xref: /linux/mm/gup.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /*
66  * Return the compound head page with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 	struct page *head = compound_head(page);
72 
73 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 		return NULL;
75 	if (unlikely(!page_cache_add_speculative(head, refs)))
76 		return NULL;
77 
78 	/*
79 	 * At this point we have a stable reference to the head page; but it
80 	 * could be that between the compound_head() lookup and the refcount
81 	 * increment, the compound page was split, in which case we'd end up
82 	 * holding a reference on a page that has nothing to do with the page
83 	 * we were given anymore.
84 	 * So now that the head page is stable, recheck that the pages still
85 	 * belong together.
86 	 */
87 	if (unlikely(compound_head(page) != head)) {
88 		put_page_refs(head, refs);
89 		return NULL;
90 	}
91 
92 	return head;
93 }
94 
95 /**
96  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97  * flags-dependent amount.
98  *
99  * Even though the name includes "compound_head", this function is still
100  * appropriate for callers that have a non-compound @page to get.
101  *
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the page's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: page's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
116  *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
117  *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  *    FOLL_PIN on normal pages, or compound pages that are two pages long:
120  *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121  *
122  * Return: head page (with refcount appropriately incremented) for success, or
123  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124  * considered failure, and furthermore, a likely bug in the caller, so a warning
125  * is also emitted.
126  */
127 struct page *try_grab_compound_head(struct page *page,
128 				    int refs, unsigned int flags)
129 {
130 	if (flags & FOLL_GET)
131 		return try_get_compound_head(page, refs);
132 	else if (flags & FOLL_PIN) {
133 		/*
134 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 		 * right zone, so fail and let the caller fall back to the slow
136 		 * path.
137 		 */
138 		if (unlikely((flags & FOLL_LONGTERM) &&
139 			     !is_pinnable_page(page)))
140 			return NULL;
141 
142 		/*
143 		 * CAUTION: Don't use compound_head() on the page before this
144 		 * point, the result won't be stable.
145 		 */
146 		page = try_get_compound_head(page, refs);
147 		if (!page)
148 			return NULL;
149 
150 		/*
151 		 * When pinning a compound page of order > 1 (which is what
152 		 * hpage_pincount_available() checks for), use an exact count to
153 		 * track it, via hpage_pincount_add/_sub().
154 		 *
155 		 * However, be sure to *also* increment the normal page refcount
156 		 * field at least once, so that the page really is pinned.
157 		 * That's why the refcount from the earlier
158 		 * try_get_compound_head() is left intact.
159 		 */
160 		if (hpage_pincount_available(page))
161 			hpage_pincount_add(page, refs);
162 		else
163 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164 
165 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 				    refs);
167 
168 		return page;
169 	}
170 
171 	WARN_ON_ONCE(1);
172 	return NULL;
173 }
174 
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 	if (flags & FOLL_PIN) {
178 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 				    refs);
180 
181 		if (hpage_pincount_available(page))
182 			hpage_pincount_sub(page, refs);
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	put_page_refs(page, refs);
188 }
189 
190 /**
191  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192  *
193  * This might not do anything at all, depending on the flags argument.
194  *
195  * "grab" names in this file mean, "look at flags to decide whether to use
196  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197  *
198  * @page:    pointer to page to be grabbed
199  * @flags:   gup flags: these are the FOLL_* flag values.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_compound_head() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	if (!(flags & (FOLL_GET | FOLL_PIN)))
212 		return true;
213 
214 	return try_grab_compound_head(page, 1, flags);
215 }
216 
217 /**
218  * unpin_user_page() - release a dma-pinned page
219  * @page:            pointer to page to be released
220  *
221  * Pages that were pinned via pin_user_pages*() must be released via either
222  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
223  * that such pages can be separately tracked and uniquely handled. In
224  * particular, interactions with RDMA and filesystems need special handling.
225  */
226 void unpin_user_page(struct page *page)
227 {
228 	put_compound_head(compound_head(page), 1, FOLL_PIN);
229 }
230 EXPORT_SYMBOL(unpin_user_page);
231 
232 static inline void compound_range_next(unsigned long i, unsigned long npages,
233 				       struct page **list, struct page **head,
234 				       unsigned int *ntails)
235 {
236 	struct page *next, *page;
237 	unsigned int nr = 1;
238 
239 	if (i >= npages)
240 		return;
241 
242 	next = *list + i;
243 	page = compound_head(next);
244 	if (PageCompound(page) && compound_order(page) >= 1)
245 		nr = min_t(unsigned int,
246 			   page + compound_nr(page) - next, npages - i);
247 
248 	*head = page;
249 	*ntails = nr;
250 }
251 
252 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
253 	for (__i = 0, \
254 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
255 	     __i < __npages; __i += __ntails, \
256 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
257 
258 static inline void compound_next(unsigned long i, unsigned long npages,
259 				 struct page **list, struct page **head,
260 				 unsigned int *ntails)
261 {
262 	struct page *page;
263 	unsigned int nr;
264 
265 	if (i >= npages)
266 		return;
267 
268 	page = compound_head(list[i]);
269 	for (nr = i + 1; nr < npages; nr++) {
270 		if (compound_head(list[nr]) != page)
271 			break;
272 	}
273 
274 	*head = page;
275 	*ntails = nr - i;
276 }
277 
278 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
279 	for (__i = 0, \
280 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
281 	     __i < __npages; __i += __ntails, \
282 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long index;
310 	struct page *head;
311 	unsigned int ntails;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	for_each_compound_head(index, pages, npages, head, ntails) {
319 		/*
320 		 * Checking PageDirty at this point may race with
321 		 * clear_page_dirty_for_io(), but that's OK. Two key
322 		 * cases:
323 		 *
324 		 * 1) This code sees the page as already dirty, so it
325 		 * skips the call to set_page_dirty(). That could happen
326 		 * because clear_page_dirty_for_io() called
327 		 * page_mkclean(), followed by set_page_dirty().
328 		 * However, now the page is going to get written back,
329 		 * which meets the original intention of setting it
330 		 * dirty, so all is well: clear_page_dirty_for_io() goes
331 		 * on to call TestClearPageDirty(), and write the page
332 		 * back.
333 		 *
334 		 * 2) This code sees the page as clean, so it calls
335 		 * set_page_dirty(). The page stays dirty, despite being
336 		 * written back, so it gets written back again in the
337 		 * next writeback cycle. This is harmless.
338 		 */
339 		if (!PageDirty(head))
340 			set_page_dirty_lock(head);
341 		put_compound_head(head, ntails, FOLL_PIN);
342 	}
343 }
344 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345 
346 /**
347  * unpin_user_page_range_dirty_lock() - release and optionally dirty
348  * gup-pinned page range
349  *
350  * @page:  the starting page of a range maybe marked dirty, and definitely released.
351  * @npages: number of consecutive pages to release.
352  * @make_dirty: whether to mark the pages dirty
353  *
354  * "gup-pinned page range" refers to a range of pages that has had one of the
355  * pin_user_pages() variants called on that page.
356  *
357  * For the page ranges defined by [page .. page+npages], make that range (or
358  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
359  * page range was previously listed as clean.
360  *
361  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
362  * required, then the caller should a) verify that this is really correct,
363  * because _lock() is usually required, and b) hand code it:
364  * set_page_dirty_lock(), unpin_user_page().
365  *
366  */
367 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
368 				      bool make_dirty)
369 {
370 	unsigned long index;
371 	struct page *head;
372 	unsigned int ntails;
373 
374 	for_each_compound_range(index, &page, npages, head, ntails) {
375 		if (make_dirty && !PageDirty(head))
376 			set_page_dirty_lock(head);
377 		put_compound_head(head, ntails, FOLL_PIN);
378 	}
379 }
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381 
382 /**
383  * unpin_user_pages() - release an array of gup-pinned pages.
384  * @pages:  array of pages to be marked dirty and released.
385  * @npages: number of pages in the @pages array.
386  *
387  * For each page in the @pages array, release the page using unpin_user_page().
388  *
389  * Please see the unpin_user_page() documentation for details.
390  */
391 void unpin_user_pages(struct page **pages, unsigned long npages)
392 {
393 	unsigned long index;
394 	struct page *head;
395 	unsigned int ntails;
396 
397 	/*
398 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
399 	 * leaving them pinned), but probably not. More likely, gup/pup returned
400 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
401 	 */
402 	if (WARN_ON(IS_ERR_VALUE(npages)))
403 		return;
404 
405 	for_each_compound_head(index, pages, npages, head, ntails)
406 		put_compound_head(head, ntails, FOLL_PIN);
407 }
408 EXPORT_SYMBOL(unpin_user_pages);
409 
410 /*
411  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
412  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
413  * cache bouncing on large SMP machines for concurrent pinned gups.
414  */
415 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
416 {
417 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
418 		set_bit(MMF_HAS_PINNED, mm_flags);
419 }
420 
421 #ifdef CONFIG_MMU
422 static struct page *no_page_table(struct vm_area_struct *vma,
423 		unsigned int flags)
424 {
425 	/*
426 	 * When core dumping an enormous anonymous area that nobody
427 	 * has touched so far, we don't want to allocate unnecessary pages or
428 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
429 	 * then get_dump_page() will return NULL to leave a hole in the dump.
430 	 * But we can only make this optimization where a hole would surely
431 	 * be zero-filled if handle_mm_fault() actually did handle it.
432 	 */
433 	if ((flags & FOLL_DUMP) &&
434 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
435 		return ERR_PTR(-EFAULT);
436 	return NULL;
437 }
438 
439 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
440 		pte_t *pte, unsigned int flags)
441 {
442 	/* No page to get reference */
443 	if (flags & FOLL_GET)
444 		return -EFAULT;
445 
446 	if (flags & FOLL_TOUCH) {
447 		pte_t entry = *pte;
448 
449 		if (flags & FOLL_WRITE)
450 			entry = pte_mkdirty(entry);
451 		entry = pte_mkyoung(entry);
452 
453 		if (!pte_same(*pte, entry)) {
454 			set_pte_at(vma->vm_mm, address, pte, entry);
455 			update_mmu_cache(vma, address, pte);
456 		}
457 	}
458 
459 	/* Proper page table entry exists, but no corresponding struct page */
460 	return -EEXIST;
461 }
462 
463 /*
464  * FOLL_FORCE can write to even unwritable pte's, but only
465  * after we've gone through a COW cycle and they are dirty.
466  */
467 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
468 {
469 	return pte_write(pte) ||
470 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
471 }
472 
473 static struct page *follow_page_pte(struct vm_area_struct *vma,
474 		unsigned long address, pmd_t *pmd, unsigned int flags,
475 		struct dev_pagemap **pgmap)
476 {
477 	struct mm_struct *mm = vma->vm_mm;
478 	struct page *page;
479 	spinlock_t *ptl;
480 	pte_t *ptep, pte;
481 	int ret;
482 
483 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
484 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
485 			 (FOLL_PIN | FOLL_GET)))
486 		return ERR_PTR(-EINVAL);
487 retry:
488 	if (unlikely(pmd_bad(*pmd)))
489 		return no_page_table(vma, flags);
490 
491 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
492 	pte = *ptep;
493 	if (!pte_present(pte)) {
494 		swp_entry_t entry;
495 		/*
496 		 * KSM's break_ksm() relies upon recognizing a ksm page
497 		 * even while it is being migrated, so for that case we
498 		 * need migration_entry_wait().
499 		 */
500 		if (likely(!(flags & FOLL_MIGRATION)))
501 			goto no_page;
502 		if (pte_none(pte))
503 			goto no_page;
504 		entry = pte_to_swp_entry(pte);
505 		if (!is_migration_entry(entry))
506 			goto no_page;
507 		pte_unmap_unlock(ptep, ptl);
508 		migration_entry_wait(mm, pmd, address);
509 		goto retry;
510 	}
511 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
512 		goto no_page;
513 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
514 		pte_unmap_unlock(ptep, ptl);
515 		return NULL;
516 	}
517 
518 	page = vm_normal_page(vma, address, pte);
519 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
520 		/*
521 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
522 		 * case since they are only valid while holding the pgmap
523 		 * reference.
524 		 */
525 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
526 		if (*pgmap)
527 			page = pte_page(pte);
528 		else
529 			goto no_page;
530 	} else if (unlikely(!page)) {
531 		if (flags & FOLL_DUMP) {
532 			/* Avoid special (like zero) pages in core dumps */
533 			page = ERR_PTR(-EFAULT);
534 			goto out;
535 		}
536 
537 		if (is_zero_pfn(pte_pfn(pte))) {
538 			page = pte_page(pte);
539 		} else {
540 			ret = follow_pfn_pte(vma, address, ptep, flags);
541 			page = ERR_PTR(ret);
542 			goto out;
543 		}
544 	}
545 
546 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
547 	if (unlikely(!try_grab_page(page, flags))) {
548 		page = ERR_PTR(-ENOMEM);
549 		goto out;
550 	}
551 	/*
552 	 * We need to make the page accessible if and only if we are going
553 	 * to access its content (the FOLL_PIN case).  Please see
554 	 * Documentation/core-api/pin_user_pages.rst for details.
555 	 */
556 	if (flags & FOLL_PIN) {
557 		ret = arch_make_page_accessible(page);
558 		if (ret) {
559 			unpin_user_page(page);
560 			page = ERR_PTR(ret);
561 			goto out;
562 		}
563 	}
564 	if (flags & FOLL_TOUCH) {
565 		if ((flags & FOLL_WRITE) &&
566 		    !pte_dirty(pte) && !PageDirty(page))
567 			set_page_dirty(page);
568 		/*
569 		 * pte_mkyoung() would be more correct here, but atomic care
570 		 * is needed to avoid losing the dirty bit: it is easier to use
571 		 * mark_page_accessed().
572 		 */
573 		mark_page_accessed(page);
574 	}
575 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
576 		/* Do not mlock pte-mapped THP */
577 		if (PageTransCompound(page))
578 			goto out;
579 
580 		/*
581 		 * The preliminary mapping check is mainly to avoid the
582 		 * pointless overhead of lock_page on the ZERO_PAGE
583 		 * which might bounce very badly if there is contention.
584 		 *
585 		 * If the page is already locked, we don't need to
586 		 * handle it now - vmscan will handle it later if and
587 		 * when it attempts to reclaim the page.
588 		 */
589 		if (page->mapping && trylock_page(page)) {
590 			lru_add_drain();  /* push cached pages to LRU */
591 			/*
592 			 * Because we lock page here, and migration is
593 			 * blocked by the pte's page reference, and we
594 			 * know the page is still mapped, we don't even
595 			 * need to check for file-cache page truncation.
596 			 */
597 			mlock_vma_page(page);
598 			unlock_page(page);
599 		}
600 	}
601 out:
602 	pte_unmap_unlock(ptep, ptl);
603 	return page;
604 no_page:
605 	pte_unmap_unlock(ptep, ptl);
606 	if (!pte_none(pte))
607 		return NULL;
608 	return no_page_table(vma, flags);
609 }
610 
611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 				    unsigned long address, pud_t *pudp,
613 				    unsigned int flags,
614 				    struct follow_page_context *ctx)
615 {
616 	pmd_t *pmd, pmdval;
617 	spinlock_t *ptl;
618 	struct page *page;
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	pmd = pmd_offset(pudp, address);
622 	/*
623 	 * The READ_ONCE() will stabilize the pmdval in a register or
624 	 * on the stack so that it will stop changing under the code.
625 	 */
626 	pmdval = READ_ONCE(*pmd);
627 	if (pmd_none(pmdval))
628 		return no_page_table(vma, flags);
629 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 		page = follow_huge_pmd(mm, address, pmd, flags);
631 		if (page)
632 			return page;
633 		return no_page_table(vma, flags);
634 	}
635 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 		page = follow_huge_pd(vma, address,
637 				      __hugepd(pmd_val(pmdval)), flags,
638 				      PMD_SHIFT);
639 		if (page)
640 			return page;
641 		return no_page_table(vma, flags);
642 	}
643 retry:
644 	if (!pmd_present(pmdval)) {
645 		if (likely(!(flags & FOLL_MIGRATION)))
646 			return no_page_table(vma, flags);
647 		VM_BUG_ON(thp_migration_supported() &&
648 				  !is_pmd_migration_entry(pmdval));
649 		if (is_pmd_migration_entry(pmdval))
650 			pmd_migration_entry_wait(mm, pmd);
651 		pmdval = READ_ONCE(*pmd);
652 		/*
653 		 * MADV_DONTNEED may convert the pmd to null because
654 		 * mmap_lock is held in read mode
655 		 */
656 		if (pmd_none(pmdval))
657 			return no_page_table(vma, flags);
658 		goto retry;
659 	}
660 	if (pmd_devmap(pmdval)) {
661 		ptl = pmd_lock(mm, pmd);
662 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
663 		spin_unlock(ptl);
664 		if (page)
665 			return page;
666 	}
667 	if (likely(!pmd_trans_huge(pmdval)))
668 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
669 
670 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
671 		return no_page_table(vma, flags);
672 
673 retry_locked:
674 	ptl = pmd_lock(mm, pmd);
675 	if (unlikely(pmd_none(*pmd))) {
676 		spin_unlock(ptl);
677 		return no_page_table(vma, flags);
678 	}
679 	if (unlikely(!pmd_present(*pmd))) {
680 		spin_unlock(ptl);
681 		if (likely(!(flags & FOLL_MIGRATION)))
682 			return no_page_table(vma, flags);
683 		pmd_migration_entry_wait(mm, pmd);
684 		goto retry_locked;
685 	}
686 	if (unlikely(!pmd_trans_huge(*pmd))) {
687 		spin_unlock(ptl);
688 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
689 	}
690 	if (flags & FOLL_SPLIT_PMD) {
691 		int ret;
692 		page = pmd_page(*pmd);
693 		if (is_huge_zero_page(page)) {
694 			spin_unlock(ptl);
695 			ret = 0;
696 			split_huge_pmd(vma, pmd, address);
697 			if (pmd_trans_unstable(pmd))
698 				ret = -EBUSY;
699 		} else {
700 			spin_unlock(ptl);
701 			split_huge_pmd(vma, pmd, address);
702 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
703 		}
704 
705 		return ret ? ERR_PTR(ret) :
706 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
707 	}
708 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
709 	spin_unlock(ptl);
710 	ctx->page_mask = HPAGE_PMD_NR - 1;
711 	return page;
712 }
713 
714 static struct page *follow_pud_mask(struct vm_area_struct *vma,
715 				    unsigned long address, p4d_t *p4dp,
716 				    unsigned int flags,
717 				    struct follow_page_context *ctx)
718 {
719 	pud_t *pud;
720 	spinlock_t *ptl;
721 	struct page *page;
722 	struct mm_struct *mm = vma->vm_mm;
723 
724 	pud = pud_offset(p4dp, address);
725 	if (pud_none(*pud))
726 		return no_page_table(vma, flags);
727 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
728 		page = follow_huge_pud(mm, address, pud, flags);
729 		if (page)
730 			return page;
731 		return no_page_table(vma, flags);
732 	}
733 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
734 		page = follow_huge_pd(vma, address,
735 				      __hugepd(pud_val(*pud)), flags,
736 				      PUD_SHIFT);
737 		if (page)
738 			return page;
739 		return no_page_table(vma, flags);
740 	}
741 	if (pud_devmap(*pud)) {
742 		ptl = pud_lock(mm, pud);
743 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
744 		spin_unlock(ptl);
745 		if (page)
746 			return page;
747 	}
748 	if (unlikely(pud_bad(*pud)))
749 		return no_page_table(vma, flags);
750 
751 	return follow_pmd_mask(vma, address, pud, flags, ctx);
752 }
753 
754 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
755 				    unsigned long address, pgd_t *pgdp,
756 				    unsigned int flags,
757 				    struct follow_page_context *ctx)
758 {
759 	p4d_t *p4d;
760 	struct page *page;
761 
762 	p4d = p4d_offset(pgdp, address);
763 	if (p4d_none(*p4d))
764 		return no_page_table(vma, flags);
765 	BUILD_BUG_ON(p4d_huge(*p4d));
766 	if (unlikely(p4d_bad(*p4d)))
767 		return no_page_table(vma, flags);
768 
769 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
770 		page = follow_huge_pd(vma, address,
771 				      __hugepd(p4d_val(*p4d)), flags,
772 				      P4D_SHIFT);
773 		if (page)
774 			return page;
775 		return no_page_table(vma, flags);
776 	}
777 	return follow_pud_mask(vma, address, p4d, flags, ctx);
778 }
779 
780 /**
781  * follow_page_mask - look up a page descriptor from a user-virtual address
782  * @vma: vm_area_struct mapping @address
783  * @address: virtual address to look up
784  * @flags: flags modifying lookup behaviour
785  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
786  *       pointer to output page_mask
787  *
788  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
789  *
790  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
791  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
792  *
793  * On output, the @ctx->page_mask is set according to the size of the page.
794  *
795  * Return: the mapped (struct page *), %NULL if no mapping exists, or
796  * an error pointer if there is a mapping to something not represented
797  * by a page descriptor (see also vm_normal_page()).
798  */
799 static struct page *follow_page_mask(struct vm_area_struct *vma,
800 			      unsigned long address, unsigned int flags,
801 			      struct follow_page_context *ctx)
802 {
803 	pgd_t *pgd;
804 	struct page *page;
805 	struct mm_struct *mm = vma->vm_mm;
806 
807 	ctx->page_mask = 0;
808 
809 	/* make this handle hugepd */
810 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
811 	if (!IS_ERR(page)) {
812 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
813 		return page;
814 	}
815 
816 	pgd = pgd_offset(mm, address);
817 
818 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
819 		return no_page_table(vma, flags);
820 
821 	if (pgd_huge(*pgd)) {
822 		page = follow_huge_pgd(mm, address, pgd, flags);
823 		if (page)
824 			return page;
825 		return no_page_table(vma, flags);
826 	}
827 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
828 		page = follow_huge_pd(vma, address,
829 				      __hugepd(pgd_val(*pgd)), flags,
830 				      PGDIR_SHIFT);
831 		if (page)
832 			return page;
833 		return no_page_table(vma, flags);
834 	}
835 
836 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
837 }
838 
839 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
840 			 unsigned int foll_flags)
841 {
842 	struct follow_page_context ctx = { NULL };
843 	struct page *page;
844 
845 	if (vma_is_secretmem(vma))
846 		return NULL;
847 
848 	page = follow_page_mask(vma, address, foll_flags, &ctx);
849 	if (ctx.pgmap)
850 		put_dev_pagemap(ctx.pgmap);
851 	return page;
852 }
853 
854 static int get_gate_page(struct mm_struct *mm, unsigned long address,
855 		unsigned int gup_flags, struct vm_area_struct **vma,
856 		struct page **page)
857 {
858 	pgd_t *pgd;
859 	p4d_t *p4d;
860 	pud_t *pud;
861 	pmd_t *pmd;
862 	pte_t *pte;
863 	int ret = -EFAULT;
864 
865 	/* user gate pages are read-only */
866 	if (gup_flags & FOLL_WRITE)
867 		return -EFAULT;
868 	if (address > TASK_SIZE)
869 		pgd = pgd_offset_k(address);
870 	else
871 		pgd = pgd_offset_gate(mm, address);
872 	if (pgd_none(*pgd))
873 		return -EFAULT;
874 	p4d = p4d_offset(pgd, address);
875 	if (p4d_none(*p4d))
876 		return -EFAULT;
877 	pud = pud_offset(p4d, address);
878 	if (pud_none(*pud))
879 		return -EFAULT;
880 	pmd = pmd_offset(pud, address);
881 	if (!pmd_present(*pmd))
882 		return -EFAULT;
883 	VM_BUG_ON(pmd_trans_huge(*pmd));
884 	pte = pte_offset_map(pmd, address);
885 	if (pte_none(*pte))
886 		goto unmap;
887 	*vma = get_gate_vma(mm);
888 	if (!page)
889 		goto out;
890 	*page = vm_normal_page(*vma, address, *pte);
891 	if (!*page) {
892 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
893 			goto unmap;
894 		*page = pte_page(*pte);
895 	}
896 	if (unlikely(!try_grab_page(*page, gup_flags))) {
897 		ret = -ENOMEM;
898 		goto unmap;
899 	}
900 out:
901 	ret = 0;
902 unmap:
903 	pte_unmap(pte);
904 	return ret;
905 }
906 
907 /*
908  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
909  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
910  * is, *@locked will be set to 0 and -EBUSY returned.
911  */
912 static int faultin_page(struct vm_area_struct *vma,
913 		unsigned long address, unsigned int *flags, int *locked)
914 {
915 	unsigned int fault_flags = 0;
916 	vm_fault_t ret;
917 
918 	/* mlock all present pages, but do not fault in new pages */
919 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
920 		return -ENOENT;
921 	if (*flags & FOLL_NOFAULT)
922 		return -EFAULT;
923 	if (*flags & FOLL_WRITE)
924 		fault_flags |= FAULT_FLAG_WRITE;
925 	if (*flags & FOLL_REMOTE)
926 		fault_flags |= FAULT_FLAG_REMOTE;
927 	if (locked)
928 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
929 	if (*flags & FOLL_NOWAIT)
930 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
931 	if (*flags & FOLL_TRIED) {
932 		/*
933 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
934 		 * can co-exist
935 		 */
936 		fault_flags |= FAULT_FLAG_TRIED;
937 	}
938 
939 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
940 	if (ret & VM_FAULT_ERROR) {
941 		int err = vm_fault_to_errno(ret, *flags);
942 
943 		if (err)
944 			return err;
945 		BUG();
946 	}
947 
948 	if (ret & VM_FAULT_RETRY) {
949 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
950 			*locked = 0;
951 		return -EBUSY;
952 	}
953 
954 	/*
955 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
956 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
957 	 * can thus safely do subsequent page lookups as if they were reads.
958 	 * But only do so when looping for pte_write is futile: in some cases
959 	 * userspace may also be wanting to write to the gotten user page,
960 	 * which a read fault here might prevent (a readonly page might get
961 	 * reCOWed by userspace write).
962 	 */
963 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
964 		*flags |= FOLL_COW;
965 	return 0;
966 }
967 
968 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
969 {
970 	vm_flags_t vm_flags = vma->vm_flags;
971 	int write = (gup_flags & FOLL_WRITE);
972 	int foreign = (gup_flags & FOLL_REMOTE);
973 
974 	if (vm_flags & (VM_IO | VM_PFNMAP))
975 		return -EFAULT;
976 
977 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
978 		return -EFAULT;
979 
980 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
981 		return -EOPNOTSUPP;
982 
983 	if (vma_is_secretmem(vma))
984 		return -EFAULT;
985 
986 	if (write) {
987 		if (!(vm_flags & VM_WRITE)) {
988 			if (!(gup_flags & FOLL_FORCE))
989 				return -EFAULT;
990 			/*
991 			 * We used to let the write,force case do COW in a
992 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
993 			 * set a breakpoint in a read-only mapping of an
994 			 * executable, without corrupting the file (yet only
995 			 * when that file had been opened for writing!).
996 			 * Anon pages in shared mappings are surprising: now
997 			 * just reject it.
998 			 */
999 			if (!is_cow_mapping(vm_flags))
1000 				return -EFAULT;
1001 		}
1002 	} else if (!(vm_flags & VM_READ)) {
1003 		if (!(gup_flags & FOLL_FORCE))
1004 			return -EFAULT;
1005 		/*
1006 		 * Is there actually any vma we can reach here which does not
1007 		 * have VM_MAYREAD set?
1008 		 */
1009 		if (!(vm_flags & VM_MAYREAD))
1010 			return -EFAULT;
1011 	}
1012 	/*
1013 	 * gups are always data accesses, not instruction
1014 	 * fetches, so execute=false here
1015 	 */
1016 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1017 		return -EFAULT;
1018 	return 0;
1019 }
1020 
1021 /**
1022  * __get_user_pages() - pin user pages in memory
1023  * @mm:		mm_struct of target mm
1024  * @start:	starting user address
1025  * @nr_pages:	number of pages from start to pin
1026  * @gup_flags:	flags modifying pin behaviour
1027  * @pages:	array that receives pointers to the pages pinned.
1028  *		Should be at least nr_pages long. Or NULL, if caller
1029  *		only intends to ensure the pages are faulted in.
1030  * @vmas:	array of pointers to vmas corresponding to each page.
1031  *		Or NULL if the caller does not require them.
1032  * @locked:     whether we're still with the mmap_lock held
1033  *
1034  * Returns either number of pages pinned (which may be less than the
1035  * number requested), or an error. Details about the return value:
1036  *
1037  * -- If nr_pages is 0, returns 0.
1038  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1039  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1040  *    pages pinned. Again, this may be less than nr_pages.
1041  * -- 0 return value is possible when the fault would need to be retried.
1042  *
1043  * The caller is responsible for releasing returned @pages, via put_page().
1044  *
1045  * @vmas are valid only as long as mmap_lock is held.
1046  *
1047  * Must be called with mmap_lock held.  It may be released.  See below.
1048  *
1049  * __get_user_pages walks a process's page tables and takes a reference to
1050  * each struct page that each user address corresponds to at a given
1051  * instant. That is, it takes the page that would be accessed if a user
1052  * thread accesses the given user virtual address at that instant.
1053  *
1054  * This does not guarantee that the page exists in the user mappings when
1055  * __get_user_pages returns, and there may even be a completely different
1056  * page there in some cases (eg. if mmapped pagecache has been invalidated
1057  * and subsequently re faulted). However it does guarantee that the page
1058  * won't be freed completely. And mostly callers simply care that the page
1059  * contains data that was valid *at some point in time*. Typically, an IO
1060  * or similar operation cannot guarantee anything stronger anyway because
1061  * locks can't be held over the syscall boundary.
1062  *
1063  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1064  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1065  * appropriate) must be called after the page is finished with, and
1066  * before put_page is called.
1067  *
1068  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1069  * released by an up_read().  That can happen if @gup_flags does not
1070  * have FOLL_NOWAIT.
1071  *
1072  * A caller using such a combination of @locked and @gup_flags
1073  * must therefore hold the mmap_lock for reading only, and recognize
1074  * when it's been released.  Otherwise, it must be held for either
1075  * reading or writing and will not be released.
1076  *
1077  * In most cases, get_user_pages or get_user_pages_fast should be used
1078  * instead of __get_user_pages. __get_user_pages should be used only if
1079  * you need some special @gup_flags.
1080  */
1081 static long __get_user_pages(struct mm_struct *mm,
1082 		unsigned long start, unsigned long nr_pages,
1083 		unsigned int gup_flags, struct page **pages,
1084 		struct vm_area_struct **vmas, int *locked)
1085 {
1086 	long ret = 0, i = 0;
1087 	struct vm_area_struct *vma = NULL;
1088 	struct follow_page_context ctx = { NULL };
1089 
1090 	if (!nr_pages)
1091 		return 0;
1092 
1093 	start = untagged_addr(start);
1094 
1095 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1096 
1097 	/*
1098 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1099 	 * fault information is unrelated to the reference behaviour of a task
1100 	 * using the address space
1101 	 */
1102 	if (!(gup_flags & FOLL_FORCE))
1103 		gup_flags |= FOLL_NUMA;
1104 
1105 	do {
1106 		struct page *page;
1107 		unsigned int foll_flags = gup_flags;
1108 		unsigned int page_increm;
1109 
1110 		/* first iteration or cross vma bound */
1111 		if (!vma || start >= vma->vm_end) {
1112 			vma = find_extend_vma(mm, start);
1113 			if (!vma && in_gate_area(mm, start)) {
1114 				ret = get_gate_page(mm, start & PAGE_MASK,
1115 						gup_flags, &vma,
1116 						pages ? &pages[i] : NULL);
1117 				if (ret)
1118 					goto out;
1119 				ctx.page_mask = 0;
1120 				goto next_page;
1121 			}
1122 
1123 			if (!vma) {
1124 				ret = -EFAULT;
1125 				goto out;
1126 			}
1127 			ret = check_vma_flags(vma, gup_flags);
1128 			if (ret)
1129 				goto out;
1130 
1131 			if (is_vm_hugetlb_page(vma)) {
1132 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1133 						&start, &nr_pages, i,
1134 						gup_flags, locked);
1135 				if (locked && *locked == 0) {
1136 					/*
1137 					 * We've got a VM_FAULT_RETRY
1138 					 * and we've lost mmap_lock.
1139 					 * We must stop here.
1140 					 */
1141 					BUG_ON(gup_flags & FOLL_NOWAIT);
1142 					goto out;
1143 				}
1144 				continue;
1145 			}
1146 		}
1147 retry:
1148 		/*
1149 		 * If we have a pending SIGKILL, don't keep faulting pages and
1150 		 * potentially allocating memory.
1151 		 */
1152 		if (fatal_signal_pending(current)) {
1153 			ret = -EINTR;
1154 			goto out;
1155 		}
1156 		cond_resched();
1157 
1158 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1159 		if (!page) {
1160 			ret = faultin_page(vma, start, &foll_flags, locked);
1161 			switch (ret) {
1162 			case 0:
1163 				goto retry;
1164 			case -EBUSY:
1165 				ret = 0;
1166 				fallthrough;
1167 			case -EFAULT:
1168 			case -ENOMEM:
1169 			case -EHWPOISON:
1170 				goto out;
1171 			case -ENOENT:
1172 				goto next_page;
1173 			}
1174 			BUG();
1175 		} else if (PTR_ERR(page) == -EEXIST) {
1176 			/*
1177 			 * Proper page table entry exists, but no corresponding
1178 			 * struct page.
1179 			 */
1180 			goto next_page;
1181 		} else if (IS_ERR(page)) {
1182 			ret = PTR_ERR(page);
1183 			goto out;
1184 		}
1185 		if (pages) {
1186 			pages[i] = page;
1187 			flush_anon_page(vma, page, start);
1188 			flush_dcache_page(page);
1189 			ctx.page_mask = 0;
1190 		}
1191 next_page:
1192 		if (vmas) {
1193 			vmas[i] = vma;
1194 			ctx.page_mask = 0;
1195 		}
1196 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197 		if (page_increm > nr_pages)
1198 			page_increm = nr_pages;
1199 		i += page_increm;
1200 		start += page_increm * PAGE_SIZE;
1201 		nr_pages -= page_increm;
1202 	} while (nr_pages);
1203 out:
1204 	if (ctx.pgmap)
1205 		put_dev_pagemap(ctx.pgmap);
1206 	return i ? i : ret;
1207 }
1208 
1209 static bool vma_permits_fault(struct vm_area_struct *vma,
1210 			      unsigned int fault_flags)
1211 {
1212 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1213 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1215 
1216 	if (!(vm_flags & vma->vm_flags))
1217 		return false;
1218 
1219 	/*
1220 	 * The architecture might have a hardware protection
1221 	 * mechanism other than read/write that can deny access.
1222 	 *
1223 	 * gup always represents data access, not instruction
1224 	 * fetches, so execute=false here:
1225 	 */
1226 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1227 		return false;
1228 
1229 	return true;
1230 }
1231 
1232 /**
1233  * fixup_user_fault() - manually resolve a user page fault
1234  * @mm:		mm_struct of target mm
1235  * @address:	user address
1236  * @fault_flags:flags to pass down to handle_mm_fault()
1237  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1238  *		does not allow retry. If NULL, the caller must guarantee
1239  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1240  *
1241  * This is meant to be called in the specific scenario where for locking reasons
1242  * we try to access user memory in atomic context (within a pagefault_disable()
1243  * section), this returns -EFAULT, and we want to resolve the user fault before
1244  * trying again.
1245  *
1246  * Typically this is meant to be used by the futex code.
1247  *
1248  * The main difference with get_user_pages() is that this function will
1249  * unconditionally call handle_mm_fault() which will in turn perform all the
1250  * necessary SW fixup of the dirty and young bits in the PTE, while
1251  * get_user_pages() only guarantees to update these in the struct page.
1252  *
1253  * This is important for some architectures where those bits also gate the
1254  * access permission to the page because they are maintained in software.  On
1255  * such architectures, gup() will not be enough to make a subsequent access
1256  * succeed.
1257  *
1258  * This function will not return with an unlocked mmap_lock. So it has not the
1259  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1260  */
1261 int fixup_user_fault(struct mm_struct *mm,
1262 		     unsigned long address, unsigned int fault_flags,
1263 		     bool *unlocked)
1264 {
1265 	struct vm_area_struct *vma;
1266 	vm_fault_t ret;
1267 
1268 	address = untagged_addr(address);
1269 
1270 	if (unlocked)
1271 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1272 
1273 retry:
1274 	vma = find_extend_vma(mm, address);
1275 	if (!vma || address < vma->vm_start)
1276 		return -EFAULT;
1277 
1278 	if (!vma_permits_fault(vma, fault_flags))
1279 		return -EFAULT;
1280 
1281 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282 	    fatal_signal_pending(current))
1283 		return -EINTR;
1284 
1285 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1286 	if (ret & VM_FAULT_ERROR) {
1287 		int err = vm_fault_to_errno(ret, 0);
1288 
1289 		if (err)
1290 			return err;
1291 		BUG();
1292 	}
1293 
1294 	if (ret & VM_FAULT_RETRY) {
1295 		mmap_read_lock(mm);
1296 		*unlocked = true;
1297 		fault_flags |= FAULT_FLAG_TRIED;
1298 		goto retry;
1299 	}
1300 
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL_GPL(fixup_user_fault);
1304 
1305 /*
1306  * Please note that this function, unlike __get_user_pages will not
1307  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1308  */
1309 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1310 						unsigned long start,
1311 						unsigned long nr_pages,
1312 						struct page **pages,
1313 						struct vm_area_struct **vmas,
1314 						int *locked,
1315 						unsigned int flags)
1316 {
1317 	long ret, pages_done;
1318 	bool lock_dropped;
1319 
1320 	if (locked) {
1321 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1322 		BUG_ON(vmas);
1323 		/* check caller initialized locked */
1324 		BUG_ON(*locked != 1);
1325 	}
1326 
1327 	if (flags & FOLL_PIN)
1328 		mm_set_has_pinned_flag(&mm->flags);
1329 
1330 	/*
1331 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1332 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1333 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1334 	 * for FOLL_GET, not for the newer FOLL_PIN.
1335 	 *
1336 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1337 	 * that here, as any failures will be obvious enough.
1338 	 */
1339 	if (pages && !(flags & FOLL_PIN))
1340 		flags |= FOLL_GET;
1341 
1342 	pages_done = 0;
1343 	lock_dropped = false;
1344 	for (;;) {
1345 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1346 				       vmas, locked);
1347 		if (!locked)
1348 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1349 			return ret;
1350 
1351 		/* VM_FAULT_RETRY cannot return errors */
1352 		if (!*locked) {
1353 			BUG_ON(ret < 0);
1354 			BUG_ON(ret >= nr_pages);
1355 		}
1356 
1357 		if (ret > 0) {
1358 			nr_pages -= ret;
1359 			pages_done += ret;
1360 			if (!nr_pages)
1361 				break;
1362 		}
1363 		if (*locked) {
1364 			/*
1365 			 * VM_FAULT_RETRY didn't trigger or it was a
1366 			 * FOLL_NOWAIT.
1367 			 */
1368 			if (!pages_done)
1369 				pages_done = ret;
1370 			break;
1371 		}
1372 		/*
1373 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1374 		 * For the prefault case (!pages) we only update counts.
1375 		 */
1376 		if (likely(pages))
1377 			pages += ret;
1378 		start += ret << PAGE_SHIFT;
1379 		lock_dropped = true;
1380 
1381 retry:
1382 		/*
1383 		 * Repeat on the address that fired VM_FAULT_RETRY
1384 		 * with both FAULT_FLAG_ALLOW_RETRY and
1385 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1386 		 * by fatal signals, so we need to check it before we
1387 		 * start trying again otherwise it can loop forever.
1388 		 */
1389 
1390 		if (fatal_signal_pending(current)) {
1391 			if (!pages_done)
1392 				pages_done = -EINTR;
1393 			break;
1394 		}
1395 
1396 		ret = mmap_read_lock_killable(mm);
1397 		if (ret) {
1398 			BUG_ON(ret > 0);
1399 			if (!pages_done)
1400 				pages_done = ret;
1401 			break;
1402 		}
1403 
1404 		*locked = 1;
1405 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1406 				       pages, NULL, locked);
1407 		if (!*locked) {
1408 			/* Continue to retry until we succeeded */
1409 			BUG_ON(ret != 0);
1410 			goto retry;
1411 		}
1412 		if (ret != 1) {
1413 			BUG_ON(ret > 1);
1414 			if (!pages_done)
1415 				pages_done = ret;
1416 			break;
1417 		}
1418 		nr_pages--;
1419 		pages_done++;
1420 		if (!nr_pages)
1421 			break;
1422 		if (likely(pages))
1423 			pages++;
1424 		start += PAGE_SIZE;
1425 	}
1426 	if (lock_dropped && *locked) {
1427 		/*
1428 		 * We must let the caller know we temporarily dropped the lock
1429 		 * and so the critical section protected by it was lost.
1430 		 */
1431 		mmap_read_unlock(mm);
1432 		*locked = 0;
1433 	}
1434 	return pages_done;
1435 }
1436 
1437 /**
1438  * populate_vma_page_range() -  populate a range of pages in the vma.
1439  * @vma:   target vma
1440  * @start: start address
1441  * @end:   end address
1442  * @locked: whether the mmap_lock is still held
1443  *
1444  * This takes care of mlocking the pages too if VM_LOCKED is set.
1445  *
1446  * Return either number of pages pinned in the vma, or a negative error
1447  * code on error.
1448  *
1449  * vma->vm_mm->mmap_lock must be held.
1450  *
1451  * If @locked is NULL, it may be held for read or write and will
1452  * be unperturbed.
1453  *
1454  * If @locked is non-NULL, it must held for read only and may be
1455  * released.  If it's released, *@locked will be set to 0.
1456  */
1457 long populate_vma_page_range(struct vm_area_struct *vma,
1458 		unsigned long start, unsigned long end, int *locked)
1459 {
1460 	struct mm_struct *mm = vma->vm_mm;
1461 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1462 	int gup_flags;
1463 
1464 	VM_BUG_ON(!PAGE_ALIGNED(start));
1465 	VM_BUG_ON(!PAGE_ALIGNED(end));
1466 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1467 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1468 	mmap_assert_locked(mm);
1469 
1470 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1471 	if (vma->vm_flags & VM_LOCKONFAULT)
1472 		gup_flags &= ~FOLL_POPULATE;
1473 	/*
1474 	 * We want to touch writable mappings with a write fault in order
1475 	 * to break COW, except for shared mappings because these don't COW
1476 	 * and we would not want to dirty them for nothing.
1477 	 */
1478 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1479 		gup_flags |= FOLL_WRITE;
1480 
1481 	/*
1482 	 * We want mlock to succeed for regions that have any permissions
1483 	 * other than PROT_NONE.
1484 	 */
1485 	if (vma_is_accessible(vma))
1486 		gup_flags |= FOLL_FORCE;
1487 
1488 	/*
1489 	 * We made sure addr is within a VMA, so the following will
1490 	 * not result in a stack expansion that recurses back here.
1491 	 */
1492 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1493 				NULL, NULL, locked);
1494 }
1495 
1496 /*
1497  * faultin_vma_page_range() - populate (prefault) page tables inside the
1498  *			      given VMA range readable/writable
1499  *
1500  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1501  *
1502  * @vma: target vma
1503  * @start: start address
1504  * @end: end address
1505  * @write: whether to prefault readable or writable
1506  * @locked: whether the mmap_lock is still held
1507  *
1508  * Returns either number of processed pages in the vma, or a negative error
1509  * code on error (see __get_user_pages()).
1510  *
1511  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1512  * covered by the VMA.
1513  *
1514  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1515  *
1516  * If @locked is non-NULL, it must held for read only and may be released.  If
1517  * it's released, *@locked will be set to 0.
1518  */
1519 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1520 			    unsigned long end, bool write, int *locked)
1521 {
1522 	struct mm_struct *mm = vma->vm_mm;
1523 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1524 	int gup_flags;
1525 
1526 	VM_BUG_ON(!PAGE_ALIGNED(start));
1527 	VM_BUG_ON(!PAGE_ALIGNED(end));
1528 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1529 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1530 	mmap_assert_locked(mm);
1531 
1532 	/*
1533 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1534 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1535 	 *	       difference with !FOLL_FORCE, because the page is writable
1536 	 *	       in the page table.
1537 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1538 	 *		  a poisoned page.
1539 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1540 	 * !FOLL_FORCE: Require proper access permissions.
1541 	 */
1542 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1543 	if (write)
1544 		gup_flags |= FOLL_WRITE;
1545 
1546 	/*
1547 	 * We want to report -EINVAL instead of -EFAULT for any permission
1548 	 * problems or incompatible mappings.
1549 	 */
1550 	if (check_vma_flags(vma, gup_flags))
1551 		return -EINVAL;
1552 
1553 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1554 				NULL, NULL, locked);
1555 }
1556 
1557 /*
1558  * __mm_populate - populate and/or mlock pages within a range of address space.
1559  *
1560  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1561  * flags. VMAs must be already marked with the desired vm_flags, and
1562  * mmap_lock must not be held.
1563  */
1564 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1565 {
1566 	struct mm_struct *mm = current->mm;
1567 	unsigned long end, nstart, nend;
1568 	struct vm_area_struct *vma = NULL;
1569 	int locked = 0;
1570 	long ret = 0;
1571 
1572 	end = start + len;
1573 
1574 	for (nstart = start; nstart < end; nstart = nend) {
1575 		/*
1576 		 * We want to fault in pages for [nstart; end) address range.
1577 		 * Find first corresponding VMA.
1578 		 */
1579 		if (!locked) {
1580 			locked = 1;
1581 			mmap_read_lock(mm);
1582 			vma = find_vma(mm, nstart);
1583 		} else if (nstart >= vma->vm_end)
1584 			vma = vma->vm_next;
1585 		if (!vma || vma->vm_start >= end)
1586 			break;
1587 		/*
1588 		 * Set [nstart; nend) to intersection of desired address
1589 		 * range with the first VMA. Also, skip undesirable VMA types.
1590 		 */
1591 		nend = min(end, vma->vm_end);
1592 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1593 			continue;
1594 		if (nstart < vma->vm_start)
1595 			nstart = vma->vm_start;
1596 		/*
1597 		 * Now fault in a range of pages. populate_vma_page_range()
1598 		 * double checks the vma flags, so that it won't mlock pages
1599 		 * if the vma was already munlocked.
1600 		 */
1601 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1602 		if (ret < 0) {
1603 			if (ignore_errors) {
1604 				ret = 0;
1605 				continue;	/* continue at next VMA */
1606 			}
1607 			break;
1608 		}
1609 		nend = nstart + ret * PAGE_SIZE;
1610 		ret = 0;
1611 	}
1612 	if (locked)
1613 		mmap_read_unlock(mm);
1614 	return ret;	/* 0 or negative error code */
1615 }
1616 #else /* CONFIG_MMU */
1617 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1618 		unsigned long nr_pages, struct page **pages,
1619 		struct vm_area_struct **vmas, int *locked,
1620 		unsigned int foll_flags)
1621 {
1622 	struct vm_area_struct *vma;
1623 	unsigned long vm_flags;
1624 	long i;
1625 
1626 	/* calculate required read or write permissions.
1627 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1628 	 */
1629 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1630 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1631 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1632 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1633 
1634 	for (i = 0; i < nr_pages; i++) {
1635 		vma = find_vma(mm, start);
1636 		if (!vma)
1637 			goto finish_or_fault;
1638 
1639 		/* protect what we can, including chardevs */
1640 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1641 		    !(vm_flags & vma->vm_flags))
1642 			goto finish_or_fault;
1643 
1644 		if (pages) {
1645 			pages[i] = virt_to_page(start);
1646 			if (pages[i])
1647 				get_page(pages[i]);
1648 		}
1649 		if (vmas)
1650 			vmas[i] = vma;
1651 		start = (start + PAGE_SIZE) & PAGE_MASK;
1652 	}
1653 
1654 	return i;
1655 
1656 finish_or_fault:
1657 	return i ? : -EFAULT;
1658 }
1659 #endif /* !CONFIG_MMU */
1660 
1661 /**
1662  * fault_in_writeable - fault in userspace address range for writing
1663  * @uaddr: start of address range
1664  * @size: size of address range
1665  *
1666  * Returns the number of bytes not faulted in (like copy_to_user() and
1667  * copy_from_user()).
1668  */
1669 size_t fault_in_writeable(char __user *uaddr, size_t size)
1670 {
1671 	char __user *start = uaddr, *end;
1672 
1673 	if (unlikely(size == 0))
1674 		return 0;
1675 	if (!PAGE_ALIGNED(uaddr)) {
1676 		if (unlikely(__put_user(0, uaddr) != 0))
1677 			return size;
1678 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1679 	}
1680 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1681 	if (unlikely(end < start))
1682 		end = NULL;
1683 	while (uaddr != end) {
1684 		if (unlikely(__put_user(0, uaddr) != 0))
1685 			goto out;
1686 		uaddr += PAGE_SIZE;
1687 	}
1688 
1689 out:
1690 	if (size > uaddr - start)
1691 		return size - (uaddr - start);
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(fault_in_writeable);
1695 
1696 /*
1697  * fault_in_safe_writeable - fault in an address range for writing
1698  * @uaddr: start of address range
1699  * @size: length of address range
1700  *
1701  * Faults in an address range using get_user_pages, i.e., without triggering
1702  * hardware page faults.  This is primarily useful when we already know that
1703  * some or all of the pages in the address range aren't in memory.
1704  *
1705  * Other than fault_in_writeable(), this function is non-destructive.
1706  *
1707  * Note that we don't pin or otherwise hold the pages referenced that we fault
1708  * in.  There's no guarantee that they'll stay in memory for any duration of
1709  * time.
1710  *
1711  * Returns the number of bytes not faulted in, like copy_to_user() and
1712  * copy_from_user().
1713  */
1714 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1715 {
1716 	unsigned long start = (unsigned long)untagged_addr(uaddr);
1717 	unsigned long end, nstart, nend;
1718 	struct mm_struct *mm = current->mm;
1719 	struct vm_area_struct *vma = NULL;
1720 	int locked = 0;
1721 
1722 	nstart = start & PAGE_MASK;
1723 	end = PAGE_ALIGN(start + size);
1724 	if (end < nstart)
1725 		end = 0;
1726 	for (; nstart != end; nstart = nend) {
1727 		unsigned long nr_pages;
1728 		long ret;
1729 
1730 		if (!locked) {
1731 			locked = 1;
1732 			mmap_read_lock(mm);
1733 			vma = find_vma(mm, nstart);
1734 		} else if (nstart >= vma->vm_end)
1735 			vma = vma->vm_next;
1736 		if (!vma || vma->vm_start >= end)
1737 			break;
1738 		nend = end ? min(end, vma->vm_end) : vma->vm_end;
1739 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1740 			continue;
1741 		if (nstart < vma->vm_start)
1742 			nstart = vma->vm_start;
1743 		nr_pages = (nend - nstart) / PAGE_SIZE;
1744 		ret = __get_user_pages_locked(mm, nstart, nr_pages,
1745 					      NULL, NULL, &locked,
1746 					      FOLL_TOUCH | FOLL_WRITE);
1747 		if (ret <= 0)
1748 			break;
1749 		nend = nstart + ret * PAGE_SIZE;
1750 	}
1751 	if (locked)
1752 		mmap_read_unlock(mm);
1753 	if (nstart == end)
1754 		return 0;
1755 	return size - min_t(size_t, nstart - start, size);
1756 }
1757 EXPORT_SYMBOL(fault_in_safe_writeable);
1758 
1759 /**
1760  * fault_in_readable - fault in userspace address range for reading
1761  * @uaddr: start of user address range
1762  * @size: size of user address range
1763  *
1764  * Returns the number of bytes not faulted in (like copy_to_user() and
1765  * copy_from_user()).
1766  */
1767 size_t fault_in_readable(const char __user *uaddr, size_t size)
1768 {
1769 	const char __user *start = uaddr, *end;
1770 	volatile char c;
1771 
1772 	if (unlikely(size == 0))
1773 		return 0;
1774 	if (!PAGE_ALIGNED(uaddr)) {
1775 		if (unlikely(__get_user(c, uaddr) != 0))
1776 			return size;
1777 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1778 	}
1779 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1780 	if (unlikely(end < start))
1781 		end = NULL;
1782 	while (uaddr != end) {
1783 		if (unlikely(__get_user(c, uaddr) != 0))
1784 			goto out;
1785 		uaddr += PAGE_SIZE;
1786 	}
1787 
1788 out:
1789 	(void)c;
1790 	if (size > uaddr - start)
1791 		return size - (uaddr - start);
1792 	return 0;
1793 }
1794 EXPORT_SYMBOL(fault_in_readable);
1795 
1796 /**
1797  * get_dump_page() - pin user page in memory while writing it to core dump
1798  * @addr: user address
1799  *
1800  * Returns struct page pointer of user page pinned for dump,
1801  * to be freed afterwards by put_page().
1802  *
1803  * Returns NULL on any kind of failure - a hole must then be inserted into
1804  * the corefile, to preserve alignment with its headers; and also returns
1805  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1806  * allowing a hole to be left in the corefile to save disk space.
1807  *
1808  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1809  */
1810 #ifdef CONFIG_ELF_CORE
1811 struct page *get_dump_page(unsigned long addr)
1812 {
1813 	struct mm_struct *mm = current->mm;
1814 	struct page *page;
1815 	int locked = 1;
1816 	int ret;
1817 
1818 	if (mmap_read_lock_killable(mm))
1819 		return NULL;
1820 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1821 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1822 	if (locked)
1823 		mmap_read_unlock(mm);
1824 	return (ret == 1) ? page : NULL;
1825 }
1826 #endif /* CONFIG_ELF_CORE */
1827 
1828 #ifdef CONFIG_MIGRATION
1829 /*
1830  * Check whether all pages are pinnable, if so return number of pages.  If some
1831  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1832  * pages were migrated, or if some pages were not successfully isolated.
1833  * Return negative error if migration fails.
1834  */
1835 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1836 					    struct page **pages,
1837 					    unsigned int gup_flags)
1838 {
1839 	unsigned long i;
1840 	unsigned long isolation_error_count = 0;
1841 	bool drain_allow = true;
1842 	LIST_HEAD(movable_page_list);
1843 	long ret = 0;
1844 	struct page *prev_head = NULL;
1845 	struct page *head;
1846 	struct migration_target_control mtc = {
1847 		.nid = NUMA_NO_NODE,
1848 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1849 	};
1850 
1851 	for (i = 0; i < nr_pages; i++) {
1852 		head = compound_head(pages[i]);
1853 		if (head == prev_head)
1854 			continue;
1855 		prev_head = head;
1856 		/*
1857 		 * If we get a movable page, since we are going to be pinning
1858 		 * these entries, try to move them out if possible.
1859 		 */
1860 		if (!is_pinnable_page(head)) {
1861 			if (PageHuge(head)) {
1862 				if (!isolate_huge_page(head, &movable_page_list))
1863 					isolation_error_count++;
1864 			} else {
1865 				if (!PageLRU(head) && drain_allow) {
1866 					lru_add_drain_all();
1867 					drain_allow = false;
1868 				}
1869 
1870 				if (isolate_lru_page(head)) {
1871 					isolation_error_count++;
1872 					continue;
1873 				}
1874 				list_add_tail(&head->lru, &movable_page_list);
1875 				mod_node_page_state(page_pgdat(head),
1876 						    NR_ISOLATED_ANON +
1877 						    page_is_file_lru(head),
1878 						    thp_nr_pages(head));
1879 			}
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * If list is empty, and no isolation errors, means that all pages are
1885 	 * in the correct zone.
1886 	 */
1887 	if (list_empty(&movable_page_list) && !isolation_error_count)
1888 		return nr_pages;
1889 
1890 	if (gup_flags & FOLL_PIN) {
1891 		unpin_user_pages(pages, nr_pages);
1892 	} else {
1893 		for (i = 0; i < nr_pages; i++)
1894 			put_page(pages[i]);
1895 	}
1896 	if (!list_empty(&movable_page_list)) {
1897 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1898 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1899 				    MR_LONGTERM_PIN, NULL);
1900 		if (ret && !list_empty(&movable_page_list))
1901 			putback_movable_pages(&movable_page_list);
1902 	}
1903 
1904 	return ret > 0 ? -ENOMEM : ret;
1905 }
1906 #else
1907 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1908 					    struct page **pages,
1909 					    unsigned int gup_flags)
1910 {
1911 	return nr_pages;
1912 }
1913 #endif /* CONFIG_MIGRATION */
1914 
1915 /*
1916  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1917  * allows us to process the FOLL_LONGTERM flag.
1918  */
1919 static long __gup_longterm_locked(struct mm_struct *mm,
1920 				  unsigned long start,
1921 				  unsigned long nr_pages,
1922 				  struct page **pages,
1923 				  struct vm_area_struct **vmas,
1924 				  unsigned int gup_flags)
1925 {
1926 	unsigned int flags;
1927 	long rc;
1928 
1929 	if (!(gup_flags & FOLL_LONGTERM))
1930 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1931 					       NULL, gup_flags);
1932 	flags = memalloc_pin_save();
1933 	do {
1934 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1935 					     NULL, gup_flags);
1936 		if (rc <= 0)
1937 			break;
1938 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1939 	} while (!rc);
1940 	memalloc_pin_restore(flags);
1941 
1942 	return rc;
1943 }
1944 
1945 static bool is_valid_gup_flags(unsigned int gup_flags)
1946 {
1947 	/*
1948 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1949 	 * never directly by the caller, so enforce that with an assertion:
1950 	 */
1951 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1952 		return false;
1953 	/*
1954 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1955 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1956 	 * FOLL_PIN.
1957 	 */
1958 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1959 		return false;
1960 
1961 	return true;
1962 }
1963 
1964 #ifdef CONFIG_MMU
1965 static long __get_user_pages_remote(struct mm_struct *mm,
1966 				    unsigned long start, unsigned long nr_pages,
1967 				    unsigned int gup_flags, struct page **pages,
1968 				    struct vm_area_struct **vmas, int *locked)
1969 {
1970 	/*
1971 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1972 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1973 	 * vmas. However, this only comes up if locked is set, and there are
1974 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1975 	 * allow what we can.
1976 	 */
1977 	if (gup_flags & FOLL_LONGTERM) {
1978 		if (WARN_ON_ONCE(locked))
1979 			return -EINVAL;
1980 		/*
1981 		 * This will check the vmas (even if our vmas arg is NULL)
1982 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1983 		 */
1984 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1985 					     vmas, gup_flags | FOLL_TOUCH |
1986 					     FOLL_REMOTE);
1987 	}
1988 
1989 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1990 				       locked,
1991 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1992 }
1993 
1994 /**
1995  * get_user_pages_remote() - pin user pages in memory
1996  * @mm:		mm_struct of target mm
1997  * @start:	starting user address
1998  * @nr_pages:	number of pages from start to pin
1999  * @gup_flags:	flags modifying lookup behaviour
2000  * @pages:	array that receives pointers to the pages pinned.
2001  *		Should be at least nr_pages long. Or NULL, if caller
2002  *		only intends to ensure the pages are faulted in.
2003  * @vmas:	array of pointers to vmas corresponding to each page.
2004  *		Or NULL if the caller does not require them.
2005  * @locked:	pointer to lock flag indicating whether lock is held and
2006  *		subsequently whether VM_FAULT_RETRY functionality can be
2007  *		utilised. Lock must initially be held.
2008  *
2009  * Returns either number of pages pinned (which may be less than the
2010  * number requested), or an error. Details about the return value:
2011  *
2012  * -- If nr_pages is 0, returns 0.
2013  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2014  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2015  *    pages pinned. Again, this may be less than nr_pages.
2016  *
2017  * The caller is responsible for releasing returned @pages, via put_page().
2018  *
2019  * @vmas are valid only as long as mmap_lock is held.
2020  *
2021  * Must be called with mmap_lock held for read or write.
2022  *
2023  * get_user_pages_remote walks a process's page tables and takes a reference
2024  * to each struct page that each user address corresponds to at a given
2025  * instant. That is, it takes the page that would be accessed if a user
2026  * thread accesses the given user virtual address at that instant.
2027  *
2028  * This does not guarantee that the page exists in the user mappings when
2029  * get_user_pages_remote returns, and there may even be a completely different
2030  * page there in some cases (eg. if mmapped pagecache has been invalidated
2031  * and subsequently re faulted). However it does guarantee that the page
2032  * won't be freed completely. And mostly callers simply care that the page
2033  * contains data that was valid *at some point in time*. Typically, an IO
2034  * or similar operation cannot guarantee anything stronger anyway because
2035  * locks can't be held over the syscall boundary.
2036  *
2037  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2038  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2039  * be called after the page is finished with, and before put_page is called.
2040  *
2041  * get_user_pages_remote is typically used for fewer-copy IO operations,
2042  * to get a handle on the memory by some means other than accesses
2043  * via the user virtual addresses. The pages may be submitted for
2044  * DMA to devices or accessed via their kernel linear mapping (via the
2045  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2046  *
2047  * See also get_user_pages_fast, for performance critical applications.
2048  *
2049  * get_user_pages_remote should be phased out in favor of
2050  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2051  * should use get_user_pages_remote because it cannot pass
2052  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2053  */
2054 long get_user_pages_remote(struct mm_struct *mm,
2055 		unsigned long start, unsigned long nr_pages,
2056 		unsigned int gup_flags, struct page **pages,
2057 		struct vm_area_struct **vmas, int *locked)
2058 {
2059 	if (!is_valid_gup_flags(gup_flags))
2060 		return -EINVAL;
2061 
2062 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2063 				       pages, vmas, locked);
2064 }
2065 EXPORT_SYMBOL(get_user_pages_remote);
2066 
2067 #else /* CONFIG_MMU */
2068 long get_user_pages_remote(struct mm_struct *mm,
2069 			   unsigned long start, unsigned long nr_pages,
2070 			   unsigned int gup_flags, struct page **pages,
2071 			   struct vm_area_struct **vmas, int *locked)
2072 {
2073 	return 0;
2074 }
2075 
2076 static long __get_user_pages_remote(struct mm_struct *mm,
2077 				    unsigned long start, unsigned long nr_pages,
2078 				    unsigned int gup_flags, struct page **pages,
2079 				    struct vm_area_struct **vmas, int *locked)
2080 {
2081 	return 0;
2082 }
2083 #endif /* !CONFIG_MMU */
2084 
2085 /**
2086  * get_user_pages() - pin user pages in memory
2087  * @start:      starting user address
2088  * @nr_pages:   number of pages from start to pin
2089  * @gup_flags:  flags modifying lookup behaviour
2090  * @pages:      array that receives pointers to the pages pinned.
2091  *              Should be at least nr_pages long. Or NULL, if caller
2092  *              only intends to ensure the pages are faulted in.
2093  * @vmas:       array of pointers to vmas corresponding to each page.
2094  *              Or NULL if the caller does not require them.
2095  *
2096  * This is the same as get_user_pages_remote(), just with a less-flexible
2097  * calling convention where we assume that the mm being operated on belongs to
2098  * the current task, and doesn't allow passing of a locked parameter.  We also
2099  * obviously don't pass FOLL_REMOTE in here.
2100  */
2101 long get_user_pages(unsigned long start, unsigned long nr_pages,
2102 		unsigned int gup_flags, struct page **pages,
2103 		struct vm_area_struct **vmas)
2104 {
2105 	if (!is_valid_gup_flags(gup_flags))
2106 		return -EINVAL;
2107 
2108 	return __gup_longterm_locked(current->mm, start, nr_pages,
2109 				     pages, vmas, gup_flags | FOLL_TOUCH);
2110 }
2111 EXPORT_SYMBOL(get_user_pages);
2112 
2113 /**
2114  * get_user_pages_locked() - variant of get_user_pages()
2115  *
2116  * @start:      starting user address
2117  * @nr_pages:   number of pages from start to pin
2118  * @gup_flags:  flags modifying lookup behaviour
2119  * @pages:      array that receives pointers to the pages pinned.
2120  *              Should be at least nr_pages long. Or NULL, if caller
2121  *              only intends to ensure the pages are faulted in.
2122  * @locked:     pointer to lock flag indicating whether lock is held and
2123  *              subsequently whether VM_FAULT_RETRY functionality can be
2124  *              utilised. Lock must initially be held.
2125  *
2126  * It is suitable to replace the form:
2127  *
2128  *      mmap_read_lock(mm);
2129  *      do_something()
2130  *      get_user_pages(mm, ..., pages, NULL);
2131  *      mmap_read_unlock(mm);
2132  *
2133  *  to:
2134  *
2135  *      int locked = 1;
2136  *      mmap_read_lock(mm);
2137  *      do_something()
2138  *      get_user_pages_locked(mm, ..., pages, &locked);
2139  *      if (locked)
2140  *          mmap_read_unlock(mm);
2141  *
2142  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2143  * paths better by using either get_user_pages_locked() or
2144  * get_user_pages_unlocked().
2145  *
2146  */
2147 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2148 			   unsigned int gup_flags, struct page **pages,
2149 			   int *locked)
2150 {
2151 	/*
2152 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2153 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2154 	 * vmas.  As there are no users of this flag in this call we simply
2155 	 * disallow this option for now.
2156 	 */
2157 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2158 		return -EINVAL;
2159 	/*
2160 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2161 	 * never directly by the caller, so enforce that:
2162 	 */
2163 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2164 		return -EINVAL;
2165 
2166 	return __get_user_pages_locked(current->mm, start, nr_pages,
2167 				       pages, NULL, locked,
2168 				       gup_flags | FOLL_TOUCH);
2169 }
2170 EXPORT_SYMBOL(get_user_pages_locked);
2171 
2172 /*
2173  * get_user_pages_unlocked() is suitable to replace the form:
2174  *
2175  *      mmap_read_lock(mm);
2176  *      get_user_pages(mm, ..., pages, NULL);
2177  *      mmap_read_unlock(mm);
2178  *
2179  *  with:
2180  *
2181  *      get_user_pages_unlocked(mm, ..., pages);
2182  *
2183  * It is functionally equivalent to get_user_pages_fast so
2184  * get_user_pages_fast should be used instead if specific gup_flags
2185  * (e.g. FOLL_FORCE) are not required.
2186  */
2187 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2188 			     struct page **pages, unsigned int gup_flags)
2189 {
2190 	struct mm_struct *mm = current->mm;
2191 	int locked = 1;
2192 	long ret;
2193 
2194 	/*
2195 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2196 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2197 	 * vmas.  As there are no users of this flag in this call we simply
2198 	 * disallow this option for now.
2199 	 */
2200 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2201 		return -EINVAL;
2202 
2203 	mmap_read_lock(mm);
2204 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2205 				      &locked, gup_flags | FOLL_TOUCH);
2206 	if (locked)
2207 		mmap_read_unlock(mm);
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL(get_user_pages_unlocked);
2211 
2212 /*
2213  * Fast GUP
2214  *
2215  * get_user_pages_fast attempts to pin user pages by walking the page
2216  * tables directly and avoids taking locks. Thus the walker needs to be
2217  * protected from page table pages being freed from under it, and should
2218  * block any THP splits.
2219  *
2220  * One way to achieve this is to have the walker disable interrupts, and
2221  * rely on IPIs from the TLB flushing code blocking before the page table
2222  * pages are freed. This is unsuitable for architectures that do not need
2223  * to broadcast an IPI when invalidating TLBs.
2224  *
2225  * Another way to achieve this is to batch up page table containing pages
2226  * belonging to more than one mm_user, then rcu_sched a callback to free those
2227  * pages. Disabling interrupts will allow the fast_gup walker to both block
2228  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2229  * (which is a relatively rare event). The code below adopts this strategy.
2230  *
2231  * Before activating this code, please be aware that the following assumptions
2232  * are currently made:
2233  *
2234  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2235  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2236  *
2237  *  *) ptes can be read atomically by the architecture.
2238  *
2239  *  *) access_ok is sufficient to validate userspace address ranges.
2240  *
2241  * The last two assumptions can be relaxed by the addition of helper functions.
2242  *
2243  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2244  */
2245 #ifdef CONFIG_HAVE_FAST_GUP
2246 
2247 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2248 					    unsigned int flags,
2249 					    struct page **pages)
2250 {
2251 	while ((*nr) - nr_start) {
2252 		struct page *page = pages[--(*nr)];
2253 
2254 		ClearPageReferenced(page);
2255 		if (flags & FOLL_PIN)
2256 			unpin_user_page(page);
2257 		else
2258 			put_page(page);
2259 	}
2260 }
2261 
2262 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2263 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2264 			 unsigned int flags, struct page **pages, int *nr)
2265 {
2266 	struct dev_pagemap *pgmap = NULL;
2267 	int nr_start = *nr, ret = 0;
2268 	pte_t *ptep, *ptem;
2269 
2270 	ptem = ptep = pte_offset_map(&pmd, addr);
2271 	do {
2272 		pte_t pte = ptep_get_lockless(ptep);
2273 		struct page *head, *page;
2274 
2275 		/*
2276 		 * Similar to the PMD case below, NUMA hinting must take slow
2277 		 * path using the pte_protnone check.
2278 		 */
2279 		if (pte_protnone(pte))
2280 			goto pte_unmap;
2281 
2282 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2283 			goto pte_unmap;
2284 
2285 		if (pte_devmap(pte)) {
2286 			if (unlikely(flags & FOLL_LONGTERM))
2287 				goto pte_unmap;
2288 
2289 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2290 			if (unlikely(!pgmap)) {
2291 				undo_dev_pagemap(nr, nr_start, flags, pages);
2292 				goto pte_unmap;
2293 			}
2294 		} else if (pte_special(pte))
2295 			goto pte_unmap;
2296 
2297 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2298 		page = pte_page(pte);
2299 
2300 		head = try_grab_compound_head(page, 1, flags);
2301 		if (!head)
2302 			goto pte_unmap;
2303 
2304 		if (unlikely(page_is_secretmem(page))) {
2305 			put_compound_head(head, 1, flags);
2306 			goto pte_unmap;
2307 		}
2308 
2309 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2310 			put_compound_head(head, 1, flags);
2311 			goto pte_unmap;
2312 		}
2313 
2314 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2315 
2316 		/*
2317 		 * We need to make the page accessible if and only if we are
2318 		 * going to access its content (the FOLL_PIN case).  Please
2319 		 * see Documentation/core-api/pin_user_pages.rst for
2320 		 * details.
2321 		 */
2322 		if (flags & FOLL_PIN) {
2323 			ret = arch_make_page_accessible(page);
2324 			if (ret) {
2325 				unpin_user_page(page);
2326 				goto pte_unmap;
2327 			}
2328 		}
2329 		SetPageReferenced(page);
2330 		pages[*nr] = page;
2331 		(*nr)++;
2332 
2333 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2334 
2335 	ret = 1;
2336 
2337 pte_unmap:
2338 	if (pgmap)
2339 		put_dev_pagemap(pgmap);
2340 	pte_unmap(ptem);
2341 	return ret;
2342 }
2343 #else
2344 
2345 /*
2346  * If we can't determine whether or not a pte is special, then fail immediately
2347  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2348  * to be special.
2349  *
2350  * For a futex to be placed on a THP tail page, get_futex_key requires a
2351  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2352  * useful to have gup_huge_pmd even if we can't operate on ptes.
2353  */
2354 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2355 			 unsigned int flags, struct page **pages, int *nr)
2356 {
2357 	return 0;
2358 }
2359 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2360 
2361 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2362 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2363 			     unsigned long end, unsigned int flags,
2364 			     struct page **pages, int *nr)
2365 {
2366 	int nr_start = *nr;
2367 	struct dev_pagemap *pgmap = NULL;
2368 
2369 	do {
2370 		struct page *page = pfn_to_page(pfn);
2371 
2372 		pgmap = get_dev_pagemap(pfn, pgmap);
2373 		if (unlikely(!pgmap)) {
2374 			undo_dev_pagemap(nr, nr_start, flags, pages);
2375 			break;
2376 		}
2377 		SetPageReferenced(page);
2378 		pages[*nr] = page;
2379 		if (unlikely(!try_grab_page(page, flags))) {
2380 			undo_dev_pagemap(nr, nr_start, flags, pages);
2381 			break;
2382 		}
2383 		(*nr)++;
2384 		pfn++;
2385 	} while (addr += PAGE_SIZE, addr != end);
2386 
2387 	put_dev_pagemap(pgmap);
2388 	return addr == end;
2389 }
2390 
2391 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2392 				 unsigned long end, unsigned int flags,
2393 				 struct page **pages, int *nr)
2394 {
2395 	unsigned long fault_pfn;
2396 	int nr_start = *nr;
2397 
2398 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2399 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2400 		return 0;
2401 
2402 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2403 		undo_dev_pagemap(nr, nr_start, flags, pages);
2404 		return 0;
2405 	}
2406 	return 1;
2407 }
2408 
2409 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2410 				 unsigned long end, unsigned int flags,
2411 				 struct page **pages, int *nr)
2412 {
2413 	unsigned long fault_pfn;
2414 	int nr_start = *nr;
2415 
2416 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2417 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2418 		return 0;
2419 
2420 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2421 		undo_dev_pagemap(nr, nr_start, flags, pages);
2422 		return 0;
2423 	}
2424 	return 1;
2425 }
2426 #else
2427 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2428 				 unsigned long end, unsigned int flags,
2429 				 struct page **pages, int *nr)
2430 {
2431 	BUILD_BUG();
2432 	return 0;
2433 }
2434 
2435 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2436 				 unsigned long end, unsigned int flags,
2437 				 struct page **pages, int *nr)
2438 {
2439 	BUILD_BUG();
2440 	return 0;
2441 }
2442 #endif
2443 
2444 static int record_subpages(struct page *page, unsigned long addr,
2445 			   unsigned long end, struct page **pages)
2446 {
2447 	int nr;
2448 
2449 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2450 		pages[nr++] = page++;
2451 
2452 	return nr;
2453 }
2454 
2455 #ifdef CONFIG_ARCH_HAS_HUGEPD
2456 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2457 				      unsigned long sz)
2458 {
2459 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2460 	return (__boundary - 1 < end - 1) ? __boundary : end;
2461 }
2462 
2463 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2464 		       unsigned long end, unsigned int flags,
2465 		       struct page **pages, int *nr)
2466 {
2467 	unsigned long pte_end;
2468 	struct page *head, *page;
2469 	pte_t pte;
2470 	int refs;
2471 
2472 	pte_end = (addr + sz) & ~(sz-1);
2473 	if (pte_end < end)
2474 		end = pte_end;
2475 
2476 	pte = huge_ptep_get(ptep);
2477 
2478 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2479 		return 0;
2480 
2481 	/* hugepages are never "special" */
2482 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2483 
2484 	head = pte_page(pte);
2485 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2486 	refs = record_subpages(page, addr, end, pages + *nr);
2487 
2488 	head = try_grab_compound_head(head, refs, flags);
2489 	if (!head)
2490 		return 0;
2491 
2492 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2493 		put_compound_head(head, refs, flags);
2494 		return 0;
2495 	}
2496 
2497 	*nr += refs;
2498 	SetPageReferenced(head);
2499 	return 1;
2500 }
2501 
2502 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2503 		unsigned int pdshift, unsigned long end, unsigned int flags,
2504 		struct page **pages, int *nr)
2505 {
2506 	pte_t *ptep;
2507 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2508 	unsigned long next;
2509 
2510 	ptep = hugepte_offset(hugepd, addr, pdshift);
2511 	do {
2512 		next = hugepte_addr_end(addr, end, sz);
2513 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2514 			return 0;
2515 	} while (ptep++, addr = next, addr != end);
2516 
2517 	return 1;
2518 }
2519 #else
2520 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2521 		unsigned int pdshift, unsigned long end, unsigned int flags,
2522 		struct page **pages, int *nr)
2523 {
2524 	return 0;
2525 }
2526 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2527 
2528 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2529 			unsigned long end, unsigned int flags,
2530 			struct page **pages, int *nr)
2531 {
2532 	struct page *head, *page;
2533 	int refs;
2534 
2535 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2536 		return 0;
2537 
2538 	if (pmd_devmap(orig)) {
2539 		if (unlikely(flags & FOLL_LONGTERM))
2540 			return 0;
2541 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2542 					     pages, nr);
2543 	}
2544 
2545 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2546 	refs = record_subpages(page, addr, end, pages + *nr);
2547 
2548 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2549 	if (!head)
2550 		return 0;
2551 
2552 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2553 		put_compound_head(head, refs, flags);
2554 		return 0;
2555 	}
2556 
2557 	*nr += refs;
2558 	SetPageReferenced(head);
2559 	return 1;
2560 }
2561 
2562 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2563 			unsigned long end, unsigned int flags,
2564 			struct page **pages, int *nr)
2565 {
2566 	struct page *head, *page;
2567 	int refs;
2568 
2569 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2570 		return 0;
2571 
2572 	if (pud_devmap(orig)) {
2573 		if (unlikely(flags & FOLL_LONGTERM))
2574 			return 0;
2575 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2576 					     pages, nr);
2577 	}
2578 
2579 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2580 	refs = record_subpages(page, addr, end, pages + *nr);
2581 
2582 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2583 	if (!head)
2584 		return 0;
2585 
2586 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2587 		put_compound_head(head, refs, flags);
2588 		return 0;
2589 	}
2590 
2591 	*nr += refs;
2592 	SetPageReferenced(head);
2593 	return 1;
2594 }
2595 
2596 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2597 			unsigned long end, unsigned int flags,
2598 			struct page **pages, int *nr)
2599 {
2600 	int refs;
2601 	struct page *head, *page;
2602 
2603 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2604 		return 0;
2605 
2606 	BUILD_BUG_ON(pgd_devmap(orig));
2607 
2608 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2609 	refs = record_subpages(page, addr, end, pages + *nr);
2610 
2611 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2612 	if (!head)
2613 		return 0;
2614 
2615 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2616 		put_compound_head(head, refs, flags);
2617 		return 0;
2618 	}
2619 
2620 	*nr += refs;
2621 	SetPageReferenced(head);
2622 	return 1;
2623 }
2624 
2625 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2626 		unsigned int flags, struct page **pages, int *nr)
2627 {
2628 	unsigned long next;
2629 	pmd_t *pmdp;
2630 
2631 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2632 	do {
2633 		pmd_t pmd = READ_ONCE(*pmdp);
2634 
2635 		next = pmd_addr_end(addr, end);
2636 		if (!pmd_present(pmd))
2637 			return 0;
2638 
2639 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2640 			     pmd_devmap(pmd))) {
2641 			/*
2642 			 * NUMA hinting faults need to be handled in the GUP
2643 			 * slowpath for accounting purposes and so that they
2644 			 * can be serialised against THP migration.
2645 			 */
2646 			if (pmd_protnone(pmd))
2647 				return 0;
2648 
2649 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2650 				pages, nr))
2651 				return 0;
2652 
2653 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2654 			/*
2655 			 * architecture have different format for hugetlbfs
2656 			 * pmd format and THP pmd format
2657 			 */
2658 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2659 					 PMD_SHIFT, next, flags, pages, nr))
2660 				return 0;
2661 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2662 			return 0;
2663 	} while (pmdp++, addr = next, addr != end);
2664 
2665 	return 1;
2666 }
2667 
2668 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2669 			 unsigned int flags, struct page **pages, int *nr)
2670 {
2671 	unsigned long next;
2672 	pud_t *pudp;
2673 
2674 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2675 	do {
2676 		pud_t pud = READ_ONCE(*pudp);
2677 
2678 		next = pud_addr_end(addr, end);
2679 		if (unlikely(!pud_present(pud)))
2680 			return 0;
2681 		if (unlikely(pud_huge(pud))) {
2682 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2683 					  pages, nr))
2684 				return 0;
2685 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2686 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2687 					 PUD_SHIFT, next, flags, pages, nr))
2688 				return 0;
2689 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2690 			return 0;
2691 	} while (pudp++, addr = next, addr != end);
2692 
2693 	return 1;
2694 }
2695 
2696 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2697 			 unsigned int flags, struct page **pages, int *nr)
2698 {
2699 	unsigned long next;
2700 	p4d_t *p4dp;
2701 
2702 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2703 	do {
2704 		p4d_t p4d = READ_ONCE(*p4dp);
2705 
2706 		next = p4d_addr_end(addr, end);
2707 		if (p4d_none(p4d))
2708 			return 0;
2709 		BUILD_BUG_ON(p4d_huge(p4d));
2710 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2711 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2712 					 P4D_SHIFT, next, flags, pages, nr))
2713 				return 0;
2714 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2715 			return 0;
2716 	} while (p4dp++, addr = next, addr != end);
2717 
2718 	return 1;
2719 }
2720 
2721 static void gup_pgd_range(unsigned long addr, unsigned long end,
2722 		unsigned int flags, struct page **pages, int *nr)
2723 {
2724 	unsigned long next;
2725 	pgd_t *pgdp;
2726 
2727 	pgdp = pgd_offset(current->mm, addr);
2728 	do {
2729 		pgd_t pgd = READ_ONCE(*pgdp);
2730 
2731 		next = pgd_addr_end(addr, end);
2732 		if (pgd_none(pgd))
2733 			return;
2734 		if (unlikely(pgd_huge(pgd))) {
2735 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2736 					  pages, nr))
2737 				return;
2738 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2739 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2740 					 PGDIR_SHIFT, next, flags, pages, nr))
2741 				return;
2742 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2743 			return;
2744 	} while (pgdp++, addr = next, addr != end);
2745 }
2746 #else
2747 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2748 		unsigned int flags, struct page **pages, int *nr)
2749 {
2750 }
2751 #endif /* CONFIG_HAVE_FAST_GUP */
2752 
2753 #ifndef gup_fast_permitted
2754 /*
2755  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2756  * we need to fall back to the slow version:
2757  */
2758 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2759 {
2760 	return true;
2761 }
2762 #endif
2763 
2764 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2765 				   unsigned int gup_flags, struct page **pages)
2766 {
2767 	int ret;
2768 
2769 	/*
2770 	 * FIXME: FOLL_LONGTERM does not work with
2771 	 * get_user_pages_unlocked() (see comments in that function)
2772 	 */
2773 	if (gup_flags & FOLL_LONGTERM) {
2774 		mmap_read_lock(current->mm);
2775 		ret = __gup_longterm_locked(current->mm,
2776 					    start, nr_pages,
2777 					    pages, NULL, gup_flags);
2778 		mmap_read_unlock(current->mm);
2779 	} else {
2780 		ret = get_user_pages_unlocked(start, nr_pages,
2781 					      pages, gup_flags);
2782 	}
2783 
2784 	return ret;
2785 }
2786 
2787 static unsigned long lockless_pages_from_mm(unsigned long start,
2788 					    unsigned long end,
2789 					    unsigned int gup_flags,
2790 					    struct page **pages)
2791 {
2792 	unsigned long flags;
2793 	int nr_pinned = 0;
2794 	unsigned seq;
2795 
2796 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2797 	    !gup_fast_permitted(start, end))
2798 		return 0;
2799 
2800 	if (gup_flags & FOLL_PIN) {
2801 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2802 		if (seq & 1)
2803 			return 0;
2804 	}
2805 
2806 	/*
2807 	 * Disable interrupts. The nested form is used, in order to allow full,
2808 	 * general purpose use of this routine.
2809 	 *
2810 	 * With interrupts disabled, we block page table pages from being freed
2811 	 * from under us. See struct mmu_table_batch comments in
2812 	 * include/asm-generic/tlb.h for more details.
2813 	 *
2814 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2815 	 * that come from THPs splitting.
2816 	 */
2817 	local_irq_save(flags);
2818 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2819 	local_irq_restore(flags);
2820 
2821 	/*
2822 	 * When pinning pages for DMA there could be a concurrent write protect
2823 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2824 	 */
2825 	if (gup_flags & FOLL_PIN) {
2826 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2827 			unpin_user_pages(pages, nr_pinned);
2828 			return 0;
2829 		}
2830 	}
2831 	return nr_pinned;
2832 }
2833 
2834 static int internal_get_user_pages_fast(unsigned long start,
2835 					unsigned long nr_pages,
2836 					unsigned int gup_flags,
2837 					struct page **pages)
2838 {
2839 	unsigned long len, end;
2840 	unsigned long nr_pinned;
2841 	int ret;
2842 
2843 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2844 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2845 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2846 		return -EINVAL;
2847 
2848 	if (gup_flags & FOLL_PIN)
2849 		mm_set_has_pinned_flag(&current->mm->flags);
2850 
2851 	if (!(gup_flags & FOLL_FAST_ONLY))
2852 		might_lock_read(&current->mm->mmap_lock);
2853 
2854 	start = untagged_addr(start) & PAGE_MASK;
2855 	len = nr_pages << PAGE_SHIFT;
2856 	if (check_add_overflow(start, len, &end))
2857 		return 0;
2858 	if (unlikely(!access_ok((void __user *)start, len)))
2859 		return -EFAULT;
2860 
2861 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2862 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2863 		return nr_pinned;
2864 
2865 	/* Slow path: try to get the remaining pages with get_user_pages */
2866 	start += nr_pinned << PAGE_SHIFT;
2867 	pages += nr_pinned;
2868 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2869 				      pages);
2870 	if (ret < 0) {
2871 		/*
2872 		 * The caller has to unpin the pages we already pinned so
2873 		 * returning -errno is not an option
2874 		 */
2875 		if (nr_pinned)
2876 			return nr_pinned;
2877 		return ret;
2878 	}
2879 	return ret + nr_pinned;
2880 }
2881 
2882 /**
2883  * get_user_pages_fast_only() - pin user pages in memory
2884  * @start:      starting user address
2885  * @nr_pages:   number of pages from start to pin
2886  * @gup_flags:  flags modifying pin behaviour
2887  * @pages:      array that receives pointers to the pages pinned.
2888  *              Should be at least nr_pages long.
2889  *
2890  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2891  * the regular GUP.
2892  * Note a difference with get_user_pages_fast: this always returns the
2893  * number of pages pinned, 0 if no pages were pinned.
2894  *
2895  * If the architecture does not support this function, simply return with no
2896  * pages pinned.
2897  *
2898  * Careful, careful! COW breaking can go either way, so a non-write
2899  * access can get ambiguous page results. If you call this function without
2900  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2901  */
2902 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2903 			     unsigned int gup_flags, struct page **pages)
2904 {
2905 	int nr_pinned;
2906 	/*
2907 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2908 	 * because gup fast is always a "pin with a +1 page refcount" request.
2909 	 *
2910 	 * FOLL_FAST_ONLY is required in order to match the API description of
2911 	 * this routine: no fall back to regular ("slow") GUP.
2912 	 */
2913 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2914 
2915 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2916 						 pages);
2917 
2918 	/*
2919 	 * As specified in the API description above, this routine is not
2920 	 * allowed to return negative values. However, the common core
2921 	 * routine internal_get_user_pages_fast() *can* return -errno.
2922 	 * Therefore, correct for that here:
2923 	 */
2924 	if (nr_pinned < 0)
2925 		nr_pinned = 0;
2926 
2927 	return nr_pinned;
2928 }
2929 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2930 
2931 /**
2932  * get_user_pages_fast() - pin user pages in memory
2933  * @start:      starting user address
2934  * @nr_pages:   number of pages from start to pin
2935  * @gup_flags:  flags modifying pin behaviour
2936  * @pages:      array that receives pointers to the pages pinned.
2937  *              Should be at least nr_pages long.
2938  *
2939  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2940  * If not successful, it will fall back to taking the lock and
2941  * calling get_user_pages().
2942  *
2943  * Returns number of pages pinned. This may be fewer than the number requested.
2944  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2945  * -errno.
2946  */
2947 int get_user_pages_fast(unsigned long start, int nr_pages,
2948 			unsigned int gup_flags, struct page **pages)
2949 {
2950 	if (!is_valid_gup_flags(gup_flags))
2951 		return -EINVAL;
2952 
2953 	/*
2954 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2955 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2956 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2957 	 * request.
2958 	 */
2959 	gup_flags |= FOLL_GET;
2960 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2961 }
2962 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2963 
2964 /**
2965  * pin_user_pages_fast() - pin user pages in memory without taking locks
2966  *
2967  * @start:      starting user address
2968  * @nr_pages:   number of pages from start to pin
2969  * @gup_flags:  flags modifying pin behaviour
2970  * @pages:      array that receives pointers to the pages pinned.
2971  *              Should be at least nr_pages long.
2972  *
2973  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2974  * get_user_pages_fast() for documentation on the function arguments, because
2975  * the arguments here are identical.
2976  *
2977  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2978  * see Documentation/core-api/pin_user_pages.rst for further details.
2979  */
2980 int pin_user_pages_fast(unsigned long start, int nr_pages,
2981 			unsigned int gup_flags, struct page **pages)
2982 {
2983 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2984 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2985 		return -EINVAL;
2986 
2987 	gup_flags |= FOLL_PIN;
2988 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2989 }
2990 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2991 
2992 /*
2993  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2994  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2995  *
2996  * The API rules are the same, too: no negative values may be returned.
2997  */
2998 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2999 			     unsigned int gup_flags, struct page **pages)
3000 {
3001 	int nr_pinned;
3002 
3003 	/*
3004 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3005 	 * rules require returning 0, rather than -errno:
3006 	 */
3007 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3008 		return 0;
3009 	/*
3010 	 * FOLL_FAST_ONLY is required in order to match the API description of
3011 	 * this routine: no fall back to regular ("slow") GUP.
3012 	 */
3013 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3014 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3015 						 pages);
3016 	/*
3017 	 * This routine is not allowed to return negative values. However,
3018 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3019 	 * correct for that here:
3020 	 */
3021 	if (nr_pinned < 0)
3022 		nr_pinned = 0;
3023 
3024 	return nr_pinned;
3025 }
3026 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3027 
3028 /**
3029  * pin_user_pages_remote() - pin pages of a remote process
3030  *
3031  * @mm:		mm_struct of target mm
3032  * @start:	starting user address
3033  * @nr_pages:	number of pages from start to pin
3034  * @gup_flags:	flags modifying lookup behaviour
3035  * @pages:	array that receives pointers to the pages pinned.
3036  *		Should be at least nr_pages long. Or NULL, if caller
3037  *		only intends to ensure the pages are faulted in.
3038  * @vmas:	array of pointers to vmas corresponding to each page.
3039  *		Or NULL if the caller does not require them.
3040  * @locked:	pointer to lock flag indicating whether lock is held and
3041  *		subsequently whether VM_FAULT_RETRY functionality can be
3042  *		utilised. Lock must initially be held.
3043  *
3044  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3045  * get_user_pages_remote() for documentation on the function arguments, because
3046  * the arguments here are identical.
3047  *
3048  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3049  * see Documentation/core-api/pin_user_pages.rst for details.
3050  */
3051 long pin_user_pages_remote(struct mm_struct *mm,
3052 			   unsigned long start, unsigned long nr_pages,
3053 			   unsigned int gup_flags, struct page **pages,
3054 			   struct vm_area_struct **vmas, int *locked)
3055 {
3056 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3057 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3058 		return -EINVAL;
3059 
3060 	gup_flags |= FOLL_PIN;
3061 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3062 				       pages, vmas, locked);
3063 }
3064 EXPORT_SYMBOL(pin_user_pages_remote);
3065 
3066 /**
3067  * pin_user_pages() - pin user pages in memory for use by other devices
3068  *
3069  * @start:	starting user address
3070  * @nr_pages:	number of pages from start to pin
3071  * @gup_flags:	flags modifying lookup behaviour
3072  * @pages:	array that receives pointers to the pages pinned.
3073  *		Should be at least nr_pages long. Or NULL, if caller
3074  *		only intends to ensure the pages are faulted in.
3075  * @vmas:	array of pointers to vmas corresponding to each page.
3076  *		Or NULL if the caller does not require them.
3077  *
3078  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3079  * FOLL_PIN is set.
3080  *
3081  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3082  * see Documentation/core-api/pin_user_pages.rst for details.
3083  */
3084 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3085 		    unsigned int gup_flags, struct page **pages,
3086 		    struct vm_area_struct **vmas)
3087 {
3088 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3089 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3090 		return -EINVAL;
3091 
3092 	gup_flags |= FOLL_PIN;
3093 	return __gup_longterm_locked(current->mm, start, nr_pages,
3094 				     pages, vmas, gup_flags);
3095 }
3096 EXPORT_SYMBOL(pin_user_pages);
3097 
3098 /*
3099  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3100  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3101  * FOLL_PIN and rejects FOLL_GET.
3102  */
3103 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3104 			     struct page **pages, unsigned int gup_flags)
3105 {
3106 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3107 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3108 		return -EINVAL;
3109 
3110 	gup_flags |= FOLL_PIN;
3111 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3112 }
3113 EXPORT_SYMBOL(pin_user_pages_unlocked);
3114 
3115 /*
3116  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3117  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3118  * FOLL_GET.
3119  */
3120 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3121 			   unsigned int gup_flags, struct page **pages,
3122 			   int *locked)
3123 {
3124 	/*
3125 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3126 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3127 	 * vmas.  As there are no users of this flag in this call we simply
3128 	 * disallow this option for now.
3129 	 */
3130 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3131 		return -EINVAL;
3132 
3133 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3134 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3135 		return -EINVAL;
3136 
3137 	gup_flags |= FOLL_PIN;
3138 	return __get_user_pages_locked(current->mm, start, nr_pages,
3139 				       pages, NULL, locked,
3140 				       gup_flags | FOLL_TOUCH);
3141 }
3142 EXPORT_SYMBOL(pin_user_pages_locked);
3143