130  * This might not do anything at all, depending on the flags argument.
131  *
132  * "grab" names in this file mean, "look at flags to decide whether to use
133  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134  *
135  * @page:    pointer to page to be grabbed
136  * @flags:   gup flags: these are the FOLL_* flag values.
137  *
138  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139  * time. Cases:
140  *
141  *    FOLL_GET: page's refcount will be incremented by 1.
142  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143  *
144  * Return: true for success, or if no action was required (if neither FOLL_PIN
145  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146  * FOLL_PIN was set, but the page could not be grabbed.
147  */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151 
152 	if (flags & FOLL_GET)
153 		return try_get_page(page);
154 	else if (flags & FOLL_PIN) {
155 		int refs = 1;
156 
157 		page = compound_head(page);
158 
159 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 			return false;
161 
162 		if (hpage_pincount_available(page))
163 			hpage_pincount_add(page, 1);
164 		else
165 			refs = GUP_PIN_COUNTING_BIAS;
166 
167 		/*
168 		 * Similar to try_grab_compound_head(): even if using the
169 		 * hpage_pincount_add/_sub() routines, be sure to
170 		 * *also* increment the normal page refcount field at least
171 		 * once, so that the page really is pinned.
172 		 */
173 		page_ref_add(page, refs);
174 
175 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 	}
177 
178 	return true;
179 }
180 
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 	int count, refs = 1;
185 
186 	if (!page_is_devmap_managed(page))
187 		return false;
188 
189 	if (hpage_pincount_available(page))
190 		hpage_pincount_sub(page, 1);
191 	else
192 		refs = GUP_PIN_COUNTING_BIAS;
193 
194 	count = page_ref_sub_return(page, refs);
195 
196 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 	/*
198 	 * devmap page refcounts are 1-based, rather than 0-based: if
199 	 * refcount is 1, then the page is free and the refcount is
200 	 * stable because nobody holds a reference on the page.
201 	 */
202 	if (count == 1)
203 		free_devmap_managed_page(page);
204 	else if (!count)
205 		__put_page(page);
206 
207 	return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 	return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215 
216 /**
217  * unpin_user_page() - release a dma-pinned page
218  * @page:            pointer to page to be released
219  *
220  * Pages that were pinned via pin_user_pages*() must be released via either
221  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222  * that such pages can be separately tracked and uniquely handled. In
223  * particular, interactions with RDMA and filesystems need special handling.
224  */
225 void unpin_user_page(struct page *page)
226 {
227 	int refs = 1;
228 
229 	page = compound_head(page);
230 
231 	/*
232 	 * For devmap managed pages we need to catch refcount transition from
233 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 	 * page is free and we need to inform the device driver through
235 	 * callback. See include/linux/memremap.h and HMM for details.
236 	 */
237 	if (__unpin_devmap_managed_user_page(page))
238 		return;
239 
240 	if (hpage_pincount_available(page))
241 		hpage_pincount_sub(page, 1);
242 	else
243 		refs = GUP_PIN_COUNTING_BIAS;
244 
245 	if (page_ref_sub_and_test(page, refs))
246 		__put_page(page);
247 
248 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251 
252 /**
253  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254  * @pages:  array of pages to be maybe marked dirty, and definitely released.
255  * @npages: number of pages in the @pages array.
256  * @make_dirty: whether to mark the pages dirty
257  *
258  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259  * variants called on that page.
260  *
261  * For each page in the @pages array, make that page (or its head page, if a
262  * compound page) dirty, if @make_dirty is true, and if the page was previously
263  * listed as clean. In any case, releases all pages using unpin_user_page(),
264  * possibly via unpin_user_pages(), for the non-dirty case.
265  *
266  * Please see the unpin_user_page() documentation for details.
267  *
268  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269  * required, then the caller should a) verify that this is really correct,
270  * because _lock() is usually required, and b) hand code it:
271  * set_page_dirty_lock(), unpin_user_page().
272  *
273  */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 				 bool make_dirty)
276 {
277 	unsigned long index;
278 
279 	/*
280 	 * TODO: this can be optimized for huge pages: if a series of pages is
281 	 * physically contiguous and part of the same compound page, then a
282 	 * single operation to the head page should suffice.
283 	 */
284 
285 	if (!make_dirty) {
286 		unpin_user_pages(pages, npages);
287 		return;
288 	}
289 
290 	for (index = 0; index < npages; index++) {
291 		struct page *page = compound_head(pages[index]);
292 		/*
293 		 * Checking PageDirty at this point may race with
294 		 * clear_page_dirty_for_io(), but that's OK. Two key
295 		 * cases:
296 		 *
297 		 * 1) This code sees the page as already dirty, so it
298 		 * skips the call to set_page_dirty(). That could happen
299 		 * because clear_page_dirty_for_io() called
300 		 * page_mkclean(), followed by set_page_dirty().
301 		 * However, now the page is going to get written back,
302 		 * which meets the original intention of setting it
303 		 * dirty, so all is well: clear_page_dirty_for_io() goes
304 		 * on to call TestClearPageDirty(), and write the page
305 		 * back.
306 		 *
307 		 * 2) This code sees the page as clean, so it calls
308 		 * set_page_dirty(). The page stays dirty, despite being
309 		 * written back, so it gets written back again in the
310 		 * next writeback cycle. This is harmless.
311 		 */
312 		if (!PageDirty(page))
313 			set_page_dirty_lock(page);
314 		unpin_user_page(page);
315 	}
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318 
319 /**
320  * unpin_user_pages() - release an array of gup-pinned pages.
321  * @pages:  array of pages to be marked dirty and released.
322  * @npages: number of pages in the @pages array.
323  *
324  * For each page in the @pages array, release the page using unpin_user_page().
325  *
326  * Please see the unpin_user_page() documentation for details.
327  */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 	unsigned long index;
331 
332 	/*
333 	 * TODO: this can be optimized for huge pages: if a series of pages is
334 	 * physically contiguous and part of the same compound page, then a
335 	 * single operation to the head page should suffice.
336 	 */
337 	for (index = 0; index < npages; index++)
338 		unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341 
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 		unsigned int flags)
345 {
346 	/*
347 	 * When core dumping an enormous anonymous area that nobody
348 	 * has touched so far, we don't want to allocate unnecessary pages or
349 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
350 	 * then get_dump_page() will return NULL to leave a hole in the dump.
351 	 * But we can only make this optimization where a hole would surely
352 	 * be zero-filled if handle_mm_fault() actually did handle it.
353 	 */
354 	if ((flags & FOLL_DUMP) &&
355 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 		return ERR_PTR(-EFAULT);
357 	return NULL;
358 }
359 
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 		pte_t *pte, unsigned int flags)
362 {
363 	/* No page to get reference */
364 	if (flags & FOLL_GET)
365 		return -EFAULT;
366 
367 	if (flags & FOLL_TOUCH) {
368 		pte_t entry = *pte;
369 
370 		if (flags & FOLL_WRITE)
371 			entry = pte_mkdirty(entry);
372 		entry = pte_mkyoung(entry);
373 
374 		if (!pte_same(*pte, entry)) {
375 			set_pte_at(vma->vm_mm, address, pte, entry);
376 			update_mmu_cache(vma, address, pte);
377 		}
378 	}
379 
380 	/* Proper page table entry exists, but no corresponding struct page */
381 	return -EEXIST;
382 }
383 
384 /*
385  * FOLL_FORCE can write to even unwritable pte's, but only
386  * after we've gone through a COW cycle and they are dirty.
387  */
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 {
390 	return pte_write(pte) ||
391 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
392 }
393 
394 static struct page *follow_page_pte(struct vm_area_struct *vma,
395 		unsigned long address, pmd_t *pmd, unsigned int flags,
396 		struct dev_pagemap **pgmap)
397 {
398 	struct mm_struct *mm = vma->vm_mm;
399 	struct page *page;
400 	spinlock_t *ptl;
401 	pte_t *ptep, pte;
402 	int ret;
403 
404 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
405 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
406 			 (FOLL_PIN | FOLL_GET)))
407 		return ERR_PTR(-EINVAL);
408 retry:
409 	if (unlikely(pmd_bad(*pmd)))
410 		return no_page_table(vma, flags);
411 
412 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
413 	pte = *ptep;
414 	if (!pte_present(pte)) {
415 		swp_entry_t entry;
416 		/*
417 		 * KSM's break_ksm() relies upon recognizing a ksm page
418 		 * even while it is being migrated, so for that case we
419 		 * need migration_entry_wait().
420 		 */
421 		if (likely(!(flags & FOLL_MIGRATION)))
422 			goto no_page;
423 		if (pte_none(pte))
424 			goto no_page;
425 		entry = pte_to_swp_entry(pte);
426 		if (!is_migration_entry(entry))
427 			goto no_page;
428 		pte_unmap_unlock(ptep, ptl);
429 		migration_entry_wait(mm, pmd, address);
430 		goto retry;
431 	}
432 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
433 		goto no_page;
434 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
435 		pte_unmap_unlock(ptep, ptl);
436 		return NULL;
437 	}
438 
439 	page = vm_normal_page(vma, address, pte);
440 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
441 		/*
442 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
443 		 * case since they are only valid while holding the pgmap
444 		 * reference.
445 		 */
446 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
447 		if (*pgmap)
448 			page = pte_page(pte);
449 		else
450 			goto no_page;
451 	} else if (unlikely(!page)) {
452 		if (flags & FOLL_DUMP) {
453 			/* Avoid special (like zero) pages in core dumps */
454 			page = ERR_PTR(-EFAULT);
455 			goto out;
456 		}
457 
458 		if (is_zero_pfn(pte_pfn(pte))) {
459 			page = pte_page(pte);
460 		} else {
461 			ret = follow_pfn_pte(vma, address, ptep, flags);
462 			page = ERR_PTR(ret);
463 			goto out;
464 		}
465 	}
466 
467 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
468 		get_page(page);
469 		pte_unmap_unlock(ptep, ptl);
470 		lock_page(page);
471 		ret = split_huge_page(page);
472 		unlock_page(page);
473 		put_page(page);
474 		if (ret)
475 			return ERR_PTR(ret);
476 		goto retry;
477 	}
478 
479 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
480 	if (unlikely(!try_grab_page(page, flags))) {
481 		page = ERR_PTR(-ENOMEM);
482 		goto out;
483 	}
484 	/*
485 	 * We need to make the page accessible if and only if we are going
486 	 * to access its content (the FOLL_PIN case).  Please see
487 	 * Documentation/core-api/pin_user_pages.rst for details.
488 	 */
489 	if (flags & FOLL_PIN) {
490 		ret = arch_make_page_accessible(page);
491 		if (ret) {
492 			unpin_user_page(page);
493 			page = ERR_PTR(ret);
494 			goto out;
495 		}
496 	}
497 	if (flags & FOLL_TOUCH) {
498 		if ((flags & FOLL_WRITE) &&
499 		    !pte_dirty(pte) && !PageDirty(page))
500 			set_page_dirty(page);
501 		/*
502 		 * pte_mkyoung() would be more correct here, but atomic care
503 		 * is needed to avoid losing the dirty bit: it is easier to use
504 		 * mark_page_accessed().
505 		 */
506 		mark_page_accessed(page);
507 	}
508 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
509 		/* Do not mlock pte-mapped THP */
510 		if (PageTransCompound(page))
511 			goto out;
512 
513 		/*
514 		 * The preliminary mapping check is mainly to avoid the
515 		 * pointless overhead of lock_page on the ZERO_PAGE
516 		 * which might bounce very badly if there is contention.
517 		 *
518 		 * If the page is already locked, we don't need to
519 		 * handle it now - vmscan will handle it later if and
520 		 * when it attempts to reclaim the page.
521 		 */
522 		if (page->mapping && trylock_page(page)) {
523 			lru_add_drain();  /* push cached pages to LRU */
524 			/*
525 			 * Because we lock page here, and migration is
526 			 * blocked by the pte's page reference, and we
527 			 * know the page is still mapped, we don't even
528 			 * need to check for file-cache page truncation.
529 			 */
530 			mlock_vma_page(page);
531 			unlock_page(page);
532 		}
533 	}
534 out:
535 	pte_unmap_unlock(ptep, ptl);
536 	return page;
537 no_page:
538 	pte_unmap_unlock(ptep, ptl);
539 	if (!pte_none(pte))
540 		return NULL;
541 	return no_page_table(vma, flags);
542 }
543 
544 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
545 				    unsigned long address, pud_t *pudp,
546 				    unsigned int flags,
547 				    struct follow_page_context *ctx)
548 {
549 	pmd_t *pmd, pmdval;
550 	spinlock_t *ptl;
551 	struct page *page;
552 	struct mm_struct *mm = vma->vm_mm;
553 
554 	pmd = pmd_offset(pudp, address);
555 	/*
556 	 * The READ_ONCE() will stabilize the pmdval in a register or
557 	 * on the stack so that it will stop changing under the code.
558 	 */
559 	pmdval = READ_ONCE(*pmd);
560 	if (pmd_none(pmdval))
561 		return no_page_table(vma, flags);
562 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
563 		page = follow_huge_pmd(mm, address, pmd, flags);
564 		if (page)
565 			return page;
566 		return no_page_table(vma, flags);
567 	}
568 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
569 		page = follow_huge_pd(vma, address,
570 				      __hugepd(pmd_val(pmdval)), flags,
571 				      PMD_SHIFT);
572 		if (page)
573 			return page;
574 		return no_page_table(vma, flags);
575 	}
576 retry:
577 	if (!pmd_present(pmdval)) {
578 		if (likely(!(flags & FOLL_MIGRATION)))
579 			return no_page_table(vma, flags);
580 		VM_BUG_ON(thp_migration_supported() &&
581 				  !is_pmd_migration_entry(pmdval));
582 		if (is_pmd_migration_entry(pmdval))
583 			pmd_migration_entry_wait(mm, pmd);
584 		pmdval = READ_ONCE(*pmd);
585 		/*
586 		 * MADV_DONTNEED may convert the pmd to null because
587 		 * mmap_sem is held in read mode
588 		 */
589 		if (pmd_none(pmdval))
590 			return no_page_table(vma, flags);
591 		goto retry;
592 	}
593 	if (pmd_devmap(pmdval)) {
594 		ptl = pmd_lock(mm, pmd);
595 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
596 		spin_unlock(ptl);
597 		if (page)
598 			return page;
599 	}
600 	if (likely(!pmd_trans_huge(pmdval)))
601 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
602 
603 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
604 		return no_page_table(vma, flags);
605 
606 retry_locked:
607 	ptl = pmd_lock(mm, pmd);
608 	if (unlikely(pmd_none(*pmd))) {
609 		spin_unlock(ptl);
610 		return no_page_table(vma, flags);
611 	}
612 	if (unlikely(!pmd_present(*pmd))) {
613 		spin_unlock(ptl);
614 		if (likely(!(flags & FOLL_MIGRATION)))
615 			return no_page_table(vma, flags);
616 		pmd_migration_entry_wait(mm, pmd);
617 		goto retry_locked;
618 	}
619 	if (unlikely(!pmd_trans_huge(*pmd))) {
620 		spin_unlock(ptl);
621 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
622 	}
623 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
624 		int ret;
625 		page = pmd_page(*pmd);
626 		if (is_huge_zero_page(page)) {
627 			spin_unlock(ptl);
628 			ret = 0;
629 			split_huge_pmd(vma, pmd, address);
630 			if (pmd_trans_unstable(pmd))
631 				ret = -EBUSY;
632 		} else if (flags & FOLL_SPLIT) {
633 			if (unlikely(!try_get_page(page))) {
634 				spin_unlock(ptl);
635 				return ERR_PTR(-ENOMEM);
636 			}
637 			spin_unlock(ptl);
638 			lock_page(page);
639 			ret = split_huge_page(page);
640 			unlock_page(page);
641 			put_page(page);
642 			if (pmd_none(*pmd))
643 				return no_page_table(vma, flags);
644 		} else {  /* flags & FOLL_SPLIT_PMD */
645 			spin_unlock(ptl);
646 			split_huge_pmd(vma, pmd, address);
647 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
648 		}
649 
650 		return ret ? ERR_PTR(ret) :
651 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
652 	}
653 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
654 	spin_unlock(ptl);
655 	ctx->page_mask = HPAGE_PMD_NR - 1;
656 	return page;
657 }
658 
659 static struct page *follow_pud_mask(struct vm_area_struct *vma,
660 				    unsigned long address, p4d_t *p4dp,
661 				    unsigned int flags,
662 				    struct follow_page_context *ctx)
663 {
664 	pud_t *pud;
665 	spinlock_t *ptl;
666 	struct page *page;
667 	struct mm_struct *mm = vma->vm_mm;
668 
669 	pud = pud_offset(p4dp, address);
670 	if (pud_none(*pud))
671 		return no_page_table(vma, flags);
672 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
673 		page = follow_huge_pud(mm, address, pud, flags);
674 		if (page)
675 			return page;
676 		return no_page_table(vma, flags);
677 	}
678 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
679 		page = follow_huge_pd(vma, address,
680 				      __hugepd(pud_val(*pud)), flags,
681 				      PUD_SHIFT);
682 		if (page)
683 			return page;
684 		return no_page_table(vma, flags);
685 	}
686 	if (pud_devmap(*pud)) {
687 		ptl = pud_lock(mm, pud);
688 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
689 		spin_unlock(ptl);
690 		if (page)
691 			return page;
692 	}
693 	if (unlikely(pud_bad(*pud)))
694 		return no_page_table(vma, flags);
695 
696 	return follow_pmd_mask(vma, address, pud, flags, ctx);
697 }
698 
699 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
700 				    unsigned long address, pgd_t *pgdp,
701 				    unsigned int flags,
702 				    struct follow_page_context *ctx)
703 {
704 	p4d_t *p4d;
705 	struct page *page;
706 
707 	p4d = p4d_offset(pgdp, address);
708 	if (p4d_none(*p4d))
709 		return no_page_table(vma, flags);
710 	BUILD_BUG_ON(p4d_huge(*p4d));
711 	if (unlikely(p4d_bad(*p4d)))
712 		return no_page_table(vma, flags);
713 
714 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
715 		page = follow_huge_pd(vma, address,
716 				      __hugepd(p4d_val(*p4d)), flags,
717 				      P4D_SHIFT);
718 		if (page)
719 			return page;
720 		return no_page_table(vma, flags);
721 	}
722 	return follow_pud_mask(vma, address, p4d, flags, ctx);
723 }
724 
725 /**
726  * follow_page_mask - look up a page descriptor from a user-virtual address
727  * @vma: vm_area_struct mapping @address
728  * @address: virtual address to look up
729  * @flags: flags modifying lookup behaviour
730  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
731  *       pointer to output page_mask
732  *
733  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
734  *
735  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
736  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
737  *
738  * On output, the @ctx->page_mask is set according to the size of the page.
739  *
740  * Return: the mapped (struct page *), %NULL if no mapping exists, or
741  * an error pointer if there is a mapping to something not represented
742  * by a page descriptor (see also vm_normal_page()).
743  */
744 static struct page *follow_page_mask(struct vm_area_struct *vma,
745 			      unsigned long address, unsigned int flags,
746 			      struct follow_page_context *ctx)
747 {
748 	pgd_t *pgd;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	ctx->page_mask = 0;
753 
754 	/* make this handle hugepd */
755 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
756 	if (!IS_ERR(page)) {
757 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
758 		return page;
759 	}
760 
761 	pgd = pgd_offset(mm, address);
762 
763 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
764 		return no_page_table(vma, flags);
765 
766 	if (pgd_huge(*pgd)) {
767 		page = follow_huge_pgd(mm, address, pgd, flags);
768 		if (page)
769 			return page;
770 		return no_page_table(vma, flags);
771 	}
772 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
773 		page = follow_huge_pd(vma, address,
774 				      __hugepd(pgd_val(*pgd)), flags,
775 				      PGDIR_SHIFT);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 
781 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
782 }
783 
784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
785 			 unsigned int foll_flags)
786 {
787 	struct follow_page_context ctx = { NULL };
788 	struct page *page;
789 
790 	page = follow_page_mask(vma, address, foll_flags, &ctx);
791 	if (ctx.pgmap)
792 		put_dev_pagemap(ctx.pgmap);
793 	return page;
794 }
795 
796 static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 		unsigned int gup_flags, struct vm_area_struct **vma,
798 		struct page **page)
799 {
800 	pgd_t *pgd;
801 	p4d_t *p4d;
802 	pud_t *pud;
803 	pmd_t *pmd;
804 	pte_t *pte;
805 	int ret = -EFAULT;
806 
807 	/* user gate pages are read-only */
808 	if (gup_flags & FOLL_WRITE)
809 		return -EFAULT;
810 	if (address > TASK_SIZE)
811 		pgd = pgd_offset_k(address);
812 	else
813 		pgd = pgd_offset_gate(mm, address);
814 	if (pgd_none(*pgd))
815 		return -EFAULT;
816 	p4d = p4d_offset(pgd, address);
817 	if (p4d_none(*p4d))
818 		return -EFAULT;
819 	pud = pud_offset(p4d, address);
820 	if (pud_none(*pud))
821 		return -EFAULT;
822 	pmd = pmd_offset(pud, address);
823 	if (!pmd_present(*pmd))
824 		return -EFAULT;
825 	VM_BUG_ON(pmd_trans_huge(*pmd));
826 	pte = pte_offset_map(pmd, address);
827 	if (pte_none(*pte))
828 		goto unmap;
829 	*vma = get_gate_vma(mm);
830 	if (!page)
831 		goto out;
832 	*page = vm_normal_page(*vma, address, *pte);
833 	if (!*page) {
834 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 			goto unmap;
836 		*page = pte_page(*pte);
837 	}
838 	if (unlikely(!try_get_page(*page))) {
839 		ret = -ENOMEM;
840 		goto unmap;
841 	}
842 out:
843 	ret = 0;
844 unmap:
845 	pte_unmap(pte);
846 	return ret;
847 }
848 
849 /*
850  * mmap_sem must be held on entry.  If @locked != NULL and *@flags
851  * does not include FOLL_NOWAIT, the mmap_sem may be released.  If it
852  * is, *@locked will be set to 0 and -EBUSY returned.
853  */
854 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
855 		unsigned long address, unsigned int *flags, int *locked)
856 {
857 	unsigned int fault_flags = 0;
858 	vm_fault_t ret;
859 
860 	/* mlock all present pages, but do not fault in new pages */
861 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
862 		return -ENOENT;
863 	if (*flags & FOLL_WRITE)
864 		fault_flags |= FAULT_FLAG_WRITE;
865 	if (*flags & FOLL_REMOTE)
866 		fault_flags |= FAULT_FLAG_REMOTE;
867 	if (locked)
868 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
869 	if (*flags & FOLL_NOWAIT)
870 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
871 	if (*flags & FOLL_TRIED) {
872 		/*
873 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
874 		 * can co-exist
875 		 */
876 		fault_flags |= FAULT_FLAG_TRIED;
877 	}
878 
879 	ret = handle_mm_fault(vma, address, fault_flags);
880 	if (ret & VM_FAULT_ERROR) {
881 		int err = vm_fault_to_errno(ret, *flags);
882 
883 		if (err)
884 			return err;
885 		BUG();
886 	}
887 
888 	if (tsk) {
889 		if (ret & VM_FAULT_MAJOR)
890 			tsk->maj_flt++;
891 		else
892 			tsk->min_flt++;
893 	}
894 
895 	if (ret & VM_FAULT_RETRY) {
896 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
897 			*locked = 0;
898 		return -EBUSY;
899 	}
900 
901 	/*
902 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
903 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
904 	 * can thus safely do subsequent page lookups as if they were reads.
905 	 * But only do so when looping for pte_write is futile: in some cases
906 	 * userspace may also be wanting to write to the gotten user page,
907 	 * which a read fault here might prevent (a readonly page might get
908 	 * reCOWed by userspace write).
909 	 */
910 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
911 		*flags |= FOLL_COW;
912 	return 0;
913 }
914 
915 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
916 {
917 	vm_flags_t vm_flags = vma->vm_flags;
918 	int write = (gup_flags & FOLL_WRITE);
919 	int foreign = (gup_flags & FOLL_REMOTE);
920 
921 	if (vm_flags & (VM_IO | VM_PFNMAP))
922 		return -EFAULT;
923 
924 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
925 		return -EFAULT;
926 
927 	if (write) {
928 		if (!(vm_flags & VM_WRITE)) {
929 			if (!(gup_flags & FOLL_FORCE))
930 				return -EFAULT;
931 			/*
932 			 * We used to let the write,force case do COW in a
933 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
934 			 * set a breakpoint in a read-only mapping of an
935 			 * executable, without corrupting the file (yet only
936 			 * when that file had been opened for writing!).
937 			 * Anon pages in shared mappings are surprising: now
938 			 * just reject it.
939 			 */
940 			if (!is_cow_mapping(vm_flags))
941 				return -EFAULT;
942 		}
943 	} else if (!(vm_flags & VM_READ)) {
944 		if (!(gup_flags & FOLL_FORCE))
945 			return -EFAULT;
946 		/*
947 		 * Is there actually any vma we can reach here which does not
948 		 * have VM_MAYREAD set?
949 		 */
950 		if (!(vm_flags & VM_MAYREAD))
951 			return -EFAULT;
952 	}
953 	/*
954 	 * gups are always data accesses, not instruction
955 	 * fetches, so execute=false here
956 	 */
957 	if (!arch_vma_access_permitted(vma, write, false, foreign))
958 		return -EFAULT;
959 	return 0;
960 }
961 
962 /**
963  * __get_user_pages() - pin user pages in memory
964  * @tsk:	task_struct of target task
965  * @mm:		mm_struct of target mm
966  * @start:	starting user address
967  * @nr_pages:	number of pages from start to pin
968  * @gup_flags:	flags modifying pin behaviour
969  * @pages:	array that receives pointers to the pages pinned.
970  *		Should be at least nr_pages long. Or NULL, if caller
971  *		only intends to ensure the pages are faulted in.
972  * @vmas:	array of pointers to vmas corresponding to each page.
973  *		Or NULL if the caller does not require them.
974  * @locked:     whether we're still with the mmap_sem held
975  *
976  * Returns either number of pages pinned (which may be less than the
977  * number requested), or an error. Details about the return value:
978  *
979  * -- If nr_pages is 0, returns 0.
980  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
981  * -- If nr_pages is >0, and some pages were pinned, returns the number of
982  *    pages pinned. Again, this may be less than nr_pages.
983  *
984  * The caller is responsible for releasing returned @pages, via put_page().
985  *
986  * @vmas are valid only as long as mmap_sem is held.
987  *
988  * Must be called with mmap_sem held.  It may be released.  See below.
989  *
990  * __get_user_pages walks a process's page tables and takes a reference to
991  * each struct page that each user address corresponds to at a given
992  * instant. That is, it takes the page that would be accessed if a user
993  * thread accesses the given user virtual address at that instant.
994  *
995  * This does not guarantee that the page exists in the user mappings when
996  * __get_user_pages returns, and there may even be a completely different
997  * page there in some cases (eg. if mmapped pagecache has been invalidated
998  * and subsequently re faulted). However it does guarantee that the page
999  * won't be freed completely. And mostly callers simply care that the page
1000  * contains data that was valid *at some point in time*. Typically, an IO
1001  * or similar operation cannot guarantee anything stronger anyway because
1002  * locks can't be held over the syscall boundary.
1003  *
1004  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1005  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1006  * appropriate) must be called after the page is finished with, and
1007  * before put_page is called.
1008  *
1009  * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1010  * released by an up_read().  That can happen if @gup_flags does not
1011  * have FOLL_NOWAIT.
1012  *
1013  * A caller using such a combination of @locked and @gup_flags
1014  * must therefore hold the mmap_sem for reading only, and recognize
1015  * when it's been released.  Otherwise, it must be held for either
1016  * reading or writing and will not be released.
1017  *
1018  * In most cases, get_user_pages or get_user_pages_fast should be used
1019  * instead of __get_user_pages. __get_user_pages should be used only if
1020  * you need some special @gup_flags.
1021  */
1022 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1023 		unsigned long start, unsigned long nr_pages,
1024 		unsigned int gup_flags, struct page **pages,
1025 		struct vm_area_struct **vmas, int *locked)
1026 {
1027 	long ret = 0, i = 0;
1028 	struct vm_area_struct *vma = NULL;
1029 	struct follow_page_context ctx = { NULL };
1030 
1031 	if (!nr_pages)
1032 		return 0;
1033 
1034 	start = untagged_addr(start);
1035 
1036 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1037 
1038 	/*
1039 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1040 	 * fault information is unrelated to the reference behaviour of a task
1041 	 * using the address space
1042 	 */
1043 	if (!(gup_flags & FOLL_FORCE))
1044 		gup_flags |= FOLL_NUMA;
1045 
1046 	do {
1047 		struct page *page;
1048 		unsigned int foll_flags = gup_flags;
1049 		unsigned int page_increm;
1050 
1051 		/* first iteration or cross vma bound */
1052 		if (!vma || start >= vma->vm_end) {
1053 			vma = find_extend_vma(mm, start);
1054 			if (!vma && in_gate_area(mm, start)) {
1055 				ret = get_gate_page(mm, start & PAGE_MASK,
1056 						gup_flags, &vma,
1057 						pages ? &pages[i] : NULL);
1058 				if (ret)
1059 					goto out;
1060 				ctx.page_mask = 0;
1061 				goto next_page;
1062 			}
1063 
1064 			if (!vma || check_vma_flags(vma, gup_flags)) {
1065 				ret = -EFAULT;
1066 				goto out;
1067 			}
1068 			if (is_vm_hugetlb_page(vma)) {
1069 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1070 						&start, &nr_pages, i,
1071 						gup_flags, locked);
1072 				if (locked && *locked == 0) {
1073 					/*
1074 					 * We've got a VM_FAULT_RETRY
1075 					 * and we've lost mmap_sem.
1076 					 * We must stop here.
1077 					 */
1078 					BUG_ON(gup_flags & FOLL_NOWAIT);
1079 					BUG_ON(ret != 0);
1080 					goto out;
1081 				}
1082 				continue;
1083 			}
1084 		}
1085 retry:
1086 		/*
1087 		 * If we have a pending SIGKILL, don't keep faulting pages and
1088 		 * potentially allocating memory.
1089 		 */
1090 		if (fatal_signal_pending(current)) {
1091 			ret = -EINTR;
1092 			goto out;
1093 		}
1094 		cond_resched();
1095 
1096 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1097 		if (!page) {
1098 			ret = faultin_page(tsk, vma, start, &foll_flags,
1099 					   locked);
1100 			switch (ret) {
1101 			case 0:
1102 				goto retry;
1103 			case -EBUSY:
1104 				ret = 0;
1105 				fallthrough;
1106 			case -EFAULT:
1107 			case -ENOMEM:
1108 			case -EHWPOISON:
1109 				goto out;
1110 			case -ENOENT:
1111 				goto next_page;
1112 			}
1113 			BUG();
1114 		} else if (PTR_ERR(page) == -EEXIST) {
1115 			/*
1116 			 * Proper page table entry exists, but no corresponding
1117 			 * struct page.
1118 			 */
1119 			goto next_page;
1120 		} else if (IS_ERR(page)) {
1121 			ret = PTR_ERR(page);
1122 			goto out;
1123 		}
1124 		if (pages) {
1125 			pages[i] = page;
1126 			flush_anon_page(vma, page, start);
1127 			flush_dcache_page(page);
1128 			ctx.page_mask = 0;
1129 		}
1130 next_page:
1131 		if (vmas) {
1132 			vmas[i] = vma;
1133 			ctx.page_mask = 0;
1134 		}
1135 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1136 		if (page_increm > nr_pages)
1137 			page_increm = nr_pages;
1138 		i += page_increm;
1139 		start += page_increm * PAGE_SIZE;
1140 		nr_pages -= page_increm;
1141 	} while (nr_pages);
1142 out:
1143 	if (ctx.pgmap)
1144 		put_dev_pagemap(ctx.pgmap);
1145 	return i ? i : ret;
1146 }
1147 
1148 static bool vma_permits_fault(struct vm_area_struct *vma,
1149 			      unsigned int fault_flags)
1150 {
1151 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1152 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1153 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1154 
1155 	if (!(vm_flags & vma->vm_flags))
1156 		return false;
1157 
1158 	/*
1159 	 * The architecture might have a hardware protection
1160 	 * mechanism other than read/write that can deny access.
1161 	 *
1162 	 * gup always represents data access, not instruction
1163 	 * fetches, so execute=false here:
1164 	 */
1165 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1166 		return false;
1167 
1168 	return true;
1169 }
1170 
1171 /*
1172  * fixup_user_fault() - manually resolve a user page fault
1173  * @tsk:	the task_struct to use for page fault accounting, or
1174  *		NULL if faults are not to be recorded.
1175  * @mm:		mm_struct of target mm
1176  * @address:	user address
1177  * @fault_flags:flags to pass down to handle_mm_fault()
1178  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
1179  *		does not allow retry
1180  *
1181  * This is meant to be called in the specific scenario where for locking reasons
1182  * we try to access user memory in atomic context (within a pagefault_disable()
1183  * section), this returns -EFAULT, and we want to resolve the user fault before
1184  * trying again.
1185  *
1186  * Typically this is meant to be used by the futex code.
1187  *
1188  * The main difference with get_user_pages() is that this function will
1189  * unconditionally call handle_mm_fault() which will in turn perform all the
1190  * necessary SW fixup of the dirty and young bits in the PTE, while
1191  * get_user_pages() only guarantees to update these in the struct page.
1192  *
1193  * This is important for some architectures where those bits also gate the
1194  * access permission to the page because they are maintained in software.  On
1195  * such architectures, gup() will not be enough to make a subsequent access
1196  * succeed.
1197  *
1198  * This function will not return with an unlocked mmap_sem. So it has not the
1199  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1200  */
1201 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1202 		     unsigned long address, unsigned int fault_flags,
1203 		     bool *unlocked)
1204 {
1205 	struct vm_area_struct *vma;
1206 	vm_fault_t ret, major = 0;
1207 
1208 	address = untagged_addr(address);
1209 
1210 	if (unlocked)
1211 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1212 
1213 retry:
1214 	vma = find_extend_vma(mm, address);
1215 	if (!vma || address < vma->vm_start)
1216 		return -EFAULT;
1217 
1218 	if (!vma_permits_fault(vma, fault_flags))
1219 		return -EFAULT;
1220 
1221 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1222 	    fatal_signal_pending(current))
1223 		return -EINTR;
1224 
1225 	ret = handle_mm_fault(vma, address, fault_flags);
1226 	major |= ret & VM_FAULT_MAJOR;
1227 	if (ret & VM_FAULT_ERROR) {
1228 		int err = vm_fault_to_errno(ret, 0);
1229 
1230 		if (err)
1231 			return err;
1232 		BUG();
1233 	}
1234 
1235 	if (ret & VM_FAULT_RETRY) {
1236 		down_read(&mm->mmap_sem);
1237 		*unlocked = true;
1238 		fault_flags |= FAULT_FLAG_TRIED;
1239 		goto retry;
1240 	}
1241 
1242 	if (tsk) {
1243 		if (major)
1244 			tsk->maj_flt++;
1245 		else
1246 			tsk->min_flt++;
1247 	}
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(fixup_user_fault);
1251 
1252 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1253 						struct mm_struct *mm,
1254 						unsigned long start,
1255 						unsigned long nr_pages,
1256 						struct page **pages,
1257 						struct vm_area_struct **vmas,
1258 						int *locked,
1259 						unsigned int flags)
1260 {
1261 	long ret, pages_done;
1262 	bool lock_dropped;
1263 
1264 	if (locked) {
1265 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1266 		BUG_ON(vmas);
1267 		/* check caller initialized locked */
1268 		BUG_ON(*locked != 1);
1269 	}
1270 
1271 	/*
1272 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1273 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1274 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1275 	 * for FOLL_GET, not for the newer FOLL_PIN.
1276 	 *
1277 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1278 	 * that here, as any failures will be obvious enough.
1279 	 */
1280 	if (pages && !(flags & FOLL_PIN))
1281 		flags |= FOLL_GET;
1282 
1283 	pages_done = 0;
1284 	lock_dropped = false;
1285 	for (;;) {
1286 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1287 				       vmas, locked);
1288 		if (!locked)
1289 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1290 			return ret;
1291 
1292 		/* VM_FAULT_RETRY cannot return errors */
1293 		if (!*locked) {
1294 			BUG_ON(ret < 0);
1295 			BUG_ON(ret >= nr_pages);
1296 		}
1297 
1298 		if (ret > 0) {
1299 			nr_pages -= ret;
1300 			pages_done += ret;
1301 			if (!nr_pages)
1302 				break;
1303 		}
1304 		if (*locked) {
1305 			/*
1306 			 * VM_FAULT_RETRY didn't trigger or it was a
1307 			 * FOLL_NOWAIT.
1308 			 */
1309 			if (!pages_done)
1310 				pages_done = ret;
1311 			break;
1312 		}
1313 		/*
1314 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1315 		 * For the prefault case (!pages) we only update counts.
1316 		 */
1317 		if (likely(pages))
1318 			pages += ret;
1319 		start += ret << PAGE_SHIFT;
1320 		lock_dropped = true;
1321 
1322 retry:
1323 		/*
1324 		 * Repeat on the address that fired VM_FAULT_RETRY
1325 		 * with both FAULT_FLAG_ALLOW_RETRY and
1326 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1327 		 * by fatal signals, so we need to check it before we
1328 		 * start trying again otherwise it can loop forever.
1329 		 */
1330 
1331 		if (fatal_signal_pending(current)) {
1332 			if (!pages_done)
1333 				pages_done = -EINTR;
1334 			break;
1335 		}
1336 
1337 		ret = down_read_killable(&mm->mmap_sem);
1338 		if (ret) {
1339 			BUG_ON(ret > 0);
1340 			if (!pages_done)
1341 				pages_done = ret;
1342 			break;
1343 		}
1344 
1345 		*locked = 1;
1346 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1347 				       pages, NULL, locked);
1348 		if (!*locked) {
1349 			/* Continue to retry until we succeeded */
1350 			BUG_ON(ret != 0);
1351 			goto retry;
1352 		}
1353 		if (ret != 1) {
1354 			BUG_ON(ret > 1);
1355 			if (!pages_done)
1356 				pages_done = ret;
1357 			break;
1358 		}
1359 		nr_pages--;
1360 		pages_done++;
1361 		if (!nr_pages)
1362 			break;
1363 		if (likely(pages))
1364 			pages++;
1365 		start += PAGE_SIZE;
1366 	}
1367 	if (lock_dropped && *locked) {
1368 		/*
1369 		 * We must let the caller know we temporarily dropped the lock
1370 		 * and so the critical section protected by it was lost.
1371 		 */
1372 		up_read(&mm->mmap_sem);
1373 		*locked = 0;
1374 	}
1375 	return pages_done;
1376 }
1377 
1378 /**
1379  * populate_vma_page_range() -  populate a range of pages in the vma.
1380  * @vma:   target vma
1381  * @start: start address
1382  * @end:   end address
1383  * @locked: whether the mmap_sem is still held
1384  *
1385  * This takes care of mlocking the pages too if VM_LOCKED is set.
1386  *
1387  * return 0 on success, negative error code on error.
1388  *
1389  * vma->vm_mm->mmap_sem must be held.
1390  *
1391  * If @locked is NULL, it may be held for read or write and will
1392  * be unperturbed.
1393  *
1394  * If @locked is non-NULL, it must held for read only and may be
1395  * released.  If it's released, *@locked will be set to 0.
1396  */
1397 long populate_vma_page_range(struct vm_area_struct *vma,
1398 		unsigned long start, unsigned long end, int *locked)
1399 {
1400 	struct mm_struct *mm = vma->vm_mm;
1401 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1402 	int gup_flags;
1403 
1404 	VM_BUG_ON(start & ~PAGE_MASK);
1405 	VM_BUG_ON(end   & ~PAGE_MASK);
1406 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1407 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1408 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1409 
1410 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1411 	if (vma->vm_flags & VM_LOCKONFAULT)
1412 		gup_flags &= ~FOLL_POPULATE;
1413 	/*
1414 	 * We want to touch writable mappings with a write fault in order
1415 	 * to break COW, except for shared mappings because these don't COW
1416 	 * and we would not want to dirty them for nothing.
1417 	 */
1418 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1419 		gup_flags |= FOLL_WRITE;
1420 
1421 	/*
1422 	 * We want mlock to succeed for regions that have any permissions
1423 	 * other than PROT_NONE.
1424 	 */
1425 	if (vma_is_accessible(vma))
1426 		gup_flags |= FOLL_FORCE;
1427 
1428 	/*
1429 	 * We made sure addr is within a VMA, so the following will
1430 	 * not result in a stack expansion that recurses back here.
1431 	 */
1432 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1433 				NULL, NULL, locked);
1434 }
1435 
1436 /*
1437  * __mm_populate - populate and/or mlock pages within a range of address space.
1438  *
1439  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1440  * flags. VMAs must be already marked with the desired vm_flags, and
1441  * mmap_sem must not be held.
1442  */
1443 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1444 {
1445 	struct mm_struct *mm = current->mm;
1446 	unsigned long end, nstart, nend;
1447 	struct vm_area_struct *vma = NULL;
1448 	int locked = 0;
1449 	long ret = 0;
1450 
1451 	end = start + len;
1452 
1453 	for (nstart = start; nstart < end; nstart = nend) {
1454 		/*
1455 		 * We want to fault in pages for [nstart; end) address range.
1456 		 * Find first corresponding VMA.
1457 		 */
1458 		if (!locked) {
1459 			locked = 1;
1460 			down_read(&mm->mmap_sem);
1461 			vma = find_vma(mm, nstart);
1462 		} else if (nstart >= vma->vm_end)
1463 			vma = vma->vm_next;
1464 		if (!vma || vma->vm_start >= end)
1465 			break;
1466 		/*
1467 		 * Set [nstart; nend) to intersection of desired address
1468 		 * range with the first VMA. Also, skip undesirable VMA types.
1469 		 */
1470 		nend = min(end, vma->vm_end);
1471 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1472 			continue;
1473 		if (nstart < vma->vm_start)
1474 			nstart = vma->vm_start;
1475 		/*
1476 		 * Now fault in a range of pages. populate_vma_page_range()
1477 		 * double checks the vma flags, so that it won't mlock pages
1478 		 * if the vma was already munlocked.
1479 		 */
1480 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1481 		if (ret < 0) {
1482 			if (ignore_errors) {
1483 				ret = 0;
1484 				continue;	/* continue at next VMA */
1485 			}
1486 			break;
1487 		}
1488 		nend = nstart + ret * PAGE_SIZE;
1489 		ret = 0;
1490 	}
1491 	if (locked)
1492 		up_read(&mm->mmap_sem);
1493 	return ret;	/* 0 or negative error code */
1494 }
1495 
1496 /**
1497  * get_dump_page() - pin user page in memory while writing it to core dump
1498  * @addr: user address
1499  *
1500  * Returns struct page pointer of user page pinned for dump,
1501  * to be freed afterwards by put_page().
1502  *
1503  * Returns NULL on any kind of failure - a hole must then be inserted into
1504  * the corefile, to preserve alignment with its headers; and also returns
1505  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1506  * allowing a hole to be left in the corefile to save diskspace.
1507  *
1508  * Called without mmap_sem, but after all other threads have been killed.
1509  */
1510 #ifdef CONFIG_ELF_CORE
1511 struct page *get_dump_page(unsigned long addr)
1512 {
1513 	struct vm_area_struct *vma;
1514 	struct page *page;
1515 
1516 	if (__get_user_pages(current, current->mm, addr, 1,
1517 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1518 			     NULL) < 1)
1519 		return NULL;
1520 	flush_cache_page(vma, addr, page_to_pfn(page));
1521 	return page;
1522 }
1523 #endif /* CONFIG_ELF_CORE */
1524 #else /* CONFIG_MMU */
1525 static long __get_user_pages_locked(struct task_struct *tsk,
1526 		struct mm_struct *mm, unsigned long start,
1527 		unsigned long nr_pages, struct page **pages,
1528 		struct vm_area_struct **vmas, int *locked,
1529 		unsigned int foll_flags)
1530 {
1531 	struct vm_area_struct *vma;
1532 	unsigned long vm_flags;
1533 	int i;
1534 
1535 	/* calculate required read or write permissions.
1536 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1537 	 */
1538 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1539 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1540 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1541 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1542 
1543 	for (i = 0; i < nr_pages; i++) {
1544 		vma = find_vma(mm, start);
1545 		if (!vma)
1546 			goto finish_or_fault;
1547 
1548 		/* protect what we can, including chardevs */
1549 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1550 		    !(vm_flags & vma->vm_flags))
1551 			goto finish_or_fault;
1552 
1553 		if (pages) {
1554 			pages[i] = virt_to_page(start);
1555 			if (pages[i])
1556 				get_page(pages[i]);
1557 		}
1558 		if (vmas)
1559 			vmas[i] = vma;
1560 		start = (start + PAGE_SIZE) & PAGE_MASK;
1561 	}
1562 
1563 	return i;
1564 
1565 finish_or_fault:
1566 	return i ? : -EFAULT;
1567 }
1568 #endif /* !CONFIG_MMU */
1569 
1570 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1571 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1572 {
1573 	long i;
1574 	struct vm_area_struct *vma_prev = NULL;
1575 
1576 	for (i = 0; i < nr_pages; i++) {
1577 		struct vm_area_struct *vma = vmas[i];
1578 
1579 		if (vma == vma_prev)
1580 			continue;
1581 
1582 		vma_prev = vma;
1583 
1584 		if (vma_is_fsdax(vma))
1585 			return true;
1586 	}
1587 	return false;
1588 }
1589 
1590 #ifdef CONFIG_CMA
1591 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1592 {
1593 	/*
1594 	 * We want to make sure we allocate the new page from the same node
1595 	 * as the source page.
1596 	 */
1597 	int nid = page_to_nid(page);
1598 	/*
1599 	 * Trying to allocate a page for migration. Ignore allocation
1600 	 * failure warnings. We don't force __GFP_THISNODE here because
1601 	 * this node here is the node where we have CMA reservation and
1602 	 * in some case these nodes will have really less non movable
1603 	 * allocation memory.
1604 	 */
1605 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1606 
1607 	if (PageHighMem(page))
1608 		gfp_mask |= __GFP_HIGHMEM;
1609 
1610 #ifdef CONFIG_HUGETLB_PAGE
1611 	if (PageHuge(page)) {
1612 		struct hstate *h = page_hstate(page);
1613 		/*
1614 		 * We don't want to dequeue from the pool because pool pages will
1615 		 * mostly be from the CMA region.
1616 		 */
1617 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1618 	}
1619 #endif
1620 	if (PageTransHuge(page)) {
1621 		struct page *thp;
1622 		/*
1623 		 * ignore allocation failure warnings
1624 		 */
1625 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1626 
1627 		/*
1628 		 * Remove the movable mask so that we don't allocate from
1629 		 * CMA area again.
1630 		 */
1631 		thp_gfpmask &= ~__GFP_MOVABLE;
1632 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1633 		if (!thp)
1634 			return NULL;
1635 		prep_transhuge_page(thp);
1636 		return thp;
1637 	}
1638 
1639 	return __alloc_pages_node(nid, gfp_mask, 0);
1640 }
1641 
1642 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1643 					struct mm_struct *mm,
1644 					unsigned long start,
1645 					unsigned long nr_pages,
1646 					struct page **pages,
1647 					struct vm_area_struct **vmas,
1648 					unsigned int gup_flags)
1649 {
1650 	unsigned long i;
1651 	unsigned long step;
1652 	bool drain_allow = true;
1653 	bool migrate_allow = true;
1654 	LIST_HEAD(cma_page_list);
1655 	long ret = nr_pages;
1656 
1657 check_again:
1658 	for (i = 0; i < nr_pages;) {
1659 
1660 		struct page *head = compound_head(pages[i]);
1661 
1662 		/*
1663 		 * gup may start from a tail page. Advance step by the left
1664 		 * part.
1665 		 */
1666 		step = compound_nr(head) - (pages[i] - head);
1667 		/*
1668 		 * If we get a page from the CMA zone, since we are going to
1669 		 * be pinning these entries, we might as well move them out
1670 		 * of the CMA zone if possible.
1671 		 */
1672 		if (is_migrate_cma_page(head)) {
1673 			if (PageHuge(head))
1674 				isolate_huge_page(head, &cma_page_list);
1675 			else {
1676 				if (!PageLRU(head) && drain_allow) {
1677 					lru_add_drain_all();
1678 					drain_allow = false;
1679 				}
1680 
1681 				if (!isolate_lru_page(head)) {
1682 					list_add_tail(&head->lru, &cma_page_list);
1683 					mod_node_page_state(page_pgdat(head),
1684 							    NR_ISOLATED_ANON +
1685 							    page_is_file_lru(head),
1686 							    hpage_nr_pages(head));
1687 				}
1688 			}
1689 		}
1690 
1691 		i += step;
1692 	}
1693 
1694 	if (!list_empty(&cma_page_list)) {
1695 		/*
1696 		 * drop the above get_user_pages reference.
1697 		 */
1698 		for (i = 0; i < nr_pages; i++)
1699 			put_page(pages[i]);
1700 
1701 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1702 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1703 			/*
1704 			 * some of the pages failed migration. Do get_user_pages
1705 			 * without migration.
1706 			 */
1707 			migrate_allow = false;
1708 
1709 			if (!list_empty(&cma_page_list))
1710 				putback_movable_pages(&cma_page_list);
1711 		}
1712 		/*
1713 		 * We did migrate all the pages, Try to get the page references
1714 		 * again migrating any new CMA pages which we failed to isolate
1715 		 * earlier.
1716 		 */
1717 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1718 						   pages, vmas, NULL,
1719 						   gup_flags);
1720 
1721 		if ((ret > 0) && migrate_allow) {
1722 			nr_pages = ret;
1723 			drain_allow = true;
1724 			goto check_again;
1725 		}
1726 	}
1727 
1728 	return ret;
1729 }
1730 #else
1731 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1732 					struct mm_struct *mm,
1733 					unsigned long start,
1734 					unsigned long nr_pages,
1735 					struct page **pages,
1736 					struct vm_area_struct **vmas,
1737 					unsigned int gup_flags)
1738 {
1739 	return nr_pages;
1740 }
1741 #endif /* CONFIG_CMA */
1742 
1743 /*
1744  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1745  * allows us to process the FOLL_LONGTERM flag.
1746  */
1747 static long __gup_longterm_locked(struct task_struct *tsk,
1748 				  struct mm_struct *mm,
1749 				  unsigned long start,
1750 				  unsigned long nr_pages,
1751 				  struct page **pages,
1752 				  struct vm_area_struct **vmas,
1753 				  unsigned int gup_flags)
1754 {
1755 	struct vm_area_struct **vmas_tmp = vmas;
1756 	unsigned long flags = 0;
1757 	long rc, i;
1758 
1759 	if (gup_flags & FOLL_LONGTERM) {
1760 		if (!pages)
1761 			return -EINVAL;
1762 
1763 		if (!vmas_tmp) {
1764 			vmas_tmp = kcalloc(nr_pages,
1765 					   sizeof(struct vm_area_struct *),
1766 					   GFP_KERNEL);
1767 			if (!vmas_tmp)
1768 				return -ENOMEM;
1769 		}
1770 		flags = memalloc_nocma_save();
1771 	}
1772 
1773 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1774 				     vmas_tmp, NULL, gup_flags);
1775 
1776 	if (gup_flags & FOLL_LONGTERM) {
1777 		memalloc_nocma_restore(flags);
1778 		if (rc < 0)
1779 			goto out;
1780 
1781 		if (check_dax_vmas(vmas_tmp, rc)) {
1782 			for (i = 0; i < rc; i++)
1783 				put_page(pages[i]);
1784 			rc = -EOPNOTSUPP;
1785 			goto out;
1786 		}
1787 
1788 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1789 						 vmas_tmp, gup_flags);
1790 	}
1791 
1792 out:
1793 	if (vmas_tmp != vmas)
1794 		kfree(vmas_tmp);
1795 	return rc;
1796 }
1797 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1798 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1799 						  struct mm_struct *mm,
1800 						  unsigned long start,
1801 						  unsigned long nr_pages,
1802 						  struct page **pages,
1803 						  struct vm_area_struct **vmas,
1804 						  unsigned int flags)
1805 {
1806 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1807 				       NULL, flags);
1808 }
1809 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1810 
1811 #ifdef CONFIG_MMU
1812 static long __get_user_pages_remote(struct task_struct *tsk,
1813 				    struct mm_struct *mm,
1814 				    unsigned long start, unsigned long nr_pages,
1815 				    unsigned int gup_flags, struct page **pages,
1816 				    struct vm_area_struct **vmas, int *locked)
1817 {
1818 	/*
1819 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1820 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1821 	 * vmas. However, this only comes up if locked is set, and there are
1822 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1823 	 * allow what we can.
1824 	 */
1825 	if (gup_flags & FOLL_LONGTERM) {
1826 		if (WARN_ON_ONCE(locked))
1827 			return -EINVAL;
1828 		/*
1829 		 * This will check the vmas (even if our vmas arg is NULL)
1830 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1831 		 */
1832 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1833 					     vmas, gup_flags | FOLL_TOUCH |
1834 					     FOLL_REMOTE);
1835 	}
1836 
1837 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1838 				       locked,
1839 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1840 }
1841 
1842 /*
1843  * get_user_pages_remote() - pin user pages in memory
1844  * @tsk:	the task_struct to use for page fault accounting, or
1845  *		NULL if faults are not to be recorded.
1846  * @mm:		mm_struct of target mm
1847  * @start:	starting user address
1848  * @nr_pages:	number of pages from start to pin
1849  * @gup_flags:	flags modifying lookup behaviour
1850  * @pages:	array that receives pointers to the pages pinned.
1851  *		Should be at least nr_pages long. Or NULL, if caller
1852  *		only intends to ensure the pages are faulted in.
1853  * @vmas:	array of pointers to vmas corresponding to each page.
1854  *		Or NULL if the caller does not require them.
1855  * @locked:	pointer to lock flag indicating whether lock is held and
1856  *		subsequently whether VM_FAULT_RETRY functionality can be
1857  *		utilised. Lock must initially be held.
1858  *
1859  * Returns either number of pages pinned (which may be less than the
1860  * number requested), or an error. Details about the return value:
1861  *
1862  * -- If nr_pages is 0, returns 0.
1863  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1864  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1865  *    pages pinned. Again, this may be less than nr_pages.
1866  *
1867  * The caller is responsible for releasing returned @pages, via put_page().
1868  *
1869  * @vmas are valid only as long as mmap_sem is held.
1870  *
1871  * Must be called with mmap_sem held for read or write.
1872  *
1873  * get_user_pages walks a process's page tables and takes a reference to
1874  * each struct page that each user address corresponds to at a given
1875  * instant. That is, it takes the page that would be accessed if a user
1876  * thread accesses the given user virtual address at that instant.
1877  *
1878  * This does not guarantee that the page exists in the user mappings when
1879  * get_user_pages returns, and there may even be a completely different
1880  * page there in some cases (eg. if mmapped pagecache has been invalidated
1881  * and subsequently re faulted). However it does guarantee that the page
1882  * won't be freed completely. And mostly callers simply care that the page
1883  * contains data that was valid *at some point in time*. Typically, an IO
1884  * or similar operation cannot guarantee anything stronger anyway because
1885  * locks can't be held over the syscall boundary.
1886  *
1887  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1888  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1889  * be called after the page is finished with, and before put_page is called.
1890  *
1891  * get_user_pages is typically used for fewer-copy IO operations, to get a
1892  * handle on the memory by some means other than accesses via the user virtual
1893  * addresses. The pages may be submitted for DMA to devices or accessed via
1894  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1895  * use the correct cache flushing APIs.
1896  *
1897  * See also get_user_pages_fast, for performance critical applications.
1898  *
1899  * get_user_pages should be phased out in favor of
1900  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1901  * should use get_user_pages because it cannot pass
1902  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1903  */
1904 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1905 		unsigned long start, unsigned long nr_pages,
1906 		unsigned int gup_flags, struct page **pages,
1907 		struct vm_area_struct **vmas, int *locked)
1908 {
1909 	/*
1910 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1911 	 * never directly by the caller, so enforce that with an assertion:
1912 	 */
1913 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1914 		return -EINVAL;
1915 
1916 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1917 				       pages, vmas, locked);
1918 }
1919 EXPORT_SYMBOL(get_user_pages_remote);
1920 
1921 #else /* CONFIG_MMU */
1922 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1923 			   unsigned long start, unsigned long nr_pages,
1924 			   unsigned int gup_flags, struct page **pages,
1925 			   struct vm_area_struct **vmas, int *locked)
1926 {
1927 	return 0;
1928 }
1929 
1930 static long __get_user_pages_remote(struct task_struct *tsk,
1931 				    struct mm_struct *mm,
1932 				    unsigned long start, unsigned long nr_pages,
1933 				    unsigned int gup_flags, struct page **pages,
1934 				    struct vm_area_struct **vmas, int *locked)
1935 {
1936 	return 0;
1937 }
1938 #endif /* !CONFIG_MMU */
1939 
1940 /*
1941  * This is the same as get_user_pages_remote(), just with a
1942  * less-flexible calling convention where we assume that the task
1943  * and mm being operated on are the current task's and don't allow
1944  * passing of a locked parameter.  We also obviously don't pass
1945  * FOLL_REMOTE in here.
1946  */
1947 long get_user_pages(unsigned long start, unsigned long nr_pages,
1948 		unsigned int gup_flags, struct page **pages,
1949 		struct vm_area_struct **vmas)
1950 {
1951 	/*
1952 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1953 	 * never directly by the caller, so enforce that with an assertion:
1954 	 */
1955 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1956 		return -EINVAL;
1957 
1958 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1959 				     pages, vmas, gup_flags | FOLL_TOUCH);
1960 }
1961 EXPORT_SYMBOL(get_user_pages);
1962 
1963 /*
1964  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1965  * paths better by using either get_user_pages_locked() or
1966  * get_user_pages_unlocked().
1967  *
1968  * get_user_pages_locked() is suitable to replace the form:
1969  *
1970  *      down_read(&mm->mmap_sem);
1971  *      do_something()
1972  *      get_user_pages(tsk, mm, ..., pages, NULL);
1973  *      up_read(&mm->mmap_sem);
1974  *
1975  *  to:
1976  *
1977  *      int locked = 1;
1978  *      down_read(&mm->mmap_sem);
1979  *      do_something()
1980  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1981  *      if (locked)
1982  *          up_read(&mm->mmap_sem);
1983  */
1984 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1985 			   unsigned int gup_flags, struct page **pages,
1986 			   int *locked)
1987 {
1988 	/*
1989 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1990 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1991 	 * vmas.  As there are no users of this flag in this call we simply
1992 	 * disallow this option for now.
1993 	 */
1994 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1995 		return -EINVAL;
1996 
1997 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1998 				       pages, NULL, locked,
1999 				       gup_flags | FOLL_TOUCH);
2000 }
2001 EXPORT_SYMBOL(get_user_pages_locked);
2002 
2003 /*
2004  * get_user_pages_unlocked() is suitable to replace the form:
2005  *
2006  *      down_read(&mm->mmap_sem);
2007  *      get_user_pages(tsk, mm, ..., pages, NULL);
2008  *      up_read(&mm->mmap_sem);
2009  *
2010  *  with:
2011  *
2012  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2013  *
2014  * It is functionally equivalent to get_user_pages_fast so
2015  * get_user_pages_fast should be used instead if specific gup_flags
2016  * (e.g. FOLL_FORCE) are not required.
2017  */
2018 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2019 			     struct page **pages, unsigned int gup_flags)
2020 {
2021 	struct mm_struct *mm = current->mm;
2022 	int locked = 1;
2023 	long ret;
2024 
2025 	/*
2026 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2027 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2028 	 * vmas.  As there are no users of this flag in this call we simply
2029 	 * disallow this option for now.
2030 	 */
2031 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2032 		return -EINVAL;
2033 
2034 	down_read(&mm->mmap_sem);
2035 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2036 				      &locked, gup_flags | FOLL_TOUCH);
2037 	if (locked)
2038 		up_read(&mm->mmap_sem);
2039 	return ret;
2040 }
2041 EXPORT_SYMBOL(get_user_pages_unlocked);
2042 
2043 /*
2044  * Fast GUP
2045  *
2046  * get_user_pages_fast attempts to pin user pages by walking the page
2047  * tables directly and avoids taking locks. Thus the walker needs to be
2048  * protected from page table pages being freed from under it, and should
2049  * block any THP splits.
2050  *
2051  * One way to achieve this is to have the walker disable interrupts, and
2052  * rely on IPIs from the TLB flushing code blocking before the page table
2053  * pages are freed. This is unsuitable for architectures that do not need
2054  * to broadcast an IPI when invalidating TLBs.
2055  *
2056  * Another way to achieve this is to batch up page table containing pages
2057  * belonging to more than one mm_user, then rcu_sched a callback to free those
2058  * pages. Disabling interrupts will allow the fast_gup walker to both block
2059  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2060  * (which is a relatively rare event). The code below adopts this strategy.
2061  *
2062  * Before activating this code, please be aware that the following assumptions
2063  * are currently made:
2064  *
2065  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2066  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2067  *
2068  *  *) ptes can be read atomically by the architecture.
2069  *
2070  *  *) access_ok is sufficient to validate userspace address ranges.
2071  *
2072  * The last two assumptions can be relaxed by the addition of helper functions.
2073  *
2074  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2075  */
2076 #ifdef CONFIG_HAVE_FAST_GUP
2077 
2078 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2079 {
2080 	if (flags & FOLL_PIN) {
2081 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2082 				    refs);
2083 
2084 		if (hpage_pincount_available(page))
2085 			hpage_pincount_sub(page, refs);
2086 		else
2087 			refs *= GUP_PIN_COUNTING_BIAS;
2088 	}
2089 
2090 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2091 	/*
2092 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2093 	 * ref needs a put_page().
2094 	 */
2095 	if (refs > 1)
2096 		page_ref_sub(page, refs - 1);
2097 	put_page(page);
2098 }
2099 
2100 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2101 
2102 /*
2103  * WARNING: only to be used in the get_user_pages_fast() implementation.
2104  *
2105  * With get_user_pages_fast(), we walk down the pagetables without taking any
2106  * locks.  For this we would like to load the pointers atomically, but sometimes
2107  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2108  * we do have is the guarantee that a PTE will only either go from not present
2109  * to present, or present to not present or both -- it will not switch to a
2110  * completely different present page without a TLB flush in between; something
2111  * that we are blocking by holding interrupts off.
2112  *
2113  * Setting ptes from not present to present goes:
2114  *
2115  *   ptep->pte_high = h;
2116  *   smp_wmb();
2117  *   ptep->pte_low = l;
2118  *
2119  * And present to not present goes:
2120  *
2121  *   ptep->pte_low = 0;
2122  *   smp_wmb();
2123  *   ptep->pte_high = 0;
2124  *
2125  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2126  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2127  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2128  * picked up a changed pte high. We might have gotten rubbish values from
2129  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2130  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2131  * operates on present ptes we're safe.
2132  */
2133 static inline pte_t gup_get_pte(pte_t *ptep)
2134 {
2135 	pte_t pte;
2136 
2137 	do {
2138 		pte.pte_low = ptep->pte_low;
2139 		smp_rmb();
2140 		pte.pte_high = ptep->pte_high;
2141 		smp_rmb();
2142 	} while (unlikely(pte.pte_low != ptep->pte_low));
2143 
2144 	return pte;
2145 }
2146 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2147 /*
2148  * We require that the PTE can be read atomically.
2149  */
2150 static inline pte_t gup_get_pte(pte_t *ptep)
2151 {
2152 	return READ_ONCE(*ptep);
2153 }
2154 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2155 
2156 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2157 					    unsigned int flags,
2158 					    struct page **pages)
2159 {
2160 	while ((*nr) - nr_start) {
2161 		struct page *page = pages[--(*nr)];
2162 
2163 		ClearPageReferenced(page);
2164 		if (flags & FOLL_PIN)
2165 			unpin_user_page(page);
2166 		else
2167 			put_page(page);
2168 	}
2169 }
2170 
2171 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2172 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2173 			 unsigned int flags, struct page **pages, int *nr)
2174 {
2175 	struct dev_pagemap *pgmap = NULL;
2176 	int nr_start = *nr, ret = 0;
2177 	pte_t *ptep, *ptem;
2178 
2179 	ptem = ptep = pte_offset_map(&pmd, addr);
2180 	do {
2181 		pte_t pte = gup_get_pte(ptep);
2182 		struct page *head, *page;
2183 
2184 		/*
2185 		 * Similar to the PMD case below, NUMA hinting must take slow
2186 		 * path using the pte_protnone check.
2187 		 */
2188 		if (pte_protnone(pte))
2189 			goto pte_unmap;
2190 
2191 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2192 			goto pte_unmap;
2193 
2194 		if (pte_devmap(pte)) {
2195 			if (unlikely(flags & FOLL_LONGTERM))
2196 				goto pte_unmap;
2197 
2198 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2199 			if (unlikely(!pgmap)) {
2200 				undo_dev_pagemap(nr, nr_start, flags, pages);
2201 				goto pte_unmap;
2202 			}
2203 		} else if (pte_special(pte))
2204 			goto pte_unmap;
2205 
2206 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2207 		page = pte_page(pte);
2208 
2209 		head = try_grab_compound_head(page, 1, flags);
2210 		if (!head)
2211 			goto pte_unmap;
2212 
2213 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2214 			put_compound_head(head, 1, flags);
2215 			goto pte_unmap;
2216 		}
2217 
2218 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2219 
2220 		/*
2221 		 * We need to make the page accessible if and only if we are
2222 		 * going to access its content (the FOLL_PIN case).  Please
2223 		 * see Documentation/core-api/pin_user_pages.rst for
2224 		 * details.
2225 		 */
2226 		if (flags & FOLL_PIN) {
2227 			ret = arch_make_page_accessible(page);
2228 			if (ret) {
2229 				unpin_user_page(page);
2230 				goto pte_unmap;
2231 			}
2232 		}
2233 		SetPageReferenced(page);
2234 		pages[*nr] = page;
2235 		(*nr)++;
2236 
2237 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2238 
2239 	ret = 1;
2240 
2241 pte_unmap:
2242 	if (pgmap)
2243 		put_dev_pagemap(pgmap);
2244 	pte_unmap(ptem);
2245 	return ret;
2246 }
2247 #else
2248 
2249 /*
2250  * If we can't determine whether or not a pte is special, then fail immediately
2251  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2252  * to be special.
2253  *
2254  * For a futex to be placed on a THP tail page, get_futex_key requires a
2255  * __get_user_pages_fast implementation that can pin pages. Thus it's still
2256  * useful to have gup_huge_pmd even if we can't operate on ptes.
2257  */
2258 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2259 			 unsigned int flags, struct page **pages, int *nr)
2260 {
2261 	return 0;
2262 }
2263 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2264 
2265 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2266 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2267 			     unsigned long end, unsigned int flags,
2268 			     struct page **pages, int *nr)
2269 {
2270 	int nr_start = *nr;
2271 	struct dev_pagemap *pgmap = NULL;
2272 
2273 	do {
2274 		struct page *page = pfn_to_page(pfn);
2275 
2276 		pgmap = get_dev_pagemap(pfn, pgmap);
2277 		if (unlikely(!pgmap)) {
2278 			undo_dev_pagemap(nr, nr_start, flags, pages);
2279 			return 0;
2280 		}
2281 		SetPageReferenced(page);
2282 		pages[*nr] = page;
2283 		if (unlikely(!try_grab_page(page, flags))) {
2284 			undo_dev_pagemap(nr, nr_start, flags, pages);
2285 			return 0;
2286 		}
2287 		(*nr)++;
2288 		pfn++;
2289 	} while (addr += PAGE_SIZE, addr != end);
2290 
2291 	if (pgmap)
2292 		put_dev_pagemap(pgmap);
2293 	return 1;
2294 }
2295 
2296 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2297 				 unsigned long end, unsigned int flags,
2298 				 struct page **pages, int *nr)
2299 {
2300 	unsigned long fault_pfn;
2301 	int nr_start = *nr;
2302 
2303 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2304 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2305 		return 0;
2306 
2307 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2308 		undo_dev_pagemap(nr, nr_start, flags, pages);
2309 		return 0;
2310 	}
2311 	return 1;
2312 }
2313 
2314 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2315 				 unsigned long end, unsigned int flags,
2316 				 struct page **pages, int *nr)
2317 {
2318 	unsigned long fault_pfn;
2319 	int nr_start = *nr;
2320 
2321 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2322 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2323 		return 0;
2324 
2325 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2326 		undo_dev_pagemap(nr, nr_start, flags, pages);
2327 		return 0;
2328 	}
2329 	return 1;
2330 }
2331 #else
2332 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2333 				 unsigned long end, unsigned int flags,
2334 				 struct page **pages, int *nr)
2335 {
2336 	BUILD_BUG();
2337 	return 0;
2338 }
2339 
2340 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2341 				 unsigned long end, unsigned int flags,
2342 				 struct page **pages, int *nr)
2343 {
2344 	BUILD_BUG();
2345 	return 0;
2346 }
2347 #endif
2348 
2349 static int record_subpages(struct page *page, unsigned long addr,
2350 			   unsigned long end, struct page **pages)
2351 {
2352 	int nr;
2353 
2354 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2355 		pages[nr++] = page++;
2356 
2357 	return nr;
2358 }
2359 
2360 #ifdef CONFIG_ARCH_HAS_HUGEPD
2361 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2362 				      unsigned long sz)
2363 {
2364 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2365 	return (__boundary - 1 < end - 1) ? __boundary : end;
2366 }
2367 
2368 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2369 		       unsigned long end, unsigned int flags,
2370 		       struct page **pages, int *nr)
2371 {
2372 	unsigned long pte_end;
2373 	struct page *head, *page;
2374 	pte_t pte;
2375 	int refs;
2376 
2377 	pte_end = (addr + sz) & ~(sz-1);
2378 	if (pte_end < end)
2379 		end = pte_end;
2380 
2381 	pte = READ_ONCE(*ptep);
2382 
2383 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2384 		return 0;
2385 
2386 	/* hugepages are never "special" */
2387 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2388 
2389 	head = pte_page(pte);
2390 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2391 	refs = record_subpages(page, addr, end, pages + *nr);
2392 
2393 	head = try_grab_compound_head(head, refs, flags);
2394 	if (!head)
2395 		return 0;
2396 
2397 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2398 		put_compound_head(head, refs, flags);
2399 		return 0;
2400 	}
2401 
2402 	*nr += refs;
2403 	SetPageReferenced(head);
2404 	return 1;
2405 }
2406 
2407 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2408 		unsigned int pdshift, unsigned long end, unsigned int flags,
2409 		struct page **pages, int *nr)
2410 {
2411 	pte_t *ptep;
2412 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2413 	unsigned long next;
2414 
2415 	ptep = hugepte_offset(hugepd, addr, pdshift);
2416 	do {
2417 		next = hugepte_addr_end(addr, end, sz);
2418 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2419 			return 0;
2420 	} while (ptep++, addr = next, addr != end);
2421 
2422 	return 1;
2423 }
2424 #else
2425 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2426 		unsigned int pdshift, unsigned long end, unsigned int flags,
2427 		struct page **pages, int *nr)
2428 {
2429 	return 0;
2430 }
2431 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2432 
2433 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2434 			unsigned long end, unsigned int flags,
2435 			struct page **pages, int *nr)
2436 {
2437 	struct page *head, *page;
2438 	int refs;
2439 
2440 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2441 		return 0;
2442 
2443 	if (pmd_devmap(orig)) {
2444 		if (unlikely(flags & FOLL_LONGTERM))
2445 			return 0;
2446 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2447 					     pages, nr);
2448 	}
2449 
2450 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2451 	refs = record_subpages(page, addr, end, pages + *nr);
2452 
2453 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2454 	if (!head)
2455 		return 0;
2456 
2457 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2458 		put_compound_head(head, refs, flags);
2459 		return 0;
2460 	}
2461 
2462 	*nr += refs;
2463 	SetPageReferenced(head);
2464 	return 1;
2465 }
2466 
2467 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2468 			unsigned long end, unsigned int flags,
2469 			struct page **pages, int *nr)
2470 {
2471 	struct page *head, *page;
2472 	int refs;
2473 
2474 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2475 		return 0;
2476 
2477 	if (pud_devmap(orig)) {
2478 		if (unlikely(flags & FOLL_LONGTERM))
2479 			return 0;
2480 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2481 					     pages, nr);
2482 	}
2483 
2484 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2485 	refs = record_subpages(page, addr, end, pages + *nr);
2486 
2487 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2488 	if (!head)
2489 		return 0;
2490 
2491 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2492 		put_compound_head(head, refs, flags);
2493 		return 0;
2494 	}
2495 
2496 	*nr += refs;
2497 	SetPageReferenced(head);
2498 	return 1;
2499 }
2500 
2501 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2502 			unsigned long end, unsigned int flags,
2503 			struct page **pages, int *nr)
2504 {
2505 	int refs;
2506 	struct page *head, *page;
2507 
2508 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2509 		return 0;
2510 
2511 	BUILD_BUG_ON(pgd_devmap(orig));
2512 
2513 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2514 	refs = record_subpages(page, addr, end, pages + *nr);
2515 
2516 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2517 	if (!head)
2518 		return 0;
2519 
2520 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2521 		put_compound_head(head, refs, flags);
2522 		return 0;
2523 	}
2524 
2525 	*nr += refs;
2526 	SetPageReferenced(head);
2527 	return 1;
2528 }
2529 
2530 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2531 		unsigned int flags, struct page **pages, int *nr)
2532 {
2533 	unsigned long next;
2534 	pmd_t *pmdp;
2535 
2536 	pmdp = pmd_offset(&pud, addr);
2537 	do {
2538 		pmd_t pmd = READ_ONCE(*pmdp);
2539 
2540 		next = pmd_addr_end(addr, end);
2541 		if (!pmd_present(pmd))
2542 			return 0;
2543 
2544 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2545 			     pmd_devmap(pmd))) {
2546 			/*
2547 			 * NUMA hinting faults need to be handled in the GUP
2548 			 * slowpath for accounting purposes and so that they
2549 			 * can be serialised against THP migration.
2550 			 */
2551 			if (pmd_protnone(pmd))
2552 				return 0;
2553 
2554 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2555 				pages, nr))
2556 				return 0;
2557 
2558 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2559 			/*
2560 			 * architecture have different format for hugetlbfs
2561 			 * pmd format and THP pmd format
2562 			 */
2563 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2564 					 PMD_SHIFT, next, flags, pages, nr))
2565 				return 0;
2566 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2567 			return 0;
2568 	} while (pmdp++, addr = next, addr != end);
2569 
2570 	return 1;
2571 }
2572 
2573 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2574 			 unsigned int flags, struct page **pages, int *nr)
2575 {
2576 	unsigned long next;
2577 	pud_t *pudp;
2578 
2579 	pudp = pud_offset(&p4d, addr);
2580 	do {
2581 		pud_t pud = READ_ONCE(*pudp);
2582 
2583 		next = pud_addr_end(addr, end);
2584 		if (unlikely(!pud_present(pud)))
2585 			return 0;
2586 		if (unlikely(pud_huge(pud))) {
2587 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2588 					  pages, nr))
2589 				return 0;
2590 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2591 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2592 					 PUD_SHIFT, next, flags, pages, nr))
2593 				return 0;
2594 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2595 			return 0;
2596 	} while (pudp++, addr = next, addr != end);
2597 
2598 	return 1;
2599 }
2600 
2601 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2602 			 unsigned int flags, struct page **pages, int *nr)
2603 {
2604 	unsigned long next;
2605 	p4d_t *p4dp;
2606 
2607 	p4dp = p4d_offset(&pgd, addr);
2608 	do {
2609 		p4d_t p4d = READ_ONCE(*p4dp);
2610 
2611 		next = p4d_addr_end(addr, end);
2612 		if (p4d_none(p4d))
2613 			return 0;
2614 		BUILD_BUG_ON(p4d_huge(p4d));
2615 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2616 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2617 					 P4D_SHIFT, next, flags, pages, nr))
2618 				return 0;
2619 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2620 			return 0;
2621 	} while (p4dp++, addr = next, addr != end);
2622 
2623 	return 1;
2624 }
2625 
2626 static void gup_pgd_range(unsigned long addr, unsigned long end,
2627 		unsigned int flags, struct page **pages, int *nr)
2628 {
2629 	unsigned long next;
2630 	pgd_t *pgdp;
2631 
2632 	pgdp = pgd_offset(current->mm, addr);
2633 	do {
2634 		pgd_t pgd = READ_ONCE(*pgdp);
2635 
2636 		next = pgd_addr_end(addr, end);
2637 		if (pgd_none(pgd))
2638 			return;
2639 		if (unlikely(pgd_huge(pgd))) {
2640 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2641 					  pages, nr))
2642 				return;
2643 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2644 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2645 					 PGDIR_SHIFT, next, flags, pages, nr))
2646 				return;
2647 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2648 			return;
2649 	} while (pgdp++, addr = next, addr != end);
2650 }
2651 #else
2652 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2653 		unsigned int flags, struct page **pages, int *nr)
2654 {
2655 }
2656 #endif /* CONFIG_HAVE_FAST_GUP */
2657 
2658 #ifndef gup_fast_permitted
2659 /*
2660  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2661  * we need to fall back to the slow version:
2662  */
2663 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2664 {
2665 	return true;
2666 }
2667 #endif
2668 
2669 /*
2670  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2671  * the regular GUP.
2672  * Note a difference with get_user_pages_fast: this always returns the
2673  * number of pages pinned, 0 if no pages were pinned.
2674  *
2675  * If the architecture does not support this function, simply return with no
2676  * pages pinned.
2677  */
2678 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2679 			  struct page **pages)
2680 {
2681 	unsigned long len, end;
2682 	unsigned long flags;
2683 	int nr_pinned = 0;
2684 	/*
2685 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2686 	 * because gup fast is always a "pin with a +1 page refcount" request.
2687 	 */
2688 	unsigned int gup_flags = FOLL_GET;
2689 
2690 	if (write)
2691 		gup_flags |= FOLL_WRITE;
2692 
2693 	start = untagged_addr(start) & PAGE_MASK;
2694 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2695 	end = start + len;
2696 
2697 	if (end <= start)
2698 		return 0;
2699 	if (unlikely(!access_ok((void __user *)start, len)))
2700 		return 0;
2701 
2702 	/*
2703 	 * Disable interrupts.  We use the nested form as we can already have
2704 	 * interrupts disabled by get_futex_key.
2705 	 *
2706 	 * With interrupts disabled, we block page table pages from being
2707 	 * freed from under us. See struct mmu_table_batch comments in
2708 	 * include/asm-generic/tlb.h for more details.
2709 	 *
2710 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2711 	 * block IPIs that come from THPs splitting.
2712 	 */
2713 
2714 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2715 	    gup_fast_permitted(start, end)) {
2716 		local_irq_save(flags);
2717 		gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2718 		local_irq_restore(flags);
2719 	}
2720 
2721 	return nr_pinned;
2722 }
2723 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2724 
2725 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2726 				   unsigned int gup_flags, struct page **pages)
2727 {
2728 	int ret;
2729 
2730 	/*
2731 	 * FIXME: FOLL_LONGTERM does not work with
2732 	 * get_user_pages_unlocked() (see comments in that function)
2733 	 */
2734 	if (gup_flags & FOLL_LONGTERM) {
2735 		down_read(&current->mm->mmap_sem);
2736 		ret = __gup_longterm_locked(current, current->mm,
2737 					    start, nr_pages,
2738 					    pages, NULL, gup_flags);
2739 		up_read(&current->mm->mmap_sem);
2740 	} else {
2741 		ret = get_user_pages_unlocked(start, nr_pages,
2742 					      pages, gup_flags);
2743 	}
2744 
2745 	return ret;
2746 }
2747 
2748 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2749 					unsigned int gup_flags,
2750 					struct page **pages)
2751 {
2752 	unsigned long addr, len, end;
2753 	int nr_pinned = 0, ret = 0;
2754 
2755 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2756 				       FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2757 		return -EINVAL;
2758 
2759 	start = untagged_addr(start) & PAGE_MASK;
2760 	addr = start;
2761 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2762 	end = start + len;
2763 
2764 	if (end <= start)
2765 		return 0;
2766 	if (unlikely(!access_ok((void __user *)start, len)))
2767 		return -EFAULT;
2768 
2769 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2770 	    gup_fast_permitted(start, end)) {
2771 		local_irq_disable();
2772 		gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
2773 		local_irq_enable();
2774 		ret = nr_pinned;
2775 	}
2776 
2777 	if (nr_pinned < nr_pages) {
2778 		/* Try to get the remaining pages with get_user_pages */
2779 		start += nr_pinned << PAGE_SHIFT;
2780 		pages += nr_pinned;
2781 
2782 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2783 					      gup_flags, pages);
2784 
2785 		/* Have to be a bit careful with return values */
2786 		if (nr_pinned > 0) {
2787 			if (ret < 0)
2788 				ret = nr_pinned;
2789 			else
2790 				ret += nr_pinned;
2791 		}
2792 	}
2793 
2794 	return ret;
2795 }
2796 
2797 /**
2798  * get_user_pages_fast() - pin user pages in memory
2799  * @start:      starting user address
2800  * @nr_pages:   number of pages from start to pin
2801  * @gup_flags:  flags modifying pin behaviour
2802  * @pages:      array that receives pointers to the pages pinned.
2803  *              Should be at least nr_pages long.
2804  *
2805  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2806  * If not successful, it will fall back to taking the lock and
2807  * calling get_user_pages().
2808  *
2809  * Returns number of pages pinned. This may be fewer than the number requested.
2810  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2811  * -errno.
2812  */
2813 int get_user_pages_fast(unsigned long start, int nr_pages,
2814 			unsigned int gup_flags, struct page **pages)
2815 {
2816 	/*
2817 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2818 	 * never directly by the caller, so enforce that:
2819 	 */
2820 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2821 		return -EINVAL;
2822 
2823 	/*
2824 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2825 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2826 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2827 	 * request.
2828 	 */
2829 	gup_flags |= FOLL_GET;
2830 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2831 }
2832 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2833 
2834 /**
2835  * pin_user_pages_fast() - pin user pages in memory without taking locks
2836  *
2837  * @start:      starting user address
2838  * @nr_pages:   number of pages from start to pin
2839  * @gup_flags:  flags modifying pin behaviour
2840  * @pages:      array that receives pointers to the pages pinned.
2841  *              Should be at least nr_pages long.
2842  *
2843  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2844  * get_user_pages_fast() for documentation on the function arguments, because
2845  * the arguments here are identical.
2846  *
2847  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2848  * see Documentation/vm/pin_user_pages.rst for further details.
2849  *
2850  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2851  * is NOT intended for Case 2 (RDMA: long-term pins).
2852  */
2853 int pin_user_pages_fast(unsigned long start, int nr_pages,
2854 			unsigned int gup_flags, struct page **pages)
2855 {
2856 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2857 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2858 		return -EINVAL;
2859 
2860 	gup_flags |= FOLL_PIN;
2861 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2862 }
2863 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2864 
2865 /**
2866  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2867  *
2868  * @tsk:	the task_struct to use for page fault accounting, or
2869  *		NULL if faults are not to be recorded.
2870  * @mm:		mm_struct of target mm
2871  * @start:	starting user address
2872  * @nr_pages:	number of pages from start to pin
2873  * @gup_flags:	flags modifying lookup behaviour
2874  * @pages:	array that receives pointers to the pages pinned.
2875  *		Should be at least nr_pages long. Or NULL, if caller
2876  *		only intends to ensure the pages are faulted in.
2877  * @vmas:	array of pointers to vmas corresponding to each page.
2878  *		Or NULL if the caller does not require them.
2879  * @locked:	pointer to lock flag indicating whether lock is held and
2880  *		subsequently whether VM_FAULT_RETRY functionality can be
2881  *		utilised. Lock must initially be held.
2882  *
2883  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2884  * get_user_pages_remote() for documentation on the function arguments, because
2885  * the arguments here are identical.
2886  *
2887  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2888  * see Documentation/vm/pin_user_pages.rst for details.
2889  *
2890  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2891  * is NOT intended for Case 2 (RDMA: long-term pins).
2892  */
2893 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2894 			   unsigned long start, unsigned long nr_pages,
2895 			   unsigned int gup_flags, struct page **pages,
2896 			   struct vm_area_struct **vmas, int *locked)
2897 {
2898 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2899 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2900 		return -EINVAL;
2901 
2902 	gup_flags |= FOLL_PIN;
2903 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2904 				       pages, vmas, locked);
2905 }
2906 EXPORT_SYMBOL(pin_user_pages_remote);
2907 
2908 /**
2909  * pin_user_pages() - pin user pages in memory for use by other devices
2910  *
2911  * @start:	starting user address
2912  * @nr_pages:	number of pages from start to pin
2913  * @gup_flags:	flags modifying lookup behaviour
2914  * @pages:	array that receives pointers to the pages pinned.
2915  *		Should be at least nr_pages long. Or NULL, if caller
2916  *		only intends to ensure the pages are faulted in.
2917  * @vmas:	array of pointers to vmas corresponding to each page.
2918  *		Or NULL if the caller does not require them.
2919  *
2920  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2921  * FOLL_PIN is set.
2922  *
2923  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2924  * see Documentation/vm/pin_user_pages.rst for details.
2925  *
2926  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2927  * is NOT intended for Case 2 (RDMA: long-term pins).
2928  */
2929 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2930 		    unsigned int gup_flags, struct page **pages,
2931 		    struct vm_area_struct **vmas)
2932 {
2933 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2934 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2935 		return -EINVAL;
2936 
2937 	gup_flags |= FOLL_PIN;
2938 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
2939 				     pages, vmas, gup_flags);
2940 }
2941 EXPORT_SYMBOL(pin_user_pages);
2942