xref: /linux/mm/gup.c (revision 2ef9533134fe8e0011e6d3532aa8ef071c34c5e4)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #include <linux/kernel.h>
3  #include <linux/errno.h>
4  #include <linux/err.h>
5  #include <linux/spinlock.h>
6  
7  #include <linux/mm.h>
8  #include <linux/memremap.h>
9  #include <linux/pagemap.h>
10  #include <linux/rmap.h>
11  #include <linux/swap.h>
12  #include <linux/swapops.h>
13  #include <linux/secretmem.h>
14  
15  #include <linux/sched/signal.h>
16  #include <linux/rwsem.h>
17  #include <linux/hugetlb.h>
18  #include <linux/migrate.h>
19  #include <linux/mm_inline.h>
20  #include <linux/sched/mm.h>
21  
22  #include <asm/mmu_context.h>
23  #include <asm/tlbflush.h>
24  
25  #include "internal.h"
26  
27  struct follow_page_context {
28  	struct dev_pagemap *pgmap;
29  	unsigned int page_mask;
30  };
31  
32  static inline void sanity_check_pinned_pages(struct page **pages,
33  					     unsigned long npages)
34  {
35  	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36  		return;
37  
38  	/*
39  	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40  	 * can no longer turn them possibly shared and PageAnonExclusive() will
41  	 * stick around until the page is freed.
42  	 *
43  	 * We'd like to verify that our pinned anonymous pages are still mapped
44  	 * exclusively. The issue with anon THP is that we don't know how
45  	 * they are/were mapped when pinning them. However, for anon
46  	 * THP we can assume that either the given page (PTE-mapped THP) or
47  	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48  	 * neither is the case, there is certainly something wrong.
49  	 */
50  	for (; npages; npages--, pages++) {
51  		struct page *page = *pages;
52  		struct folio *folio = page_folio(page);
53  
54  		if (!folio_test_anon(folio))
55  			continue;
56  		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57  			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58  		else
59  			/* Either a PTE-mapped or a PMD-mapped THP. */
60  			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61  				       !PageAnonExclusive(page), page);
62  	}
63  }
64  
65  /*
66   * Return the folio with ref appropriately incremented,
67   * or NULL if that failed.
68   */
69  static inline struct folio *try_get_folio(struct page *page, int refs)
70  {
71  	struct folio *folio;
72  
73  retry:
74  	folio = page_folio(page);
75  	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76  		return NULL;
77  	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78  		return NULL;
79  
80  	/*
81  	 * At this point we have a stable reference to the folio; but it
82  	 * could be that between calling page_folio() and the refcount
83  	 * increment, the folio was split, in which case we'd end up
84  	 * holding a reference on a folio that has nothing to do with the page
85  	 * we were given anymore.
86  	 * So now that the folio is stable, recheck that the page still
87  	 * belongs to this folio.
88  	 */
89  	if (unlikely(page_folio(page) != folio)) {
90  		if (!put_devmap_managed_page_refs(&folio->page, refs))
91  			folio_put_refs(folio, refs);
92  		goto retry;
93  	}
94  
95  	return folio;
96  }
97  
98  /**
99   * try_grab_folio() - Attempt to get or pin a folio.
100   * @page:  pointer to page to be grabbed
101   * @refs:  the value to (effectively) add to the folio's refcount
102   * @flags: gup flags: these are the FOLL_* flag values.
103   *
104   * "grab" names in this file mean, "look at flags to decide whether to use
105   * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106   *
107   * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108   * same time. (That's true throughout the get_user_pages*() and
109   * pin_user_pages*() APIs.) Cases:
110   *
111   *    FOLL_GET: folio's refcount will be incremented by @refs.
112   *
113   *    FOLL_PIN on large folios: folio's refcount will be incremented by
114   *    @refs, and its pincount will be incremented by @refs.
115   *
116   *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117   *    @refs * GUP_PIN_COUNTING_BIAS.
118   *
119   * Return: The folio containing @page (with refcount appropriately
120   * incremented) for success, or NULL upon failure. If neither FOLL_GET
121   * nor FOLL_PIN was set, that's considered failure, and furthermore,
122   * a likely bug in the caller, so a warning is also emitted.
123   */
124  struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125  {
126  	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127  		return NULL;
128  
129  	if (flags & FOLL_GET)
130  		return try_get_folio(page, refs);
131  	else if (flags & FOLL_PIN) {
132  		struct folio *folio;
133  
134  		/*
135  		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136  		 * right zone, so fail and let the caller fall back to the slow
137  		 * path.
138  		 */
139  		if (unlikely((flags & FOLL_LONGTERM) &&
140  			     !is_longterm_pinnable_page(page)))
141  			return NULL;
142  
143  		/*
144  		 * CAUTION: Don't use compound_head() on the page before this
145  		 * point, the result won't be stable.
146  		 */
147  		folio = try_get_folio(page, refs);
148  		if (!folio)
149  			return NULL;
150  
151  		/*
152  		 * When pinning a large folio, use an exact count to track it.
153  		 *
154  		 * However, be sure to *also* increment the normal folio
155  		 * refcount field at least once, so that the folio really
156  		 * is pinned.  That's why the refcount from the earlier
157  		 * try_get_folio() is left intact.
158  		 */
159  		if (folio_test_large(folio))
160  			atomic_add(refs, &folio->_pincount);
161  		else
162  			folio_ref_add(folio,
163  					refs * (GUP_PIN_COUNTING_BIAS - 1));
164  		/*
165  		 * Adjust the pincount before re-checking the PTE for changes.
166  		 * This is essentially a smp_mb() and is paired with a memory
167  		 * barrier in page_try_share_anon_rmap().
168  		 */
169  		smp_mb__after_atomic();
170  
171  		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172  
173  		return folio;
174  	}
175  
176  	WARN_ON_ONCE(1);
177  	return NULL;
178  }
179  
180  static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
181  {
182  	if (flags & FOLL_PIN) {
183  		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184  		if (folio_test_large(folio))
185  			atomic_sub(refs, &folio->_pincount);
186  		else
187  			refs *= GUP_PIN_COUNTING_BIAS;
188  	}
189  
190  	if (!put_devmap_managed_page_refs(&folio->page, refs))
191  		folio_put_refs(folio, refs);
192  }
193  
194  /**
195   * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196   * @page:    pointer to page to be grabbed
197   * @flags:   gup flags: these are the FOLL_* flag values.
198   *
199   * This might not do anything at all, depending on the flags argument.
200   *
201   * "grab" names in this file mean, "look at flags to decide whether to use
202   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203   *
204   * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205   * time. Cases: please see the try_grab_folio() documentation, with
206   * "refs=1".
207   *
208   * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209   * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210   *
211   *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
212   *			be grabbed.
213   */
214  int __must_check try_grab_page(struct page *page, unsigned int flags)
215  {
216  	struct folio *folio = page_folio(page);
217  
218  	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
219  		return -ENOMEM;
220  
221  	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
222  		return -EREMOTEIO;
223  
224  	if (flags & FOLL_GET)
225  		folio_ref_inc(folio);
226  	else if (flags & FOLL_PIN) {
227  		/*
228  		 * Similar to try_grab_folio(): be sure to *also*
229  		 * increment the normal page refcount field at least once,
230  		 * so that the page really is pinned.
231  		 */
232  		if (folio_test_large(folio)) {
233  			folio_ref_add(folio, 1);
234  			atomic_add(1, &folio->_pincount);
235  		} else {
236  			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
237  		}
238  
239  		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
240  	}
241  
242  	return 0;
243  }
244  
245  /**
246   * unpin_user_page() - release a dma-pinned page
247   * @page:            pointer to page to be released
248   *
249   * Pages that were pinned via pin_user_pages*() must be released via either
250   * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
251   * that such pages can be separately tracked and uniquely handled. In
252   * particular, interactions with RDMA and filesystems need special handling.
253   */
254  void unpin_user_page(struct page *page)
255  {
256  	sanity_check_pinned_pages(&page, 1);
257  	gup_put_folio(page_folio(page), 1, FOLL_PIN);
258  }
259  EXPORT_SYMBOL(unpin_user_page);
260  
261  static inline struct folio *gup_folio_range_next(struct page *start,
262  		unsigned long npages, unsigned long i, unsigned int *ntails)
263  {
264  	struct page *next = nth_page(start, i);
265  	struct folio *folio = page_folio(next);
266  	unsigned int nr = 1;
267  
268  	if (folio_test_large(folio))
269  		nr = min_t(unsigned int, npages - i,
270  			   folio_nr_pages(folio) - folio_page_idx(folio, next));
271  
272  	*ntails = nr;
273  	return folio;
274  }
275  
276  static inline struct folio *gup_folio_next(struct page **list,
277  		unsigned long npages, unsigned long i, unsigned int *ntails)
278  {
279  	struct folio *folio = page_folio(list[i]);
280  	unsigned int nr;
281  
282  	for (nr = i + 1; nr < npages; nr++) {
283  		if (page_folio(list[nr]) != folio)
284  			break;
285  	}
286  
287  	*ntails = nr - i;
288  	return folio;
289  }
290  
291  /**
292   * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
293   * @pages:  array of pages to be maybe marked dirty, and definitely released.
294   * @npages: number of pages in the @pages array.
295   * @make_dirty: whether to mark the pages dirty
296   *
297   * "gup-pinned page" refers to a page that has had one of the get_user_pages()
298   * variants called on that page.
299   *
300   * For each page in the @pages array, make that page (or its head page, if a
301   * compound page) dirty, if @make_dirty is true, and if the page was previously
302   * listed as clean. In any case, releases all pages using unpin_user_page(),
303   * possibly via unpin_user_pages(), for the non-dirty case.
304   *
305   * Please see the unpin_user_page() documentation for details.
306   *
307   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
308   * required, then the caller should a) verify that this is really correct,
309   * because _lock() is usually required, and b) hand code it:
310   * set_page_dirty_lock(), unpin_user_page().
311   *
312   */
313  void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314  				 bool make_dirty)
315  {
316  	unsigned long i;
317  	struct folio *folio;
318  	unsigned int nr;
319  
320  	if (!make_dirty) {
321  		unpin_user_pages(pages, npages);
322  		return;
323  	}
324  
325  	sanity_check_pinned_pages(pages, npages);
326  	for (i = 0; i < npages; i += nr) {
327  		folio = gup_folio_next(pages, npages, i, &nr);
328  		/*
329  		 * Checking PageDirty at this point may race with
330  		 * clear_page_dirty_for_io(), but that's OK. Two key
331  		 * cases:
332  		 *
333  		 * 1) This code sees the page as already dirty, so it
334  		 * skips the call to set_page_dirty(). That could happen
335  		 * because clear_page_dirty_for_io() called
336  		 * page_mkclean(), followed by set_page_dirty().
337  		 * However, now the page is going to get written back,
338  		 * which meets the original intention of setting it
339  		 * dirty, so all is well: clear_page_dirty_for_io() goes
340  		 * on to call TestClearPageDirty(), and write the page
341  		 * back.
342  		 *
343  		 * 2) This code sees the page as clean, so it calls
344  		 * set_page_dirty(). The page stays dirty, despite being
345  		 * written back, so it gets written back again in the
346  		 * next writeback cycle. This is harmless.
347  		 */
348  		if (!folio_test_dirty(folio)) {
349  			folio_lock(folio);
350  			folio_mark_dirty(folio);
351  			folio_unlock(folio);
352  		}
353  		gup_put_folio(folio, nr, FOLL_PIN);
354  	}
355  }
356  EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
357  
358  /**
359   * unpin_user_page_range_dirty_lock() - release and optionally dirty
360   * gup-pinned page range
361   *
362   * @page:  the starting page of a range maybe marked dirty, and definitely released.
363   * @npages: number of consecutive pages to release.
364   * @make_dirty: whether to mark the pages dirty
365   *
366   * "gup-pinned page range" refers to a range of pages that has had one of the
367   * pin_user_pages() variants called on that page.
368   *
369   * For the page ranges defined by [page .. page+npages], make that range (or
370   * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
371   * page range was previously listed as clean.
372   *
373   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
374   * required, then the caller should a) verify that this is really correct,
375   * because _lock() is usually required, and b) hand code it:
376   * set_page_dirty_lock(), unpin_user_page().
377   *
378   */
379  void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
380  				      bool make_dirty)
381  {
382  	unsigned long i;
383  	struct folio *folio;
384  	unsigned int nr;
385  
386  	for (i = 0; i < npages; i += nr) {
387  		folio = gup_folio_range_next(page, npages, i, &nr);
388  		if (make_dirty && !folio_test_dirty(folio)) {
389  			folio_lock(folio);
390  			folio_mark_dirty(folio);
391  			folio_unlock(folio);
392  		}
393  		gup_put_folio(folio, nr, FOLL_PIN);
394  	}
395  }
396  EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
397  
398  static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
399  {
400  	unsigned long i;
401  	struct folio *folio;
402  	unsigned int nr;
403  
404  	/*
405  	 * Don't perform any sanity checks because we might have raced with
406  	 * fork() and some anonymous pages might now actually be shared --
407  	 * which is why we're unpinning after all.
408  	 */
409  	for (i = 0; i < npages; i += nr) {
410  		folio = gup_folio_next(pages, npages, i, &nr);
411  		gup_put_folio(folio, nr, FOLL_PIN);
412  	}
413  }
414  
415  /**
416   * unpin_user_pages() - release an array of gup-pinned pages.
417   * @pages:  array of pages to be marked dirty and released.
418   * @npages: number of pages in the @pages array.
419   *
420   * For each page in the @pages array, release the page using unpin_user_page().
421   *
422   * Please see the unpin_user_page() documentation for details.
423   */
424  void unpin_user_pages(struct page **pages, unsigned long npages)
425  {
426  	unsigned long i;
427  	struct folio *folio;
428  	unsigned int nr;
429  
430  	/*
431  	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
432  	 * leaving them pinned), but probably not. More likely, gup/pup returned
433  	 * a hard -ERRNO error to the caller, who erroneously passed it here.
434  	 */
435  	if (WARN_ON(IS_ERR_VALUE(npages)))
436  		return;
437  
438  	sanity_check_pinned_pages(pages, npages);
439  	for (i = 0; i < npages; i += nr) {
440  		folio = gup_folio_next(pages, npages, i, &nr);
441  		gup_put_folio(folio, nr, FOLL_PIN);
442  	}
443  }
444  EXPORT_SYMBOL(unpin_user_pages);
445  
446  /*
447   * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
448   * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
449   * cache bouncing on large SMP machines for concurrent pinned gups.
450   */
451  static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
452  {
453  	if (!test_bit(MMF_HAS_PINNED, mm_flags))
454  		set_bit(MMF_HAS_PINNED, mm_flags);
455  }
456  
457  #ifdef CONFIG_MMU
458  static struct page *no_page_table(struct vm_area_struct *vma,
459  		unsigned int flags)
460  {
461  	/*
462  	 * When core dumping an enormous anonymous area that nobody
463  	 * has touched so far, we don't want to allocate unnecessary pages or
464  	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
465  	 * then get_dump_page() will return NULL to leave a hole in the dump.
466  	 * But we can only make this optimization where a hole would surely
467  	 * be zero-filled if handle_mm_fault() actually did handle it.
468  	 */
469  	if ((flags & FOLL_DUMP) &&
470  			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
471  		return ERR_PTR(-EFAULT);
472  	return NULL;
473  }
474  
475  static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
476  		pte_t *pte, unsigned int flags)
477  {
478  	if (flags & FOLL_TOUCH) {
479  		pte_t entry = *pte;
480  
481  		if (flags & FOLL_WRITE)
482  			entry = pte_mkdirty(entry);
483  		entry = pte_mkyoung(entry);
484  
485  		if (!pte_same(*pte, entry)) {
486  			set_pte_at(vma->vm_mm, address, pte, entry);
487  			update_mmu_cache(vma, address, pte);
488  		}
489  	}
490  
491  	/* Proper page table entry exists, but no corresponding struct page */
492  	return -EEXIST;
493  }
494  
495  /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
496  static inline bool can_follow_write_pte(pte_t pte, struct page *page,
497  					struct vm_area_struct *vma,
498  					unsigned int flags)
499  {
500  	/* If the pte is writable, we can write to the page. */
501  	if (pte_write(pte))
502  		return true;
503  
504  	/* Maybe FOLL_FORCE is set to override it? */
505  	if (!(flags & FOLL_FORCE))
506  		return false;
507  
508  	/* But FOLL_FORCE has no effect on shared mappings */
509  	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
510  		return false;
511  
512  	/* ... or read-only private ones */
513  	if (!(vma->vm_flags & VM_MAYWRITE))
514  		return false;
515  
516  	/* ... or already writable ones that just need to take a write fault */
517  	if (vma->vm_flags & VM_WRITE)
518  		return false;
519  
520  	/*
521  	 * See can_change_pte_writable(): we broke COW and could map the page
522  	 * writable if we have an exclusive anonymous page ...
523  	 */
524  	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
525  		return false;
526  
527  	/* ... and a write-fault isn't required for other reasons. */
528  	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
529  		return false;
530  	return !userfaultfd_pte_wp(vma, pte);
531  }
532  
533  static struct page *follow_page_pte(struct vm_area_struct *vma,
534  		unsigned long address, pmd_t *pmd, unsigned int flags,
535  		struct dev_pagemap **pgmap)
536  {
537  	struct mm_struct *mm = vma->vm_mm;
538  	struct page *page;
539  	spinlock_t *ptl;
540  	pte_t *ptep, pte;
541  	int ret;
542  
543  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
544  	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
545  			 (FOLL_PIN | FOLL_GET)))
546  		return ERR_PTR(-EINVAL);
547  	if (unlikely(pmd_bad(*pmd)))
548  		return no_page_table(vma, flags);
549  
550  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
551  	pte = *ptep;
552  	if (!pte_present(pte))
553  		goto no_page;
554  	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
555  		goto no_page;
556  
557  	page = vm_normal_page(vma, address, pte);
558  
559  	/*
560  	 * We only care about anon pages in can_follow_write_pte() and don't
561  	 * have to worry about pte_devmap() because they are never anon.
562  	 */
563  	if ((flags & FOLL_WRITE) &&
564  	    !can_follow_write_pte(pte, page, vma, flags)) {
565  		page = NULL;
566  		goto out;
567  	}
568  
569  	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
570  		/*
571  		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
572  		 * case since they are only valid while holding the pgmap
573  		 * reference.
574  		 */
575  		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
576  		if (*pgmap)
577  			page = pte_page(pte);
578  		else
579  			goto no_page;
580  	} else if (unlikely(!page)) {
581  		if (flags & FOLL_DUMP) {
582  			/* Avoid special (like zero) pages in core dumps */
583  			page = ERR_PTR(-EFAULT);
584  			goto out;
585  		}
586  
587  		if (is_zero_pfn(pte_pfn(pte))) {
588  			page = pte_page(pte);
589  		} else {
590  			ret = follow_pfn_pte(vma, address, ptep, flags);
591  			page = ERR_PTR(ret);
592  			goto out;
593  		}
594  	}
595  
596  	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
597  		page = ERR_PTR(-EMLINK);
598  		goto out;
599  	}
600  
601  	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
602  		       !PageAnonExclusive(page), page);
603  
604  	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
605  	ret = try_grab_page(page, flags);
606  	if (unlikely(ret)) {
607  		page = ERR_PTR(ret);
608  		goto out;
609  	}
610  
611  	/*
612  	 * We need to make the page accessible if and only if we are going
613  	 * to access its content (the FOLL_PIN case).  Please see
614  	 * Documentation/core-api/pin_user_pages.rst for details.
615  	 */
616  	if (flags & FOLL_PIN) {
617  		ret = arch_make_page_accessible(page);
618  		if (ret) {
619  			unpin_user_page(page);
620  			page = ERR_PTR(ret);
621  			goto out;
622  		}
623  	}
624  	if (flags & FOLL_TOUCH) {
625  		if ((flags & FOLL_WRITE) &&
626  		    !pte_dirty(pte) && !PageDirty(page))
627  			set_page_dirty(page);
628  		/*
629  		 * pte_mkyoung() would be more correct here, but atomic care
630  		 * is needed to avoid losing the dirty bit: it is easier to use
631  		 * mark_page_accessed().
632  		 */
633  		mark_page_accessed(page);
634  	}
635  out:
636  	pte_unmap_unlock(ptep, ptl);
637  	return page;
638  no_page:
639  	pte_unmap_unlock(ptep, ptl);
640  	if (!pte_none(pte))
641  		return NULL;
642  	return no_page_table(vma, flags);
643  }
644  
645  static struct page *follow_pmd_mask(struct vm_area_struct *vma,
646  				    unsigned long address, pud_t *pudp,
647  				    unsigned int flags,
648  				    struct follow_page_context *ctx)
649  {
650  	pmd_t *pmd, pmdval;
651  	spinlock_t *ptl;
652  	struct page *page;
653  	struct mm_struct *mm = vma->vm_mm;
654  
655  	pmd = pmd_offset(pudp, address);
656  	/*
657  	 * The READ_ONCE() will stabilize the pmdval in a register or
658  	 * on the stack so that it will stop changing under the code.
659  	 */
660  	pmdval = READ_ONCE(*pmd);
661  	if (pmd_none(pmdval))
662  		return no_page_table(vma, flags);
663  	if (!pmd_present(pmdval))
664  		return no_page_table(vma, flags);
665  	if (pmd_devmap(pmdval)) {
666  		ptl = pmd_lock(mm, pmd);
667  		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
668  		spin_unlock(ptl);
669  		if (page)
670  			return page;
671  	}
672  	if (likely(!pmd_trans_huge(pmdval)))
673  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
674  
675  	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
676  		return no_page_table(vma, flags);
677  
678  	ptl = pmd_lock(mm, pmd);
679  	if (unlikely(!pmd_present(*pmd))) {
680  		spin_unlock(ptl);
681  		return no_page_table(vma, flags);
682  	}
683  	if (unlikely(!pmd_trans_huge(*pmd))) {
684  		spin_unlock(ptl);
685  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
686  	}
687  	if (flags & FOLL_SPLIT_PMD) {
688  		int ret;
689  		page = pmd_page(*pmd);
690  		if (is_huge_zero_page(page)) {
691  			spin_unlock(ptl);
692  			ret = 0;
693  			split_huge_pmd(vma, pmd, address);
694  			if (pmd_trans_unstable(pmd))
695  				ret = -EBUSY;
696  		} else {
697  			spin_unlock(ptl);
698  			split_huge_pmd(vma, pmd, address);
699  			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
700  		}
701  
702  		return ret ? ERR_PTR(ret) :
703  			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
704  	}
705  	page = follow_trans_huge_pmd(vma, address, pmd, flags);
706  	spin_unlock(ptl);
707  	ctx->page_mask = HPAGE_PMD_NR - 1;
708  	return page;
709  }
710  
711  static struct page *follow_pud_mask(struct vm_area_struct *vma,
712  				    unsigned long address, p4d_t *p4dp,
713  				    unsigned int flags,
714  				    struct follow_page_context *ctx)
715  {
716  	pud_t *pud;
717  	spinlock_t *ptl;
718  	struct page *page;
719  	struct mm_struct *mm = vma->vm_mm;
720  
721  	pud = pud_offset(p4dp, address);
722  	if (pud_none(*pud))
723  		return no_page_table(vma, flags);
724  	if (pud_devmap(*pud)) {
725  		ptl = pud_lock(mm, pud);
726  		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
727  		spin_unlock(ptl);
728  		if (page)
729  			return page;
730  	}
731  	if (unlikely(pud_bad(*pud)))
732  		return no_page_table(vma, flags);
733  
734  	return follow_pmd_mask(vma, address, pud, flags, ctx);
735  }
736  
737  static struct page *follow_p4d_mask(struct vm_area_struct *vma,
738  				    unsigned long address, pgd_t *pgdp,
739  				    unsigned int flags,
740  				    struct follow_page_context *ctx)
741  {
742  	p4d_t *p4d;
743  
744  	p4d = p4d_offset(pgdp, address);
745  	if (p4d_none(*p4d))
746  		return no_page_table(vma, flags);
747  	BUILD_BUG_ON(p4d_huge(*p4d));
748  	if (unlikely(p4d_bad(*p4d)))
749  		return no_page_table(vma, flags);
750  
751  	return follow_pud_mask(vma, address, p4d, flags, ctx);
752  }
753  
754  /**
755   * follow_page_mask - look up a page descriptor from a user-virtual address
756   * @vma: vm_area_struct mapping @address
757   * @address: virtual address to look up
758   * @flags: flags modifying lookup behaviour
759   * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760   *       pointer to output page_mask
761   *
762   * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763   *
764   * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765   * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766   *
767   * When getting an anonymous page and the caller has to trigger unsharing
768   * of a shared anonymous page first, -EMLINK is returned. The caller should
769   * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
770   * relevant with FOLL_PIN and !FOLL_WRITE.
771   *
772   * On output, the @ctx->page_mask is set according to the size of the page.
773   *
774   * Return: the mapped (struct page *), %NULL if no mapping exists, or
775   * an error pointer if there is a mapping to something not represented
776   * by a page descriptor (see also vm_normal_page()).
777   */
778  static struct page *follow_page_mask(struct vm_area_struct *vma,
779  			      unsigned long address, unsigned int flags,
780  			      struct follow_page_context *ctx)
781  {
782  	pgd_t *pgd;
783  	struct page *page;
784  	struct mm_struct *mm = vma->vm_mm;
785  
786  	ctx->page_mask = 0;
787  
788  	/*
789  	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
790  	 * special hugetlb page table walking code.  This eliminates the
791  	 * need to check for hugetlb entries in the general walking code.
792  	 *
793  	 * hugetlb_follow_page_mask is only for follow_page() handling here.
794  	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
795  	 */
796  	if (is_vm_hugetlb_page(vma)) {
797  		page = hugetlb_follow_page_mask(vma, address, flags);
798  		if (!page)
799  			page = no_page_table(vma, flags);
800  		return page;
801  	}
802  
803  	pgd = pgd_offset(mm, address);
804  
805  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
806  		return no_page_table(vma, flags);
807  
808  	return follow_p4d_mask(vma, address, pgd, flags, ctx);
809  }
810  
811  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
812  			 unsigned int foll_flags)
813  {
814  	struct follow_page_context ctx = { NULL };
815  	struct page *page;
816  
817  	if (vma_is_secretmem(vma))
818  		return NULL;
819  
820  	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
821  		return NULL;
822  
823  	page = follow_page_mask(vma, address, foll_flags, &ctx);
824  	if (ctx.pgmap)
825  		put_dev_pagemap(ctx.pgmap);
826  	return page;
827  }
828  
829  static int get_gate_page(struct mm_struct *mm, unsigned long address,
830  		unsigned int gup_flags, struct vm_area_struct **vma,
831  		struct page **page)
832  {
833  	pgd_t *pgd;
834  	p4d_t *p4d;
835  	pud_t *pud;
836  	pmd_t *pmd;
837  	pte_t *pte;
838  	int ret = -EFAULT;
839  
840  	/* user gate pages are read-only */
841  	if (gup_flags & FOLL_WRITE)
842  		return -EFAULT;
843  	if (address > TASK_SIZE)
844  		pgd = pgd_offset_k(address);
845  	else
846  		pgd = pgd_offset_gate(mm, address);
847  	if (pgd_none(*pgd))
848  		return -EFAULT;
849  	p4d = p4d_offset(pgd, address);
850  	if (p4d_none(*p4d))
851  		return -EFAULT;
852  	pud = pud_offset(p4d, address);
853  	if (pud_none(*pud))
854  		return -EFAULT;
855  	pmd = pmd_offset(pud, address);
856  	if (!pmd_present(*pmd))
857  		return -EFAULT;
858  	VM_BUG_ON(pmd_trans_huge(*pmd));
859  	pte = pte_offset_map(pmd, address);
860  	if (pte_none(*pte))
861  		goto unmap;
862  	*vma = get_gate_vma(mm);
863  	if (!page)
864  		goto out;
865  	*page = vm_normal_page(*vma, address, *pte);
866  	if (!*page) {
867  		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
868  			goto unmap;
869  		*page = pte_page(*pte);
870  	}
871  	ret = try_grab_page(*page, gup_flags);
872  	if (unlikely(ret))
873  		goto unmap;
874  out:
875  	ret = 0;
876  unmap:
877  	pte_unmap(pte);
878  	return ret;
879  }
880  
881  /*
882   * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
883   * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
884   * to 0 and -EBUSY returned.
885   */
886  static int faultin_page(struct vm_area_struct *vma,
887  		unsigned long address, unsigned int *flags, bool unshare,
888  		int *locked)
889  {
890  	unsigned int fault_flags = 0;
891  	vm_fault_t ret;
892  
893  	if (*flags & FOLL_NOFAULT)
894  		return -EFAULT;
895  	if (*flags & FOLL_WRITE)
896  		fault_flags |= FAULT_FLAG_WRITE;
897  	if (*flags & FOLL_REMOTE)
898  		fault_flags |= FAULT_FLAG_REMOTE;
899  	if (*flags & FOLL_UNLOCKABLE) {
900  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
901  		/*
902  		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
903  		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
904  		 * That's because some callers may not be prepared to
905  		 * handle early exits caused by non-fatal signals.
906  		 */
907  		if (*flags & FOLL_INTERRUPTIBLE)
908  			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
909  	}
910  	if (*flags & FOLL_NOWAIT)
911  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
912  	if (*flags & FOLL_TRIED) {
913  		/*
914  		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
915  		 * can co-exist
916  		 */
917  		fault_flags |= FAULT_FLAG_TRIED;
918  	}
919  	if (unshare) {
920  		fault_flags |= FAULT_FLAG_UNSHARE;
921  		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
922  		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
923  	}
924  
925  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
926  
927  	if (ret & VM_FAULT_COMPLETED) {
928  		/*
929  		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
930  		 * mmap lock in the page fault handler. Sanity check this.
931  		 */
932  		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
933  		*locked = 0;
934  
935  		/*
936  		 * We should do the same as VM_FAULT_RETRY, but let's not
937  		 * return -EBUSY since that's not reflecting the reality of
938  		 * what has happened - we've just fully completed a page
939  		 * fault, with the mmap lock released.  Use -EAGAIN to show
940  		 * that we want to take the mmap lock _again_.
941  		 */
942  		return -EAGAIN;
943  	}
944  
945  	if (ret & VM_FAULT_ERROR) {
946  		int err = vm_fault_to_errno(ret, *flags);
947  
948  		if (err)
949  			return err;
950  		BUG();
951  	}
952  
953  	if (ret & VM_FAULT_RETRY) {
954  		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
955  			*locked = 0;
956  		return -EBUSY;
957  	}
958  
959  	return 0;
960  }
961  
962  static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
963  {
964  	vm_flags_t vm_flags = vma->vm_flags;
965  	int write = (gup_flags & FOLL_WRITE);
966  	int foreign = (gup_flags & FOLL_REMOTE);
967  
968  	if (vm_flags & (VM_IO | VM_PFNMAP))
969  		return -EFAULT;
970  
971  	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
972  		return -EFAULT;
973  
974  	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
975  		return -EOPNOTSUPP;
976  
977  	if (vma_is_secretmem(vma))
978  		return -EFAULT;
979  
980  	if (write) {
981  		if (!(vm_flags & VM_WRITE)) {
982  			if (!(gup_flags & FOLL_FORCE))
983  				return -EFAULT;
984  			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
985  			if (is_vm_hugetlb_page(vma))
986  				return -EFAULT;
987  			/*
988  			 * We used to let the write,force case do COW in a
989  			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
990  			 * set a breakpoint in a read-only mapping of an
991  			 * executable, without corrupting the file (yet only
992  			 * when that file had been opened for writing!).
993  			 * Anon pages in shared mappings are surprising: now
994  			 * just reject it.
995  			 */
996  			if (!is_cow_mapping(vm_flags))
997  				return -EFAULT;
998  		}
999  	} else if (!(vm_flags & VM_READ)) {
1000  		if (!(gup_flags & FOLL_FORCE))
1001  			return -EFAULT;
1002  		/*
1003  		 * Is there actually any vma we can reach here which does not
1004  		 * have VM_MAYREAD set?
1005  		 */
1006  		if (!(vm_flags & VM_MAYREAD))
1007  			return -EFAULT;
1008  	}
1009  	/*
1010  	 * gups are always data accesses, not instruction
1011  	 * fetches, so execute=false here
1012  	 */
1013  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1014  		return -EFAULT;
1015  	return 0;
1016  }
1017  
1018  /**
1019   * __get_user_pages() - pin user pages in memory
1020   * @mm:		mm_struct of target mm
1021   * @start:	starting user address
1022   * @nr_pages:	number of pages from start to pin
1023   * @gup_flags:	flags modifying pin behaviour
1024   * @pages:	array that receives pointers to the pages pinned.
1025   *		Should be at least nr_pages long. Or NULL, if caller
1026   *		only intends to ensure the pages are faulted in.
1027   * @vmas:	array of pointers to vmas corresponding to each page.
1028   *		Or NULL if the caller does not require them.
1029   * @locked:     whether we're still with the mmap_lock held
1030   *
1031   * Returns either number of pages pinned (which may be less than the
1032   * number requested), or an error. Details about the return value:
1033   *
1034   * -- If nr_pages is 0, returns 0.
1035   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1036   * -- If nr_pages is >0, and some pages were pinned, returns the number of
1037   *    pages pinned. Again, this may be less than nr_pages.
1038   * -- 0 return value is possible when the fault would need to be retried.
1039   *
1040   * The caller is responsible for releasing returned @pages, via put_page().
1041   *
1042   * @vmas are valid only as long as mmap_lock is held.
1043   *
1044   * Must be called with mmap_lock held.  It may be released.  See below.
1045   *
1046   * __get_user_pages walks a process's page tables and takes a reference to
1047   * each struct page that each user address corresponds to at a given
1048   * instant. That is, it takes the page that would be accessed if a user
1049   * thread accesses the given user virtual address at that instant.
1050   *
1051   * This does not guarantee that the page exists in the user mappings when
1052   * __get_user_pages returns, and there may even be a completely different
1053   * page there in some cases (eg. if mmapped pagecache has been invalidated
1054   * and subsequently re-faulted). However it does guarantee that the page
1055   * won't be freed completely. And mostly callers simply care that the page
1056   * contains data that was valid *at some point in time*. Typically, an IO
1057   * or similar operation cannot guarantee anything stronger anyway because
1058   * locks can't be held over the syscall boundary.
1059   *
1060   * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1061   * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1062   * appropriate) must be called after the page is finished with, and
1063   * before put_page is called.
1064   *
1065   * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1066   * be released. If this happens *@locked will be set to 0 on return.
1067   *
1068   * A caller using such a combination of @gup_flags must therefore hold the
1069   * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1070   * it must be held for either reading or writing and will not be released.
1071   *
1072   * In most cases, get_user_pages or get_user_pages_fast should be used
1073   * instead of __get_user_pages. __get_user_pages should be used only if
1074   * you need some special @gup_flags.
1075   */
1076  static long __get_user_pages(struct mm_struct *mm,
1077  		unsigned long start, unsigned long nr_pages,
1078  		unsigned int gup_flags, struct page **pages,
1079  		struct vm_area_struct **vmas, int *locked)
1080  {
1081  	long ret = 0, i = 0;
1082  	struct vm_area_struct *vma = NULL;
1083  	struct follow_page_context ctx = { NULL };
1084  
1085  	if (!nr_pages)
1086  		return 0;
1087  
1088  	start = untagged_addr_remote(mm, start);
1089  
1090  	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1091  
1092  	do {
1093  		struct page *page;
1094  		unsigned int foll_flags = gup_flags;
1095  		unsigned int page_increm;
1096  
1097  		/* first iteration or cross vma bound */
1098  		if (!vma || start >= vma->vm_end) {
1099  			vma = find_extend_vma(mm, start);
1100  			if (!vma && in_gate_area(mm, start)) {
1101  				ret = get_gate_page(mm, start & PAGE_MASK,
1102  						gup_flags, &vma,
1103  						pages ? &pages[i] : NULL);
1104  				if (ret)
1105  					goto out;
1106  				ctx.page_mask = 0;
1107  				goto next_page;
1108  			}
1109  
1110  			if (!vma) {
1111  				ret = -EFAULT;
1112  				goto out;
1113  			}
1114  			ret = check_vma_flags(vma, gup_flags);
1115  			if (ret)
1116  				goto out;
1117  
1118  			if (is_vm_hugetlb_page(vma)) {
1119  				i = follow_hugetlb_page(mm, vma, pages, vmas,
1120  						&start, &nr_pages, i,
1121  						gup_flags, locked);
1122  				if (!*locked) {
1123  					/*
1124  					 * We've got a VM_FAULT_RETRY
1125  					 * and we've lost mmap_lock.
1126  					 * We must stop here.
1127  					 */
1128  					BUG_ON(gup_flags & FOLL_NOWAIT);
1129  					goto out;
1130  				}
1131  				continue;
1132  			}
1133  		}
1134  retry:
1135  		/*
1136  		 * If we have a pending SIGKILL, don't keep faulting pages and
1137  		 * potentially allocating memory.
1138  		 */
1139  		if (fatal_signal_pending(current)) {
1140  			ret = -EINTR;
1141  			goto out;
1142  		}
1143  		cond_resched();
1144  
1145  		page = follow_page_mask(vma, start, foll_flags, &ctx);
1146  		if (!page || PTR_ERR(page) == -EMLINK) {
1147  			ret = faultin_page(vma, start, &foll_flags,
1148  					   PTR_ERR(page) == -EMLINK, locked);
1149  			switch (ret) {
1150  			case 0:
1151  				goto retry;
1152  			case -EBUSY:
1153  			case -EAGAIN:
1154  				ret = 0;
1155  				fallthrough;
1156  			case -EFAULT:
1157  			case -ENOMEM:
1158  			case -EHWPOISON:
1159  				goto out;
1160  			}
1161  			BUG();
1162  		} else if (PTR_ERR(page) == -EEXIST) {
1163  			/*
1164  			 * Proper page table entry exists, but no corresponding
1165  			 * struct page. If the caller expects **pages to be
1166  			 * filled in, bail out now, because that can't be done
1167  			 * for this page.
1168  			 */
1169  			if (pages) {
1170  				ret = PTR_ERR(page);
1171  				goto out;
1172  			}
1173  
1174  			goto next_page;
1175  		} else if (IS_ERR(page)) {
1176  			ret = PTR_ERR(page);
1177  			goto out;
1178  		}
1179  		if (pages) {
1180  			pages[i] = page;
1181  			flush_anon_page(vma, page, start);
1182  			flush_dcache_page(page);
1183  			ctx.page_mask = 0;
1184  		}
1185  next_page:
1186  		if (vmas) {
1187  			vmas[i] = vma;
1188  			ctx.page_mask = 0;
1189  		}
1190  		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1191  		if (page_increm > nr_pages)
1192  			page_increm = nr_pages;
1193  		i += page_increm;
1194  		start += page_increm * PAGE_SIZE;
1195  		nr_pages -= page_increm;
1196  	} while (nr_pages);
1197  out:
1198  	if (ctx.pgmap)
1199  		put_dev_pagemap(ctx.pgmap);
1200  	return i ? i : ret;
1201  }
1202  
1203  static bool vma_permits_fault(struct vm_area_struct *vma,
1204  			      unsigned int fault_flags)
1205  {
1206  	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1207  	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1208  	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1209  
1210  	if (!(vm_flags & vma->vm_flags))
1211  		return false;
1212  
1213  	/*
1214  	 * The architecture might have a hardware protection
1215  	 * mechanism other than read/write that can deny access.
1216  	 *
1217  	 * gup always represents data access, not instruction
1218  	 * fetches, so execute=false here:
1219  	 */
1220  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1221  		return false;
1222  
1223  	return true;
1224  }
1225  
1226  /**
1227   * fixup_user_fault() - manually resolve a user page fault
1228   * @mm:		mm_struct of target mm
1229   * @address:	user address
1230   * @fault_flags:flags to pass down to handle_mm_fault()
1231   * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1232   *		does not allow retry. If NULL, the caller must guarantee
1233   *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1234   *
1235   * This is meant to be called in the specific scenario where for locking reasons
1236   * we try to access user memory in atomic context (within a pagefault_disable()
1237   * section), this returns -EFAULT, and we want to resolve the user fault before
1238   * trying again.
1239   *
1240   * Typically this is meant to be used by the futex code.
1241   *
1242   * The main difference with get_user_pages() is that this function will
1243   * unconditionally call handle_mm_fault() which will in turn perform all the
1244   * necessary SW fixup of the dirty and young bits in the PTE, while
1245   * get_user_pages() only guarantees to update these in the struct page.
1246   *
1247   * This is important for some architectures where those bits also gate the
1248   * access permission to the page because they are maintained in software.  On
1249   * such architectures, gup() will not be enough to make a subsequent access
1250   * succeed.
1251   *
1252   * This function will not return with an unlocked mmap_lock. So it has not the
1253   * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1254   */
1255  int fixup_user_fault(struct mm_struct *mm,
1256  		     unsigned long address, unsigned int fault_flags,
1257  		     bool *unlocked)
1258  {
1259  	struct vm_area_struct *vma;
1260  	vm_fault_t ret;
1261  
1262  	address = untagged_addr_remote(mm, address);
1263  
1264  	if (unlocked)
1265  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1266  
1267  retry:
1268  	vma = find_extend_vma(mm, address);
1269  	if (!vma || address < vma->vm_start)
1270  		return -EFAULT;
1271  
1272  	if (!vma_permits_fault(vma, fault_flags))
1273  		return -EFAULT;
1274  
1275  	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1276  	    fatal_signal_pending(current))
1277  		return -EINTR;
1278  
1279  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1280  
1281  	if (ret & VM_FAULT_COMPLETED) {
1282  		/*
1283  		 * NOTE: it's a pity that we need to retake the lock here
1284  		 * to pair with the unlock() in the callers. Ideally we
1285  		 * could tell the callers so they do not need to unlock.
1286  		 */
1287  		mmap_read_lock(mm);
1288  		*unlocked = true;
1289  		return 0;
1290  	}
1291  
1292  	if (ret & VM_FAULT_ERROR) {
1293  		int err = vm_fault_to_errno(ret, 0);
1294  
1295  		if (err)
1296  			return err;
1297  		BUG();
1298  	}
1299  
1300  	if (ret & VM_FAULT_RETRY) {
1301  		mmap_read_lock(mm);
1302  		*unlocked = true;
1303  		fault_flags |= FAULT_FLAG_TRIED;
1304  		goto retry;
1305  	}
1306  
1307  	return 0;
1308  }
1309  EXPORT_SYMBOL_GPL(fixup_user_fault);
1310  
1311  /*
1312   * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1313   * specified, it'll also respond to generic signals.  The caller of GUP
1314   * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1315   */
1316  static bool gup_signal_pending(unsigned int flags)
1317  {
1318  	if (fatal_signal_pending(current))
1319  		return true;
1320  
1321  	if (!(flags & FOLL_INTERRUPTIBLE))
1322  		return false;
1323  
1324  	return signal_pending(current);
1325  }
1326  
1327  /*
1328   * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1329   * the caller. This function may drop the mmap_lock. If it does so, then it will
1330   * set (*locked = 0).
1331   *
1332   * (*locked == 0) means that the caller expects this function to acquire and
1333   * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1334   * the function returns, even though it may have changed temporarily during
1335   * function execution.
1336   *
1337   * Please note that this function, unlike __get_user_pages(), will not return 0
1338   * for nr_pages > 0, unless FOLL_NOWAIT is used.
1339   */
1340  static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1341  						unsigned long start,
1342  						unsigned long nr_pages,
1343  						struct page **pages,
1344  						struct vm_area_struct **vmas,
1345  						int *locked,
1346  						unsigned int flags)
1347  {
1348  	long ret, pages_done;
1349  	bool must_unlock = false;
1350  
1351  	/*
1352  	 * The internal caller expects GUP to manage the lock internally and the
1353  	 * lock must be released when this returns.
1354  	 */
1355  	if (!*locked) {
1356  		if (mmap_read_lock_killable(mm))
1357  			return -EAGAIN;
1358  		must_unlock = true;
1359  		*locked = 1;
1360  	}
1361  	else
1362  		mmap_assert_locked(mm);
1363  
1364  	if (flags & FOLL_PIN)
1365  		mm_set_has_pinned_flag(&mm->flags);
1366  
1367  	/*
1368  	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1369  	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1370  	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1371  	 * for FOLL_GET, not for the newer FOLL_PIN.
1372  	 *
1373  	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1374  	 * that here, as any failures will be obvious enough.
1375  	 */
1376  	if (pages && !(flags & FOLL_PIN))
1377  		flags |= FOLL_GET;
1378  
1379  	pages_done = 0;
1380  	for (;;) {
1381  		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1382  				       vmas, locked);
1383  		if (!(flags & FOLL_UNLOCKABLE)) {
1384  			/* VM_FAULT_RETRY couldn't trigger, bypass */
1385  			pages_done = ret;
1386  			break;
1387  		}
1388  
1389  		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1390  		if (!*locked) {
1391  			BUG_ON(ret < 0);
1392  			BUG_ON(ret >= nr_pages);
1393  		}
1394  
1395  		if (ret > 0) {
1396  			nr_pages -= ret;
1397  			pages_done += ret;
1398  			if (!nr_pages)
1399  				break;
1400  		}
1401  		if (*locked) {
1402  			/*
1403  			 * VM_FAULT_RETRY didn't trigger or it was a
1404  			 * FOLL_NOWAIT.
1405  			 */
1406  			if (!pages_done)
1407  				pages_done = ret;
1408  			break;
1409  		}
1410  		/*
1411  		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1412  		 * For the prefault case (!pages) we only update counts.
1413  		 */
1414  		if (likely(pages))
1415  			pages += ret;
1416  		start += ret << PAGE_SHIFT;
1417  
1418  		/* The lock was temporarily dropped, so we must unlock later */
1419  		must_unlock = true;
1420  
1421  retry:
1422  		/*
1423  		 * Repeat on the address that fired VM_FAULT_RETRY
1424  		 * with both FAULT_FLAG_ALLOW_RETRY and
1425  		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1426  		 * by fatal signals of even common signals, depending on
1427  		 * the caller's request. So we need to check it before we
1428  		 * start trying again otherwise it can loop forever.
1429  		 */
1430  		if (gup_signal_pending(flags)) {
1431  			if (!pages_done)
1432  				pages_done = -EINTR;
1433  			break;
1434  		}
1435  
1436  		ret = mmap_read_lock_killable(mm);
1437  		if (ret) {
1438  			BUG_ON(ret > 0);
1439  			if (!pages_done)
1440  				pages_done = ret;
1441  			break;
1442  		}
1443  
1444  		*locked = 1;
1445  		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1446  				       pages, NULL, locked);
1447  		if (!*locked) {
1448  			/* Continue to retry until we succeeded */
1449  			BUG_ON(ret != 0);
1450  			goto retry;
1451  		}
1452  		if (ret != 1) {
1453  			BUG_ON(ret > 1);
1454  			if (!pages_done)
1455  				pages_done = ret;
1456  			break;
1457  		}
1458  		nr_pages--;
1459  		pages_done++;
1460  		if (!nr_pages)
1461  			break;
1462  		if (likely(pages))
1463  			pages++;
1464  		start += PAGE_SIZE;
1465  	}
1466  	if (must_unlock && *locked) {
1467  		/*
1468  		 * We either temporarily dropped the lock, or the caller
1469  		 * requested that we both acquire and drop the lock. Either way,
1470  		 * we must now unlock, and notify the caller of that state.
1471  		 */
1472  		mmap_read_unlock(mm);
1473  		*locked = 0;
1474  	}
1475  	return pages_done;
1476  }
1477  
1478  /**
1479   * populate_vma_page_range() -  populate a range of pages in the vma.
1480   * @vma:   target vma
1481   * @start: start address
1482   * @end:   end address
1483   * @locked: whether the mmap_lock is still held
1484   *
1485   * This takes care of mlocking the pages too if VM_LOCKED is set.
1486   *
1487   * Return either number of pages pinned in the vma, or a negative error
1488   * code on error.
1489   *
1490   * vma->vm_mm->mmap_lock must be held.
1491   *
1492   * If @locked is NULL, it may be held for read or write and will
1493   * be unperturbed.
1494   *
1495   * If @locked is non-NULL, it must held for read only and may be
1496   * released.  If it's released, *@locked will be set to 0.
1497   */
1498  long populate_vma_page_range(struct vm_area_struct *vma,
1499  		unsigned long start, unsigned long end, int *locked)
1500  {
1501  	struct mm_struct *mm = vma->vm_mm;
1502  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1503  	int local_locked = 1;
1504  	int gup_flags;
1505  	long ret;
1506  
1507  	VM_BUG_ON(!PAGE_ALIGNED(start));
1508  	VM_BUG_ON(!PAGE_ALIGNED(end));
1509  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1510  	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1511  	mmap_assert_locked(mm);
1512  
1513  	/*
1514  	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1515  	 * faultin_page() to break COW, so it has no work to do here.
1516  	 */
1517  	if (vma->vm_flags & VM_LOCKONFAULT)
1518  		return nr_pages;
1519  
1520  	gup_flags = FOLL_TOUCH;
1521  	/*
1522  	 * We want to touch writable mappings with a write fault in order
1523  	 * to break COW, except for shared mappings because these don't COW
1524  	 * and we would not want to dirty them for nothing.
1525  	 */
1526  	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1527  		gup_flags |= FOLL_WRITE;
1528  
1529  	/*
1530  	 * We want mlock to succeed for regions that have any permissions
1531  	 * other than PROT_NONE.
1532  	 */
1533  	if (vma_is_accessible(vma))
1534  		gup_flags |= FOLL_FORCE;
1535  
1536  	if (locked)
1537  		gup_flags |= FOLL_UNLOCKABLE;
1538  
1539  	/*
1540  	 * We made sure addr is within a VMA, so the following will
1541  	 * not result in a stack expansion that recurses back here.
1542  	 */
1543  	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1544  				NULL, NULL, locked ? locked : &local_locked);
1545  	lru_add_drain();
1546  	return ret;
1547  }
1548  
1549  /*
1550   * faultin_vma_page_range() - populate (prefault) page tables inside the
1551   *			      given VMA range readable/writable
1552   *
1553   * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1554   *
1555   * @vma: target vma
1556   * @start: start address
1557   * @end: end address
1558   * @write: whether to prefault readable or writable
1559   * @locked: whether the mmap_lock is still held
1560   *
1561   * Returns either number of processed pages in the vma, or a negative error
1562   * code on error (see __get_user_pages()).
1563   *
1564   * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1565   * covered by the VMA. If it's released, *@locked will be set to 0.
1566   */
1567  long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1568  			    unsigned long end, bool write, int *locked)
1569  {
1570  	struct mm_struct *mm = vma->vm_mm;
1571  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1572  	int gup_flags;
1573  	long ret;
1574  
1575  	VM_BUG_ON(!PAGE_ALIGNED(start));
1576  	VM_BUG_ON(!PAGE_ALIGNED(end));
1577  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1578  	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1579  	mmap_assert_locked(mm);
1580  
1581  	/*
1582  	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1583  	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1584  	 *	       difference with !FOLL_FORCE, because the page is writable
1585  	 *	       in the page table.
1586  	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1587  	 *		  a poisoned page.
1588  	 * !FOLL_FORCE: Require proper access permissions.
1589  	 */
1590  	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1591  	if (write)
1592  		gup_flags |= FOLL_WRITE;
1593  
1594  	/*
1595  	 * We want to report -EINVAL instead of -EFAULT for any permission
1596  	 * problems or incompatible mappings.
1597  	 */
1598  	if (check_vma_flags(vma, gup_flags))
1599  		return -EINVAL;
1600  
1601  	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1602  				NULL, NULL, locked);
1603  	lru_add_drain();
1604  	return ret;
1605  }
1606  
1607  /*
1608   * __mm_populate - populate and/or mlock pages within a range of address space.
1609   *
1610   * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1611   * flags. VMAs must be already marked with the desired vm_flags, and
1612   * mmap_lock must not be held.
1613   */
1614  int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1615  {
1616  	struct mm_struct *mm = current->mm;
1617  	unsigned long end, nstart, nend;
1618  	struct vm_area_struct *vma = NULL;
1619  	int locked = 0;
1620  	long ret = 0;
1621  
1622  	end = start + len;
1623  
1624  	for (nstart = start; nstart < end; nstart = nend) {
1625  		/*
1626  		 * We want to fault in pages for [nstart; end) address range.
1627  		 * Find first corresponding VMA.
1628  		 */
1629  		if (!locked) {
1630  			locked = 1;
1631  			mmap_read_lock(mm);
1632  			vma = find_vma_intersection(mm, nstart, end);
1633  		} else if (nstart >= vma->vm_end)
1634  			vma = find_vma_intersection(mm, vma->vm_end, end);
1635  
1636  		if (!vma)
1637  			break;
1638  		/*
1639  		 * Set [nstart; nend) to intersection of desired address
1640  		 * range with the first VMA. Also, skip undesirable VMA types.
1641  		 */
1642  		nend = min(end, vma->vm_end);
1643  		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1644  			continue;
1645  		if (nstart < vma->vm_start)
1646  			nstart = vma->vm_start;
1647  		/*
1648  		 * Now fault in a range of pages. populate_vma_page_range()
1649  		 * double checks the vma flags, so that it won't mlock pages
1650  		 * if the vma was already munlocked.
1651  		 */
1652  		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1653  		if (ret < 0) {
1654  			if (ignore_errors) {
1655  				ret = 0;
1656  				continue;	/* continue at next VMA */
1657  			}
1658  			break;
1659  		}
1660  		nend = nstart + ret * PAGE_SIZE;
1661  		ret = 0;
1662  	}
1663  	if (locked)
1664  		mmap_read_unlock(mm);
1665  	return ret;	/* 0 or negative error code */
1666  }
1667  #else /* CONFIG_MMU */
1668  static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1669  		unsigned long nr_pages, struct page **pages,
1670  		struct vm_area_struct **vmas, int *locked,
1671  		unsigned int foll_flags)
1672  {
1673  	struct vm_area_struct *vma;
1674  	bool must_unlock = false;
1675  	unsigned long vm_flags;
1676  	long i;
1677  
1678  	if (!nr_pages)
1679  		return 0;
1680  
1681  	/*
1682  	 * The internal caller expects GUP to manage the lock internally and the
1683  	 * lock must be released when this returns.
1684  	 */
1685  	if (!*locked) {
1686  		if (mmap_read_lock_killable(mm))
1687  			return -EAGAIN;
1688  		must_unlock = true;
1689  		*locked = 1;
1690  	}
1691  
1692  	/* calculate required read or write permissions.
1693  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1694  	 */
1695  	vm_flags  = (foll_flags & FOLL_WRITE) ?
1696  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1697  	vm_flags &= (foll_flags & FOLL_FORCE) ?
1698  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1699  
1700  	for (i = 0; i < nr_pages; i++) {
1701  		vma = find_vma(mm, start);
1702  		if (!vma)
1703  			break;
1704  
1705  		/* protect what we can, including chardevs */
1706  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1707  		    !(vm_flags & vma->vm_flags))
1708  			break;
1709  
1710  		if (pages) {
1711  			pages[i] = virt_to_page((void *)start);
1712  			if (pages[i])
1713  				get_page(pages[i]);
1714  		}
1715  		if (vmas)
1716  			vmas[i] = vma;
1717  		start = (start + PAGE_SIZE) & PAGE_MASK;
1718  	}
1719  
1720  	if (must_unlock && *locked) {
1721  		mmap_read_unlock(mm);
1722  		*locked = 0;
1723  	}
1724  
1725  	return i ? : -EFAULT;
1726  }
1727  #endif /* !CONFIG_MMU */
1728  
1729  /**
1730   * fault_in_writeable - fault in userspace address range for writing
1731   * @uaddr: start of address range
1732   * @size: size of address range
1733   *
1734   * Returns the number of bytes not faulted in (like copy_to_user() and
1735   * copy_from_user()).
1736   */
1737  size_t fault_in_writeable(char __user *uaddr, size_t size)
1738  {
1739  	char __user *start = uaddr, *end;
1740  
1741  	if (unlikely(size == 0))
1742  		return 0;
1743  	if (!user_write_access_begin(uaddr, size))
1744  		return size;
1745  	if (!PAGE_ALIGNED(uaddr)) {
1746  		unsafe_put_user(0, uaddr, out);
1747  		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1748  	}
1749  	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1750  	if (unlikely(end < start))
1751  		end = NULL;
1752  	while (uaddr != end) {
1753  		unsafe_put_user(0, uaddr, out);
1754  		uaddr += PAGE_SIZE;
1755  	}
1756  
1757  out:
1758  	user_write_access_end();
1759  	if (size > uaddr - start)
1760  		return size - (uaddr - start);
1761  	return 0;
1762  }
1763  EXPORT_SYMBOL(fault_in_writeable);
1764  
1765  /**
1766   * fault_in_subpage_writeable - fault in an address range for writing
1767   * @uaddr: start of address range
1768   * @size: size of address range
1769   *
1770   * Fault in a user address range for writing while checking for permissions at
1771   * sub-page granularity (e.g. arm64 MTE). This function should be used when
1772   * the caller cannot guarantee forward progress of a copy_to_user() loop.
1773   *
1774   * Returns the number of bytes not faulted in (like copy_to_user() and
1775   * copy_from_user()).
1776   */
1777  size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1778  {
1779  	size_t faulted_in;
1780  
1781  	/*
1782  	 * Attempt faulting in at page granularity first for page table
1783  	 * permission checking. The arch-specific probe_subpage_writeable()
1784  	 * functions may not check for this.
1785  	 */
1786  	faulted_in = size - fault_in_writeable(uaddr, size);
1787  	if (faulted_in)
1788  		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1789  
1790  	return size - faulted_in;
1791  }
1792  EXPORT_SYMBOL(fault_in_subpage_writeable);
1793  
1794  /*
1795   * fault_in_safe_writeable - fault in an address range for writing
1796   * @uaddr: start of address range
1797   * @size: length of address range
1798   *
1799   * Faults in an address range for writing.  This is primarily useful when we
1800   * already know that some or all of the pages in the address range aren't in
1801   * memory.
1802   *
1803   * Unlike fault_in_writeable(), this function is non-destructive.
1804   *
1805   * Note that we don't pin or otherwise hold the pages referenced that we fault
1806   * in.  There's no guarantee that they'll stay in memory for any duration of
1807   * time.
1808   *
1809   * Returns the number of bytes not faulted in, like copy_to_user() and
1810   * copy_from_user().
1811   */
1812  size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1813  {
1814  	unsigned long start = (unsigned long)uaddr, end;
1815  	struct mm_struct *mm = current->mm;
1816  	bool unlocked = false;
1817  
1818  	if (unlikely(size == 0))
1819  		return 0;
1820  	end = PAGE_ALIGN(start + size);
1821  	if (end < start)
1822  		end = 0;
1823  
1824  	mmap_read_lock(mm);
1825  	do {
1826  		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1827  			break;
1828  		start = (start + PAGE_SIZE) & PAGE_MASK;
1829  	} while (start != end);
1830  	mmap_read_unlock(mm);
1831  
1832  	if (size > (unsigned long)uaddr - start)
1833  		return size - ((unsigned long)uaddr - start);
1834  	return 0;
1835  }
1836  EXPORT_SYMBOL(fault_in_safe_writeable);
1837  
1838  /**
1839   * fault_in_readable - fault in userspace address range for reading
1840   * @uaddr: start of user address range
1841   * @size: size of user address range
1842   *
1843   * Returns the number of bytes not faulted in (like copy_to_user() and
1844   * copy_from_user()).
1845   */
1846  size_t fault_in_readable(const char __user *uaddr, size_t size)
1847  {
1848  	const char __user *start = uaddr, *end;
1849  	volatile char c;
1850  
1851  	if (unlikely(size == 0))
1852  		return 0;
1853  	if (!user_read_access_begin(uaddr, size))
1854  		return size;
1855  	if (!PAGE_ALIGNED(uaddr)) {
1856  		unsafe_get_user(c, uaddr, out);
1857  		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1858  	}
1859  	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1860  	if (unlikely(end < start))
1861  		end = NULL;
1862  	while (uaddr != end) {
1863  		unsafe_get_user(c, uaddr, out);
1864  		uaddr += PAGE_SIZE;
1865  	}
1866  
1867  out:
1868  	user_read_access_end();
1869  	(void)c;
1870  	if (size > uaddr - start)
1871  		return size - (uaddr - start);
1872  	return 0;
1873  }
1874  EXPORT_SYMBOL(fault_in_readable);
1875  
1876  /**
1877   * get_dump_page() - pin user page in memory while writing it to core dump
1878   * @addr: user address
1879   *
1880   * Returns struct page pointer of user page pinned for dump,
1881   * to be freed afterwards by put_page().
1882   *
1883   * Returns NULL on any kind of failure - a hole must then be inserted into
1884   * the corefile, to preserve alignment with its headers; and also returns
1885   * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1886   * allowing a hole to be left in the corefile to save disk space.
1887   *
1888   * Called without mmap_lock (takes and releases the mmap_lock by itself).
1889   */
1890  #ifdef CONFIG_ELF_CORE
1891  struct page *get_dump_page(unsigned long addr)
1892  {
1893  	struct page *page;
1894  	int locked = 0;
1895  	int ret;
1896  
1897  	ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
1898  				      &locked,
1899  				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1900  	return (ret == 1) ? page : NULL;
1901  }
1902  #endif /* CONFIG_ELF_CORE */
1903  
1904  #ifdef CONFIG_MIGRATION
1905  /*
1906   * Returns the number of collected pages. Return value is always >= 0.
1907   */
1908  static unsigned long collect_longterm_unpinnable_pages(
1909  					struct list_head *movable_page_list,
1910  					unsigned long nr_pages,
1911  					struct page **pages)
1912  {
1913  	unsigned long i, collected = 0;
1914  	struct folio *prev_folio = NULL;
1915  	bool drain_allow = true;
1916  
1917  	for (i = 0; i < nr_pages; i++) {
1918  		struct folio *folio = page_folio(pages[i]);
1919  
1920  		if (folio == prev_folio)
1921  			continue;
1922  		prev_folio = folio;
1923  
1924  		if (folio_is_longterm_pinnable(folio))
1925  			continue;
1926  
1927  		collected++;
1928  
1929  		if (folio_is_device_coherent(folio))
1930  			continue;
1931  
1932  		if (folio_test_hugetlb(folio)) {
1933  			isolate_hugetlb(folio, movable_page_list);
1934  			continue;
1935  		}
1936  
1937  		if (!folio_test_lru(folio) && drain_allow) {
1938  			lru_add_drain_all();
1939  			drain_allow = false;
1940  		}
1941  
1942  		if (!folio_isolate_lru(folio))
1943  			continue;
1944  
1945  		list_add_tail(&folio->lru, movable_page_list);
1946  		node_stat_mod_folio(folio,
1947  				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1948  				    folio_nr_pages(folio));
1949  	}
1950  
1951  	return collected;
1952  }
1953  
1954  /*
1955   * Unpins all pages and migrates device coherent pages and movable_page_list.
1956   * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1957   * (or partial success).
1958   */
1959  static int migrate_longterm_unpinnable_pages(
1960  					struct list_head *movable_page_list,
1961  					unsigned long nr_pages,
1962  					struct page **pages)
1963  {
1964  	int ret;
1965  	unsigned long i;
1966  
1967  	for (i = 0; i < nr_pages; i++) {
1968  		struct folio *folio = page_folio(pages[i]);
1969  
1970  		if (folio_is_device_coherent(folio)) {
1971  			/*
1972  			 * Migration will fail if the page is pinned, so convert
1973  			 * the pin on the source page to a normal reference.
1974  			 */
1975  			pages[i] = NULL;
1976  			folio_get(folio);
1977  			gup_put_folio(folio, 1, FOLL_PIN);
1978  
1979  			if (migrate_device_coherent_page(&folio->page)) {
1980  				ret = -EBUSY;
1981  				goto err;
1982  			}
1983  
1984  			continue;
1985  		}
1986  
1987  		/*
1988  		 * We can't migrate pages with unexpected references, so drop
1989  		 * the reference obtained by __get_user_pages_locked().
1990  		 * Migrating pages have been added to movable_page_list after
1991  		 * calling folio_isolate_lru() which takes a reference so the
1992  		 * page won't be freed if it's migrating.
1993  		 */
1994  		unpin_user_page(pages[i]);
1995  		pages[i] = NULL;
1996  	}
1997  
1998  	if (!list_empty(movable_page_list)) {
1999  		struct migration_target_control mtc = {
2000  			.nid = NUMA_NO_NODE,
2001  			.gfp_mask = GFP_USER | __GFP_NOWARN,
2002  		};
2003  
2004  		if (migrate_pages(movable_page_list, alloc_migration_target,
2005  				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2006  				  MR_LONGTERM_PIN, NULL)) {
2007  			ret = -ENOMEM;
2008  			goto err;
2009  		}
2010  	}
2011  
2012  	putback_movable_pages(movable_page_list);
2013  
2014  	return -EAGAIN;
2015  
2016  err:
2017  	for (i = 0; i < nr_pages; i++)
2018  		if (pages[i])
2019  			unpin_user_page(pages[i]);
2020  	putback_movable_pages(movable_page_list);
2021  
2022  	return ret;
2023  }
2024  
2025  /*
2026   * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2027   * pages in the range are required to be pinned via FOLL_PIN, before calling
2028   * this routine.
2029   *
2030   * If any pages in the range are not allowed to be pinned, then this routine
2031   * will migrate those pages away, unpin all the pages in the range and return
2032   * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2033   * call this routine again.
2034   *
2035   * If an error other than -EAGAIN occurs, this indicates a migration failure.
2036   * The caller should give up, and propagate the error back up the call stack.
2037   *
2038   * If everything is OK and all pages in the range are allowed to be pinned, then
2039   * this routine leaves all pages pinned and returns zero for success.
2040   */
2041  static long check_and_migrate_movable_pages(unsigned long nr_pages,
2042  					    struct page **pages)
2043  {
2044  	unsigned long collected;
2045  	LIST_HEAD(movable_page_list);
2046  
2047  	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2048  						nr_pages, pages);
2049  	if (!collected)
2050  		return 0;
2051  
2052  	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2053  						pages);
2054  }
2055  #else
2056  static long check_and_migrate_movable_pages(unsigned long nr_pages,
2057  					    struct page **pages)
2058  {
2059  	return 0;
2060  }
2061  #endif /* CONFIG_MIGRATION */
2062  
2063  /*
2064   * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2065   * allows us to process the FOLL_LONGTERM flag.
2066   */
2067  static long __gup_longterm_locked(struct mm_struct *mm,
2068  				  unsigned long start,
2069  				  unsigned long nr_pages,
2070  				  struct page **pages,
2071  				  struct vm_area_struct **vmas,
2072  				  int *locked,
2073  				  unsigned int gup_flags)
2074  {
2075  	unsigned int flags;
2076  	long rc, nr_pinned_pages;
2077  
2078  	if (!(gup_flags & FOLL_LONGTERM))
2079  		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2080  					       locked, gup_flags);
2081  
2082  	flags = memalloc_pin_save();
2083  	do {
2084  		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2085  							  pages, vmas, locked,
2086  							  gup_flags);
2087  		if (nr_pinned_pages <= 0) {
2088  			rc = nr_pinned_pages;
2089  			break;
2090  		}
2091  
2092  		/* FOLL_LONGTERM implies FOLL_PIN */
2093  		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2094  	} while (rc == -EAGAIN);
2095  	memalloc_pin_restore(flags);
2096  	return rc ? rc : nr_pinned_pages;
2097  }
2098  
2099  /*
2100   * Check that the given flags are valid for the exported gup/pup interface, and
2101   * update them with the required flags that the caller must have set.
2102   */
2103  static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
2104  			      int *locked, unsigned int *gup_flags_p,
2105  			      unsigned int to_set)
2106  {
2107  	unsigned int gup_flags = *gup_flags_p;
2108  
2109  	/*
2110  	 * These flags not allowed to be specified externally to the gup
2111  	 * interfaces:
2112  	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2113  	 * - FOLL_REMOTE is internal only and used on follow_page()
2114  	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2115  	 */
2116  	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2117  				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2118  		return false;
2119  
2120  	gup_flags |= to_set;
2121  	if (locked) {
2122  		/* At the external interface locked must be set */
2123  		if (WARN_ON_ONCE(*locked != 1))
2124  			return false;
2125  
2126  		gup_flags |= FOLL_UNLOCKABLE;
2127  	}
2128  
2129  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2130  	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2131  			 (FOLL_PIN | FOLL_GET)))
2132  		return false;
2133  
2134  	/* LONGTERM can only be specified when pinning */
2135  	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2136  		return false;
2137  
2138  	/* Pages input must be given if using GET/PIN */
2139  	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2140  		return false;
2141  
2142  	/* We want to allow the pgmap to be hot-unplugged at all times */
2143  	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2144  			 (gup_flags & FOLL_PCI_P2PDMA)))
2145  		return false;
2146  
2147  	/*
2148  	 * Can't use VMAs with locked, as locked allows GUP to unlock
2149  	 * which invalidates the vmas array
2150  	 */
2151  	if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE)))
2152  		return false;
2153  
2154  	*gup_flags_p = gup_flags;
2155  	return true;
2156  }
2157  
2158  #ifdef CONFIG_MMU
2159  /**
2160   * get_user_pages_remote() - pin user pages in memory
2161   * @mm:		mm_struct of target mm
2162   * @start:	starting user address
2163   * @nr_pages:	number of pages from start to pin
2164   * @gup_flags:	flags modifying lookup behaviour
2165   * @pages:	array that receives pointers to the pages pinned.
2166   *		Should be at least nr_pages long. Or NULL, if caller
2167   *		only intends to ensure the pages are faulted in.
2168   * @vmas:	array of pointers to vmas corresponding to each page.
2169   *		Or NULL if the caller does not require them.
2170   * @locked:	pointer to lock flag indicating whether lock is held and
2171   *		subsequently whether VM_FAULT_RETRY functionality can be
2172   *		utilised. Lock must initially be held.
2173   *
2174   * Returns either number of pages pinned (which may be less than the
2175   * number requested), or an error. Details about the return value:
2176   *
2177   * -- If nr_pages is 0, returns 0.
2178   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2179   * -- If nr_pages is >0, and some pages were pinned, returns the number of
2180   *    pages pinned. Again, this may be less than nr_pages.
2181   *
2182   * The caller is responsible for releasing returned @pages, via put_page().
2183   *
2184   * @vmas are valid only as long as mmap_lock is held.
2185   *
2186   * Must be called with mmap_lock held for read or write.
2187   *
2188   * get_user_pages_remote walks a process's page tables and takes a reference
2189   * to each struct page that each user address corresponds to at a given
2190   * instant. That is, it takes the page that would be accessed if a user
2191   * thread accesses the given user virtual address at that instant.
2192   *
2193   * This does not guarantee that the page exists in the user mappings when
2194   * get_user_pages_remote returns, and there may even be a completely different
2195   * page there in some cases (eg. if mmapped pagecache has been invalidated
2196   * and subsequently re-faulted). However it does guarantee that the page
2197   * won't be freed completely. And mostly callers simply care that the page
2198   * contains data that was valid *at some point in time*. Typically, an IO
2199   * or similar operation cannot guarantee anything stronger anyway because
2200   * locks can't be held over the syscall boundary.
2201   *
2202   * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2203   * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2204   * be called after the page is finished with, and before put_page is called.
2205   *
2206   * get_user_pages_remote is typically used for fewer-copy IO operations,
2207   * to get a handle on the memory by some means other than accesses
2208   * via the user virtual addresses. The pages may be submitted for
2209   * DMA to devices or accessed via their kernel linear mapping (via the
2210   * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2211   *
2212   * See also get_user_pages_fast, for performance critical applications.
2213   *
2214   * get_user_pages_remote should be phased out in favor of
2215   * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2216   * should use get_user_pages_remote because it cannot pass
2217   * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2218   */
2219  long get_user_pages_remote(struct mm_struct *mm,
2220  		unsigned long start, unsigned long nr_pages,
2221  		unsigned int gup_flags, struct page **pages,
2222  		struct vm_area_struct **vmas, int *locked)
2223  {
2224  	int local_locked = 1;
2225  
2226  	if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
2227  			       FOLL_TOUCH | FOLL_REMOTE))
2228  		return -EINVAL;
2229  
2230  	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2231  				       locked ? locked : &local_locked,
2232  				       gup_flags);
2233  }
2234  EXPORT_SYMBOL(get_user_pages_remote);
2235  
2236  #else /* CONFIG_MMU */
2237  long get_user_pages_remote(struct mm_struct *mm,
2238  			   unsigned long start, unsigned long nr_pages,
2239  			   unsigned int gup_flags, struct page **pages,
2240  			   struct vm_area_struct **vmas, int *locked)
2241  {
2242  	return 0;
2243  }
2244  #endif /* !CONFIG_MMU */
2245  
2246  /**
2247   * get_user_pages() - pin user pages in memory
2248   * @start:      starting user address
2249   * @nr_pages:   number of pages from start to pin
2250   * @gup_flags:  flags modifying lookup behaviour
2251   * @pages:      array that receives pointers to the pages pinned.
2252   *              Should be at least nr_pages long. Or NULL, if caller
2253   *              only intends to ensure the pages are faulted in.
2254   * @vmas:       array of pointers to vmas corresponding to each page.
2255   *              Or NULL if the caller does not require them.
2256   *
2257   * This is the same as get_user_pages_remote(), just with a less-flexible
2258   * calling convention where we assume that the mm being operated on belongs to
2259   * the current task, and doesn't allow passing of a locked parameter.  We also
2260   * obviously don't pass FOLL_REMOTE in here.
2261   */
2262  long get_user_pages(unsigned long start, unsigned long nr_pages,
2263  		unsigned int gup_flags, struct page **pages,
2264  		struct vm_area_struct **vmas)
2265  {
2266  	int locked = 1;
2267  
2268  	if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
2269  		return -EINVAL;
2270  
2271  	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2272  				       vmas, &locked, gup_flags);
2273  }
2274  EXPORT_SYMBOL(get_user_pages);
2275  
2276  /*
2277   * get_user_pages_unlocked() is suitable to replace the form:
2278   *
2279   *      mmap_read_lock(mm);
2280   *      get_user_pages(mm, ..., pages, NULL);
2281   *      mmap_read_unlock(mm);
2282   *
2283   *  with:
2284   *
2285   *      get_user_pages_unlocked(mm, ..., pages);
2286   *
2287   * It is functionally equivalent to get_user_pages_fast so
2288   * get_user_pages_fast should be used instead if specific gup_flags
2289   * (e.g. FOLL_FORCE) are not required.
2290   */
2291  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2292  			     struct page **pages, unsigned int gup_flags)
2293  {
2294  	int locked = 0;
2295  
2296  	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
2297  			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2298  		return -EINVAL;
2299  
2300  	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2301  				       NULL, &locked, gup_flags);
2302  }
2303  EXPORT_SYMBOL(get_user_pages_unlocked);
2304  
2305  /*
2306   * Fast GUP
2307   *
2308   * get_user_pages_fast attempts to pin user pages by walking the page
2309   * tables directly and avoids taking locks. Thus the walker needs to be
2310   * protected from page table pages being freed from under it, and should
2311   * block any THP splits.
2312   *
2313   * One way to achieve this is to have the walker disable interrupts, and
2314   * rely on IPIs from the TLB flushing code blocking before the page table
2315   * pages are freed. This is unsuitable for architectures that do not need
2316   * to broadcast an IPI when invalidating TLBs.
2317   *
2318   * Another way to achieve this is to batch up page table containing pages
2319   * belonging to more than one mm_user, then rcu_sched a callback to free those
2320   * pages. Disabling interrupts will allow the fast_gup walker to both block
2321   * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2322   * (which is a relatively rare event). The code below adopts this strategy.
2323   *
2324   * Before activating this code, please be aware that the following assumptions
2325   * are currently made:
2326   *
2327   *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2328   *  free pages containing page tables or TLB flushing requires IPI broadcast.
2329   *
2330   *  *) ptes can be read atomically by the architecture.
2331   *
2332   *  *) access_ok is sufficient to validate userspace address ranges.
2333   *
2334   * The last two assumptions can be relaxed by the addition of helper functions.
2335   *
2336   * This code is based heavily on the PowerPC implementation by Nick Piggin.
2337   */
2338  #ifdef CONFIG_HAVE_FAST_GUP
2339  
2340  static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2341  					    unsigned int flags,
2342  					    struct page **pages)
2343  {
2344  	while ((*nr) - nr_start) {
2345  		struct page *page = pages[--(*nr)];
2346  
2347  		ClearPageReferenced(page);
2348  		if (flags & FOLL_PIN)
2349  			unpin_user_page(page);
2350  		else
2351  			put_page(page);
2352  	}
2353  }
2354  
2355  #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2356  /*
2357   * Fast-gup relies on pte change detection to avoid concurrent pgtable
2358   * operations.
2359   *
2360   * To pin the page, fast-gup needs to do below in order:
2361   * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2362   *
2363   * For the rest of pgtable operations where pgtable updates can be racy
2364   * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2365   * is pinned.
2366   *
2367   * Above will work for all pte-level operations, including THP split.
2368   *
2369   * For THP collapse, it's a bit more complicated because fast-gup may be
2370   * walking a pgtable page that is being freed (pte is still valid but pmd
2371   * can be cleared already).  To avoid race in such condition, we need to
2372   * also check pmd here to make sure pmd doesn't change (corresponds to
2373   * pmdp_collapse_flush() in the THP collapse code path).
2374   */
2375  static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2376  			 unsigned long end, unsigned int flags,
2377  			 struct page **pages, int *nr)
2378  {
2379  	struct dev_pagemap *pgmap = NULL;
2380  	int nr_start = *nr, ret = 0;
2381  	pte_t *ptep, *ptem;
2382  
2383  	ptem = ptep = pte_offset_map(&pmd, addr);
2384  	do {
2385  		pte_t pte = ptep_get_lockless(ptep);
2386  		struct page *page;
2387  		struct folio *folio;
2388  
2389  		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2390  			goto pte_unmap;
2391  
2392  		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2393  			goto pte_unmap;
2394  
2395  		if (pte_devmap(pte)) {
2396  			if (unlikely(flags & FOLL_LONGTERM))
2397  				goto pte_unmap;
2398  
2399  			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2400  			if (unlikely(!pgmap)) {
2401  				undo_dev_pagemap(nr, nr_start, flags, pages);
2402  				goto pte_unmap;
2403  			}
2404  		} else if (pte_special(pte))
2405  			goto pte_unmap;
2406  
2407  		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2408  		page = pte_page(pte);
2409  
2410  		folio = try_grab_folio(page, 1, flags);
2411  		if (!folio)
2412  			goto pte_unmap;
2413  
2414  		if (unlikely(page_is_secretmem(page))) {
2415  			gup_put_folio(folio, 1, flags);
2416  			goto pte_unmap;
2417  		}
2418  
2419  		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2420  		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2421  			gup_put_folio(folio, 1, flags);
2422  			goto pte_unmap;
2423  		}
2424  
2425  		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2426  			gup_put_folio(folio, 1, flags);
2427  			goto pte_unmap;
2428  		}
2429  
2430  		/*
2431  		 * We need to make the page accessible if and only if we are
2432  		 * going to access its content (the FOLL_PIN case).  Please
2433  		 * see Documentation/core-api/pin_user_pages.rst for
2434  		 * details.
2435  		 */
2436  		if (flags & FOLL_PIN) {
2437  			ret = arch_make_page_accessible(page);
2438  			if (ret) {
2439  				gup_put_folio(folio, 1, flags);
2440  				goto pte_unmap;
2441  			}
2442  		}
2443  		folio_set_referenced(folio);
2444  		pages[*nr] = page;
2445  		(*nr)++;
2446  	} while (ptep++, addr += PAGE_SIZE, addr != end);
2447  
2448  	ret = 1;
2449  
2450  pte_unmap:
2451  	if (pgmap)
2452  		put_dev_pagemap(pgmap);
2453  	pte_unmap(ptem);
2454  	return ret;
2455  }
2456  #else
2457  
2458  /*
2459   * If we can't determine whether or not a pte is special, then fail immediately
2460   * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2461   * to be special.
2462   *
2463   * For a futex to be placed on a THP tail page, get_futex_key requires a
2464   * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2465   * useful to have gup_huge_pmd even if we can't operate on ptes.
2466   */
2467  static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2468  			 unsigned long end, unsigned int flags,
2469  			 struct page **pages, int *nr)
2470  {
2471  	return 0;
2472  }
2473  #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2474  
2475  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2476  static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2477  			     unsigned long end, unsigned int flags,
2478  			     struct page **pages, int *nr)
2479  {
2480  	int nr_start = *nr;
2481  	struct dev_pagemap *pgmap = NULL;
2482  
2483  	do {
2484  		struct page *page = pfn_to_page(pfn);
2485  
2486  		pgmap = get_dev_pagemap(pfn, pgmap);
2487  		if (unlikely(!pgmap)) {
2488  			undo_dev_pagemap(nr, nr_start, flags, pages);
2489  			break;
2490  		}
2491  
2492  		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2493  			undo_dev_pagemap(nr, nr_start, flags, pages);
2494  			break;
2495  		}
2496  
2497  		SetPageReferenced(page);
2498  		pages[*nr] = page;
2499  		if (unlikely(try_grab_page(page, flags))) {
2500  			undo_dev_pagemap(nr, nr_start, flags, pages);
2501  			break;
2502  		}
2503  		(*nr)++;
2504  		pfn++;
2505  	} while (addr += PAGE_SIZE, addr != end);
2506  
2507  	put_dev_pagemap(pgmap);
2508  	return addr == end;
2509  }
2510  
2511  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2512  				 unsigned long end, unsigned int flags,
2513  				 struct page **pages, int *nr)
2514  {
2515  	unsigned long fault_pfn;
2516  	int nr_start = *nr;
2517  
2518  	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2519  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2520  		return 0;
2521  
2522  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2523  		undo_dev_pagemap(nr, nr_start, flags, pages);
2524  		return 0;
2525  	}
2526  	return 1;
2527  }
2528  
2529  static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2530  				 unsigned long end, unsigned int flags,
2531  				 struct page **pages, int *nr)
2532  {
2533  	unsigned long fault_pfn;
2534  	int nr_start = *nr;
2535  
2536  	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2537  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2538  		return 0;
2539  
2540  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2541  		undo_dev_pagemap(nr, nr_start, flags, pages);
2542  		return 0;
2543  	}
2544  	return 1;
2545  }
2546  #else
2547  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2548  				 unsigned long end, unsigned int flags,
2549  				 struct page **pages, int *nr)
2550  {
2551  	BUILD_BUG();
2552  	return 0;
2553  }
2554  
2555  static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2556  				 unsigned long end, unsigned int flags,
2557  				 struct page **pages, int *nr)
2558  {
2559  	BUILD_BUG();
2560  	return 0;
2561  }
2562  #endif
2563  
2564  static int record_subpages(struct page *page, unsigned long addr,
2565  			   unsigned long end, struct page **pages)
2566  {
2567  	int nr;
2568  
2569  	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2570  		pages[nr] = nth_page(page, nr);
2571  
2572  	return nr;
2573  }
2574  
2575  #ifdef CONFIG_ARCH_HAS_HUGEPD
2576  static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2577  				      unsigned long sz)
2578  {
2579  	unsigned long __boundary = (addr + sz) & ~(sz-1);
2580  	return (__boundary - 1 < end - 1) ? __boundary : end;
2581  }
2582  
2583  static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2584  		       unsigned long end, unsigned int flags,
2585  		       struct page **pages, int *nr)
2586  {
2587  	unsigned long pte_end;
2588  	struct page *page;
2589  	struct folio *folio;
2590  	pte_t pte;
2591  	int refs;
2592  
2593  	pte_end = (addr + sz) & ~(sz-1);
2594  	if (pte_end < end)
2595  		end = pte_end;
2596  
2597  	pte = huge_ptep_get(ptep);
2598  
2599  	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2600  		return 0;
2601  
2602  	/* hugepages are never "special" */
2603  	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2604  
2605  	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2606  	refs = record_subpages(page, addr, end, pages + *nr);
2607  
2608  	folio = try_grab_folio(page, refs, flags);
2609  	if (!folio)
2610  		return 0;
2611  
2612  	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2613  		gup_put_folio(folio, refs, flags);
2614  		return 0;
2615  	}
2616  
2617  	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2618  		gup_put_folio(folio, refs, flags);
2619  		return 0;
2620  	}
2621  
2622  	*nr += refs;
2623  	folio_set_referenced(folio);
2624  	return 1;
2625  }
2626  
2627  static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2628  		unsigned int pdshift, unsigned long end, unsigned int flags,
2629  		struct page **pages, int *nr)
2630  {
2631  	pte_t *ptep;
2632  	unsigned long sz = 1UL << hugepd_shift(hugepd);
2633  	unsigned long next;
2634  
2635  	ptep = hugepte_offset(hugepd, addr, pdshift);
2636  	do {
2637  		next = hugepte_addr_end(addr, end, sz);
2638  		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2639  			return 0;
2640  	} while (ptep++, addr = next, addr != end);
2641  
2642  	return 1;
2643  }
2644  #else
2645  static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2646  		unsigned int pdshift, unsigned long end, unsigned int flags,
2647  		struct page **pages, int *nr)
2648  {
2649  	return 0;
2650  }
2651  #endif /* CONFIG_ARCH_HAS_HUGEPD */
2652  
2653  static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2654  			unsigned long end, unsigned int flags,
2655  			struct page **pages, int *nr)
2656  {
2657  	struct page *page;
2658  	struct folio *folio;
2659  	int refs;
2660  
2661  	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2662  		return 0;
2663  
2664  	if (pmd_devmap(orig)) {
2665  		if (unlikely(flags & FOLL_LONGTERM))
2666  			return 0;
2667  		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2668  					     pages, nr);
2669  	}
2670  
2671  	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2672  	refs = record_subpages(page, addr, end, pages + *nr);
2673  
2674  	folio = try_grab_folio(page, refs, flags);
2675  	if (!folio)
2676  		return 0;
2677  
2678  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2679  		gup_put_folio(folio, refs, flags);
2680  		return 0;
2681  	}
2682  
2683  	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2684  		gup_put_folio(folio, refs, flags);
2685  		return 0;
2686  	}
2687  
2688  	*nr += refs;
2689  	folio_set_referenced(folio);
2690  	return 1;
2691  }
2692  
2693  static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2694  			unsigned long end, unsigned int flags,
2695  			struct page **pages, int *nr)
2696  {
2697  	struct page *page;
2698  	struct folio *folio;
2699  	int refs;
2700  
2701  	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2702  		return 0;
2703  
2704  	if (pud_devmap(orig)) {
2705  		if (unlikely(flags & FOLL_LONGTERM))
2706  			return 0;
2707  		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2708  					     pages, nr);
2709  	}
2710  
2711  	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2712  	refs = record_subpages(page, addr, end, pages + *nr);
2713  
2714  	folio = try_grab_folio(page, refs, flags);
2715  	if (!folio)
2716  		return 0;
2717  
2718  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2719  		gup_put_folio(folio, refs, flags);
2720  		return 0;
2721  	}
2722  
2723  	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2724  		gup_put_folio(folio, refs, flags);
2725  		return 0;
2726  	}
2727  
2728  	*nr += refs;
2729  	folio_set_referenced(folio);
2730  	return 1;
2731  }
2732  
2733  static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2734  			unsigned long end, unsigned int flags,
2735  			struct page **pages, int *nr)
2736  {
2737  	int refs;
2738  	struct page *page;
2739  	struct folio *folio;
2740  
2741  	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2742  		return 0;
2743  
2744  	BUILD_BUG_ON(pgd_devmap(orig));
2745  
2746  	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2747  	refs = record_subpages(page, addr, end, pages + *nr);
2748  
2749  	folio = try_grab_folio(page, refs, flags);
2750  	if (!folio)
2751  		return 0;
2752  
2753  	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2754  		gup_put_folio(folio, refs, flags);
2755  		return 0;
2756  	}
2757  
2758  	*nr += refs;
2759  	folio_set_referenced(folio);
2760  	return 1;
2761  }
2762  
2763  static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2764  		unsigned int flags, struct page **pages, int *nr)
2765  {
2766  	unsigned long next;
2767  	pmd_t *pmdp;
2768  
2769  	pmdp = pmd_offset_lockless(pudp, pud, addr);
2770  	do {
2771  		pmd_t pmd = pmdp_get_lockless(pmdp);
2772  
2773  		next = pmd_addr_end(addr, end);
2774  		if (!pmd_present(pmd))
2775  			return 0;
2776  
2777  		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2778  			     pmd_devmap(pmd))) {
2779  			if (pmd_protnone(pmd) &&
2780  			    !gup_can_follow_protnone(flags))
2781  				return 0;
2782  
2783  			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2784  				pages, nr))
2785  				return 0;
2786  
2787  		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2788  			/*
2789  			 * architecture have different format for hugetlbfs
2790  			 * pmd format and THP pmd format
2791  			 */
2792  			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2793  					 PMD_SHIFT, next, flags, pages, nr))
2794  				return 0;
2795  		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2796  			return 0;
2797  	} while (pmdp++, addr = next, addr != end);
2798  
2799  	return 1;
2800  }
2801  
2802  static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2803  			 unsigned int flags, struct page **pages, int *nr)
2804  {
2805  	unsigned long next;
2806  	pud_t *pudp;
2807  
2808  	pudp = pud_offset_lockless(p4dp, p4d, addr);
2809  	do {
2810  		pud_t pud = READ_ONCE(*pudp);
2811  
2812  		next = pud_addr_end(addr, end);
2813  		if (unlikely(!pud_present(pud)))
2814  			return 0;
2815  		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2816  			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2817  					  pages, nr))
2818  				return 0;
2819  		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2820  			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2821  					 PUD_SHIFT, next, flags, pages, nr))
2822  				return 0;
2823  		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2824  			return 0;
2825  	} while (pudp++, addr = next, addr != end);
2826  
2827  	return 1;
2828  }
2829  
2830  static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2831  			 unsigned int flags, struct page **pages, int *nr)
2832  {
2833  	unsigned long next;
2834  	p4d_t *p4dp;
2835  
2836  	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2837  	do {
2838  		p4d_t p4d = READ_ONCE(*p4dp);
2839  
2840  		next = p4d_addr_end(addr, end);
2841  		if (p4d_none(p4d))
2842  			return 0;
2843  		BUILD_BUG_ON(p4d_huge(p4d));
2844  		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2845  			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2846  					 P4D_SHIFT, next, flags, pages, nr))
2847  				return 0;
2848  		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2849  			return 0;
2850  	} while (p4dp++, addr = next, addr != end);
2851  
2852  	return 1;
2853  }
2854  
2855  static void gup_pgd_range(unsigned long addr, unsigned long end,
2856  		unsigned int flags, struct page **pages, int *nr)
2857  {
2858  	unsigned long next;
2859  	pgd_t *pgdp;
2860  
2861  	pgdp = pgd_offset(current->mm, addr);
2862  	do {
2863  		pgd_t pgd = READ_ONCE(*pgdp);
2864  
2865  		next = pgd_addr_end(addr, end);
2866  		if (pgd_none(pgd))
2867  			return;
2868  		if (unlikely(pgd_huge(pgd))) {
2869  			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2870  					  pages, nr))
2871  				return;
2872  		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2873  			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2874  					 PGDIR_SHIFT, next, flags, pages, nr))
2875  				return;
2876  		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2877  			return;
2878  	} while (pgdp++, addr = next, addr != end);
2879  }
2880  #else
2881  static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2882  		unsigned int flags, struct page **pages, int *nr)
2883  {
2884  }
2885  #endif /* CONFIG_HAVE_FAST_GUP */
2886  
2887  #ifndef gup_fast_permitted
2888  /*
2889   * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2890   * we need to fall back to the slow version:
2891   */
2892  static bool gup_fast_permitted(unsigned long start, unsigned long end)
2893  {
2894  	return true;
2895  }
2896  #endif
2897  
2898  static unsigned long lockless_pages_from_mm(unsigned long start,
2899  					    unsigned long end,
2900  					    unsigned int gup_flags,
2901  					    struct page **pages)
2902  {
2903  	unsigned long flags;
2904  	int nr_pinned = 0;
2905  	unsigned seq;
2906  
2907  	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2908  	    !gup_fast_permitted(start, end))
2909  		return 0;
2910  
2911  	if (gup_flags & FOLL_PIN) {
2912  		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2913  		if (seq & 1)
2914  			return 0;
2915  	}
2916  
2917  	/*
2918  	 * Disable interrupts. The nested form is used, in order to allow full,
2919  	 * general purpose use of this routine.
2920  	 *
2921  	 * With interrupts disabled, we block page table pages from being freed
2922  	 * from under us. See struct mmu_table_batch comments in
2923  	 * include/asm-generic/tlb.h for more details.
2924  	 *
2925  	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2926  	 * that come from THPs splitting.
2927  	 */
2928  	local_irq_save(flags);
2929  	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2930  	local_irq_restore(flags);
2931  
2932  	/*
2933  	 * When pinning pages for DMA there could be a concurrent write protect
2934  	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2935  	 */
2936  	if (gup_flags & FOLL_PIN) {
2937  		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2938  			unpin_user_pages_lockless(pages, nr_pinned);
2939  			return 0;
2940  		} else {
2941  			sanity_check_pinned_pages(pages, nr_pinned);
2942  		}
2943  	}
2944  	return nr_pinned;
2945  }
2946  
2947  static int internal_get_user_pages_fast(unsigned long start,
2948  					unsigned long nr_pages,
2949  					unsigned int gup_flags,
2950  					struct page **pages)
2951  {
2952  	unsigned long len, end;
2953  	unsigned long nr_pinned;
2954  	int locked = 0;
2955  	int ret;
2956  
2957  	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2958  				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2959  				       FOLL_FAST_ONLY | FOLL_NOFAULT |
2960  				       FOLL_PCI_P2PDMA)))
2961  		return -EINVAL;
2962  
2963  	if (gup_flags & FOLL_PIN)
2964  		mm_set_has_pinned_flag(&current->mm->flags);
2965  
2966  	if (!(gup_flags & FOLL_FAST_ONLY))
2967  		might_lock_read(&current->mm->mmap_lock);
2968  
2969  	start = untagged_addr(start) & PAGE_MASK;
2970  	len = nr_pages << PAGE_SHIFT;
2971  	if (check_add_overflow(start, len, &end))
2972  		return 0;
2973  	if (end > TASK_SIZE_MAX)
2974  		return -EFAULT;
2975  	if (unlikely(!access_ok((void __user *)start, len)))
2976  		return -EFAULT;
2977  
2978  	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2979  	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2980  		return nr_pinned;
2981  
2982  	/* Slow path: try to get the remaining pages with get_user_pages */
2983  	start += nr_pinned << PAGE_SHIFT;
2984  	pages += nr_pinned;
2985  	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
2986  				    pages, NULL, &locked,
2987  				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
2988  	if (ret < 0) {
2989  		/*
2990  		 * The caller has to unpin the pages we already pinned so
2991  		 * returning -errno is not an option
2992  		 */
2993  		if (nr_pinned)
2994  			return nr_pinned;
2995  		return ret;
2996  	}
2997  	return ret + nr_pinned;
2998  }
2999  
3000  /**
3001   * get_user_pages_fast_only() - pin user pages in memory
3002   * @start:      starting user address
3003   * @nr_pages:   number of pages from start to pin
3004   * @gup_flags:  flags modifying pin behaviour
3005   * @pages:      array that receives pointers to the pages pinned.
3006   *              Should be at least nr_pages long.
3007   *
3008   * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3009   * the regular GUP.
3010   *
3011   * If the architecture does not support this function, simply return with no
3012   * pages pinned.
3013   *
3014   * Careful, careful! COW breaking can go either way, so a non-write
3015   * access can get ambiguous page results. If you call this function without
3016   * 'write' set, you'd better be sure that you're ok with that ambiguity.
3017   */
3018  int get_user_pages_fast_only(unsigned long start, int nr_pages,
3019  			     unsigned int gup_flags, struct page **pages)
3020  {
3021  	/*
3022  	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3023  	 * because gup fast is always a "pin with a +1 page refcount" request.
3024  	 *
3025  	 * FOLL_FAST_ONLY is required in order to match the API description of
3026  	 * this routine: no fall back to regular ("slow") GUP.
3027  	 */
3028  	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3029  			       FOLL_GET | FOLL_FAST_ONLY))
3030  		return -EINVAL;
3031  
3032  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3033  }
3034  EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3035  
3036  /**
3037   * get_user_pages_fast() - pin user pages in memory
3038   * @start:      starting user address
3039   * @nr_pages:   number of pages from start to pin
3040   * @gup_flags:  flags modifying pin behaviour
3041   * @pages:      array that receives pointers to the pages pinned.
3042   *              Should be at least nr_pages long.
3043   *
3044   * Attempt to pin user pages in memory without taking mm->mmap_lock.
3045   * If not successful, it will fall back to taking the lock and
3046   * calling get_user_pages().
3047   *
3048   * Returns number of pages pinned. This may be fewer than the number requested.
3049   * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3050   * -errno.
3051   */
3052  int get_user_pages_fast(unsigned long start, int nr_pages,
3053  			unsigned int gup_flags, struct page **pages)
3054  {
3055  	/*
3056  	 * The caller may or may not have explicitly set FOLL_GET; either way is
3057  	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3058  	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3059  	 * request.
3060  	 */
3061  	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
3062  		return -EINVAL;
3063  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3064  }
3065  EXPORT_SYMBOL_GPL(get_user_pages_fast);
3066  
3067  /**
3068   * pin_user_pages_fast() - pin user pages in memory without taking locks
3069   *
3070   * @start:      starting user address
3071   * @nr_pages:   number of pages from start to pin
3072   * @gup_flags:  flags modifying pin behaviour
3073   * @pages:      array that receives pointers to the pages pinned.
3074   *              Should be at least nr_pages long.
3075   *
3076   * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3077   * get_user_pages_fast() for documentation on the function arguments, because
3078   * the arguments here are identical.
3079   *
3080   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3081   * see Documentation/core-api/pin_user_pages.rst for further details.
3082   */
3083  int pin_user_pages_fast(unsigned long start, int nr_pages,
3084  			unsigned int gup_flags, struct page **pages)
3085  {
3086  	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
3087  		return -EINVAL;
3088  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3089  }
3090  EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3091  
3092  /**
3093   * pin_user_pages_remote() - pin pages of a remote process
3094   *
3095   * @mm:		mm_struct of target mm
3096   * @start:	starting user address
3097   * @nr_pages:	number of pages from start to pin
3098   * @gup_flags:	flags modifying lookup behaviour
3099   * @pages:	array that receives pointers to the pages pinned.
3100   *		Should be at least nr_pages long.
3101   * @vmas:	array of pointers to vmas corresponding to each page.
3102   *		Or NULL if the caller does not require them.
3103   * @locked:	pointer to lock flag indicating whether lock is held and
3104   *		subsequently whether VM_FAULT_RETRY functionality can be
3105   *		utilised. Lock must initially be held.
3106   *
3107   * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3108   * get_user_pages_remote() for documentation on the function arguments, because
3109   * the arguments here are identical.
3110   *
3111   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3112   * see Documentation/core-api/pin_user_pages.rst for details.
3113   */
3114  long pin_user_pages_remote(struct mm_struct *mm,
3115  			   unsigned long start, unsigned long nr_pages,
3116  			   unsigned int gup_flags, struct page **pages,
3117  			   struct vm_area_struct **vmas, int *locked)
3118  {
3119  	int local_locked = 1;
3120  
3121  	if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
3122  			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3123  		return 0;
3124  	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas,
3125  				     locked ? locked : &local_locked,
3126  				     gup_flags);
3127  }
3128  EXPORT_SYMBOL(pin_user_pages_remote);
3129  
3130  /**
3131   * pin_user_pages() - pin user pages in memory for use by other devices
3132   *
3133   * @start:	starting user address
3134   * @nr_pages:	number of pages from start to pin
3135   * @gup_flags:	flags modifying lookup behaviour
3136   * @pages:	array that receives pointers to the pages pinned.
3137   *		Should be at least nr_pages long.
3138   * @vmas:	array of pointers to vmas corresponding to each page.
3139   *		Or NULL if the caller does not require them.
3140   *
3141   * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3142   * FOLL_PIN is set.
3143   *
3144   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3145   * see Documentation/core-api/pin_user_pages.rst for details.
3146   */
3147  long pin_user_pages(unsigned long start, unsigned long nr_pages,
3148  		    unsigned int gup_flags, struct page **pages,
3149  		    struct vm_area_struct **vmas)
3150  {
3151  	int locked = 1;
3152  
3153  	if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
3154  		return 0;
3155  	return __gup_longterm_locked(current->mm, start, nr_pages,
3156  				     pages, vmas, &locked, gup_flags);
3157  }
3158  EXPORT_SYMBOL(pin_user_pages);
3159  
3160  /*
3161   * pin_user_pages_unlocked() is the FOLL_PIN variant of
3162   * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3163   * FOLL_PIN and rejects FOLL_GET.
3164   */
3165  long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3166  			     struct page **pages, unsigned int gup_flags)
3167  {
3168  	int locked = 0;
3169  
3170  	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3171  			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3172  		return 0;
3173  
3174  	return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
3175  				     &locked, gup_flags);
3176  }
3177  EXPORT_SYMBOL(pin_user_pages_unlocked);
3178