xref: /linux/mm/gup.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio = page_folio(page);
56 
57 		if (is_zero_page(page) ||
58 		    !folio_test_anon(folio))
59 			continue;
60 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 		else
63 			/* Either a PTE-mapped or a PMD-mapped THP. */
64 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 				       !PageAnonExclusive(page), page);
66 	}
67 }
68 
69 /*
70  * Return the folio with ref appropriately incremented,
71  * or NULL if that failed.
72  */
73 static inline struct folio *try_get_folio(struct page *page, int refs)
74 {
75 	struct folio *folio;
76 
77 retry:
78 	folio = page_folio(page);
79 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
80 		return NULL;
81 	if (unlikely(!folio_ref_try_add(folio, refs)))
82 		return NULL;
83 
84 	/*
85 	 * At this point we have a stable reference to the folio; but it
86 	 * could be that between calling page_folio() and the refcount
87 	 * increment, the folio was split, in which case we'd end up
88 	 * holding a reference on a folio that has nothing to do with the page
89 	 * we were given anymore.
90 	 * So now that the folio is stable, recheck that the page still
91 	 * belongs to this folio.
92 	 */
93 	if (unlikely(page_folio(page) != folio)) {
94 		if (!put_devmap_managed_folio_refs(folio, refs))
95 			folio_put_refs(folio, refs);
96 		goto retry;
97 	}
98 
99 	return folio;
100 }
101 
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103 {
104 	if (flags & FOLL_PIN) {
105 		if (is_zero_folio(folio))
106 			return;
107 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 		if (folio_test_large(folio))
109 			atomic_sub(refs, &folio->_pincount);
110 		else
111 			refs *= GUP_PIN_COUNTING_BIAS;
112 	}
113 
114 	if (!put_devmap_managed_folio_refs(folio, refs))
115 		folio_put_refs(folio, refs);
116 }
117 
118 /**
119  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120  * @folio:    pointer to folio to be grabbed
121  * @refs:     the value to (effectively) add to the folio's refcount
122  * @flags:    gup flags: these are the FOLL_* flag values
123  *
124  * This might not do anything at all, depending on the flags argument.
125  *
126  * "grab" names in this file mean, "look at flags to decide whether to use
127  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
128  *
129  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
130  * time.
131  *
132  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134  *
135  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
136  *			be grabbed.
137  *
138  * It is called when we have a stable reference for the folio, typically in
139  * GUP slow path.
140  */
141 int __must_check try_grab_folio(struct folio *folio, int refs,
142 				unsigned int flags)
143 {
144 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
145 		return -ENOMEM;
146 
147 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
148 		return -EREMOTEIO;
149 
150 	if (flags & FOLL_GET)
151 		folio_ref_add(folio, refs);
152 	else if (flags & FOLL_PIN) {
153 		/*
154 		 * Don't take a pin on the zero page - it's not going anywhere
155 		 * and it is used in a *lot* of places.
156 		 */
157 		if (is_zero_folio(folio))
158 			return 0;
159 
160 		/*
161 		 * Increment the normal page refcount field at least once,
162 		 * so that the page really is pinned.
163 		 */
164 		if (folio_test_large(folio)) {
165 			folio_ref_add(folio, refs);
166 			atomic_add(refs, &folio->_pincount);
167 		} else {
168 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
169 		}
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 	}
173 
174 	return 0;
175 }
176 
177 /**
178  * unpin_user_page() - release a dma-pinned page
179  * @page:            pointer to page to be released
180  *
181  * Pages that were pinned via pin_user_pages*() must be released via either
182  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183  * that such pages can be separately tracked and uniquely handled. In
184  * particular, interactions with RDMA and filesystems need special handling.
185  */
186 void unpin_user_page(struct page *page)
187 {
188 	sanity_check_pinned_pages(&page, 1);
189 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
190 }
191 EXPORT_SYMBOL(unpin_user_page);
192 
193 /**
194  * unpin_folio() - release a dma-pinned folio
195  * @folio:         pointer to folio to be released
196  *
197  * Folios that were pinned via memfd_pin_folios() or other similar routines
198  * must be released either using unpin_folio() or unpin_folios().
199  */
200 void unpin_folio(struct folio *folio)
201 {
202 	gup_put_folio(folio, 1, FOLL_PIN);
203 }
204 EXPORT_SYMBOL_GPL(unpin_folio);
205 
206 /**
207  * folio_add_pin - Try to get an additional pin on a pinned folio
208  * @folio: The folio to be pinned
209  *
210  * Get an additional pin on a folio we already have a pin on.  Makes no change
211  * if the folio is a zero_page.
212  */
213 void folio_add_pin(struct folio *folio)
214 {
215 	if (is_zero_folio(folio))
216 		return;
217 
218 	/*
219 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 	 * page refcount field at least once, so that the page really is
221 	 * pinned.
222 	 */
223 	if (folio_test_large(folio)) {
224 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 		folio_ref_inc(folio);
226 		atomic_inc(&folio->_pincount);
227 	} else {
228 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 	}
231 }
232 
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 		unsigned long npages, unsigned long i, unsigned int *ntails)
235 {
236 	struct page *next = nth_page(start, i);
237 	struct folio *folio = page_folio(next);
238 	unsigned int nr = 1;
239 
240 	if (folio_test_large(folio))
241 		nr = min_t(unsigned int, npages - i,
242 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
243 
244 	*ntails = nr;
245 	return folio;
246 }
247 
248 static inline struct folio *gup_folio_next(struct page **list,
249 		unsigned long npages, unsigned long i, unsigned int *ntails)
250 {
251 	struct folio *folio = page_folio(list[i]);
252 	unsigned int nr;
253 
254 	for (nr = i + 1; nr < npages; nr++) {
255 		if (page_folio(list[nr]) != folio)
256 			break;
257 	}
258 
259 	*ntails = nr - i;
260 	return folio;
261 }
262 
263 /**
264  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265  * @pages:  array of pages to be maybe marked dirty, and definitely released.
266  * @npages: number of pages in the @pages array.
267  * @make_dirty: whether to mark the pages dirty
268  *
269  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270  * variants called on that page.
271  *
272  * For each page in the @pages array, make that page (or its head page, if a
273  * compound page) dirty, if @make_dirty is true, and if the page was previously
274  * listed as clean. In any case, releases all pages using unpin_user_page(),
275  * possibly via unpin_user_pages(), for the non-dirty case.
276  *
277  * Please see the unpin_user_page() documentation for details.
278  *
279  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280  * required, then the caller should a) verify that this is really correct,
281  * because _lock() is usually required, and b) hand code it:
282  * set_page_dirty_lock(), unpin_user_page().
283  *
284  */
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 				 bool make_dirty)
287 {
288 	unsigned long i;
289 	struct folio *folio;
290 	unsigned int nr;
291 
292 	if (!make_dirty) {
293 		unpin_user_pages(pages, npages);
294 		return;
295 	}
296 
297 	sanity_check_pinned_pages(pages, npages);
298 	for (i = 0; i < npages; i += nr) {
299 		folio = gup_folio_next(pages, npages, i, &nr);
300 		/*
301 		 * Checking PageDirty at this point may race with
302 		 * clear_page_dirty_for_io(), but that's OK. Two key
303 		 * cases:
304 		 *
305 		 * 1) This code sees the page as already dirty, so it
306 		 * skips the call to set_page_dirty(). That could happen
307 		 * because clear_page_dirty_for_io() called
308 		 * folio_mkclean(), followed by set_page_dirty().
309 		 * However, now the page is going to get written back,
310 		 * which meets the original intention of setting it
311 		 * dirty, so all is well: clear_page_dirty_for_io() goes
312 		 * on to call TestClearPageDirty(), and write the page
313 		 * back.
314 		 *
315 		 * 2) This code sees the page as clean, so it calls
316 		 * set_page_dirty(). The page stays dirty, despite being
317 		 * written back, so it gets written back again in the
318 		 * next writeback cycle. This is harmless.
319 		 */
320 		if (!folio_test_dirty(folio)) {
321 			folio_lock(folio);
322 			folio_mark_dirty(folio);
323 			folio_unlock(folio);
324 		}
325 		gup_put_folio(folio, nr, FOLL_PIN);
326 	}
327 }
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329 
330 /**
331  * unpin_user_page_range_dirty_lock() - release and optionally dirty
332  * gup-pinned page range
333  *
334  * @page:  the starting page of a range maybe marked dirty, and definitely released.
335  * @npages: number of consecutive pages to release.
336  * @make_dirty: whether to mark the pages dirty
337  *
338  * "gup-pinned page range" refers to a range of pages that has had one of the
339  * pin_user_pages() variants called on that page.
340  *
341  * For the page ranges defined by [page .. page+npages], make that range (or
342  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343  * page range was previously listed as clean.
344  *
345  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346  * required, then the caller should a) verify that this is really correct,
347  * because _lock() is usually required, and b) hand code it:
348  * set_page_dirty_lock(), unpin_user_page().
349  *
350  */
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 				      bool make_dirty)
353 {
354 	unsigned long i;
355 	struct folio *folio;
356 	unsigned int nr;
357 
358 	for (i = 0; i < npages; i += nr) {
359 		folio = gup_folio_range_next(page, npages, i, &nr);
360 		if (make_dirty && !folio_test_dirty(folio)) {
361 			folio_lock(folio);
362 			folio_mark_dirty(folio);
363 			folio_unlock(folio);
364 		}
365 		gup_put_folio(folio, nr, FOLL_PIN);
366 	}
367 }
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369 
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
371 {
372 	unsigned long i;
373 	struct folio *folio;
374 	unsigned int nr;
375 
376 	/*
377 	 * Don't perform any sanity checks because we might have raced with
378 	 * fork() and some anonymous pages might now actually be shared --
379 	 * which is why we're unpinning after all.
380 	 */
381 	for (i = 0; i < npages; i += nr) {
382 		folio = gup_folio_next(pages, npages, i, &nr);
383 		gup_put_folio(folio, nr, FOLL_PIN);
384 	}
385 }
386 
387 /**
388  * unpin_user_pages() - release an array of gup-pinned pages.
389  * @pages:  array of pages to be marked dirty and released.
390  * @npages: number of pages in the @pages array.
391  *
392  * For each page in the @pages array, release the page using unpin_user_page().
393  *
394  * Please see the unpin_user_page() documentation for details.
395  */
396 void unpin_user_pages(struct page **pages, unsigned long npages)
397 {
398 	unsigned long i;
399 	struct folio *folio;
400 	unsigned int nr;
401 
402 	/*
403 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 	 * leaving them pinned), but probably not. More likely, gup/pup returned
405 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 	 */
407 	if (WARN_ON(IS_ERR_VALUE(npages)))
408 		return;
409 
410 	sanity_check_pinned_pages(pages, npages);
411 	for (i = 0; i < npages; i += nr) {
412 		folio = gup_folio_next(pages, npages, i, &nr);
413 		gup_put_folio(folio, nr, FOLL_PIN);
414 	}
415 }
416 EXPORT_SYMBOL(unpin_user_pages);
417 
418 /**
419  * unpin_user_folio() - release pages of a folio
420  * @folio:  pointer to folio to be released
421  * @npages: number of pages of same folio
422  *
423  * Release npages of the folio
424  */
425 void unpin_user_folio(struct folio *folio, unsigned long npages)
426 {
427 	gup_put_folio(folio, npages, FOLL_PIN);
428 }
429 EXPORT_SYMBOL(unpin_user_folio);
430 
431 /**
432  * unpin_folios() - release an array of gup-pinned folios.
433  * @folios:  array of folios to be marked dirty and released.
434  * @nfolios: number of folios in the @folios array.
435  *
436  * For each folio in the @folios array, release the folio using gup_put_folio.
437  *
438  * Please see the unpin_folio() documentation for details.
439  */
440 void unpin_folios(struct folio **folios, unsigned long nfolios)
441 {
442 	unsigned long i = 0, j;
443 
444 	/*
445 	 * If this WARN_ON() fires, then the system *might* be leaking folios
446 	 * (by leaving them pinned), but probably not. More likely, gup/pup
447 	 * returned a hard -ERRNO error to the caller, who erroneously passed
448 	 * it here.
449 	 */
450 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
451 		return;
452 
453 	while (i < nfolios) {
454 		for (j = i + 1; j < nfolios; j++)
455 			if (folios[i] != folios[j])
456 				break;
457 
458 		if (folios[i])
459 			gup_put_folio(folios[i], j - i, FOLL_PIN);
460 		i = j;
461 	}
462 }
463 EXPORT_SYMBOL_GPL(unpin_folios);
464 
465 /*
466  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
468  * cache bouncing on large SMP machines for concurrent pinned gups.
469  */
470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
471 {
472 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
473 		set_bit(MMF_HAS_PINNED, mm_flags);
474 }
475 
476 #ifdef CONFIG_MMU
477 
478 #ifdef CONFIG_HAVE_GUP_FAST
479 static int record_subpages(struct page *page, unsigned long sz,
480 			   unsigned long addr, unsigned long end,
481 			   struct page **pages)
482 {
483 	struct page *start_page;
484 	int nr;
485 
486 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
487 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
488 		pages[nr] = nth_page(start_page, nr);
489 
490 	return nr;
491 }
492 
493 /**
494  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495  * @page:  pointer to page to be grabbed
496  * @refs:  the value to (effectively) add to the folio's refcount
497  * @flags: gup flags: these are the FOLL_* flag values.
498  *
499  * "grab" names in this file mean, "look at flags to decide whether to use
500  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
501  *
502  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503  * same time. (That's true throughout the get_user_pages*() and
504  * pin_user_pages*() APIs.) Cases:
505  *
506  *    FOLL_GET: folio's refcount will be incremented by @refs.
507  *
508  *    FOLL_PIN on large folios: folio's refcount will be incremented by
509  *    @refs, and its pincount will be incremented by @refs.
510  *
511  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
512  *    @refs * GUP_PIN_COUNTING_BIAS.
513  *
514  * Return: The folio containing @page (with refcount appropriately
515  * incremented) for success, or NULL upon failure. If neither FOLL_GET
516  * nor FOLL_PIN was set, that's considered failure, and furthermore,
517  * a likely bug in the caller, so a warning is also emitted.
518  *
519  * It uses add ref unless zero to elevate the folio refcount and must be called
520  * in fast path only.
521  */
522 static struct folio *try_grab_folio_fast(struct page *page, int refs,
523 					 unsigned int flags)
524 {
525 	struct folio *folio;
526 
527 	/* Raise warn if it is not called in fast GUP */
528 	VM_WARN_ON_ONCE(!irqs_disabled());
529 
530 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
531 		return NULL;
532 
533 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
534 		return NULL;
535 
536 	if (flags & FOLL_GET)
537 		return try_get_folio(page, refs);
538 
539 	/* FOLL_PIN is set */
540 
541 	/*
542 	 * Don't take a pin on the zero page - it's not going anywhere
543 	 * and it is used in a *lot* of places.
544 	 */
545 	if (is_zero_page(page))
546 		return page_folio(page);
547 
548 	folio = try_get_folio(page, refs);
549 	if (!folio)
550 		return NULL;
551 
552 	/*
553 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 	 * right zone, so fail and let the caller fall back to the slow
555 	 * path.
556 	 */
557 	if (unlikely((flags & FOLL_LONGTERM) &&
558 		     !folio_is_longterm_pinnable(folio))) {
559 		if (!put_devmap_managed_folio_refs(folio, refs))
560 			folio_put_refs(folio, refs);
561 		return NULL;
562 	}
563 
564 	/*
565 	 * When pinning a large folio, use an exact count to track it.
566 	 *
567 	 * However, be sure to *also* increment the normal folio
568 	 * refcount field at least once, so that the folio really
569 	 * is pinned.  That's why the refcount from the earlier
570 	 * try_get_folio() is left intact.
571 	 */
572 	if (folio_test_large(folio))
573 		atomic_add(refs, &folio->_pincount);
574 	else
575 		folio_ref_add(folio,
576 				refs * (GUP_PIN_COUNTING_BIAS - 1));
577 	/*
578 	 * Adjust the pincount before re-checking the PTE for changes.
579 	 * This is essentially a smp_mb() and is paired with a memory
580 	 * barrier in folio_try_share_anon_rmap_*().
581 	 */
582 	smp_mb__after_atomic();
583 
584 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
585 
586 	return folio;
587 }
588 #endif	/* CONFIG_HAVE_GUP_FAST */
589 
590 static struct page *no_page_table(struct vm_area_struct *vma,
591 				  unsigned int flags, unsigned long address)
592 {
593 	if (!(flags & FOLL_DUMP))
594 		return NULL;
595 
596 	/*
597 	 * When core dumping, we don't want to allocate unnecessary pages or
598 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
599 	 * then get_dump_page() will return NULL to leave a hole in the dump.
600 	 * But we can only make this optimization where a hole would surely
601 	 * be zero-filled if handle_mm_fault() actually did handle it.
602 	 */
603 	if (is_vm_hugetlb_page(vma)) {
604 		struct hstate *h = hstate_vma(vma);
605 
606 		if (!hugetlbfs_pagecache_present(h, vma, address))
607 			return ERR_PTR(-EFAULT);
608 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
609 		return ERR_PTR(-EFAULT);
610 	}
611 
612 	return NULL;
613 }
614 
615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
616 static struct page *follow_huge_pud(struct vm_area_struct *vma,
617 				    unsigned long addr, pud_t *pudp,
618 				    int flags, struct follow_page_context *ctx)
619 {
620 	struct mm_struct *mm = vma->vm_mm;
621 	struct page *page;
622 	pud_t pud = *pudp;
623 	unsigned long pfn = pud_pfn(pud);
624 	int ret;
625 
626 	assert_spin_locked(pud_lockptr(mm, pudp));
627 
628 	if ((flags & FOLL_WRITE) && !pud_write(pud))
629 		return NULL;
630 
631 	if (!pud_present(pud))
632 		return NULL;
633 
634 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
635 
636 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
637 	    pud_devmap(pud)) {
638 		/*
639 		 * device mapped pages can only be returned if the caller
640 		 * will manage the page reference count.
641 		 *
642 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
643 		 * assert that here:
644 		 */
645 		if (!(flags & (FOLL_GET | FOLL_PIN)))
646 			return ERR_PTR(-EEXIST);
647 
648 		if (flags & FOLL_TOUCH)
649 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
650 
651 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
652 		if (!ctx->pgmap)
653 			return ERR_PTR(-EFAULT);
654 	}
655 
656 	page = pfn_to_page(pfn);
657 
658 	if (!pud_devmap(pud) && !pud_write(pud) &&
659 	    gup_must_unshare(vma, flags, page))
660 		return ERR_PTR(-EMLINK);
661 
662 	ret = try_grab_folio(page_folio(page), 1, flags);
663 	if (ret)
664 		page = ERR_PTR(ret);
665 	else
666 		ctx->page_mask = HPAGE_PUD_NR - 1;
667 
668 	return page;
669 }
670 
671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
673 					struct vm_area_struct *vma,
674 					unsigned int flags)
675 {
676 	/* If the pmd is writable, we can write to the page. */
677 	if (pmd_write(pmd))
678 		return true;
679 
680 	/* Maybe FOLL_FORCE is set to override it? */
681 	if (!(flags & FOLL_FORCE))
682 		return false;
683 
684 	/* But FOLL_FORCE has no effect on shared mappings */
685 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
686 		return false;
687 
688 	/* ... or read-only private ones */
689 	if (!(vma->vm_flags & VM_MAYWRITE))
690 		return false;
691 
692 	/* ... or already writable ones that just need to take a write fault */
693 	if (vma->vm_flags & VM_WRITE)
694 		return false;
695 
696 	/*
697 	 * See can_change_pte_writable(): we broke COW and could map the page
698 	 * writable if we have an exclusive anonymous page ...
699 	 */
700 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
701 		return false;
702 
703 	/* ... and a write-fault isn't required for other reasons. */
704 	if (pmd_needs_soft_dirty_wp(vma, pmd))
705 		return false;
706 	return !userfaultfd_huge_pmd_wp(vma, pmd);
707 }
708 
709 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
710 				    unsigned long addr, pmd_t *pmd,
711 				    unsigned int flags,
712 				    struct follow_page_context *ctx)
713 {
714 	struct mm_struct *mm = vma->vm_mm;
715 	pmd_t pmdval = *pmd;
716 	struct page *page;
717 	int ret;
718 
719 	assert_spin_locked(pmd_lockptr(mm, pmd));
720 
721 	page = pmd_page(pmdval);
722 	if ((flags & FOLL_WRITE) &&
723 	    !can_follow_write_pmd(pmdval, page, vma, flags))
724 		return NULL;
725 
726 	/* Avoid dumping huge zero page */
727 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
728 		return ERR_PTR(-EFAULT);
729 
730 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
731 		return NULL;
732 
733 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
734 		return ERR_PTR(-EMLINK);
735 
736 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
737 			!PageAnonExclusive(page), page);
738 
739 	ret = try_grab_folio(page_folio(page), 1, flags);
740 	if (ret)
741 		return ERR_PTR(ret);
742 
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
745 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
746 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
747 
748 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
749 	ctx->page_mask = HPAGE_PMD_NR - 1;
750 
751 	return page;
752 }
753 
754 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
755 static struct page *follow_huge_pud(struct vm_area_struct *vma,
756 				    unsigned long addr, pud_t *pudp,
757 				    int flags, struct follow_page_context *ctx)
758 {
759 	return NULL;
760 }
761 
762 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
763 				    unsigned long addr, pmd_t *pmd,
764 				    unsigned int flags,
765 				    struct follow_page_context *ctx)
766 {
767 	return NULL;
768 }
769 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
770 
771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
772 		pte_t *pte, unsigned int flags)
773 {
774 	if (flags & FOLL_TOUCH) {
775 		pte_t orig_entry = ptep_get(pte);
776 		pte_t entry = orig_entry;
777 
778 		if (flags & FOLL_WRITE)
779 			entry = pte_mkdirty(entry);
780 		entry = pte_mkyoung(entry);
781 
782 		if (!pte_same(orig_entry, entry)) {
783 			set_pte_at(vma->vm_mm, address, pte, entry);
784 			update_mmu_cache(vma, address, pte);
785 		}
786 	}
787 
788 	/* Proper page table entry exists, but no corresponding struct page */
789 	return -EEXIST;
790 }
791 
792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
793 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
794 					struct vm_area_struct *vma,
795 					unsigned int flags)
796 {
797 	/* If the pte is writable, we can write to the page. */
798 	if (pte_write(pte))
799 		return true;
800 
801 	/* Maybe FOLL_FORCE is set to override it? */
802 	if (!(flags & FOLL_FORCE))
803 		return false;
804 
805 	/* But FOLL_FORCE has no effect on shared mappings */
806 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
807 		return false;
808 
809 	/* ... or read-only private ones */
810 	if (!(vma->vm_flags & VM_MAYWRITE))
811 		return false;
812 
813 	/* ... or already writable ones that just need to take a write fault */
814 	if (vma->vm_flags & VM_WRITE)
815 		return false;
816 
817 	/*
818 	 * See can_change_pte_writable(): we broke COW and could map the page
819 	 * writable if we have an exclusive anonymous page ...
820 	 */
821 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
822 		return false;
823 
824 	/* ... and a write-fault isn't required for other reasons. */
825 	if (pte_needs_soft_dirty_wp(vma, pte))
826 		return false;
827 	return !userfaultfd_pte_wp(vma, pte);
828 }
829 
830 static struct page *follow_page_pte(struct vm_area_struct *vma,
831 		unsigned long address, pmd_t *pmd, unsigned int flags,
832 		struct dev_pagemap **pgmap)
833 {
834 	struct mm_struct *mm = vma->vm_mm;
835 	struct folio *folio;
836 	struct page *page;
837 	spinlock_t *ptl;
838 	pte_t *ptep, pte;
839 	int ret;
840 
841 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
842 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
843 			 (FOLL_PIN | FOLL_GET)))
844 		return ERR_PTR(-EINVAL);
845 
846 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
847 	if (!ptep)
848 		return no_page_table(vma, flags, address);
849 	pte = ptep_get(ptep);
850 	if (!pte_present(pte))
851 		goto no_page;
852 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
853 		goto no_page;
854 
855 	page = vm_normal_page(vma, address, pte);
856 
857 	/*
858 	 * We only care about anon pages in can_follow_write_pte() and don't
859 	 * have to worry about pte_devmap() because they are never anon.
860 	 */
861 	if ((flags & FOLL_WRITE) &&
862 	    !can_follow_write_pte(pte, page, vma, flags)) {
863 		page = NULL;
864 		goto out;
865 	}
866 
867 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
868 		/*
869 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
870 		 * case since they are only valid while holding the pgmap
871 		 * reference.
872 		 */
873 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
874 		if (*pgmap)
875 			page = pte_page(pte);
876 		else
877 			goto no_page;
878 	} else if (unlikely(!page)) {
879 		if (flags & FOLL_DUMP) {
880 			/* Avoid special (like zero) pages in core dumps */
881 			page = ERR_PTR(-EFAULT);
882 			goto out;
883 		}
884 
885 		if (is_zero_pfn(pte_pfn(pte))) {
886 			page = pte_page(pte);
887 		} else {
888 			ret = follow_pfn_pte(vma, address, ptep, flags);
889 			page = ERR_PTR(ret);
890 			goto out;
891 		}
892 	}
893 	folio = page_folio(page);
894 
895 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
896 		page = ERR_PTR(-EMLINK);
897 		goto out;
898 	}
899 
900 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
901 		       !PageAnonExclusive(page), page);
902 
903 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
904 	ret = try_grab_folio(folio, 1, flags);
905 	if (unlikely(ret)) {
906 		page = ERR_PTR(ret);
907 		goto out;
908 	}
909 
910 	/*
911 	 * We need to make the page accessible if and only if we are going
912 	 * to access its content (the FOLL_PIN case).  Please see
913 	 * Documentation/core-api/pin_user_pages.rst for details.
914 	 */
915 	if (flags & FOLL_PIN) {
916 		ret = arch_make_folio_accessible(folio);
917 		if (ret) {
918 			unpin_user_page(page);
919 			page = ERR_PTR(ret);
920 			goto out;
921 		}
922 	}
923 	if (flags & FOLL_TOUCH) {
924 		if ((flags & FOLL_WRITE) &&
925 		    !pte_dirty(pte) && !PageDirty(page))
926 			set_page_dirty(page);
927 		/*
928 		 * pte_mkyoung() would be more correct here, but atomic care
929 		 * is needed to avoid losing the dirty bit: it is easier to use
930 		 * mark_page_accessed().
931 		 */
932 		mark_page_accessed(page);
933 	}
934 out:
935 	pte_unmap_unlock(ptep, ptl);
936 	return page;
937 no_page:
938 	pte_unmap_unlock(ptep, ptl);
939 	if (!pte_none(pte))
940 		return NULL;
941 	return no_page_table(vma, flags, address);
942 }
943 
944 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
945 				    unsigned long address, pud_t *pudp,
946 				    unsigned int flags,
947 				    struct follow_page_context *ctx)
948 {
949 	pmd_t *pmd, pmdval;
950 	spinlock_t *ptl;
951 	struct page *page;
952 	struct mm_struct *mm = vma->vm_mm;
953 
954 	pmd = pmd_offset(pudp, address);
955 	pmdval = pmdp_get_lockless(pmd);
956 	if (pmd_none(pmdval))
957 		return no_page_table(vma, flags, address);
958 	if (!pmd_present(pmdval))
959 		return no_page_table(vma, flags, address);
960 	if (pmd_devmap(pmdval)) {
961 		ptl = pmd_lock(mm, pmd);
962 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
963 		spin_unlock(ptl);
964 		if (page)
965 			return page;
966 		return no_page_table(vma, flags, address);
967 	}
968 	if (likely(!pmd_leaf(pmdval)))
969 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
970 
971 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
972 		return no_page_table(vma, flags, address);
973 
974 	ptl = pmd_lock(mm, pmd);
975 	pmdval = *pmd;
976 	if (unlikely(!pmd_present(pmdval))) {
977 		spin_unlock(ptl);
978 		return no_page_table(vma, flags, address);
979 	}
980 	if (unlikely(!pmd_leaf(pmdval))) {
981 		spin_unlock(ptl);
982 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
983 	}
984 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
985 		spin_unlock(ptl);
986 		split_huge_pmd(vma, pmd, address);
987 		/* If pmd was left empty, stuff a page table in there quickly */
988 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
989 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
990 	}
991 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
992 	spin_unlock(ptl);
993 	return page;
994 }
995 
996 static struct page *follow_pud_mask(struct vm_area_struct *vma,
997 				    unsigned long address, p4d_t *p4dp,
998 				    unsigned int flags,
999 				    struct follow_page_context *ctx)
1000 {
1001 	pud_t *pudp, pud;
1002 	spinlock_t *ptl;
1003 	struct page *page;
1004 	struct mm_struct *mm = vma->vm_mm;
1005 
1006 	pudp = pud_offset(p4dp, address);
1007 	pud = READ_ONCE(*pudp);
1008 	if (!pud_present(pud))
1009 		return no_page_table(vma, flags, address);
1010 	if (pud_leaf(pud)) {
1011 		ptl = pud_lock(mm, pudp);
1012 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1013 		spin_unlock(ptl);
1014 		if (page)
1015 			return page;
1016 		return no_page_table(vma, flags, address);
1017 	}
1018 	if (unlikely(pud_bad(pud)))
1019 		return no_page_table(vma, flags, address);
1020 
1021 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1022 }
1023 
1024 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1025 				    unsigned long address, pgd_t *pgdp,
1026 				    unsigned int flags,
1027 				    struct follow_page_context *ctx)
1028 {
1029 	p4d_t *p4dp, p4d;
1030 
1031 	p4dp = p4d_offset(pgdp, address);
1032 	p4d = READ_ONCE(*p4dp);
1033 	BUILD_BUG_ON(p4d_leaf(p4d));
1034 
1035 	if (!p4d_present(p4d) || p4d_bad(p4d))
1036 		return no_page_table(vma, flags, address);
1037 
1038 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1039 }
1040 
1041 /**
1042  * follow_page_mask - look up a page descriptor from a user-virtual address
1043  * @vma: vm_area_struct mapping @address
1044  * @address: virtual address to look up
1045  * @flags: flags modifying lookup behaviour
1046  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1047  *       pointer to output page_mask
1048  *
1049  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1050  *
1051  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1052  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1053  *
1054  * When getting an anonymous page and the caller has to trigger unsharing
1055  * of a shared anonymous page first, -EMLINK is returned. The caller should
1056  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1057  * relevant with FOLL_PIN and !FOLL_WRITE.
1058  *
1059  * On output, the @ctx->page_mask is set according to the size of the page.
1060  *
1061  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1062  * an error pointer if there is a mapping to something not represented
1063  * by a page descriptor (see also vm_normal_page()).
1064  */
1065 static struct page *follow_page_mask(struct vm_area_struct *vma,
1066 			      unsigned long address, unsigned int flags,
1067 			      struct follow_page_context *ctx)
1068 {
1069 	pgd_t *pgd;
1070 	struct mm_struct *mm = vma->vm_mm;
1071 	struct page *page;
1072 
1073 	vma_pgtable_walk_begin(vma);
1074 
1075 	ctx->page_mask = 0;
1076 	pgd = pgd_offset(mm, address);
1077 
1078 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1079 		page = no_page_table(vma, flags, address);
1080 	else
1081 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1082 
1083 	vma_pgtable_walk_end(vma);
1084 
1085 	return page;
1086 }
1087 
1088 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1089 		unsigned int gup_flags, struct vm_area_struct **vma,
1090 		struct page **page)
1091 {
1092 	pgd_t *pgd;
1093 	p4d_t *p4d;
1094 	pud_t *pud;
1095 	pmd_t *pmd;
1096 	pte_t *pte;
1097 	pte_t entry;
1098 	int ret = -EFAULT;
1099 
1100 	/* user gate pages are read-only */
1101 	if (gup_flags & FOLL_WRITE)
1102 		return -EFAULT;
1103 	if (address > TASK_SIZE)
1104 		pgd = pgd_offset_k(address);
1105 	else
1106 		pgd = pgd_offset_gate(mm, address);
1107 	if (pgd_none(*pgd))
1108 		return -EFAULT;
1109 	p4d = p4d_offset(pgd, address);
1110 	if (p4d_none(*p4d))
1111 		return -EFAULT;
1112 	pud = pud_offset(p4d, address);
1113 	if (pud_none(*pud))
1114 		return -EFAULT;
1115 	pmd = pmd_offset(pud, address);
1116 	if (!pmd_present(*pmd))
1117 		return -EFAULT;
1118 	pte = pte_offset_map(pmd, address);
1119 	if (!pte)
1120 		return -EFAULT;
1121 	entry = ptep_get(pte);
1122 	if (pte_none(entry))
1123 		goto unmap;
1124 	*vma = get_gate_vma(mm);
1125 	if (!page)
1126 		goto out;
1127 	*page = vm_normal_page(*vma, address, entry);
1128 	if (!*page) {
1129 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1130 			goto unmap;
1131 		*page = pte_page(entry);
1132 	}
1133 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1134 	if (unlikely(ret))
1135 		goto unmap;
1136 out:
1137 	ret = 0;
1138 unmap:
1139 	pte_unmap(pte);
1140 	return ret;
1141 }
1142 
1143 /*
1144  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1145  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1146  * to 0 and -EBUSY returned.
1147  */
1148 static int faultin_page(struct vm_area_struct *vma,
1149 		unsigned long address, unsigned int flags, bool unshare,
1150 		int *locked)
1151 {
1152 	unsigned int fault_flags = 0;
1153 	vm_fault_t ret;
1154 
1155 	if (flags & FOLL_NOFAULT)
1156 		return -EFAULT;
1157 	if (flags & FOLL_WRITE)
1158 		fault_flags |= FAULT_FLAG_WRITE;
1159 	if (flags & FOLL_REMOTE)
1160 		fault_flags |= FAULT_FLAG_REMOTE;
1161 	if (flags & FOLL_UNLOCKABLE) {
1162 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1163 		/*
1164 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1165 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1166 		 * That's because some callers may not be prepared to
1167 		 * handle early exits caused by non-fatal signals.
1168 		 */
1169 		if (flags & FOLL_INTERRUPTIBLE)
1170 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1171 	}
1172 	if (flags & FOLL_NOWAIT)
1173 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1174 	if (flags & FOLL_TRIED) {
1175 		/*
1176 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1177 		 * can co-exist
1178 		 */
1179 		fault_flags |= FAULT_FLAG_TRIED;
1180 	}
1181 	if (unshare) {
1182 		fault_flags |= FAULT_FLAG_UNSHARE;
1183 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1184 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1185 	}
1186 
1187 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1188 
1189 	if (ret & VM_FAULT_COMPLETED) {
1190 		/*
1191 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1192 		 * mmap lock in the page fault handler. Sanity check this.
1193 		 */
1194 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1195 		*locked = 0;
1196 
1197 		/*
1198 		 * We should do the same as VM_FAULT_RETRY, but let's not
1199 		 * return -EBUSY since that's not reflecting the reality of
1200 		 * what has happened - we've just fully completed a page
1201 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1202 		 * that we want to take the mmap lock _again_.
1203 		 */
1204 		return -EAGAIN;
1205 	}
1206 
1207 	if (ret & VM_FAULT_ERROR) {
1208 		int err = vm_fault_to_errno(ret, flags);
1209 
1210 		if (err)
1211 			return err;
1212 		BUG();
1213 	}
1214 
1215 	if (ret & VM_FAULT_RETRY) {
1216 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1217 			*locked = 0;
1218 		return -EBUSY;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Writing to file-backed mappings which require folio dirty tracking using GUP
1226  * is a fundamentally broken operation, as kernel write access to GUP mappings
1227  * do not adhere to the semantics expected by a file system.
1228  *
1229  * Consider the following scenario:-
1230  *
1231  * 1. A folio is written to via GUP which write-faults the memory, notifying
1232  *    the file system and dirtying the folio.
1233  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1234  *    the PTE being marked read-only.
1235  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1236  *    direct mapping.
1237  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1238  *    (though it does not have to).
1239  *
1240  * This results in both data being written to a folio without writenotify, and
1241  * the folio being dirtied unexpectedly (if the caller decides to do so).
1242  */
1243 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1244 					  unsigned long gup_flags)
1245 {
1246 	/*
1247 	 * If we aren't pinning then no problematic write can occur. A long term
1248 	 * pin is the most egregious case so this is the case we disallow.
1249 	 */
1250 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1251 	    (FOLL_PIN | FOLL_LONGTERM))
1252 		return true;
1253 
1254 	/*
1255 	 * If the VMA does not require dirty tracking then no problematic write
1256 	 * can occur either.
1257 	 */
1258 	return !vma_needs_dirty_tracking(vma);
1259 }
1260 
1261 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1262 {
1263 	vm_flags_t vm_flags = vma->vm_flags;
1264 	int write = (gup_flags & FOLL_WRITE);
1265 	int foreign = (gup_flags & FOLL_REMOTE);
1266 	bool vma_anon = vma_is_anonymous(vma);
1267 
1268 	if (vm_flags & (VM_IO | VM_PFNMAP))
1269 		return -EFAULT;
1270 
1271 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1272 		return -EFAULT;
1273 
1274 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1275 		return -EOPNOTSUPP;
1276 
1277 	if (vma_is_secretmem(vma))
1278 		return -EFAULT;
1279 
1280 	if (write) {
1281 		if (!vma_anon &&
1282 		    !writable_file_mapping_allowed(vma, gup_flags))
1283 			return -EFAULT;
1284 
1285 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1286 			if (!(gup_flags & FOLL_FORCE))
1287 				return -EFAULT;
1288 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1289 			if (is_vm_hugetlb_page(vma))
1290 				return -EFAULT;
1291 			/*
1292 			 * We used to let the write,force case do COW in a
1293 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1294 			 * set a breakpoint in a read-only mapping of an
1295 			 * executable, without corrupting the file (yet only
1296 			 * when that file had been opened for writing!).
1297 			 * Anon pages in shared mappings are surprising: now
1298 			 * just reject it.
1299 			 */
1300 			if (!is_cow_mapping(vm_flags))
1301 				return -EFAULT;
1302 		}
1303 	} else if (!(vm_flags & VM_READ)) {
1304 		if (!(gup_flags & FOLL_FORCE))
1305 			return -EFAULT;
1306 		/*
1307 		 * Is there actually any vma we can reach here which does not
1308 		 * have VM_MAYREAD set?
1309 		 */
1310 		if (!(vm_flags & VM_MAYREAD))
1311 			return -EFAULT;
1312 	}
1313 	/*
1314 	 * gups are always data accesses, not instruction
1315 	 * fetches, so execute=false here
1316 	 */
1317 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1318 		return -EFAULT;
1319 	return 0;
1320 }
1321 
1322 /*
1323  * This is "vma_lookup()", but with a warning if we would have
1324  * historically expanded the stack in the GUP code.
1325  */
1326 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1327 	 unsigned long addr)
1328 {
1329 #ifdef CONFIG_STACK_GROWSUP
1330 	return vma_lookup(mm, addr);
1331 #else
1332 	static volatile unsigned long next_warn;
1333 	struct vm_area_struct *vma;
1334 	unsigned long now, next;
1335 
1336 	vma = find_vma(mm, addr);
1337 	if (!vma || (addr >= vma->vm_start))
1338 		return vma;
1339 
1340 	/* Only warn for half-way relevant accesses */
1341 	if (!(vma->vm_flags & VM_GROWSDOWN))
1342 		return NULL;
1343 	if (vma->vm_start - addr > 65536)
1344 		return NULL;
1345 
1346 	/* Let's not warn more than once an hour.. */
1347 	now = jiffies; next = next_warn;
1348 	if (next && time_before(now, next))
1349 		return NULL;
1350 	next_warn = now + 60*60*HZ;
1351 
1352 	/* Let people know things may have changed. */
1353 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1354 		current->comm, task_pid_nr(current),
1355 		vma->vm_start, vma->vm_end, addr);
1356 	dump_stack();
1357 	return NULL;
1358 #endif
1359 }
1360 
1361 /**
1362  * __get_user_pages() - pin user pages in memory
1363  * @mm:		mm_struct of target mm
1364  * @start:	starting user address
1365  * @nr_pages:	number of pages from start to pin
1366  * @gup_flags:	flags modifying pin behaviour
1367  * @pages:	array that receives pointers to the pages pinned.
1368  *		Should be at least nr_pages long. Or NULL, if caller
1369  *		only intends to ensure the pages are faulted in.
1370  * @locked:     whether we're still with the mmap_lock held
1371  *
1372  * Returns either number of pages pinned (which may be less than the
1373  * number requested), or an error. Details about the return value:
1374  *
1375  * -- If nr_pages is 0, returns 0.
1376  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1377  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1378  *    pages pinned. Again, this may be less than nr_pages.
1379  * -- 0 return value is possible when the fault would need to be retried.
1380  *
1381  * The caller is responsible for releasing returned @pages, via put_page().
1382  *
1383  * Must be called with mmap_lock held.  It may be released.  See below.
1384  *
1385  * __get_user_pages walks a process's page tables and takes a reference to
1386  * each struct page that each user address corresponds to at a given
1387  * instant. That is, it takes the page that would be accessed if a user
1388  * thread accesses the given user virtual address at that instant.
1389  *
1390  * This does not guarantee that the page exists in the user mappings when
1391  * __get_user_pages returns, and there may even be a completely different
1392  * page there in some cases (eg. if mmapped pagecache has been invalidated
1393  * and subsequently re-faulted). However it does guarantee that the page
1394  * won't be freed completely. And mostly callers simply care that the page
1395  * contains data that was valid *at some point in time*. Typically, an IO
1396  * or similar operation cannot guarantee anything stronger anyway because
1397  * locks can't be held over the syscall boundary.
1398  *
1399  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1400  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1401  * appropriate) must be called after the page is finished with, and
1402  * before put_page is called.
1403  *
1404  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1405  * be released. If this happens *@locked will be set to 0 on return.
1406  *
1407  * A caller using such a combination of @gup_flags must therefore hold the
1408  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1409  * it must be held for either reading or writing and will not be released.
1410  *
1411  * In most cases, get_user_pages or get_user_pages_fast should be used
1412  * instead of __get_user_pages. __get_user_pages should be used only if
1413  * you need some special @gup_flags.
1414  */
1415 static long __get_user_pages(struct mm_struct *mm,
1416 		unsigned long start, unsigned long nr_pages,
1417 		unsigned int gup_flags, struct page **pages,
1418 		int *locked)
1419 {
1420 	long ret = 0, i = 0;
1421 	struct vm_area_struct *vma = NULL;
1422 	struct follow_page_context ctx = { NULL };
1423 
1424 	if (!nr_pages)
1425 		return 0;
1426 
1427 	start = untagged_addr_remote(mm, start);
1428 
1429 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1430 
1431 	do {
1432 		struct page *page;
1433 		unsigned int page_increm;
1434 
1435 		/* first iteration or cross vma bound */
1436 		if (!vma || start >= vma->vm_end) {
1437 			/*
1438 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1439 			 * lookups+error reporting differently.
1440 			 */
1441 			if (gup_flags & FOLL_MADV_POPULATE) {
1442 				vma = vma_lookup(mm, start);
1443 				if (!vma) {
1444 					ret = -ENOMEM;
1445 					goto out;
1446 				}
1447 				if (check_vma_flags(vma, gup_flags)) {
1448 					ret = -EINVAL;
1449 					goto out;
1450 				}
1451 				goto retry;
1452 			}
1453 			vma = gup_vma_lookup(mm, start);
1454 			if (!vma && in_gate_area(mm, start)) {
1455 				ret = get_gate_page(mm, start & PAGE_MASK,
1456 						gup_flags, &vma,
1457 						pages ? &page : NULL);
1458 				if (ret)
1459 					goto out;
1460 				ctx.page_mask = 0;
1461 				goto next_page;
1462 			}
1463 
1464 			if (!vma) {
1465 				ret = -EFAULT;
1466 				goto out;
1467 			}
1468 			ret = check_vma_flags(vma, gup_flags);
1469 			if (ret)
1470 				goto out;
1471 		}
1472 retry:
1473 		/*
1474 		 * If we have a pending SIGKILL, don't keep faulting pages and
1475 		 * potentially allocating memory.
1476 		 */
1477 		if (fatal_signal_pending(current)) {
1478 			ret = -EINTR;
1479 			goto out;
1480 		}
1481 		cond_resched();
1482 
1483 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1484 		if (!page || PTR_ERR(page) == -EMLINK) {
1485 			ret = faultin_page(vma, start, gup_flags,
1486 					   PTR_ERR(page) == -EMLINK, locked);
1487 			switch (ret) {
1488 			case 0:
1489 				goto retry;
1490 			case -EBUSY:
1491 			case -EAGAIN:
1492 				ret = 0;
1493 				fallthrough;
1494 			case -EFAULT:
1495 			case -ENOMEM:
1496 			case -EHWPOISON:
1497 				goto out;
1498 			}
1499 			BUG();
1500 		} else if (PTR_ERR(page) == -EEXIST) {
1501 			/*
1502 			 * Proper page table entry exists, but no corresponding
1503 			 * struct page. If the caller expects **pages to be
1504 			 * filled in, bail out now, because that can't be done
1505 			 * for this page.
1506 			 */
1507 			if (pages) {
1508 				ret = PTR_ERR(page);
1509 				goto out;
1510 			}
1511 		} else if (IS_ERR(page)) {
1512 			ret = PTR_ERR(page);
1513 			goto out;
1514 		}
1515 next_page:
1516 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1517 		if (page_increm > nr_pages)
1518 			page_increm = nr_pages;
1519 
1520 		if (pages) {
1521 			struct page *subpage;
1522 			unsigned int j;
1523 
1524 			/*
1525 			 * This must be a large folio (and doesn't need to
1526 			 * be the whole folio; it can be part of it), do
1527 			 * the refcount work for all the subpages too.
1528 			 *
1529 			 * NOTE: here the page may not be the head page
1530 			 * e.g. when start addr is not thp-size aligned.
1531 			 * try_grab_folio() should have taken care of tail
1532 			 * pages.
1533 			 */
1534 			if (page_increm > 1) {
1535 				struct folio *folio = page_folio(page);
1536 
1537 				/*
1538 				 * Since we already hold refcount on the
1539 				 * large folio, this should never fail.
1540 				 */
1541 				if (try_grab_folio(folio, page_increm - 1,
1542 						   gup_flags)) {
1543 					/*
1544 					 * Release the 1st page ref if the
1545 					 * folio is problematic, fail hard.
1546 					 */
1547 					gup_put_folio(folio, 1, gup_flags);
1548 					ret = -EFAULT;
1549 					goto out;
1550 				}
1551 			}
1552 
1553 			for (j = 0; j < page_increm; j++) {
1554 				subpage = nth_page(page, j);
1555 				pages[i + j] = subpage;
1556 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1557 				flush_dcache_page(subpage);
1558 			}
1559 		}
1560 
1561 		i += page_increm;
1562 		start += page_increm * PAGE_SIZE;
1563 		nr_pages -= page_increm;
1564 	} while (nr_pages);
1565 out:
1566 	if (ctx.pgmap)
1567 		put_dev_pagemap(ctx.pgmap);
1568 	return i ? i : ret;
1569 }
1570 
1571 static bool vma_permits_fault(struct vm_area_struct *vma,
1572 			      unsigned int fault_flags)
1573 {
1574 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1575 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1576 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1577 
1578 	if (!(vm_flags & vma->vm_flags))
1579 		return false;
1580 
1581 	/*
1582 	 * The architecture might have a hardware protection
1583 	 * mechanism other than read/write that can deny access.
1584 	 *
1585 	 * gup always represents data access, not instruction
1586 	 * fetches, so execute=false here:
1587 	 */
1588 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1589 		return false;
1590 
1591 	return true;
1592 }
1593 
1594 /**
1595  * fixup_user_fault() - manually resolve a user page fault
1596  * @mm:		mm_struct of target mm
1597  * @address:	user address
1598  * @fault_flags:flags to pass down to handle_mm_fault()
1599  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1600  *		does not allow retry. If NULL, the caller must guarantee
1601  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1602  *
1603  * This is meant to be called in the specific scenario where for locking reasons
1604  * we try to access user memory in atomic context (within a pagefault_disable()
1605  * section), this returns -EFAULT, and we want to resolve the user fault before
1606  * trying again.
1607  *
1608  * Typically this is meant to be used by the futex code.
1609  *
1610  * The main difference with get_user_pages() is that this function will
1611  * unconditionally call handle_mm_fault() which will in turn perform all the
1612  * necessary SW fixup of the dirty and young bits in the PTE, while
1613  * get_user_pages() only guarantees to update these in the struct page.
1614  *
1615  * This is important for some architectures where those bits also gate the
1616  * access permission to the page because they are maintained in software.  On
1617  * such architectures, gup() will not be enough to make a subsequent access
1618  * succeed.
1619  *
1620  * This function will not return with an unlocked mmap_lock. So it has not the
1621  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1622  */
1623 int fixup_user_fault(struct mm_struct *mm,
1624 		     unsigned long address, unsigned int fault_flags,
1625 		     bool *unlocked)
1626 {
1627 	struct vm_area_struct *vma;
1628 	vm_fault_t ret;
1629 
1630 	address = untagged_addr_remote(mm, address);
1631 
1632 	if (unlocked)
1633 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1634 
1635 retry:
1636 	vma = gup_vma_lookup(mm, address);
1637 	if (!vma)
1638 		return -EFAULT;
1639 
1640 	if (!vma_permits_fault(vma, fault_flags))
1641 		return -EFAULT;
1642 
1643 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1644 	    fatal_signal_pending(current))
1645 		return -EINTR;
1646 
1647 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1648 
1649 	if (ret & VM_FAULT_COMPLETED) {
1650 		/*
1651 		 * NOTE: it's a pity that we need to retake the lock here
1652 		 * to pair with the unlock() in the callers. Ideally we
1653 		 * could tell the callers so they do not need to unlock.
1654 		 */
1655 		mmap_read_lock(mm);
1656 		*unlocked = true;
1657 		return 0;
1658 	}
1659 
1660 	if (ret & VM_FAULT_ERROR) {
1661 		int err = vm_fault_to_errno(ret, 0);
1662 
1663 		if (err)
1664 			return err;
1665 		BUG();
1666 	}
1667 
1668 	if (ret & VM_FAULT_RETRY) {
1669 		mmap_read_lock(mm);
1670 		*unlocked = true;
1671 		fault_flags |= FAULT_FLAG_TRIED;
1672 		goto retry;
1673 	}
1674 
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(fixup_user_fault);
1678 
1679 /*
1680  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1681  * specified, it'll also respond to generic signals.  The caller of GUP
1682  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1683  */
1684 static bool gup_signal_pending(unsigned int flags)
1685 {
1686 	if (fatal_signal_pending(current))
1687 		return true;
1688 
1689 	if (!(flags & FOLL_INTERRUPTIBLE))
1690 		return false;
1691 
1692 	return signal_pending(current);
1693 }
1694 
1695 /*
1696  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1697  * the caller. This function may drop the mmap_lock. If it does so, then it will
1698  * set (*locked = 0).
1699  *
1700  * (*locked == 0) means that the caller expects this function to acquire and
1701  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1702  * the function returns, even though it may have changed temporarily during
1703  * function execution.
1704  *
1705  * Please note that this function, unlike __get_user_pages(), will not return 0
1706  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1707  */
1708 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1709 						unsigned long start,
1710 						unsigned long nr_pages,
1711 						struct page **pages,
1712 						int *locked,
1713 						unsigned int flags)
1714 {
1715 	long ret, pages_done;
1716 	bool must_unlock = false;
1717 
1718 	if (!nr_pages)
1719 		return 0;
1720 
1721 	/*
1722 	 * The internal caller expects GUP to manage the lock internally and the
1723 	 * lock must be released when this returns.
1724 	 */
1725 	if (!*locked) {
1726 		if (mmap_read_lock_killable(mm))
1727 			return -EAGAIN;
1728 		must_unlock = true;
1729 		*locked = 1;
1730 	}
1731 	else
1732 		mmap_assert_locked(mm);
1733 
1734 	if (flags & FOLL_PIN)
1735 		mm_set_has_pinned_flag(&mm->flags);
1736 
1737 	/*
1738 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1739 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1740 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1741 	 * for FOLL_GET, not for the newer FOLL_PIN.
1742 	 *
1743 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1744 	 * that here, as any failures will be obvious enough.
1745 	 */
1746 	if (pages && !(flags & FOLL_PIN))
1747 		flags |= FOLL_GET;
1748 
1749 	pages_done = 0;
1750 	for (;;) {
1751 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1752 				       locked);
1753 		if (!(flags & FOLL_UNLOCKABLE)) {
1754 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1755 			pages_done = ret;
1756 			break;
1757 		}
1758 
1759 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1760 		if (!*locked) {
1761 			BUG_ON(ret < 0);
1762 			BUG_ON(ret >= nr_pages);
1763 		}
1764 
1765 		if (ret > 0) {
1766 			nr_pages -= ret;
1767 			pages_done += ret;
1768 			if (!nr_pages)
1769 				break;
1770 		}
1771 		if (*locked) {
1772 			/*
1773 			 * VM_FAULT_RETRY didn't trigger or it was a
1774 			 * FOLL_NOWAIT.
1775 			 */
1776 			if (!pages_done)
1777 				pages_done = ret;
1778 			break;
1779 		}
1780 		/*
1781 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1782 		 * For the prefault case (!pages) we only update counts.
1783 		 */
1784 		if (likely(pages))
1785 			pages += ret;
1786 		start += ret << PAGE_SHIFT;
1787 
1788 		/* The lock was temporarily dropped, so we must unlock later */
1789 		must_unlock = true;
1790 
1791 retry:
1792 		/*
1793 		 * Repeat on the address that fired VM_FAULT_RETRY
1794 		 * with both FAULT_FLAG_ALLOW_RETRY and
1795 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1796 		 * by fatal signals of even common signals, depending on
1797 		 * the caller's request. So we need to check it before we
1798 		 * start trying again otherwise it can loop forever.
1799 		 */
1800 		if (gup_signal_pending(flags)) {
1801 			if (!pages_done)
1802 				pages_done = -EINTR;
1803 			break;
1804 		}
1805 
1806 		ret = mmap_read_lock_killable(mm);
1807 		if (ret) {
1808 			BUG_ON(ret > 0);
1809 			if (!pages_done)
1810 				pages_done = ret;
1811 			break;
1812 		}
1813 
1814 		*locked = 1;
1815 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1816 				       pages, locked);
1817 		if (!*locked) {
1818 			/* Continue to retry until we succeeded */
1819 			BUG_ON(ret != 0);
1820 			goto retry;
1821 		}
1822 		if (ret != 1) {
1823 			BUG_ON(ret > 1);
1824 			if (!pages_done)
1825 				pages_done = ret;
1826 			break;
1827 		}
1828 		nr_pages--;
1829 		pages_done++;
1830 		if (!nr_pages)
1831 			break;
1832 		if (likely(pages))
1833 			pages++;
1834 		start += PAGE_SIZE;
1835 	}
1836 	if (must_unlock && *locked) {
1837 		/*
1838 		 * We either temporarily dropped the lock, or the caller
1839 		 * requested that we both acquire and drop the lock. Either way,
1840 		 * we must now unlock, and notify the caller of that state.
1841 		 */
1842 		mmap_read_unlock(mm);
1843 		*locked = 0;
1844 	}
1845 
1846 	/*
1847 	 * Failing to pin anything implies something has gone wrong (except when
1848 	 * FOLL_NOWAIT is specified).
1849 	 */
1850 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1851 		return -EFAULT;
1852 
1853 	return pages_done;
1854 }
1855 
1856 /**
1857  * populate_vma_page_range() -  populate a range of pages in the vma.
1858  * @vma:   target vma
1859  * @start: start address
1860  * @end:   end address
1861  * @locked: whether the mmap_lock is still held
1862  *
1863  * This takes care of mlocking the pages too if VM_LOCKED is set.
1864  *
1865  * Return either number of pages pinned in the vma, or a negative error
1866  * code on error.
1867  *
1868  * vma->vm_mm->mmap_lock must be held.
1869  *
1870  * If @locked is NULL, it may be held for read or write and will
1871  * be unperturbed.
1872  *
1873  * If @locked is non-NULL, it must held for read only and may be
1874  * released.  If it's released, *@locked will be set to 0.
1875  */
1876 long populate_vma_page_range(struct vm_area_struct *vma,
1877 		unsigned long start, unsigned long end, int *locked)
1878 {
1879 	struct mm_struct *mm = vma->vm_mm;
1880 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1881 	int local_locked = 1;
1882 	int gup_flags;
1883 	long ret;
1884 
1885 	VM_BUG_ON(!PAGE_ALIGNED(start));
1886 	VM_BUG_ON(!PAGE_ALIGNED(end));
1887 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1888 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1889 	mmap_assert_locked(mm);
1890 
1891 	/*
1892 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1893 	 * faultin_page() to break COW, so it has no work to do here.
1894 	 */
1895 	if (vma->vm_flags & VM_LOCKONFAULT)
1896 		return nr_pages;
1897 
1898 	/* ... similarly, we've never faulted in PROT_NONE pages */
1899 	if (!vma_is_accessible(vma))
1900 		return -EFAULT;
1901 
1902 	gup_flags = FOLL_TOUCH;
1903 	/*
1904 	 * We want to touch writable mappings with a write fault in order
1905 	 * to break COW, except for shared mappings because these don't COW
1906 	 * and we would not want to dirty them for nothing.
1907 	 *
1908 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1909 	 * readable (ie write-only or executable).
1910 	 */
1911 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1912 		gup_flags |= FOLL_WRITE;
1913 	else
1914 		gup_flags |= FOLL_FORCE;
1915 
1916 	if (locked)
1917 		gup_flags |= FOLL_UNLOCKABLE;
1918 
1919 	/*
1920 	 * We made sure addr is within a VMA, so the following will
1921 	 * not result in a stack expansion that recurses back here.
1922 	 */
1923 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1924 			       NULL, locked ? locked : &local_locked);
1925 	lru_add_drain();
1926 	return ret;
1927 }
1928 
1929 /*
1930  * faultin_page_range() - populate (prefault) page tables inside the
1931  *			  given range readable/writable
1932  *
1933  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1934  *
1935  * @mm: the mm to populate page tables in
1936  * @start: start address
1937  * @end: end address
1938  * @write: whether to prefault readable or writable
1939  * @locked: whether the mmap_lock is still held
1940  *
1941  * Returns either number of processed pages in the MM, or a negative error
1942  * code on error (see __get_user_pages()). Note that this function reports
1943  * errors related to VMAs, such as incompatible mappings, as expected by
1944  * MADV_POPULATE_(READ|WRITE).
1945  *
1946  * The range must be page-aligned.
1947  *
1948  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1949  */
1950 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1951 			unsigned long end, bool write, int *locked)
1952 {
1953 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1954 	int gup_flags;
1955 	long ret;
1956 
1957 	VM_BUG_ON(!PAGE_ALIGNED(start));
1958 	VM_BUG_ON(!PAGE_ALIGNED(end));
1959 	mmap_assert_locked(mm);
1960 
1961 	/*
1962 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1963 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1964 	 *	       difference with !FOLL_FORCE, because the page is writable
1965 	 *	       in the page table.
1966 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1967 	 *		  a poisoned page.
1968 	 * !FOLL_FORCE: Require proper access permissions.
1969 	 */
1970 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1971 		    FOLL_MADV_POPULATE;
1972 	if (write)
1973 		gup_flags |= FOLL_WRITE;
1974 
1975 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1976 				      gup_flags);
1977 	lru_add_drain();
1978 	return ret;
1979 }
1980 
1981 /*
1982  * __mm_populate - populate and/or mlock pages within a range of address space.
1983  *
1984  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1985  * flags. VMAs must be already marked with the desired vm_flags, and
1986  * mmap_lock must not be held.
1987  */
1988 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1989 {
1990 	struct mm_struct *mm = current->mm;
1991 	unsigned long end, nstart, nend;
1992 	struct vm_area_struct *vma = NULL;
1993 	int locked = 0;
1994 	long ret = 0;
1995 
1996 	end = start + len;
1997 
1998 	for (nstart = start; nstart < end; nstart = nend) {
1999 		/*
2000 		 * We want to fault in pages for [nstart; end) address range.
2001 		 * Find first corresponding VMA.
2002 		 */
2003 		if (!locked) {
2004 			locked = 1;
2005 			mmap_read_lock(mm);
2006 			vma = find_vma_intersection(mm, nstart, end);
2007 		} else if (nstart >= vma->vm_end)
2008 			vma = find_vma_intersection(mm, vma->vm_end, end);
2009 
2010 		if (!vma)
2011 			break;
2012 		/*
2013 		 * Set [nstart; nend) to intersection of desired address
2014 		 * range with the first VMA. Also, skip undesirable VMA types.
2015 		 */
2016 		nend = min(end, vma->vm_end);
2017 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2018 			continue;
2019 		if (nstart < vma->vm_start)
2020 			nstart = vma->vm_start;
2021 		/*
2022 		 * Now fault in a range of pages. populate_vma_page_range()
2023 		 * double checks the vma flags, so that it won't mlock pages
2024 		 * if the vma was already munlocked.
2025 		 */
2026 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2027 		if (ret < 0) {
2028 			if (ignore_errors) {
2029 				ret = 0;
2030 				continue;	/* continue at next VMA */
2031 			}
2032 			break;
2033 		}
2034 		nend = nstart + ret * PAGE_SIZE;
2035 		ret = 0;
2036 	}
2037 	if (locked)
2038 		mmap_read_unlock(mm);
2039 	return ret;	/* 0 or negative error code */
2040 }
2041 #else /* CONFIG_MMU */
2042 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2043 		unsigned long nr_pages, struct page **pages,
2044 		int *locked, unsigned int foll_flags)
2045 {
2046 	struct vm_area_struct *vma;
2047 	bool must_unlock = false;
2048 	unsigned long vm_flags;
2049 	long i;
2050 
2051 	if (!nr_pages)
2052 		return 0;
2053 
2054 	/*
2055 	 * The internal caller expects GUP to manage the lock internally and the
2056 	 * lock must be released when this returns.
2057 	 */
2058 	if (!*locked) {
2059 		if (mmap_read_lock_killable(mm))
2060 			return -EAGAIN;
2061 		must_unlock = true;
2062 		*locked = 1;
2063 	}
2064 
2065 	/* calculate required read or write permissions.
2066 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2067 	 */
2068 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2069 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2070 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2071 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2072 
2073 	for (i = 0; i < nr_pages; i++) {
2074 		vma = find_vma(mm, start);
2075 		if (!vma)
2076 			break;
2077 
2078 		/* protect what we can, including chardevs */
2079 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2080 		    !(vm_flags & vma->vm_flags))
2081 			break;
2082 
2083 		if (pages) {
2084 			pages[i] = virt_to_page((void *)start);
2085 			if (pages[i])
2086 				get_page(pages[i]);
2087 		}
2088 
2089 		start = (start + PAGE_SIZE) & PAGE_MASK;
2090 	}
2091 
2092 	if (must_unlock && *locked) {
2093 		mmap_read_unlock(mm);
2094 		*locked = 0;
2095 	}
2096 
2097 	return i ? : -EFAULT;
2098 }
2099 #endif /* !CONFIG_MMU */
2100 
2101 /**
2102  * fault_in_writeable - fault in userspace address range for writing
2103  * @uaddr: start of address range
2104  * @size: size of address range
2105  *
2106  * Returns the number of bytes not faulted in (like copy_to_user() and
2107  * copy_from_user()).
2108  */
2109 size_t fault_in_writeable(char __user *uaddr, size_t size)
2110 {
2111 	char __user *start = uaddr, *end;
2112 
2113 	if (unlikely(size == 0))
2114 		return 0;
2115 	if (!user_write_access_begin(uaddr, size))
2116 		return size;
2117 	if (!PAGE_ALIGNED(uaddr)) {
2118 		unsafe_put_user(0, uaddr, out);
2119 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2120 	}
2121 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2122 	if (unlikely(end < start))
2123 		end = NULL;
2124 	while (uaddr != end) {
2125 		unsafe_put_user(0, uaddr, out);
2126 		uaddr += PAGE_SIZE;
2127 	}
2128 
2129 out:
2130 	user_write_access_end();
2131 	if (size > uaddr - start)
2132 		return size - (uaddr - start);
2133 	return 0;
2134 }
2135 EXPORT_SYMBOL(fault_in_writeable);
2136 
2137 /**
2138  * fault_in_subpage_writeable - fault in an address range for writing
2139  * @uaddr: start of address range
2140  * @size: size of address range
2141  *
2142  * Fault in a user address range for writing while checking for permissions at
2143  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2144  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2145  *
2146  * Returns the number of bytes not faulted in (like copy_to_user() and
2147  * copy_from_user()).
2148  */
2149 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2150 {
2151 	size_t faulted_in;
2152 
2153 	/*
2154 	 * Attempt faulting in at page granularity first for page table
2155 	 * permission checking. The arch-specific probe_subpage_writeable()
2156 	 * functions may not check for this.
2157 	 */
2158 	faulted_in = size - fault_in_writeable(uaddr, size);
2159 	if (faulted_in)
2160 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2161 
2162 	return size - faulted_in;
2163 }
2164 EXPORT_SYMBOL(fault_in_subpage_writeable);
2165 
2166 /*
2167  * fault_in_safe_writeable - fault in an address range for writing
2168  * @uaddr: start of address range
2169  * @size: length of address range
2170  *
2171  * Faults in an address range for writing.  This is primarily useful when we
2172  * already know that some or all of the pages in the address range aren't in
2173  * memory.
2174  *
2175  * Unlike fault_in_writeable(), this function is non-destructive.
2176  *
2177  * Note that we don't pin or otherwise hold the pages referenced that we fault
2178  * in.  There's no guarantee that they'll stay in memory for any duration of
2179  * time.
2180  *
2181  * Returns the number of bytes not faulted in, like copy_to_user() and
2182  * copy_from_user().
2183  */
2184 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2185 {
2186 	unsigned long start = (unsigned long)uaddr, end;
2187 	struct mm_struct *mm = current->mm;
2188 	bool unlocked = false;
2189 
2190 	if (unlikely(size == 0))
2191 		return 0;
2192 	end = PAGE_ALIGN(start + size);
2193 	if (end < start)
2194 		end = 0;
2195 
2196 	mmap_read_lock(mm);
2197 	do {
2198 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2199 			break;
2200 		start = (start + PAGE_SIZE) & PAGE_MASK;
2201 	} while (start != end);
2202 	mmap_read_unlock(mm);
2203 
2204 	if (size > (unsigned long)uaddr - start)
2205 		return size - ((unsigned long)uaddr - start);
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(fault_in_safe_writeable);
2209 
2210 /**
2211  * fault_in_readable - fault in userspace address range for reading
2212  * @uaddr: start of user address range
2213  * @size: size of user address range
2214  *
2215  * Returns the number of bytes not faulted in (like copy_to_user() and
2216  * copy_from_user()).
2217  */
2218 size_t fault_in_readable(const char __user *uaddr, size_t size)
2219 {
2220 	const char __user *start = uaddr, *end;
2221 	volatile char c;
2222 
2223 	if (unlikely(size == 0))
2224 		return 0;
2225 	if (!user_read_access_begin(uaddr, size))
2226 		return size;
2227 	if (!PAGE_ALIGNED(uaddr)) {
2228 		unsafe_get_user(c, uaddr, out);
2229 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2230 	}
2231 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2232 	if (unlikely(end < start))
2233 		end = NULL;
2234 	while (uaddr != end) {
2235 		unsafe_get_user(c, uaddr, out);
2236 		uaddr += PAGE_SIZE;
2237 	}
2238 
2239 out:
2240 	user_read_access_end();
2241 	(void)c;
2242 	if (size > uaddr - start)
2243 		return size - (uaddr - start);
2244 	return 0;
2245 }
2246 EXPORT_SYMBOL(fault_in_readable);
2247 
2248 /**
2249  * get_dump_page() - pin user page in memory while writing it to core dump
2250  * @addr: user address
2251  *
2252  * Returns struct page pointer of user page pinned for dump,
2253  * to be freed afterwards by put_page().
2254  *
2255  * Returns NULL on any kind of failure - a hole must then be inserted into
2256  * the corefile, to preserve alignment with its headers; and also returns
2257  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2258  * allowing a hole to be left in the corefile to save disk space.
2259  *
2260  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2261  */
2262 #ifdef CONFIG_ELF_CORE
2263 struct page *get_dump_page(unsigned long addr)
2264 {
2265 	struct page *page;
2266 	int locked = 0;
2267 	int ret;
2268 
2269 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2270 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2271 	return (ret == 1) ? page : NULL;
2272 }
2273 #endif /* CONFIG_ELF_CORE */
2274 
2275 #ifdef CONFIG_MIGRATION
2276 /*
2277  * Returns the number of collected folios. Return value is always >= 0.
2278  */
2279 static unsigned long collect_longterm_unpinnable_folios(
2280 					struct list_head *movable_folio_list,
2281 					unsigned long nr_folios,
2282 					struct folio **folios)
2283 {
2284 	unsigned long i, collected = 0;
2285 	struct folio *prev_folio = NULL;
2286 	bool drain_allow = true;
2287 
2288 	for (i = 0; i < nr_folios; i++) {
2289 		struct folio *folio = folios[i];
2290 
2291 		if (folio == prev_folio)
2292 			continue;
2293 		prev_folio = folio;
2294 
2295 		if (folio_is_longterm_pinnable(folio))
2296 			continue;
2297 
2298 		collected++;
2299 
2300 		if (folio_is_device_coherent(folio))
2301 			continue;
2302 
2303 		if (folio_test_hugetlb(folio)) {
2304 			isolate_hugetlb(folio, movable_folio_list);
2305 			continue;
2306 		}
2307 
2308 		if (!folio_test_lru(folio) && drain_allow) {
2309 			lru_add_drain_all();
2310 			drain_allow = false;
2311 		}
2312 
2313 		if (!folio_isolate_lru(folio))
2314 			continue;
2315 
2316 		list_add_tail(&folio->lru, movable_folio_list);
2317 		node_stat_mod_folio(folio,
2318 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2319 				    folio_nr_pages(folio));
2320 	}
2321 
2322 	return collected;
2323 }
2324 
2325 /*
2326  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2327  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2328  * failure (or partial success).
2329  */
2330 static int migrate_longterm_unpinnable_folios(
2331 					struct list_head *movable_folio_list,
2332 					unsigned long nr_folios,
2333 					struct folio **folios)
2334 {
2335 	int ret;
2336 	unsigned long i;
2337 
2338 	for (i = 0; i < nr_folios; i++) {
2339 		struct folio *folio = folios[i];
2340 
2341 		if (folio_is_device_coherent(folio)) {
2342 			/*
2343 			 * Migration will fail if the folio is pinned, so
2344 			 * convert the pin on the source folio to a normal
2345 			 * reference.
2346 			 */
2347 			folios[i] = NULL;
2348 			folio_get(folio);
2349 			gup_put_folio(folio, 1, FOLL_PIN);
2350 
2351 			if (migrate_device_coherent_folio(folio)) {
2352 				ret = -EBUSY;
2353 				goto err;
2354 			}
2355 
2356 			continue;
2357 		}
2358 
2359 		/*
2360 		 * We can't migrate folios with unexpected references, so drop
2361 		 * the reference obtained by __get_user_pages_locked().
2362 		 * Migrating folios have been added to movable_folio_list after
2363 		 * calling folio_isolate_lru() which takes a reference so the
2364 		 * folio won't be freed if it's migrating.
2365 		 */
2366 		unpin_folio(folios[i]);
2367 		folios[i] = NULL;
2368 	}
2369 
2370 	if (!list_empty(movable_folio_list)) {
2371 		struct migration_target_control mtc = {
2372 			.nid = NUMA_NO_NODE,
2373 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2374 			.reason = MR_LONGTERM_PIN,
2375 		};
2376 
2377 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2378 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2379 				  MR_LONGTERM_PIN, NULL)) {
2380 			ret = -ENOMEM;
2381 			goto err;
2382 		}
2383 	}
2384 
2385 	putback_movable_pages(movable_folio_list);
2386 
2387 	return -EAGAIN;
2388 
2389 err:
2390 	unpin_folios(folios, nr_folios);
2391 	putback_movable_pages(movable_folio_list);
2392 
2393 	return ret;
2394 }
2395 
2396 /*
2397  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2398  * Rather confusingly, all folios in the range are required to be pinned via
2399  * FOLL_PIN, before calling this routine.
2400  *
2401  * Return values:
2402  *
2403  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2404  * then this routine leaves all folios pinned and returns zero for success.
2405  *
2406  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2407  * routine will migrate those folios away, unpin all the folios in the range. If
2408  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2409  * caller should re-pin the entire range with FOLL_PIN and then call this
2410  * routine again.
2411  *
2412  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2413  * indicates a migration failure. The caller should give up, and propagate the
2414  * error back up the call stack. The caller does not need to unpin any folios in
2415  * that case, because this routine will do the unpinning.
2416  */
2417 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2418 					     struct folio **folios)
2419 {
2420 	unsigned long collected;
2421 	LIST_HEAD(movable_folio_list);
2422 
2423 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2424 						       nr_folios, folios);
2425 	if (!collected)
2426 		return 0;
2427 
2428 	return migrate_longterm_unpinnable_folios(&movable_folio_list,
2429 						  nr_folios, folios);
2430 }
2431 
2432 /*
2433  * Return values and behavior are the same as those for
2434  * check_and_migrate_movable_folios().
2435  */
2436 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2437 					    struct page **pages)
2438 {
2439 	struct folio **folios;
2440 	long i, ret;
2441 
2442 	folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2443 	if (!folios) {
2444 		unpin_user_pages(pages, nr_pages);
2445 		return -ENOMEM;
2446 	}
2447 
2448 	for (i = 0; i < nr_pages; i++)
2449 		folios[i] = page_folio(pages[i]);
2450 
2451 	ret = check_and_migrate_movable_folios(nr_pages, folios);
2452 
2453 	kfree(folios);
2454 	return ret;
2455 }
2456 #else
2457 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2458 					    struct page **pages)
2459 {
2460 	return 0;
2461 }
2462 
2463 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2464 					     struct folio **folios)
2465 {
2466 	return 0;
2467 }
2468 #endif /* CONFIG_MIGRATION */
2469 
2470 /*
2471  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2472  * allows us to process the FOLL_LONGTERM flag.
2473  */
2474 static long __gup_longterm_locked(struct mm_struct *mm,
2475 				  unsigned long start,
2476 				  unsigned long nr_pages,
2477 				  struct page **pages,
2478 				  int *locked,
2479 				  unsigned int gup_flags)
2480 {
2481 	unsigned int flags;
2482 	long rc, nr_pinned_pages;
2483 
2484 	if (!(gup_flags & FOLL_LONGTERM))
2485 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2486 					       locked, gup_flags);
2487 
2488 	flags = memalloc_pin_save();
2489 	do {
2490 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2491 							  pages, locked,
2492 							  gup_flags);
2493 		if (nr_pinned_pages <= 0) {
2494 			rc = nr_pinned_pages;
2495 			break;
2496 		}
2497 
2498 		/* FOLL_LONGTERM implies FOLL_PIN */
2499 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2500 	} while (rc == -EAGAIN);
2501 	memalloc_pin_restore(flags);
2502 	return rc ? rc : nr_pinned_pages;
2503 }
2504 
2505 /*
2506  * Check that the given flags are valid for the exported gup/pup interface, and
2507  * update them with the required flags that the caller must have set.
2508  */
2509 static bool is_valid_gup_args(struct page **pages, int *locked,
2510 			      unsigned int *gup_flags_p, unsigned int to_set)
2511 {
2512 	unsigned int gup_flags = *gup_flags_p;
2513 
2514 	/*
2515 	 * These flags not allowed to be specified externally to the gup
2516 	 * interfaces:
2517 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2518 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2519 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2520 	 */
2521 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2522 		return false;
2523 
2524 	gup_flags |= to_set;
2525 	if (locked) {
2526 		/* At the external interface locked must be set */
2527 		if (WARN_ON_ONCE(*locked != 1))
2528 			return false;
2529 
2530 		gup_flags |= FOLL_UNLOCKABLE;
2531 	}
2532 
2533 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2534 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2535 			 (FOLL_PIN | FOLL_GET)))
2536 		return false;
2537 
2538 	/* LONGTERM can only be specified when pinning */
2539 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2540 		return false;
2541 
2542 	/* Pages input must be given if using GET/PIN */
2543 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2544 		return false;
2545 
2546 	/* We want to allow the pgmap to be hot-unplugged at all times */
2547 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2548 			 (gup_flags & FOLL_PCI_P2PDMA)))
2549 		return false;
2550 
2551 	*gup_flags_p = gup_flags;
2552 	return true;
2553 }
2554 
2555 #ifdef CONFIG_MMU
2556 /**
2557  * get_user_pages_remote() - pin user pages in memory
2558  * @mm:		mm_struct of target mm
2559  * @start:	starting user address
2560  * @nr_pages:	number of pages from start to pin
2561  * @gup_flags:	flags modifying lookup behaviour
2562  * @pages:	array that receives pointers to the pages pinned.
2563  *		Should be at least nr_pages long. Or NULL, if caller
2564  *		only intends to ensure the pages are faulted in.
2565  * @locked:	pointer to lock flag indicating whether lock is held and
2566  *		subsequently whether VM_FAULT_RETRY functionality can be
2567  *		utilised. Lock must initially be held.
2568  *
2569  * Returns either number of pages pinned (which may be less than the
2570  * number requested), or an error. Details about the return value:
2571  *
2572  * -- If nr_pages is 0, returns 0.
2573  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2574  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2575  *    pages pinned. Again, this may be less than nr_pages.
2576  *
2577  * The caller is responsible for releasing returned @pages, via put_page().
2578  *
2579  * Must be called with mmap_lock held for read or write.
2580  *
2581  * get_user_pages_remote walks a process's page tables and takes a reference
2582  * to each struct page that each user address corresponds to at a given
2583  * instant. That is, it takes the page that would be accessed if a user
2584  * thread accesses the given user virtual address at that instant.
2585  *
2586  * This does not guarantee that the page exists in the user mappings when
2587  * get_user_pages_remote returns, and there may even be a completely different
2588  * page there in some cases (eg. if mmapped pagecache has been invalidated
2589  * and subsequently re-faulted). However it does guarantee that the page
2590  * won't be freed completely. And mostly callers simply care that the page
2591  * contains data that was valid *at some point in time*. Typically, an IO
2592  * or similar operation cannot guarantee anything stronger anyway because
2593  * locks can't be held over the syscall boundary.
2594  *
2595  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2596  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2597  * be called after the page is finished with, and before put_page is called.
2598  *
2599  * get_user_pages_remote is typically used for fewer-copy IO operations,
2600  * to get a handle on the memory by some means other than accesses
2601  * via the user virtual addresses. The pages may be submitted for
2602  * DMA to devices or accessed via their kernel linear mapping (via the
2603  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2604  *
2605  * See also get_user_pages_fast, for performance critical applications.
2606  *
2607  * get_user_pages_remote should be phased out in favor of
2608  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2609  * should use get_user_pages_remote because it cannot pass
2610  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2611  */
2612 long get_user_pages_remote(struct mm_struct *mm,
2613 		unsigned long start, unsigned long nr_pages,
2614 		unsigned int gup_flags, struct page **pages,
2615 		int *locked)
2616 {
2617 	int local_locked = 1;
2618 
2619 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2620 			       FOLL_TOUCH | FOLL_REMOTE))
2621 		return -EINVAL;
2622 
2623 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2624 				       locked ? locked : &local_locked,
2625 				       gup_flags);
2626 }
2627 EXPORT_SYMBOL(get_user_pages_remote);
2628 
2629 #else /* CONFIG_MMU */
2630 long get_user_pages_remote(struct mm_struct *mm,
2631 			   unsigned long start, unsigned long nr_pages,
2632 			   unsigned int gup_flags, struct page **pages,
2633 			   int *locked)
2634 {
2635 	return 0;
2636 }
2637 #endif /* !CONFIG_MMU */
2638 
2639 /**
2640  * get_user_pages() - pin user pages in memory
2641  * @start:      starting user address
2642  * @nr_pages:   number of pages from start to pin
2643  * @gup_flags:  flags modifying lookup behaviour
2644  * @pages:      array that receives pointers to the pages pinned.
2645  *              Should be at least nr_pages long. Or NULL, if caller
2646  *              only intends to ensure the pages are faulted in.
2647  *
2648  * This is the same as get_user_pages_remote(), just with a less-flexible
2649  * calling convention where we assume that the mm being operated on belongs to
2650  * the current task, and doesn't allow passing of a locked parameter.  We also
2651  * obviously don't pass FOLL_REMOTE in here.
2652  */
2653 long get_user_pages(unsigned long start, unsigned long nr_pages,
2654 		    unsigned int gup_flags, struct page **pages)
2655 {
2656 	int locked = 1;
2657 
2658 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2659 		return -EINVAL;
2660 
2661 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2662 				       &locked, gup_flags);
2663 }
2664 EXPORT_SYMBOL(get_user_pages);
2665 
2666 /*
2667  * get_user_pages_unlocked() is suitable to replace the form:
2668  *
2669  *      mmap_read_lock(mm);
2670  *      get_user_pages(mm, ..., pages, NULL);
2671  *      mmap_read_unlock(mm);
2672  *
2673  *  with:
2674  *
2675  *      get_user_pages_unlocked(mm, ..., pages);
2676  *
2677  * It is functionally equivalent to get_user_pages_fast so
2678  * get_user_pages_fast should be used instead if specific gup_flags
2679  * (e.g. FOLL_FORCE) are not required.
2680  */
2681 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2682 			     struct page **pages, unsigned int gup_flags)
2683 {
2684 	int locked = 0;
2685 
2686 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2687 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2688 		return -EINVAL;
2689 
2690 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2691 				       &locked, gup_flags);
2692 }
2693 EXPORT_SYMBOL(get_user_pages_unlocked);
2694 
2695 /*
2696  * GUP-fast
2697  *
2698  * get_user_pages_fast attempts to pin user pages by walking the page
2699  * tables directly and avoids taking locks. Thus the walker needs to be
2700  * protected from page table pages being freed from under it, and should
2701  * block any THP splits.
2702  *
2703  * One way to achieve this is to have the walker disable interrupts, and
2704  * rely on IPIs from the TLB flushing code blocking before the page table
2705  * pages are freed. This is unsuitable for architectures that do not need
2706  * to broadcast an IPI when invalidating TLBs.
2707  *
2708  * Another way to achieve this is to batch up page table containing pages
2709  * belonging to more than one mm_user, then rcu_sched a callback to free those
2710  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2711  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2712  * (which is a relatively rare event). The code below adopts this strategy.
2713  *
2714  * Before activating this code, please be aware that the following assumptions
2715  * are currently made:
2716  *
2717  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2718  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2719  *
2720  *  *) ptes can be read atomically by the architecture.
2721  *
2722  *  *) access_ok is sufficient to validate userspace address ranges.
2723  *
2724  * The last two assumptions can be relaxed by the addition of helper functions.
2725  *
2726  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2727  */
2728 #ifdef CONFIG_HAVE_GUP_FAST
2729 /*
2730  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2731  * a specific folio.
2732  *
2733  * This call assumes the caller has pinned the folio, that the lowest page table
2734  * level still points to this folio, and that interrupts have been disabled.
2735  *
2736  * GUP-fast must reject all secretmem folios.
2737  *
2738  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2739  * (see comment describing the writable_file_mapping_allowed() function). We
2740  * therefore try to avoid the most egregious case of a long-term mapping doing
2741  * so.
2742  *
2743  * This function cannot be as thorough as that one as the VMA is not available
2744  * in the fast path, so instead we whitelist known good cases and if in doubt,
2745  * fall back to the slow path.
2746  */
2747 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2748 {
2749 	bool reject_file_backed = false;
2750 	struct address_space *mapping;
2751 	bool check_secretmem = false;
2752 	unsigned long mapping_flags;
2753 
2754 	/*
2755 	 * If we aren't pinning then no problematic write can occur. A long term
2756 	 * pin is the most egregious case so this is the one we disallow.
2757 	 */
2758 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2759 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2760 		reject_file_backed = true;
2761 
2762 	/* We hold a folio reference, so we can safely access folio fields. */
2763 
2764 	/* secretmem folios are always order-0 folios. */
2765 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2766 		check_secretmem = true;
2767 
2768 	if (!reject_file_backed && !check_secretmem)
2769 		return true;
2770 
2771 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2772 		return false;
2773 
2774 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2775 	if (folio_test_hugetlb(folio))
2776 		return true;
2777 
2778 	/*
2779 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2780 	 * cannot proceed, which means no actions performed under RCU can
2781 	 * proceed either.
2782 	 *
2783 	 * inodes and thus their mappings are freed under RCU, which means the
2784 	 * mapping cannot be freed beneath us and thus we can safely dereference
2785 	 * it.
2786 	 */
2787 	lockdep_assert_irqs_disabled();
2788 
2789 	/*
2790 	 * However, there may be operations which _alter_ the mapping, so ensure
2791 	 * we read it once and only once.
2792 	 */
2793 	mapping = READ_ONCE(folio->mapping);
2794 
2795 	/*
2796 	 * The mapping may have been truncated, in any case we cannot determine
2797 	 * if this mapping is safe - fall back to slow path to determine how to
2798 	 * proceed.
2799 	 */
2800 	if (!mapping)
2801 		return false;
2802 
2803 	/* Anonymous folios pose no problem. */
2804 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2805 	if (mapping_flags)
2806 		return mapping_flags & PAGE_MAPPING_ANON;
2807 
2808 	/*
2809 	 * At this point, we know the mapping is non-null and points to an
2810 	 * address_space object.
2811 	 */
2812 	if (check_secretmem && secretmem_mapping(mapping))
2813 		return false;
2814 	/* The only remaining allowed file system is shmem. */
2815 	return !reject_file_backed || shmem_mapping(mapping);
2816 }
2817 
2818 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2819 		unsigned int flags, struct page **pages)
2820 {
2821 	while ((*nr) - nr_start) {
2822 		struct folio *folio = page_folio(pages[--(*nr)]);
2823 
2824 		folio_clear_referenced(folio);
2825 		gup_put_folio(folio, 1, flags);
2826 	}
2827 }
2828 
2829 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2830 /*
2831  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2832  * operations.
2833  *
2834  * To pin the page, GUP-fast needs to do below in order:
2835  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2836  *
2837  * For the rest of pgtable operations where pgtable updates can be racy
2838  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2839  * is pinned.
2840  *
2841  * Above will work for all pte-level operations, including THP split.
2842  *
2843  * For THP collapse, it's a bit more complicated because GUP-fast may be
2844  * walking a pgtable page that is being freed (pte is still valid but pmd
2845  * can be cleared already).  To avoid race in such condition, we need to
2846  * also check pmd here to make sure pmd doesn't change (corresponds to
2847  * pmdp_collapse_flush() in the THP collapse code path).
2848  */
2849 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2850 		unsigned long end, unsigned int flags, struct page **pages,
2851 		int *nr)
2852 {
2853 	struct dev_pagemap *pgmap = NULL;
2854 	int nr_start = *nr, ret = 0;
2855 	pte_t *ptep, *ptem;
2856 
2857 	ptem = ptep = pte_offset_map(&pmd, addr);
2858 	if (!ptep)
2859 		return 0;
2860 	do {
2861 		pte_t pte = ptep_get_lockless(ptep);
2862 		struct page *page;
2863 		struct folio *folio;
2864 
2865 		/*
2866 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2867 		 * pte_access_permitted() better should reject these pages
2868 		 * either way: otherwise, GUP-fast might succeed in
2869 		 * cases where ordinary GUP would fail due to VMA access
2870 		 * permissions.
2871 		 */
2872 		if (pte_protnone(pte))
2873 			goto pte_unmap;
2874 
2875 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2876 			goto pte_unmap;
2877 
2878 		if (pte_devmap(pte)) {
2879 			if (unlikely(flags & FOLL_LONGTERM))
2880 				goto pte_unmap;
2881 
2882 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2883 			if (unlikely(!pgmap)) {
2884 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2885 				goto pte_unmap;
2886 			}
2887 		} else if (pte_special(pte))
2888 			goto pte_unmap;
2889 
2890 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2891 		page = pte_page(pte);
2892 
2893 		folio = try_grab_folio_fast(page, 1, flags);
2894 		if (!folio)
2895 			goto pte_unmap;
2896 
2897 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2898 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2899 			gup_put_folio(folio, 1, flags);
2900 			goto pte_unmap;
2901 		}
2902 
2903 		if (!gup_fast_folio_allowed(folio, flags)) {
2904 			gup_put_folio(folio, 1, flags);
2905 			goto pte_unmap;
2906 		}
2907 
2908 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2909 			gup_put_folio(folio, 1, flags);
2910 			goto pte_unmap;
2911 		}
2912 
2913 		/*
2914 		 * We need to make the page accessible if and only if we are
2915 		 * going to access its content (the FOLL_PIN case).  Please
2916 		 * see Documentation/core-api/pin_user_pages.rst for
2917 		 * details.
2918 		 */
2919 		if (flags & FOLL_PIN) {
2920 			ret = arch_make_folio_accessible(folio);
2921 			if (ret) {
2922 				gup_put_folio(folio, 1, flags);
2923 				goto pte_unmap;
2924 			}
2925 		}
2926 		folio_set_referenced(folio);
2927 		pages[*nr] = page;
2928 		(*nr)++;
2929 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2930 
2931 	ret = 1;
2932 
2933 pte_unmap:
2934 	if (pgmap)
2935 		put_dev_pagemap(pgmap);
2936 	pte_unmap(ptem);
2937 	return ret;
2938 }
2939 #else
2940 
2941 /*
2942  * If we can't determine whether or not a pte is special, then fail immediately
2943  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2944  * to be special.
2945  *
2946  * For a futex to be placed on a THP tail page, get_futex_key requires a
2947  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2948  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2949  */
2950 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2951 		unsigned long end, unsigned int flags, struct page **pages,
2952 		int *nr)
2953 {
2954 	return 0;
2955 }
2956 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2957 
2958 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2959 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2960 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
2961 {
2962 	int nr_start = *nr;
2963 	struct dev_pagemap *pgmap = NULL;
2964 
2965 	do {
2966 		struct folio *folio;
2967 		struct page *page = pfn_to_page(pfn);
2968 
2969 		pgmap = get_dev_pagemap(pfn, pgmap);
2970 		if (unlikely(!pgmap)) {
2971 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2972 			break;
2973 		}
2974 
2975 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2976 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2977 			break;
2978 		}
2979 
2980 		folio = try_grab_folio_fast(page, 1, flags);
2981 		if (!folio) {
2982 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2983 			break;
2984 		}
2985 		folio_set_referenced(folio);
2986 		pages[*nr] = page;
2987 		(*nr)++;
2988 		pfn++;
2989 	} while (addr += PAGE_SIZE, addr != end);
2990 
2991 	put_dev_pagemap(pgmap);
2992 	return addr == end;
2993 }
2994 
2995 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2996 		unsigned long end, unsigned int flags, struct page **pages,
2997 		int *nr)
2998 {
2999 	unsigned long fault_pfn;
3000 	int nr_start = *nr;
3001 
3002 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3003 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3004 		return 0;
3005 
3006 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3007 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3008 		return 0;
3009 	}
3010 	return 1;
3011 }
3012 
3013 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3014 		unsigned long end, unsigned int flags, struct page **pages,
3015 		int *nr)
3016 {
3017 	unsigned long fault_pfn;
3018 	int nr_start = *nr;
3019 
3020 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3021 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3022 		return 0;
3023 
3024 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3025 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3026 		return 0;
3027 	}
3028 	return 1;
3029 }
3030 #else
3031 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3032 		unsigned long end, unsigned int flags, struct page **pages,
3033 		int *nr)
3034 {
3035 	BUILD_BUG();
3036 	return 0;
3037 }
3038 
3039 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3040 		unsigned long end, unsigned int flags, struct page **pages,
3041 		int *nr)
3042 {
3043 	BUILD_BUG();
3044 	return 0;
3045 }
3046 #endif
3047 
3048 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3049 		unsigned long end, unsigned int flags, struct page **pages,
3050 		int *nr)
3051 {
3052 	struct page *page;
3053 	struct folio *folio;
3054 	int refs;
3055 
3056 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3057 		return 0;
3058 
3059 	if (pmd_special(orig))
3060 		return 0;
3061 
3062 	if (pmd_devmap(orig)) {
3063 		if (unlikely(flags & FOLL_LONGTERM))
3064 			return 0;
3065 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3066 					        pages, nr);
3067 	}
3068 
3069 	page = pmd_page(orig);
3070 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3071 
3072 	folio = try_grab_folio_fast(page, refs, flags);
3073 	if (!folio)
3074 		return 0;
3075 
3076 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3077 		gup_put_folio(folio, refs, flags);
3078 		return 0;
3079 	}
3080 
3081 	if (!gup_fast_folio_allowed(folio, flags)) {
3082 		gup_put_folio(folio, refs, flags);
3083 		return 0;
3084 	}
3085 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3086 		gup_put_folio(folio, refs, flags);
3087 		return 0;
3088 	}
3089 
3090 	*nr += refs;
3091 	folio_set_referenced(folio);
3092 	return 1;
3093 }
3094 
3095 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3096 		unsigned long end, unsigned int flags, struct page **pages,
3097 		int *nr)
3098 {
3099 	struct page *page;
3100 	struct folio *folio;
3101 	int refs;
3102 
3103 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3104 		return 0;
3105 
3106 	if (pud_special(orig))
3107 		return 0;
3108 
3109 	if (pud_devmap(orig)) {
3110 		if (unlikely(flags & FOLL_LONGTERM))
3111 			return 0;
3112 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3113 					        pages, nr);
3114 	}
3115 
3116 	page = pud_page(orig);
3117 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3118 
3119 	folio = try_grab_folio_fast(page, refs, flags);
3120 	if (!folio)
3121 		return 0;
3122 
3123 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3124 		gup_put_folio(folio, refs, flags);
3125 		return 0;
3126 	}
3127 
3128 	if (!gup_fast_folio_allowed(folio, flags)) {
3129 		gup_put_folio(folio, refs, flags);
3130 		return 0;
3131 	}
3132 
3133 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3134 		gup_put_folio(folio, refs, flags);
3135 		return 0;
3136 	}
3137 
3138 	*nr += refs;
3139 	folio_set_referenced(folio);
3140 	return 1;
3141 }
3142 
3143 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3144 		unsigned long end, unsigned int flags, struct page **pages,
3145 		int *nr)
3146 {
3147 	int refs;
3148 	struct page *page;
3149 	struct folio *folio;
3150 
3151 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3152 		return 0;
3153 
3154 	BUILD_BUG_ON(pgd_devmap(orig));
3155 
3156 	page = pgd_page(orig);
3157 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3158 
3159 	folio = try_grab_folio_fast(page, refs, flags);
3160 	if (!folio)
3161 		return 0;
3162 
3163 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3164 		gup_put_folio(folio, refs, flags);
3165 		return 0;
3166 	}
3167 
3168 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3169 		gup_put_folio(folio, refs, flags);
3170 		return 0;
3171 	}
3172 
3173 	if (!gup_fast_folio_allowed(folio, flags)) {
3174 		gup_put_folio(folio, refs, flags);
3175 		return 0;
3176 	}
3177 
3178 	*nr += refs;
3179 	folio_set_referenced(folio);
3180 	return 1;
3181 }
3182 
3183 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3184 		unsigned long end, unsigned int flags, struct page **pages,
3185 		int *nr)
3186 {
3187 	unsigned long next;
3188 	pmd_t *pmdp;
3189 
3190 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3191 	do {
3192 		pmd_t pmd = pmdp_get_lockless(pmdp);
3193 
3194 		next = pmd_addr_end(addr, end);
3195 		if (!pmd_present(pmd))
3196 			return 0;
3197 
3198 		if (unlikely(pmd_leaf(pmd))) {
3199 			/* See gup_fast_pte_range() */
3200 			if (pmd_protnone(pmd))
3201 				return 0;
3202 
3203 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3204 				pages, nr))
3205 				return 0;
3206 
3207 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3208 					       pages, nr))
3209 			return 0;
3210 	} while (pmdp++, addr = next, addr != end);
3211 
3212 	return 1;
3213 }
3214 
3215 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3216 		unsigned long end, unsigned int flags, struct page **pages,
3217 		int *nr)
3218 {
3219 	unsigned long next;
3220 	pud_t *pudp;
3221 
3222 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3223 	do {
3224 		pud_t pud = READ_ONCE(*pudp);
3225 
3226 		next = pud_addr_end(addr, end);
3227 		if (unlikely(!pud_present(pud)))
3228 			return 0;
3229 		if (unlikely(pud_leaf(pud))) {
3230 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3231 					       pages, nr))
3232 				return 0;
3233 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3234 					       pages, nr))
3235 			return 0;
3236 	} while (pudp++, addr = next, addr != end);
3237 
3238 	return 1;
3239 }
3240 
3241 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3242 		unsigned long end, unsigned int flags, struct page **pages,
3243 		int *nr)
3244 {
3245 	unsigned long next;
3246 	p4d_t *p4dp;
3247 
3248 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3249 	do {
3250 		p4d_t p4d = READ_ONCE(*p4dp);
3251 
3252 		next = p4d_addr_end(addr, end);
3253 		if (!p4d_present(p4d))
3254 			return 0;
3255 		BUILD_BUG_ON(p4d_leaf(p4d));
3256 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3257 					pages, nr))
3258 			return 0;
3259 	} while (p4dp++, addr = next, addr != end);
3260 
3261 	return 1;
3262 }
3263 
3264 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3265 		unsigned int flags, struct page **pages, int *nr)
3266 {
3267 	unsigned long next;
3268 	pgd_t *pgdp;
3269 
3270 	pgdp = pgd_offset(current->mm, addr);
3271 	do {
3272 		pgd_t pgd = READ_ONCE(*pgdp);
3273 
3274 		next = pgd_addr_end(addr, end);
3275 		if (pgd_none(pgd))
3276 			return;
3277 		if (unlikely(pgd_leaf(pgd))) {
3278 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3279 					       pages, nr))
3280 				return;
3281 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3282 					       pages, nr))
3283 			return;
3284 	} while (pgdp++, addr = next, addr != end);
3285 }
3286 #else
3287 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3288 		unsigned int flags, struct page **pages, int *nr)
3289 {
3290 }
3291 #endif /* CONFIG_HAVE_GUP_FAST */
3292 
3293 #ifndef gup_fast_permitted
3294 /*
3295  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3296  * we need to fall back to the slow version:
3297  */
3298 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3299 {
3300 	return true;
3301 }
3302 #endif
3303 
3304 static unsigned long gup_fast(unsigned long start, unsigned long end,
3305 		unsigned int gup_flags, struct page **pages)
3306 {
3307 	unsigned long flags;
3308 	int nr_pinned = 0;
3309 	unsigned seq;
3310 
3311 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3312 	    !gup_fast_permitted(start, end))
3313 		return 0;
3314 
3315 	if (gup_flags & FOLL_PIN) {
3316 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3317 		if (seq & 1)
3318 			return 0;
3319 	}
3320 
3321 	/*
3322 	 * Disable interrupts. The nested form is used, in order to allow full,
3323 	 * general purpose use of this routine.
3324 	 *
3325 	 * With interrupts disabled, we block page table pages from being freed
3326 	 * from under us. See struct mmu_table_batch comments in
3327 	 * include/asm-generic/tlb.h for more details.
3328 	 *
3329 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3330 	 * that come from THPs splitting.
3331 	 */
3332 	local_irq_save(flags);
3333 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3334 	local_irq_restore(flags);
3335 
3336 	/*
3337 	 * When pinning pages for DMA there could be a concurrent write protect
3338 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3339 	 */
3340 	if (gup_flags & FOLL_PIN) {
3341 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3342 			gup_fast_unpin_user_pages(pages, nr_pinned);
3343 			return 0;
3344 		} else {
3345 			sanity_check_pinned_pages(pages, nr_pinned);
3346 		}
3347 	}
3348 	return nr_pinned;
3349 }
3350 
3351 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3352 		unsigned int gup_flags, struct page **pages)
3353 {
3354 	unsigned long len, end;
3355 	unsigned long nr_pinned;
3356 	int locked = 0;
3357 	int ret;
3358 
3359 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3360 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3361 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3362 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3363 		return -EINVAL;
3364 
3365 	if (gup_flags & FOLL_PIN)
3366 		mm_set_has_pinned_flag(&current->mm->flags);
3367 
3368 	if (!(gup_flags & FOLL_FAST_ONLY))
3369 		might_lock_read(&current->mm->mmap_lock);
3370 
3371 	start = untagged_addr(start) & PAGE_MASK;
3372 	len = nr_pages << PAGE_SHIFT;
3373 	if (check_add_overflow(start, len, &end))
3374 		return -EOVERFLOW;
3375 	if (end > TASK_SIZE_MAX)
3376 		return -EFAULT;
3377 	if (unlikely(!access_ok((void __user *)start, len)))
3378 		return -EFAULT;
3379 
3380 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3381 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3382 		return nr_pinned;
3383 
3384 	/* Slow path: try to get the remaining pages with get_user_pages */
3385 	start += nr_pinned << PAGE_SHIFT;
3386 	pages += nr_pinned;
3387 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3388 				    pages, &locked,
3389 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3390 	if (ret < 0) {
3391 		/*
3392 		 * The caller has to unpin the pages we already pinned so
3393 		 * returning -errno is not an option
3394 		 */
3395 		if (nr_pinned)
3396 			return nr_pinned;
3397 		return ret;
3398 	}
3399 	return ret + nr_pinned;
3400 }
3401 
3402 /**
3403  * get_user_pages_fast_only() - pin user pages in memory
3404  * @start:      starting user address
3405  * @nr_pages:   number of pages from start to pin
3406  * @gup_flags:  flags modifying pin behaviour
3407  * @pages:      array that receives pointers to the pages pinned.
3408  *              Should be at least nr_pages long.
3409  *
3410  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3411  * the regular GUP.
3412  *
3413  * If the architecture does not support this function, simply return with no
3414  * pages pinned.
3415  *
3416  * Careful, careful! COW breaking can go either way, so a non-write
3417  * access can get ambiguous page results. If you call this function without
3418  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3419  */
3420 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3421 			     unsigned int gup_flags, struct page **pages)
3422 {
3423 	/*
3424 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3425 	 * because gup fast is always a "pin with a +1 page refcount" request.
3426 	 *
3427 	 * FOLL_FAST_ONLY is required in order to match the API description of
3428 	 * this routine: no fall back to regular ("slow") GUP.
3429 	 */
3430 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3431 			       FOLL_GET | FOLL_FAST_ONLY))
3432 		return -EINVAL;
3433 
3434 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3435 }
3436 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3437 
3438 /**
3439  * get_user_pages_fast() - pin user pages in memory
3440  * @start:      starting user address
3441  * @nr_pages:   number of pages from start to pin
3442  * @gup_flags:  flags modifying pin behaviour
3443  * @pages:      array that receives pointers to the pages pinned.
3444  *              Should be at least nr_pages long.
3445  *
3446  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3447  * If not successful, it will fall back to taking the lock and
3448  * calling get_user_pages().
3449  *
3450  * Returns number of pages pinned. This may be fewer than the number requested.
3451  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3452  * -errno.
3453  */
3454 int get_user_pages_fast(unsigned long start, int nr_pages,
3455 			unsigned int gup_flags, struct page **pages)
3456 {
3457 	/*
3458 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3459 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3460 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3461 	 * request.
3462 	 */
3463 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3464 		return -EINVAL;
3465 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3466 }
3467 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3468 
3469 /**
3470  * pin_user_pages_fast() - pin user pages in memory without taking locks
3471  *
3472  * @start:      starting user address
3473  * @nr_pages:   number of pages from start to pin
3474  * @gup_flags:  flags modifying pin behaviour
3475  * @pages:      array that receives pointers to the pages pinned.
3476  *              Should be at least nr_pages long.
3477  *
3478  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3479  * get_user_pages_fast() for documentation on the function arguments, because
3480  * the arguments here are identical.
3481  *
3482  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3483  * see Documentation/core-api/pin_user_pages.rst for further details.
3484  *
3485  * Note that if a zero_page is amongst the returned pages, it will not have
3486  * pins in it and unpin_user_page() will not remove pins from it.
3487  */
3488 int pin_user_pages_fast(unsigned long start, int nr_pages,
3489 			unsigned int gup_flags, struct page **pages)
3490 {
3491 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3492 		return -EINVAL;
3493 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3494 }
3495 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3496 
3497 /**
3498  * pin_user_pages_remote() - pin pages of a remote process
3499  *
3500  * @mm:		mm_struct of target mm
3501  * @start:	starting user address
3502  * @nr_pages:	number of pages from start to pin
3503  * @gup_flags:	flags modifying lookup behaviour
3504  * @pages:	array that receives pointers to the pages pinned.
3505  *		Should be at least nr_pages long.
3506  * @locked:	pointer to lock flag indicating whether lock is held and
3507  *		subsequently whether VM_FAULT_RETRY functionality can be
3508  *		utilised. Lock must initially be held.
3509  *
3510  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3511  * get_user_pages_remote() for documentation on the function arguments, because
3512  * the arguments here are identical.
3513  *
3514  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3515  * see Documentation/core-api/pin_user_pages.rst for details.
3516  *
3517  * Note that if a zero_page is amongst the returned pages, it will not have
3518  * pins in it and unpin_user_page*() will not remove pins from it.
3519  */
3520 long pin_user_pages_remote(struct mm_struct *mm,
3521 			   unsigned long start, unsigned long nr_pages,
3522 			   unsigned int gup_flags, struct page **pages,
3523 			   int *locked)
3524 {
3525 	int local_locked = 1;
3526 
3527 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3528 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3529 		return 0;
3530 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3531 				     locked ? locked : &local_locked,
3532 				     gup_flags);
3533 }
3534 EXPORT_SYMBOL(pin_user_pages_remote);
3535 
3536 /**
3537  * pin_user_pages() - pin user pages in memory for use by other devices
3538  *
3539  * @start:	starting user address
3540  * @nr_pages:	number of pages from start to pin
3541  * @gup_flags:	flags modifying lookup behaviour
3542  * @pages:	array that receives pointers to the pages pinned.
3543  *		Should be at least nr_pages long.
3544  *
3545  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3546  * FOLL_PIN is set.
3547  *
3548  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3549  * see Documentation/core-api/pin_user_pages.rst for details.
3550  *
3551  * Note that if a zero_page is amongst the returned pages, it will not have
3552  * pins in it and unpin_user_page*() will not remove pins from it.
3553  */
3554 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3555 		    unsigned int gup_flags, struct page **pages)
3556 {
3557 	int locked = 1;
3558 
3559 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3560 		return 0;
3561 	return __gup_longterm_locked(current->mm, start, nr_pages,
3562 				     pages, &locked, gup_flags);
3563 }
3564 EXPORT_SYMBOL(pin_user_pages);
3565 
3566 /*
3567  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3568  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3569  * FOLL_PIN and rejects FOLL_GET.
3570  *
3571  * Note that if a zero_page is amongst the returned pages, it will not have
3572  * pins in it and unpin_user_page*() will not remove pins from it.
3573  */
3574 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3575 			     struct page **pages, unsigned int gup_flags)
3576 {
3577 	int locked = 0;
3578 
3579 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3580 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3581 		return 0;
3582 
3583 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3584 				     &locked, gup_flags);
3585 }
3586 EXPORT_SYMBOL(pin_user_pages_unlocked);
3587 
3588 /**
3589  * memfd_pin_folios() - pin folios associated with a memfd
3590  * @memfd:      the memfd whose folios are to be pinned
3591  * @start:      the first memfd offset
3592  * @end:        the last memfd offset (inclusive)
3593  * @folios:     array that receives pointers to the folios pinned
3594  * @max_folios: maximum number of entries in @folios
3595  * @offset:     the offset into the first folio
3596  *
3597  * Attempt to pin folios associated with a memfd in the contiguous range
3598  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3599  * the folios can either be found in the page cache or need to be allocated
3600  * if necessary. Once the folios are located, they are all pinned via
3601  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3602  * And, eventually, these pinned folios must be released either using
3603  * unpin_folios() or unpin_folio().
3604  *
3605  * It must be noted that the folios may be pinned for an indefinite amount
3606  * of time. And, in most cases, the duration of time they may stay pinned
3607  * would be controlled by the userspace. This behavior is effectively the
3608  * same as using FOLL_LONGTERM with other GUP APIs.
3609  *
3610  * Returns number of folios pinned, which could be less than @max_folios
3611  * as it depends on the folio sizes that cover the range [start, end].
3612  * If no folios were pinned, it returns -errno.
3613  */
3614 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3615 		      struct folio **folios, unsigned int max_folios,
3616 		      pgoff_t *offset)
3617 {
3618 	unsigned int flags, nr_folios, nr_found;
3619 	unsigned int i, pgshift = PAGE_SHIFT;
3620 	pgoff_t start_idx, end_idx, next_idx;
3621 	struct folio *folio = NULL;
3622 	struct folio_batch fbatch;
3623 	struct hstate *h;
3624 	long ret = -EINVAL;
3625 
3626 	if (start < 0 || start > end || !max_folios)
3627 		return -EINVAL;
3628 
3629 	if (!memfd)
3630 		return -EINVAL;
3631 
3632 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3633 		return -EINVAL;
3634 
3635 	if (end >= i_size_read(file_inode(memfd)))
3636 		return -EINVAL;
3637 
3638 	if (is_file_hugepages(memfd)) {
3639 		h = hstate_file(memfd);
3640 		pgshift = huge_page_shift(h);
3641 	}
3642 
3643 	flags = memalloc_pin_save();
3644 	do {
3645 		nr_folios = 0;
3646 		start_idx = start >> pgshift;
3647 		end_idx = end >> pgshift;
3648 		if (is_file_hugepages(memfd)) {
3649 			start_idx <<= huge_page_order(h);
3650 			end_idx <<= huge_page_order(h);
3651 		}
3652 
3653 		folio_batch_init(&fbatch);
3654 		while (start_idx <= end_idx && nr_folios < max_folios) {
3655 			/*
3656 			 * In most cases, we should be able to find the folios
3657 			 * in the page cache. If we cannot find them for some
3658 			 * reason, we try to allocate them and add them to the
3659 			 * page cache.
3660 			 */
3661 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3662 							     &start_idx,
3663 							     end_idx,
3664 							     &fbatch);
3665 			if (folio) {
3666 				folio_put(folio);
3667 				folio = NULL;
3668 			}
3669 
3670 			next_idx = 0;
3671 			for (i = 0; i < nr_found; i++) {
3672 				/*
3673 				 * As there can be multiple entries for a
3674 				 * given folio in the batch returned by
3675 				 * filemap_get_folios_contig(), the below
3676 				 * check is to ensure that we pin and return a
3677 				 * unique set of folios between start and end.
3678 				 */
3679 				if (next_idx &&
3680 				    next_idx != folio_index(fbatch.folios[i]))
3681 					continue;
3682 
3683 				folio = page_folio(&fbatch.folios[i]->page);
3684 
3685 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3686 					folio_batch_release(&fbatch);
3687 					ret = -EINVAL;
3688 					goto err;
3689 				}
3690 
3691 				if (nr_folios == 0)
3692 					*offset = offset_in_folio(folio, start);
3693 
3694 				folios[nr_folios] = folio;
3695 				next_idx = folio_next_index(folio);
3696 				if (++nr_folios == max_folios)
3697 					break;
3698 			}
3699 
3700 			folio = NULL;
3701 			folio_batch_release(&fbatch);
3702 			if (!nr_found) {
3703 				folio = memfd_alloc_folio(memfd, start_idx);
3704 				if (IS_ERR(folio)) {
3705 					ret = PTR_ERR(folio);
3706 					if (ret != -EEXIST)
3707 						goto err;
3708 					folio = NULL;
3709 				}
3710 			}
3711 		}
3712 
3713 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3714 	} while (ret == -EAGAIN);
3715 
3716 	memalloc_pin_restore(flags);
3717 	return ret ? ret : nr_folios;
3718 err:
3719 	memalloc_pin_restore(flags);
3720 	unpin_folios(folios, nr_folios);
3721 
3722 	return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3725