xref: /linux/mm/gup.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 /**
33  * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
34  * @pages:  array of pages to be maybe marked dirty, and definitely released.
35  * @npages: number of pages in the @pages array.
36  * @make_dirty: whether to mark the pages dirty
37  *
38  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
39  * variants called on that page.
40  *
41  * For each page in the @pages array, make that page (or its head page, if a
42  * compound page) dirty, if @make_dirty is true, and if the page was previously
43  * listed as clean. In any case, releases all pages using put_user_page(),
44  * possibly via put_user_pages(), for the non-dirty case.
45  *
46  * Please see the put_user_page() documentation for details.
47  *
48  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
49  * required, then the caller should a) verify that this is really correct,
50  * because _lock() is usually required, and b) hand code it:
51  * set_page_dirty_lock(), put_user_page().
52  *
53  */
54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
55 			       bool make_dirty)
56 {
57 	unsigned long index;
58 
59 	/*
60 	 * TODO: this can be optimized for huge pages: if a series of pages is
61 	 * physically contiguous and part of the same compound page, then a
62 	 * single operation to the head page should suffice.
63 	 */
64 
65 	if (!make_dirty) {
66 		put_user_pages(pages, npages);
67 		return;
68 	}
69 
70 	for (index = 0; index < npages; index++) {
71 		struct page *page = compound_head(pages[index]);
72 		/*
73 		 * Checking PageDirty at this point may race with
74 		 * clear_page_dirty_for_io(), but that's OK. Two key
75 		 * cases:
76 		 *
77 		 * 1) This code sees the page as already dirty, so it
78 		 * skips the call to set_page_dirty(). That could happen
79 		 * because clear_page_dirty_for_io() called
80 		 * page_mkclean(), followed by set_page_dirty().
81 		 * However, now the page is going to get written back,
82 		 * which meets the original intention of setting it
83 		 * dirty, so all is well: clear_page_dirty_for_io() goes
84 		 * on to call TestClearPageDirty(), and write the page
85 		 * back.
86 		 *
87 		 * 2) This code sees the page as clean, so it calls
88 		 * set_page_dirty(). The page stays dirty, despite being
89 		 * written back, so it gets written back again in the
90 		 * next writeback cycle. This is harmless.
91 		 */
92 		if (!PageDirty(page))
93 			set_page_dirty_lock(page);
94 		put_user_page(page);
95 	}
96 }
97 EXPORT_SYMBOL(put_user_pages_dirty_lock);
98 
99 /**
100  * put_user_pages() - release an array of gup-pinned pages.
101  * @pages:  array of pages to be marked dirty and released.
102  * @npages: number of pages in the @pages array.
103  *
104  * For each page in the @pages array, release the page using put_user_page().
105  *
106  * Please see the put_user_page() documentation for details.
107  */
108 void put_user_pages(struct page **pages, unsigned long npages)
109 {
110 	unsigned long index;
111 
112 	/*
113 	 * TODO: this can be optimized for huge pages: if a series of pages is
114 	 * physically contiguous and part of the same compound page, then a
115 	 * single operation to the head page should suffice.
116 	 */
117 	for (index = 0; index < npages; index++)
118 		put_user_page(pages[index]);
119 }
120 EXPORT_SYMBOL(put_user_pages);
121 
122 #ifdef CONFIG_MMU
123 static struct page *no_page_table(struct vm_area_struct *vma,
124 		unsigned int flags)
125 {
126 	/*
127 	 * When core dumping an enormous anonymous area that nobody
128 	 * has touched so far, we don't want to allocate unnecessary pages or
129 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
130 	 * then get_dump_page() will return NULL to leave a hole in the dump.
131 	 * But we can only make this optimization where a hole would surely
132 	 * be zero-filled if handle_mm_fault() actually did handle it.
133 	 */
134 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
135 		return ERR_PTR(-EFAULT);
136 	return NULL;
137 }
138 
139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
140 		pte_t *pte, unsigned int flags)
141 {
142 	/* No page to get reference */
143 	if (flags & FOLL_GET)
144 		return -EFAULT;
145 
146 	if (flags & FOLL_TOUCH) {
147 		pte_t entry = *pte;
148 
149 		if (flags & FOLL_WRITE)
150 			entry = pte_mkdirty(entry);
151 		entry = pte_mkyoung(entry);
152 
153 		if (!pte_same(*pte, entry)) {
154 			set_pte_at(vma->vm_mm, address, pte, entry);
155 			update_mmu_cache(vma, address, pte);
156 		}
157 	}
158 
159 	/* Proper page table entry exists, but no corresponding struct page */
160 	return -EEXIST;
161 }
162 
163 /*
164  * FOLL_FORCE can write to even unwritable pte's, but only
165  * after we've gone through a COW cycle and they are dirty.
166  */
167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
168 {
169 	return pte_write(pte) ||
170 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
171 }
172 
173 static struct page *follow_page_pte(struct vm_area_struct *vma,
174 		unsigned long address, pmd_t *pmd, unsigned int flags,
175 		struct dev_pagemap **pgmap)
176 {
177 	struct mm_struct *mm = vma->vm_mm;
178 	struct page *page;
179 	spinlock_t *ptl;
180 	pte_t *ptep, pte;
181 
182 retry:
183 	if (unlikely(pmd_bad(*pmd)))
184 		return no_page_table(vma, flags);
185 
186 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
187 	pte = *ptep;
188 	if (!pte_present(pte)) {
189 		swp_entry_t entry;
190 		/*
191 		 * KSM's break_ksm() relies upon recognizing a ksm page
192 		 * even while it is being migrated, so for that case we
193 		 * need migration_entry_wait().
194 		 */
195 		if (likely(!(flags & FOLL_MIGRATION)))
196 			goto no_page;
197 		if (pte_none(pte))
198 			goto no_page;
199 		entry = pte_to_swp_entry(pte);
200 		if (!is_migration_entry(entry))
201 			goto no_page;
202 		pte_unmap_unlock(ptep, ptl);
203 		migration_entry_wait(mm, pmd, address);
204 		goto retry;
205 	}
206 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
207 		goto no_page;
208 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
209 		pte_unmap_unlock(ptep, ptl);
210 		return NULL;
211 	}
212 
213 	page = vm_normal_page(vma, address, pte);
214 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
215 		/*
216 		 * Only return device mapping pages in the FOLL_GET case since
217 		 * they are only valid while holding the pgmap reference.
218 		 */
219 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
220 		if (*pgmap)
221 			page = pte_page(pte);
222 		else
223 			goto no_page;
224 	} else if (unlikely(!page)) {
225 		if (flags & FOLL_DUMP) {
226 			/* Avoid special (like zero) pages in core dumps */
227 			page = ERR_PTR(-EFAULT);
228 			goto out;
229 		}
230 
231 		if (is_zero_pfn(pte_pfn(pte))) {
232 			page = pte_page(pte);
233 		} else {
234 			int ret;
235 
236 			ret = follow_pfn_pte(vma, address, ptep, flags);
237 			page = ERR_PTR(ret);
238 			goto out;
239 		}
240 	}
241 
242 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
243 		int ret;
244 		get_page(page);
245 		pte_unmap_unlock(ptep, ptl);
246 		lock_page(page);
247 		ret = split_huge_page(page);
248 		unlock_page(page);
249 		put_page(page);
250 		if (ret)
251 			return ERR_PTR(ret);
252 		goto retry;
253 	}
254 
255 	if (flags & FOLL_GET) {
256 		if (unlikely(!try_get_page(page))) {
257 			page = ERR_PTR(-ENOMEM);
258 			goto out;
259 		}
260 	}
261 	if (flags & FOLL_TOUCH) {
262 		if ((flags & FOLL_WRITE) &&
263 		    !pte_dirty(pte) && !PageDirty(page))
264 			set_page_dirty(page);
265 		/*
266 		 * pte_mkyoung() would be more correct here, but atomic care
267 		 * is needed to avoid losing the dirty bit: it is easier to use
268 		 * mark_page_accessed().
269 		 */
270 		mark_page_accessed(page);
271 	}
272 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
273 		/* Do not mlock pte-mapped THP */
274 		if (PageTransCompound(page))
275 			goto out;
276 
277 		/*
278 		 * The preliminary mapping check is mainly to avoid the
279 		 * pointless overhead of lock_page on the ZERO_PAGE
280 		 * which might bounce very badly if there is contention.
281 		 *
282 		 * If the page is already locked, we don't need to
283 		 * handle it now - vmscan will handle it later if and
284 		 * when it attempts to reclaim the page.
285 		 */
286 		if (page->mapping && trylock_page(page)) {
287 			lru_add_drain();  /* push cached pages to LRU */
288 			/*
289 			 * Because we lock page here, and migration is
290 			 * blocked by the pte's page reference, and we
291 			 * know the page is still mapped, we don't even
292 			 * need to check for file-cache page truncation.
293 			 */
294 			mlock_vma_page(page);
295 			unlock_page(page);
296 		}
297 	}
298 out:
299 	pte_unmap_unlock(ptep, ptl);
300 	return page;
301 no_page:
302 	pte_unmap_unlock(ptep, ptl);
303 	if (!pte_none(pte))
304 		return NULL;
305 	return no_page_table(vma, flags);
306 }
307 
308 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
309 				    unsigned long address, pud_t *pudp,
310 				    unsigned int flags,
311 				    struct follow_page_context *ctx)
312 {
313 	pmd_t *pmd, pmdval;
314 	spinlock_t *ptl;
315 	struct page *page;
316 	struct mm_struct *mm = vma->vm_mm;
317 
318 	pmd = pmd_offset(pudp, address);
319 	/*
320 	 * The READ_ONCE() will stabilize the pmdval in a register or
321 	 * on the stack so that it will stop changing under the code.
322 	 */
323 	pmdval = READ_ONCE(*pmd);
324 	if (pmd_none(pmdval))
325 		return no_page_table(vma, flags);
326 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
327 		page = follow_huge_pmd(mm, address, pmd, flags);
328 		if (page)
329 			return page;
330 		return no_page_table(vma, flags);
331 	}
332 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
333 		page = follow_huge_pd(vma, address,
334 				      __hugepd(pmd_val(pmdval)), flags,
335 				      PMD_SHIFT);
336 		if (page)
337 			return page;
338 		return no_page_table(vma, flags);
339 	}
340 retry:
341 	if (!pmd_present(pmdval)) {
342 		if (likely(!(flags & FOLL_MIGRATION)))
343 			return no_page_table(vma, flags);
344 		VM_BUG_ON(thp_migration_supported() &&
345 				  !is_pmd_migration_entry(pmdval));
346 		if (is_pmd_migration_entry(pmdval))
347 			pmd_migration_entry_wait(mm, pmd);
348 		pmdval = READ_ONCE(*pmd);
349 		/*
350 		 * MADV_DONTNEED may convert the pmd to null because
351 		 * mmap_sem is held in read mode
352 		 */
353 		if (pmd_none(pmdval))
354 			return no_page_table(vma, flags);
355 		goto retry;
356 	}
357 	if (pmd_devmap(pmdval)) {
358 		ptl = pmd_lock(mm, pmd);
359 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
360 		spin_unlock(ptl);
361 		if (page)
362 			return page;
363 	}
364 	if (likely(!pmd_trans_huge(pmdval)))
365 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
366 
367 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
368 		return no_page_table(vma, flags);
369 
370 retry_locked:
371 	ptl = pmd_lock(mm, pmd);
372 	if (unlikely(pmd_none(*pmd))) {
373 		spin_unlock(ptl);
374 		return no_page_table(vma, flags);
375 	}
376 	if (unlikely(!pmd_present(*pmd))) {
377 		spin_unlock(ptl);
378 		if (likely(!(flags & FOLL_MIGRATION)))
379 			return no_page_table(vma, flags);
380 		pmd_migration_entry_wait(mm, pmd);
381 		goto retry_locked;
382 	}
383 	if (unlikely(!pmd_trans_huge(*pmd))) {
384 		spin_unlock(ptl);
385 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
386 	}
387 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
388 		int ret;
389 		page = pmd_page(*pmd);
390 		if (is_huge_zero_page(page)) {
391 			spin_unlock(ptl);
392 			ret = 0;
393 			split_huge_pmd(vma, pmd, address);
394 			if (pmd_trans_unstable(pmd))
395 				ret = -EBUSY;
396 		} else if (flags & FOLL_SPLIT) {
397 			if (unlikely(!try_get_page(page))) {
398 				spin_unlock(ptl);
399 				return ERR_PTR(-ENOMEM);
400 			}
401 			spin_unlock(ptl);
402 			lock_page(page);
403 			ret = split_huge_page(page);
404 			unlock_page(page);
405 			put_page(page);
406 			if (pmd_none(*pmd))
407 				return no_page_table(vma, flags);
408 		} else {  /* flags & FOLL_SPLIT_PMD */
409 			spin_unlock(ptl);
410 			split_huge_pmd(vma, pmd, address);
411 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
412 		}
413 
414 		return ret ? ERR_PTR(ret) :
415 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
416 	}
417 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
418 	spin_unlock(ptl);
419 	ctx->page_mask = HPAGE_PMD_NR - 1;
420 	return page;
421 }
422 
423 static struct page *follow_pud_mask(struct vm_area_struct *vma,
424 				    unsigned long address, p4d_t *p4dp,
425 				    unsigned int flags,
426 				    struct follow_page_context *ctx)
427 {
428 	pud_t *pud;
429 	spinlock_t *ptl;
430 	struct page *page;
431 	struct mm_struct *mm = vma->vm_mm;
432 
433 	pud = pud_offset(p4dp, address);
434 	if (pud_none(*pud))
435 		return no_page_table(vma, flags);
436 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
437 		page = follow_huge_pud(mm, address, pud, flags);
438 		if (page)
439 			return page;
440 		return no_page_table(vma, flags);
441 	}
442 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
443 		page = follow_huge_pd(vma, address,
444 				      __hugepd(pud_val(*pud)), flags,
445 				      PUD_SHIFT);
446 		if (page)
447 			return page;
448 		return no_page_table(vma, flags);
449 	}
450 	if (pud_devmap(*pud)) {
451 		ptl = pud_lock(mm, pud);
452 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
453 		spin_unlock(ptl);
454 		if (page)
455 			return page;
456 	}
457 	if (unlikely(pud_bad(*pud)))
458 		return no_page_table(vma, flags);
459 
460 	return follow_pmd_mask(vma, address, pud, flags, ctx);
461 }
462 
463 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
464 				    unsigned long address, pgd_t *pgdp,
465 				    unsigned int flags,
466 				    struct follow_page_context *ctx)
467 {
468 	p4d_t *p4d;
469 	struct page *page;
470 
471 	p4d = p4d_offset(pgdp, address);
472 	if (p4d_none(*p4d))
473 		return no_page_table(vma, flags);
474 	BUILD_BUG_ON(p4d_huge(*p4d));
475 	if (unlikely(p4d_bad(*p4d)))
476 		return no_page_table(vma, flags);
477 
478 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
479 		page = follow_huge_pd(vma, address,
480 				      __hugepd(p4d_val(*p4d)), flags,
481 				      P4D_SHIFT);
482 		if (page)
483 			return page;
484 		return no_page_table(vma, flags);
485 	}
486 	return follow_pud_mask(vma, address, p4d, flags, ctx);
487 }
488 
489 /**
490  * follow_page_mask - look up a page descriptor from a user-virtual address
491  * @vma: vm_area_struct mapping @address
492  * @address: virtual address to look up
493  * @flags: flags modifying lookup behaviour
494  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
495  *       pointer to output page_mask
496  *
497  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
498  *
499  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
500  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
501  *
502  * On output, the @ctx->page_mask is set according to the size of the page.
503  *
504  * Return: the mapped (struct page *), %NULL if no mapping exists, or
505  * an error pointer if there is a mapping to something not represented
506  * by a page descriptor (see also vm_normal_page()).
507  */
508 static struct page *follow_page_mask(struct vm_area_struct *vma,
509 			      unsigned long address, unsigned int flags,
510 			      struct follow_page_context *ctx)
511 {
512 	pgd_t *pgd;
513 	struct page *page;
514 	struct mm_struct *mm = vma->vm_mm;
515 
516 	ctx->page_mask = 0;
517 
518 	/* make this handle hugepd */
519 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
520 	if (!IS_ERR(page)) {
521 		BUG_ON(flags & FOLL_GET);
522 		return page;
523 	}
524 
525 	pgd = pgd_offset(mm, address);
526 
527 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
528 		return no_page_table(vma, flags);
529 
530 	if (pgd_huge(*pgd)) {
531 		page = follow_huge_pgd(mm, address, pgd, flags);
532 		if (page)
533 			return page;
534 		return no_page_table(vma, flags);
535 	}
536 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
537 		page = follow_huge_pd(vma, address,
538 				      __hugepd(pgd_val(*pgd)), flags,
539 				      PGDIR_SHIFT);
540 		if (page)
541 			return page;
542 		return no_page_table(vma, flags);
543 	}
544 
545 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
546 }
547 
548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
549 			 unsigned int foll_flags)
550 {
551 	struct follow_page_context ctx = { NULL };
552 	struct page *page;
553 
554 	page = follow_page_mask(vma, address, foll_flags, &ctx);
555 	if (ctx.pgmap)
556 		put_dev_pagemap(ctx.pgmap);
557 	return page;
558 }
559 
560 static int get_gate_page(struct mm_struct *mm, unsigned long address,
561 		unsigned int gup_flags, struct vm_area_struct **vma,
562 		struct page **page)
563 {
564 	pgd_t *pgd;
565 	p4d_t *p4d;
566 	pud_t *pud;
567 	pmd_t *pmd;
568 	pte_t *pte;
569 	int ret = -EFAULT;
570 
571 	/* user gate pages are read-only */
572 	if (gup_flags & FOLL_WRITE)
573 		return -EFAULT;
574 	if (address > TASK_SIZE)
575 		pgd = pgd_offset_k(address);
576 	else
577 		pgd = pgd_offset_gate(mm, address);
578 	if (pgd_none(*pgd))
579 		return -EFAULT;
580 	p4d = p4d_offset(pgd, address);
581 	if (p4d_none(*p4d))
582 		return -EFAULT;
583 	pud = pud_offset(p4d, address);
584 	if (pud_none(*pud))
585 		return -EFAULT;
586 	pmd = pmd_offset(pud, address);
587 	if (!pmd_present(*pmd))
588 		return -EFAULT;
589 	VM_BUG_ON(pmd_trans_huge(*pmd));
590 	pte = pte_offset_map(pmd, address);
591 	if (pte_none(*pte))
592 		goto unmap;
593 	*vma = get_gate_vma(mm);
594 	if (!page)
595 		goto out;
596 	*page = vm_normal_page(*vma, address, *pte);
597 	if (!*page) {
598 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
599 			goto unmap;
600 		*page = pte_page(*pte);
601 	}
602 	if (unlikely(!try_get_page(*page))) {
603 		ret = -ENOMEM;
604 		goto unmap;
605 	}
606 out:
607 	ret = 0;
608 unmap:
609 	pte_unmap(pte);
610 	return ret;
611 }
612 
613 /*
614  * mmap_sem must be held on entry.  If @nonblocking != NULL and
615  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
616  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
617  */
618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
619 		unsigned long address, unsigned int *flags, int *nonblocking)
620 {
621 	unsigned int fault_flags = 0;
622 	vm_fault_t ret;
623 
624 	/* mlock all present pages, but do not fault in new pages */
625 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
626 		return -ENOENT;
627 	if (*flags & FOLL_WRITE)
628 		fault_flags |= FAULT_FLAG_WRITE;
629 	if (*flags & FOLL_REMOTE)
630 		fault_flags |= FAULT_FLAG_REMOTE;
631 	if (nonblocking)
632 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
633 	if (*flags & FOLL_NOWAIT)
634 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
635 	if (*flags & FOLL_TRIED) {
636 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
637 		fault_flags |= FAULT_FLAG_TRIED;
638 	}
639 
640 	ret = handle_mm_fault(vma, address, fault_flags);
641 	if (ret & VM_FAULT_ERROR) {
642 		int err = vm_fault_to_errno(ret, *flags);
643 
644 		if (err)
645 			return err;
646 		BUG();
647 	}
648 
649 	if (tsk) {
650 		if (ret & VM_FAULT_MAJOR)
651 			tsk->maj_flt++;
652 		else
653 			tsk->min_flt++;
654 	}
655 
656 	if (ret & VM_FAULT_RETRY) {
657 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
658 			*nonblocking = 0;
659 		return -EBUSY;
660 	}
661 
662 	/*
663 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
664 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
665 	 * can thus safely do subsequent page lookups as if they were reads.
666 	 * But only do so when looping for pte_write is futile: in some cases
667 	 * userspace may also be wanting to write to the gotten user page,
668 	 * which a read fault here might prevent (a readonly page might get
669 	 * reCOWed by userspace write).
670 	 */
671 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
672 		*flags |= FOLL_COW;
673 	return 0;
674 }
675 
676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
677 {
678 	vm_flags_t vm_flags = vma->vm_flags;
679 	int write = (gup_flags & FOLL_WRITE);
680 	int foreign = (gup_flags & FOLL_REMOTE);
681 
682 	if (vm_flags & (VM_IO | VM_PFNMAP))
683 		return -EFAULT;
684 
685 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
686 		return -EFAULT;
687 
688 	if (write) {
689 		if (!(vm_flags & VM_WRITE)) {
690 			if (!(gup_flags & FOLL_FORCE))
691 				return -EFAULT;
692 			/*
693 			 * We used to let the write,force case do COW in a
694 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
695 			 * set a breakpoint in a read-only mapping of an
696 			 * executable, without corrupting the file (yet only
697 			 * when that file had been opened for writing!).
698 			 * Anon pages in shared mappings are surprising: now
699 			 * just reject it.
700 			 */
701 			if (!is_cow_mapping(vm_flags))
702 				return -EFAULT;
703 		}
704 	} else if (!(vm_flags & VM_READ)) {
705 		if (!(gup_flags & FOLL_FORCE))
706 			return -EFAULT;
707 		/*
708 		 * Is there actually any vma we can reach here which does not
709 		 * have VM_MAYREAD set?
710 		 */
711 		if (!(vm_flags & VM_MAYREAD))
712 			return -EFAULT;
713 	}
714 	/*
715 	 * gups are always data accesses, not instruction
716 	 * fetches, so execute=false here
717 	 */
718 	if (!arch_vma_access_permitted(vma, write, false, foreign))
719 		return -EFAULT;
720 	return 0;
721 }
722 
723 /**
724  * __get_user_pages() - pin user pages in memory
725  * @tsk:	task_struct of target task
726  * @mm:		mm_struct of target mm
727  * @start:	starting user address
728  * @nr_pages:	number of pages from start to pin
729  * @gup_flags:	flags modifying pin behaviour
730  * @pages:	array that receives pointers to the pages pinned.
731  *		Should be at least nr_pages long. Or NULL, if caller
732  *		only intends to ensure the pages are faulted in.
733  * @vmas:	array of pointers to vmas corresponding to each page.
734  *		Or NULL if the caller does not require them.
735  * @nonblocking: whether waiting for disk IO or mmap_sem contention
736  *
737  * Returns number of pages pinned. This may be fewer than the number
738  * requested. If nr_pages is 0 or negative, returns 0. If no pages
739  * were pinned, returns -errno. Each page returned must be released
740  * with a put_page() call when it is finished with. vmas will only
741  * remain valid while mmap_sem is held.
742  *
743  * Must be called with mmap_sem held.  It may be released.  See below.
744  *
745  * __get_user_pages walks a process's page tables and takes a reference to
746  * each struct page that each user address corresponds to at a given
747  * instant. That is, it takes the page that would be accessed if a user
748  * thread accesses the given user virtual address at that instant.
749  *
750  * This does not guarantee that the page exists in the user mappings when
751  * __get_user_pages returns, and there may even be a completely different
752  * page there in some cases (eg. if mmapped pagecache has been invalidated
753  * and subsequently re faulted). However it does guarantee that the page
754  * won't be freed completely. And mostly callers simply care that the page
755  * contains data that was valid *at some point in time*. Typically, an IO
756  * or similar operation cannot guarantee anything stronger anyway because
757  * locks can't be held over the syscall boundary.
758  *
759  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
760  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
761  * appropriate) must be called after the page is finished with, and
762  * before put_page is called.
763  *
764  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
765  * or mmap_sem contention, and if waiting is needed to pin all pages,
766  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
767  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
768  * this case.
769  *
770  * A caller using such a combination of @nonblocking and @gup_flags
771  * must therefore hold the mmap_sem for reading only, and recognize
772  * when it's been released.  Otherwise, it must be held for either
773  * reading or writing and will not be released.
774  *
775  * In most cases, get_user_pages or get_user_pages_fast should be used
776  * instead of __get_user_pages. __get_user_pages should be used only if
777  * you need some special @gup_flags.
778  */
779 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
780 		unsigned long start, unsigned long nr_pages,
781 		unsigned int gup_flags, struct page **pages,
782 		struct vm_area_struct **vmas, int *nonblocking)
783 {
784 	long ret = 0, i = 0;
785 	struct vm_area_struct *vma = NULL;
786 	struct follow_page_context ctx = { NULL };
787 
788 	if (!nr_pages)
789 		return 0;
790 
791 	start = untagged_addr(start);
792 
793 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
794 
795 	/*
796 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
797 	 * fault information is unrelated to the reference behaviour of a task
798 	 * using the address space
799 	 */
800 	if (!(gup_flags & FOLL_FORCE))
801 		gup_flags |= FOLL_NUMA;
802 
803 	do {
804 		struct page *page;
805 		unsigned int foll_flags = gup_flags;
806 		unsigned int page_increm;
807 
808 		/* first iteration or cross vma bound */
809 		if (!vma || start >= vma->vm_end) {
810 			vma = find_extend_vma(mm, start);
811 			if (!vma && in_gate_area(mm, start)) {
812 				ret = get_gate_page(mm, start & PAGE_MASK,
813 						gup_flags, &vma,
814 						pages ? &pages[i] : NULL);
815 				if (ret)
816 					goto out;
817 				ctx.page_mask = 0;
818 				goto next_page;
819 			}
820 
821 			if (!vma || check_vma_flags(vma, gup_flags)) {
822 				ret = -EFAULT;
823 				goto out;
824 			}
825 			if (is_vm_hugetlb_page(vma)) {
826 				i = follow_hugetlb_page(mm, vma, pages, vmas,
827 						&start, &nr_pages, i,
828 						gup_flags, nonblocking);
829 				continue;
830 			}
831 		}
832 retry:
833 		/*
834 		 * If we have a pending SIGKILL, don't keep faulting pages and
835 		 * potentially allocating memory.
836 		 */
837 		if (fatal_signal_pending(current)) {
838 			ret = -ERESTARTSYS;
839 			goto out;
840 		}
841 		cond_resched();
842 
843 		page = follow_page_mask(vma, start, foll_flags, &ctx);
844 		if (!page) {
845 			ret = faultin_page(tsk, vma, start, &foll_flags,
846 					nonblocking);
847 			switch (ret) {
848 			case 0:
849 				goto retry;
850 			case -EBUSY:
851 				ret = 0;
852 				/* FALLTHRU */
853 			case -EFAULT:
854 			case -ENOMEM:
855 			case -EHWPOISON:
856 				goto out;
857 			case -ENOENT:
858 				goto next_page;
859 			}
860 			BUG();
861 		} else if (PTR_ERR(page) == -EEXIST) {
862 			/*
863 			 * Proper page table entry exists, but no corresponding
864 			 * struct page.
865 			 */
866 			goto next_page;
867 		} else if (IS_ERR(page)) {
868 			ret = PTR_ERR(page);
869 			goto out;
870 		}
871 		if (pages) {
872 			pages[i] = page;
873 			flush_anon_page(vma, page, start);
874 			flush_dcache_page(page);
875 			ctx.page_mask = 0;
876 		}
877 next_page:
878 		if (vmas) {
879 			vmas[i] = vma;
880 			ctx.page_mask = 0;
881 		}
882 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
883 		if (page_increm > nr_pages)
884 			page_increm = nr_pages;
885 		i += page_increm;
886 		start += page_increm * PAGE_SIZE;
887 		nr_pages -= page_increm;
888 	} while (nr_pages);
889 out:
890 	if (ctx.pgmap)
891 		put_dev_pagemap(ctx.pgmap);
892 	return i ? i : ret;
893 }
894 
895 static bool vma_permits_fault(struct vm_area_struct *vma,
896 			      unsigned int fault_flags)
897 {
898 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
899 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
900 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
901 
902 	if (!(vm_flags & vma->vm_flags))
903 		return false;
904 
905 	/*
906 	 * The architecture might have a hardware protection
907 	 * mechanism other than read/write that can deny access.
908 	 *
909 	 * gup always represents data access, not instruction
910 	 * fetches, so execute=false here:
911 	 */
912 	if (!arch_vma_access_permitted(vma, write, false, foreign))
913 		return false;
914 
915 	return true;
916 }
917 
918 /*
919  * fixup_user_fault() - manually resolve a user page fault
920  * @tsk:	the task_struct to use for page fault accounting, or
921  *		NULL if faults are not to be recorded.
922  * @mm:		mm_struct of target mm
923  * @address:	user address
924  * @fault_flags:flags to pass down to handle_mm_fault()
925  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
926  *		does not allow retry
927  *
928  * This is meant to be called in the specific scenario where for locking reasons
929  * we try to access user memory in atomic context (within a pagefault_disable()
930  * section), this returns -EFAULT, and we want to resolve the user fault before
931  * trying again.
932  *
933  * Typically this is meant to be used by the futex code.
934  *
935  * The main difference with get_user_pages() is that this function will
936  * unconditionally call handle_mm_fault() which will in turn perform all the
937  * necessary SW fixup of the dirty and young bits in the PTE, while
938  * get_user_pages() only guarantees to update these in the struct page.
939  *
940  * This is important for some architectures where those bits also gate the
941  * access permission to the page because they are maintained in software.  On
942  * such architectures, gup() will not be enough to make a subsequent access
943  * succeed.
944  *
945  * This function will not return with an unlocked mmap_sem. So it has not the
946  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
947  */
948 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
949 		     unsigned long address, unsigned int fault_flags,
950 		     bool *unlocked)
951 {
952 	struct vm_area_struct *vma;
953 	vm_fault_t ret, major = 0;
954 
955 	address = untagged_addr(address);
956 
957 	if (unlocked)
958 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
959 
960 retry:
961 	vma = find_extend_vma(mm, address);
962 	if (!vma || address < vma->vm_start)
963 		return -EFAULT;
964 
965 	if (!vma_permits_fault(vma, fault_flags))
966 		return -EFAULT;
967 
968 	ret = handle_mm_fault(vma, address, fault_flags);
969 	major |= ret & VM_FAULT_MAJOR;
970 	if (ret & VM_FAULT_ERROR) {
971 		int err = vm_fault_to_errno(ret, 0);
972 
973 		if (err)
974 			return err;
975 		BUG();
976 	}
977 
978 	if (ret & VM_FAULT_RETRY) {
979 		down_read(&mm->mmap_sem);
980 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
981 			*unlocked = true;
982 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
983 			fault_flags |= FAULT_FLAG_TRIED;
984 			goto retry;
985 		}
986 	}
987 
988 	if (tsk) {
989 		if (major)
990 			tsk->maj_flt++;
991 		else
992 			tsk->min_flt++;
993 	}
994 	return 0;
995 }
996 EXPORT_SYMBOL_GPL(fixup_user_fault);
997 
998 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
999 						struct mm_struct *mm,
1000 						unsigned long start,
1001 						unsigned long nr_pages,
1002 						struct page **pages,
1003 						struct vm_area_struct **vmas,
1004 						int *locked,
1005 						unsigned int flags)
1006 {
1007 	long ret, pages_done;
1008 	bool lock_dropped;
1009 
1010 	if (locked) {
1011 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1012 		BUG_ON(vmas);
1013 		/* check caller initialized locked */
1014 		BUG_ON(*locked != 1);
1015 	}
1016 
1017 	if (pages)
1018 		flags |= FOLL_GET;
1019 
1020 	pages_done = 0;
1021 	lock_dropped = false;
1022 	for (;;) {
1023 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1024 				       vmas, locked);
1025 		if (!locked)
1026 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1027 			return ret;
1028 
1029 		/* VM_FAULT_RETRY cannot return errors */
1030 		if (!*locked) {
1031 			BUG_ON(ret < 0);
1032 			BUG_ON(ret >= nr_pages);
1033 		}
1034 
1035 		if (ret > 0) {
1036 			nr_pages -= ret;
1037 			pages_done += ret;
1038 			if (!nr_pages)
1039 				break;
1040 		}
1041 		if (*locked) {
1042 			/*
1043 			 * VM_FAULT_RETRY didn't trigger or it was a
1044 			 * FOLL_NOWAIT.
1045 			 */
1046 			if (!pages_done)
1047 				pages_done = ret;
1048 			break;
1049 		}
1050 		/*
1051 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1052 		 * For the prefault case (!pages) we only update counts.
1053 		 */
1054 		if (likely(pages))
1055 			pages += ret;
1056 		start += ret << PAGE_SHIFT;
1057 
1058 		/*
1059 		 * Repeat on the address that fired VM_FAULT_RETRY
1060 		 * without FAULT_FLAG_ALLOW_RETRY but with
1061 		 * FAULT_FLAG_TRIED.
1062 		 */
1063 		*locked = 1;
1064 		lock_dropped = true;
1065 		down_read(&mm->mmap_sem);
1066 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1067 				       pages, NULL, NULL);
1068 		if (ret != 1) {
1069 			BUG_ON(ret > 1);
1070 			if (!pages_done)
1071 				pages_done = ret;
1072 			break;
1073 		}
1074 		nr_pages--;
1075 		pages_done++;
1076 		if (!nr_pages)
1077 			break;
1078 		if (likely(pages))
1079 			pages++;
1080 		start += PAGE_SIZE;
1081 	}
1082 	if (lock_dropped && *locked) {
1083 		/*
1084 		 * We must let the caller know we temporarily dropped the lock
1085 		 * and so the critical section protected by it was lost.
1086 		 */
1087 		up_read(&mm->mmap_sem);
1088 		*locked = 0;
1089 	}
1090 	return pages_done;
1091 }
1092 
1093 /*
1094  * get_user_pages_remote() - pin user pages in memory
1095  * @tsk:	the task_struct to use for page fault accounting, or
1096  *		NULL if faults are not to be recorded.
1097  * @mm:		mm_struct of target mm
1098  * @start:	starting user address
1099  * @nr_pages:	number of pages from start to pin
1100  * @gup_flags:	flags modifying lookup behaviour
1101  * @pages:	array that receives pointers to the pages pinned.
1102  *		Should be at least nr_pages long. Or NULL, if caller
1103  *		only intends to ensure the pages are faulted in.
1104  * @vmas:	array of pointers to vmas corresponding to each page.
1105  *		Or NULL if the caller does not require them.
1106  * @locked:	pointer to lock flag indicating whether lock is held and
1107  *		subsequently whether VM_FAULT_RETRY functionality can be
1108  *		utilised. Lock must initially be held.
1109  *
1110  * Returns number of pages pinned. This may be fewer than the number
1111  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1112  * were pinned, returns -errno. Each page returned must be released
1113  * with a put_page() call when it is finished with. vmas will only
1114  * remain valid while mmap_sem is held.
1115  *
1116  * Must be called with mmap_sem held for read or write.
1117  *
1118  * get_user_pages walks a process's page tables and takes a reference to
1119  * each struct page that each user address corresponds to at a given
1120  * instant. That is, it takes the page that would be accessed if a user
1121  * thread accesses the given user virtual address at that instant.
1122  *
1123  * This does not guarantee that the page exists in the user mappings when
1124  * get_user_pages returns, and there may even be a completely different
1125  * page there in some cases (eg. if mmapped pagecache has been invalidated
1126  * and subsequently re faulted). However it does guarantee that the page
1127  * won't be freed completely. And mostly callers simply care that the page
1128  * contains data that was valid *at some point in time*. Typically, an IO
1129  * or similar operation cannot guarantee anything stronger anyway because
1130  * locks can't be held over the syscall boundary.
1131  *
1132  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1133  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1134  * be called after the page is finished with, and before put_page is called.
1135  *
1136  * get_user_pages is typically used for fewer-copy IO operations, to get a
1137  * handle on the memory by some means other than accesses via the user virtual
1138  * addresses. The pages may be submitted for DMA to devices or accessed via
1139  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1140  * use the correct cache flushing APIs.
1141  *
1142  * See also get_user_pages_fast, for performance critical applications.
1143  *
1144  * get_user_pages should be phased out in favor of
1145  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1146  * should use get_user_pages because it cannot pass
1147  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1148  */
1149 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1150 		unsigned long start, unsigned long nr_pages,
1151 		unsigned int gup_flags, struct page **pages,
1152 		struct vm_area_struct **vmas, int *locked)
1153 {
1154 	/*
1155 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1156 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1157 	 * vmas.  As there are no users of this flag in this call we simply
1158 	 * disallow this option for now.
1159 	 */
1160 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1161 		return -EINVAL;
1162 
1163 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1164 				       locked,
1165 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1166 }
1167 EXPORT_SYMBOL(get_user_pages_remote);
1168 
1169 /**
1170  * populate_vma_page_range() -  populate a range of pages in the vma.
1171  * @vma:   target vma
1172  * @start: start address
1173  * @end:   end address
1174  * @nonblocking:
1175  *
1176  * This takes care of mlocking the pages too if VM_LOCKED is set.
1177  *
1178  * return 0 on success, negative error code on error.
1179  *
1180  * vma->vm_mm->mmap_sem must be held.
1181  *
1182  * If @nonblocking is NULL, it may be held for read or write and will
1183  * be unperturbed.
1184  *
1185  * If @nonblocking is non-NULL, it must held for read only and may be
1186  * released.  If it's released, *@nonblocking will be set to 0.
1187  */
1188 long populate_vma_page_range(struct vm_area_struct *vma,
1189 		unsigned long start, unsigned long end, int *nonblocking)
1190 {
1191 	struct mm_struct *mm = vma->vm_mm;
1192 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1193 	int gup_flags;
1194 
1195 	VM_BUG_ON(start & ~PAGE_MASK);
1196 	VM_BUG_ON(end   & ~PAGE_MASK);
1197 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1198 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1199 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1200 
1201 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1202 	if (vma->vm_flags & VM_LOCKONFAULT)
1203 		gup_flags &= ~FOLL_POPULATE;
1204 	/*
1205 	 * We want to touch writable mappings with a write fault in order
1206 	 * to break COW, except for shared mappings because these don't COW
1207 	 * and we would not want to dirty them for nothing.
1208 	 */
1209 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1210 		gup_flags |= FOLL_WRITE;
1211 
1212 	/*
1213 	 * We want mlock to succeed for regions that have any permissions
1214 	 * other than PROT_NONE.
1215 	 */
1216 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1217 		gup_flags |= FOLL_FORCE;
1218 
1219 	/*
1220 	 * We made sure addr is within a VMA, so the following will
1221 	 * not result in a stack expansion that recurses back here.
1222 	 */
1223 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1224 				NULL, NULL, nonblocking);
1225 }
1226 
1227 /*
1228  * __mm_populate - populate and/or mlock pages within a range of address space.
1229  *
1230  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1231  * flags. VMAs must be already marked with the desired vm_flags, and
1232  * mmap_sem must not be held.
1233  */
1234 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1235 {
1236 	struct mm_struct *mm = current->mm;
1237 	unsigned long end, nstart, nend;
1238 	struct vm_area_struct *vma = NULL;
1239 	int locked = 0;
1240 	long ret = 0;
1241 
1242 	end = start + len;
1243 
1244 	for (nstart = start; nstart < end; nstart = nend) {
1245 		/*
1246 		 * We want to fault in pages for [nstart; end) address range.
1247 		 * Find first corresponding VMA.
1248 		 */
1249 		if (!locked) {
1250 			locked = 1;
1251 			down_read(&mm->mmap_sem);
1252 			vma = find_vma(mm, nstart);
1253 		} else if (nstart >= vma->vm_end)
1254 			vma = vma->vm_next;
1255 		if (!vma || vma->vm_start >= end)
1256 			break;
1257 		/*
1258 		 * Set [nstart; nend) to intersection of desired address
1259 		 * range with the first VMA. Also, skip undesirable VMA types.
1260 		 */
1261 		nend = min(end, vma->vm_end);
1262 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1263 			continue;
1264 		if (nstart < vma->vm_start)
1265 			nstart = vma->vm_start;
1266 		/*
1267 		 * Now fault in a range of pages. populate_vma_page_range()
1268 		 * double checks the vma flags, so that it won't mlock pages
1269 		 * if the vma was already munlocked.
1270 		 */
1271 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1272 		if (ret < 0) {
1273 			if (ignore_errors) {
1274 				ret = 0;
1275 				continue;	/* continue at next VMA */
1276 			}
1277 			break;
1278 		}
1279 		nend = nstart + ret * PAGE_SIZE;
1280 		ret = 0;
1281 	}
1282 	if (locked)
1283 		up_read(&mm->mmap_sem);
1284 	return ret;	/* 0 or negative error code */
1285 }
1286 
1287 /**
1288  * get_dump_page() - pin user page in memory while writing it to core dump
1289  * @addr: user address
1290  *
1291  * Returns struct page pointer of user page pinned for dump,
1292  * to be freed afterwards by put_page().
1293  *
1294  * Returns NULL on any kind of failure - a hole must then be inserted into
1295  * the corefile, to preserve alignment with its headers; and also returns
1296  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1297  * allowing a hole to be left in the corefile to save diskspace.
1298  *
1299  * Called without mmap_sem, but after all other threads have been killed.
1300  */
1301 #ifdef CONFIG_ELF_CORE
1302 struct page *get_dump_page(unsigned long addr)
1303 {
1304 	struct vm_area_struct *vma;
1305 	struct page *page;
1306 
1307 	if (__get_user_pages(current, current->mm, addr, 1,
1308 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1309 			     NULL) < 1)
1310 		return NULL;
1311 	flush_cache_page(vma, addr, page_to_pfn(page));
1312 	return page;
1313 }
1314 #endif /* CONFIG_ELF_CORE */
1315 #else /* CONFIG_MMU */
1316 static long __get_user_pages_locked(struct task_struct *tsk,
1317 		struct mm_struct *mm, unsigned long start,
1318 		unsigned long nr_pages, struct page **pages,
1319 		struct vm_area_struct **vmas, int *locked,
1320 		unsigned int foll_flags)
1321 {
1322 	struct vm_area_struct *vma;
1323 	unsigned long vm_flags;
1324 	int i;
1325 
1326 	/* calculate required read or write permissions.
1327 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1328 	 */
1329 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1330 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1331 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1332 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1333 
1334 	for (i = 0; i < nr_pages; i++) {
1335 		vma = find_vma(mm, start);
1336 		if (!vma)
1337 			goto finish_or_fault;
1338 
1339 		/* protect what we can, including chardevs */
1340 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1341 		    !(vm_flags & vma->vm_flags))
1342 			goto finish_or_fault;
1343 
1344 		if (pages) {
1345 			pages[i] = virt_to_page(start);
1346 			if (pages[i])
1347 				get_page(pages[i]);
1348 		}
1349 		if (vmas)
1350 			vmas[i] = vma;
1351 		start = (start + PAGE_SIZE) & PAGE_MASK;
1352 	}
1353 
1354 	return i;
1355 
1356 finish_or_fault:
1357 	return i ? : -EFAULT;
1358 }
1359 #endif /* !CONFIG_MMU */
1360 
1361 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1362 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1363 {
1364 	long i;
1365 	struct vm_area_struct *vma_prev = NULL;
1366 
1367 	for (i = 0; i < nr_pages; i++) {
1368 		struct vm_area_struct *vma = vmas[i];
1369 
1370 		if (vma == vma_prev)
1371 			continue;
1372 
1373 		vma_prev = vma;
1374 
1375 		if (vma_is_fsdax(vma))
1376 			return true;
1377 	}
1378 	return false;
1379 }
1380 
1381 #ifdef CONFIG_CMA
1382 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1383 {
1384 	/*
1385 	 * We want to make sure we allocate the new page from the same node
1386 	 * as the source page.
1387 	 */
1388 	int nid = page_to_nid(page);
1389 	/*
1390 	 * Trying to allocate a page for migration. Ignore allocation
1391 	 * failure warnings. We don't force __GFP_THISNODE here because
1392 	 * this node here is the node where we have CMA reservation and
1393 	 * in some case these nodes will have really less non movable
1394 	 * allocation memory.
1395 	 */
1396 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1397 
1398 	if (PageHighMem(page))
1399 		gfp_mask |= __GFP_HIGHMEM;
1400 
1401 #ifdef CONFIG_HUGETLB_PAGE
1402 	if (PageHuge(page)) {
1403 		struct hstate *h = page_hstate(page);
1404 		/*
1405 		 * We don't want to dequeue from the pool because pool pages will
1406 		 * mostly be from the CMA region.
1407 		 */
1408 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1409 	}
1410 #endif
1411 	if (PageTransHuge(page)) {
1412 		struct page *thp;
1413 		/*
1414 		 * ignore allocation failure warnings
1415 		 */
1416 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1417 
1418 		/*
1419 		 * Remove the movable mask so that we don't allocate from
1420 		 * CMA area again.
1421 		 */
1422 		thp_gfpmask &= ~__GFP_MOVABLE;
1423 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1424 		if (!thp)
1425 			return NULL;
1426 		prep_transhuge_page(thp);
1427 		return thp;
1428 	}
1429 
1430 	return __alloc_pages_node(nid, gfp_mask, 0);
1431 }
1432 
1433 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1434 					struct mm_struct *mm,
1435 					unsigned long start,
1436 					unsigned long nr_pages,
1437 					struct page **pages,
1438 					struct vm_area_struct **vmas,
1439 					unsigned int gup_flags)
1440 {
1441 	unsigned long i;
1442 	unsigned long step;
1443 	bool drain_allow = true;
1444 	bool migrate_allow = true;
1445 	LIST_HEAD(cma_page_list);
1446 
1447 check_again:
1448 	for (i = 0; i < nr_pages;) {
1449 
1450 		struct page *head = compound_head(pages[i]);
1451 
1452 		/*
1453 		 * gup may start from a tail page. Advance step by the left
1454 		 * part.
1455 		 */
1456 		step = compound_nr(head) - (pages[i] - head);
1457 		/*
1458 		 * If we get a page from the CMA zone, since we are going to
1459 		 * be pinning these entries, we might as well move them out
1460 		 * of the CMA zone if possible.
1461 		 */
1462 		if (is_migrate_cma_page(head)) {
1463 			if (PageHuge(head))
1464 				isolate_huge_page(head, &cma_page_list);
1465 			else {
1466 				if (!PageLRU(head) && drain_allow) {
1467 					lru_add_drain_all();
1468 					drain_allow = false;
1469 				}
1470 
1471 				if (!isolate_lru_page(head)) {
1472 					list_add_tail(&head->lru, &cma_page_list);
1473 					mod_node_page_state(page_pgdat(head),
1474 							    NR_ISOLATED_ANON +
1475 							    page_is_file_cache(head),
1476 							    hpage_nr_pages(head));
1477 				}
1478 			}
1479 		}
1480 
1481 		i += step;
1482 	}
1483 
1484 	if (!list_empty(&cma_page_list)) {
1485 		/*
1486 		 * drop the above get_user_pages reference.
1487 		 */
1488 		for (i = 0; i < nr_pages; i++)
1489 			put_page(pages[i]);
1490 
1491 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1492 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1493 			/*
1494 			 * some of the pages failed migration. Do get_user_pages
1495 			 * without migration.
1496 			 */
1497 			migrate_allow = false;
1498 
1499 			if (!list_empty(&cma_page_list))
1500 				putback_movable_pages(&cma_page_list);
1501 		}
1502 		/*
1503 		 * We did migrate all the pages, Try to get the page references
1504 		 * again migrating any new CMA pages which we failed to isolate
1505 		 * earlier.
1506 		 */
1507 		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1508 						   pages, vmas, NULL,
1509 						   gup_flags);
1510 
1511 		if ((nr_pages > 0) && migrate_allow) {
1512 			drain_allow = true;
1513 			goto check_again;
1514 		}
1515 	}
1516 
1517 	return nr_pages;
1518 }
1519 #else
1520 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1521 					struct mm_struct *mm,
1522 					unsigned long start,
1523 					unsigned long nr_pages,
1524 					struct page **pages,
1525 					struct vm_area_struct **vmas,
1526 					unsigned int gup_flags)
1527 {
1528 	return nr_pages;
1529 }
1530 #endif /* CONFIG_CMA */
1531 
1532 /*
1533  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1534  * allows us to process the FOLL_LONGTERM flag.
1535  */
1536 static long __gup_longterm_locked(struct task_struct *tsk,
1537 				  struct mm_struct *mm,
1538 				  unsigned long start,
1539 				  unsigned long nr_pages,
1540 				  struct page **pages,
1541 				  struct vm_area_struct **vmas,
1542 				  unsigned int gup_flags)
1543 {
1544 	struct vm_area_struct **vmas_tmp = vmas;
1545 	unsigned long flags = 0;
1546 	long rc, i;
1547 
1548 	if (gup_flags & FOLL_LONGTERM) {
1549 		if (!pages)
1550 			return -EINVAL;
1551 
1552 		if (!vmas_tmp) {
1553 			vmas_tmp = kcalloc(nr_pages,
1554 					   sizeof(struct vm_area_struct *),
1555 					   GFP_KERNEL);
1556 			if (!vmas_tmp)
1557 				return -ENOMEM;
1558 		}
1559 		flags = memalloc_nocma_save();
1560 	}
1561 
1562 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1563 				     vmas_tmp, NULL, gup_flags);
1564 
1565 	if (gup_flags & FOLL_LONGTERM) {
1566 		memalloc_nocma_restore(flags);
1567 		if (rc < 0)
1568 			goto out;
1569 
1570 		if (check_dax_vmas(vmas_tmp, rc)) {
1571 			for (i = 0; i < rc; i++)
1572 				put_page(pages[i]);
1573 			rc = -EOPNOTSUPP;
1574 			goto out;
1575 		}
1576 
1577 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1578 						 vmas_tmp, gup_flags);
1579 	}
1580 
1581 out:
1582 	if (vmas_tmp != vmas)
1583 		kfree(vmas_tmp);
1584 	return rc;
1585 }
1586 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1587 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1588 						  struct mm_struct *mm,
1589 						  unsigned long start,
1590 						  unsigned long nr_pages,
1591 						  struct page **pages,
1592 						  struct vm_area_struct **vmas,
1593 						  unsigned int flags)
1594 {
1595 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1596 				       NULL, flags);
1597 }
1598 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1599 
1600 /*
1601  * This is the same as get_user_pages_remote(), just with a
1602  * less-flexible calling convention where we assume that the task
1603  * and mm being operated on are the current task's and don't allow
1604  * passing of a locked parameter.  We also obviously don't pass
1605  * FOLL_REMOTE in here.
1606  */
1607 long get_user_pages(unsigned long start, unsigned long nr_pages,
1608 		unsigned int gup_flags, struct page **pages,
1609 		struct vm_area_struct **vmas)
1610 {
1611 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1612 				     pages, vmas, gup_flags | FOLL_TOUCH);
1613 }
1614 EXPORT_SYMBOL(get_user_pages);
1615 
1616 /*
1617  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1618  * paths better by using either get_user_pages_locked() or
1619  * get_user_pages_unlocked().
1620  *
1621  * get_user_pages_locked() is suitable to replace the form:
1622  *
1623  *      down_read(&mm->mmap_sem);
1624  *      do_something()
1625  *      get_user_pages(tsk, mm, ..., pages, NULL);
1626  *      up_read(&mm->mmap_sem);
1627  *
1628  *  to:
1629  *
1630  *      int locked = 1;
1631  *      down_read(&mm->mmap_sem);
1632  *      do_something()
1633  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1634  *      if (locked)
1635  *          up_read(&mm->mmap_sem);
1636  */
1637 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1638 			   unsigned int gup_flags, struct page **pages,
1639 			   int *locked)
1640 {
1641 	/*
1642 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1643 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1644 	 * vmas.  As there are no users of this flag in this call we simply
1645 	 * disallow this option for now.
1646 	 */
1647 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1648 		return -EINVAL;
1649 
1650 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1651 				       pages, NULL, locked,
1652 				       gup_flags | FOLL_TOUCH);
1653 }
1654 EXPORT_SYMBOL(get_user_pages_locked);
1655 
1656 /*
1657  * get_user_pages_unlocked() is suitable to replace the form:
1658  *
1659  *      down_read(&mm->mmap_sem);
1660  *      get_user_pages(tsk, mm, ..., pages, NULL);
1661  *      up_read(&mm->mmap_sem);
1662  *
1663  *  with:
1664  *
1665  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1666  *
1667  * It is functionally equivalent to get_user_pages_fast so
1668  * get_user_pages_fast should be used instead if specific gup_flags
1669  * (e.g. FOLL_FORCE) are not required.
1670  */
1671 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1672 			     struct page **pages, unsigned int gup_flags)
1673 {
1674 	struct mm_struct *mm = current->mm;
1675 	int locked = 1;
1676 	long ret;
1677 
1678 	/*
1679 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1680 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1681 	 * vmas.  As there are no users of this flag in this call we simply
1682 	 * disallow this option for now.
1683 	 */
1684 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1685 		return -EINVAL;
1686 
1687 	down_read(&mm->mmap_sem);
1688 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1689 				      &locked, gup_flags | FOLL_TOUCH);
1690 	if (locked)
1691 		up_read(&mm->mmap_sem);
1692 	return ret;
1693 }
1694 EXPORT_SYMBOL(get_user_pages_unlocked);
1695 
1696 /*
1697  * Fast GUP
1698  *
1699  * get_user_pages_fast attempts to pin user pages by walking the page
1700  * tables directly and avoids taking locks. Thus the walker needs to be
1701  * protected from page table pages being freed from under it, and should
1702  * block any THP splits.
1703  *
1704  * One way to achieve this is to have the walker disable interrupts, and
1705  * rely on IPIs from the TLB flushing code blocking before the page table
1706  * pages are freed. This is unsuitable for architectures that do not need
1707  * to broadcast an IPI when invalidating TLBs.
1708  *
1709  * Another way to achieve this is to batch up page table containing pages
1710  * belonging to more than one mm_user, then rcu_sched a callback to free those
1711  * pages. Disabling interrupts will allow the fast_gup walker to both block
1712  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1713  * (which is a relatively rare event). The code below adopts this strategy.
1714  *
1715  * Before activating this code, please be aware that the following assumptions
1716  * are currently made:
1717  *
1718  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1719  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1720  *
1721  *  *) ptes can be read atomically by the architecture.
1722  *
1723  *  *) access_ok is sufficient to validate userspace address ranges.
1724  *
1725  * The last two assumptions can be relaxed by the addition of helper functions.
1726  *
1727  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1728  */
1729 #ifdef CONFIG_HAVE_FAST_GUP
1730 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1731 /*
1732  * WARNING: only to be used in the get_user_pages_fast() implementation.
1733  *
1734  * With get_user_pages_fast(), we walk down the pagetables without taking any
1735  * locks.  For this we would like to load the pointers atomically, but sometimes
1736  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1737  * we do have is the guarantee that a PTE will only either go from not present
1738  * to present, or present to not present or both -- it will not switch to a
1739  * completely different present page without a TLB flush in between; something
1740  * that we are blocking by holding interrupts off.
1741  *
1742  * Setting ptes from not present to present goes:
1743  *
1744  *   ptep->pte_high = h;
1745  *   smp_wmb();
1746  *   ptep->pte_low = l;
1747  *
1748  * And present to not present goes:
1749  *
1750  *   ptep->pte_low = 0;
1751  *   smp_wmb();
1752  *   ptep->pte_high = 0;
1753  *
1754  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1755  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1756  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1757  * picked up a changed pte high. We might have gotten rubbish values from
1758  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1759  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1760  * operates on present ptes we're safe.
1761  */
1762 static inline pte_t gup_get_pte(pte_t *ptep)
1763 {
1764 	pte_t pte;
1765 
1766 	do {
1767 		pte.pte_low = ptep->pte_low;
1768 		smp_rmb();
1769 		pte.pte_high = ptep->pte_high;
1770 		smp_rmb();
1771 	} while (unlikely(pte.pte_low != ptep->pte_low));
1772 
1773 	return pte;
1774 }
1775 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1776 /*
1777  * We require that the PTE can be read atomically.
1778  */
1779 static inline pte_t gup_get_pte(pte_t *ptep)
1780 {
1781 	return READ_ONCE(*ptep);
1782 }
1783 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1784 
1785 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1786 					    struct page **pages)
1787 {
1788 	while ((*nr) - nr_start) {
1789 		struct page *page = pages[--(*nr)];
1790 
1791 		ClearPageReferenced(page);
1792 		put_page(page);
1793 	}
1794 }
1795 
1796 /*
1797  * Return the compund head page with ref appropriately incremented,
1798  * or NULL if that failed.
1799  */
1800 static inline struct page *try_get_compound_head(struct page *page, int refs)
1801 {
1802 	struct page *head = compound_head(page);
1803 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1804 		return NULL;
1805 	if (unlikely(!page_cache_add_speculative(head, refs)))
1806 		return NULL;
1807 	return head;
1808 }
1809 
1810 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1811 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1812 			 unsigned int flags, struct page **pages, int *nr)
1813 {
1814 	struct dev_pagemap *pgmap = NULL;
1815 	int nr_start = *nr, ret = 0;
1816 	pte_t *ptep, *ptem;
1817 
1818 	ptem = ptep = pte_offset_map(&pmd, addr);
1819 	do {
1820 		pte_t pte = gup_get_pte(ptep);
1821 		struct page *head, *page;
1822 
1823 		/*
1824 		 * Similar to the PMD case below, NUMA hinting must take slow
1825 		 * path using the pte_protnone check.
1826 		 */
1827 		if (pte_protnone(pte))
1828 			goto pte_unmap;
1829 
1830 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1831 			goto pte_unmap;
1832 
1833 		if (pte_devmap(pte)) {
1834 			if (unlikely(flags & FOLL_LONGTERM))
1835 				goto pte_unmap;
1836 
1837 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1838 			if (unlikely(!pgmap)) {
1839 				undo_dev_pagemap(nr, nr_start, pages);
1840 				goto pte_unmap;
1841 			}
1842 		} else if (pte_special(pte))
1843 			goto pte_unmap;
1844 
1845 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1846 		page = pte_page(pte);
1847 
1848 		head = try_get_compound_head(page, 1);
1849 		if (!head)
1850 			goto pte_unmap;
1851 
1852 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1853 			put_page(head);
1854 			goto pte_unmap;
1855 		}
1856 
1857 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1858 
1859 		SetPageReferenced(page);
1860 		pages[*nr] = page;
1861 		(*nr)++;
1862 
1863 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1864 
1865 	ret = 1;
1866 
1867 pte_unmap:
1868 	if (pgmap)
1869 		put_dev_pagemap(pgmap);
1870 	pte_unmap(ptem);
1871 	return ret;
1872 }
1873 #else
1874 
1875 /*
1876  * If we can't determine whether or not a pte is special, then fail immediately
1877  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1878  * to be special.
1879  *
1880  * For a futex to be placed on a THP tail page, get_futex_key requires a
1881  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1882  * useful to have gup_huge_pmd even if we can't operate on ptes.
1883  */
1884 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1885 			 unsigned int flags, struct page **pages, int *nr)
1886 {
1887 	return 0;
1888 }
1889 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1890 
1891 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1892 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1893 		unsigned long end, struct page **pages, int *nr)
1894 {
1895 	int nr_start = *nr;
1896 	struct dev_pagemap *pgmap = NULL;
1897 
1898 	do {
1899 		struct page *page = pfn_to_page(pfn);
1900 
1901 		pgmap = get_dev_pagemap(pfn, pgmap);
1902 		if (unlikely(!pgmap)) {
1903 			undo_dev_pagemap(nr, nr_start, pages);
1904 			return 0;
1905 		}
1906 		SetPageReferenced(page);
1907 		pages[*nr] = page;
1908 		get_page(page);
1909 		(*nr)++;
1910 		pfn++;
1911 	} while (addr += PAGE_SIZE, addr != end);
1912 
1913 	if (pgmap)
1914 		put_dev_pagemap(pgmap);
1915 	return 1;
1916 }
1917 
1918 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1919 		unsigned long end, struct page **pages, int *nr)
1920 {
1921 	unsigned long fault_pfn;
1922 	int nr_start = *nr;
1923 
1924 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1925 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1926 		return 0;
1927 
1928 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1929 		undo_dev_pagemap(nr, nr_start, pages);
1930 		return 0;
1931 	}
1932 	return 1;
1933 }
1934 
1935 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1936 		unsigned long end, struct page **pages, int *nr)
1937 {
1938 	unsigned long fault_pfn;
1939 	int nr_start = *nr;
1940 
1941 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1942 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1943 		return 0;
1944 
1945 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1946 		undo_dev_pagemap(nr, nr_start, pages);
1947 		return 0;
1948 	}
1949 	return 1;
1950 }
1951 #else
1952 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1953 		unsigned long end, struct page **pages, int *nr)
1954 {
1955 	BUILD_BUG();
1956 	return 0;
1957 }
1958 
1959 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1960 		unsigned long end, struct page **pages, int *nr)
1961 {
1962 	BUILD_BUG();
1963 	return 0;
1964 }
1965 #endif
1966 
1967 #ifdef CONFIG_ARCH_HAS_HUGEPD
1968 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1969 				      unsigned long sz)
1970 {
1971 	unsigned long __boundary = (addr + sz) & ~(sz-1);
1972 	return (__boundary - 1 < end - 1) ? __boundary : end;
1973 }
1974 
1975 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1976 		       unsigned long end, int write, struct page **pages, int *nr)
1977 {
1978 	unsigned long pte_end;
1979 	struct page *head, *page;
1980 	pte_t pte;
1981 	int refs;
1982 
1983 	pte_end = (addr + sz) & ~(sz-1);
1984 	if (pte_end < end)
1985 		end = pte_end;
1986 
1987 	pte = READ_ONCE(*ptep);
1988 
1989 	if (!pte_access_permitted(pte, write))
1990 		return 0;
1991 
1992 	/* hugepages are never "special" */
1993 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1994 
1995 	refs = 0;
1996 	head = pte_page(pte);
1997 
1998 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1999 	do {
2000 		VM_BUG_ON(compound_head(page) != head);
2001 		pages[*nr] = page;
2002 		(*nr)++;
2003 		page++;
2004 		refs++;
2005 	} while (addr += PAGE_SIZE, addr != end);
2006 
2007 	head = try_get_compound_head(head, refs);
2008 	if (!head) {
2009 		*nr -= refs;
2010 		return 0;
2011 	}
2012 
2013 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2014 		/* Could be optimized better */
2015 		*nr -= refs;
2016 		while (refs--)
2017 			put_page(head);
2018 		return 0;
2019 	}
2020 
2021 	SetPageReferenced(head);
2022 	return 1;
2023 }
2024 
2025 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2026 		unsigned int pdshift, unsigned long end, int write,
2027 		struct page **pages, int *nr)
2028 {
2029 	pte_t *ptep;
2030 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2031 	unsigned long next;
2032 
2033 	ptep = hugepte_offset(hugepd, addr, pdshift);
2034 	do {
2035 		next = hugepte_addr_end(addr, end, sz);
2036 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2037 			return 0;
2038 	} while (ptep++, addr = next, addr != end);
2039 
2040 	return 1;
2041 }
2042 #else
2043 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2044 		unsigned pdshift, unsigned long end, int write,
2045 		struct page **pages, int *nr)
2046 {
2047 	return 0;
2048 }
2049 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2050 
2051 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2052 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2053 {
2054 	struct page *head, *page;
2055 	int refs;
2056 
2057 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2058 		return 0;
2059 
2060 	if (pmd_devmap(orig)) {
2061 		if (unlikely(flags & FOLL_LONGTERM))
2062 			return 0;
2063 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2064 	}
2065 
2066 	refs = 0;
2067 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2068 	do {
2069 		pages[*nr] = page;
2070 		(*nr)++;
2071 		page++;
2072 		refs++;
2073 	} while (addr += PAGE_SIZE, addr != end);
2074 
2075 	head = try_get_compound_head(pmd_page(orig), refs);
2076 	if (!head) {
2077 		*nr -= refs;
2078 		return 0;
2079 	}
2080 
2081 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2082 		*nr -= refs;
2083 		while (refs--)
2084 			put_page(head);
2085 		return 0;
2086 	}
2087 
2088 	SetPageReferenced(head);
2089 	return 1;
2090 }
2091 
2092 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2093 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2094 {
2095 	struct page *head, *page;
2096 	int refs;
2097 
2098 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2099 		return 0;
2100 
2101 	if (pud_devmap(orig)) {
2102 		if (unlikely(flags & FOLL_LONGTERM))
2103 			return 0;
2104 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2105 	}
2106 
2107 	refs = 0;
2108 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2109 	do {
2110 		pages[*nr] = page;
2111 		(*nr)++;
2112 		page++;
2113 		refs++;
2114 	} while (addr += PAGE_SIZE, addr != end);
2115 
2116 	head = try_get_compound_head(pud_page(orig), refs);
2117 	if (!head) {
2118 		*nr -= refs;
2119 		return 0;
2120 	}
2121 
2122 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2123 		*nr -= refs;
2124 		while (refs--)
2125 			put_page(head);
2126 		return 0;
2127 	}
2128 
2129 	SetPageReferenced(head);
2130 	return 1;
2131 }
2132 
2133 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2134 			unsigned long end, unsigned int flags,
2135 			struct page **pages, int *nr)
2136 {
2137 	int refs;
2138 	struct page *head, *page;
2139 
2140 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2141 		return 0;
2142 
2143 	BUILD_BUG_ON(pgd_devmap(orig));
2144 	refs = 0;
2145 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2146 	do {
2147 		pages[*nr] = page;
2148 		(*nr)++;
2149 		page++;
2150 		refs++;
2151 	} while (addr += PAGE_SIZE, addr != end);
2152 
2153 	head = try_get_compound_head(pgd_page(orig), refs);
2154 	if (!head) {
2155 		*nr -= refs;
2156 		return 0;
2157 	}
2158 
2159 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2160 		*nr -= refs;
2161 		while (refs--)
2162 			put_page(head);
2163 		return 0;
2164 	}
2165 
2166 	SetPageReferenced(head);
2167 	return 1;
2168 }
2169 
2170 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2171 		unsigned int flags, struct page **pages, int *nr)
2172 {
2173 	unsigned long next;
2174 	pmd_t *pmdp;
2175 
2176 	pmdp = pmd_offset(&pud, addr);
2177 	do {
2178 		pmd_t pmd = READ_ONCE(*pmdp);
2179 
2180 		next = pmd_addr_end(addr, end);
2181 		if (!pmd_present(pmd))
2182 			return 0;
2183 
2184 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2185 			     pmd_devmap(pmd))) {
2186 			/*
2187 			 * NUMA hinting faults need to be handled in the GUP
2188 			 * slowpath for accounting purposes and so that they
2189 			 * can be serialised against THP migration.
2190 			 */
2191 			if (pmd_protnone(pmd))
2192 				return 0;
2193 
2194 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2195 				pages, nr))
2196 				return 0;
2197 
2198 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2199 			/*
2200 			 * architecture have different format for hugetlbfs
2201 			 * pmd format and THP pmd format
2202 			 */
2203 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2204 					 PMD_SHIFT, next, flags, pages, nr))
2205 				return 0;
2206 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2207 			return 0;
2208 	} while (pmdp++, addr = next, addr != end);
2209 
2210 	return 1;
2211 }
2212 
2213 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2214 			 unsigned int flags, struct page **pages, int *nr)
2215 {
2216 	unsigned long next;
2217 	pud_t *pudp;
2218 
2219 	pudp = pud_offset(&p4d, addr);
2220 	do {
2221 		pud_t pud = READ_ONCE(*pudp);
2222 
2223 		next = pud_addr_end(addr, end);
2224 		if (pud_none(pud))
2225 			return 0;
2226 		if (unlikely(pud_huge(pud))) {
2227 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2228 					  pages, nr))
2229 				return 0;
2230 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2231 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2232 					 PUD_SHIFT, next, flags, pages, nr))
2233 				return 0;
2234 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2235 			return 0;
2236 	} while (pudp++, addr = next, addr != end);
2237 
2238 	return 1;
2239 }
2240 
2241 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2242 			 unsigned int flags, struct page **pages, int *nr)
2243 {
2244 	unsigned long next;
2245 	p4d_t *p4dp;
2246 
2247 	p4dp = p4d_offset(&pgd, addr);
2248 	do {
2249 		p4d_t p4d = READ_ONCE(*p4dp);
2250 
2251 		next = p4d_addr_end(addr, end);
2252 		if (p4d_none(p4d))
2253 			return 0;
2254 		BUILD_BUG_ON(p4d_huge(p4d));
2255 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2256 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2257 					 P4D_SHIFT, next, flags, pages, nr))
2258 				return 0;
2259 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2260 			return 0;
2261 	} while (p4dp++, addr = next, addr != end);
2262 
2263 	return 1;
2264 }
2265 
2266 static void gup_pgd_range(unsigned long addr, unsigned long end,
2267 		unsigned int flags, struct page **pages, int *nr)
2268 {
2269 	unsigned long next;
2270 	pgd_t *pgdp;
2271 
2272 	pgdp = pgd_offset(current->mm, addr);
2273 	do {
2274 		pgd_t pgd = READ_ONCE(*pgdp);
2275 
2276 		next = pgd_addr_end(addr, end);
2277 		if (pgd_none(pgd))
2278 			return;
2279 		if (unlikely(pgd_huge(pgd))) {
2280 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2281 					  pages, nr))
2282 				return;
2283 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2284 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2285 					 PGDIR_SHIFT, next, flags, pages, nr))
2286 				return;
2287 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2288 			return;
2289 	} while (pgdp++, addr = next, addr != end);
2290 }
2291 #else
2292 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2293 		unsigned int flags, struct page **pages, int *nr)
2294 {
2295 }
2296 #endif /* CONFIG_HAVE_FAST_GUP */
2297 
2298 #ifndef gup_fast_permitted
2299 /*
2300  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2301  * we need to fall back to the slow version:
2302  */
2303 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2304 {
2305 	return true;
2306 }
2307 #endif
2308 
2309 /*
2310  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2311  * the regular GUP.
2312  * Note a difference with get_user_pages_fast: this always returns the
2313  * number of pages pinned, 0 if no pages were pinned.
2314  *
2315  * If the architecture does not support this function, simply return with no
2316  * pages pinned.
2317  */
2318 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2319 			  struct page **pages)
2320 {
2321 	unsigned long len, end;
2322 	unsigned long flags;
2323 	int nr = 0;
2324 
2325 	start = untagged_addr(start) & PAGE_MASK;
2326 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2327 	end = start + len;
2328 
2329 	if (end <= start)
2330 		return 0;
2331 	if (unlikely(!access_ok((void __user *)start, len)))
2332 		return 0;
2333 
2334 	/*
2335 	 * Disable interrupts.  We use the nested form as we can already have
2336 	 * interrupts disabled by get_futex_key.
2337 	 *
2338 	 * With interrupts disabled, we block page table pages from being
2339 	 * freed from under us. See struct mmu_table_batch comments in
2340 	 * include/asm-generic/tlb.h for more details.
2341 	 *
2342 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2343 	 * block IPIs that come from THPs splitting.
2344 	 */
2345 
2346 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2347 	    gup_fast_permitted(start, end)) {
2348 		local_irq_save(flags);
2349 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2350 		local_irq_restore(flags);
2351 	}
2352 
2353 	return nr;
2354 }
2355 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2356 
2357 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2358 				   unsigned int gup_flags, struct page **pages)
2359 {
2360 	int ret;
2361 
2362 	/*
2363 	 * FIXME: FOLL_LONGTERM does not work with
2364 	 * get_user_pages_unlocked() (see comments in that function)
2365 	 */
2366 	if (gup_flags & FOLL_LONGTERM) {
2367 		down_read(&current->mm->mmap_sem);
2368 		ret = __gup_longterm_locked(current, current->mm,
2369 					    start, nr_pages,
2370 					    pages, NULL, gup_flags);
2371 		up_read(&current->mm->mmap_sem);
2372 	} else {
2373 		ret = get_user_pages_unlocked(start, nr_pages,
2374 					      pages, gup_flags);
2375 	}
2376 
2377 	return ret;
2378 }
2379 
2380 /**
2381  * get_user_pages_fast() - pin user pages in memory
2382  * @start:	starting user address
2383  * @nr_pages:	number of pages from start to pin
2384  * @gup_flags:	flags modifying pin behaviour
2385  * @pages:	array that receives pointers to the pages pinned.
2386  *		Should be at least nr_pages long.
2387  *
2388  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2389  * If not successful, it will fall back to taking the lock and
2390  * calling get_user_pages().
2391  *
2392  * Returns number of pages pinned. This may be fewer than the number
2393  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2394  * were pinned, returns -errno.
2395  */
2396 int get_user_pages_fast(unsigned long start, int nr_pages,
2397 			unsigned int gup_flags, struct page **pages)
2398 {
2399 	unsigned long addr, len, end;
2400 	int nr = 0, ret = 0;
2401 
2402 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2403 		return -EINVAL;
2404 
2405 	start = untagged_addr(start) & PAGE_MASK;
2406 	addr = start;
2407 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2408 	end = start + len;
2409 
2410 	if (end <= start)
2411 		return 0;
2412 	if (unlikely(!access_ok((void __user *)start, len)))
2413 		return -EFAULT;
2414 
2415 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2416 	    gup_fast_permitted(start, end)) {
2417 		local_irq_disable();
2418 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2419 		local_irq_enable();
2420 		ret = nr;
2421 	}
2422 
2423 	if (nr < nr_pages) {
2424 		/* Try to get the remaining pages with get_user_pages */
2425 		start += nr << PAGE_SHIFT;
2426 		pages += nr;
2427 
2428 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2429 					      gup_flags, pages);
2430 
2431 		/* Have to be a bit careful with return values */
2432 		if (nr > 0) {
2433 			if (ret < 0)
2434 				ret = nr;
2435 			else
2436 				ret += nr;
2437 		}
2438 	}
2439 
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2443