xref: /linux/mm/gup.c (revision 1a80ff0f8896750156f22dbf2d4591d79bb2a155)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 #include "swap.h"
30 
31 struct follow_page_context {
32 	struct dev_pagemap *pgmap;
33 	unsigned int page_mask;
34 };
35 
36 static inline void sanity_check_pinned_pages(struct page **pages,
37 					     unsigned long npages)
38 {
39 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 		return;
41 
42 	/*
43 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
44 	 * can no longer turn them possibly shared and PageAnonExclusive() will
45 	 * stick around until the page is freed.
46 	 *
47 	 * We'd like to verify that our pinned anonymous pages are still mapped
48 	 * exclusively. The issue with anon THP is that we don't know how
49 	 * they are/were mapped when pinning them. However, for anon
50 	 * THP we can assume that either the given page (PTE-mapped THP) or
51 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52 	 * neither is the case, there is certainly something wrong.
53 	 */
54 	for (; npages; npages--, pages++) {
55 		struct page *page = *pages;
56 		struct folio *folio;
57 
58 		if (!page)
59 			continue;
60 
61 		folio = page_folio(page);
62 
63 		if (is_zero_page(page) ||
64 		    !folio_test_anon(folio))
65 			continue;
66 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67 			VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
68 		else
69 			/* Either a PTE-mapped or a PMD-mapped THP. */
70 			VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
71 					     !PageAnonExclusive(page), page);
72 	}
73 }
74 
75 /*
76  * Return the folio with ref appropriately incremented,
77  * or NULL if that failed.
78  */
79 static inline struct folio *try_get_folio(struct page *page, int refs)
80 {
81 	struct folio *folio;
82 
83 retry:
84 	folio = page_folio(page);
85 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
86 		return NULL;
87 	if (unlikely(!folio_ref_try_add(folio, refs)))
88 		return NULL;
89 
90 	/*
91 	 * At this point we have a stable reference to the folio; but it
92 	 * could be that between calling page_folio() and the refcount
93 	 * increment, the folio was split, in which case we'd end up
94 	 * holding a reference on a folio that has nothing to do with the page
95 	 * we were given anymore.
96 	 * So now that the folio is stable, recheck that the page still
97 	 * belongs to this folio.
98 	 */
99 	if (unlikely(page_folio(page) != folio)) {
100 		folio_put_refs(folio, refs);
101 		goto retry;
102 	}
103 
104 	return folio;
105 }
106 
107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108 {
109 	if (flags & FOLL_PIN) {
110 		if (is_zero_folio(folio))
111 			return;
112 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 		if (folio_has_pincount(folio))
114 			atomic_sub(refs, &folio->_pincount);
115 		else
116 			refs *= GUP_PIN_COUNTING_BIAS;
117 	}
118 
119 	folio_put_refs(folio, refs);
120 }
121 
122 /**
123  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
124  * @folio:    pointer to folio to be grabbed
125  * @refs:     the value to (effectively) add to the folio's refcount
126  * @flags:    gup flags: these are the FOLL_* flag values
127  *
128  * This might not do anything at all, depending on the flags argument.
129  *
130  * "grab" names in this file mean, "look at flags to decide whether to use
131  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
132  *
133  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
134  * time.
135  *
136  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
137  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
138  *
139  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
140  *			be grabbed.
141  *
142  * It is called when we have a stable reference for the folio, typically in
143  * GUP slow path.
144  */
145 int __must_check try_grab_folio(struct folio *folio, int refs,
146 				unsigned int flags)
147 {
148 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
149 		return -ENOMEM;
150 
151 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
152 		return -EREMOTEIO;
153 
154 	if (flags & FOLL_GET)
155 		folio_ref_add(folio, refs);
156 	else if (flags & FOLL_PIN) {
157 		/*
158 		 * Don't take a pin on the zero page - it's not going anywhere
159 		 * and it is used in a *lot* of places.
160 		 */
161 		if (is_zero_folio(folio))
162 			return 0;
163 
164 		/*
165 		 * Increment the normal page refcount field at least once,
166 		 * so that the page really is pinned.
167 		 */
168 		if (folio_has_pincount(folio)) {
169 			folio_ref_add(folio, refs);
170 			atomic_add(refs, &folio->_pincount);
171 		} else {
172 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
173 		}
174 
175 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
176 	}
177 
178 	return 0;
179 }
180 
181 /**
182  * unpin_user_page() - release a dma-pinned page
183  * @page:            pointer to page to be released
184  *
185  * Pages that were pinned via pin_user_pages*() must be released via either
186  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187  * that such pages can be separately tracked and uniquely handled. In
188  * particular, interactions with RDMA and filesystems need special handling.
189  */
190 void unpin_user_page(struct page *page)
191 {
192 	sanity_check_pinned_pages(&page, 1);
193 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
194 }
195 EXPORT_SYMBOL(unpin_user_page);
196 
197 /**
198  * unpin_folio() - release a dma-pinned folio
199  * @folio:         pointer to folio to be released
200  *
201  * Folios that were pinned via memfd_pin_folios() or other similar routines
202  * must be released either using unpin_folio() or unpin_folios().
203  */
204 void unpin_folio(struct folio *folio)
205 {
206 	gup_put_folio(folio, 1, FOLL_PIN);
207 }
208 EXPORT_SYMBOL_GPL(unpin_folio);
209 
210 /**
211  * folio_add_pin - Try to get an additional pin on a pinned folio
212  * @folio: The folio to be pinned
213  *
214  * Get an additional pin on a folio we already have a pin on.  Makes no change
215  * if the folio is a zero_page.
216  */
217 void folio_add_pin(struct folio *folio)
218 {
219 	if (is_zero_folio(folio))
220 		return;
221 
222 	/*
223 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
224 	 * page refcount field at least once, so that the page really is
225 	 * pinned.
226 	 */
227 	if (folio_has_pincount(folio)) {
228 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229 		folio_ref_inc(folio);
230 		atomic_inc(&folio->_pincount);
231 	} else {
232 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
234 	}
235 }
236 
237 static inline struct folio *gup_folio_range_next(struct page *start,
238 		unsigned long npages, unsigned long i, unsigned int *ntails)
239 {
240 	struct page *next = nth_page(start, i);
241 	struct folio *folio = page_folio(next);
242 	unsigned int nr = 1;
243 
244 	if (folio_test_large(folio))
245 		nr = min_t(unsigned int, npages - i,
246 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
247 
248 	*ntails = nr;
249 	return folio;
250 }
251 
252 static inline struct folio *gup_folio_next(struct page **list,
253 		unsigned long npages, unsigned long i, unsigned int *ntails)
254 {
255 	struct folio *folio = page_folio(list[i]);
256 	unsigned int nr;
257 
258 	for (nr = i + 1; nr < npages; nr++) {
259 		if (page_folio(list[nr]) != folio)
260 			break;
261 	}
262 
263 	*ntails = nr - i;
264 	return folio;
265 }
266 
267 /**
268  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269  * @pages:  array of pages to be maybe marked dirty, and definitely released.
270  * @npages: number of pages in the @pages array.
271  * @make_dirty: whether to mark the pages dirty
272  *
273  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
274  * variants called on that page.
275  *
276  * For each page in the @pages array, make that page (or its head page, if a
277  * compound page) dirty, if @make_dirty is true, and if the page was previously
278  * listed as clean. In any case, releases all pages using unpin_user_page(),
279  * possibly via unpin_user_pages(), for the non-dirty case.
280  *
281  * Please see the unpin_user_page() documentation for details.
282  *
283  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284  * required, then the caller should a) verify that this is really correct,
285  * because _lock() is usually required, and b) hand code it:
286  * set_page_dirty_lock(), unpin_user_page().
287  *
288  */
289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
290 				 bool make_dirty)
291 {
292 	unsigned long i;
293 	struct folio *folio;
294 	unsigned int nr;
295 
296 	if (!make_dirty) {
297 		unpin_user_pages(pages, npages);
298 		return;
299 	}
300 
301 	sanity_check_pinned_pages(pages, npages);
302 	for (i = 0; i < npages; i += nr) {
303 		folio = gup_folio_next(pages, npages, i, &nr);
304 		/*
305 		 * Checking PageDirty at this point may race with
306 		 * clear_page_dirty_for_io(), but that's OK. Two key
307 		 * cases:
308 		 *
309 		 * 1) This code sees the page as already dirty, so it
310 		 * skips the call to set_page_dirty(). That could happen
311 		 * because clear_page_dirty_for_io() called
312 		 * folio_mkclean(), followed by set_page_dirty().
313 		 * However, now the page is going to get written back,
314 		 * which meets the original intention of setting it
315 		 * dirty, so all is well: clear_page_dirty_for_io() goes
316 		 * on to call TestClearPageDirty(), and write the page
317 		 * back.
318 		 *
319 		 * 2) This code sees the page as clean, so it calls
320 		 * set_page_dirty(). The page stays dirty, despite being
321 		 * written back, so it gets written back again in the
322 		 * next writeback cycle. This is harmless.
323 		 */
324 		if (!folio_test_dirty(folio)) {
325 			folio_lock(folio);
326 			folio_mark_dirty(folio);
327 			folio_unlock(folio);
328 		}
329 		gup_put_folio(folio, nr, FOLL_PIN);
330 	}
331 }
332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
333 
334 /**
335  * unpin_user_page_range_dirty_lock() - release and optionally dirty
336  * gup-pinned page range
337  *
338  * @page:  the starting page of a range maybe marked dirty, and definitely released.
339  * @npages: number of consecutive pages to release.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page range" refers to a range of pages that has had one of the
343  * pin_user_pages() variants called on that page.
344  *
345  * For the page ranges defined by [page .. page+npages], make that range (or
346  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347  * page range was previously listed as clean.
348  *
349  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350  * required, then the caller should a) verify that this is really correct,
351  * because _lock() is usually required, and b) hand code it:
352  * set_page_dirty_lock(), unpin_user_page().
353  *
354  */
355 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
356 				      bool make_dirty)
357 {
358 	unsigned long i;
359 	struct folio *folio;
360 	unsigned int nr;
361 
362 	for (i = 0; i < npages; i += nr) {
363 		folio = gup_folio_range_next(page, npages, i, &nr);
364 		if (make_dirty && !folio_test_dirty(folio)) {
365 			folio_lock(folio);
366 			folio_mark_dirty(folio);
367 			folio_unlock(folio);
368 		}
369 		gup_put_folio(folio, nr, FOLL_PIN);
370 	}
371 }
372 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
373 
374 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
375 {
376 	unsigned long i;
377 	struct folio *folio;
378 	unsigned int nr;
379 
380 	/*
381 	 * Don't perform any sanity checks because we might have raced with
382 	 * fork() and some anonymous pages might now actually be shared --
383 	 * which is why we're unpinning after all.
384 	 */
385 	for (i = 0; i < npages; i += nr) {
386 		folio = gup_folio_next(pages, npages, i, &nr);
387 		gup_put_folio(folio, nr, FOLL_PIN);
388 	}
389 }
390 
391 /**
392  * unpin_user_pages() - release an array of gup-pinned pages.
393  * @pages:  array of pages to be marked dirty and released.
394  * @npages: number of pages in the @pages array.
395  *
396  * For each page in the @pages array, release the page using unpin_user_page().
397  *
398  * Please see the unpin_user_page() documentation for details.
399  */
400 void unpin_user_pages(struct page **pages, unsigned long npages)
401 {
402 	unsigned long i;
403 	struct folio *folio;
404 	unsigned int nr;
405 
406 	/*
407 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
408 	 * leaving them pinned), but probably not. More likely, gup/pup returned
409 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
410 	 */
411 	if (WARN_ON(IS_ERR_VALUE(npages)))
412 		return;
413 
414 	sanity_check_pinned_pages(pages, npages);
415 	for (i = 0; i < npages; i += nr) {
416 		if (!pages[i]) {
417 			nr = 1;
418 			continue;
419 		}
420 		folio = gup_folio_next(pages, npages, i, &nr);
421 		gup_put_folio(folio, nr, FOLL_PIN);
422 	}
423 }
424 EXPORT_SYMBOL(unpin_user_pages);
425 
426 /**
427  * unpin_user_folio() - release pages of a folio
428  * @folio:  pointer to folio to be released
429  * @npages: number of pages of same folio
430  *
431  * Release npages of the folio
432  */
433 void unpin_user_folio(struct folio *folio, unsigned long npages)
434 {
435 	gup_put_folio(folio, npages, FOLL_PIN);
436 }
437 EXPORT_SYMBOL(unpin_user_folio);
438 
439 /**
440  * unpin_folios() - release an array of gup-pinned folios.
441  * @folios:  array of folios to be marked dirty and released.
442  * @nfolios: number of folios in the @folios array.
443  *
444  * For each folio in the @folios array, release the folio using gup_put_folio.
445  *
446  * Please see the unpin_folio() documentation for details.
447  */
448 void unpin_folios(struct folio **folios, unsigned long nfolios)
449 {
450 	unsigned long i = 0, j;
451 
452 	/*
453 	 * If this WARN_ON() fires, then the system *might* be leaking folios
454 	 * (by leaving them pinned), but probably not. More likely, gup/pup
455 	 * returned a hard -ERRNO error to the caller, who erroneously passed
456 	 * it here.
457 	 */
458 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
459 		return;
460 
461 	while (i < nfolios) {
462 		for (j = i + 1; j < nfolios; j++)
463 			if (folios[i] != folios[j])
464 				break;
465 
466 		if (folios[i])
467 			gup_put_folio(folios[i], j - i, FOLL_PIN);
468 		i = j;
469 	}
470 }
471 EXPORT_SYMBOL_GPL(unpin_folios);
472 
473 /*
474  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
476  * cache bouncing on large SMP machines for concurrent pinned gups.
477  */
478 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
479 {
480 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
481 		set_bit(MMF_HAS_PINNED, mm_flags);
482 }
483 
484 #ifdef CONFIG_MMU
485 
486 #ifdef CONFIG_HAVE_GUP_FAST
487 static int record_subpages(struct page *page, unsigned long sz,
488 			   unsigned long addr, unsigned long end,
489 			   struct page **pages)
490 {
491 	struct page *start_page;
492 	int nr;
493 
494 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496 		pages[nr] = nth_page(start_page, nr);
497 
498 	return nr;
499 }
500 
501 /**
502  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503  * @page:  pointer to page to be grabbed
504  * @refs:  the value to (effectively) add to the folio's refcount
505  * @flags: gup flags: these are the FOLL_* flag values.
506  *
507  * "grab" names in this file mean, "look at flags to decide whether to use
508  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
509  *
510  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511  * same time. (That's true throughout the get_user_pages*() and
512  * pin_user_pages*() APIs.) Cases:
513  *
514  *    FOLL_GET: folio's refcount will be incremented by @refs.
515  *
516  *    FOLL_PIN on large folios: folio's refcount will be incremented by
517  *    @refs, and its pincount will be incremented by @refs.
518  *
519  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
520  *    @refs * GUP_PIN_COUNTING_BIAS.
521  *
522  * Return: The folio containing @page (with refcount appropriately
523  * incremented) for success, or NULL upon failure. If neither FOLL_GET
524  * nor FOLL_PIN was set, that's considered failure, and furthermore,
525  * a likely bug in the caller, so a warning is also emitted.
526  *
527  * It uses add ref unless zero to elevate the folio refcount and must be called
528  * in fast path only.
529  */
530 static struct folio *try_grab_folio_fast(struct page *page, int refs,
531 					 unsigned int flags)
532 {
533 	struct folio *folio;
534 
535 	/* Raise warn if it is not called in fast GUP */
536 	VM_WARN_ON_ONCE(!irqs_disabled());
537 
538 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
539 		return NULL;
540 
541 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
542 		return NULL;
543 
544 	if (flags & FOLL_GET)
545 		return try_get_folio(page, refs);
546 
547 	/* FOLL_PIN is set */
548 
549 	/*
550 	 * Don't take a pin on the zero page - it's not going anywhere
551 	 * and it is used in a *lot* of places.
552 	 */
553 	if (is_zero_page(page))
554 		return page_folio(page);
555 
556 	folio = try_get_folio(page, refs);
557 	if (!folio)
558 		return NULL;
559 
560 	/*
561 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562 	 * right zone, so fail and let the caller fall back to the slow
563 	 * path.
564 	 */
565 	if (unlikely((flags & FOLL_LONGTERM) &&
566 		     !folio_is_longterm_pinnable(folio))) {
567 		folio_put_refs(folio, refs);
568 		return NULL;
569 	}
570 
571 	/*
572 	 * When pinning a large folio, use an exact count to track it.
573 	 *
574 	 * However, be sure to *also* increment the normal folio
575 	 * refcount field at least once, so that the folio really
576 	 * is pinned.  That's why the refcount from the earlier
577 	 * try_get_folio() is left intact.
578 	 */
579 	if (folio_has_pincount(folio))
580 		atomic_add(refs, &folio->_pincount);
581 	else
582 		folio_ref_add(folio,
583 				refs * (GUP_PIN_COUNTING_BIAS - 1));
584 	/*
585 	 * Adjust the pincount before re-checking the PTE for changes.
586 	 * This is essentially a smp_mb() and is paired with a memory
587 	 * barrier in folio_try_share_anon_rmap_*().
588 	 */
589 	smp_mb__after_atomic();
590 
591 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
592 
593 	return folio;
594 }
595 #endif	/* CONFIG_HAVE_GUP_FAST */
596 
597 /* Common code for can_follow_write_* */
598 static inline bool can_follow_write_common(struct page *page,
599 		struct vm_area_struct *vma, unsigned int flags)
600 {
601 	/* Maybe FOLL_FORCE is set to override it? */
602 	if (!(flags & FOLL_FORCE))
603 		return false;
604 
605 	/* But FOLL_FORCE has no effect on shared mappings */
606 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
607 		return false;
608 
609 	/* ... or read-only private ones */
610 	if (!(vma->vm_flags & VM_MAYWRITE))
611 		return false;
612 
613 	/* ... or already writable ones that just need to take a write fault */
614 	if (vma->vm_flags & VM_WRITE)
615 		return false;
616 
617 	/*
618 	 * See can_change_pte_writable(): we broke COW and could map the page
619 	 * writable if we have an exclusive anonymous page ...
620 	 */
621 	return page && PageAnon(page) && PageAnonExclusive(page);
622 }
623 
624 static struct page *no_page_table(struct vm_area_struct *vma,
625 				  unsigned int flags, unsigned long address)
626 {
627 	if (!(flags & FOLL_DUMP))
628 		return NULL;
629 
630 	/*
631 	 * When core dumping, we don't want to allocate unnecessary pages or
632 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
633 	 * then get_dump_page() will return NULL to leave a hole in the dump.
634 	 * But we can only make this optimization where a hole would surely
635 	 * be zero-filled if handle_mm_fault() actually did handle it.
636 	 */
637 	if (is_vm_hugetlb_page(vma)) {
638 		struct hstate *h = hstate_vma(vma);
639 
640 		if (!hugetlbfs_pagecache_present(h, vma, address))
641 			return ERR_PTR(-EFAULT);
642 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643 		return ERR_PTR(-EFAULT);
644 	}
645 
646 	return NULL;
647 }
648 
649 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
651 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652 					struct vm_area_struct *vma,
653 					unsigned int flags)
654 {
655 	/* If the pud is writable, we can write to the page. */
656 	if (pud_write(pud))
657 		return true;
658 
659 	return can_follow_write_common(page, vma, flags);
660 }
661 
662 static struct page *follow_huge_pud(struct vm_area_struct *vma,
663 				    unsigned long addr, pud_t *pudp,
664 				    int flags, struct follow_page_context *ctx)
665 {
666 	struct mm_struct *mm = vma->vm_mm;
667 	struct page *page;
668 	pud_t pud = *pudp;
669 	unsigned long pfn = pud_pfn(pud);
670 	int ret;
671 
672 	assert_spin_locked(pud_lockptr(mm, pudp));
673 
674 	if (!pud_present(pud))
675 		return NULL;
676 
677 	if ((flags & FOLL_WRITE) &&
678 	    !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
679 		return NULL;
680 
681 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
682 
683 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
684 	    pud_devmap(pud)) {
685 		/*
686 		 * device mapped pages can only be returned if the caller
687 		 * will manage the page reference count.
688 		 *
689 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
690 		 * assert that here:
691 		 */
692 		if (!(flags & (FOLL_GET | FOLL_PIN)))
693 			return ERR_PTR(-EEXIST);
694 
695 		if (flags & FOLL_TOUCH)
696 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
697 
698 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
699 		if (!ctx->pgmap)
700 			return ERR_PTR(-EFAULT);
701 	}
702 
703 	page = pfn_to_page(pfn);
704 
705 	if (!pud_devmap(pud) && !pud_write(pud) &&
706 	    gup_must_unshare(vma, flags, page))
707 		return ERR_PTR(-EMLINK);
708 
709 	ret = try_grab_folio(page_folio(page), 1, flags);
710 	if (ret)
711 		page = ERR_PTR(ret);
712 	else
713 		ctx->page_mask = HPAGE_PUD_NR - 1;
714 
715 	return page;
716 }
717 
718 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
719 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
720 					struct vm_area_struct *vma,
721 					unsigned int flags)
722 {
723 	/* If the pmd is writable, we can write to the page. */
724 	if (pmd_write(pmd))
725 		return true;
726 
727 	if (!can_follow_write_common(page, vma, flags))
728 		return false;
729 
730 	/* ... and a write-fault isn't required for other reasons. */
731 	if (pmd_needs_soft_dirty_wp(vma, pmd))
732 		return false;
733 	return !userfaultfd_huge_pmd_wp(vma, pmd);
734 }
735 
736 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
737 				    unsigned long addr, pmd_t *pmd,
738 				    unsigned int flags,
739 				    struct follow_page_context *ctx)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	pmd_t pmdval = *pmd;
743 	struct page *page;
744 	int ret;
745 
746 	assert_spin_locked(pmd_lockptr(mm, pmd));
747 
748 	page = pmd_page(pmdval);
749 	if ((flags & FOLL_WRITE) &&
750 	    !can_follow_write_pmd(pmdval, page, vma, flags))
751 		return NULL;
752 
753 	/* Avoid dumping huge zero page */
754 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
755 		return ERR_PTR(-EFAULT);
756 
757 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
758 		return NULL;
759 
760 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
761 		return ERR_PTR(-EMLINK);
762 
763 	VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
764 			     !PageAnonExclusive(page), page);
765 
766 	ret = try_grab_folio(page_folio(page), 1, flags);
767 	if (ret)
768 		return ERR_PTR(ret);
769 
770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
772 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
773 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
774 
775 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
776 	ctx->page_mask = HPAGE_PMD_NR - 1;
777 
778 	return page;
779 }
780 
781 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
782 static struct page *follow_huge_pud(struct vm_area_struct *vma,
783 				    unsigned long addr, pud_t *pudp,
784 				    int flags, struct follow_page_context *ctx)
785 {
786 	return NULL;
787 }
788 
789 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
790 				    unsigned long addr, pmd_t *pmd,
791 				    unsigned int flags,
792 				    struct follow_page_context *ctx)
793 {
794 	return NULL;
795 }
796 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
797 
798 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
799 		pte_t *pte, unsigned int flags)
800 {
801 	if (flags & FOLL_TOUCH) {
802 		pte_t orig_entry = ptep_get(pte);
803 		pte_t entry = orig_entry;
804 
805 		if (flags & FOLL_WRITE)
806 			entry = pte_mkdirty(entry);
807 		entry = pte_mkyoung(entry);
808 
809 		if (!pte_same(orig_entry, entry)) {
810 			set_pte_at(vma->vm_mm, address, pte, entry);
811 			update_mmu_cache(vma, address, pte);
812 		}
813 	}
814 
815 	/* Proper page table entry exists, but no corresponding struct page */
816 	return -EEXIST;
817 }
818 
819 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
820 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
821 					struct vm_area_struct *vma,
822 					unsigned int flags)
823 {
824 	/* If the pte is writable, we can write to the page. */
825 	if (pte_write(pte))
826 		return true;
827 
828 	if (!can_follow_write_common(page, vma, flags))
829 		return false;
830 
831 	/* ... and a write-fault isn't required for other reasons. */
832 	if (pte_needs_soft_dirty_wp(vma, pte))
833 		return false;
834 	return !userfaultfd_pte_wp(vma, pte);
835 }
836 
837 static struct page *follow_page_pte(struct vm_area_struct *vma,
838 		unsigned long address, pmd_t *pmd, unsigned int flags,
839 		struct dev_pagemap **pgmap)
840 {
841 	struct mm_struct *mm = vma->vm_mm;
842 	struct folio *folio;
843 	struct page *page;
844 	spinlock_t *ptl;
845 	pte_t *ptep, pte;
846 	int ret;
847 
848 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
849 	if (!ptep)
850 		return no_page_table(vma, flags, address);
851 	pte = ptep_get(ptep);
852 	if (!pte_present(pte))
853 		goto no_page;
854 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
855 		goto no_page;
856 
857 	page = vm_normal_page(vma, address, pte);
858 
859 	/*
860 	 * We only care about anon pages in can_follow_write_pte() and don't
861 	 * have to worry about pte_devmap() because they are never anon.
862 	 */
863 	if ((flags & FOLL_WRITE) &&
864 	    !can_follow_write_pte(pte, page, vma, flags)) {
865 		page = NULL;
866 		goto out;
867 	}
868 
869 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
870 		/*
871 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
872 		 * case since they are only valid while holding the pgmap
873 		 * reference.
874 		 */
875 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
876 		if (*pgmap)
877 			page = pte_page(pte);
878 		else
879 			goto no_page;
880 	} else if (unlikely(!page)) {
881 		if (flags & FOLL_DUMP) {
882 			/* Avoid special (like zero) pages in core dumps */
883 			page = ERR_PTR(-EFAULT);
884 			goto out;
885 		}
886 
887 		if (is_zero_pfn(pte_pfn(pte))) {
888 			page = pte_page(pte);
889 		} else {
890 			ret = follow_pfn_pte(vma, address, ptep, flags);
891 			page = ERR_PTR(ret);
892 			goto out;
893 		}
894 	}
895 	folio = page_folio(page);
896 
897 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
898 		page = ERR_PTR(-EMLINK);
899 		goto out;
900 	}
901 
902 	VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
903 			     !PageAnonExclusive(page), page);
904 
905 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
906 	ret = try_grab_folio(folio, 1, flags);
907 	if (unlikely(ret)) {
908 		page = ERR_PTR(ret);
909 		goto out;
910 	}
911 
912 	/*
913 	 * We need to make the page accessible if and only if we are going
914 	 * to access its content (the FOLL_PIN case).  Please see
915 	 * Documentation/core-api/pin_user_pages.rst for details.
916 	 */
917 	if (flags & FOLL_PIN) {
918 		ret = arch_make_folio_accessible(folio);
919 		if (ret) {
920 			unpin_user_page(page);
921 			page = ERR_PTR(ret);
922 			goto out;
923 		}
924 	}
925 	if (flags & FOLL_TOUCH) {
926 		if ((flags & FOLL_WRITE) &&
927 		    !pte_dirty(pte) && !folio_test_dirty(folio))
928 			folio_mark_dirty(folio);
929 		/*
930 		 * pte_mkyoung() would be more correct here, but atomic care
931 		 * is needed to avoid losing the dirty bit: it is easier to use
932 		 * folio_mark_accessed().
933 		 */
934 		folio_mark_accessed(folio);
935 	}
936 out:
937 	pte_unmap_unlock(ptep, ptl);
938 	return page;
939 no_page:
940 	pte_unmap_unlock(ptep, ptl);
941 	if (!pte_none(pte))
942 		return NULL;
943 	return no_page_table(vma, flags, address);
944 }
945 
946 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
947 				    unsigned long address, pud_t *pudp,
948 				    unsigned int flags,
949 				    struct follow_page_context *ctx)
950 {
951 	pmd_t *pmd, pmdval;
952 	spinlock_t *ptl;
953 	struct page *page;
954 	struct mm_struct *mm = vma->vm_mm;
955 
956 	pmd = pmd_offset(pudp, address);
957 	pmdval = pmdp_get_lockless(pmd);
958 	if (pmd_none(pmdval))
959 		return no_page_table(vma, flags, address);
960 	if (!pmd_present(pmdval))
961 		return no_page_table(vma, flags, address);
962 	if (pmd_devmap(pmdval)) {
963 		ptl = pmd_lock(mm, pmd);
964 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
965 		spin_unlock(ptl);
966 		if (page)
967 			return page;
968 		return no_page_table(vma, flags, address);
969 	}
970 	if (likely(!pmd_leaf(pmdval)))
971 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
972 
973 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
974 		return no_page_table(vma, flags, address);
975 
976 	ptl = pmd_lock(mm, pmd);
977 	pmdval = *pmd;
978 	if (unlikely(!pmd_present(pmdval))) {
979 		spin_unlock(ptl);
980 		return no_page_table(vma, flags, address);
981 	}
982 	if (unlikely(!pmd_leaf(pmdval))) {
983 		spin_unlock(ptl);
984 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
985 	}
986 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
987 		spin_unlock(ptl);
988 		split_huge_pmd(vma, pmd, address);
989 		/* If pmd was left empty, stuff a page table in there quickly */
990 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
991 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
992 	}
993 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
994 	spin_unlock(ptl);
995 	return page;
996 }
997 
998 static struct page *follow_pud_mask(struct vm_area_struct *vma,
999 				    unsigned long address, p4d_t *p4dp,
1000 				    unsigned int flags,
1001 				    struct follow_page_context *ctx)
1002 {
1003 	pud_t *pudp, pud;
1004 	spinlock_t *ptl;
1005 	struct page *page;
1006 	struct mm_struct *mm = vma->vm_mm;
1007 
1008 	pudp = pud_offset(p4dp, address);
1009 	pud = READ_ONCE(*pudp);
1010 	if (!pud_present(pud))
1011 		return no_page_table(vma, flags, address);
1012 	if (pud_leaf(pud)) {
1013 		ptl = pud_lock(mm, pudp);
1014 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1015 		spin_unlock(ptl);
1016 		if (page)
1017 			return page;
1018 		return no_page_table(vma, flags, address);
1019 	}
1020 	if (unlikely(pud_bad(pud)))
1021 		return no_page_table(vma, flags, address);
1022 
1023 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1024 }
1025 
1026 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1027 				    unsigned long address, pgd_t *pgdp,
1028 				    unsigned int flags,
1029 				    struct follow_page_context *ctx)
1030 {
1031 	p4d_t *p4dp, p4d;
1032 
1033 	p4dp = p4d_offset(pgdp, address);
1034 	p4d = READ_ONCE(*p4dp);
1035 	BUILD_BUG_ON(p4d_leaf(p4d));
1036 
1037 	if (!p4d_present(p4d) || p4d_bad(p4d))
1038 		return no_page_table(vma, flags, address);
1039 
1040 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1041 }
1042 
1043 /**
1044  * follow_page_mask - look up a page descriptor from a user-virtual address
1045  * @vma: vm_area_struct mapping @address
1046  * @address: virtual address to look up
1047  * @flags: flags modifying lookup behaviour
1048  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1049  *       pointer to output page_mask
1050  *
1051  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1052  *
1053  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1054  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1055  *
1056  * When getting an anonymous page and the caller has to trigger unsharing
1057  * of a shared anonymous page first, -EMLINK is returned. The caller should
1058  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1059  * relevant with FOLL_PIN and !FOLL_WRITE.
1060  *
1061  * On output, the @ctx->page_mask is set according to the size of the page.
1062  *
1063  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1064  * an error pointer if there is a mapping to something not represented
1065  * by a page descriptor (see also vm_normal_page()).
1066  */
1067 static struct page *follow_page_mask(struct vm_area_struct *vma,
1068 			      unsigned long address, unsigned int flags,
1069 			      struct follow_page_context *ctx)
1070 {
1071 	pgd_t *pgd;
1072 	struct mm_struct *mm = vma->vm_mm;
1073 	struct page *page;
1074 
1075 	vma_pgtable_walk_begin(vma);
1076 
1077 	ctx->page_mask = 0;
1078 	pgd = pgd_offset(mm, address);
1079 
1080 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1081 		page = no_page_table(vma, flags, address);
1082 	else
1083 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1084 
1085 	vma_pgtable_walk_end(vma);
1086 
1087 	return page;
1088 }
1089 
1090 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1091 		unsigned int gup_flags, struct vm_area_struct **vma,
1092 		struct page **page)
1093 {
1094 	pgd_t *pgd;
1095 	p4d_t *p4d;
1096 	pud_t *pud;
1097 	pmd_t *pmd;
1098 	pte_t *pte;
1099 	pte_t entry;
1100 	int ret = -EFAULT;
1101 
1102 	/* user gate pages are read-only */
1103 	if (gup_flags & FOLL_WRITE)
1104 		return -EFAULT;
1105 	pgd = pgd_offset(mm, address);
1106 	if (pgd_none(*pgd))
1107 		return -EFAULT;
1108 	p4d = p4d_offset(pgd, address);
1109 	if (p4d_none(*p4d))
1110 		return -EFAULT;
1111 	pud = pud_offset(p4d, address);
1112 	if (pud_none(*pud))
1113 		return -EFAULT;
1114 	pmd = pmd_offset(pud, address);
1115 	if (!pmd_present(*pmd))
1116 		return -EFAULT;
1117 	pte = pte_offset_map(pmd, address);
1118 	if (!pte)
1119 		return -EFAULT;
1120 	entry = ptep_get(pte);
1121 	if (pte_none(entry))
1122 		goto unmap;
1123 	*vma = get_gate_vma(mm);
1124 	if (!page)
1125 		goto out;
1126 	*page = vm_normal_page(*vma, address, entry);
1127 	if (!*page) {
1128 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1129 			goto unmap;
1130 		*page = pte_page(entry);
1131 	}
1132 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1133 	if (unlikely(ret))
1134 		goto unmap;
1135 out:
1136 	ret = 0;
1137 unmap:
1138 	pte_unmap(pte);
1139 	return ret;
1140 }
1141 
1142 /*
1143  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1144  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1145  * to 0 and -EBUSY returned.
1146  */
1147 static int faultin_page(struct vm_area_struct *vma,
1148 		unsigned long address, unsigned int flags, bool unshare,
1149 		int *locked)
1150 {
1151 	unsigned int fault_flags = 0;
1152 	vm_fault_t ret;
1153 
1154 	if (flags & FOLL_NOFAULT)
1155 		return -EFAULT;
1156 	if (flags & FOLL_WRITE)
1157 		fault_flags |= FAULT_FLAG_WRITE;
1158 	if (flags & FOLL_REMOTE)
1159 		fault_flags |= FAULT_FLAG_REMOTE;
1160 	if (flags & FOLL_UNLOCKABLE) {
1161 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1162 		/*
1163 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1164 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1165 		 * That's because some callers may not be prepared to
1166 		 * handle early exits caused by non-fatal signals.
1167 		 */
1168 		if (flags & FOLL_INTERRUPTIBLE)
1169 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1170 	}
1171 	if (flags & FOLL_NOWAIT)
1172 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1173 	if (flags & FOLL_TRIED) {
1174 		/*
1175 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1176 		 * can co-exist
1177 		 */
1178 		fault_flags |= FAULT_FLAG_TRIED;
1179 	}
1180 	if (unshare) {
1181 		fault_flags |= FAULT_FLAG_UNSHARE;
1182 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1183 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1184 	}
1185 
1186 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1187 
1188 	if (ret & VM_FAULT_COMPLETED) {
1189 		/*
1190 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1191 		 * mmap lock in the page fault handler. Sanity check this.
1192 		 */
1193 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1194 		*locked = 0;
1195 
1196 		/*
1197 		 * We should do the same as VM_FAULT_RETRY, but let's not
1198 		 * return -EBUSY since that's not reflecting the reality of
1199 		 * what has happened - we've just fully completed a page
1200 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1201 		 * that we want to take the mmap lock _again_.
1202 		 */
1203 		return -EAGAIN;
1204 	}
1205 
1206 	if (ret & VM_FAULT_ERROR) {
1207 		int err = vm_fault_to_errno(ret, flags);
1208 
1209 		if (err)
1210 			return err;
1211 		BUG();
1212 	}
1213 
1214 	if (ret & VM_FAULT_RETRY) {
1215 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1216 			*locked = 0;
1217 		return -EBUSY;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Writing to file-backed mappings which require folio dirty tracking using GUP
1225  * is a fundamentally broken operation, as kernel write access to GUP mappings
1226  * do not adhere to the semantics expected by a file system.
1227  *
1228  * Consider the following scenario:-
1229  *
1230  * 1. A folio is written to via GUP which write-faults the memory, notifying
1231  *    the file system and dirtying the folio.
1232  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1233  *    the PTE being marked read-only.
1234  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1235  *    direct mapping.
1236  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1237  *    (though it does not have to).
1238  *
1239  * This results in both data being written to a folio without writenotify, and
1240  * the folio being dirtied unexpectedly (if the caller decides to do so).
1241  */
1242 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1243 					  unsigned long gup_flags)
1244 {
1245 	/*
1246 	 * If we aren't pinning then no problematic write can occur. A long term
1247 	 * pin is the most egregious case so this is the case we disallow.
1248 	 */
1249 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1250 	    (FOLL_PIN | FOLL_LONGTERM))
1251 		return true;
1252 
1253 	/*
1254 	 * If the VMA does not require dirty tracking then no problematic write
1255 	 * can occur either.
1256 	 */
1257 	return !vma_needs_dirty_tracking(vma);
1258 }
1259 
1260 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1261 {
1262 	vm_flags_t vm_flags = vma->vm_flags;
1263 	int write = (gup_flags & FOLL_WRITE);
1264 	int foreign = (gup_flags & FOLL_REMOTE);
1265 	bool vma_anon = vma_is_anonymous(vma);
1266 
1267 	if (vm_flags & (VM_IO | VM_PFNMAP))
1268 		return -EFAULT;
1269 
1270 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1271 		return -EFAULT;
1272 
1273 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1274 		return -EOPNOTSUPP;
1275 
1276 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1277 		return -EOPNOTSUPP;
1278 
1279 	if (vma_is_secretmem(vma))
1280 		return -EFAULT;
1281 
1282 	if (write) {
1283 		if (!vma_anon &&
1284 		    !writable_file_mapping_allowed(vma, gup_flags))
1285 			return -EFAULT;
1286 
1287 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1288 			if (!(gup_flags & FOLL_FORCE))
1289 				return -EFAULT;
1290 			/*
1291 			 * We used to let the write,force case do COW in a
1292 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1293 			 * set a breakpoint in a read-only mapping of an
1294 			 * executable, without corrupting the file (yet only
1295 			 * when that file had been opened for writing!).
1296 			 * Anon pages in shared mappings are surprising: now
1297 			 * just reject it.
1298 			 */
1299 			if (!is_cow_mapping(vm_flags))
1300 				return -EFAULT;
1301 		}
1302 	} else if (!(vm_flags & VM_READ)) {
1303 		if (!(gup_flags & FOLL_FORCE))
1304 			return -EFAULT;
1305 		/*
1306 		 * Is there actually any vma we can reach here which does not
1307 		 * have VM_MAYREAD set?
1308 		 */
1309 		if (!(vm_flags & VM_MAYREAD))
1310 			return -EFAULT;
1311 	}
1312 	/*
1313 	 * gups are always data accesses, not instruction
1314 	 * fetches, so execute=false here
1315 	 */
1316 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1317 		return -EFAULT;
1318 	return 0;
1319 }
1320 
1321 /*
1322  * This is "vma_lookup()", but with a warning if we would have
1323  * historically expanded the stack in the GUP code.
1324  */
1325 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1326 	 unsigned long addr)
1327 {
1328 #ifdef CONFIG_STACK_GROWSUP
1329 	return vma_lookup(mm, addr);
1330 #else
1331 	static volatile unsigned long next_warn;
1332 	struct vm_area_struct *vma;
1333 	unsigned long now, next;
1334 
1335 	vma = find_vma(mm, addr);
1336 	if (!vma || (addr >= vma->vm_start))
1337 		return vma;
1338 
1339 	/* Only warn for half-way relevant accesses */
1340 	if (!(vma->vm_flags & VM_GROWSDOWN))
1341 		return NULL;
1342 	if (vma->vm_start - addr > 65536)
1343 		return NULL;
1344 
1345 	/* Let's not warn more than once an hour.. */
1346 	now = jiffies; next = next_warn;
1347 	if (next && time_before(now, next))
1348 		return NULL;
1349 	next_warn = now + 60*60*HZ;
1350 
1351 	/* Let people know things may have changed. */
1352 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1353 		current->comm, task_pid_nr(current),
1354 		vma->vm_start, vma->vm_end, addr);
1355 	dump_stack();
1356 	return NULL;
1357 #endif
1358 }
1359 
1360 /**
1361  * __get_user_pages() - pin user pages in memory
1362  * @mm:		mm_struct of target mm
1363  * @start:	starting user address
1364  * @nr_pages:	number of pages from start to pin
1365  * @gup_flags:	flags modifying pin behaviour
1366  * @pages:	array that receives pointers to the pages pinned.
1367  *		Should be at least nr_pages long. Or NULL, if caller
1368  *		only intends to ensure the pages are faulted in.
1369  * @locked:     whether we're still with the mmap_lock held
1370  *
1371  * Returns either number of pages pinned (which may be less than the
1372  * number requested), or an error. Details about the return value:
1373  *
1374  * -- If nr_pages is 0, returns 0.
1375  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1376  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1377  *    pages pinned. Again, this may be less than nr_pages.
1378  * -- 0 return value is possible when the fault would need to be retried.
1379  *
1380  * The caller is responsible for releasing returned @pages, via put_page().
1381  *
1382  * Must be called with mmap_lock held.  It may be released.  See below.
1383  *
1384  * __get_user_pages walks a process's page tables and takes a reference to
1385  * each struct page that each user address corresponds to at a given
1386  * instant. That is, it takes the page that would be accessed if a user
1387  * thread accesses the given user virtual address at that instant.
1388  *
1389  * This does not guarantee that the page exists in the user mappings when
1390  * __get_user_pages returns, and there may even be a completely different
1391  * page there in some cases (eg. if mmapped pagecache has been invalidated
1392  * and subsequently re-faulted). However it does guarantee that the page
1393  * won't be freed completely. And mostly callers simply care that the page
1394  * contains data that was valid *at some point in time*. Typically, an IO
1395  * or similar operation cannot guarantee anything stronger anyway because
1396  * locks can't be held over the syscall boundary.
1397  *
1398  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1399  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1400  * appropriate) must be called after the page is finished with, and
1401  * before put_page is called.
1402  *
1403  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1404  * be released. If this happens *@locked will be set to 0 on return.
1405  *
1406  * A caller using such a combination of @gup_flags must therefore hold the
1407  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1408  * it must be held for either reading or writing and will not be released.
1409  *
1410  * In most cases, get_user_pages or get_user_pages_fast should be used
1411  * instead of __get_user_pages. __get_user_pages should be used only if
1412  * you need some special @gup_flags.
1413  */
1414 static long __get_user_pages(struct mm_struct *mm,
1415 		unsigned long start, unsigned long nr_pages,
1416 		unsigned int gup_flags, struct page **pages,
1417 		int *locked)
1418 {
1419 	long ret = 0, i = 0;
1420 	struct vm_area_struct *vma = NULL;
1421 	struct follow_page_context ctx = { NULL };
1422 
1423 	if (!nr_pages)
1424 		return 0;
1425 
1426 	start = untagged_addr_remote(mm, start);
1427 
1428 	VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1429 
1430 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1431 	VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1432 			(FOLL_PIN | FOLL_GET));
1433 
1434 	do {
1435 		struct page *page;
1436 		unsigned int page_increm;
1437 
1438 		/* first iteration or cross vma bound */
1439 		if (!vma || start >= vma->vm_end) {
1440 			/*
1441 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1442 			 * lookups+error reporting differently.
1443 			 */
1444 			if (gup_flags & FOLL_MADV_POPULATE) {
1445 				vma = vma_lookup(mm, start);
1446 				if (!vma) {
1447 					ret = -ENOMEM;
1448 					goto out;
1449 				}
1450 				if (check_vma_flags(vma, gup_flags)) {
1451 					ret = -EINVAL;
1452 					goto out;
1453 				}
1454 				goto retry;
1455 			}
1456 			vma = gup_vma_lookup(mm, start);
1457 			if (!vma && in_gate_area(mm, start)) {
1458 				ret = get_gate_page(mm, start & PAGE_MASK,
1459 						gup_flags, &vma,
1460 						pages ? &page : NULL);
1461 				if (ret)
1462 					goto out;
1463 				ctx.page_mask = 0;
1464 				goto next_page;
1465 			}
1466 
1467 			if (!vma) {
1468 				ret = -EFAULT;
1469 				goto out;
1470 			}
1471 			ret = check_vma_flags(vma, gup_flags);
1472 			if (ret)
1473 				goto out;
1474 		}
1475 retry:
1476 		/*
1477 		 * If we have a pending SIGKILL, don't keep faulting pages and
1478 		 * potentially allocating memory.
1479 		 */
1480 		if (fatal_signal_pending(current)) {
1481 			ret = -EINTR;
1482 			goto out;
1483 		}
1484 		cond_resched();
1485 
1486 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1487 		if (!page || PTR_ERR(page) == -EMLINK) {
1488 			ret = faultin_page(vma, start, gup_flags,
1489 					   PTR_ERR(page) == -EMLINK, locked);
1490 			switch (ret) {
1491 			case 0:
1492 				goto retry;
1493 			case -EBUSY:
1494 			case -EAGAIN:
1495 				ret = 0;
1496 				fallthrough;
1497 			case -EFAULT:
1498 			case -ENOMEM:
1499 			case -EHWPOISON:
1500 				goto out;
1501 			}
1502 			BUG();
1503 		} else if (PTR_ERR(page) == -EEXIST) {
1504 			/*
1505 			 * Proper page table entry exists, but no corresponding
1506 			 * struct page. If the caller expects **pages to be
1507 			 * filled in, bail out now, because that can't be done
1508 			 * for this page.
1509 			 */
1510 			if (pages) {
1511 				ret = PTR_ERR(page);
1512 				goto out;
1513 			}
1514 		} else if (IS_ERR(page)) {
1515 			ret = PTR_ERR(page);
1516 			goto out;
1517 		}
1518 next_page:
1519 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1520 		if (page_increm > nr_pages)
1521 			page_increm = nr_pages;
1522 
1523 		if (pages) {
1524 			struct page *subpage;
1525 			unsigned int j;
1526 
1527 			/*
1528 			 * This must be a large folio (and doesn't need to
1529 			 * be the whole folio; it can be part of it), do
1530 			 * the refcount work for all the subpages too.
1531 			 *
1532 			 * NOTE: here the page may not be the head page
1533 			 * e.g. when start addr is not thp-size aligned.
1534 			 * try_grab_folio() should have taken care of tail
1535 			 * pages.
1536 			 */
1537 			if (page_increm > 1) {
1538 				struct folio *folio = page_folio(page);
1539 
1540 				/*
1541 				 * Since we already hold refcount on the
1542 				 * large folio, this should never fail.
1543 				 */
1544 				if (try_grab_folio(folio, page_increm - 1,
1545 						   gup_flags)) {
1546 					/*
1547 					 * Release the 1st page ref if the
1548 					 * folio is problematic, fail hard.
1549 					 */
1550 					gup_put_folio(folio, 1, gup_flags);
1551 					ret = -EFAULT;
1552 					goto out;
1553 				}
1554 			}
1555 
1556 			for (j = 0; j < page_increm; j++) {
1557 				subpage = nth_page(page, j);
1558 				pages[i + j] = subpage;
1559 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1560 				flush_dcache_page(subpage);
1561 			}
1562 		}
1563 
1564 		i += page_increm;
1565 		start += page_increm * PAGE_SIZE;
1566 		nr_pages -= page_increm;
1567 	} while (nr_pages);
1568 out:
1569 	if (ctx.pgmap)
1570 		put_dev_pagemap(ctx.pgmap);
1571 	return i ? i : ret;
1572 }
1573 
1574 static bool vma_permits_fault(struct vm_area_struct *vma,
1575 			      unsigned int fault_flags)
1576 {
1577 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1578 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1579 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1580 
1581 	if (!(vm_flags & vma->vm_flags))
1582 		return false;
1583 
1584 	/*
1585 	 * The architecture might have a hardware protection
1586 	 * mechanism other than read/write that can deny access.
1587 	 *
1588 	 * gup always represents data access, not instruction
1589 	 * fetches, so execute=false here:
1590 	 */
1591 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1592 		return false;
1593 
1594 	return true;
1595 }
1596 
1597 /**
1598  * fixup_user_fault() - manually resolve a user page fault
1599  * @mm:		mm_struct of target mm
1600  * @address:	user address
1601  * @fault_flags:flags to pass down to handle_mm_fault()
1602  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1603  *		does not allow retry. If NULL, the caller must guarantee
1604  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1605  *
1606  * This is meant to be called in the specific scenario where for locking reasons
1607  * we try to access user memory in atomic context (within a pagefault_disable()
1608  * section), this returns -EFAULT, and we want to resolve the user fault before
1609  * trying again.
1610  *
1611  * Typically this is meant to be used by the futex code.
1612  *
1613  * The main difference with get_user_pages() is that this function will
1614  * unconditionally call handle_mm_fault() which will in turn perform all the
1615  * necessary SW fixup of the dirty and young bits in the PTE, while
1616  * get_user_pages() only guarantees to update these in the struct page.
1617  *
1618  * This is important for some architectures where those bits also gate the
1619  * access permission to the page because they are maintained in software.  On
1620  * such architectures, gup() will not be enough to make a subsequent access
1621  * succeed.
1622  *
1623  * This function will not return with an unlocked mmap_lock. So it has not the
1624  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1625  */
1626 int fixup_user_fault(struct mm_struct *mm,
1627 		     unsigned long address, unsigned int fault_flags,
1628 		     bool *unlocked)
1629 {
1630 	struct vm_area_struct *vma;
1631 	vm_fault_t ret;
1632 
1633 	address = untagged_addr_remote(mm, address);
1634 
1635 	if (unlocked)
1636 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1637 
1638 retry:
1639 	vma = gup_vma_lookup(mm, address);
1640 	if (!vma)
1641 		return -EFAULT;
1642 
1643 	if (!vma_permits_fault(vma, fault_flags))
1644 		return -EFAULT;
1645 
1646 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1647 	    fatal_signal_pending(current))
1648 		return -EINTR;
1649 
1650 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1651 
1652 	if (ret & VM_FAULT_COMPLETED) {
1653 		/*
1654 		 * NOTE: it's a pity that we need to retake the lock here
1655 		 * to pair with the unlock() in the callers. Ideally we
1656 		 * could tell the callers so they do not need to unlock.
1657 		 */
1658 		mmap_read_lock(mm);
1659 		*unlocked = true;
1660 		return 0;
1661 	}
1662 
1663 	if (ret & VM_FAULT_ERROR) {
1664 		int err = vm_fault_to_errno(ret, 0);
1665 
1666 		if (err)
1667 			return err;
1668 		BUG();
1669 	}
1670 
1671 	if (ret & VM_FAULT_RETRY) {
1672 		mmap_read_lock(mm);
1673 		*unlocked = true;
1674 		fault_flags |= FAULT_FLAG_TRIED;
1675 		goto retry;
1676 	}
1677 
1678 	return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(fixup_user_fault);
1681 
1682 /*
1683  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1684  * specified, it'll also respond to generic signals.  The caller of GUP
1685  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1686  */
1687 static bool gup_signal_pending(unsigned int flags)
1688 {
1689 	if (fatal_signal_pending(current))
1690 		return true;
1691 
1692 	if (!(flags & FOLL_INTERRUPTIBLE))
1693 		return false;
1694 
1695 	return signal_pending(current);
1696 }
1697 
1698 /*
1699  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1700  * the caller. This function may drop the mmap_lock. If it does so, then it will
1701  * set (*locked = 0).
1702  *
1703  * (*locked == 0) means that the caller expects this function to acquire and
1704  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1705  * the function returns, even though it may have changed temporarily during
1706  * function execution.
1707  *
1708  * Please note that this function, unlike __get_user_pages(), will not return 0
1709  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1710  */
1711 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1712 						unsigned long start,
1713 						unsigned long nr_pages,
1714 						struct page **pages,
1715 						int *locked,
1716 						unsigned int flags)
1717 {
1718 	long ret, pages_done;
1719 	bool must_unlock = false;
1720 
1721 	if (!nr_pages)
1722 		return 0;
1723 
1724 	/*
1725 	 * The internal caller expects GUP to manage the lock internally and the
1726 	 * lock must be released when this returns.
1727 	 */
1728 	if (!*locked) {
1729 		if (mmap_read_lock_killable(mm))
1730 			return -EAGAIN;
1731 		must_unlock = true;
1732 		*locked = 1;
1733 	}
1734 	else
1735 		mmap_assert_locked(mm);
1736 
1737 	if (flags & FOLL_PIN)
1738 		mm_set_has_pinned_flag(&mm->flags);
1739 
1740 	/*
1741 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1742 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1743 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1744 	 * for FOLL_GET, not for the newer FOLL_PIN.
1745 	 *
1746 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1747 	 * that here, as any failures will be obvious enough.
1748 	 */
1749 	if (pages && !(flags & FOLL_PIN))
1750 		flags |= FOLL_GET;
1751 
1752 	pages_done = 0;
1753 	for (;;) {
1754 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1755 				       locked);
1756 		if (!(flags & FOLL_UNLOCKABLE)) {
1757 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1758 			pages_done = ret;
1759 			break;
1760 		}
1761 
1762 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1763 		VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1764 
1765 		if (ret > 0) {
1766 			nr_pages -= ret;
1767 			pages_done += ret;
1768 			if (!nr_pages)
1769 				break;
1770 		}
1771 		if (*locked) {
1772 			/*
1773 			 * VM_FAULT_RETRY didn't trigger or it was a
1774 			 * FOLL_NOWAIT.
1775 			 */
1776 			if (!pages_done)
1777 				pages_done = ret;
1778 			break;
1779 		}
1780 		/*
1781 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1782 		 * For the prefault case (!pages) we only update counts.
1783 		 */
1784 		if (likely(pages))
1785 			pages += ret;
1786 		start += ret << PAGE_SHIFT;
1787 
1788 		/* The lock was temporarily dropped, so we must unlock later */
1789 		must_unlock = true;
1790 
1791 retry:
1792 		/*
1793 		 * Repeat on the address that fired VM_FAULT_RETRY
1794 		 * with both FAULT_FLAG_ALLOW_RETRY and
1795 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1796 		 * by fatal signals of even common signals, depending on
1797 		 * the caller's request. So we need to check it before we
1798 		 * start trying again otherwise it can loop forever.
1799 		 */
1800 		if (gup_signal_pending(flags)) {
1801 			if (!pages_done)
1802 				pages_done = -EINTR;
1803 			break;
1804 		}
1805 
1806 		ret = mmap_read_lock_killable(mm);
1807 		if (ret) {
1808 			if (!pages_done)
1809 				pages_done = ret;
1810 			break;
1811 		}
1812 
1813 		*locked = 1;
1814 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1815 				       pages, locked);
1816 		if (!*locked) {
1817 			/* Continue to retry until we succeeded */
1818 			VM_WARN_ON_ONCE(ret != 0);
1819 			goto retry;
1820 		}
1821 		if (ret != 1) {
1822 			VM_WARN_ON_ONCE(ret > 1);
1823 			if (!pages_done)
1824 				pages_done = ret;
1825 			break;
1826 		}
1827 		nr_pages--;
1828 		pages_done++;
1829 		if (!nr_pages)
1830 			break;
1831 		if (likely(pages))
1832 			pages++;
1833 		start += PAGE_SIZE;
1834 	}
1835 	if (must_unlock && *locked) {
1836 		/*
1837 		 * We either temporarily dropped the lock, or the caller
1838 		 * requested that we both acquire and drop the lock. Either way,
1839 		 * we must now unlock, and notify the caller of that state.
1840 		 */
1841 		mmap_read_unlock(mm);
1842 		*locked = 0;
1843 	}
1844 
1845 	/*
1846 	 * Failing to pin anything implies something has gone wrong (except when
1847 	 * FOLL_NOWAIT is specified).
1848 	 */
1849 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1850 		return -EFAULT;
1851 
1852 	return pages_done;
1853 }
1854 
1855 /**
1856  * populate_vma_page_range() -  populate a range of pages in the vma.
1857  * @vma:   target vma
1858  * @start: start address
1859  * @end:   end address
1860  * @locked: whether the mmap_lock is still held
1861  *
1862  * This takes care of mlocking the pages too if VM_LOCKED is set.
1863  *
1864  * Return either number of pages pinned in the vma, or a negative error
1865  * code on error.
1866  *
1867  * vma->vm_mm->mmap_lock must be held.
1868  *
1869  * If @locked is NULL, it may be held for read or write and will
1870  * be unperturbed.
1871  *
1872  * If @locked is non-NULL, it must held for read only and may be
1873  * released.  If it's released, *@locked will be set to 0.
1874  */
1875 long populate_vma_page_range(struct vm_area_struct *vma,
1876 		unsigned long start, unsigned long end, int *locked)
1877 {
1878 	struct mm_struct *mm = vma->vm_mm;
1879 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1880 	int local_locked = 1;
1881 	int gup_flags;
1882 	long ret;
1883 
1884 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1885 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1886 	VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1887 	VM_WARN_ON_ONCE_VMA(end   > vma->vm_end, vma);
1888 	mmap_assert_locked(mm);
1889 
1890 	/*
1891 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1892 	 * faultin_page() to break COW, so it has no work to do here.
1893 	 */
1894 	if (vma->vm_flags & VM_LOCKONFAULT)
1895 		return nr_pages;
1896 
1897 	/* ... similarly, we've never faulted in PROT_NONE pages */
1898 	if (!vma_is_accessible(vma))
1899 		return -EFAULT;
1900 
1901 	gup_flags = FOLL_TOUCH;
1902 	/*
1903 	 * We want to touch writable mappings with a write fault in order
1904 	 * to break COW, except for shared mappings because these don't COW
1905 	 * and we would not want to dirty them for nothing.
1906 	 *
1907 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1908 	 * readable (ie write-only or executable).
1909 	 */
1910 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1911 		gup_flags |= FOLL_WRITE;
1912 	else
1913 		gup_flags |= FOLL_FORCE;
1914 
1915 	if (locked)
1916 		gup_flags |= FOLL_UNLOCKABLE;
1917 
1918 	/*
1919 	 * We made sure addr is within a VMA, so the following will
1920 	 * not result in a stack expansion that recurses back here.
1921 	 */
1922 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1923 			       NULL, locked ? locked : &local_locked);
1924 	lru_add_drain();
1925 	return ret;
1926 }
1927 
1928 /*
1929  * faultin_page_range() - populate (prefault) page tables inside the
1930  *			  given range readable/writable
1931  *
1932  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1933  *
1934  * @mm: the mm to populate page tables in
1935  * @start: start address
1936  * @end: end address
1937  * @write: whether to prefault readable or writable
1938  * @locked: whether the mmap_lock is still held
1939  *
1940  * Returns either number of processed pages in the MM, or a negative error
1941  * code on error (see __get_user_pages()). Note that this function reports
1942  * errors related to VMAs, such as incompatible mappings, as expected by
1943  * MADV_POPULATE_(READ|WRITE).
1944  *
1945  * The range must be page-aligned.
1946  *
1947  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1948  */
1949 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1950 			unsigned long end, bool write, int *locked)
1951 {
1952 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1953 	int gup_flags;
1954 	long ret;
1955 
1956 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1957 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1958 	mmap_assert_locked(mm);
1959 
1960 	/*
1961 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1962 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1963 	 *	       difference with !FOLL_FORCE, because the page is writable
1964 	 *	       in the page table.
1965 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1966 	 *		  a poisoned page.
1967 	 * !FOLL_FORCE: Require proper access permissions.
1968 	 */
1969 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1970 		    FOLL_MADV_POPULATE;
1971 	if (write)
1972 		gup_flags |= FOLL_WRITE;
1973 
1974 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1975 				      gup_flags);
1976 	lru_add_drain();
1977 	return ret;
1978 }
1979 
1980 /*
1981  * __mm_populate - populate and/or mlock pages within a range of address space.
1982  *
1983  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1984  * flags. VMAs must be already marked with the desired vm_flags, and
1985  * mmap_lock must not be held.
1986  */
1987 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1988 {
1989 	struct mm_struct *mm = current->mm;
1990 	unsigned long end, nstart, nend;
1991 	struct vm_area_struct *vma = NULL;
1992 	int locked = 0;
1993 	long ret = 0;
1994 
1995 	end = start + len;
1996 
1997 	for (nstart = start; nstart < end; nstart = nend) {
1998 		/*
1999 		 * We want to fault in pages for [nstart; end) address range.
2000 		 * Find first corresponding VMA.
2001 		 */
2002 		if (!locked) {
2003 			locked = 1;
2004 			mmap_read_lock(mm);
2005 			vma = find_vma_intersection(mm, nstart, end);
2006 		} else if (nstart >= vma->vm_end)
2007 			vma = find_vma_intersection(mm, vma->vm_end, end);
2008 
2009 		if (!vma)
2010 			break;
2011 		/*
2012 		 * Set [nstart; nend) to intersection of desired address
2013 		 * range with the first VMA. Also, skip undesirable VMA types.
2014 		 */
2015 		nend = min(end, vma->vm_end);
2016 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2017 			continue;
2018 		if (nstart < vma->vm_start)
2019 			nstart = vma->vm_start;
2020 		/*
2021 		 * Now fault in a range of pages. populate_vma_page_range()
2022 		 * double checks the vma flags, so that it won't mlock pages
2023 		 * if the vma was already munlocked.
2024 		 */
2025 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2026 		if (ret < 0) {
2027 			if (ignore_errors) {
2028 				ret = 0;
2029 				continue;	/* continue at next VMA */
2030 			}
2031 			break;
2032 		}
2033 		nend = nstart + ret * PAGE_SIZE;
2034 		ret = 0;
2035 	}
2036 	if (locked)
2037 		mmap_read_unlock(mm);
2038 	return ret;	/* 0 or negative error code */
2039 }
2040 #else /* CONFIG_MMU */
2041 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2042 		unsigned long nr_pages, struct page **pages,
2043 		int *locked, unsigned int foll_flags)
2044 {
2045 	struct vm_area_struct *vma;
2046 	bool must_unlock = false;
2047 	unsigned long vm_flags;
2048 	long i;
2049 
2050 	if (!nr_pages)
2051 		return 0;
2052 
2053 	/*
2054 	 * The internal caller expects GUP to manage the lock internally and the
2055 	 * lock must be released when this returns.
2056 	 */
2057 	if (!*locked) {
2058 		if (mmap_read_lock_killable(mm))
2059 			return -EAGAIN;
2060 		must_unlock = true;
2061 		*locked = 1;
2062 	}
2063 
2064 	/* calculate required read or write permissions.
2065 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2066 	 */
2067 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2068 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2069 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2070 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2071 
2072 	for (i = 0; i < nr_pages; i++) {
2073 		vma = find_vma(mm, start);
2074 		if (!vma)
2075 			break;
2076 
2077 		/* protect what we can, including chardevs */
2078 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2079 		    !(vm_flags & vma->vm_flags))
2080 			break;
2081 
2082 		if (pages) {
2083 			pages[i] = virt_to_page((void *)start);
2084 			if (pages[i])
2085 				get_page(pages[i]);
2086 		}
2087 
2088 		start = (start + PAGE_SIZE) & PAGE_MASK;
2089 	}
2090 
2091 	if (must_unlock && *locked) {
2092 		mmap_read_unlock(mm);
2093 		*locked = 0;
2094 	}
2095 
2096 	return i ? : -EFAULT;
2097 }
2098 #endif /* !CONFIG_MMU */
2099 
2100 /**
2101  * fault_in_writeable - fault in userspace address range for writing
2102  * @uaddr: start of address range
2103  * @size: size of address range
2104  *
2105  * Returns the number of bytes not faulted in (like copy_to_user() and
2106  * copy_from_user()).
2107  */
2108 size_t fault_in_writeable(char __user *uaddr, size_t size)
2109 {
2110 	const unsigned long start = (unsigned long)uaddr;
2111 	const unsigned long end = start + size;
2112 	unsigned long cur;
2113 
2114 	if (unlikely(size == 0))
2115 		return 0;
2116 	if (!user_write_access_begin(uaddr, size))
2117 		return size;
2118 
2119 	/* Stop once we overflow to 0. */
2120 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2121 		unsafe_put_user(0, (char __user *)cur, out);
2122 out:
2123 	user_write_access_end();
2124 	if (size > cur - start)
2125 		return size - (cur - start);
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(fault_in_writeable);
2129 
2130 /**
2131  * fault_in_subpage_writeable - fault in an address range for writing
2132  * @uaddr: start of address range
2133  * @size: size of address range
2134  *
2135  * Fault in a user address range for writing while checking for permissions at
2136  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2137  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2138  *
2139  * Returns the number of bytes not faulted in (like copy_to_user() and
2140  * copy_from_user()).
2141  */
2142 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2143 {
2144 	size_t faulted_in;
2145 
2146 	/*
2147 	 * Attempt faulting in at page granularity first for page table
2148 	 * permission checking. The arch-specific probe_subpage_writeable()
2149 	 * functions may not check for this.
2150 	 */
2151 	faulted_in = size - fault_in_writeable(uaddr, size);
2152 	if (faulted_in)
2153 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2154 
2155 	return size - faulted_in;
2156 }
2157 EXPORT_SYMBOL(fault_in_subpage_writeable);
2158 
2159 /*
2160  * fault_in_safe_writeable - fault in an address range for writing
2161  * @uaddr: start of address range
2162  * @size: length of address range
2163  *
2164  * Faults in an address range for writing.  This is primarily useful when we
2165  * already know that some or all of the pages in the address range aren't in
2166  * memory.
2167  *
2168  * Unlike fault_in_writeable(), this function is non-destructive.
2169  *
2170  * Note that we don't pin or otherwise hold the pages referenced that we fault
2171  * in.  There's no guarantee that they'll stay in memory for any duration of
2172  * time.
2173  *
2174  * Returns the number of bytes not faulted in, like copy_to_user() and
2175  * copy_from_user().
2176  */
2177 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2178 {
2179 	const unsigned long start = (unsigned long)uaddr;
2180 	const unsigned long end = start + size;
2181 	unsigned long cur;
2182 	struct mm_struct *mm = current->mm;
2183 	bool unlocked = false;
2184 
2185 	if (unlikely(size == 0))
2186 		return 0;
2187 
2188 	mmap_read_lock(mm);
2189 	/* Stop once we overflow to 0. */
2190 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2191 		if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2192 			break;
2193 	mmap_read_unlock(mm);
2194 
2195 	if (size > cur - start)
2196 		return size - (cur - start);
2197 	return 0;
2198 }
2199 EXPORT_SYMBOL(fault_in_safe_writeable);
2200 
2201 /**
2202  * fault_in_readable - fault in userspace address range for reading
2203  * @uaddr: start of user address range
2204  * @size: size of user address range
2205  *
2206  * Returns the number of bytes not faulted in (like copy_to_user() and
2207  * copy_from_user()).
2208  */
2209 size_t fault_in_readable(const char __user *uaddr, size_t size)
2210 {
2211 	const unsigned long start = (unsigned long)uaddr;
2212 	const unsigned long end = start + size;
2213 	unsigned long cur;
2214 	volatile char c;
2215 
2216 	if (unlikely(size == 0))
2217 		return 0;
2218 	if (!user_read_access_begin(uaddr, size))
2219 		return size;
2220 
2221 	/* Stop once we overflow to 0. */
2222 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2223 		unsafe_get_user(c, (const char __user *)cur, out);
2224 out:
2225 	user_read_access_end();
2226 	(void)c;
2227 	if (size > cur - start)
2228 		return size - (cur - start);
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(fault_in_readable);
2232 
2233 /**
2234  * get_dump_page() - pin user page in memory while writing it to core dump
2235  * @addr: user address
2236  * @locked: a pointer to an int denoting whether the mmap sem is held
2237  *
2238  * Returns struct page pointer of user page pinned for dump,
2239  * to be freed afterwards by put_page().
2240  *
2241  * Returns NULL on any kind of failure - a hole must then be inserted into
2242  * the corefile, to preserve alignment with its headers; and also returns
2243  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2244  * allowing a hole to be left in the corefile to save disk space.
2245  *
2246  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2247  */
2248 #ifdef CONFIG_ELF_CORE
2249 struct page *get_dump_page(unsigned long addr, int *locked)
2250 {
2251 	struct page *page;
2252 	int ret;
2253 
2254 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2255 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2256 	return (ret == 1) ? page : NULL;
2257 }
2258 #endif /* CONFIG_ELF_CORE */
2259 
2260 #ifdef CONFIG_MIGRATION
2261 
2262 /*
2263  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2264  * avoid this complication, by simply interpreting a list of folios as a list of
2265  * pages, that approach won't work in the longer term, because eventually the
2266  * layouts of struct page and struct folio will become completely different.
2267  * Furthermore, this pof approach avoids excessive page_folio() calls.
2268  */
2269 struct pages_or_folios {
2270 	union {
2271 		struct page **pages;
2272 		struct folio **folios;
2273 		void **entries;
2274 	};
2275 	bool has_folios;
2276 	long nr_entries;
2277 };
2278 
2279 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2280 {
2281 	if (pofs->has_folios)
2282 		return pofs->folios[i];
2283 	return page_folio(pofs->pages[i]);
2284 }
2285 
2286 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2287 {
2288 	pofs->entries[i] = NULL;
2289 }
2290 
2291 static void pofs_unpin(struct pages_or_folios *pofs)
2292 {
2293 	if (pofs->has_folios)
2294 		unpin_folios(pofs->folios, pofs->nr_entries);
2295 	else
2296 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2297 }
2298 
2299 static struct folio *pofs_next_folio(struct folio *folio,
2300 		struct pages_or_folios *pofs, long *index_ptr)
2301 {
2302 	long i = *index_ptr + 1;
2303 
2304 	if (!pofs->has_folios && folio_test_large(folio)) {
2305 		const unsigned long start_pfn = folio_pfn(folio);
2306 		const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2307 
2308 		for (; i < pofs->nr_entries; i++) {
2309 			unsigned long pfn = page_to_pfn(pofs->pages[i]);
2310 
2311 			/* Is this page part of this folio? */
2312 			if (pfn < start_pfn || pfn >= end_pfn)
2313 				break;
2314 		}
2315 	}
2316 
2317 	if (unlikely(i == pofs->nr_entries))
2318 		return NULL;
2319 	*index_ptr = i;
2320 
2321 	return pofs_get_folio(pofs, i);
2322 }
2323 
2324 /*
2325  * Returns the number of collected folios. Return value is always >= 0.
2326  */
2327 static unsigned long collect_longterm_unpinnable_folios(
2328 		struct list_head *movable_folio_list,
2329 		struct pages_or_folios *pofs)
2330 {
2331 	unsigned long collected = 0;
2332 	bool drain_allow = true;
2333 	struct folio *folio;
2334 	long i = 0;
2335 
2336 	for (folio = pofs_get_folio(pofs, i); folio;
2337 	     folio = pofs_next_folio(folio, pofs, &i)) {
2338 
2339 		if (folio_is_longterm_pinnable(folio))
2340 			continue;
2341 
2342 		collected++;
2343 
2344 		if (folio_is_device_coherent(folio))
2345 			continue;
2346 
2347 		if (folio_test_hugetlb(folio)) {
2348 			folio_isolate_hugetlb(folio, movable_folio_list);
2349 			continue;
2350 		}
2351 
2352 		if (!folio_test_lru(folio) && drain_allow) {
2353 			lru_add_drain_all();
2354 			drain_allow = false;
2355 		}
2356 
2357 		if (!folio_isolate_lru(folio))
2358 			continue;
2359 
2360 		list_add_tail(&folio->lru, movable_folio_list);
2361 		node_stat_mod_folio(folio,
2362 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2363 				    folio_nr_pages(folio));
2364 	}
2365 
2366 	return collected;
2367 }
2368 
2369 /*
2370  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2371  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2372  * failure (or partial success).
2373  */
2374 static int
2375 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2376 				   struct pages_or_folios *pofs)
2377 {
2378 	int ret;
2379 	unsigned long i;
2380 
2381 	for (i = 0; i < pofs->nr_entries; i++) {
2382 		struct folio *folio = pofs_get_folio(pofs, i);
2383 
2384 		if (folio_is_device_coherent(folio)) {
2385 			/*
2386 			 * Migration will fail if the folio is pinned, so
2387 			 * convert the pin on the source folio to a normal
2388 			 * reference.
2389 			 */
2390 			pofs_clear_entry(pofs, i);
2391 			folio_get(folio);
2392 			gup_put_folio(folio, 1, FOLL_PIN);
2393 
2394 			if (migrate_device_coherent_folio(folio)) {
2395 				ret = -EBUSY;
2396 				goto err;
2397 			}
2398 
2399 			continue;
2400 		}
2401 
2402 		/*
2403 		 * We can't migrate folios with unexpected references, so drop
2404 		 * the reference obtained by __get_user_pages_locked().
2405 		 * Migrating folios have been added to movable_folio_list after
2406 		 * calling folio_isolate_lru() which takes a reference so the
2407 		 * folio won't be freed if it's migrating.
2408 		 */
2409 		unpin_folio(folio);
2410 		pofs_clear_entry(pofs, i);
2411 	}
2412 
2413 	if (!list_empty(movable_folio_list)) {
2414 		struct migration_target_control mtc = {
2415 			.nid = NUMA_NO_NODE,
2416 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2417 			.reason = MR_LONGTERM_PIN,
2418 		};
2419 
2420 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2421 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2422 				  MR_LONGTERM_PIN, NULL)) {
2423 			ret = -ENOMEM;
2424 			goto err;
2425 		}
2426 	}
2427 
2428 	putback_movable_pages(movable_folio_list);
2429 
2430 	return -EAGAIN;
2431 
2432 err:
2433 	pofs_unpin(pofs);
2434 	putback_movable_pages(movable_folio_list);
2435 
2436 	return ret;
2437 }
2438 
2439 static long
2440 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2441 {
2442 	LIST_HEAD(movable_folio_list);
2443 	unsigned long collected;
2444 
2445 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2446 						       pofs);
2447 	if (!collected)
2448 		return 0;
2449 
2450 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2451 }
2452 
2453 /*
2454  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2455  * Rather confusingly, all folios in the range are required to be pinned via
2456  * FOLL_PIN, before calling this routine.
2457  *
2458  * Return values:
2459  *
2460  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2461  * then this routine leaves all folios pinned and returns zero for success.
2462  *
2463  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2464  * routine will migrate those folios away, unpin all the folios in the range. If
2465  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2466  * caller should re-pin the entire range with FOLL_PIN and then call this
2467  * routine again.
2468  *
2469  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2470  * indicates a migration failure. The caller should give up, and propagate the
2471  * error back up the call stack. The caller does not need to unpin any folios in
2472  * that case, because this routine will do the unpinning.
2473  */
2474 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2475 					     struct folio **folios)
2476 {
2477 	struct pages_or_folios pofs = {
2478 		.folios = folios,
2479 		.has_folios = true,
2480 		.nr_entries = nr_folios,
2481 	};
2482 
2483 	return check_and_migrate_movable_pages_or_folios(&pofs);
2484 }
2485 
2486 /*
2487  * Return values and behavior are the same as those for
2488  * check_and_migrate_movable_folios().
2489  */
2490 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2491 					    struct page **pages)
2492 {
2493 	struct pages_or_folios pofs = {
2494 		.pages = pages,
2495 		.has_folios = false,
2496 		.nr_entries = nr_pages,
2497 	};
2498 
2499 	return check_and_migrate_movable_pages_or_folios(&pofs);
2500 }
2501 #else
2502 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2503 					    struct page **pages)
2504 {
2505 	return 0;
2506 }
2507 
2508 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2509 					     struct folio **folios)
2510 {
2511 	return 0;
2512 }
2513 #endif /* CONFIG_MIGRATION */
2514 
2515 /*
2516  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2517  * allows us to process the FOLL_LONGTERM flag.
2518  */
2519 static long __gup_longterm_locked(struct mm_struct *mm,
2520 				  unsigned long start,
2521 				  unsigned long nr_pages,
2522 				  struct page **pages,
2523 				  int *locked,
2524 				  unsigned int gup_flags)
2525 {
2526 	unsigned int flags;
2527 	long rc, nr_pinned_pages;
2528 
2529 	if (!(gup_flags & FOLL_LONGTERM))
2530 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2531 					       locked, gup_flags);
2532 
2533 	flags = memalloc_pin_save();
2534 	do {
2535 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2536 							  pages, locked,
2537 							  gup_flags);
2538 		if (nr_pinned_pages <= 0) {
2539 			rc = nr_pinned_pages;
2540 			break;
2541 		}
2542 
2543 		/* FOLL_LONGTERM implies FOLL_PIN */
2544 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2545 	} while (rc == -EAGAIN);
2546 	memalloc_pin_restore(flags);
2547 	return rc ? rc : nr_pinned_pages;
2548 }
2549 
2550 /*
2551  * Check that the given flags are valid for the exported gup/pup interface, and
2552  * update them with the required flags that the caller must have set.
2553  */
2554 static bool is_valid_gup_args(struct page **pages, int *locked,
2555 			      unsigned int *gup_flags_p, unsigned int to_set)
2556 {
2557 	unsigned int gup_flags = *gup_flags_p;
2558 
2559 	/*
2560 	 * These flags not allowed to be specified externally to the gup
2561 	 * interfaces:
2562 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2563 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2564 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2565 	 */
2566 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2567 		return false;
2568 
2569 	gup_flags |= to_set;
2570 	if (locked) {
2571 		/* At the external interface locked must be set */
2572 		if (WARN_ON_ONCE(*locked != 1))
2573 			return false;
2574 
2575 		gup_flags |= FOLL_UNLOCKABLE;
2576 	}
2577 
2578 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2579 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2580 			 (FOLL_PIN | FOLL_GET)))
2581 		return false;
2582 
2583 	/* LONGTERM can only be specified when pinning */
2584 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2585 		return false;
2586 
2587 	/* Pages input must be given if using GET/PIN */
2588 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2589 		return false;
2590 
2591 	/* We want to allow the pgmap to be hot-unplugged at all times */
2592 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2593 			 (gup_flags & FOLL_PCI_P2PDMA)))
2594 		return false;
2595 
2596 	*gup_flags_p = gup_flags;
2597 	return true;
2598 }
2599 
2600 #ifdef CONFIG_MMU
2601 /**
2602  * get_user_pages_remote() - pin user pages in memory
2603  * @mm:		mm_struct of target mm
2604  * @start:	starting user address
2605  * @nr_pages:	number of pages from start to pin
2606  * @gup_flags:	flags modifying lookup behaviour
2607  * @pages:	array that receives pointers to the pages pinned.
2608  *		Should be at least nr_pages long. Or NULL, if caller
2609  *		only intends to ensure the pages are faulted in.
2610  * @locked:	pointer to lock flag indicating whether lock is held and
2611  *		subsequently whether VM_FAULT_RETRY functionality can be
2612  *		utilised. Lock must initially be held.
2613  *
2614  * Returns either number of pages pinned (which may be less than the
2615  * number requested), or an error. Details about the return value:
2616  *
2617  * -- If nr_pages is 0, returns 0.
2618  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2619  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2620  *    pages pinned. Again, this may be less than nr_pages.
2621  *
2622  * The caller is responsible for releasing returned @pages, via put_page().
2623  *
2624  * Must be called with mmap_lock held for read or write.
2625  *
2626  * get_user_pages_remote walks a process's page tables and takes a reference
2627  * to each struct page that each user address corresponds to at a given
2628  * instant. That is, it takes the page that would be accessed if a user
2629  * thread accesses the given user virtual address at that instant.
2630  *
2631  * This does not guarantee that the page exists in the user mappings when
2632  * get_user_pages_remote returns, and there may even be a completely different
2633  * page there in some cases (eg. if mmapped pagecache has been invalidated
2634  * and subsequently re-faulted). However it does guarantee that the page
2635  * won't be freed completely. And mostly callers simply care that the page
2636  * contains data that was valid *at some point in time*. Typically, an IO
2637  * or similar operation cannot guarantee anything stronger anyway because
2638  * locks can't be held over the syscall boundary.
2639  *
2640  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2641  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2642  * be called after the page is finished with, and before put_page is called.
2643  *
2644  * get_user_pages_remote is typically used for fewer-copy IO operations,
2645  * to get a handle on the memory by some means other than accesses
2646  * via the user virtual addresses. The pages may be submitted for
2647  * DMA to devices or accessed via their kernel linear mapping (via the
2648  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2649  *
2650  * See also get_user_pages_fast, for performance critical applications.
2651  *
2652  * get_user_pages_remote should be phased out in favor of
2653  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2654  * should use get_user_pages_remote because it cannot pass
2655  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2656  */
2657 long get_user_pages_remote(struct mm_struct *mm,
2658 		unsigned long start, unsigned long nr_pages,
2659 		unsigned int gup_flags, struct page **pages,
2660 		int *locked)
2661 {
2662 	int local_locked = 1;
2663 
2664 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2665 			       FOLL_TOUCH | FOLL_REMOTE))
2666 		return -EINVAL;
2667 
2668 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2669 				       locked ? locked : &local_locked,
2670 				       gup_flags);
2671 }
2672 EXPORT_SYMBOL(get_user_pages_remote);
2673 
2674 #else /* CONFIG_MMU */
2675 long get_user_pages_remote(struct mm_struct *mm,
2676 			   unsigned long start, unsigned long nr_pages,
2677 			   unsigned int gup_flags, struct page **pages,
2678 			   int *locked)
2679 {
2680 	return 0;
2681 }
2682 #endif /* !CONFIG_MMU */
2683 
2684 /**
2685  * get_user_pages() - pin user pages in memory
2686  * @start:      starting user address
2687  * @nr_pages:   number of pages from start to pin
2688  * @gup_flags:  flags modifying lookup behaviour
2689  * @pages:      array that receives pointers to the pages pinned.
2690  *              Should be at least nr_pages long. Or NULL, if caller
2691  *              only intends to ensure the pages are faulted in.
2692  *
2693  * This is the same as get_user_pages_remote(), just with a less-flexible
2694  * calling convention where we assume that the mm being operated on belongs to
2695  * the current task, and doesn't allow passing of a locked parameter.  We also
2696  * obviously don't pass FOLL_REMOTE in here.
2697  */
2698 long get_user_pages(unsigned long start, unsigned long nr_pages,
2699 		    unsigned int gup_flags, struct page **pages)
2700 {
2701 	int locked = 1;
2702 
2703 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2704 		return -EINVAL;
2705 
2706 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2707 				       &locked, gup_flags);
2708 }
2709 EXPORT_SYMBOL(get_user_pages);
2710 
2711 /*
2712  * get_user_pages_unlocked() is suitable to replace the form:
2713  *
2714  *      mmap_read_lock(mm);
2715  *      get_user_pages(mm, ..., pages, NULL);
2716  *      mmap_read_unlock(mm);
2717  *
2718  *  with:
2719  *
2720  *      get_user_pages_unlocked(mm, ..., pages);
2721  *
2722  * It is functionally equivalent to get_user_pages_fast so
2723  * get_user_pages_fast should be used instead if specific gup_flags
2724  * (e.g. FOLL_FORCE) are not required.
2725  */
2726 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2727 			     struct page **pages, unsigned int gup_flags)
2728 {
2729 	int locked = 0;
2730 
2731 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2732 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2733 		return -EINVAL;
2734 
2735 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2736 				       &locked, gup_flags);
2737 }
2738 EXPORT_SYMBOL(get_user_pages_unlocked);
2739 
2740 /*
2741  * GUP-fast
2742  *
2743  * get_user_pages_fast attempts to pin user pages by walking the page
2744  * tables directly and avoids taking locks. Thus the walker needs to be
2745  * protected from page table pages being freed from under it, and should
2746  * block any THP splits.
2747  *
2748  * One way to achieve this is to have the walker disable interrupts, and
2749  * rely on IPIs from the TLB flushing code blocking before the page table
2750  * pages are freed. This is unsuitable for architectures that do not need
2751  * to broadcast an IPI when invalidating TLBs.
2752  *
2753  * Another way to achieve this is to batch up page table containing pages
2754  * belonging to more than one mm_user, then rcu_sched a callback to free those
2755  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2756  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2757  * (which is a relatively rare event). The code below adopts this strategy.
2758  *
2759  * Before activating this code, please be aware that the following assumptions
2760  * are currently made:
2761  *
2762  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2763  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2764  *
2765  *  *) ptes can be read atomically by the architecture.
2766  *
2767  *  *) valid user addesses are below TASK_MAX_SIZE
2768  *
2769  * The last two assumptions can be relaxed by the addition of helper functions.
2770  *
2771  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2772  */
2773 #ifdef CONFIG_HAVE_GUP_FAST
2774 /*
2775  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2776  * a specific folio.
2777  *
2778  * This call assumes the caller has pinned the folio, that the lowest page table
2779  * level still points to this folio, and that interrupts have been disabled.
2780  *
2781  * GUP-fast must reject all secretmem folios.
2782  *
2783  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2784  * (see comment describing the writable_file_mapping_allowed() function). We
2785  * therefore try to avoid the most egregious case of a long-term mapping doing
2786  * so.
2787  *
2788  * This function cannot be as thorough as that one as the VMA is not available
2789  * in the fast path, so instead we whitelist known good cases and if in doubt,
2790  * fall back to the slow path.
2791  */
2792 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2793 {
2794 	bool reject_file_backed = false;
2795 	struct address_space *mapping;
2796 	bool check_secretmem = false;
2797 	unsigned long mapping_flags;
2798 
2799 	/*
2800 	 * If we aren't pinning then no problematic write can occur. A long term
2801 	 * pin is the most egregious case so this is the one we disallow.
2802 	 */
2803 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2804 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2805 		reject_file_backed = true;
2806 
2807 	/* We hold a folio reference, so we can safely access folio fields. */
2808 
2809 	/* secretmem folios are always order-0 folios. */
2810 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2811 		check_secretmem = true;
2812 
2813 	if (!reject_file_backed && !check_secretmem)
2814 		return true;
2815 
2816 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2817 		return false;
2818 
2819 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2820 	if (folio_test_hugetlb(folio))
2821 		return true;
2822 
2823 	/*
2824 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2825 	 * cannot proceed, which means no actions performed under RCU can
2826 	 * proceed either.
2827 	 *
2828 	 * inodes and thus their mappings are freed under RCU, which means the
2829 	 * mapping cannot be freed beneath us and thus we can safely dereference
2830 	 * it.
2831 	 */
2832 	lockdep_assert_irqs_disabled();
2833 
2834 	/*
2835 	 * However, there may be operations which _alter_ the mapping, so ensure
2836 	 * we read it once and only once.
2837 	 */
2838 	mapping = READ_ONCE(folio->mapping);
2839 
2840 	/*
2841 	 * The mapping may have been truncated, in any case we cannot determine
2842 	 * if this mapping is safe - fall back to slow path to determine how to
2843 	 * proceed.
2844 	 */
2845 	if (!mapping)
2846 		return false;
2847 
2848 	/* Anonymous folios pose no problem. */
2849 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2850 	if (mapping_flags)
2851 		return mapping_flags & PAGE_MAPPING_ANON;
2852 
2853 	/*
2854 	 * At this point, we know the mapping is non-null and points to an
2855 	 * address_space object.
2856 	 */
2857 	if (check_secretmem && secretmem_mapping(mapping))
2858 		return false;
2859 	/* The only remaining allowed file system is shmem. */
2860 	return !reject_file_backed || shmem_mapping(mapping);
2861 }
2862 
2863 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2864 		unsigned int flags, struct page **pages)
2865 {
2866 	while ((*nr) - nr_start) {
2867 		struct folio *folio = page_folio(pages[--(*nr)]);
2868 
2869 		folio_clear_referenced(folio);
2870 		gup_put_folio(folio, 1, flags);
2871 	}
2872 }
2873 
2874 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2875 /*
2876  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2877  * operations.
2878  *
2879  * To pin the page, GUP-fast needs to do below in order:
2880  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2881  *
2882  * For the rest of pgtable operations where pgtable updates can be racy
2883  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2884  * is pinned.
2885  *
2886  * Above will work for all pte-level operations, including THP split.
2887  *
2888  * For THP collapse, it's a bit more complicated because GUP-fast may be
2889  * walking a pgtable page that is being freed (pte is still valid but pmd
2890  * can be cleared already).  To avoid race in such condition, we need to
2891  * also check pmd here to make sure pmd doesn't change (corresponds to
2892  * pmdp_collapse_flush() in the THP collapse code path).
2893  */
2894 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2895 		unsigned long end, unsigned int flags, struct page **pages,
2896 		int *nr)
2897 {
2898 	struct dev_pagemap *pgmap = NULL;
2899 	int nr_start = *nr, ret = 0;
2900 	pte_t *ptep, *ptem;
2901 
2902 	ptem = ptep = pte_offset_map(&pmd, addr);
2903 	if (!ptep)
2904 		return 0;
2905 	do {
2906 		pte_t pte = ptep_get_lockless(ptep);
2907 		struct page *page;
2908 		struct folio *folio;
2909 
2910 		/*
2911 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2912 		 * pte_access_permitted() better should reject these pages
2913 		 * either way: otherwise, GUP-fast might succeed in
2914 		 * cases where ordinary GUP would fail due to VMA access
2915 		 * permissions.
2916 		 */
2917 		if (pte_protnone(pte))
2918 			goto pte_unmap;
2919 
2920 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2921 			goto pte_unmap;
2922 
2923 		if (pte_devmap(pte)) {
2924 			if (unlikely(flags & FOLL_LONGTERM))
2925 				goto pte_unmap;
2926 
2927 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2928 			if (unlikely(!pgmap)) {
2929 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2930 				goto pte_unmap;
2931 			}
2932 		} else if (pte_special(pte))
2933 			goto pte_unmap;
2934 
2935 		/* If it's not marked as special it must have a valid memmap. */
2936 		VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2937 		page = pte_page(pte);
2938 
2939 		folio = try_grab_folio_fast(page, 1, flags);
2940 		if (!folio)
2941 			goto pte_unmap;
2942 
2943 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2944 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2945 			gup_put_folio(folio, 1, flags);
2946 			goto pte_unmap;
2947 		}
2948 
2949 		if (!gup_fast_folio_allowed(folio, flags)) {
2950 			gup_put_folio(folio, 1, flags);
2951 			goto pte_unmap;
2952 		}
2953 
2954 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2955 			gup_put_folio(folio, 1, flags);
2956 			goto pte_unmap;
2957 		}
2958 
2959 		/*
2960 		 * We need to make the page accessible if and only if we are
2961 		 * going to access its content (the FOLL_PIN case).  Please
2962 		 * see Documentation/core-api/pin_user_pages.rst for
2963 		 * details.
2964 		 */
2965 		if (flags & FOLL_PIN) {
2966 			ret = arch_make_folio_accessible(folio);
2967 			if (ret) {
2968 				gup_put_folio(folio, 1, flags);
2969 				goto pte_unmap;
2970 			}
2971 		}
2972 		folio_set_referenced(folio);
2973 		pages[*nr] = page;
2974 		(*nr)++;
2975 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2976 
2977 	ret = 1;
2978 
2979 pte_unmap:
2980 	if (pgmap)
2981 		put_dev_pagemap(pgmap);
2982 	pte_unmap(ptem);
2983 	return ret;
2984 }
2985 #else
2986 
2987 /*
2988  * If we can't determine whether or not a pte is special, then fail immediately
2989  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2990  * to be special.
2991  *
2992  * For a futex to be placed on a THP tail page, get_futex_key requires a
2993  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2994  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2995  */
2996 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2997 		unsigned long end, unsigned int flags, struct page **pages,
2998 		int *nr)
2999 {
3000 	return 0;
3001 }
3002 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3003 
3004 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3005 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3006 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
3007 {
3008 	int nr_start = *nr;
3009 	struct dev_pagemap *pgmap = NULL;
3010 
3011 	do {
3012 		struct folio *folio;
3013 		struct page *page = pfn_to_page(pfn);
3014 
3015 		pgmap = get_dev_pagemap(pfn, pgmap);
3016 		if (unlikely(!pgmap)) {
3017 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3018 			break;
3019 		}
3020 
3021 		folio = try_grab_folio_fast(page, 1, flags);
3022 		if (!folio) {
3023 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3024 			break;
3025 		}
3026 		folio_set_referenced(folio);
3027 		pages[*nr] = page;
3028 		(*nr)++;
3029 		pfn++;
3030 	} while (addr += PAGE_SIZE, addr != end);
3031 
3032 	put_dev_pagemap(pgmap);
3033 	return addr == end;
3034 }
3035 
3036 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3037 		unsigned long end, unsigned int flags, struct page **pages,
3038 		int *nr)
3039 {
3040 	unsigned long fault_pfn;
3041 	int nr_start = *nr;
3042 
3043 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3044 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3045 		return 0;
3046 
3047 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3048 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3049 		return 0;
3050 	}
3051 	return 1;
3052 }
3053 
3054 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3055 		unsigned long end, unsigned int flags, struct page **pages,
3056 		int *nr)
3057 {
3058 	unsigned long fault_pfn;
3059 	int nr_start = *nr;
3060 
3061 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3062 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3063 		return 0;
3064 
3065 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3066 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3067 		return 0;
3068 	}
3069 	return 1;
3070 }
3071 #else
3072 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3073 		unsigned long end, unsigned int flags, struct page **pages,
3074 		int *nr)
3075 {
3076 	BUILD_BUG();
3077 	return 0;
3078 }
3079 
3080 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3081 		unsigned long end, unsigned int flags, struct page **pages,
3082 		int *nr)
3083 {
3084 	BUILD_BUG();
3085 	return 0;
3086 }
3087 #endif
3088 
3089 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3090 		unsigned long end, unsigned int flags, struct page **pages,
3091 		int *nr)
3092 {
3093 	struct page *page;
3094 	struct folio *folio;
3095 	int refs;
3096 
3097 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3098 		return 0;
3099 
3100 	if (pmd_special(orig))
3101 		return 0;
3102 
3103 	if (pmd_devmap(orig)) {
3104 		if (unlikely(flags & FOLL_LONGTERM))
3105 			return 0;
3106 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3107 					        pages, nr);
3108 	}
3109 
3110 	page = pmd_page(orig);
3111 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3112 
3113 	folio = try_grab_folio_fast(page, refs, flags);
3114 	if (!folio)
3115 		return 0;
3116 
3117 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3118 		gup_put_folio(folio, refs, flags);
3119 		return 0;
3120 	}
3121 
3122 	if (!gup_fast_folio_allowed(folio, flags)) {
3123 		gup_put_folio(folio, refs, flags);
3124 		return 0;
3125 	}
3126 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3127 		gup_put_folio(folio, refs, flags);
3128 		return 0;
3129 	}
3130 
3131 	*nr += refs;
3132 	folio_set_referenced(folio);
3133 	return 1;
3134 }
3135 
3136 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3137 		unsigned long end, unsigned int flags, struct page **pages,
3138 		int *nr)
3139 {
3140 	struct page *page;
3141 	struct folio *folio;
3142 	int refs;
3143 
3144 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3145 		return 0;
3146 
3147 	if (pud_special(orig))
3148 		return 0;
3149 
3150 	if (pud_devmap(orig)) {
3151 		if (unlikely(flags & FOLL_LONGTERM))
3152 			return 0;
3153 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3154 					        pages, nr);
3155 	}
3156 
3157 	page = pud_page(orig);
3158 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3159 
3160 	folio = try_grab_folio_fast(page, refs, flags);
3161 	if (!folio)
3162 		return 0;
3163 
3164 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3165 		gup_put_folio(folio, refs, flags);
3166 		return 0;
3167 	}
3168 
3169 	if (!gup_fast_folio_allowed(folio, flags)) {
3170 		gup_put_folio(folio, refs, flags);
3171 		return 0;
3172 	}
3173 
3174 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3175 		gup_put_folio(folio, refs, flags);
3176 		return 0;
3177 	}
3178 
3179 	*nr += refs;
3180 	folio_set_referenced(folio);
3181 	return 1;
3182 }
3183 
3184 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3185 		unsigned long end, unsigned int flags, struct page **pages,
3186 		int *nr)
3187 {
3188 	unsigned long next;
3189 	pmd_t *pmdp;
3190 
3191 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3192 	do {
3193 		pmd_t pmd = pmdp_get_lockless(pmdp);
3194 
3195 		next = pmd_addr_end(addr, end);
3196 		if (!pmd_present(pmd))
3197 			return 0;
3198 
3199 		if (unlikely(pmd_leaf(pmd))) {
3200 			/* See gup_fast_pte_range() */
3201 			if (pmd_protnone(pmd))
3202 				return 0;
3203 
3204 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3205 				pages, nr))
3206 				return 0;
3207 
3208 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3209 					       pages, nr))
3210 			return 0;
3211 	} while (pmdp++, addr = next, addr != end);
3212 
3213 	return 1;
3214 }
3215 
3216 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3217 		unsigned long end, unsigned int flags, struct page **pages,
3218 		int *nr)
3219 {
3220 	unsigned long next;
3221 	pud_t *pudp;
3222 
3223 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3224 	do {
3225 		pud_t pud = READ_ONCE(*pudp);
3226 
3227 		next = pud_addr_end(addr, end);
3228 		if (unlikely(!pud_present(pud)))
3229 			return 0;
3230 		if (unlikely(pud_leaf(pud))) {
3231 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3232 					       pages, nr))
3233 				return 0;
3234 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3235 					       pages, nr))
3236 			return 0;
3237 	} while (pudp++, addr = next, addr != end);
3238 
3239 	return 1;
3240 }
3241 
3242 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3243 		unsigned long end, unsigned int flags, struct page **pages,
3244 		int *nr)
3245 {
3246 	unsigned long next;
3247 	p4d_t *p4dp;
3248 
3249 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3250 	do {
3251 		p4d_t p4d = READ_ONCE(*p4dp);
3252 
3253 		next = p4d_addr_end(addr, end);
3254 		if (!p4d_present(p4d))
3255 			return 0;
3256 		BUILD_BUG_ON(p4d_leaf(p4d));
3257 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3258 					pages, nr))
3259 			return 0;
3260 	} while (p4dp++, addr = next, addr != end);
3261 
3262 	return 1;
3263 }
3264 
3265 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3266 		unsigned int flags, struct page **pages, int *nr)
3267 {
3268 	unsigned long next;
3269 	pgd_t *pgdp;
3270 
3271 	pgdp = pgd_offset(current->mm, addr);
3272 	do {
3273 		pgd_t pgd = READ_ONCE(*pgdp);
3274 
3275 		next = pgd_addr_end(addr, end);
3276 		if (pgd_none(pgd))
3277 			return;
3278 		BUILD_BUG_ON(pgd_leaf(pgd));
3279 		if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3280 					pages, nr))
3281 			return;
3282 	} while (pgdp++, addr = next, addr != end);
3283 }
3284 #else
3285 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3286 		unsigned int flags, struct page **pages, int *nr)
3287 {
3288 }
3289 #endif /* CONFIG_HAVE_GUP_FAST */
3290 
3291 #ifndef gup_fast_permitted
3292 /*
3293  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3294  * we need to fall back to the slow version:
3295  */
3296 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3297 {
3298 	return true;
3299 }
3300 #endif
3301 
3302 static unsigned long gup_fast(unsigned long start, unsigned long end,
3303 		unsigned int gup_flags, struct page **pages)
3304 {
3305 	unsigned long flags;
3306 	int nr_pinned = 0;
3307 	unsigned seq;
3308 
3309 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3310 	    !gup_fast_permitted(start, end))
3311 		return 0;
3312 
3313 	if (gup_flags & FOLL_PIN) {
3314 		if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3315 			return 0;
3316 	}
3317 
3318 	/*
3319 	 * Disable interrupts. The nested form is used, in order to allow full,
3320 	 * general purpose use of this routine.
3321 	 *
3322 	 * With interrupts disabled, we block page table pages from being freed
3323 	 * from under us. See struct mmu_table_batch comments in
3324 	 * include/asm-generic/tlb.h for more details.
3325 	 *
3326 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3327 	 * that come from callers of tlb_remove_table_sync_one().
3328 	 */
3329 	local_irq_save(flags);
3330 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3331 	local_irq_restore(flags);
3332 
3333 	/*
3334 	 * When pinning pages for DMA there could be a concurrent write protect
3335 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3336 	 */
3337 	if (gup_flags & FOLL_PIN) {
3338 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3339 			gup_fast_unpin_user_pages(pages, nr_pinned);
3340 			return 0;
3341 		} else {
3342 			sanity_check_pinned_pages(pages, nr_pinned);
3343 		}
3344 	}
3345 	return nr_pinned;
3346 }
3347 
3348 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3349 		unsigned int gup_flags, struct page **pages)
3350 {
3351 	unsigned long len, end;
3352 	unsigned long nr_pinned;
3353 	int locked = 0;
3354 	int ret;
3355 
3356 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3357 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3358 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3359 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3360 		return -EINVAL;
3361 
3362 	if (gup_flags & FOLL_PIN)
3363 		mm_set_has_pinned_flag(&current->mm->flags);
3364 
3365 	if (!(gup_flags & FOLL_FAST_ONLY))
3366 		might_lock_read(&current->mm->mmap_lock);
3367 
3368 	start = untagged_addr(start) & PAGE_MASK;
3369 	len = nr_pages << PAGE_SHIFT;
3370 	if (check_add_overflow(start, len, &end))
3371 		return -EOVERFLOW;
3372 	if (end > TASK_SIZE_MAX)
3373 		return -EFAULT;
3374 
3375 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3376 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3377 		return nr_pinned;
3378 
3379 	/* Slow path: try to get the remaining pages with get_user_pages */
3380 	start += nr_pinned << PAGE_SHIFT;
3381 	pages += nr_pinned;
3382 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3383 				    pages, &locked,
3384 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3385 	if (ret < 0) {
3386 		/*
3387 		 * The caller has to unpin the pages we already pinned so
3388 		 * returning -errno is not an option
3389 		 */
3390 		if (nr_pinned)
3391 			return nr_pinned;
3392 		return ret;
3393 	}
3394 	return ret + nr_pinned;
3395 }
3396 
3397 /**
3398  * get_user_pages_fast_only() - pin user pages in memory
3399  * @start:      starting user address
3400  * @nr_pages:   number of pages from start to pin
3401  * @gup_flags:  flags modifying pin behaviour
3402  * @pages:      array that receives pointers to the pages pinned.
3403  *              Should be at least nr_pages long.
3404  *
3405  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3406  * the regular GUP.
3407  *
3408  * If the architecture does not support this function, simply return with no
3409  * pages pinned.
3410  *
3411  * Careful, careful! COW breaking can go either way, so a non-write
3412  * access can get ambiguous page results. If you call this function without
3413  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3414  */
3415 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3416 			     unsigned int gup_flags, struct page **pages)
3417 {
3418 	/*
3419 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3420 	 * because gup fast is always a "pin with a +1 page refcount" request.
3421 	 *
3422 	 * FOLL_FAST_ONLY is required in order to match the API description of
3423 	 * this routine: no fall back to regular ("slow") GUP.
3424 	 */
3425 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3426 			       FOLL_GET | FOLL_FAST_ONLY))
3427 		return -EINVAL;
3428 
3429 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3430 }
3431 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3432 
3433 /**
3434  * get_user_pages_fast() - pin user pages in memory
3435  * @start:      starting user address
3436  * @nr_pages:   number of pages from start to pin
3437  * @gup_flags:  flags modifying pin behaviour
3438  * @pages:      array that receives pointers to the pages pinned.
3439  *              Should be at least nr_pages long.
3440  *
3441  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3442  * If not successful, it will fall back to taking the lock and
3443  * calling get_user_pages().
3444  *
3445  * Returns number of pages pinned. This may be fewer than the number requested.
3446  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3447  * -errno.
3448  */
3449 int get_user_pages_fast(unsigned long start, int nr_pages,
3450 			unsigned int gup_flags, struct page **pages)
3451 {
3452 	/*
3453 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3454 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3455 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3456 	 * request.
3457 	 */
3458 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3459 		return -EINVAL;
3460 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3461 }
3462 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3463 
3464 /**
3465  * pin_user_pages_fast() - pin user pages in memory without taking locks
3466  *
3467  * @start:      starting user address
3468  * @nr_pages:   number of pages from start to pin
3469  * @gup_flags:  flags modifying pin behaviour
3470  * @pages:      array that receives pointers to the pages pinned.
3471  *              Should be at least nr_pages long.
3472  *
3473  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3474  * get_user_pages_fast() for documentation on the function arguments, because
3475  * the arguments here are identical.
3476  *
3477  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3478  * see Documentation/core-api/pin_user_pages.rst for further details.
3479  *
3480  * Note that if a zero_page is amongst the returned pages, it will not have
3481  * pins in it and unpin_user_page() will not remove pins from it.
3482  */
3483 int pin_user_pages_fast(unsigned long start, int nr_pages,
3484 			unsigned int gup_flags, struct page **pages)
3485 {
3486 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3487 		return -EINVAL;
3488 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3489 }
3490 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3491 
3492 /**
3493  * pin_user_pages_remote() - pin pages of a remote process
3494  *
3495  * @mm:		mm_struct of target mm
3496  * @start:	starting user address
3497  * @nr_pages:	number of pages from start to pin
3498  * @gup_flags:	flags modifying lookup behaviour
3499  * @pages:	array that receives pointers to the pages pinned.
3500  *		Should be at least nr_pages long.
3501  * @locked:	pointer to lock flag indicating whether lock is held and
3502  *		subsequently whether VM_FAULT_RETRY functionality can be
3503  *		utilised. Lock must initially be held.
3504  *
3505  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3506  * get_user_pages_remote() for documentation on the function arguments, because
3507  * the arguments here are identical.
3508  *
3509  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3510  * see Documentation/core-api/pin_user_pages.rst for details.
3511  *
3512  * Note that if a zero_page is amongst the returned pages, it will not have
3513  * pins in it and unpin_user_page*() will not remove pins from it.
3514  */
3515 long pin_user_pages_remote(struct mm_struct *mm,
3516 			   unsigned long start, unsigned long nr_pages,
3517 			   unsigned int gup_flags, struct page **pages,
3518 			   int *locked)
3519 {
3520 	int local_locked = 1;
3521 
3522 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3523 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3524 		return 0;
3525 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3526 				     locked ? locked : &local_locked,
3527 				     gup_flags);
3528 }
3529 EXPORT_SYMBOL(pin_user_pages_remote);
3530 
3531 /**
3532  * pin_user_pages() - pin user pages in memory for use by other devices
3533  *
3534  * @start:	starting user address
3535  * @nr_pages:	number of pages from start to pin
3536  * @gup_flags:	flags modifying lookup behaviour
3537  * @pages:	array that receives pointers to the pages pinned.
3538  *		Should be at least nr_pages long.
3539  *
3540  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3541  * FOLL_PIN is set.
3542  *
3543  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3544  * see Documentation/core-api/pin_user_pages.rst for details.
3545  *
3546  * Note that if a zero_page is amongst the returned pages, it will not have
3547  * pins in it and unpin_user_page*() will not remove pins from it.
3548  */
3549 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3550 		    unsigned int gup_flags, struct page **pages)
3551 {
3552 	int locked = 1;
3553 
3554 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3555 		return 0;
3556 	return __gup_longterm_locked(current->mm, start, nr_pages,
3557 				     pages, &locked, gup_flags);
3558 }
3559 EXPORT_SYMBOL(pin_user_pages);
3560 
3561 /*
3562  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3563  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3564  * FOLL_PIN and rejects FOLL_GET.
3565  *
3566  * Note that if a zero_page is amongst the returned pages, it will not have
3567  * pins in it and unpin_user_page*() will not remove pins from it.
3568  */
3569 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3570 			     struct page **pages, unsigned int gup_flags)
3571 {
3572 	int locked = 0;
3573 
3574 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3575 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3576 		return 0;
3577 
3578 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3579 				     &locked, gup_flags);
3580 }
3581 EXPORT_SYMBOL(pin_user_pages_unlocked);
3582 
3583 /**
3584  * memfd_pin_folios() - pin folios associated with a memfd
3585  * @memfd:      the memfd whose folios are to be pinned
3586  * @start:      the first memfd offset
3587  * @end:        the last memfd offset (inclusive)
3588  * @folios:     array that receives pointers to the folios pinned
3589  * @max_folios: maximum number of entries in @folios
3590  * @offset:     the offset into the first folio
3591  *
3592  * Attempt to pin folios associated with a memfd in the contiguous range
3593  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3594  * the folios can either be found in the page cache or need to be allocated
3595  * if necessary. Once the folios are located, they are all pinned via
3596  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3597  * And, eventually, these pinned folios must be released either using
3598  * unpin_folios() or unpin_folio().
3599  *
3600  * It must be noted that the folios may be pinned for an indefinite amount
3601  * of time. And, in most cases, the duration of time they may stay pinned
3602  * would be controlled by the userspace. This behavior is effectively the
3603  * same as using FOLL_LONGTERM with other GUP APIs.
3604  *
3605  * Returns number of folios pinned, which could be less than @max_folios
3606  * as it depends on the folio sizes that cover the range [start, end].
3607  * If no folios were pinned, it returns -errno.
3608  */
3609 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3610 		      struct folio **folios, unsigned int max_folios,
3611 		      pgoff_t *offset)
3612 {
3613 	unsigned int flags, nr_folios, nr_found;
3614 	unsigned int i, pgshift = PAGE_SHIFT;
3615 	pgoff_t start_idx, end_idx;
3616 	struct folio *folio = NULL;
3617 	struct folio_batch fbatch;
3618 	struct hstate *h;
3619 	long ret = -EINVAL;
3620 
3621 	if (start < 0 || start > end || !max_folios)
3622 		return -EINVAL;
3623 
3624 	if (!memfd)
3625 		return -EINVAL;
3626 
3627 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3628 		return -EINVAL;
3629 
3630 	if (end >= i_size_read(file_inode(memfd)))
3631 		return -EINVAL;
3632 
3633 	if (is_file_hugepages(memfd)) {
3634 		h = hstate_file(memfd);
3635 		pgshift = huge_page_shift(h);
3636 	}
3637 
3638 	flags = memalloc_pin_save();
3639 	do {
3640 		nr_folios = 0;
3641 		start_idx = start >> pgshift;
3642 		end_idx = end >> pgshift;
3643 		if (is_file_hugepages(memfd)) {
3644 			start_idx <<= huge_page_order(h);
3645 			end_idx <<= huge_page_order(h);
3646 		}
3647 
3648 		folio_batch_init(&fbatch);
3649 		while (start_idx <= end_idx && nr_folios < max_folios) {
3650 			/*
3651 			 * In most cases, we should be able to find the folios
3652 			 * in the page cache. If we cannot find them for some
3653 			 * reason, we try to allocate them and add them to the
3654 			 * page cache.
3655 			 */
3656 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3657 							     &start_idx,
3658 							     end_idx,
3659 							     &fbatch);
3660 			if (folio) {
3661 				folio_put(folio);
3662 				folio = NULL;
3663 			}
3664 
3665 			for (i = 0; i < nr_found; i++) {
3666 				folio = fbatch.folios[i];
3667 
3668 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3669 					folio_batch_release(&fbatch);
3670 					ret = -EINVAL;
3671 					goto err;
3672 				}
3673 
3674 				if (nr_folios == 0)
3675 					*offset = offset_in_folio(folio, start);
3676 
3677 				folios[nr_folios] = folio;
3678 				if (++nr_folios == max_folios)
3679 					break;
3680 			}
3681 
3682 			folio = NULL;
3683 			folio_batch_release(&fbatch);
3684 			if (!nr_found) {
3685 				folio = memfd_alloc_folio(memfd, start_idx);
3686 				if (IS_ERR(folio)) {
3687 					ret = PTR_ERR(folio);
3688 					if (ret != -EEXIST)
3689 						goto err;
3690 					folio = NULL;
3691 				}
3692 			}
3693 		}
3694 
3695 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3696 	} while (ret == -EAGAIN);
3697 
3698 	memalloc_pin_restore(flags);
3699 	return ret ? ret : nr_folios;
3700 err:
3701 	memalloc_pin_restore(flags);
3702 	unpin_folios(folios, nr_folios);
3703 
3704 	return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3707 
3708 /**
3709  * folio_add_pins() - add pins to an already-pinned folio
3710  * @folio: the folio to add more pins to
3711  * @pins: number of pins to add
3712  *
3713  * Try to add more pins to an already-pinned folio. The semantics
3714  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3715  * be changed.
3716  *
3717  * This function is helpful when having obtained a pin on a large folio
3718  * using memfd_pin_folios(), but wanting to logically unpin parts
3719  * (e.g., individual pages) of the folio later, for example, using
3720  * unpin_user_page_range_dirty_lock().
3721  *
3722  * This is not the right interface to initially pin a folio.
3723  */
3724 int folio_add_pins(struct folio *folio, unsigned int pins)
3725 {
3726 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3727 
3728 	return try_grab_folio(folio, pins, FOLL_PIN);
3729 }
3730 EXPORT_SYMBOL_GPL(folio_add_pins);
3731