xref: /linux/mm/gup.c (revision 1c07425e902cd3137961c3d45b4271bf8a9b8eb9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 		return NULL;
128 
129 	if (flags & FOLL_GET)
130 		return try_get_folio(page, refs);
131 	else if (flags & FOLL_PIN) {
132 		struct folio *folio;
133 
134 		/*
135 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 		 * right zone, so fail and let the caller fall back to the slow
137 		 * path.
138 		 */
139 		if (unlikely((flags & FOLL_LONGTERM) &&
140 			     !is_longterm_pinnable_page(page)))
141 			return NULL;
142 
143 		/*
144 		 * CAUTION: Don't use compound_head() on the page before this
145 		 * point, the result won't be stable.
146 		 */
147 		folio = try_get_folio(page, refs);
148 		if (!folio)
149 			return NULL;
150 
151 		/*
152 		 * When pinning a large folio, use an exact count to track it.
153 		 *
154 		 * However, be sure to *also* increment the normal folio
155 		 * refcount field at least once, so that the folio really
156 		 * is pinned.  That's why the refcount from the earlier
157 		 * try_get_folio() is left intact.
158 		 */
159 		if (folio_test_large(folio))
160 			atomic_add(refs, folio_pincount_ptr(folio));
161 		else
162 			folio_ref_add(folio,
163 					refs * (GUP_PIN_COUNTING_BIAS - 1));
164 		/*
165 		 * Adjust the pincount before re-checking the PTE for changes.
166 		 * This is essentially a smp_mb() and is paired with a memory
167 		 * barrier in page_try_share_anon_rmap().
168 		 */
169 		smp_mb__after_atomic();
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 
173 		return folio;
174 	}
175 
176 	WARN_ON_ONCE(1);
177 	return NULL;
178 }
179 
180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
181 {
182 	if (flags & FOLL_PIN) {
183 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 		if (folio_test_large(folio))
185 			atomic_sub(refs, folio_pincount_ptr(folio));
186 		else
187 			refs *= GUP_PIN_COUNTING_BIAS;
188 	}
189 
190 	if (!put_devmap_managed_page_refs(&folio->page, refs))
191 		folio_put_refs(folio, refs);
192 }
193 
194 /**
195  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196  * @page:    pointer to page to be grabbed
197  * @flags:   gup flags: these are the FOLL_* flag values.
198  *
199  * This might not do anything at all, depending on the flags argument.
200  *
201  * "grab" names in this file mean, "look at flags to decide whether to use
202  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203  *
204  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205  * time. Cases: please see the try_grab_folio() documentation, with
206  * "refs=1".
207  *
208  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210  *
211  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
212  *			be grabbed.
213  */
214 int __must_check try_grab_page(struct page *page, unsigned int flags)
215 {
216 	struct folio *folio = page_folio(page);
217 
218 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
220 		return -ENOMEM;
221 
222 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
223 		return -EREMOTEIO;
224 
225 	if (flags & FOLL_GET)
226 		folio_ref_inc(folio);
227 	else if (flags & FOLL_PIN) {
228 		/*
229 		 * Similar to try_grab_folio(): be sure to *also*
230 		 * increment the normal page refcount field at least once,
231 		 * so that the page really is pinned.
232 		 */
233 		if (folio_test_large(folio)) {
234 			folio_ref_add(folio, 1);
235 			atomic_add(1, folio_pincount_ptr(folio));
236 		} else {
237 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
238 		}
239 
240 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * unpin_user_page() - release a dma-pinned page
248  * @page:            pointer to page to be released
249  *
250  * Pages that were pinned via pin_user_pages*() must be released via either
251  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252  * that such pages can be separately tracked and uniquely handled. In
253  * particular, interactions with RDMA and filesystems need special handling.
254  */
255 void unpin_user_page(struct page *page)
256 {
257 	sanity_check_pinned_pages(&page, 1);
258 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
259 }
260 EXPORT_SYMBOL(unpin_user_page);
261 
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct page *next = nth_page(start, i);
266 	struct folio *folio = page_folio(next);
267 	unsigned int nr = 1;
268 
269 	if (folio_test_large(folio))
270 		nr = min_t(unsigned int, npages - i,
271 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
272 
273 	*ntails = nr;
274 	return folio;
275 }
276 
277 static inline struct folio *gup_folio_next(struct page **list,
278 		unsigned long npages, unsigned long i, unsigned int *ntails)
279 {
280 	struct folio *folio = page_folio(list[i]);
281 	unsigned int nr;
282 
283 	for (nr = i + 1; nr < npages; nr++) {
284 		if (page_folio(list[nr]) != folio)
285 			break;
286 	}
287 
288 	*ntails = nr - i;
289 	return folio;
290 }
291 
292 /**
293  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294  * @pages:  array of pages to be maybe marked dirty, and definitely released.
295  * @npages: number of pages in the @pages array.
296  * @make_dirty: whether to mark the pages dirty
297  *
298  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299  * variants called on that page.
300  *
301  * For each page in the @pages array, make that page (or its head page, if a
302  * compound page) dirty, if @make_dirty is true, and if the page was previously
303  * listed as clean. In any case, releases all pages using unpin_user_page(),
304  * possibly via unpin_user_pages(), for the non-dirty case.
305  *
306  * Please see the unpin_user_page() documentation for details.
307  *
308  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309  * required, then the caller should a) verify that this is really correct,
310  * because _lock() is usually required, and b) hand code it:
311  * set_page_dirty_lock(), unpin_user_page().
312  *
313  */
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
315 				 bool make_dirty)
316 {
317 	unsigned long i;
318 	struct folio *folio;
319 	unsigned int nr;
320 
321 	if (!make_dirty) {
322 		unpin_user_pages(pages, npages);
323 		return;
324 	}
325 
326 	sanity_check_pinned_pages(pages, npages);
327 	for (i = 0; i < npages; i += nr) {
328 		folio = gup_folio_next(pages, npages, i, &nr);
329 		/*
330 		 * Checking PageDirty at this point may race with
331 		 * clear_page_dirty_for_io(), but that's OK. Two key
332 		 * cases:
333 		 *
334 		 * 1) This code sees the page as already dirty, so it
335 		 * skips the call to set_page_dirty(). That could happen
336 		 * because clear_page_dirty_for_io() called
337 		 * page_mkclean(), followed by set_page_dirty().
338 		 * However, now the page is going to get written back,
339 		 * which meets the original intention of setting it
340 		 * dirty, so all is well: clear_page_dirty_for_io() goes
341 		 * on to call TestClearPageDirty(), and write the page
342 		 * back.
343 		 *
344 		 * 2) This code sees the page as clean, so it calls
345 		 * set_page_dirty(). The page stays dirty, despite being
346 		 * written back, so it gets written back again in the
347 		 * next writeback cycle. This is harmless.
348 		 */
349 		if (!folio_test_dirty(folio)) {
350 			folio_lock(folio);
351 			folio_mark_dirty(folio);
352 			folio_unlock(folio);
353 		}
354 		gup_put_folio(folio, nr, FOLL_PIN);
355 	}
356 }
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358 
359 /**
360  * unpin_user_page_range_dirty_lock() - release and optionally dirty
361  * gup-pinned page range
362  *
363  * @page:  the starting page of a range maybe marked dirty, and definitely released.
364  * @npages: number of consecutive pages to release.
365  * @make_dirty: whether to mark the pages dirty
366  *
367  * "gup-pinned page range" refers to a range of pages that has had one of the
368  * pin_user_pages() variants called on that page.
369  *
370  * For the page ranges defined by [page .. page+npages], make that range (or
371  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372  * page range was previously listed as clean.
373  *
374  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375  * required, then the caller should a) verify that this is really correct,
376  * because _lock() is usually required, and b) hand code it:
377  * set_page_dirty_lock(), unpin_user_page().
378  *
379  */
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 				      bool make_dirty)
382 {
383 	unsigned long i;
384 	struct folio *folio;
385 	unsigned int nr;
386 
387 	for (i = 0; i < npages; i += nr) {
388 		folio = gup_folio_range_next(page, npages, i, &nr);
389 		if (make_dirty && !folio_test_dirty(folio)) {
390 			folio_lock(folio);
391 			folio_mark_dirty(folio);
392 			folio_unlock(folio);
393 		}
394 		gup_put_folio(folio, nr, FOLL_PIN);
395 	}
396 }
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
398 
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
400 {
401 	unsigned long i;
402 	struct folio *folio;
403 	unsigned int nr;
404 
405 	/*
406 	 * Don't perform any sanity checks because we might have raced with
407 	 * fork() and some anonymous pages might now actually be shared --
408 	 * which is why we're unpinning after all.
409 	 */
410 	for (i = 0; i < npages; i += nr) {
411 		folio = gup_folio_next(pages, npages, i, &nr);
412 		gup_put_folio(folio, nr, FOLL_PIN);
413 	}
414 }
415 
416 /**
417  * unpin_user_pages() - release an array of gup-pinned pages.
418  * @pages:  array of pages to be marked dirty and released.
419  * @npages: number of pages in the @pages array.
420  *
421  * For each page in the @pages array, release the page using unpin_user_page().
422  *
423  * Please see the unpin_user_page() documentation for details.
424  */
425 void unpin_user_pages(struct page **pages, unsigned long npages)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	/*
432 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 	 * leaving them pinned), but probably not. More likely, gup/pup returned
434 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
435 	 */
436 	if (WARN_ON(IS_ERR_VALUE(npages)))
437 		return;
438 
439 	sanity_check_pinned_pages(pages, npages);
440 	for (i = 0; i < npages; i += nr) {
441 		folio = gup_folio_next(pages, npages, i, &nr);
442 		gup_put_folio(folio, nr, FOLL_PIN);
443 	}
444 }
445 EXPORT_SYMBOL(unpin_user_pages);
446 
447 /*
448  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
450  * cache bouncing on large SMP machines for concurrent pinned gups.
451  */
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
453 {
454 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 		set_bit(MMF_HAS_PINNED, mm_flags);
456 }
457 
458 #ifdef CONFIG_MMU
459 static struct page *no_page_table(struct vm_area_struct *vma,
460 		unsigned int flags)
461 {
462 	/*
463 	 * When core dumping an enormous anonymous area that nobody
464 	 * has touched so far, we don't want to allocate unnecessary pages or
465 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
466 	 * then get_dump_page() will return NULL to leave a hole in the dump.
467 	 * But we can only make this optimization where a hole would surely
468 	 * be zero-filled if handle_mm_fault() actually did handle it.
469 	 */
470 	if ((flags & FOLL_DUMP) &&
471 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 		return ERR_PTR(-EFAULT);
473 	return NULL;
474 }
475 
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 		pte_t *pte, unsigned int flags)
478 {
479 	if (flags & FOLL_TOUCH) {
480 		pte_t entry = *pte;
481 
482 		if (flags & FOLL_WRITE)
483 			entry = pte_mkdirty(entry);
484 		entry = pte_mkyoung(entry);
485 
486 		if (!pte_same(*pte, entry)) {
487 			set_pte_at(vma->vm_mm, address, pte, entry);
488 			update_mmu_cache(vma, address, pte);
489 		}
490 	}
491 
492 	/* Proper page table entry exists, but no corresponding struct page */
493 	return -EEXIST;
494 }
495 
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 					struct vm_area_struct *vma,
499 					unsigned int flags)
500 {
501 	/* If the pte is writable, we can write to the page. */
502 	if (pte_write(pte))
503 		return true;
504 
505 	/* Maybe FOLL_FORCE is set to override it? */
506 	if (!(flags & FOLL_FORCE))
507 		return false;
508 
509 	/* But FOLL_FORCE has no effect on shared mappings */
510 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
511 		return false;
512 
513 	/* ... or read-only private ones */
514 	if (!(vma->vm_flags & VM_MAYWRITE))
515 		return false;
516 
517 	/* ... or already writable ones that just need to take a write fault */
518 	if (vma->vm_flags & VM_WRITE)
519 		return false;
520 
521 	/*
522 	 * See can_change_pte_writable(): we broke COW and could map the page
523 	 * writable if we have an exclusive anonymous page ...
524 	 */
525 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
526 		return false;
527 
528 	/* ... and a write-fault isn't required for other reasons. */
529 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
530 		return false;
531 	return !userfaultfd_pte_wp(vma, pte);
532 }
533 
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 		unsigned long address, pmd_t *pmd, unsigned int flags,
536 		struct dev_pagemap **pgmap)
537 {
538 	struct mm_struct *mm = vma->vm_mm;
539 	struct page *page;
540 	spinlock_t *ptl;
541 	pte_t *ptep, pte;
542 	int ret;
543 
544 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 			 (FOLL_PIN | FOLL_GET)))
547 		return ERR_PTR(-EINVAL);
548 	if (unlikely(pmd_bad(*pmd)))
549 		return no_page_table(vma, flags);
550 
551 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
552 	pte = *ptep;
553 	if (!pte_present(pte))
554 		goto no_page;
555 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
556 		goto no_page;
557 
558 	page = vm_normal_page(vma, address, pte);
559 
560 	/*
561 	 * We only care about anon pages in can_follow_write_pte() and don't
562 	 * have to worry about pte_devmap() because they are never anon.
563 	 */
564 	if ((flags & FOLL_WRITE) &&
565 	    !can_follow_write_pte(pte, page, vma, flags)) {
566 		page = NULL;
567 		goto out;
568 	}
569 
570 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
571 		/*
572 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
573 		 * case since they are only valid while holding the pgmap
574 		 * reference.
575 		 */
576 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
577 		if (*pgmap)
578 			page = pte_page(pte);
579 		else
580 			goto no_page;
581 	} else if (unlikely(!page)) {
582 		if (flags & FOLL_DUMP) {
583 			/* Avoid special (like zero) pages in core dumps */
584 			page = ERR_PTR(-EFAULT);
585 			goto out;
586 		}
587 
588 		if (is_zero_pfn(pte_pfn(pte))) {
589 			page = pte_page(pte);
590 		} else {
591 			ret = follow_pfn_pte(vma, address, ptep, flags);
592 			page = ERR_PTR(ret);
593 			goto out;
594 		}
595 	}
596 
597 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
598 		page = ERR_PTR(-EMLINK);
599 		goto out;
600 	}
601 
602 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
603 		       !PageAnonExclusive(page), page);
604 
605 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
606 	ret = try_grab_page(page, flags);
607 	if (unlikely(ret)) {
608 		page = ERR_PTR(ret);
609 		goto out;
610 	}
611 
612 	/*
613 	 * We need to make the page accessible if and only if we are going
614 	 * to access its content (the FOLL_PIN case).  Please see
615 	 * Documentation/core-api/pin_user_pages.rst for details.
616 	 */
617 	if (flags & FOLL_PIN) {
618 		ret = arch_make_page_accessible(page);
619 		if (ret) {
620 			unpin_user_page(page);
621 			page = ERR_PTR(ret);
622 			goto out;
623 		}
624 	}
625 	if (flags & FOLL_TOUCH) {
626 		if ((flags & FOLL_WRITE) &&
627 		    !pte_dirty(pte) && !PageDirty(page))
628 			set_page_dirty(page);
629 		/*
630 		 * pte_mkyoung() would be more correct here, but atomic care
631 		 * is needed to avoid losing the dirty bit: it is easier to use
632 		 * mark_page_accessed().
633 		 */
634 		mark_page_accessed(page);
635 	}
636 out:
637 	pte_unmap_unlock(ptep, ptl);
638 	return page;
639 no_page:
640 	pte_unmap_unlock(ptep, ptl);
641 	if (!pte_none(pte))
642 		return NULL;
643 	return no_page_table(vma, flags);
644 }
645 
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 				    unsigned long address, pud_t *pudp,
648 				    unsigned int flags,
649 				    struct follow_page_context *ctx)
650 {
651 	pmd_t *pmd, pmdval;
652 	spinlock_t *ptl;
653 	struct page *page;
654 	struct mm_struct *mm = vma->vm_mm;
655 
656 	pmd = pmd_offset(pudp, address);
657 	/*
658 	 * The READ_ONCE() will stabilize the pmdval in a register or
659 	 * on the stack so that it will stop changing under the code.
660 	 */
661 	pmdval = READ_ONCE(*pmd);
662 	if (pmd_none(pmdval))
663 		return no_page_table(vma, flags);
664 	if (!pmd_present(pmdval))
665 		return no_page_table(vma, flags);
666 	if (pmd_devmap(pmdval)) {
667 		ptl = pmd_lock(mm, pmd);
668 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
669 		spin_unlock(ptl);
670 		if (page)
671 			return page;
672 	}
673 	if (likely(!pmd_trans_huge(pmdval)))
674 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
675 
676 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
677 		return no_page_table(vma, flags);
678 
679 	ptl = pmd_lock(mm, pmd);
680 	if (unlikely(!pmd_present(*pmd))) {
681 		spin_unlock(ptl);
682 		return no_page_table(vma, flags);
683 	}
684 	if (unlikely(!pmd_trans_huge(*pmd))) {
685 		spin_unlock(ptl);
686 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
687 	}
688 	if (flags & FOLL_SPLIT_PMD) {
689 		int ret;
690 		page = pmd_page(*pmd);
691 		if (is_huge_zero_page(page)) {
692 			spin_unlock(ptl);
693 			ret = 0;
694 			split_huge_pmd(vma, pmd, address);
695 			if (pmd_trans_unstable(pmd))
696 				ret = -EBUSY;
697 		} else {
698 			spin_unlock(ptl);
699 			split_huge_pmd(vma, pmd, address);
700 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
701 		}
702 
703 		return ret ? ERR_PTR(ret) :
704 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
705 	}
706 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
707 	spin_unlock(ptl);
708 	ctx->page_mask = HPAGE_PMD_NR - 1;
709 	return page;
710 }
711 
712 static struct page *follow_pud_mask(struct vm_area_struct *vma,
713 				    unsigned long address, p4d_t *p4dp,
714 				    unsigned int flags,
715 				    struct follow_page_context *ctx)
716 {
717 	pud_t *pud;
718 	spinlock_t *ptl;
719 	struct page *page;
720 	struct mm_struct *mm = vma->vm_mm;
721 
722 	pud = pud_offset(p4dp, address);
723 	if (pud_none(*pud))
724 		return no_page_table(vma, flags);
725 	if (pud_devmap(*pud)) {
726 		ptl = pud_lock(mm, pud);
727 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
728 		spin_unlock(ptl);
729 		if (page)
730 			return page;
731 	}
732 	if (unlikely(pud_bad(*pud)))
733 		return no_page_table(vma, flags);
734 
735 	return follow_pmd_mask(vma, address, pud, flags, ctx);
736 }
737 
738 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
739 				    unsigned long address, pgd_t *pgdp,
740 				    unsigned int flags,
741 				    struct follow_page_context *ctx)
742 {
743 	p4d_t *p4d;
744 
745 	p4d = p4d_offset(pgdp, address);
746 	if (p4d_none(*p4d))
747 		return no_page_table(vma, flags);
748 	BUILD_BUG_ON(p4d_huge(*p4d));
749 	if (unlikely(p4d_bad(*p4d)))
750 		return no_page_table(vma, flags);
751 
752 	return follow_pud_mask(vma, address, p4d, flags, ctx);
753 }
754 
755 /**
756  * follow_page_mask - look up a page descriptor from a user-virtual address
757  * @vma: vm_area_struct mapping @address
758  * @address: virtual address to look up
759  * @flags: flags modifying lookup behaviour
760  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
761  *       pointer to output page_mask
762  *
763  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
764  *
765  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
766  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
767  *
768  * When getting an anonymous page and the caller has to trigger unsharing
769  * of a shared anonymous page first, -EMLINK is returned. The caller should
770  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
771  * relevant with FOLL_PIN and !FOLL_WRITE.
772  *
773  * On output, the @ctx->page_mask is set according to the size of the page.
774  *
775  * Return: the mapped (struct page *), %NULL if no mapping exists, or
776  * an error pointer if there is a mapping to something not represented
777  * by a page descriptor (see also vm_normal_page()).
778  */
779 static struct page *follow_page_mask(struct vm_area_struct *vma,
780 			      unsigned long address, unsigned int flags,
781 			      struct follow_page_context *ctx)
782 {
783 	pgd_t *pgd;
784 	struct page *page;
785 	struct mm_struct *mm = vma->vm_mm;
786 
787 	ctx->page_mask = 0;
788 
789 	/*
790 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
791 	 * special hugetlb page table walking code.  This eliminates the
792 	 * need to check for hugetlb entries in the general walking code.
793 	 *
794 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
795 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
796 	 */
797 	if (is_vm_hugetlb_page(vma)) {
798 		page = hugetlb_follow_page_mask(vma, address, flags);
799 		if (!page)
800 			page = no_page_table(vma, flags);
801 		return page;
802 	}
803 
804 	pgd = pgd_offset(mm, address);
805 
806 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 		return no_page_table(vma, flags);
808 
809 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
810 }
811 
812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 			 unsigned int foll_flags)
814 {
815 	struct follow_page_context ctx = { NULL };
816 	struct page *page;
817 
818 	if (vma_is_secretmem(vma))
819 		return NULL;
820 
821 	if (foll_flags & FOLL_PIN)
822 		return NULL;
823 
824 	page = follow_page_mask(vma, address, foll_flags, &ctx);
825 	if (ctx.pgmap)
826 		put_dev_pagemap(ctx.pgmap);
827 	return page;
828 }
829 
830 static int get_gate_page(struct mm_struct *mm, unsigned long address,
831 		unsigned int gup_flags, struct vm_area_struct **vma,
832 		struct page **page)
833 {
834 	pgd_t *pgd;
835 	p4d_t *p4d;
836 	pud_t *pud;
837 	pmd_t *pmd;
838 	pte_t *pte;
839 	int ret = -EFAULT;
840 
841 	/* user gate pages are read-only */
842 	if (gup_flags & FOLL_WRITE)
843 		return -EFAULT;
844 	if (address > TASK_SIZE)
845 		pgd = pgd_offset_k(address);
846 	else
847 		pgd = pgd_offset_gate(mm, address);
848 	if (pgd_none(*pgd))
849 		return -EFAULT;
850 	p4d = p4d_offset(pgd, address);
851 	if (p4d_none(*p4d))
852 		return -EFAULT;
853 	pud = pud_offset(p4d, address);
854 	if (pud_none(*pud))
855 		return -EFAULT;
856 	pmd = pmd_offset(pud, address);
857 	if (!pmd_present(*pmd))
858 		return -EFAULT;
859 	VM_BUG_ON(pmd_trans_huge(*pmd));
860 	pte = pte_offset_map(pmd, address);
861 	if (pte_none(*pte))
862 		goto unmap;
863 	*vma = get_gate_vma(mm);
864 	if (!page)
865 		goto out;
866 	*page = vm_normal_page(*vma, address, *pte);
867 	if (!*page) {
868 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
869 			goto unmap;
870 		*page = pte_page(*pte);
871 	}
872 	ret = try_grab_page(*page, gup_flags);
873 	if (unlikely(ret))
874 		goto unmap;
875 out:
876 	ret = 0;
877 unmap:
878 	pte_unmap(pte);
879 	return ret;
880 }
881 
882 /*
883  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
884  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
885  * is, *@locked will be set to 0 and -EBUSY returned.
886  */
887 static int faultin_page(struct vm_area_struct *vma,
888 		unsigned long address, unsigned int *flags, bool unshare,
889 		int *locked)
890 {
891 	unsigned int fault_flags = 0;
892 	vm_fault_t ret;
893 
894 	if (*flags & FOLL_NOFAULT)
895 		return -EFAULT;
896 	if (*flags & FOLL_WRITE)
897 		fault_flags |= FAULT_FLAG_WRITE;
898 	if (*flags & FOLL_REMOTE)
899 		fault_flags |= FAULT_FLAG_REMOTE;
900 	if (locked) {
901 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
902 		/*
903 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
904 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
905 		 * That's because some callers may not be prepared to
906 		 * handle early exits caused by non-fatal signals.
907 		 */
908 		if (*flags & FOLL_INTERRUPTIBLE)
909 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
910 	}
911 	if (*flags & FOLL_NOWAIT)
912 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
913 	if (*flags & FOLL_TRIED) {
914 		/*
915 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
916 		 * can co-exist
917 		 */
918 		fault_flags |= FAULT_FLAG_TRIED;
919 	}
920 	if (unshare) {
921 		fault_flags |= FAULT_FLAG_UNSHARE;
922 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
923 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
924 	}
925 
926 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
927 
928 	if (ret & VM_FAULT_COMPLETED) {
929 		/*
930 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
931 		 * mmap lock in the page fault handler. Sanity check this.
932 		 */
933 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
934 		if (locked)
935 			*locked = 0;
936 		/*
937 		 * We should do the same as VM_FAULT_RETRY, but let's not
938 		 * return -EBUSY since that's not reflecting the reality of
939 		 * what has happened - we've just fully completed a page
940 		 * fault, with the mmap lock released.  Use -EAGAIN to show
941 		 * that we want to take the mmap lock _again_.
942 		 */
943 		return -EAGAIN;
944 	}
945 
946 	if (ret & VM_FAULT_ERROR) {
947 		int err = vm_fault_to_errno(ret, *flags);
948 
949 		if (err)
950 			return err;
951 		BUG();
952 	}
953 
954 	if (ret & VM_FAULT_RETRY) {
955 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
956 			*locked = 0;
957 		return -EBUSY;
958 	}
959 
960 	return 0;
961 }
962 
963 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
964 {
965 	vm_flags_t vm_flags = vma->vm_flags;
966 	int write = (gup_flags & FOLL_WRITE);
967 	int foreign = (gup_flags & FOLL_REMOTE);
968 
969 	if (vm_flags & (VM_IO | VM_PFNMAP))
970 		return -EFAULT;
971 
972 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
973 		return -EFAULT;
974 
975 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
976 		return -EOPNOTSUPP;
977 
978 	if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
979 		return -EOPNOTSUPP;
980 
981 	if (vma_is_secretmem(vma))
982 		return -EFAULT;
983 
984 	if (write) {
985 		if (!(vm_flags & VM_WRITE)) {
986 			if (!(gup_flags & FOLL_FORCE))
987 				return -EFAULT;
988 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
989 			if (is_vm_hugetlb_page(vma))
990 				return -EFAULT;
991 			/*
992 			 * We used to let the write,force case do COW in a
993 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
994 			 * set a breakpoint in a read-only mapping of an
995 			 * executable, without corrupting the file (yet only
996 			 * when that file had been opened for writing!).
997 			 * Anon pages in shared mappings are surprising: now
998 			 * just reject it.
999 			 */
1000 			if (!is_cow_mapping(vm_flags))
1001 				return -EFAULT;
1002 		}
1003 	} else if (!(vm_flags & VM_READ)) {
1004 		if (!(gup_flags & FOLL_FORCE))
1005 			return -EFAULT;
1006 		/*
1007 		 * Is there actually any vma we can reach here which does not
1008 		 * have VM_MAYREAD set?
1009 		 */
1010 		if (!(vm_flags & VM_MAYREAD))
1011 			return -EFAULT;
1012 	}
1013 	/*
1014 	 * gups are always data accesses, not instruction
1015 	 * fetches, so execute=false here
1016 	 */
1017 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1018 		return -EFAULT;
1019 	return 0;
1020 }
1021 
1022 /**
1023  * __get_user_pages() - pin user pages in memory
1024  * @mm:		mm_struct of target mm
1025  * @start:	starting user address
1026  * @nr_pages:	number of pages from start to pin
1027  * @gup_flags:	flags modifying pin behaviour
1028  * @pages:	array that receives pointers to the pages pinned.
1029  *		Should be at least nr_pages long. Or NULL, if caller
1030  *		only intends to ensure the pages are faulted in.
1031  * @vmas:	array of pointers to vmas corresponding to each page.
1032  *		Or NULL if the caller does not require them.
1033  * @locked:     whether we're still with the mmap_lock held
1034  *
1035  * Returns either number of pages pinned (which may be less than the
1036  * number requested), or an error. Details about the return value:
1037  *
1038  * -- If nr_pages is 0, returns 0.
1039  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1040  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1041  *    pages pinned. Again, this may be less than nr_pages.
1042  * -- 0 return value is possible when the fault would need to be retried.
1043  *
1044  * The caller is responsible for releasing returned @pages, via put_page().
1045  *
1046  * @vmas are valid only as long as mmap_lock is held.
1047  *
1048  * Must be called with mmap_lock held.  It may be released.  See below.
1049  *
1050  * __get_user_pages walks a process's page tables and takes a reference to
1051  * each struct page that each user address corresponds to at a given
1052  * instant. That is, it takes the page that would be accessed if a user
1053  * thread accesses the given user virtual address at that instant.
1054  *
1055  * This does not guarantee that the page exists in the user mappings when
1056  * __get_user_pages returns, and there may even be a completely different
1057  * page there in some cases (eg. if mmapped pagecache has been invalidated
1058  * and subsequently re faulted). However it does guarantee that the page
1059  * won't be freed completely. And mostly callers simply care that the page
1060  * contains data that was valid *at some point in time*. Typically, an IO
1061  * or similar operation cannot guarantee anything stronger anyway because
1062  * locks can't be held over the syscall boundary.
1063  *
1064  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1065  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1066  * appropriate) must be called after the page is finished with, and
1067  * before put_page is called.
1068  *
1069  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1070  * released by an up_read().  That can happen if @gup_flags does not
1071  * have FOLL_NOWAIT.
1072  *
1073  * A caller using such a combination of @locked and @gup_flags
1074  * must therefore hold the mmap_lock for reading only, and recognize
1075  * when it's been released.  Otherwise, it must be held for either
1076  * reading or writing and will not be released.
1077  *
1078  * In most cases, get_user_pages or get_user_pages_fast should be used
1079  * instead of __get_user_pages. __get_user_pages should be used only if
1080  * you need some special @gup_flags.
1081  */
1082 static long __get_user_pages(struct mm_struct *mm,
1083 		unsigned long start, unsigned long nr_pages,
1084 		unsigned int gup_flags, struct page **pages,
1085 		struct vm_area_struct **vmas, int *locked)
1086 {
1087 	long ret = 0, i = 0;
1088 	struct vm_area_struct *vma = NULL;
1089 	struct follow_page_context ctx = { NULL };
1090 
1091 	if (!nr_pages)
1092 		return 0;
1093 
1094 	start = untagged_addr(start);
1095 
1096 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1097 
1098 	do {
1099 		struct page *page;
1100 		unsigned int foll_flags = gup_flags;
1101 		unsigned int page_increm;
1102 
1103 		/* first iteration or cross vma bound */
1104 		if (!vma || start >= vma->vm_end) {
1105 			vma = find_extend_vma(mm, start);
1106 			if (!vma && in_gate_area(mm, start)) {
1107 				ret = get_gate_page(mm, start & PAGE_MASK,
1108 						gup_flags, &vma,
1109 						pages ? &pages[i] : NULL);
1110 				if (ret)
1111 					goto out;
1112 				ctx.page_mask = 0;
1113 				goto next_page;
1114 			}
1115 
1116 			if (!vma) {
1117 				ret = -EFAULT;
1118 				goto out;
1119 			}
1120 			ret = check_vma_flags(vma, gup_flags);
1121 			if (ret)
1122 				goto out;
1123 
1124 			if (is_vm_hugetlb_page(vma)) {
1125 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1126 						&start, &nr_pages, i,
1127 						gup_flags, locked);
1128 				if (locked && *locked == 0) {
1129 					/*
1130 					 * We've got a VM_FAULT_RETRY
1131 					 * and we've lost mmap_lock.
1132 					 * We must stop here.
1133 					 */
1134 					BUG_ON(gup_flags & FOLL_NOWAIT);
1135 					goto out;
1136 				}
1137 				continue;
1138 			}
1139 		}
1140 retry:
1141 		/*
1142 		 * If we have a pending SIGKILL, don't keep faulting pages and
1143 		 * potentially allocating memory.
1144 		 */
1145 		if (fatal_signal_pending(current)) {
1146 			ret = -EINTR;
1147 			goto out;
1148 		}
1149 		cond_resched();
1150 
1151 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1152 		if (!page || PTR_ERR(page) == -EMLINK) {
1153 			ret = faultin_page(vma, start, &foll_flags,
1154 					   PTR_ERR(page) == -EMLINK, locked);
1155 			switch (ret) {
1156 			case 0:
1157 				goto retry;
1158 			case -EBUSY:
1159 			case -EAGAIN:
1160 				ret = 0;
1161 				fallthrough;
1162 			case -EFAULT:
1163 			case -ENOMEM:
1164 			case -EHWPOISON:
1165 				goto out;
1166 			}
1167 			BUG();
1168 		} else if (PTR_ERR(page) == -EEXIST) {
1169 			/*
1170 			 * Proper page table entry exists, but no corresponding
1171 			 * struct page. If the caller expects **pages to be
1172 			 * filled in, bail out now, because that can't be done
1173 			 * for this page.
1174 			 */
1175 			if (pages) {
1176 				ret = PTR_ERR(page);
1177 				goto out;
1178 			}
1179 
1180 			goto next_page;
1181 		} else if (IS_ERR(page)) {
1182 			ret = PTR_ERR(page);
1183 			goto out;
1184 		}
1185 		if (pages) {
1186 			pages[i] = page;
1187 			flush_anon_page(vma, page, start);
1188 			flush_dcache_page(page);
1189 			ctx.page_mask = 0;
1190 		}
1191 next_page:
1192 		if (vmas) {
1193 			vmas[i] = vma;
1194 			ctx.page_mask = 0;
1195 		}
1196 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197 		if (page_increm > nr_pages)
1198 			page_increm = nr_pages;
1199 		i += page_increm;
1200 		start += page_increm * PAGE_SIZE;
1201 		nr_pages -= page_increm;
1202 	} while (nr_pages);
1203 out:
1204 	if (ctx.pgmap)
1205 		put_dev_pagemap(ctx.pgmap);
1206 	return i ? i : ret;
1207 }
1208 
1209 static bool vma_permits_fault(struct vm_area_struct *vma,
1210 			      unsigned int fault_flags)
1211 {
1212 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1213 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1215 
1216 	if (!(vm_flags & vma->vm_flags))
1217 		return false;
1218 
1219 	/*
1220 	 * The architecture might have a hardware protection
1221 	 * mechanism other than read/write that can deny access.
1222 	 *
1223 	 * gup always represents data access, not instruction
1224 	 * fetches, so execute=false here:
1225 	 */
1226 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1227 		return false;
1228 
1229 	return true;
1230 }
1231 
1232 /**
1233  * fixup_user_fault() - manually resolve a user page fault
1234  * @mm:		mm_struct of target mm
1235  * @address:	user address
1236  * @fault_flags:flags to pass down to handle_mm_fault()
1237  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1238  *		does not allow retry. If NULL, the caller must guarantee
1239  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1240  *
1241  * This is meant to be called in the specific scenario where for locking reasons
1242  * we try to access user memory in atomic context (within a pagefault_disable()
1243  * section), this returns -EFAULT, and we want to resolve the user fault before
1244  * trying again.
1245  *
1246  * Typically this is meant to be used by the futex code.
1247  *
1248  * The main difference with get_user_pages() is that this function will
1249  * unconditionally call handle_mm_fault() which will in turn perform all the
1250  * necessary SW fixup of the dirty and young bits in the PTE, while
1251  * get_user_pages() only guarantees to update these in the struct page.
1252  *
1253  * This is important for some architectures where those bits also gate the
1254  * access permission to the page because they are maintained in software.  On
1255  * such architectures, gup() will not be enough to make a subsequent access
1256  * succeed.
1257  *
1258  * This function will not return with an unlocked mmap_lock. So it has not the
1259  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1260  */
1261 int fixup_user_fault(struct mm_struct *mm,
1262 		     unsigned long address, unsigned int fault_flags,
1263 		     bool *unlocked)
1264 {
1265 	struct vm_area_struct *vma;
1266 	vm_fault_t ret;
1267 
1268 	address = untagged_addr(address);
1269 
1270 	if (unlocked)
1271 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1272 
1273 retry:
1274 	vma = find_extend_vma(mm, address);
1275 	if (!vma || address < vma->vm_start)
1276 		return -EFAULT;
1277 
1278 	if (!vma_permits_fault(vma, fault_flags))
1279 		return -EFAULT;
1280 
1281 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282 	    fatal_signal_pending(current))
1283 		return -EINTR;
1284 
1285 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1286 
1287 	if (ret & VM_FAULT_COMPLETED) {
1288 		/*
1289 		 * NOTE: it's a pity that we need to retake the lock here
1290 		 * to pair with the unlock() in the callers. Ideally we
1291 		 * could tell the callers so they do not need to unlock.
1292 		 */
1293 		mmap_read_lock(mm);
1294 		*unlocked = true;
1295 		return 0;
1296 	}
1297 
1298 	if (ret & VM_FAULT_ERROR) {
1299 		int err = vm_fault_to_errno(ret, 0);
1300 
1301 		if (err)
1302 			return err;
1303 		BUG();
1304 	}
1305 
1306 	if (ret & VM_FAULT_RETRY) {
1307 		mmap_read_lock(mm);
1308 		*unlocked = true;
1309 		fault_flags |= FAULT_FLAG_TRIED;
1310 		goto retry;
1311 	}
1312 
1313 	return 0;
1314 }
1315 EXPORT_SYMBOL_GPL(fixup_user_fault);
1316 
1317 /*
1318  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1319  * specified, it'll also respond to generic signals.  The caller of GUP
1320  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1321  */
1322 static bool gup_signal_pending(unsigned int flags)
1323 {
1324 	if (fatal_signal_pending(current))
1325 		return true;
1326 
1327 	if (!(flags & FOLL_INTERRUPTIBLE))
1328 		return false;
1329 
1330 	return signal_pending(current);
1331 }
1332 
1333 /*
1334  * Please note that this function, unlike __get_user_pages will not
1335  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1336  */
1337 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1338 						unsigned long start,
1339 						unsigned long nr_pages,
1340 						struct page **pages,
1341 						struct vm_area_struct **vmas,
1342 						int *locked,
1343 						unsigned int flags)
1344 {
1345 	long ret, pages_done;
1346 	bool lock_dropped;
1347 
1348 	if (locked) {
1349 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1350 		BUG_ON(vmas);
1351 		/* check caller initialized locked */
1352 		BUG_ON(*locked != 1);
1353 	}
1354 
1355 	if (flags & FOLL_PIN)
1356 		mm_set_has_pinned_flag(&mm->flags);
1357 
1358 	/*
1359 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1360 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1361 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1362 	 * for FOLL_GET, not for the newer FOLL_PIN.
1363 	 *
1364 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1365 	 * that here, as any failures will be obvious enough.
1366 	 */
1367 	if (pages && !(flags & FOLL_PIN))
1368 		flags |= FOLL_GET;
1369 
1370 	pages_done = 0;
1371 	lock_dropped = false;
1372 	for (;;) {
1373 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1374 				       vmas, locked);
1375 		if (!locked)
1376 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1377 			return ret;
1378 
1379 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1380 		if (!*locked) {
1381 			BUG_ON(ret < 0);
1382 			BUG_ON(ret >= nr_pages);
1383 		}
1384 
1385 		if (ret > 0) {
1386 			nr_pages -= ret;
1387 			pages_done += ret;
1388 			if (!nr_pages)
1389 				break;
1390 		}
1391 		if (*locked) {
1392 			/*
1393 			 * VM_FAULT_RETRY didn't trigger or it was a
1394 			 * FOLL_NOWAIT.
1395 			 */
1396 			if (!pages_done)
1397 				pages_done = ret;
1398 			break;
1399 		}
1400 		/*
1401 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1402 		 * For the prefault case (!pages) we only update counts.
1403 		 */
1404 		if (likely(pages))
1405 			pages += ret;
1406 		start += ret << PAGE_SHIFT;
1407 		lock_dropped = true;
1408 
1409 retry:
1410 		/*
1411 		 * Repeat on the address that fired VM_FAULT_RETRY
1412 		 * with both FAULT_FLAG_ALLOW_RETRY and
1413 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1414 		 * by fatal signals of even common signals, depending on
1415 		 * the caller's request. So we need to check it before we
1416 		 * start trying again otherwise it can loop forever.
1417 		 */
1418 		if (gup_signal_pending(flags)) {
1419 			if (!pages_done)
1420 				pages_done = -EINTR;
1421 			break;
1422 		}
1423 
1424 		ret = mmap_read_lock_killable(mm);
1425 		if (ret) {
1426 			BUG_ON(ret > 0);
1427 			if (!pages_done)
1428 				pages_done = ret;
1429 			break;
1430 		}
1431 
1432 		*locked = 1;
1433 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1434 				       pages, NULL, locked);
1435 		if (!*locked) {
1436 			/* Continue to retry until we succeeded */
1437 			BUG_ON(ret != 0);
1438 			goto retry;
1439 		}
1440 		if (ret != 1) {
1441 			BUG_ON(ret > 1);
1442 			if (!pages_done)
1443 				pages_done = ret;
1444 			break;
1445 		}
1446 		nr_pages--;
1447 		pages_done++;
1448 		if (!nr_pages)
1449 			break;
1450 		if (likely(pages))
1451 			pages++;
1452 		start += PAGE_SIZE;
1453 	}
1454 	if (lock_dropped && *locked) {
1455 		/*
1456 		 * We must let the caller know we temporarily dropped the lock
1457 		 * and so the critical section protected by it was lost.
1458 		 */
1459 		mmap_read_unlock(mm);
1460 		*locked = 0;
1461 	}
1462 	return pages_done;
1463 }
1464 
1465 /**
1466  * populate_vma_page_range() -  populate a range of pages in the vma.
1467  * @vma:   target vma
1468  * @start: start address
1469  * @end:   end address
1470  * @locked: whether the mmap_lock is still held
1471  *
1472  * This takes care of mlocking the pages too if VM_LOCKED is set.
1473  *
1474  * Return either number of pages pinned in the vma, or a negative error
1475  * code on error.
1476  *
1477  * vma->vm_mm->mmap_lock must be held.
1478  *
1479  * If @locked is NULL, it may be held for read or write and will
1480  * be unperturbed.
1481  *
1482  * If @locked is non-NULL, it must held for read only and may be
1483  * released.  If it's released, *@locked will be set to 0.
1484  */
1485 long populate_vma_page_range(struct vm_area_struct *vma,
1486 		unsigned long start, unsigned long end, int *locked)
1487 {
1488 	struct mm_struct *mm = vma->vm_mm;
1489 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1490 	int gup_flags;
1491 	long ret;
1492 
1493 	VM_BUG_ON(!PAGE_ALIGNED(start));
1494 	VM_BUG_ON(!PAGE_ALIGNED(end));
1495 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1496 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1497 	mmap_assert_locked(mm);
1498 
1499 	/*
1500 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1501 	 * faultin_page() to break COW, so it has no work to do here.
1502 	 */
1503 	if (vma->vm_flags & VM_LOCKONFAULT)
1504 		return nr_pages;
1505 
1506 	gup_flags = FOLL_TOUCH;
1507 	/*
1508 	 * We want to touch writable mappings with a write fault in order
1509 	 * to break COW, except for shared mappings because these don't COW
1510 	 * and we would not want to dirty them for nothing.
1511 	 */
1512 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1513 		gup_flags |= FOLL_WRITE;
1514 
1515 	/*
1516 	 * We want mlock to succeed for regions that have any permissions
1517 	 * other than PROT_NONE.
1518 	 */
1519 	if (vma_is_accessible(vma))
1520 		gup_flags |= FOLL_FORCE;
1521 
1522 	/*
1523 	 * We made sure addr is within a VMA, so the following will
1524 	 * not result in a stack expansion that recurses back here.
1525 	 */
1526 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1527 				NULL, NULL, locked);
1528 	lru_add_drain();
1529 	return ret;
1530 }
1531 
1532 /*
1533  * faultin_vma_page_range() - populate (prefault) page tables inside the
1534  *			      given VMA range readable/writable
1535  *
1536  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1537  *
1538  * @vma: target vma
1539  * @start: start address
1540  * @end: end address
1541  * @write: whether to prefault readable or writable
1542  * @locked: whether the mmap_lock is still held
1543  *
1544  * Returns either number of processed pages in the vma, or a negative error
1545  * code on error (see __get_user_pages()).
1546  *
1547  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1548  * covered by the VMA.
1549  *
1550  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1551  *
1552  * If @locked is non-NULL, it must held for read only and may be released.  If
1553  * it's released, *@locked will be set to 0.
1554  */
1555 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1556 			    unsigned long end, bool write, int *locked)
1557 {
1558 	struct mm_struct *mm = vma->vm_mm;
1559 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1560 	int gup_flags;
1561 	long ret;
1562 
1563 	VM_BUG_ON(!PAGE_ALIGNED(start));
1564 	VM_BUG_ON(!PAGE_ALIGNED(end));
1565 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1566 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1567 	mmap_assert_locked(mm);
1568 
1569 	/*
1570 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1571 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1572 	 *	       difference with !FOLL_FORCE, because the page is writable
1573 	 *	       in the page table.
1574 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1575 	 *		  a poisoned page.
1576 	 * !FOLL_FORCE: Require proper access permissions.
1577 	 */
1578 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1579 	if (write)
1580 		gup_flags |= FOLL_WRITE;
1581 
1582 	/*
1583 	 * We want to report -EINVAL instead of -EFAULT for any permission
1584 	 * problems or incompatible mappings.
1585 	 */
1586 	if (check_vma_flags(vma, gup_flags))
1587 		return -EINVAL;
1588 
1589 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1590 				NULL, NULL, locked);
1591 	lru_add_drain();
1592 	return ret;
1593 }
1594 
1595 /*
1596  * __mm_populate - populate and/or mlock pages within a range of address space.
1597  *
1598  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1599  * flags. VMAs must be already marked with the desired vm_flags, and
1600  * mmap_lock must not be held.
1601  */
1602 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1603 {
1604 	struct mm_struct *mm = current->mm;
1605 	unsigned long end, nstart, nend;
1606 	struct vm_area_struct *vma = NULL;
1607 	int locked = 0;
1608 	long ret = 0;
1609 
1610 	end = start + len;
1611 
1612 	for (nstart = start; nstart < end; nstart = nend) {
1613 		/*
1614 		 * We want to fault in pages for [nstart; end) address range.
1615 		 * Find first corresponding VMA.
1616 		 */
1617 		if (!locked) {
1618 			locked = 1;
1619 			mmap_read_lock(mm);
1620 			vma = find_vma_intersection(mm, nstart, end);
1621 		} else if (nstart >= vma->vm_end)
1622 			vma = find_vma_intersection(mm, vma->vm_end, end);
1623 
1624 		if (!vma)
1625 			break;
1626 		/*
1627 		 * Set [nstart; nend) to intersection of desired address
1628 		 * range with the first VMA. Also, skip undesirable VMA types.
1629 		 */
1630 		nend = min(end, vma->vm_end);
1631 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1632 			continue;
1633 		if (nstart < vma->vm_start)
1634 			nstart = vma->vm_start;
1635 		/*
1636 		 * Now fault in a range of pages. populate_vma_page_range()
1637 		 * double checks the vma flags, so that it won't mlock pages
1638 		 * if the vma was already munlocked.
1639 		 */
1640 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1641 		if (ret < 0) {
1642 			if (ignore_errors) {
1643 				ret = 0;
1644 				continue;	/* continue at next VMA */
1645 			}
1646 			break;
1647 		}
1648 		nend = nstart + ret * PAGE_SIZE;
1649 		ret = 0;
1650 	}
1651 	if (locked)
1652 		mmap_read_unlock(mm);
1653 	return ret;	/* 0 or negative error code */
1654 }
1655 #else /* CONFIG_MMU */
1656 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1657 		unsigned long nr_pages, struct page **pages,
1658 		struct vm_area_struct **vmas, int *locked,
1659 		unsigned int foll_flags)
1660 {
1661 	struct vm_area_struct *vma;
1662 	unsigned long vm_flags;
1663 	long i;
1664 
1665 	/* calculate required read or write permissions.
1666 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1667 	 */
1668 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1669 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1670 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1671 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1672 
1673 	for (i = 0; i < nr_pages; i++) {
1674 		vma = find_vma(mm, start);
1675 		if (!vma)
1676 			goto finish_or_fault;
1677 
1678 		/* protect what we can, including chardevs */
1679 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1680 		    !(vm_flags & vma->vm_flags))
1681 			goto finish_or_fault;
1682 
1683 		if (pages) {
1684 			pages[i] = virt_to_page((void *)start);
1685 			if (pages[i])
1686 				get_page(pages[i]);
1687 		}
1688 		if (vmas)
1689 			vmas[i] = vma;
1690 		start = (start + PAGE_SIZE) & PAGE_MASK;
1691 	}
1692 
1693 	return i;
1694 
1695 finish_or_fault:
1696 	return i ? : -EFAULT;
1697 }
1698 #endif /* !CONFIG_MMU */
1699 
1700 /**
1701  * fault_in_writeable - fault in userspace address range for writing
1702  * @uaddr: start of address range
1703  * @size: size of address range
1704  *
1705  * Returns the number of bytes not faulted in (like copy_to_user() and
1706  * copy_from_user()).
1707  */
1708 size_t fault_in_writeable(char __user *uaddr, size_t size)
1709 {
1710 	char __user *start = uaddr, *end;
1711 
1712 	if (unlikely(size == 0))
1713 		return 0;
1714 	if (!user_write_access_begin(uaddr, size))
1715 		return size;
1716 	if (!PAGE_ALIGNED(uaddr)) {
1717 		unsafe_put_user(0, uaddr, out);
1718 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1719 	}
1720 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1721 	if (unlikely(end < start))
1722 		end = NULL;
1723 	while (uaddr != end) {
1724 		unsafe_put_user(0, uaddr, out);
1725 		uaddr += PAGE_SIZE;
1726 	}
1727 
1728 out:
1729 	user_write_access_end();
1730 	if (size > uaddr - start)
1731 		return size - (uaddr - start);
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL(fault_in_writeable);
1735 
1736 /**
1737  * fault_in_subpage_writeable - fault in an address range for writing
1738  * @uaddr: start of address range
1739  * @size: size of address range
1740  *
1741  * Fault in a user address range for writing while checking for permissions at
1742  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1743  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1744  *
1745  * Returns the number of bytes not faulted in (like copy_to_user() and
1746  * copy_from_user()).
1747  */
1748 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1749 {
1750 	size_t faulted_in;
1751 
1752 	/*
1753 	 * Attempt faulting in at page granularity first for page table
1754 	 * permission checking. The arch-specific probe_subpage_writeable()
1755 	 * functions may not check for this.
1756 	 */
1757 	faulted_in = size - fault_in_writeable(uaddr, size);
1758 	if (faulted_in)
1759 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1760 
1761 	return size - faulted_in;
1762 }
1763 EXPORT_SYMBOL(fault_in_subpage_writeable);
1764 
1765 /*
1766  * fault_in_safe_writeable - fault in an address range for writing
1767  * @uaddr: start of address range
1768  * @size: length of address range
1769  *
1770  * Faults in an address range for writing.  This is primarily useful when we
1771  * already know that some or all of the pages in the address range aren't in
1772  * memory.
1773  *
1774  * Unlike fault_in_writeable(), this function is non-destructive.
1775  *
1776  * Note that we don't pin or otherwise hold the pages referenced that we fault
1777  * in.  There's no guarantee that they'll stay in memory for any duration of
1778  * time.
1779  *
1780  * Returns the number of bytes not faulted in, like copy_to_user() and
1781  * copy_from_user().
1782  */
1783 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1784 {
1785 	unsigned long start = (unsigned long)uaddr, end;
1786 	struct mm_struct *mm = current->mm;
1787 	bool unlocked = false;
1788 
1789 	if (unlikely(size == 0))
1790 		return 0;
1791 	end = PAGE_ALIGN(start + size);
1792 	if (end < start)
1793 		end = 0;
1794 
1795 	mmap_read_lock(mm);
1796 	do {
1797 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1798 			break;
1799 		start = (start + PAGE_SIZE) & PAGE_MASK;
1800 	} while (start != end);
1801 	mmap_read_unlock(mm);
1802 
1803 	if (size > (unsigned long)uaddr - start)
1804 		return size - ((unsigned long)uaddr - start);
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(fault_in_safe_writeable);
1808 
1809 /**
1810  * fault_in_readable - fault in userspace address range for reading
1811  * @uaddr: start of user address range
1812  * @size: size of user address range
1813  *
1814  * Returns the number of bytes not faulted in (like copy_to_user() and
1815  * copy_from_user()).
1816  */
1817 size_t fault_in_readable(const char __user *uaddr, size_t size)
1818 {
1819 	const char __user *start = uaddr, *end;
1820 	volatile char c;
1821 
1822 	if (unlikely(size == 0))
1823 		return 0;
1824 	if (!user_read_access_begin(uaddr, size))
1825 		return size;
1826 	if (!PAGE_ALIGNED(uaddr)) {
1827 		unsafe_get_user(c, uaddr, out);
1828 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1829 	}
1830 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1831 	if (unlikely(end < start))
1832 		end = NULL;
1833 	while (uaddr != end) {
1834 		unsafe_get_user(c, uaddr, out);
1835 		uaddr += PAGE_SIZE;
1836 	}
1837 
1838 out:
1839 	user_read_access_end();
1840 	(void)c;
1841 	if (size > uaddr - start)
1842 		return size - (uaddr - start);
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL(fault_in_readable);
1846 
1847 /**
1848  * get_dump_page() - pin user page in memory while writing it to core dump
1849  * @addr: user address
1850  *
1851  * Returns struct page pointer of user page pinned for dump,
1852  * to be freed afterwards by put_page().
1853  *
1854  * Returns NULL on any kind of failure - a hole must then be inserted into
1855  * the corefile, to preserve alignment with its headers; and also returns
1856  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1857  * allowing a hole to be left in the corefile to save disk space.
1858  *
1859  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1860  */
1861 #ifdef CONFIG_ELF_CORE
1862 struct page *get_dump_page(unsigned long addr)
1863 {
1864 	struct mm_struct *mm = current->mm;
1865 	struct page *page;
1866 	int locked = 1;
1867 	int ret;
1868 
1869 	if (mmap_read_lock_killable(mm))
1870 		return NULL;
1871 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1872 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1873 	if (locked)
1874 		mmap_read_unlock(mm);
1875 	return (ret == 1) ? page : NULL;
1876 }
1877 #endif /* CONFIG_ELF_CORE */
1878 
1879 #ifdef CONFIG_MIGRATION
1880 /*
1881  * Returns the number of collected pages. Return value is always >= 0.
1882  */
1883 static unsigned long collect_longterm_unpinnable_pages(
1884 					struct list_head *movable_page_list,
1885 					unsigned long nr_pages,
1886 					struct page **pages)
1887 {
1888 	unsigned long i, collected = 0;
1889 	struct folio *prev_folio = NULL;
1890 	bool drain_allow = true;
1891 
1892 	for (i = 0; i < nr_pages; i++) {
1893 		struct folio *folio = page_folio(pages[i]);
1894 
1895 		if (folio == prev_folio)
1896 			continue;
1897 		prev_folio = folio;
1898 
1899 		if (folio_is_longterm_pinnable(folio))
1900 			continue;
1901 
1902 		collected++;
1903 
1904 		if (folio_is_device_coherent(folio))
1905 			continue;
1906 
1907 		if (folio_test_hugetlb(folio)) {
1908 			isolate_hugetlb(&folio->page, movable_page_list);
1909 			continue;
1910 		}
1911 
1912 		if (!folio_test_lru(folio) && drain_allow) {
1913 			lru_add_drain_all();
1914 			drain_allow = false;
1915 		}
1916 
1917 		if (!folio_isolate_lru(folio))
1918 			continue;
1919 
1920 		list_add_tail(&folio->lru, movable_page_list);
1921 		node_stat_mod_folio(folio,
1922 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1923 				    folio_nr_pages(folio));
1924 	}
1925 
1926 	return collected;
1927 }
1928 
1929 /*
1930  * Unpins all pages and migrates device coherent pages and movable_page_list.
1931  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1932  * (or partial success).
1933  */
1934 static int migrate_longterm_unpinnable_pages(
1935 					struct list_head *movable_page_list,
1936 					unsigned long nr_pages,
1937 					struct page **pages)
1938 {
1939 	int ret;
1940 	unsigned long i;
1941 
1942 	for (i = 0; i < nr_pages; i++) {
1943 		struct folio *folio = page_folio(pages[i]);
1944 
1945 		if (folio_is_device_coherent(folio)) {
1946 			/*
1947 			 * Migration will fail if the page is pinned, so convert
1948 			 * the pin on the source page to a normal reference.
1949 			 */
1950 			pages[i] = NULL;
1951 			folio_get(folio);
1952 			gup_put_folio(folio, 1, FOLL_PIN);
1953 
1954 			if (migrate_device_coherent_page(&folio->page)) {
1955 				ret = -EBUSY;
1956 				goto err;
1957 			}
1958 
1959 			continue;
1960 		}
1961 
1962 		/*
1963 		 * We can't migrate pages with unexpected references, so drop
1964 		 * the reference obtained by __get_user_pages_locked().
1965 		 * Migrating pages have been added to movable_page_list after
1966 		 * calling folio_isolate_lru() which takes a reference so the
1967 		 * page won't be freed if it's migrating.
1968 		 */
1969 		unpin_user_page(pages[i]);
1970 		pages[i] = NULL;
1971 	}
1972 
1973 	if (!list_empty(movable_page_list)) {
1974 		struct migration_target_control mtc = {
1975 			.nid = NUMA_NO_NODE,
1976 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1977 		};
1978 
1979 		if (migrate_pages(movable_page_list, alloc_migration_target,
1980 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1981 				  MR_LONGTERM_PIN, NULL)) {
1982 			ret = -ENOMEM;
1983 			goto err;
1984 		}
1985 	}
1986 
1987 	putback_movable_pages(movable_page_list);
1988 
1989 	return -EAGAIN;
1990 
1991 err:
1992 	for (i = 0; i < nr_pages; i++)
1993 		if (pages[i])
1994 			unpin_user_page(pages[i]);
1995 	putback_movable_pages(movable_page_list);
1996 
1997 	return ret;
1998 }
1999 
2000 /*
2001  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2002  * pages in the range are required to be pinned via FOLL_PIN, before calling
2003  * this routine.
2004  *
2005  * If any pages in the range are not allowed to be pinned, then this routine
2006  * will migrate those pages away, unpin all the pages in the range and return
2007  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2008  * call this routine again.
2009  *
2010  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2011  * The caller should give up, and propagate the error back up the call stack.
2012  *
2013  * If everything is OK and all pages in the range are allowed to be pinned, then
2014  * this routine leaves all pages pinned and returns zero for success.
2015  */
2016 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2017 					    struct page **pages)
2018 {
2019 	unsigned long collected;
2020 	LIST_HEAD(movable_page_list);
2021 
2022 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2023 						nr_pages, pages);
2024 	if (!collected)
2025 		return 0;
2026 
2027 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2028 						pages);
2029 }
2030 #else
2031 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2032 					    struct page **pages)
2033 {
2034 	return 0;
2035 }
2036 #endif /* CONFIG_MIGRATION */
2037 
2038 /*
2039  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2040  * allows us to process the FOLL_LONGTERM flag.
2041  */
2042 static long __gup_longterm_locked(struct mm_struct *mm,
2043 				  unsigned long start,
2044 				  unsigned long nr_pages,
2045 				  struct page **pages,
2046 				  struct vm_area_struct **vmas,
2047 				  int *locked,
2048 				  unsigned int gup_flags)
2049 {
2050 	bool must_unlock = false;
2051 	unsigned int flags;
2052 	long rc, nr_pinned_pages;
2053 
2054 	if (locked && WARN_ON_ONCE(!*locked))
2055 		return -EINVAL;
2056 
2057 	if (!(gup_flags & FOLL_LONGTERM))
2058 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2059 					       locked, gup_flags);
2060 
2061 	/*
2062 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2063 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2064 	 * correct to unconditionally call check_and_migrate_movable_pages()
2065 	 * which assumes pages have been pinned via FOLL_PIN.
2066 	 *
2067 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2068 	 */
2069 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2070 		return -EINVAL;
2071 	flags = memalloc_pin_save();
2072 	do {
2073 		if (locked && !*locked) {
2074 			mmap_read_lock(mm);
2075 			must_unlock = true;
2076 			*locked = 1;
2077 		}
2078 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2079 							  pages, vmas, locked,
2080 							  gup_flags);
2081 		if (nr_pinned_pages <= 0) {
2082 			rc = nr_pinned_pages;
2083 			break;
2084 		}
2085 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2086 	} while (rc == -EAGAIN);
2087 	memalloc_pin_restore(flags);
2088 
2089 	if (locked && *locked && must_unlock) {
2090 		mmap_read_unlock(mm);
2091 		*locked = 0;
2092 	}
2093 	return rc ? rc : nr_pinned_pages;
2094 }
2095 
2096 static bool is_valid_gup_flags(unsigned int gup_flags)
2097 {
2098 	/*
2099 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2100 	 * never directly by the caller, so enforce that with an assertion:
2101 	 */
2102 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2103 		return false;
2104 	/*
2105 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2106 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2107 	 * FOLL_PIN.
2108 	 */
2109 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2110 		return false;
2111 
2112 	return true;
2113 }
2114 
2115 #ifdef CONFIG_MMU
2116 /**
2117  * get_user_pages_remote() - pin user pages in memory
2118  * @mm:		mm_struct of target mm
2119  * @start:	starting user address
2120  * @nr_pages:	number of pages from start to pin
2121  * @gup_flags:	flags modifying lookup behaviour
2122  * @pages:	array that receives pointers to the pages pinned.
2123  *		Should be at least nr_pages long. Or NULL, if caller
2124  *		only intends to ensure the pages are faulted in.
2125  * @vmas:	array of pointers to vmas corresponding to each page.
2126  *		Or NULL if the caller does not require them.
2127  * @locked:	pointer to lock flag indicating whether lock is held and
2128  *		subsequently whether VM_FAULT_RETRY functionality can be
2129  *		utilised. Lock must initially be held.
2130  *
2131  * Returns either number of pages pinned (which may be less than the
2132  * number requested), or an error. Details about the return value:
2133  *
2134  * -- If nr_pages is 0, returns 0.
2135  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2136  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2137  *    pages pinned. Again, this may be less than nr_pages.
2138  *
2139  * The caller is responsible for releasing returned @pages, via put_page().
2140  *
2141  * @vmas are valid only as long as mmap_lock is held.
2142  *
2143  * Must be called with mmap_lock held for read or write.
2144  *
2145  * get_user_pages_remote walks a process's page tables and takes a reference
2146  * to each struct page that each user address corresponds to at a given
2147  * instant. That is, it takes the page that would be accessed if a user
2148  * thread accesses the given user virtual address at that instant.
2149  *
2150  * This does not guarantee that the page exists in the user mappings when
2151  * get_user_pages_remote returns, and there may even be a completely different
2152  * page there in some cases (eg. if mmapped pagecache has been invalidated
2153  * and subsequently re faulted). However it does guarantee that the page
2154  * won't be freed completely. And mostly callers simply care that the page
2155  * contains data that was valid *at some point in time*. Typically, an IO
2156  * or similar operation cannot guarantee anything stronger anyway because
2157  * locks can't be held over the syscall boundary.
2158  *
2159  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2160  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2161  * be called after the page is finished with, and before put_page is called.
2162  *
2163  * get_user_pages_remote is typically used for fewer-copy IO operations,
2164  * to get a handle on the memory by some means other than accesses
2165  * via the user virtual addresses. The pages may be submitted for
2166  * DMA to devices or accessed via their kernel linear mapping (via the
2167  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2168  *
2169  * See also get_user_pages_fast, for performance critical applications.
2170  *
2171  * get_user_pages_remote should be phased out in favor of
2172  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2173  * should use get_user_pages_remote because it cannot pass
2174  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2175  */
2176 long get_user_pages_remote(struct mm_struct *mm,
2177 		unsigned long start, unsigned long nr_pages,
2178 		unsigned int gup_flags, struct page **pages,
2179 		struct vm_area_struct **vmas, int *locked)
2180 {
2181 	if (!is_valid_gup_flags(gup_flags))
2182 		return -EINVAL;
2183 
2184 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2185 				     gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2186 }
2187 EXPORT_SYMBOL(get_user_pages_remote);
2188 
2189 #else /* CONFIG_MMU */
2190 long get_user_pages_remote(struct mm_struct *mm,
2191 			   unsigned long start, unsigned long nr_pages,
2192 			   unsigned int gup_flags, struct page **pages,
2193 			   struct vm_area_struct **vmas, int *locked)
2194 {
2195 	return 0;
2196 }
2197 #endif /* !CONFIG_MMU */
2198 
2199 /**
2200  * get_user_pages() - pin user pages in memory
2201  * @start:      starting user address
2202  * @nr_pages:   number of pages from start to pin
2203  * @gup_flags:  flags modifying lookup behaviour
2204  * @pages:      array that receives pointers to the pages pinned.
2205  *              Should be at least nr_pages long. Or NULL, if caller
2206  *              only intends to ensure the pages are faulted in.
2207  * @vmas:       array of pointers to vmas corresponding to each page.
2208  *              Or NULL if the caller does not require them.
2209  *
2210  * This is the same as get_user_pages_remote(), just with a less-flexible
2211  * calling convention where we assume that the mm being operated on belongs to
2212  * the current task, and doesn't allow passing of a locked parameter.  We also
2213  * obviously don't pass FOLL_REMOTE in here.
2214  */
2215 long get_user_pages(unsigned long start, unsigned long nr_pages,
2216 		unsigned int gup_flags, struct page **pages,
2217 		struct vm_area_struct **vmas)
2218 {
2219 	if (!is_valid_gup_flags(gup_flags))
2220 		return -EINVAL;
2221 
2222 	return __gup_longterm_locked(current->mm, start, nr_pages,
2223 				     pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2224 }
2225 EXPORT_SYMBOL(get_user_pages);
2226 
2227 /*
2228  * get_user_pages_unlocked() is suitable to replace the form:
2229  *
2230  *      mmap_read_lock(mm);
2231  *      get_user_pages(mm, ..., pages, NULL);
2232  *      mmap_read_unlock(mm);
2233  *
2234  *  with:
2235  *
2236  *      get_user_pages_unlocked(mm, ..., pages);
2237  *
2238  * It is functionally equivalent to get_user_pages_fast so
2239  * get_user_pages_fast should be used instead if specific gup_flags
2240  * (e.g. FOLL_FORCE) are not required.
2241  */
2242 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2243 			     struct page **pages, unsigned int gup_flags)
2244 {
2245 	struct mm_struct *mm = current->mm;
2246 	int locked = 1;
2247 	long ret;
2248 
2249 	mmap_read_lock(mm);
2250 	ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2251 				    gup_flags | FOLL_TOUCH);
2252 	if (locked)
2253 		mmap_read_unlock(mm);
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL(get_user_pages_unlocked);
2257 
2258 /*
2259  * Fast GUP
2260  *
2261  * get_user_pages_fast attempts to pin user pages by walking the page
2262  * tables directly and avoids taking locks. Thus the walker needs to be
2263  * protected from page table pages being freed from under it, and should
2264  * block any THP splits.
2265  *
2266  * One way to achieve this is to have the walker disable interrupts, and
2267  * rely on IPIs from the TLB flushing code blocking before the page table
2268  * pages are freed. This is unsuitable for architectures that do not need
2269  * to broadcast an IPI when invalidating TLBs.
2270  *
2271  * Another way to achieve this is to batch up page table containing pages
2272  * belonging to more than one mm_user, then rcu_sched a callback to free those
2273  * pages. Disabling interrupts will allow the fast_gup walker to both block
2274  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2275  * (which is a relatively rare event). The code below adopts this strategy.
2276  *
2277  * Before activating this code, please be aware that the following assumptions
2278  * are currently made:
2279  *
2280  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2281  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2282  *
2283  *  *) ptes can be read atomically by the architecture.
2284  *
2285  *  *) access_ok is sufficient to validate userspace address ranges.
2286  *
2287  * The last two assumptions can be relaxed by the addition of helper functions.
2288  *
2289  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2290  */
2291 #ifdef CONFIG_HAVE_FAST_GUP
2292 
2293 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2294 					    unsigned int flags,
2295 					    struct page **pages)
2296 {
2297 	while ((*nr) - nr_start) {
2298 		struct page *page = pages[--(*nr)];
2299 
2300 		ClearPageReferenced(page);
2301 		if (flags & FOLL_PIN)
2302 			unpin_user_page(page);
2303 		else
2304 			put_page(page);
2305 	}
2306 }
2307 
2308 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2309 /*
2310  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2311  * operations.
2312  *
2313  * To pin the page, fast-gup needs to do below in order:
2314  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2315  *
2316  * For the rest of pgtable operations where pgtable updates can be racy
2317  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2318  * is pinned.
2319  *
2320  * Above will work for all pte-level operations, including THP split.
2321  *
2322  * For THP collapse, it's a bit more complicated because fast-gup may be
2323  * walking a pgtable page that is being freed (pte is still valid but pmd
2324  * can be cleared already).  To avoid race in such condition, we need to
2325  * also check pmd here to make sure pmd doesn't change (corresponds to
2326  * pmdp_collapse_flush() in the THP collapse code path).
2327  */
2328 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2329 			 unsigned long end, unsigned int flags,
2330 			 struct page **pages, int *nr)
2331 {
2332 	struct dev_pagemap *pgmap = NULL;
2333 	int nr_start = *nr, ret = 0;
2334 	pte_t *ptep, *ptem;
2335 
2336 	ptem = ptep = pte_offset_map(&pmd, addr);
2337 	do {
2338 		pte_t pte = ptep_get_lockless(ptep);
2339 		struct page *page;
2340 		struct folio *folio;
2341 
2342 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2343 			goto pte_unmap;
2344 
2345 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2346 			goto pte_unmap;
2347 
2348 		if (pte_devmap(pte)) {
2349 			if (unlikely(flags & FOLL_LONGTERM))
2350 				goto pte_unmap;
2351 
2352 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2353 			if (unlikely(!pgmap)) {
2354 				undo_dev_pagemap(nr, nr_start, flags, pages);
2355 				goto pte_unmap;
2356 			}
2357 		} else if (pte_special(pte))
2358 			goto pte_unmap;
2359 
2360 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361 		page = pte_page(pte);
2362 
2363 		folio = try_grab_folio(page, 1, flags);
2364 		if (!folio)
2365 			goto pte_unmap;
2366 
2367 		if (unlikely(page_is_secretmem(page))) {
2368 			gup_put_folio(folio, 1, flags);
2369 			goto pte_unmap;
2370 		}
2371 
2372 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2373 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2374 			gup_put_folio(folio, 1, flags);
2375 			goto pte_unmap;
2376 		}
2377 
2378 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2379 			gup_put_folio(folio, 1, flags);
2380 			goto pte_unmap;
2381 		}
2382 
2383 		/*
2384 		 * We need to make the page accessible if and only if we are
2385 		 * going to access its content (the FOLL_PIN case).  Please
2386 		 * see Documentation/core-api/pin_user_pages.rst for
2387 		 * details.
2388 		 */
2389 		if (flags & FOLL_PIN) {
2390 			ret = arch_make_page_accessible(page);
2391 			if (ret) {
2392 				gup_put_folio(folio, 1, flags);
2393 				goto pte_unmap;
2394 			}
2395 		}
2396 		folio_set_referenced(folio);
2397 		pages[*nr] = page;
2398 		(*nr)++;
2399 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2400 
2401 	ret = 1;
2402 
2403 pte_unmap:
2404 	if (pgmap)
2405 		put_dev_pagemap(pgmap);
2406 	pte_unmap(ptem);
2407 	return ret;
2408 }
2409 #else
2410 
2411 /*
2412  * If we can't determine whether or not a pte is special, then fail immediately
2413  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2414  * to be special.
2415  *
2416  * For a futex to be placed on a THP tail page, get_futex_key requires a
2417  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2418  * useful to have gup_huge_pmd even if we can't operate on ptes.
2419  */
2420 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2421 			 unsigned long end, unsigned int flags,
2422 			 struct page **pages, int *nr)
2423 {
2424 	return 0;
2425 }
2426 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2427 
2428 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2429 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2430 			     unsigned long end, unsigned int flags,
2431 			     struct page **pages, int *nr)
2432 {
2433 	int nr_start = *nr;
2434 	struct dev_pagemap *pgmap = NULL;
2435 
2436 	do {
2437 		struct page *page = pfn_to_page(pfn);
2438 
2439 		pgmap = get_dev_pagemap(pfn, pgmap);
2440 		if (unlikely(!pgmap)) {
2441 			undo_dev_pagemap(nr, nr_start, flags, pages);
2442 			break;
2443 		}
2444 
2445 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2446 			undo_dev_pagemap(nr, nr_start, flags, pages);
2447 			break;
2448 		}
2449 
2450 		SetPageReferenced(page);
2451 		pages[*nr] = page;
2452 		if (unlikely(try_grab_page(page, flags))) {
2453 			undo_dev_pagemap(nr, nr_start, flags, pages);
2454 			break;
2455 		}
2456 		(*nr)++;
2457 		pfn++;
2458 	} while (addr += PAGE_SIZE, addr != end);
2459 
2460 	put_dev_pagemap(pgmap);
2461 	return addr == end;
2462 }
2463 
2464 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2465 				 unsigned long end, unsigned int flags,
2466 				 struct page **pages, int *nr)
2467 {
2468 	unsigned long fault_pfn;
2469 	int nr_start = *nr;
2470 
2471 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2472 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2473 		return 0;
2474 
2475 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2476 		undo_dev_pagemap(nr, nr_start, flags, pages);
2477 		return 0;
2478 	}
2479 	return 1;
2480 }
2481 
2482 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2483 				 unsigned long end, unsigned int flags,
2484 				 struct page **pages, int *nr)
2485 {
2486 	unsigned long fault_pfn;
2487 	int nr_start = *nr;
2488 
2489 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2490 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2491 		return 0;
2492 
2493 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2494 		undo_dev_pagemap(nr, nr_start, flags, pages);
2495 		return 0;
2496 	}
2497 	return 1;
2498 }
2499 #else
2500 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2501 				 unsigned long end, unsigned int flags,
2502 				 struct page **pages, int *nr)
2503 {
2504 	BUILD_BUG();
2505 	return 0;
2506 }
2507 
2508 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2509 				 unsigned long end, unsigned int flags,
2510 				 struct page **pages, int *nr)
2511 {
2512 	BUILD_BUG();
2513 	return 0;
2514 }
2515 #endif
2516 
2517 static int record_subpages(struct page *page, unsigned long addr,
2518 			   unsigned long end, struct page **pages)
2519 {
2520 	int nr;
2521 
2522 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2523 		pages[nr] = nth_page(page, nr);
2524 
2525 	return nr;
2526 }
2527 
2528 #ifdef CONFIG_ARCH_HAS_HUGEPD
2529 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2530 				      unsigned long sz)
2531 {
2532 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2533 	return (__boundary - 1 < end - 1) ? __boundary : end;
2534 }
2535 
2536 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2537 		       unsigned long end, unsigned int flags,
2538 		       struct page **pages, int *nr)
2539 {
2540 	unsigned long pte_end;
2541 	struct page *page;
2542 	struct folio *folio;
2543 	pte_t pte;
2544 	int refs;
2545 
2546 	pte_end = (addr + sz) & ~(sz-1);
2547 	if (pte_end < end)
2548 		end = pte_end;
2549 
2550 	pte = huge_ptep_get(ptep);
2551 
2552 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2553 		return 0;
2554 
2555 	/* hugepages are never "special" */
2556 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2557 
2558 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2559 	refs = record_subpages(page, addr, end, pages + *nr);
2560 
2561 	folio = try_grab_folio(page, refs, flags);
2562 	if (!folio)
2563 		return 0;
2564 
2565 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2566 		gup_put_folio(folio, refs, flags);
2567 		return 0;
2568 	}
2569 
2570 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2571 		gup_put_folio(folio, refs, flags);
2572 		return 0;
2573 	}
2574 
2575 	*nr += refs;
2576 	folio_set_referenced(folio);
2577 	return 1;
2578 }
2579 
2580 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2581 		unsigned int pdshift, unsigned long end, unsigned int flags,
2582 		struct page **pages, int *nr)
2583 {
2584 	pte_t *ptep;
2585 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2586 	unsigned long next;
2587 
2588 	ptep = hugepte_offset(hugepd, addr, pdshift);
2589 	do {
2590 		next = hugepte_addr_end(addr, end, sz);
2591 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2592 			return 0;
2593 	} while (ptep++, addr = next, addr != end);
2594 
2595 	return 1;
2596 }
2597 #else
2598 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2599 		unsigned int pdshift, unsigned long end, unsigned int flags,
2600 		struct page **pages, int *nr)
2601 {
2602 	return 0;
2603 }
2604 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2605 
2606 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2607 			unsigned long end, unsigned int flags,
2608 			struct page **pages, int *nr)
2609 {
2610 	struct page *page;
2611 	struct folio *folio;
2612 	int refs;
2613 
2614 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2615 		return 0;
2616 
2617 	if (pmd_devmap(orig)) {
2618 		if (unlikely(flags & FOLL_LONGTERM))
2619 			return 0;
2620 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2621 					     pages, nr);
2622 	}
2623 
2624 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2625 	refs = record_subpages(page, addr, end, pages + *nr);
2626 
2627 	folio = try_grab_folio(page, refs, flags);
2628 	if (!folio)
2629 		return 0;
2630 
2631 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2632 		gup_put_folio(folio, refs, flags);
2633 		return 0;
2634 	}
2635 
2636 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2637 		gup_put_folio(folio, refs, flags);
2638 		return 0;
2639 	}
2640 
2641 	*nr += refs;
2642 	folio_set_referenced(folio);
2643 	return 1;
2644 }
2645 
2646 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2647 			unsigned long end, unsigned int flags,
2648 			struct page **pages, int *nr)
2649 {
2650 	struct page *page;
2651 	struct folio *folio;
2652 	int refs;
2653 
2654 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2655 		return 0;
2656 
2657 	if (pud_devmap(orig)) {
2658 		if (unlikely(flags & FOLL_LONGTERM))
2659 			return 0;
2660 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2661 					     pages, nr);
2662 	}
2663 
2664 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2665 	refs = record_subpages(page, addr, end, pages + *nr);
2666 
2667 	folio = try_grab_folio(page, refs, flags);
2668 	if (!folio)
2669 		return 0;
2670 
2671 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2672 		gup_put_folio(folio, refs, flags);
2673 		return 0;
2674 	}
2675 
2676 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2677 		gup_put_folio(folio, refs, flags);
2678 		return 0;
2679 	}
2680 
2681 	*nr += refs;
2682 	folio_set_referenced(folio);
2683 	return 1;
2684 }
2685 
2686 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2687 			unsigned long end, unsigned int flags,
2688 			struct page **pages, int *nr)
2689 {
2690 	int refs;
2691 	struct page *page;
2692 	struct folio *folio;
2693 
2694 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2695 		return 0;
2696 
2697 	BUILD_BUG_ON(pgd_devmap(orig));
2698 
2699 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2700 	refs = record_subpages(page, addr, end, pages + *nr);
2701 
2702 	folio = try_grab_folio(page, refs, flags);
2703 	if (!folio)
2704 		return 0;
2705 
2706 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2707 		gup_put_folio(folio, refs, flags);
2708 		return 0;
2709 	}
2710 
2711 	*nr += refs;
2712 	folio_set_referenced(folio);
2713 	return 1;
2714 }
2715 
2716 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2717 		unsigned int flags, struct page **pages, int *nr)
2718 {
2719 	unsigned long next;
2720 	pmd_t *pmdp;
2721 
2722 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2723 	do {
2724 		pmd_t pmd = pmdp_get_lockless(pmdp);
2725 
2726 		next = pmd_addr_end(addr, end);
2727 		if (!pmd_present(pmd))
2728 			return 0;
2729 
2730 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2731 			     pmd_devmap(pmd))) {
2732 			if (pmd_protnone(pmd) &&
2733 			    !gup_can_follow_protnone(flags))
2734 				return 0;
2735 
2736 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2737 				pages, nr))
2738 				return 0;
2739 
2740 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2741 			/*
2742 			 * architecture have different format for hugetlbfs
2743 			 * pmd format and THP pmd format
2744 			 */
2745 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2746 					 PMD_SHIFT, next, flags, pages, nr))
2747 				return 0;
2748 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2749 			return 0;
2750 	} while (pmdp++, addr = next, addr != end);
2751 
2752 	return 1;
2753 }
2754 
2755 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2756 			 unsigned int flags, struct page **pages, int *nr)
2757 {
2758 	unsigned long next;
2759 	pud_t *pudp;
2760 
2761 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2762 	do {
2763 		pud_t pud = READ_ONCE(*pudp);
2764 
2765 		next = pud_addr_end(addr, end);
2766 		if (unlikely(!pud_present(pud)))
2767 			return 0;
2768 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2769 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2770 					  pages, nr))
2771 				return 0;
2772 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2773 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2774 					 PUD_SHIFT, next, flags, pages, nr))
2775 				return 0;
2776 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2777 			return 0;
2778 	} while (pudp++, addr = next, addr != end);
2779 
2780 	return 1;
2781 }
2782 
2783 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2784 			 unsigned int flags, struct page **pages, int *nr)
2785 {
2786 	unsigned long next;
2787 	p4d_t *p4dp;
2788 
2789 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2790 	do {
2791 		p4d_t p4d = READ_ONCE(*p4dp);
2792 
2793 		next = p4d_addr_end(addr, end);
2794 		if (p4d_none(p4d))
2795 			return 0;
2796 		BUILD_BUG_ON(p4d_huge(p4d));
2797 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2798 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2799 					 P4D_SHIFT, next, flags, pages, nr))
2800 				return 0;
2801 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2802 			return 0;
2803 	} while (p4dp++, addr = next, addr != end);
2804 
2805 	return 1;
2806 }
2807 
2808 static void gup_pgd_range(unsigned long addr, unsigned long end,
2809 		unsigned int flags, struct page **pages, int *nr)
2810 {
2811 	unsigned long next;
2812 	pgd_t *pgdp;
2813 
2814 	pgdp = pgd_offset(current->mm, addr);
2815 	do {
2816 		pgd_t pgd = READ_ONCE(*pgdp);
2817 
2818 		next = pgd_addr_end(addr, end);
2819 		if (pgd_none(pgd))
2820 			return;
2821 		if (unlikely(pgd_huge(pgd))) {
2822 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2823 					  pages, nr))
2824 				return;
2825 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2826 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2827 					 PGDIR_SHIFT, next, flags, pages, nr))
2828 				return;
2829 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2830 			return;
2831 	} while (pgdp++, addr = next, addr != end);
2832 }
2833 #else
2834 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2835 		unsigned int flags, struct page **pages, int *nr)
2836 {
2837 }
2838 #endif /* CONFIG_HAVE_FAST_GUP */
2839 
2840 #ifndef gup_fast_permitted
2841 /*
2842  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2843  * we need to fall back to the slow version:
2844  */
2845 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2846 {
2847 	return true;
2848 }
2849 #endif
2850 
2851 static unsigned long lockless_pages_from_mm(unsigned long start,
2852 					    unsigned long end,
2853 					    unsigned int gup_flags,
2854 					    struct page **pages)
2855 {
2856 	unsigned long flags;
2857 	int nr_pinned = 0;
2858 	unsigned seq;
2859 
2860 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2861 	    !gup_fast_permitted(start, end))
2862 		return 0;
2863 
2864 	if (gup_flags & FOLL_PIN) {
2865 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2866 		if (seq & 1)
2867 			return 0;
2868 	}
2869 
2870 	/*
2871 	 * Disable interrupts. The nested form is used, in order to allow full,
2872 	 * general purpose use of this routine.
2873 	 *
2874 	 * With interrupts disabled, we block page table pages from being freed
2875 	 * from under us. See struct mmu_table_batch comments in
2876 	 * include/asm-generic/tlb.h for more details.
2877 	 *
2878 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2879 	 * that come from THPs splitting.
2880 	 */
2881 	local_irq_save(flags);
2882 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2883 	local_irq_restore(flags);
2884 
2885 	/*
2886 	 * When pinning pages for DMA there could be a concurrent write protect
2887 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2888 	 */
2889 	if (gup_flags & FOLL_PIN) {
2890 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2891 			unpin_user_pages_lockless(pages, nr_pinned);
2892 			return 0;
2893 		} else {
2894 			sanity_check_pinned_pages(pages, nr_pinned);
2895 		}
2896 	}
2897 	return nr_pinned;
2898 }
2899 
2900 static int internal_get_user_pages_fast(unsigned long start,
2901 					unsigned long nr_pages,
2902 					unsigned int gup_flags,
2903 					struct page **pages)
2904 {
2905 	unsigned long len, end;
2906 	unsigned long nr_pinned;
2907 	int ret;
2908 
2909 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2910 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2911 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
2912 				       FOLL_PCI_P2PDMA)))
2913 		return -EINVAL;
2914 
2915 	if (gup_flags & FOLL_PIN)
2916 		mm_set_has_pinned_flag(&current->mm->flags);
2917 
2918 	if (!(gup_flags & FOLL_FAST_ONLY))
2919 		might_lock_read(&current->mm->mmap_lock);
2920 
2921 	start = untagged_addr(start) & PAGE_MASK;
2922 	len = nr_pages << PAGE_SHIFT;
2923 	if (check_add_overflow(start, len, &end))
2924 		return 0;
2925 	if (unlikely(!access_ok((void __user *)start, len)))
2926 		return -EFAULT;
2927 
2928 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2929 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2930 		return nr_pinned;
2931 
2932 	/* Slow path: try to get the remaining pages with get_user_pages */
2933 	start += nr_pinned << PAGE_SHIFT;
2934 	pages += nr_pinned;
2935 	ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2936 				      gup_flags);
2937 	if (ret < 0) {
2938 		/*
2939 		 * The caller has to unpin the pages we already pinned so
2940 		 * returning -errno is not an option
2941 		 */
2942 		if (nr_pinned)
2943 			return nr_pinned;
2944 		return ret;
2945 	}
2946 	return ret + nr_pinned;
2947 }
2948 
2949 /**
2950  * get_user_pages_fast_only() - pin user pages in memory
2951  * @start:      starting user address
2952  * @nr_pages:   number of pages from start to pin
2953  * @gup_flags:  flags modifying pin behaviour
2954  * @pages:      array that receives pointers to the pages pinned.
2955  *              Should be at least nr_pages long.
2956  *
2957  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2958  * the regular GUP.
2959  * Note a difference with get_user_pages_fast: this always returns the
2960  * number of pages pinned, 0 if no pages were pinned.
2961  *
2962  * If the architecture does not support this function, simply return with no
2963  * pages pinned.
2964  *
2965  * Careful, careful! COW breaking can go either way, so a non-write
2966  * access can get ambiguous page results. If you call this function without
2967  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2968  */
2969 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2970 			     unsigned int gup_flags, struct page **pages)
2971 {
2972 	int nr_pinned;
2973 	/*
2974 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2975 	 * because gup fast is always a "pin with a +1 page refcount" request.
2976 	 *
2977 	 * FOLL_FAST_ONLY is required in order to match the API description of
2978 	 * this routine: no fall back to regular ("slow") GUP.
2979 	 */
2980 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2981 
2982 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2983 						 pages);
2984 
2985 	/*
2986 	 * As specified in the API description above, this routine is not
2987 	 * allowed to return negative values. However, the common core
2988 	 * routine internal_get_user_pages_fast() *can* return -errno.
2989 	 * Therefore, correct for that here:
2990 	 */
2991 	if (nr_pinned < 0)
2992 		nr_pinned = 0;
2993 
2994 	return nr_pinned;
2995 }
2996 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2997 
2998 /**
2999  * get_user_pages_fast() - pin user pages in memory
3000  * @start:      starting user address
3001  * @nr_pages:   number of pages from start to pin
3002  * @gup_flags:  flags modifying pin behaviour
3003  * @pages:      array that receives pointers to the pages pinned.
3004  *              Should be at least nr_pages long.
3005  *
3006  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3007  * If not successful, it will fall back to taking the lock and
3008  * calling get_user_pages().
3009  *
3010  * Returns number of pages pinned. This may be fewer than the number requested.
3011  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3012  * -errno.
3013  */
3014 int get_user_pages_fast(unsigned long start, int nr_pages,
3015 			unsigned int gup_flags, struct page **pages)
3016 {
3017 	if (!is_valid_gup_flags(gup_flags))
3018 		return -EINVAL;
3019 
3020 	/*
3021 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3022 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3023 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3024 	 * request.
3025 	 */
3026 	gup_flags |= FOLL_GET;
3027 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3028 }
3029 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3030 
3031 /**
3032  * pin_user_pages_fast() - pin user pages in memory without taking locks
3033  *
3034  * @start:      starting user address
3035  * @nr_pages:   number of pages from start to pin
3036  * @gup_flags:  flags modifying pin behaviour
3037  * @pages:      array that receives pointers to the pages pinned.
3038  *              Should be at least nr_pages long.
3039  *
3040  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3041  * get_user_pages_fast() for documentation on the function arguments, because
3042  * the arguments here are identical.
3043  *
3044  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3045  * see Documentation/core-api/pin_user_pages.rst for further details.
3046  */
3047 int pin_user_pages_fast(unsigned long start, int nr_pages,
3048 			unsigned int gup_flags, struct page **pages)
3049 {
3050 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 		return -EINVAL;
3053 
3054 	if (WARN_ON_ONCE(!pages))
3055 		return -EINVAL;
3056 
3057 	gup_flags |= FOLL_PIN;
3058 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3059 }
3060 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3061 
3062 /*
3063  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3064  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3065  *
3066  * The API rules are the same, too: no negative values may be returned.
3067  */
3068 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3069 			     unsigned int gup_flags, struct page **pages)
3070 {
3071 	int nr_pinned;
3072 
3073 	/*
3074 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3075 	 * rules require returning 0, rather than -errno:
3076 	 */
3077 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3078 		return 0;
3079 
3080 	if (WARN_ON_ONCE(!pages))
3081 		return 0;
3082 	/*
3083 	 * FOLL_FAST_ONLY is required in order to match the API description of
3084 	 * this routine: no fall back to regular ("slow") GUP.
3085 	 */
3086 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3087 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3088 						 pages);
3089 	/*
3090 	 * This routine is not allowed to return negative values. However,
3091 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3092 	 * correct for that here:
3093 	 */
3094 	if (nr_pinned < 0)
3095 		nr_pinned = 0;
3096 
3097 	return nr_pinned;
3098 }
3099 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3100 
3101 /**
3102  * pin_user_pages_remote() - pin pages of a remote process
3103  *
3104  * @mm:		mm_struct of target mm
3105  * @start:	starting user address
3106  * @nr_pages:	number of pages from start to pin
3107  * @gup_flags:	flags modifying lookup behaviour
3108  * @pages:	array that receives pointers to the pages pinned.
3109  *		Should be at least nr_pages long.
3110  * @vmas:	array of pointers to vmas corresponding to each page.
3111  *		Or NULL if the caller does not require them.
3112  * @locked:	pointer to lock flag indicating whether lock is held and
3113  *		subsequently whether VM_FAULT_RETRY functionality can be
3114  *		utilised. Lock must initially be held.
3115  *
3116  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3117  * get_user_pages_remote() for documentation on the function arguments, because
3118  * the arguments here are identical.
3119  *
3120  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3121  * see Documentation/core-api/pin_user_pages.rst for details.
3122  */
3123 long pin_user_pages_remote(struct mm_struct *mm,
3124 			   unsigned long start, unsigned long nr_pages,
3125 			   unsigned int gup_flags, struct page **pages,
3126 			   struct vm_area_struct **vmas, int *locked)
3127 {
3128 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3129 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3130 		return -EINVAL;
3131 
3132 	if (WARN_ON_ONCE(!pages))
3133 		return -EINVAL;
3134 
3135 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3136 				     gup_flags | FOLL_PIN | FOLL_TOUCH |
3137 					     FOLL_REMOTE);
3138 }
3139 EXPORT_SYMBOL(pin_user_pages_remote);
3140 
3141 /**
3142  * pin_user_pages() - pin user pages in memory for use by other devices
3143  *
3144  * @start:	starting user address
3145  * @nr_pages:	number of pages from start to pin
3146  * @gup_flags:	flags modifying lookup behaviour
3147  * @pages:	array that receives pointers to the pages pinned.
3148  *		Should be at least nr_pages long.
3149  * @vmas:	array of pointers to vmas corresponding to each page.
3150  *		Or NULL if the caller does not require them.
3151  *
3152  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3153  * FOLL_PIN is set.
3154  *
3155  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3156  * see Documentation/core-api/pin_user_pages.rst for details.
3157  */
3158 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3159 		    unsigned int gup_flags, struct page **pages,
3160 		    struct vm_area_struct **vmas)
3161 {
3162 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164 		return -EINVAL;
3165 
3166 	if (WARN_ON_ONCE(!pages))
3167 		return -EINVAL;
3168 
3169 	gup_flags |= FOLL_PIN;
3170 	return __gup_longterm_locked(current->mm, start, nr_pages,
3171 				     pages, vmas, NULL, gup_flags);
3172 }
3173 EXPORT_SYMBOL(pin_user_pages);
3174 
3175 /*
3176  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3177  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3178  * FOLL_PIN and rejects FOLL_GET.
3179  */
3180 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3181 			     struct page **pages, unsigned int gup_flags)
3182 {
3183 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3184 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3185 		return -EINVAL;
3186 
3187 	if (WARN_ON_ONCE(!pages))
3188 		return -EINVAL;
3189 
3190 	gup_flags |= FOLL_PIN;
3191 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3192 }
3193 EXPORT_SYMBOL(pin_user_pages_unlocked);
3194