1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 /** 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 133 * 134 * @page: pointer to page to be grabbed 135 * @flags: gup flags: these are the FOLL_* flag values. 136 * 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 138 * time. Cases: 139 * 140 * FOLL_GET: page's refcount will be incremented by 1. 141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 142 * 143 * Return: true for success, or if no action was required (if neither FOLL_PIN 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 145 * FOLL_PIN was set, but the page could not be grabbed. 146 */ 147 bool __must_check try_grab_page(struct page *page, unsigned int flags) 148 { 149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 150 151 if (flags & FOLL_GET) 152 return try_get_page(page); 153 else if (flags & FOLL_PIN) { 154 int refs = 1; 155 156 page = compound_head(page); 157 158 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 159 return false; 160 161 if (hpage_pincount_available(page)) 162 hpage_pincount_add(page, 1); 163 else 164 refs = GUP_PIN_COUNTING_BIAS; 165 166 /* 167 * Similar to try_grab_compound_head(): even if using the 168 * hpage_pincount_add/_sub() routines, be sure to 169 * *also* increment the normal page refcount field at least 170 * once, so that the page really is pinned. 171 */ 172 page_ref_add(page, refs); 173 174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 175 } 176 177 return true; 178 } 179 180 #ifdef CONFIG_DEV_PAGEMAP_OPS 181 static bool __unpin_devmap_managed_user_page(struct page *page) 182 { 183 int count, refs = 1; 184 185 if (!page_is_devmap_managed(page)) 186 return false; 187 188 if (hpage_pincount_available(page)) 189 hpage_pincount_sub(page, 1); 190 else 191 refs = GUP_PIN_COUNTING_BIAS; 192 193 count = page_ref_sub_return(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 196 /* 197 * devmap page refcounts are 1-based, rather than 0-based: if 198 * refcount is 1, then the page is free and the refcount is 199 * stable because nobody holds a reference on the page. 200 */ 201 if (count == 1) 202 free_devmap_managed_page(page); 203 else if (!count) 204 __put_page(page); 205 206 return true; 207 } 208 #else 209 static bool __unpin_devmap_managed_user_page(struct page *page) 210 { 211 return false; 212 } 213 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 214 215 /** 216 * unpin_user_page() - release a dma-pinned page 217 * @page: pointer to page to be released 218 * 219 * Pages that were pinned via pin_user_pages*() must be released via either 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 221 * that such pages can be separately tracked and uniquely handled. In 222 * particular, interactions with RDMA and filesystems need special handling. 223 */ 224 void unpin_user_page(struct page *page) 225 { 226 int refs = 1; 227 228 page = compound_head(page); 229 230 /* 231 * For devmap managed pages we need to catch refcount transition from 232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 233 * page is free and we need to inform the device driver through 234 * callback. See include/linux/memremap.h and HMM for details. 235 */ 236 if (__unpin_devmap_managed_user_page(page)) 237 return; 238 239 if (hpage_pincount_available(page)) 240 hpage_pincount_sub(page, 1); 241 else 242 refs = GUP_PIN_COUNTING_BIAS; 243 244 if (page_ref_sub_and_test(page, refs)) 245 __put_page(page); 246 247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 248 } 249 EXPORT_SYMBOL(unpin_user_page); 250 251 /** 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 253 * @pages: array of pages to be maybe marked dirty, and definitely released. 254 * @npages: number of pages in the @pages array. 255 * @make_dirty: whether to mark the pages dirty 256 * 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 258 * variants called on that page. 259 * 260 * For each page in the @pages array, make that page (or its head page, if a 261 * compound page) dirty, if @make_dirty is true, and if the page was previously 262 * listed as clean. In any case, releases all pages using unpin_user_page(), 263 * possibly via unpin_user_pages(), for the non-dirty case. 264 * 265 * Please see the unpin_user_page() documentation for details. 266 * 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 268 * required, then the caller should a) verify that this is really correct, 269 * because _lock() is usually required, and b) hand code it: 270 * set_page_dirty_lock(), unpin_user_page(). 271 * 272 */ 273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 274 bool make_dirty) 275 { 276 unsigned long index; 277 278 /* 279 * TODO: this can be optimized for huge pages: if a series of pages is 280 * physically contiguous and part of the same compound page, then a 281 * single operation to the head page should suffice. 282 */ 283 284 if (!make_dirty) { 285 unpin_user_pages(pages, npages); 286 return; 287 } 288 289 for (index = 0; index < npages; index++) { 290 struct page *page = compound_head(pages[index]); 291 /* 292 * Checking PageDirty at this point may race with 293 * clear_page_dirty_for_io(), but that's OK. Two key 294 * cases: 295 * 296 * 1) This code sees the page as already dirty, so it 297 * skips the call to set_page_dirty(). That could happen 298 * because clear_page_dirty_for_io() called 299 * page_mkclean(), followed by set_page_dirty(). 300 * However, now the page is going to get written back, 301 * which meets the original intention of setting it 302 * dirty, so all is well: clear_page_dirty_for_io() goes 303 * on to call TestClearPageDirty(), and write the page 304 * back. 305 * 306 * 2) This code sees the page as clean, so it calls 307 * set_page_dirty(). The page stays dirty, despite being 308 * written back, so it gets written back again in the 309 * next writeback cycle. This is harmless. 310 */ 311 if (!PageDirty(page)) 312 set_page_dirty_lock(page); 313 unpin_user_page(page); 314 } 315 } 316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 317 318 /** 319 * unpin_user_pages() - release an array of gup-pinned pages. 320 * @pages: array of pages to be marked dirty and released. 321 * @npages: number of pages in the @pages array. 322 * 323 * For each page in the @pages array, release the page using unpin_user_page(). 324 * 325 * Please see the unpin_user_page() documentation for details. 326 */ 327 void unpin_user_pages(struct page **pages, unsigned long npages) 328 { 329 unsigned long index; 330 331 /* 332 * TODO: this can be optimized for huge pages: if a series of pages is 333 * physically contiguous and part of the same compound page, then a 334 * single operation to the head page should suffice. 335 */ 336 for (index = 0; index < npages; index++) 337 unpin_user_page(pages[index]); 338 } 339 EXPORT_SYMBOL(unpin_user_pages); 340 341 #ifdef CONFIG_MMU 342 static struct page *no_page_table(struct vm_area_struct *vma, 343 unsigned int flags) 344 { 345 /* 346 * When core dumping an enormous anonymous area that nobody 347 * has touched so far, we don't want to allocate unnecessary pages or 348 * page tables. Return error instead of NULL to skip handle_mm_fault, 349 * then get_dump_page() will return NULL to leave a hole in the dump. 350 * But we can only make this optimization where a hole would surely 351 * be zero-filled if handle_mm_fault() actually did handle it. 352 */ 353 if ((flags & FOLL_DUMP) && 354 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 355 return ERR_PTR(-EFAULT); 356 return NULL; 357 } 358 359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 360 pte_t *pte, unsigned int flags) 361 { 362 /* No page to get reference */ 363 if (flags & FOLL_GET) 364 return -EFAULT; 365 366 if (flags & FOLL_TOUCH) { 367 pte_t entry = *pte; 368 369 if (flags & FOLL_WRITE) 370 entry = pte_mkdirty(entry); 371 entry = pte_mkyoung(entry); 372 373 if (!pte_same(*pte, entry)) { 374 set_pte_at(vma->vm_mm, address, pte, entry); 375 update_mmu_cache(vma, address, pte); 376 } 377 } 378 379 /* Proper page table entry exists, but no corresponding struct page */ 380 return -EEXIST; 381 } 382 383 /* 384 * FOLL_FORCE can write to even unwritable pte's, but only 385 * after we've gone through a COW cycle and they are dirty. 386 */ 387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 388 { 389 return pte_write(pte) || 390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 391 } 392 393 static struct page *follow_page_pte(struct vm_area_struct *vma, 394 unsigned long address, pmd_t *pmd, unsigned int flags, 395 struct dev_pagemap **pgmap) 396 { 397 struct mm_struct *mm = vma->vm_mm; 398 struct page *page; 399 spinlock_t *ptl; 400 pte_t *ptep, pte; 401 int ret; 402 403 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 404 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 405 (FOLL_PIN | FOLL_GET))) 406 return ERR_PTR(-EINVAL); 407 retry: 408 if (unlikely(pmd_bad(*pmd))) 409 return no_page_table(vma, flags); 410 411 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 412 pte = *ptep; 413 if (!pte_present(pte)) { 414 swp_entry_t entry; 415 /* 416 * KSM's break_ksm() relies upon recognizing a ksm page 417 * even while it is being migrated, so for that case we 418 * need migration_entry_wait(). 419 */ 420 if (likely(!(flags & FOLL_MIGRATION))) 421 goto no_page; 422 if (pte_none(pte)) 423 goto no_page; 424 entry = pte_to_swp_entry(pte); 425 if (!is_migration_entry(entry)) 426 goto no_page; 427 pte_unmap_unlock(ptep, ptl); 428 migration_entry_wait(mm, pmd, address); 429 goto retry; 430 } 431 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 432 goto no_page; 433 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 434 pte_unmap_unlock(ptep, ptl); 435 return NULL; 436 } 437 438 page = vm_normal_page(vma, address, pte); 439 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 440 /* 441 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 442 * case since they are only valid while holding the pgmap 443 * reference. 444 */ 445 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 446 if (*pgmap) 447 page = pte_page(pte); 448 else 449 goto no_page; 450 } else if (unlikely(!page)) { 451 if (flags & FOLL_DUMP) { 452 /* Avoid special (like zero) pages in core dumps */ 453 page = ERR_PTR(-EFAULT); 454 goto out; 455 } 456 457 if (is_zero_pfn(pte_pfn(pte))) { 458 page = pte_page(pte); 459 } else { 460 ret = follow_pfn_pte(vma, address, ptep, flags); 461 page = ERR_PTR(ret); 462 goto out; 463 } 464 } 465 466 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 467 get_page(page); 468 pte_unmap_unlock(ptep, ptl); 469 lock_page(page); 470 ret = split_huge_page(page); 471 unlock_page(page); 472 put_page(page); 473 if (ret) 474 return ERR_PTR(ret); 475 goto retry; 476 } 477 478 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 479 if (unlikely(!try_grab_page(page, flags))) { 480 page = ERR_PTR(-ENOMEM); 481 goto out; 482 } 483 /* 484 * We need to make the page accessible if and only if we are going 485 * to access its content (the FOLL_PIN case). Please see 486 * Documentation/core-api/pin_user_pages.rst for details. 487 */ 488 if (flags & FOLL_PIN) { 489 ret = arch_make_page_accessible(page); 490 if (ret) { 491 unpin_user_page(page); 492 page = ERR_PTR(ret); 493 goto out; 494 } 495 } 496 if (flags & FOLL_TOUCH) { 497 if ((flags & FOLL_WRITE) && 498 !pte_dirty(pte) && !PageDirty(page)) 499 set_page_dirty(page); 500 /* 501 * pte_mkyoung() would be more correct here, but atomic care 502 * is needed to avoid losing the dirty bit: it is easier to use 503 * mark_page_accessed(). 504 */ 505 mark_page_accessed(page); 506 } 507 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 508 /* Do not mlock pte-mapped THP */ 509 if (PageTransCompound(page)) 510 goto out; 511 512 /* 513 * The preliminary mapping check is mainly to avoid the 514 * pointless overhead of lock_page on the ZERO_PAGE 515 * which might bounce very badly if there is contention. 516 * 517 * If the page is already locked, we don't need to 518 * handle it now - vmscan will handle it later if and 519 * when it attempts to reclaim the page. 520 */ 521 if (page->mapping && trylock_page(page)) { 522 lru_add_drain(); /* push cached pages to LRU */ 523 /* 524 * Because we lock page here, and migration is 525 * blocked by the pte's page reference, and we 526 * know the page is still mapped, we don't even 527 * need to check for file-cache page truncation. 528 */ 529 mlock_vma_page(page); 530 unlock_page(page); 531 } 532 } 533 out: 534 pte_unmap_unlock(ptep, ptl); 535 return page; 536 no_page: 537 pte_unmap_unlock(ptep, ptl); 538 if (!pte_none(pte)) 539 return NULL; 540 return no_page_table(vma, flags); 541 } 542 543 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 544 unsigned long address, pud_t *pudp, 545 unsigned int flags, 546 struct follow_page_context *ctx) 547 { 548 pmd_t *pmd, pmdval; 549 spinlock_t *ptl; 550 struct page *page; 551 struct mm_struct *mm = vma->vm_mm; 552 553 pmd = pmd_offset(pudp, address); 554 /* 555 * The READ_ONCE() will stabilize the pmdval in a register or 556 * on the stack so that it will stop changing under the code. 557 */ 558 pmdval = READ_ONCE(*pmd); 559 if (pmd_none(pmdval)) 560 return no_page_table(vma, flags); 561 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 562 page = follow_huge_pmd(mm, address, pmd, flags); 563 if (page) 564 return page; 565 return no_page_table(vma, flags); 566 } 567 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 568 page = follow_huge_pd(vma, address, 569 __hugepd(pmd_val(pmdval)), flags, 570 PMD_SHIFT); 571 if (page) 572 return page; 573 return no_page_table(vma, flags); 574 } 575 retry: 576 if (!pmd_present(pmdval)) { 577 if (likely(!(flags & FOLL_MIGRATION))) 578 return no_page_table(vma, flags); 579 VM_BUG_ON(thp_migration_supported() && 580 !is_pmd_migration_entry(pmdval)); 581 if (is_pmd_migration_entry(pmdval)) 582 pmd_migration_entry_wait(mm, pmd); 583 pmdval = READ_ONCE(*pmd); 584 /* 585 * MADV_DONTNEED may convert the pmd to null because 586 * mmap_lock is held in read mode 587 */ 588 if (pmd_none(pmdval)) 589 return no_page_table(vma, flags); 590 goto retry; 591 } 592 if (pmd_devmap(pmdval)) { 593 ptl = pmd_lock(mm, pmd); 594 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 595 spin_unlock(ptl); 596 if (page) 597 return page; 598 } 599 if (likely(!pmd_trans_huge(pmdval))) 600 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 601 602 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 603 return no_page_table(vma, flags); 604 605 retry_locked: 606 ptl = pmd_lock(mm, pmd); 607 if (unlikely(pmd_none(*pmd))) { 608 spin_unlock(ptl); 609 return no_page_table(vma, flags); 610 } 611 if (unlikely(!pmd_present(*pmd))) { 612 spin_unlock(ptl); 613 if (likely(!(flags & FOLL_MIGRATION))) 614 return no_page_table(vma, flags); 615 pmd_migration_entry_wait(mm, pmd); 616 goto retry_locked; 617 } 618 if (unlikely(!pmd_trans_huge(*pmd))) { 619 spin_unlock(ptl); 620 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 621 } 622 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 623 int ret; 624 page = pmd_page(*pmd); 625 if (is_huge_zero_page(page)) { 626 spin_unlock(ptl); 627 ret = 0; 628 split_huge_pmd(vma, pmd, address); 629 if (pmd_trans_unstable(pmd)) 630 ret = -EBUSY; 631 } else if (flags & FOLL_SPLIT) { 632 if (unlikely(!try_get_page(page))) { 633 spin_unlock(ptl); 634 return ERR_PTR(-ENOMEM); 635 } 636 spin_unlock(ptl); 637 lock_page(page); 638 ret = split_huge_page(page); 639 unlock_page(page); 640 put_page(page); 641 if (pmd_none(*pmd)) 642 return no_page_table(vma, flags); 643 } else { /* flags & FOLL_SPLIT_PMD */ 644 spin_unlock(ptl); 645 split_huge_pmd(vma, pmd, address); 646 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 647 } 648 649 return ret ? ERR_PTR(ret) : 650 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 651 } 652 page = follow_trans_huge_pmd(vma, address, pmd, flags); 653 spin_unlock(ptl); 654 ctx->page_mask = HPAGE_PMD_NR - 1; 655 return page; 656 } 657 658 static struct page *follow_pud_mask(struct vm_area_struct *vma, 659 unsigned long address, p4d_t *p4dp, 660 unsigned int flags, 661 struct follow_page_context *ctx) 662 { 663 pud_t *pud; 664 spinlock_t *ptl; 665 struct page *page; 666 struct mm_struct *mm = vma->vm_mm; 667 668 pud = pud_offset(p4dp, address); 669 if (pud_none(*pud)) 670 return no_page_table(vma, flags); 671 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 672 page = follow_huge_pud(mm, address, pud, flags); 673 if (page) 674 return page; 675 return no_page_table(vma, flags); 676 } 677 if (is_hugepd(__hugepd(pud_val(*pud)))) { 678 page = follow_huge_pd(vma, address, 679 __hugepd(pud_val(*pud)), flags, 680 PUD_SHIFT); 681 if (page) 682 return page; 683 return no_page_table(vma, flags); 684 } 685 if (pud_devmap(*pud)) { 686 ptl = pud_lock(mm, pud); 687 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 688 spin_unlock(ptl); 689 if (page) 690 return page; 691 } 692 if (unlikely(pud_bad(*pud))) 693 return no_page_table(vma, flags); 694 695 return follow_pmd_mask(vma, address, pud, flags, ctx); 696 } 697 698 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 699 unsigned long address, pgd_t *pgdp, 700 unsigned int flags, 701 struct follow_page_context *ctx) 702 { 703 p4d_t *p4d; 704 struct page *page; 705 706 p4d = p4d_offset(pgdp, address); 707 if (p4d_none(*p4d)) 708 return no_page_table(vma, flags); 709 BUILD_BUG_ON(p4d_huge(*p4d)); 710 if (unlikely(p4d_bad(*p4d))) 711 return no_page_table(vma, flags); 712 713 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 714 page = follow_huge_pd(vma, address, 715 __hugepd(p4d_val(*p4d)), flags, 716 P4D_SHIFT); 717 if (page) 718 return page; 719 return no_page_table(vma, flags); 720 } 721 return follow_pud_mask(vma, address, p4d, flags, ctx); 722 } 723 724 /** 725 * follow_page_mask - look up a page descriptor from a user-virtual address 726 * @vma: vm_area_struct mapping @address 727 * @address: virtual address to look up 728 * @flags: flags modifying lookup behaviour 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 730 * pointer to output page_mask 731 * 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 733 * 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 736 * 737 * On output, the @ctx->page_mask is set according to the size of the page. 738 * 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or 740 * an error pointer if there is a mapping to something not represented 741 * by a page descriptor (see also vm_normal_page()). 742 */ 743 static struct page *follow_page_mask(struct vm_area_struct *vma, 744 unsigned long address, unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pgd_t *pgd; 748 struct page *page; 749 struct mm_struct *mm = vma->vm_mm; 750 751 ctx->page_mask = 0; 752 753 /* make this handle hugepd */ 754 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 755 if (!IS_ERR(page)) { 756 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 757 return page; 758 } 759 760 pgd = pgd_offset(mm, address); 761 762 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 763 return no_page_table(vma, flags); 764 765 if (pgd_huge(*pgd)) { 766 page = follow_huge_pgd(mm, address, pgd, flags); 767 if (page) 768 return page; 769 return no_page_table(vma, flags); 770 } 771 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 772 page = follow_huge_pd(vma, address, 773 __hugepd(pgd_val(*pgd)), flags, 774 PGDIR_SHIFT); 775 if (page) 776 return page; 777 return no_page_table(vma, flags); 778 } 779 780 return follow_p4d_mask(vma, address, pgd, flags, ctx); 781 } 782 783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 784 unsigned int foll_flags) 785 { 786 struct follow_page_context ctx = { NULL }; 787 struct page *page; 788 789 page = follow_page_mask(vma, address, foll_flags, &ctx); 790 if (ctx.pgmap) 791 put_dev_pagemap(ctx.pgmap); 792 return page; 793 } 794 795 static int get_gate_page(struct mm_struct *mm, unsigned long address, 796 unsigned int gup_flags, struct vm_area_struct **vma, 797 struct page **page) 798 { 799 pgd_t *pgd; 800 p4d_t *p4d; 801 pud_t *pud; 802 pmd_t *pmd; 803 pte_t *pte; 804 int ret = -EFAULT; 805 806 /* user gate pages are read-only */ 807 if (gup_flags & FOLL_WRITE) 808 return -EFAULT; 809 if (address > TASK_SIZE) 810 pgd = pgd_offset_k(address); 811 else 812 pgd = pgd_offset_gate(mm, address); 813 if (pgd_none(*pgd)) 814 return -EFAULT; 815 p4d = p4d_offset(pgd, address); 816 if (p4d_none(*p4d)) 817 return -EFAULT; 818 pud = pud_offset(p4d, address); 819 if (pud_none(*pud)) 820 return -EFAULT; 821 pmd = pmd_offset(pud, address); 822 if (!pmd_present(*pmd)) 823 return -EFAULT; 824 VM_BUG_ON(pmd_trans_huge(*pmd)); 825 pte = pte_offset_map(pmd, address); 826 if (pte_none(*pte)) 827 goto unmap; 828 *vma = get_gate_vma(mm); 829 if (!page) 830 goto out; 831 *page = vm_normal_page(*vma, address, *pte); 832 if (!*page) { 833 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 834 goto unmap; 835 *page = pte_page(*pte); 836 } 837 if (unlikely(!try_grab_page(*page, gup_flags))) { 838 ret = -ENOMEM; 839 goto unmap; 840 } 841 out: 842 ret = 0; 843 unmap: 844 pte_unmap(pte); 845 return ret; 846 } 847 848 /* 849 * mmap_lock must be held on entry. If @locked != NULL and *@flags 850 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 851 * is, *@locked will be set to 0 and -EBUSY returned. 852 */ 853 static int faultin_page(struct vm_area_struct *vma, 854 unsigned long address, unsigned int *flags, int *locked) 855 { 856 unsigned int fault_flags = 0; 857 vm_fault_t ret; 858 859 /* mlock all present pages, but do not fault in new pages */ 860 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 861 return -ENOENT; 862 if (*flags & FOLL_WRITE) 863 fault_flags |= FAULT_FLAG_WRITE; 864 if (*flags & FOLL_REMOTE) 865 fault_flags |= FAULT_FLAG_REMOTE; 866 if (locked) 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 868 if (*flags & FOLL_NOWAIT) 869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 870 if (*flags & FOLL_TRIED) { 871 /* 872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 873 * can co-exist 874 */ 875 fault_flags |= FAULT_FLAG_TRIED; 876 } 877 878 ret = handle_mm_fault(vma, address, fault_flags, NULL); 879 if (ret & VM_FAULT_ERROR) { 880 int err = vm_fault_to_errno(ret, *flags); 881 882 if (err) 883 return err; 884 BUG(); 885 } 886 887 if (ret & VM_FAULT_RETRY) { 888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 889 *locked = 0; 890 return -EBUSY; 891 } 892 893 /* 894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 895 * necessary, even if maybe_mkwrite decided not to set pte_write. We 896 * can thus safely do subsequent page lookups as if they were reads. 897 * But only do so when looping for pte_write is futile: in some cases 898 * userspace may also be wanting to write to the gotten user page, 899 * which a read fault here might prevent (a readonly page might get 900 * reCOWed by userspace write). 901 */ 902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 903 *flags |= FOLL_COW; 904 return 0; 905 } 906 907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 908 { 909 vm_flags_t vm_flags = vma->vm_flags; 910 int write = (gup_flags & FOLL_WRITE); 911 int foreign = (gup_flags & FOLL_REMOTE); 912 913 if (vm_flags & (VM_IO | VM_PFNMAP)) 914 return -EFAULT; 915 916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 917 return -EFAULT; 918 919 if (write) { 920 if (!(vm_flags & VM_WRITE)) { 921 if (!(gup_flags & FOLL_FORCE)) 922 return -EFAULT; 923 /* 924 * We used to let the write,force case do COW in a 925 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 926 * set a breakpoint in a read-only mapping of an 927 * executable, without corrupting the file (yet only 928 * when that file had been opened for writing!). 929 * Anon pages in shared mappings are surprising: now 930 * just reject it. 931 */ 932 if (!is_cow_mapping(vm_flags)) 933 return -EFAULT; 934 } 935 } else if (!(vm_flags & VM_READ)) { 936 if (!(gup_flags & FOLL_FORCE)) 937 return -EFAULT; 938 /* 939 * Is there actually any vma we can reach here which does not 940 * have VM_MAYREAD set? 941 */ 942 if (!(vm_flags & VM_MAYREAD)) 943 return -EFAULT; 944 } 945 /* 946 * gups are always data accesses, not instruction 947 * fetches, so execute=false here 948 */ 949 if (!arch_vma_access_permitted(vma, write, false, foreign)) 950 return -EFAULT; 951 return 0; 952 } 953 954 /** 955 * __get_user_pages() - pin user pages in memory 956 * @mm: mm_struct of target mm 957 * @start: starting user address 958 * @nr_pages: number of pages from start to pin 959 * @gup_flags: flags modifying pin behaviour 960 * @pages: array that receives pointers to the pages pinned. 961 * Should be at least nr_pages long. Or NULL, if caller 962 * only intends to ensure the pages are faulted in. 963 * @vmas: array of pointers to vmas corresponding to each page. 964 * Or NULL if the caller does not require them. 965 * @locked: whether we're still with the mmap_lock held 966 * 967 * Returns either number of pages pinned (which may be less than the 968 * number requested), or an error. Details about the return value: 969 * 970 * -- If nr_pages is 0, returns 0. 971 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 972 * -- If nr_pages is >0, and some pages were pinned, returns the number of 973 * pages pinned. Again, this may be less than nr_pages. 974 * -- 0 return value is possible when the fault would need to be retried. 975 * 976 * The caller is responsible for releasing returned @pages, via put_page(). 977 * 978 * @vmas are valid only as long as mmap_lock is held. 979 * 980 * Must be called with mmap_lock held. It may be released. See below. 981 * 982 * __get_user_pages walks a process's page tables and takes a reference to 983 * each struct page that each user address corresponds to at a given 984 * instant. That is, it takes the page that would be accessed if a user 985 * thread accesses the given user virtual address at that instant. 986 * 987 * This does not guarantee that the page exists in the user mappings when 988 * __get_user_pages returns, and there may even be a completely different 989 * page there in some cases (eg. if mmapped pagecache has been invalidated 990 * and subsequently re faulted). However it does guarantee that the page 991 * won't be freed completely. And mostly callers simply care that the page 992 * contains data that was valid *at some point in time*. Typically, an IO 993 * or similar operation cannot guarantee anything stronger anyway because 994 * locks can't be held over the syscall boundary. 995 * 996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 998 * appropriate) must be called after the page is finished with, and 999 * before put_page is called. 1000 * 1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1002 * released by an up_read(). That can happen if @gup_flags does not 1003 * have FOLL_NOWAIT. 1004 * 1005 * A caller using such a combination of @locked and @gup_flags 1006 * must therefore hold the mmap_lock for reading only, and recognize 1007 * when it's been released. Otherwise, it must be held for either 1008 * reading or writing and will not be released. 1009 * 1010 * In most cases, get_user_pages or get_user_pages_fast should be used 1011 * instead of __get_user_pages. __get_user_pages should be used only if 1012 * you need some special @gup_flags. 1013 */ 1014 static long __get_user_pages(struct mm_struct *mm, 1015 unsigned long start, unsigned long nr_pages, 1016 unsigned int gup_flags, struct page **pages, 1017 struct vm_area_struct **vmas, int *locked) 1018 { 1019 long ret = 0, i = 0; 1020 struct vm_area_struct *vma = NULL; 1021 struct follow_page_context ctx = { NULL }; 1022 1023 if (!nr_pages) 1024 return 0; 1025 1026 start = untagged_addr(start); 1027 1028 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1029 1030 /* 1031 * If FOLL_FORCE is set then do not force a full fault as the hinting 1032 * fault information is unrelated to the reference behaviour of a task 1033 * using the address space 1034 */ 1035 if (!(gup_flags & FOLL_FORCE)) 1036 gup_flags |= FOLL_NUMA; 1037 1038 do { 1039 struct page *page; 1040 unsigned int foll_flags = gup_flags; 1041 unsigned int page_increm; 1042 1043 /* first iteration or cross vma bound */ 1044 if (!vma || start >= vma->vm_end) { 1045 vma = find_extend_vma(mm, start); 1046 if (!vma && in_gate_area(mm, start)) { 1047 ret = get_gate_page(mm, start & PAGE_MASK, 1048 gup_flags, &vma, 1049 pages ? &pages[i] : NULL); 1050 if (ret) 1051 goto out; 1052 ctx.page_mask = 0; 1053 goto next_page; 1054 } 1055 1056 if (!vma || check_vma_flags(vma, gup_flags)) { 1057 ret = -EFAULT; 1058 goto out; 1059 } 1060 if (is_vm_hugetlb_page(vma)) { 1061 i = follow_hugetlb_page(mm, vma, pages, vmas, 1062 &start, &nr_pages, i, 1063 gup_flags, locked); 1064 if (locked && *locked == 0) { 1065 /* 1066 * We've got a VM_FAULT_RETRY 1067 * and we've lost mmap_lock. 1068 * We must stop here. 1069 */ 1070 BUG_ON(gup_flags & FOLL_NOWAIT); 1071 BUG_ON(ret != 0); 1072 goto out; 1073 } 1074 continue; 1075 } 1076 } 1077 retry: 1078 /* 1079 * If we have a pending SIGKILL, don't keep faulting pages and 1080 * potentially allocating memory. 1081 */ 1082 if (fatal_signal_pending(current)) { 1083 ret = -EINTR; 1084 goto out; 1085 } 1086 cond_resched(); 1087 1088 page = follow_page_mask(vma, start, foll_flags, &ctx); 1089 if (!page) { 1090 ret = faultin_page(vma, start, &foll_flags, locked); 1091 switch (ret) { 1092 case 0: 1093 goto retry; 1094 case -EBUSY: 1095 ret = 0; 1096 fallthrough; 1097 case -EFAULT: 1098 case -ENOMEM: 1099 case -EHWPOISON: 1100 goto out; 1101 case -ENOENT: 1102 goto next_page; 1103 } 1104 BUG(); 1105 } else if (PTR_ERR(page) == -EEXIST) { 1106 /* 1107 * Proper page table entry exists, but no corresponding 1108 * struct page. 1109 */ 1110 goto next_page; 1111 } else if (IS_ERR(page)) { 1112 ret = PTR_ERR(page); 1113 goto out; 1114 } 1115 if (pages) { 1116 pages[i] = page; 1117 flush_anon_page(vma, page, start); 1118 flush_dcache_page(page); 1119 ctx.page_mask = 0; 1120 } 1121 next_page: 1122 if (vmas) { 1123 vmas[i] = vma; 1124 ctx.page_mask = 0; 1125 } 1126 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1127 if (page_increm > nr_pages) 1128 page_increm = nr_pages; 1129 i += page_increm; 1130 start += page_increm * PAGE_SIZE; 1131 nr_pages -= page_increm; 1132 } while (nr_pages); 1133 out: 1134 if (ctx.pgmap) 1135 put_dev_pagemap(ctx.pgmap); 1136 return i ? i : ret; 1137 } 1138 1139 static bool vma_permits_fault(struct vm_area_struct *vma, 1140 unsigned int fault_flags) 1141 { 1142 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1143 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1144 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1145 1146 if (!(vm_flags & vma->vm_flags)) 1147 return false; 1148 1149 /* 1150 * The architecture might have a hardware protection 1151 * mechanism other than read/write that can deny access. 1152 * 1153 * gup always represents data access, not instruction 1154 * fetches, so execute=false here: 1155 */ 1156 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /** 1163 * fixup_user_fault() - manually resolve a user page fault 1164 * @mm: mm_struct of target mm 1165 * @address: user address 1166 * @fault_flags:flags to pass down to handle_mm_fault() 1167 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1168 * does not allow retry. If NULL, the caller must guarantee 1169 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1170 * 1171 * This is meant to be called in the specific scenario where for locking reasons 1172 * we try to access user memory in atomic context (within a pagefault_disable() 1173 * section), this returns -EFAULT, and we want to resolve the user fault before 1174 * trying again. 1175 * 1176 * Typically this is meant to be used by the futex code. 1177 * 1178 * The main difference with get_user_pages() is that this function will 1179 * unconditionally call handle_mm_fault() which will in turn perform all the 1180 * necessary SW fixup of the dirty and young bits in the PTE, while 1181 * get_user_pages() only guarantees to update these in the struct page. 1182 * 1183 * This is important for some architectures where those bits also gate the 1184 * access permission to the page because they are maintained in software. On 1185 * such architectures, gup() will not be enough to make a subsequent access 1186 * succeed. 1187 * 1188 * This function will not return with an unlocked mmap_lock. So it has not the 1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1190 */ 1191 int fixup_user_fault(struct mm_struct *mm, 1192 unsigned long address, unsigned int fault_flags, 1193 bool *unlocked) 1194 { 1195 struct vm_area_struct *vma; 1196 vm_fault_t ret, major = 0; 1197 1198 address = untagged_addr(address); 1199 1200 if (unlocked) 1201 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1202 1203 retry: 1204 vma = find_extend_vma(mm, address); 1205 if (!vma || address < vma->vm_start) 1206 return -EFAULT; 1207 1208 if (!vma_permits_fault(vma, fault_flags)) 1209 return -EFAULT; 1210 1211 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1212 fatal_signal_pending(current)) 1213 return -EINTR; 1214 1215 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1216 major |= ret & VM_FAULT_MAJOR; 1217 if (ret & VM_FAULT_ERROR) { 1218 int err = vm_fault_to_errno(ret, 0); 1219 1220 if (err) 1221 return err; 1222 BUG(); 1223 } 1224 1225 if (ret & VM_FAULT_RETRY) { 1226 mmap_read_lock(mm); 1227 *unlocked = true; 1228 fault_flags |= FAULT_FLAG_TRIED; 1229 goto retry; 1230 } 1231 1232 return 0; 1233 } 1234 EXPORT_SYMBOL_GPL(fixup_user_fault); 1235 1236 /* 1237 * Please note that this function, unlike __get_user_pages will not 1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1239 */ 1240 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1241 unsigned long start, 1242 unsigned long nr_pages, 1243 struct page **pages, 1244 struct vm_area_struct **vmas, 1245 int *locked, 1246 unsigned int flags) 1247 { 1248 long ret, pages_done; 1249 bool lock_dropped; 1250 1251 if (locked) { 1252 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1253 BUG_ON(vmas); 1254 /* check caller initialized locked */ 1255 BUG_ON(*locked != 1); 1256 } 1257 1258 /* 1259 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1260 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1261 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1262 * for FOLL_GET, not for the newer FOLL_PIN. 1263 * 1264 * FOLL_PIN always expects pages to be non-null, but no need to assert 1265 * that here, as any failures will be obvious enough. 1266 */ 1267 if (pages && !(flags & FOLL_PIN)) 1268 flags |= FOLL_GET; 1269 1270 pages_done = 0; 1271 lock_dropped = false; 1272 for (;;) { 1273 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1274 vmas, locked); 1275 if (!locked) 1276 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1277 return ret; 1278 1279 /* VM_FAULT_RETRY cannot return errors */ 1280 if (!*locked) { 1281 BUG_ON(ret < 0); 1282 BUG_ON(ret >= nr_pages); 1283 } 1284 1285 if (ret > 0) { 1286 nr_pages -= ret; 1287 pages_done += ret; 1288 if (!nr_pages) 1289 break; 1290 } 1291 if (*locked) { 1292 /* 1293 * VM_FAULT_RETRY didn't trigger or it was a 1294 * FOLL_NOWAIT. 1295 */ 1296 if (!pages_done) 1297 pages_done = ret; 1298 break; 1299 } 1300 /* 1301 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1302 * For the prefault case (!pages) we only update counts. 1303 */ 1304 if (likely(pages)) 1305 pages += ret; 1306 start += ret << PAGE_SHIFT; 1307 lock_dropped = true; 1308 1309 retry: 1310 /* 1311 * Repeat on the address that fired VM_FAULT_RETRY 1312 * with both FAULT_FLAG_ALLOW_RETRY and 1313 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1314 * by fatal signals, so we need to check it before we 1315 * start trying again otherwise it can loop forever. 1316 */ 1317 1318 if (fatal_signal_pending(current)) { 1319 if (!pages_done) 1320 pages_done = -EINTR; 1321 break; 1322 } 1323 1324 ret = mmap_read_lock_killable(mm); 1325 if (ret) { 1326 BUG_ON(ret > 0); 1327 if (!pages_done) 1328 pages_done = ret; 1329 break; 1330 } 1331 1332 *locked = 1; 1333 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1334 pages, NULL, locked); 1335 if (!*locked) { 1336 /* Continue to retry until we succeeded */ 1337 BUG_ON(ret != 0); 1338 goto retry; 1339 } 1340 if (ret != 1) { 1341 BUG_ON(ret > 1); 1342 if (!pages_done) 1343 pages_done = ret; 1344 break; 1345 } 1346 nr_pages--; 1347 pages_done++; 1348 if (!nr_pages) 1349 break; 1350 if (likely(pages)) 1351 pages++; 1352 start += PAGE_SIZE; 1353 } 1354 if (lock_dropped && *locked) { 1355 /* 1356 * We must let the caller know we temporarily dropped the lock 1357 * and so the critical section protected by it was lost. 1358 */ 1359 mmap_read_unlock(mm); 1360 *locked = 0; 1361 } 1362 return pages_done; 1363 } 1364 1365 /** 1366 * populate_vma_page_range() - populate a range of pages in the vma. 1367 * @vma: target vma 1368 * @start: start address 1369 * @end: end address 1370 * @locked: whether the mmap_lock is still held 1371 * 1372 * This takes care of mlocking the pages too if VM_LOCKED is set. 1373 * 1374 * Return either number of pages pinned in the vma, or a negative error 1375 * code on error. 1376 * 1377 * vma->vm_mm->mmap_lock must be held. 1378 * 1379 * If @locked is NULL, it may be held for read or write and will 1380 * be unperturbed. 1381 * 1382 * If @locked is non-NULL, it must held for read only and may be 1383 * released. If it's released, *@locked will be set to 0. 1384 */ 1385 long populate_vma_page_range(struct vm_area_struct *vma, 1386 unsigned long start, unsigned long end, int *locked) 1387 { 1388 struct mm_struct *mm = vma->vm_mm; 1389 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1390 int gup_flags; 1391 1392 VM_BUG_ON(start & ~PAGE_MASK); 1393 VM_BUG_ON(end & ~PAGE_MASK); 1394 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1395 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1396 mmap_assert_locked(mm); 1397 1398 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1399 if (vma->vm_flags & VM_LOCKONFAULT) 1400 gup_flags &= ~FOLL_POPULATE; 1401 /* 1402 * We want to touch writable mappings with a write fault in order 1403 * to break COW, except for shared mappings because these don't COW 1404 * and we would not want to dirty them for nothing. 1405 */ 1406 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1407 gup_flags |= FOLL_WRITE; 1408 1409 /* 1410 * We want mlock to succeed for regions that have any permissions 1411 * other than PROT_NONE. 1412 */ 1413 if (vma_is_accessible(vma)) 1414 gup_flags |= FOLL_FORCE; 1415 1416 /* 1417 * We made sure addr is within a VMA, so the following will 1418 * not result in a stack expansion that recurses back here. 1419 */ 1420 return __get_user_pages(mm, start, nr_pages, gup_flags, 1421 NULL, NULL, locked); 1422 } 1423 1424 /* 1425 * __mm_populate - populate and/or mlock pages within a range of address space. 1426 * 1427 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1428 * flags. VMAs must be already marked with the desired vm_flags, and 1429 * mmap_lock must not be held. 1430 */ 1431 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1432 { 1433 struct mm_struct *mm = current->mm; 1434 unsigned long end, nstart, nend; 1435 struct vm_area_struct *vma = NULL; 1436 int locked = 0; 1437 long ret = 0; 1438 1439 end = start + len; 1440 1441 for (nstart = start; nstart < end; nstart = nend) { 1442 /* 1443 * We want to fault in pages for [nstart; end) address range. 1444 * Find first corresponding VMA. 1445 */ 1446 if (!locked) { 1447 locked = 1; 1448 mmap_read_lock(mm); 1449 vma = find_vma(mm, nstart); 1450 } else if (nstart >= vma->vm_end) 1451 vma = vma->vm_next; 1452 if (!vma || vma->vm_start >= end) 1453 break; 1454 /* 1455 * Set [nstart; nend) to intersection of desired address 1456 * range with the first VMA. Also, skip undesirable VMA types. 1457 */ 1458 nend = min(end, vma->vm_end); 1459 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1460 continue; 1461 if (nstart < vma->vm_start) 1462 nstart = vma->vm_start; 1463 /* 1464 * Now fault in a range of pages. populate_vma_page_range() 1465 * double checks the vma flags, so that it won't mlock pages 1466 * if the vma was already munlocked. 1467 */ 1468 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1469 if (ret < 0) { 1470 if (ignore_errors) { 1471 ret = 0; 1472 continue; /* continue at next VMA */ 1473 } 1474 break; 1475 } 1476 nend = nstart + ret * PAGE_SIZE; 1477 ret = 0; 1478 } 1479 if (locked) 1480 mmap_read_unlock(mm); 1481 return ret; /* 0 or negative error code */ 1482 } 1483 1484 /** 1485 * get_dump_page() - pin user page in memory while writing it to core dump 1486 * @addr: user address 1487 * 1488 * Returns struct page pointer of user page pinned for dump, 1489 * to be freed afterwards by put_page(). 1490 * 1491 * Returns NULL on any kind of failure - a hole must then be inserted into 1492 * the corefile, to preserve alignment with its headers; and also returns 1493 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1494 * allowing a hole to be left in the corefile to save diskspace. 1495 * 1496 * Called without mmap_lock, but after all other threads have been killed. 1497 */ 1498 #ifdef CONFIG_ELF_CORE 1499 struct page *get_dump_page(unsigned long addr) 1500 { 1501 struct vm_area_struct *vma; 1502 struct page *page; 1503 1504 if (__get_user_pages(current->mm, addr, 1, 1505 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1506 NULL) < 1) 1507 return NULL; 1508 flush_cache_page(vma, addr, page_to_pfn(page)); 1509 return page; 1510 } 1511 #endif /* CONFIG_ELF_CORE */ 1512 #else /* CONFIG_MMU */ 1513 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1514 unsigned long nr_pages, struct page **pages, 1515 struct vm_area_struct **vmas, int *locked, 1516 unsigned int foll_flags) 1517 { 1518 struct vm_area_struct *vma; 1519 unsigned long vm_flags; 1520 int i; 1521 1522 /* calculate required read or write permissions. 1523 * If FOLL_FORCE is set, we only require the "MAY" flags. 1524 */ 1525 vm_flags = (foll_flags & FOLL_WRITE) ? 1526 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1527 vm_flags &= (foll_flags & FOLL_FORCE) ? 1528 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1529 1530 for (i = 0; i < nr_pages; i++) { 1531 vma = find_vma(mm, start); 1532 if (!vma) 1533 goto finish_or_fault; 1534 1535 /* protect what we can, including chardevs */ 1536 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1537 !(vm_flags & vma->vm_flags)) 1538 goto finish_or_fault; 1539 1540 if (pages) { 1541 pages[i] = virt_to_page(start); 1542 if (pages[i]) 1543 get_page(pages[i]); 1544 } 1545 if (vmas) 1546 vmas[i] = vma; 1547 start = (start + PAGE_SIZE) & PAGE_MASK; 1548 } 1549 1550 return i; 1551 1552 finish_or_fault: 1553 return i ? : -EFAULT; 1554 } 1555 #endif /* !CONFIG_MMU */ 1556 1557 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1558 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1559 { 1560 long i; 1561 struct vm_area_struct *vma_prev = NULL; 1562 1563 for (i = 0; i < nr_pages; i++) { 1564 struct vm_area_struct *vma = vmas[i]; 1565 1566 if (vma == vma_prev) 1567 continue; 1568 1569 vma_prev = vma; 1570 1571 if (vma_is_fsdax(vma)) 1572 return true; 1573 } 1574 return false; 1575 } 1576 1577 #ifdef CONFIG_CMA 1578 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1579 unsigned long start, 1580 unsigned long nr_pages, 1581 struct page **pages, 1582 struct vm_area_struct **vmas, 1583 unsigned int gup_flags) 1584 { 1585 unsigned long i; 1586 unsigned long step; 1587 bool drain_allow = true; 1588 bool migrate_allow = true; 1589 LIST_HEAD(cma_page_list); 1590 long ret = nr_pages; 1591 struct migration_target_control mtc = { 1592 .nid = NUMA_NO_NODE, 1593 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1594 }; 1595 1596 check_again: 1597 for (i = 0; i < nr_pages;) { 1598 1599 struct page *head = compound_head(pages[i]); 1600 1601 /* 1602 * gup may start from a tail page. Advance step by the left 1603 * part. 1604 */ 1605 step = compound_nr(head) - (pages[i] - head); 1606 /* 1607 * If we get a page from the CMA zone, since we are going to 1608 * be pinning these entries, we might as well move them out 1609 * of the CMA zone if possible. 1610 */ 1611 if (is_migrate_cma_page(head)) { 1612 if (PageHuge(head)) 1613 isolate_huge_page(head, &cma_page_list); 1614 else { 1615 if (!PageLRU(head) && drain_allow) { 1616 lru_add_drain_all(); 1617 drain_allow = false; 1618 } 1619 1620 if (!isolate_lru_page(head)) { 1621 list_add_tail(&head->lru, &cma_page_list); 1622 mod_node_page_state(page_pgdat(head), 1623 NR_ISOLATED_ANON + 1624 page_is_file_lru(head), 1625 thp_nr_pages(head)); 1626 } 1627 } 1628 } 1629 1630 i += step; 1631 } 1632 1633 if (!list_empty(&cma_page_list)) { 1634 /* 1635 * drop the above get_user_pages reference. 1636 */ 1637 for (i = 0; i < nr_pages; i++) 1638 put_page(pages[i]); 1639 1640 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1641 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1642 /* 1643 * some of the pages failed migration. Do get_user_pages 1644 * without migration. 1645 */ 1646 migrate_allow = false; 1647 1648 if (!list_empty(&cma_page_list)) 1649 putback_movable_pages(&cma_page_list); 1650 } 1651 /* 1652 * We did migrate all the pages, Try to get the page references 1653 * again migrating any new CMA pages which we failed to isolate 1654 * earlier. 1655 */ 1656 ret = __get_user_pages_locked(mm, start, nr_pages, 1657 pages, vmas, NULL, 1658 gup_flags); 1659 1660 if ((ret > 0) && migrate_allow) { 1661 nr_pages = ret; 1662 drain_allow = true; 1663 goto check_again; 1664 } 1665 } 1666 1667 return ret; 1668 } 1669 #else 1670 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1671 unsigned long start, 1672 unsigned long nr_pages, 1673 struct page **pages, 1674 struct vm_area_struct **vmas, 1675 unsigned int gup_flags) 1676 { 1677 return nr_pages; 1678 } 1679 #endif /* CONFIG_CMA */ 1680 1681 /* 1682 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1683 * allows us to process the FOLL_LONGTERM flag. 1684 */ 1685 static long __gup_longterm_locked(struct mm_struct *mm, 1686 unsigned long start, 1687 unsigned long nr_pages, 1688 struct page **pages, 1689 struct vm_area_struct **vmas, 1690 unsigned int gup_flags) 1691 { 1692 struct vm_area_struct **vmas_tmp = vmas; 1693 unsigned long flags = 0; 1694 long rc, i; 1695 1696 if (gup_flags & FOLL_LONGTERM) { 1697 if (!pages) 1698 return -EINVAL; 1699 1700 if (!vmas_tmp) { 1701 vmas_tmp = kcalloc(nr_pages, 1702 sizeof(struct vm_area_struct *), 1703 GFP_KERNEL); 1704 if (!vmas_tmp) 1705 return -ENOMEM; 1706 } 1707 flags = memalloc_nocma_save(); 1708 } 1709 1710 rc = __get_user_pages_locked(mm, start, nr_pages, pages, 1711 vmas_tmp, NULL, gup_flags); 1712 1713 if (gup_flags & FOLL_LONGTERM) { 1714 if (rc < 0) 1715 goto out; 1716 1717 if (check_dax_vmas(vmas_tmp, rc)) { 1718 for (i = 0; i < rc; i++) 1719 put_page(pages[i]); 1720 rc = -EOPNOTSUPP; 1721 goto out; 1722 } 1723 1724 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1725 vmas_tmp, gup_flags); 1726 out: 1727 memalloc_nocma_restore(flags); 1728 } 1729 1730 if (vmas_tmp != vmas) 1731 kfree(vmas_tmp); 1732 return rc; 1733 } 1734 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1735 static __always_inline long __gup_longterm_locked(struct mm_struct *mm, 1736 unsigned long start, 1737 unsigned long nr_pages, 1738 struct page **pages, 1739 struct vm_area_struct **vmas, 1740 unsigned int flags) 1741 { 1742 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1743 NULL, flags); 1744 } 1745 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1746 1747 #ifdef CONFIG_MMU 1748 static long __get_user_pages_remote(struct mm_struct *mm, 1749 unsigned long start, unsigned long nr_pages, 1750 unsigned int gup_flags, struct page **pages, 1751 struct vm_area_struct **vmas, int *locked) 1752 { 1753 /* 1754 * Parts of FOLL_LONGTERM behavior are incompatible with 1755 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1756 * vmas. However, this only comes up if locked is set, and there are 1757 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1758 * allow what we can. 1759 */ 1760 if (gup_flags & FOLL_LONGTERM) { 1761 if (WARN_ON_ONCE(locked)) 1762 return -EINVAL; 1763 /* 1764 * This will check the vmas (even if our vmas arg is NULL) 1765 * and return -ENOTSUPP if DAX isn't allowed in this case: 1766 */ 1767 return __gup_longterm_locked(mm, start, nr_pages, pages, 1768 vmas, gup_flags | FOLL_TOUCH | 1769 FOLL_REMOTE); 1770 } 1771 1772 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1773 locked, 1774 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1775 } 1776 1777 /** 1778 * get_user_pages_remote() - pin user pages in memory 1779 * @mm: mm_struct of target mm 1780 * @start: starting user address 1781 * @nr_pages: number of pages from start to pin 1782 * @gup_flags: flags modifying lookup behaviour 1783 * @pages: array that receives pointers to the pages pinned. 1784 * Should be at least nr_pages long. Or NULL, if caller 1785 * only intends to ensure the pages are faulted in. 1786 * @vmas: array of pointers to vmas corresponding to each page. 1787 * Or NULL if the caller does not require them. 1788 * @locked: pointer to lock flag indicating whether lock is held and 1789 * subsequently whether VM_FAULT_RETRY functionality can be 1790 * utilised. Lock must initially be held. 1791 * 1792 * Returns either number of pages pinned (which may be less than the 1793 * number requested), or an error. Details about the return value: 1794 * 1795 * -- If nr_pages is 0, returns 0. 1796 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1797 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1798 * pages pinned. Again, this may be less than nr_pages. 1799 * 1800 * The caller is responsible for releasing returned @pages, via put_page(). 1801 * 1802 * @vmas are valid only as long as mmap_lock is held. 1803 * 1804 * Must be called with mmap_lock held for read or write. 1805 * 1806 * get_user_pages_remote walks a process's page tables and takes a reference 1807 * to each struct page that each user address corresponds to at a given 1808 * instant. That is, it takes the page that would be accessed if a user 1809 * thread accesses the given user virtual address at that instant. 1810 * 1811 * This does not guarantee that the page exists in the user mappings when 1812 * get_user_pages_remote returns, and there may even be a completely different 1813 * page there in some cases (eg. if mmapped pagecache has been invalidated 1814 * and subsequently re faulted). However it does guarantee that the page 1815 * won't be freed completely. And mostly callers simply care that the page 1816 * contains data that was valid *at some point in time*. Typically, an IO 1817 * or similar operation cannot guarantee anything stronger anyway because 1818 * locks can't be held over the syscall boundary. 1819 * 1820 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1821 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1822 * be called after the page is finished with, and before put_page is called. 1823 * 1824 * get_user_pages_remote is typically used for fewer-copy IO operations, 1825 * to get a handle on the memory by some means other than accesses 1826 * via the user virtual addresses. The pages may be submitted for 1827 * DMA to devices or accessed via their kernel linear mapping (via the 1828 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1829 * 1830 * See also get_user_pages_fast, for performance critical applications. 1831 * 1832 * get_user_pages_remote should be phased out in favor of 1833 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1834 * should use get_user_pages_remote because it cannot pass 1835 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1836 */ 1837 long get_user_pages_remote(struct mm_struct *mm, 1838 unsigned long start, unsigned long nr_pages, 1839 unsigned int gup_flags, struct page **pages, 1840 struct vm_area_struct **vmas, int *locked) 1841 { 1842 /* 1843 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1844 * never directly by the caller, so enforce that with an assertion: 1845 */ 1846 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1847 return -EINVAL; 1848 1849 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1850 pages, vmas, locked); 1851 } 1852 EXPORT_SYMBOL(get_user_pages_remote); 1853 1854 #else /* CONFIG_MMU */ 1855 long get_user_pages_remote(struct mm_struct *mm, 1856 unsigned long start, unsigned long nr_pages, 1857 unsigned int gup_flags, struct page **pages, 1858 struct vm_area_struct **vmas, int *locked) 1859 { 1860 return 0; 1861 } 1862 1863 static long __get_user_pages_remote(struct mm_struct *mm, 1864 unsigned long start, unsigned long nr_pages, 1865 unsigned int gup_flags, struct page **pages, 1866 struct vm_area_struct **vmas, int *locked) 1867 { 1868 return 0; 1869 } 1870 #endif /* !CONFIG_MMU */ 1871 1872 /** 1873 * get_user_pages() - pin user pages in memory 1874 * @start: starting user address 1875 * @nr_pages: number of pages from start to pin 1876 * @gup_flags: flags modifying lookup behaviour 1877 * @pages: array that receives pointers to the pages pinned. 1878 * Should be at least nr_pages long. Or NULL, if caller 1879 * only intends to ensure the pages are faulted in. 1880 * @vmas: array of pointers to vmas corresponding to each page. 1881 * Or NULL if the caller does not require them. 1882 * 1883 * This is the same as get_user_pages_remote(), just with a less-flexible 1884 * calling convention where we assume that the mm being operated on belongs to 1885 * the current task, and doesn't allow passing of a locked parameter. We also 1886 * obviously don't pass FOLL_REMOTE in here. 1887 */ 1888 long get_user_pages(unsigned long start, unsigned long nr_pages, 1889 unsigned int gup_flags, struct page **pages, 1890 struct vm_area_struct **vmas) 1891 { 1892 /* 1893 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1894 * never directly by the caller, so enforce that with an assertion: 1895 */ 1896 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1897 return -EINVAL; 1898 1899 return __gup_longterm_locked(current->mm, start, nr_pages, 1900 pages, vmas, gup_flags | FOLL_TOUCH); 1901 } 1902 EXPORT_SYMBOL(get_user_pages); 1903 1904 /** 1905 * get_user_pages_locked() is suitable to replace the form: 1906 * 1907 * mmap_read_lock(mm); 1908 * do_something() 1909 * get_user_pages(mm, ..., pages, NULL); 1910 * mmap_read_unlock(mm); 1911 * 1912 * to: 1913 * 1914 * int locked = 1; 1915 * mmap_read_lock(mm); 1916 * do_something() 1917 * get_user_pages_locked(mm, ..., pages, &locked); 1918 * if (locked) 1919 * mmap_read_unlock(mm); 1920 * 1921 * @start: starting user address 1922 * @nr_pages: number of pages from start to pin 1923 * @gup_flags: flags modifying lookup behaviour 1924 * @pages: array that receives pointers to the pages pinned. 1925 * Should be at least nr_pages long. Or NULL, if caller 1926 * only intends to ensure the pages are faulted in. 1927 * @locked: pointer to lock flag indicating whether lock is held and 1928 * subsequently whether VM_FAULT_RETRY functionality can be 1929 * utilised. Lock must initially be held. 1930 * 1931 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1932 * paths better by using either get_user_pages_locked() or 1933 * get_user_pages_unlocked(). 1934 * 1935 */ 1936 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1937 unsigned int gup_flags, struct page **pages, 1938 int *locked) 1939 { 1940 /* 1941 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1942 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1943 * vmas. As there are no users of this flag in this call we simply 1944 * disallow this option for now. 1945 */ 1946 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1947 return -EINVAL; 1948 /* 1949 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1950 * never directly by the caller, so enforce that: 1951 */ 1952 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1953 return -EINVAL; 1954 1955 return __get_user_pages_locked(current->mm, start, nr_pages, 1956 pages, NULL, locked, 1957 gup_flags | FOLL_TOUCH); 1958 } 1959 EXPORT_SYMBOL(get_user_pages_locked); 1960 1961 /* 1962 * get_user_pages_unlocked() is suitable to replace the form: 1963 * 1964 * mmap_read_lock(mm); 1965 * get_user_pages(mm, ..., pages, NULL); 1966 * mmap_read_unlock(mm); 1967 * 1968 * with: 1969 * 1970 * get_user_pages_unlocked(mm, ..., pages); 1971 * 1972 * It is functionally equivalent to get_user_pages_fast so 1973 * get_user_pages_fast should be used instead if specific gup_flags 1974 * (e.g. FOLL_FORCE) are not required. 1975 */ 1976 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1977 struct page **pages, unsigned int gup_flags) 1978 { 1979 struct mm_struct *mm = current->mm; 1980 int locked = 1; 1981 long ret; 1982 1983 /* 1984 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1985 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1986 * vmas. As there are no users of this flag in this call we simply 1987 * disallow this option for now. 1988 */ 1989 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1990 return -EINVAL; 1991 1992 mmap_read_lock(mm); 1993 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 1994 &locked, gup_flags | FOLL_TOUCH); 1995 if (locked) 1996 mmap_read_unlock(mm); 1997 return ret; 1998 } 1999 EXPORT_SYMBOL(get_user_pages_unlocked); 2000 2001 /* 2002 * Fast GUP 2003 * 2004 * get_user_pages_fast attempts to pin user pages by walking the page 2005 * tables directly and avoids taking locks. Thus the walker needs to be 2006 * protected from page table pages being freed from under it, and should 2007 * block any THP splits. 2008 * 2009 * One way to achieve this is to have the walker disable interrupts, and 2010 * rely on IPIs from the TLB flushing code blocking before the page table 2011 * pages are freed. This is unsuitable for architectures that do not need 2012 * to broadcast an IPI when invalidating TLBs. 2013 * 2014 * Another way to achieve this is to batch up page table containing pages 2015 * belonging to more than one mm_user, then rcu_sched a callback to free those 2016 * pages. Disabling interrupts will allow the fast_gup walker to both block 2017 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2018 * (which is a relatively rare event). The code below adopts this strategy. 2019 * 2020 * Before activating this code, please be aware that the following assumptions 2021 * are currently made: 2022 * 2023 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2024 * free pages containing page tables or TLB flushing requires IPI broadcast. 2025 * 2026 * *) ptes can be read atomically by the architecture. 2027 * 2028 * *) access_ok is sufficient to validate userspace address ranges. 2029 * 2030 * The last two assumptions can be relaxed by the addition of helper functions. 2031 * 2032 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2033 */ 2034 #ifdef CONFIG_HAVE_FAST_GUP 2035 2036 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2037 { 2038 if (flags & FOLL_PIN) { 2039 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2040 refs); 2041 2042 if (hpage_pincount_available(page)) 2043 hpage_pincount_sub(page, refs); 2044 else 2045 refs *= GUP_PIN_COUNTING_BIAS; 2046 } 2047 2048 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2049 /* 2050 * Calling put_page() for each ref is unnecessarily slow. Only the last 2051 * ref needs a put_page(). 2052 */ 2053 if (refs > 1) 2054 page_ref_sub(page, refs - 1); 2055 put_page(page); 2056 } 2057 2058 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2059 2060 /* 2061 * WARNING: only to be used in the get_user_pages_fast() implementation. 2062 * 2063 * With get_user_pages_fast(), we walk down the pagetables without taking any 2064 * locks. For this we would like to load the pointers atomically, but sometimes 2065 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2066 * we do have is the guarantee that a PTE will only either go from not present 2067 * to present, or present to not present or both -- it will not switch to a 2068 * completely different present page without a TLB flush in between; something 2069 * that we are blocking by holding interrupts off. 2070 * 2071 * Setting ptes from not present to present goes: 2072 * 2073 * ptep->pte_high = h; 2074 * smp_wmb(); 2075 * ptep->pte_low = l; 2076 * 2077 * And present to not present goes: 2078 * 2079 * ptep->pte_low = 0; 2080 * smp_wmb(); 2081 * ptep->pte_high = 0; 2082 * 2083 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2084 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2085 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2086 * picked up a changed pte high. We might have gotten rubbish values from 2087 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2088 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2089 * operates on present ptes we're safe. 2090 */ 2091 static inline pte_t gup_get_pte(pte_t *ptep) 2092 { 2093 pte_t pte; 2094 2095 do { 2096 pte.pte_low = ptep->pte_low; 2097 smp_rmb(); 2098 pte.pte_high = ptep->pte_high; 2099 smp_rmb(); 2100 } while (unlikely(pte.pte_low != ptep->pte_low)); 2101 2102 return pte; 2103 } 2104 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2105 /* 2106 * We require that the PTE can be read atomically. 2107 */ 2108 static inline pte_t gup_get_pte(pte_t *ptep) 2109 { 2110 return ptep_get(ptep); 2111 } 2112 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2113 2114 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2115 unsigned int flags, 2116 struct page **pages) 2117 { 2118 while ((*nr) - nr_start) { 2119 struct page *page = pages[--(*nr)]; 2120 2121 ClearPageReferenced(page); 2122 if (flags & FOLL_PIN) 2123 unpin_user_page(page); 2124 else 2125 put_page(page); 2126 } 2127 } 2128 2129 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2130 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2131 unsigned int flags, struct page **pages, int *nr) 2132 { 2133 struct dev_pagemap *pgmap = NULL; 2134 int nr_start = *nr, ret = 0; 2135 pte_t *ptep, *ptem; 2136 2137 ptem = ptep = pte_offset_map(&pmd, addr); 2138 do { 2139 pte_t pte = gup_get_pte(ptep); 2140 struct page *head, *page; 2141 2142 /* 2143 * Similar to the PMD case below, NUMA hinting must take slow 2144 * path using the pte_protnone check. 2145 */ 2146 if (pte_protnone(pte)) 2147 goto pte_unmap; 2148 2149 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2150 goto pte_unmap; 2151 2152 if (pte_devmap(pte)) { 2153 if (unlikely(flags & FOLL_LONGTERM)) 2154 goto pte_unmap; 2155 2156 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2157 if (unlikely(!pgmap)) { 2158 undo_dev_pagemap(nr, nr_start, flags, pages); 2159 goto pte_unmap; 2160 } 2161 } else if (pte_special(pte)) 2162 goto pte_unmap; 2163 2164 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2165 page = pte_page(pte); 2166 2167 head = try_grab_compound_head(page, 1, flags); 2168 if (!head) 2169 goto pte_unmap; 2170 2171 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2172 put_compound_head(head, 1, flags); 2173 goto pte_unmap; 2174 } 2175 2176 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2177 2178 /* 2179 * We need to make the page accessible if and only if we are 2180 * going to access its content (the FOLL_PIN case). Please 2181 * see Documentation/core-api/pin_user_pages.rst for 2182 * details. 2183 */ 2184 if (flags & FOLL_PIN) { 2185 ret = arch_make_page_accessible(page); 2186 if (ret) { 2187 unpin_user_page(page); 2188 goto pte_unmap; 2189 } 2190 } 2191 SetPageReferenced(page); 2192 pages[*nr] = page; 2193 (*nr)++; 2194 2195 } while (ptep++, addr += PAGE_SIZE, addr != end); 2196 2197 ret = 1; 2198 2199 pte_unmap: 2200 if (pgmap) 2201 put_dev_pagemap(pgmap); 2202 pte_unmap(ptem); 2203 return ret; 2204 } 2205 #else 2206 2207 /* 2208 * If we can't determine whether or not a pte is special, then fail immediately 2209 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2210 * to be special. 2211 * 2212 * For a futex to be placed on a THP tail page, get_futex_key requires a 2213 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2214 * useful to have gup_huge_pmd even if we can't operate on ptes. 2215 */ 2216 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2217 unsigned int flags, struct page **pages, int *nr) 2218 { 2219 return 0; 2220 } 2221 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2222 2223 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2224 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2225 unsigned long end, unsigned int flags, 2226 struct page **pages, int *nr) 2227 { 2228 int nr_start = *nr; 2229 struct dev_pagemap *pgmap = NULL; 2230 2231 do { 2232 struct page *page = pfn_to_page(pfn); 2233 2234 pgmap = get_dev_pagemap(pfn, pgmap); 2235 if (unlikely(!pgmap)) { 2236 undo_dev_pagemap(nr, nr_start, flags, pages); 2237 return 0; 2238 } 2239 SetPageReferenced(page); 2240 pages[*nr] = page; 2241 if (unlikely(!try_grab_page(page, flags))) { 2242 undo_dev_pagemap(nr, nr_start, flags, pages); 2243 return 0; 2244 } 2245 (*nr)++; 2246 pfn++; 2247 } while (addr += PAGE_SIZE, addr != end); 2248 2249 if (pgmap) 2250 put_dev_pagemap(pgmap); 2251 return 1; 2252 } 2253 2254 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2255 unsigned long end, unsigned int flags, 2256 struct page **pages, int *nr) 2257 { 2258 unsigned long fault_pfn; 2259 int nr_start = *nr; 2260 2261 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2262 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2263 return 0; 2264 2265 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2266 undo_dev_pagemap(nr, nr_start, flags, pages); 2267 return 0; 2268 } 2269 return 1; 2270 } 2271 2272 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2273 unsigned long end, unsigned int flags, 2274 struct page **pages, int *nr) 2275 { 2276 unsigned long fault_pfn; 2277 int nr_start = *nr; 2278 2279 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2280 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2281 return 0; 2282 2283 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2284 undo_dev_pagemap(nr, nr_start, flags, pages); 2285 return 0; 2286 } 2287 return 1; 2288 } 2289 #else 2290 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2291 unsigned long end, unsigned int flags, 2292 struct page **pages, int *nr) 2293 { 2294 BUILD_BUG(); 2295 return 0; 2296 } 2297 2298 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2299 unsigned long end, unsigned int flags, 2300 struct page **pages, int *nr) 2301 { 2302 BUILD_BUG(); 2303 return 0; 2304 } 2305 #endif 2306 2307 static int record_subpages(struct page *page, unsigned long addr, 2308 unsigned long end, struct page **pages) 2309 { 2310 int nr; 2311 2312 for (nr = 0; addr != end; addr += PAGE_SIZE) 2313 pages[nr++] = page++; 2314 2315 return nr; 2316 } 2317 2318 #ifdef CONFIG_ARCH_HAS_HUGEPD 2319 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2320 unsigned long sz) 2321 { 2322 unsigned long __boundary = (addr + sz) & ~(sz-1); 2323 return (__boundary - 1 < end - 1) ? __boundary : end; 2324 } 2325 2326 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2327 unsigned long end, unsigned int flags, 2328 struct page **pages, int *nr) 2329 { 2330 unsigned long pte_end; 2331 struct page *head, *page; 2332 pte_t pte; 2333 int refs; 2334 2335 pte_end = (addr + sz) & ~(sz-1); 2336 if (pte_end < end) 2337 end = pte_end; 2338 2339 pte = huge_ptep_get(ptep); 2340 2341 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2342 return 0; 2343 2344 /* hugepages are never "special" */ 2345 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2346 2347 head = pte_page(pte); 2348 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2349 refs = record_subpages(page, addr, end, pages + *nr); 2350 2351 head = try_grab_compound_head(head, refs, flags); 2352 if (!head) 2353 return 0; 2354 2355 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2356 put_compound_head(head, refs, flags); 2357 return 0; 2358 } 2359 2360 *nr += refs; 2361 SetPageReferenced(head); 2362 return 1; 2363 } 2364 2365 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2366 unsigned int pdshift, unsigned long end, unsigned int flags, 2367 struct page **pages, int *nr) 2368 { 2369 pte_t *ptep; 2370 unsigned long sz = 1UL << hugepd_shift(hugepd); 2371 unsigned long next; 2372 2373 ptep = hugepte_offset(hugepd, addr, pdshift); 2374 do { 2375 next = hugepte_addr_end(addr, end, sz); 2376 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2377 return 0; 2378 } while (ptep++, addr = next, addr != end); 2379 2380 return 1; 2381 } 2382 #else 2383 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2384 unsigned int pdshift, unsigned long end, unsigned int flags, 2385 struct page **pages, int *nr) 2386 { 2387 return 0; 2388 } 2389 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2390 2391 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2392 unsigned long end, unsigned int flags, 2393 struct page **pages, int *nr) 2394 { 2395 struct page *head, *page; 2396 int refs; 2397 2398 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2399 return 0; 2400 2401 if (pmd_devmap(orig)) { 2402 if (unlikely(flags & FOLL_LONGTERM)) 2403 return 0; 2404 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2405 pages, nr); 2406 } 2407 2408 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2409 refs = record_subpages(page, addr, end, pages + *nr); 2410 2411 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2412 if (!head) 2413 return 0; 2414 2415 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2416 put_compound_head(head, refs, flags); 2417 return 0; 2418 } 2419 2420 *nr += refs; 2421 SetPageReferenced(head); 2422 return 1; 2423 } 2424 2425 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2426 unsigned long end, unsigned int flags, 2427 struct page **pages, int *nr) 2428 { 2429 struct page *head, *page; 2430 int refs; 2431 2432 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2433 return 0; 2434 2435 if (pud_devmap(orig)) { 2436 if (unlikely(flags & FOLL_LONGTERM)) 2437 return 0; 2438 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2439 pages, nr); 2440 } 2441 2442 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2443 refs = record_subpages(page, addr, end, pages + *nr); 2444 2445 head = try_grab_compound_head(pud_page(orig), refs, flags); 2446 if (!head) 2447 return 0; 2448 2449 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2450 put_compound_head(head, refs, flags); 2451 return 0; 2452 } 2453 2454 *nr += refs; 2455 SetPageReferenced(head); 2456 return 1; 2457 } 2458 2459 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2460 unsigned long end, unsigned int flags, 2461 struct page **pages, int *nr) 2462 { 2463 int refs; 2464 struct page *head, *page; 2465 2466 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2467 return 0; 2468 2469 BUILD_BUG_ON(pgd_devmap(orig)); 2470 2471 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2472 refs = record_subpages(page, addr, end, pages + *nr); 2473 2474 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2475 if (!head) 2476 return 0; 2477 2478 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2479 put_compound_head(head, refs, flags); 2480 return 0; 2481 } 2482 2483 *nr += refs; 2484 SetPageReferenced(head); 2485 return 1; 2486 } 2487 2488 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2489 unsigned int flags, struct page **pages, int *nr) 2490 { 2491 unsigned long next; 2492 pmd_t *pmdp; 2493 2494 pmdp = pmd_offset(&pud, addr); 2495 do { 2496 pmd_t pmd = READ_ONCE(*pmdp); 2497 2498 next = pmd_addr_end(addr, end); 2499 if (!pmd_present(pmd)) 2500 return 0; 2501 2502 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2503 pmd_devmap(pmd))) { 2504 /* 2505 * NUMA hinting faults need to be handled in the GUP 2506 * slowpath for accounting purposes and so that they 2507 * can be serialised against THP migration. 2508 */ 2509 if (pmd_protnone(pmd)) 2510 return 0; 2511 2512 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2513 pages, nr)) 2514 return 0; 2515 2516 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2517 /* 2518 * architecture have different format for hugetlbfs 2519 * pmd format and THP pmd format 2520 */ 2521 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2522 PMD_SHIFT, next, flags, pages, nr)) 2523 return 0; 2524 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2525 return 0; 2526 } while (pmdp++, addr = next, addr != end); 2527 2528 return 1; 2529 } 2530 2531 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2532 unsigned int flags, struct page **pages, int *nr) 2533 { 2534 unsigned long next; 2535 pud_t *pudp; 2536 2537 pudp = pud_offset(&p4d, addr); 2538 do { 2539 pud_t pud = READ_ONCE(*pudp); 2540 2541 next = pud_addr_end(addr, end); 2542 if (unlikely(!pud_present(pud))) 2543 return 0; 2544 if (unlikely(pud_huge(pud))) { 2545 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2546 pages, nr)) 2547 return 0; 2548 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2549 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2550 PUD_SHIFT, next, flags, pages, nr)) 2551 return 0; 2552 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2553 return 0; 2554 } while (pudp++, addr = next, addr != end); 2555 2556 return 1; 2557 } 2558 2559 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2560 unsigned int flags, struct page **pages, int *nr) 2561 { 2562 unsigned long next; 2563 p4d_t *p4dp; 2564 2565 p4dp = p4d_offset(&pgd, addr); 2566 do { 2567 p4d_t p4d = READ_ONCE(*p4dp); 2568 2569 next = p4d_addr_end(addr, end); 2570 if (p4d_none(p4d)) 2571 return 0; 2572 BUILD_BUG_ON(p4d_huge(p4d)); 2573 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2574 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2575 P4D_SHIFT, next, flags, pages, nr)) 2576 return 0; 2577 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2578 return 0; 2579 } while (p4dp++, addr = next, addr != end); 2580 2581 return 1; 2582 } 2583 2584 static void gup_pgd_range(unsigned long addr, unsigned long end, 2585 unsigned int flags, struct page **pages, int *nr) 2586 { 2587 unsigned long next; 2588 pgd_t *pgdp; 2589 2590 pgdp = pgd_offset(current->mm, addr); 2591 do { 2592 pgd_t pgd = READ_ONCE(*pgdp); 2593 2594 next = pgd_addr_end(addr, end); 2595 if (pgd_none(pgd)) 2596 return; 2597 if (unlikely(pgd_huge(pgd))) { 2598 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2599 pages, nr)) 2600 return; 2601 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2602 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2603 PGDIR_SHIFT, next, flags, pages, nr)) 2604 return; 2605 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2606 return; 2607 } while (pgdp++, addr = next, addr != end); 2608 } 2609 #else 2610 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2611 unsigned int flags, struct page **pages, int *nr) 2612 { 2613 } 2614 #endif /* CONFIG_HAVE_FAST_GUP */ 2615 2616 #ifndef gup_fast_permitted 2617 /* 2618 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2619 * we need to fall back to the slow version: 2620 */ 2621 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2622 { 2623 return true; 2624 } 2625 #endif 2626 2627 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2628 unsigned int gup_flags, struct page **pages) 2629 { 2630 int ret; 2631 2632 /* 2633 * FIXME: FOLL_LONGTERM does not work with 2634 * get_user_pages_unlocked() (see comments in that function) 2635 */ 2636 if (gup_flags & FOLL_LONGTERM) { 2637 mmap_read_lock(current->mm); 2638 ret = __gup_longterm_locked(current->mm, 2639 start, nr_pages, 2640 pages, NULL, gup_flags); 2641 mmap_read_unlock(current->mm); 2642 } else { 2643 ret = get_user_pages_unlocked(start, nr_pages, 2644 pages, gup_flags); 2645 } 2646 2647 return ret; 2648 } 2649 2650 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2651 unsigned int gup_flags, 2652 struct page **pages) 2653 { 2654 unsigned long addr, len, end; 2655 unsigned long flags; 2656 int nr_pinned = 0, ret = 0; 2657 2658 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2659 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2660 FOLL_FAST_ONLY))) 2661 return -EINVAL; 2662 2663 if (!(gup_flags & FOLL_FAST_ONLY)) 2664 might_lock_read(¤t->mm->mmap_lock); 2665 2666 start = untagged_addr(start) & PAGE_MASK; 2667 addr = start; 2668 len = (unsigned long) nr_pages << PAGE_SHIFT; 2669 end = start + len; 2670 2671 if (end <= start) 2672 return 0; 2673 if (unlikely(!access_ok((void __user *)start, len))) 2674 return -EFAULT; 2675 2676 /* 2677 * Disable interrupts. The nested form is used, in order to allow 2678 * full, general purpose use of this routine. 2679 * 2680 * With interrupts disabled, we block page table pages from being 2681 * freed from under us. See struct mmu_table_batch comments in 2682 * include/asm-generic/tlb.h for more details. 2683 * 2684 * We do not adopt an rcu_read_lock(.) here as we also want to 2685 * block IPIs that come from THPs splitting. 2686 */ 2687 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2688 unsigned long fast_flags = gup_flags; 2689 2690 local_irq_save(flags); 2691 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2692 local_irq_restore(flags); 2693 ret = nr_pinned; 2694 } 2695 2696 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2697 /* Try to get the remaining pages with get_user_pages */ 2698 start += nr_pinned << PAGE_SHIFT; 2699 pages += nr_pinned; 2700 2701 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2702 gup_flags, pages); 2703 2704 /* Have to be a bit careful with return values */ 2705 if (nr_pinned > 0) { 2706 if (ret < 0) 2707 ret = nr_pinned; 2708 else 2709 ret += nr_pinned; 2710 } 2711 } 2712 2713 return ret; 2714 } 2715 /** 2716 * get_user_pages_fast_only() - pin user pages in memory 2717 * @start: starting user address 2718 * @nr_pages: number of pages from start to pin 2719 * @gup_flags: flags modifying pin behaviour 2720 * @pages: array that receives pointers to the pages pinned. 2721 * Should be at least nr_pages long. 2722 * 2723 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2724 * the regular GUP. 2725 * Note a difference with get_user_pages_fast: this always returns the 2726 * number of pages pinned, 0 if no pages were pinned. 2727 * 2728 * If the architecture does not support this function, simply return with no 2729 * pages pinned. 2730 * 2731 * Careful, careful! COW breaking can go either way, so a non-write 2732 * access can get ambiguous page results. If you call this function without 2733 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2734 */ 2735 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2736 unsigned int gup_flags, struct page **pages) 2737 { 2738 int nr_pinned; 2739 /* 2740 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2741 * because gup fast is always a "pin with a +1 page refcount" request. 2742 * 2743 * FOLL_FAST_ONLY is required in order to match the API description of 2744 * this routine: no fall back to regular ("slow") GUP. 2745 */ 2746 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2747 2748 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2749 pages); 2750 2751 /* 2752 * As specified in the API description above, this routine is not 2753 * allowed to return negative values. However, the common core 2754 * routine internal_get_user_pages_fast() *can* return -errno. 2755 * Therefore, correct for that here: 2756 */ 2757 if (nr_pinned < 0) 2758 nr_pinned = 0; 2759 2760 return nr_pinned; 2761 } 2762 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2763 2764 /** 2765 * get_user_pages_fast() - pin user pages in memory 2766 * @start: starting user address 2767 * @nr_pages: number of pages from start to pin 2768 * @gup_flags: flags modifying pin behaviour 2769 * @pages: array that receives pointers to the pages pinned. 2770 * Should be at least nr_pages long. 2771 * 2772 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2773 * If not successful, it will fall back to taking the lock and 2774 * calling get_user_pages(). 2775 * 2776 * Returns number of pages pinned. This may be fewer than the number requested. 2777 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2778 * -errno. 2779 */ 2780 int get_user_pages_fast(unsigned long start, int nr_pages, 2781 unsigned int gup_flags, struct page **pages) 2782 { 2783 /* 2784 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2785 * never directly by the caller, so enforce that: 2786 */ 2787 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2788 return -EINVAL; 2789 2790 /* 2791 * The caller may or may not have explicitly set FOLL_GET; either way is 2792 * OK. However, internally (within mm/gup.c), gup fast variants must set 2793 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2794 * request. 2795 */ 2796 gup_flags |= FOLL_GET; 2797 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2798 } 2799 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2800 2801 /** 2802 * pin_user_pages_fast() - pin user pages in memory without taking locks 2803 * 2804 * @start: starting user address 2805 * @nr_pages: number of pages from start to pin 2806 * @gup_flags: flags modifying pin behaviour 2807 * @pages: array that receives pointers to the pages pinned. 2808 * Should be at least nr_pages long. 2809 * 2810 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2811 * get_user_pages_fast() for documentation on the function arguments, because 2812 * the arguments here are identical. 2813 * 2814 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2815 * see Documentation/core-api/pin_user_pages.rst for further details. 2816 */ 2817 int pin_user_pages_fast(unsigned long start, int nr_pages, 2818 unsigned int gup_flags, struct page **pages) 2819 { 2820 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2821 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2822 return -EINVAL; 2823 2824 gup_flags |= FOLL_PIN; 2825 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2826 } 2827 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2828 2829 /* 2830 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2831 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2832 * 2833 * The API rules are the same, too: no negative values may be returned. 2834 */ 2835 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2836 unsigned int gup_flags, struct page **pages) 2837 { 2838 int nr_pinned; 2839 2840 /* 2841 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2842 * rules require returning 0, rather than -errno: 2843 */ 2844 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2845 return 0; 2846 /* 2847 * FOLL_FAST_ONLY is required in order to match the API description of 2848 * this routine: no fall back to regular ("slow") GUP. 2849 */ 2850 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2851 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2852 pages); 2853 /* 2854 * This routine is not allowed to return negative values. However, 2855 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2856 * correct for that here: 2857 */ 2858 if (nr_pinned < 0) 2859 nr_pinned = 0; 2860 2861 return nr_pinned; 2862 } 2863 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2864 2865 /** 2866 * pin_user_pages_remote() - pin pages of a remote process 2867 * 2868 * @mm: mm_struct of target mm 2869 * @start: starting user address 2870 * @nr_pages: number of pages from start to pin 2871 * @gup_flags: flags modifying lookup behaviour 2872 * @pages: array that receives pointers to the pages pinned. 2873 * Should be at least nr_pages long. Or NULL, if caller 2874 * only intends to ensure the pages are faulted in. 2875 * @vmas: array of pointers to vmas corresponding to each page. 2876 * Or NULL if the caller does not require them. 2877 * @locked: pointer to lock flag indicating whether lock is held and 2878 * subsequently whether VM_FAULT_RETRY functionality can be 2879 * utilised. Lock must initially be held. 2880 * 2881 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2882 * get_user_pages_remote() for documentation on the function arguments, because 2883 * the arguments here are identical. 2884 * 2885 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2886 * see Documentation/core-api/pin_user_pages.rst for details. 2887 */ 2888 long pin_user_pages_remote(struct mm_struct *mm, 2889 unsigned long start, unsigned long nr_pages, 2890 unsigned int gup_flags, struct page **pages, 2891 struct vm_area_struct **vmas, int *locked) 2892 { 2893 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2894 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2895 return -EINVAL; 2896 2897 gup_flags |= FOLL_PIN; 2898 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2899 pages, vmas, locked); 2900 } 2901 EXPORT_SYMBOL(pin_user_pages_remote); 2902 2903 /** 2904 * pin_user_pages() - pin user pages in memory for use by other devices 2905 * 2906 * @start: starting user address 2907 * @nr_pages: number of pages from start to pin 2908 * @gup_flags: flags modifying lookup behaviour 2909 * @pages: array that receives pointers to the pages pinned. 2910 * Should be at least nr_pages long. Or NULL, if caller 2911 * only intends to ensure the pages are faulted in. 2912 * @vmas: array of pointers to vmas corresponding to each page. 2913 * Or NULL if the caller does not require them. 2914 * 2915 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2916 * FOLL_PIN is set. 2917 * 2918 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2919 * see Documentation/core-api/pin_user_pages.rst for details. 2920 */ 2921 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2922 unsigned int gup_flags, struct page **pages, 2923 struct vm_area_struct **vmas) 2924 { 2925 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2926 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2927 return -EINVAL; 2928 2929 gup_flags |= FOLL_PIN; 2930 return __gup_longterm_locked(current->mm, start, nr_pages, 2931 pages, vmas, gup_flags); 2932 } 2933 EXPORT_SYMBOL(pin_user_pages); 2934 2935 /* 2936 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2937 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2938 * FOLL_PIN and rejects FOLL_GET. 2939 */ 2940 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2941 struct page **pages, unsigned int gup_flags) 2942 { 2943 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2944 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2945 return -EINVAL; 2946 2947 gup_flags |= FOLL_PIN; 2948 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2949 } 2950 EXPORT_SYMBOL(pin_user_pages_unlocked); 2951 2952 /* 2953 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2954 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2955 * FOLL_GET. 2956 */ 2957 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2958 unsigned int gup_flags, struct page **pages, 2959 int *locked) 2960 { 2961 /* 2962 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2963 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2964 * vmas. As there are no users of this flag in this call we simply 2965 * disallow this option for now. 2966 */ 2967 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2968 return -EINVAL; 2969 2970 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2971 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2972 return -EINVAL; 2973 2974 gup_flags |= FOLL_PIN; 2975 return __get_user_pages_locked(current->mm, start, nr_pages, 2976 pages, NULL, locked, 2977 gup_flags | FOLL_TOUCH); 2978 } 2979 EXPORT_SYMBOL(pin_user_pages_locked); 2980