1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio = page_folio(page); 56 57 if (is_zero_page(page) || 58 !folio_test_anon(folio)) 59 continue; 60 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 62 else 63 /* Either a PTE-mapped or a PMD-mapped THP. */ 64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 65 !PageAnonExclusive(page), page); 66 } 67 } 68 69 /* 70 * Return the folio with ref appropriately incremented, 71 * or NULL if that failed. 72 */ 73 static inline struct folio *try_get_folio(struct page *page, int refs) 74 { 75 struct folio *folio; 76 77 retry: 78 folio = page_folio(page); 79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 80 return NULL; 81 if (unlikely(!folio_ref_try_add(folio, refs))) 82 return NULL; 83 84 /* 85 * At this point we have a stable reference to the folio; but it 86 * could be that between calling page_folio() and the refcount 87 * increment, the folio was split, in which case we'd end up 88 * holding a reference on a folio that has nothing to do with the page 89 * we were given anymore. 90 * So now that the folio is stable, recheck that the page still 91 * belongs to this folio. 92 */ 93 if (unlikely(page_folio(page) != folio)) { 94 if (!put_devmap_managed_folio_refs(folio, refs)) 95 folio_put_refs(folio, refs); 96 goto retry; 97 } 98 99 return folio; 100 } 101 102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 103 { 104 if (flags & FOLL_PIN) { 105 if (is_zero_folio(folio)) 106 return; 107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 108 if (folio_test_large(folio)) 109 atomic_sub(refs, &folio->_pincount); 110 else 111 refs *= GUP_PIN_COUNTING_BIAS; 112 } 113 114 if (!put_devmap_managed_folio_refs(folio, refs)) 115 folio_put_refs(folio, refs); 116 } 117 118 /** 119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 120 * @folio: pointer to folio to be grabbed 121 * @refs: the value to (effectively) add to the folio's refcount 122 * @flags: gup flags: these are the FOLL_* flag values 123 * 124 * This might not do anything at all, depending on the flags argument. 125 * 126 * "grab" names in this file mean, "look at flags to decide whether to use 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 128 * 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 130 * time. 131 * 132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 133 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 134 * 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 136 * be grabbed. 137 * 138 * It is called when we have a stable reference for the folio, typically in 139 * GUP slow path. 140 */ 141 int __must_check try_grab_folio(struct folio *folio, int refs, 142 unsigned int flags) 143 { 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 145 return -ENOMEM; 146 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 148 return -EREMOTEIO; 149 150 if (flags & FOLL_GET) 151 folio_ref_add(folio, refs); 152 else if (flags & FOLL_PIN) { 153 /* 154 * Don't take a pin on the zero page - it's not going anywhere 155 * and it is used in a *lot* of places. 156 */ 157 if (is_zero_folio(folio)) 158 return 0; 159 160 /* 161 * Increment the normal page refcount field at least once, 162 * so that the page really is pinned. 163 */ 164 if (folio_test_large(folio)) { 165 folio_ref_add(folio, refs); 166 atomic_add(refs, &folio->_pincount); 167 } else { 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 169 } 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 } 173 174 return 0; 175 } 176 177 /** 178 * unpin_user_page() - release a dma-pinned page 179 * @page: pointer to page to be released 180 * 181 * Pages that were pinned via pin_user_pages*() must be released via either 182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 183 * that such pages can be separately tracked and uniquely handled. In 184 * particular, interactions with RDMA and filesystems need special handling. 185 */ 186 void unpin_user_page(struct page *page) 187 { 188 sanity_check_pinned_pages(&page, 1); 189 gup_put_folio(page_folio(page), 1, FOLL_PIN); 190 } 191 EXPORT_SYMBOL(unpin_user_page); 192 193 /** 194 * unpin_folio() - release a dma-pinned folio 195 * @folio: pointer to folio to be released 196 * 197 * Folios that were pinned via memfd_pin_folios() or other similar routines 198 * must be released either using unpin_folio() or unpin_folios(). 199 */ 200 void unpin_folio(struct folio *folio) 201 { 202 gup_put_folio(folio, 1, FOLL_PIN); 203 } 204 EXPORT_SYMBOL_GPL(unpin_folio); 205 206 /** 207 * folio_add_pin - Try to get an additional pin on a pinned folio 208 * @folio: The folio to be pinned 209 * 210 * Get an additional pin on a folio we already have a pin on. Makes no change 211 * if the folio is a zero_page. 212 */ 213 void folio_add_pin(struct folio *folio) 214 { 215 if (is_zero_folio(folio)) 216 return; 217 218 /* 219 * Similar to try_grab_folio(): be sure to *also* increment the normal 220 * page refcount field at least once, so that the page really is 221 * pinned. 222 */ 223 if (folio_test_large(folio)) { 224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 225 folio_ref_inc(folio); 226 atomic_inc(&folio->_pincount); 227 } else { 228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 } 232 233 static inline struct folio *gup_folio_range_next(struct page *start, 234 unsigned long npages, unsigned long i, unsigned int *ntails) 235 { 236 struct page *next = nth_page(start, i); 237 struct folio *folio = page_folio(next); 238 unsigned int nr = 1; 239 240 if (folio_test_large(folio)) 241 nr = min_t(unsigned int, npages - i, 242 folio_nr_pages(folio) - folio_page_idx(folio, next)); 243 244 *ntails = nr; 245 return folio; 246 } 247 248 static inline struct folio *gup_folio_next(struct page **list, 249 unsigned long npages, unsigned long i, unsigned int *ntails) 250 { 251 struct folio *folio = page_folio(list[i]); 252 unsigned int nr; 253 254 for (nr = i + 1; nr < npages; nr++) { 255 if (page_folio(list[nr]) != folio) 256 break; 257 } 258 259 *ntails = nr - i; 260 return folio; 261 } 262 263 /** 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 265 * @pages: array of pages to be maybe marked dirty, and definitely released. 266 * @npages: number of pages in the @pages array. 267 * @make_dirty: whether to mark the pages dirty 268 * 269 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 270 * variants called on that page. 271 * 272 * For each page in the @pages array, make that page (or its head page, if a 273 * compound page) dirty, if @make_dirty is true, and if the page was previously 274 * listed as clean. In any case, releases all pages using unpin_user_page(), 275 * possibly via unpin_user_pages(), for the non-dirty case. 276 * 277 * Please see the unpin_user_page() documentation for details. 278 * 279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 280 * required, then the caller should a) verify that this is really correct, 281 * because _lock() is usually required, and b) hand code it: 282 * set_page_dirty_lock(), unpin_user_page(). 283 * 284 */ 285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 286 bool make_dirty) 287 { 288 unsigned long i; 289 struct folio *folio; 290 unsigned int nr; 291 292 if (!make_dirty) { 293 unpin_user_pages(pages, npages); 294 return; 295 } 296 297 sanity_check_pinned_pages(pages, npages); 298 for (i = 0; i < npages; i += nr) { 299 folio = gup_folio_next(pages, npages, i, &nr); 300 /* 301 * Checking PageDirty at this point may race with 302 * clear_page_dirty_for_io(), but that's OK. Two key 303 * cases: 304 * 305 * 1) This code sees the page as already dirty, so it 306 * skips the call to set_page_dirty(). That could happen 307 * because clear_page_dirty_for_io() called 308 * folio_mkclean(), followed by set_page_dirty(). 309 * However, now the page is going to get written back, 310 * which meets the original intention of setting it 311 * dirty, so all is well: clear_page_dirty_for_io() goes 312 * on to call TestClearPageDirty(), and write the page 313 * back. 314 * 315 * 2) This code sees the page as clean, so it calls 316 * set_page_dirty(). The page stays dirty, despite being 317 * written back, so it gets written back again in the 318 * next writeback cycle. This is harmless. 319 */ 320 if (!folio_test_dirty(folio)) { 321 folio_lock(folio); 322 folio_mark_dirty(folio); 323 folio_unlock(folio); 324 } 325 gup_put_folio(folio, nr, FOLL_PIN); 326 } 327 } 328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 329 330 /** 331 * unpin_user_page_range_dirty_lock() - release and optionally dirty 332 * gup-pinned page range 333 * 334 * @page: the starting page of a range maybe marked dirty, and definitely released. 335 * @npages: number of consecutive pages to release. 336 * @make_dirty: whether to mark the pages dirty 337 * 338 * "gup-pinned page range" refers to a range of pages that has had one of the 339 * pin_user_pages() variants called on that page. 340 * 341 * For the page ranges defined by [page .. page+npages], make that range (or 342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 343 * page range was previously listed as clean. 344 * 345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 346 * required, then the caller should a) verify that this is really correct, 347 * because _lock() is usually required, and b) hand code it: 348 * set_page_dirty_lock(), unpin_user_page(). 349 * 350 */ 351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 352 bool make_dirty) 353 { 354 unsigned long i; 355 struct folio *folio; 356 unsigned int nr; 357 358 for (i = 0; i < npages; i += nr) { 359 folio = gup_folio_range_next(page, npages, i, &nr); 360 if (make_dirty && !folio_test_dirty(folio)) { 361 folio_lock(folio); 362 folio_mark_dirty(folio); 363 folio_unlock(folio); 364 } 365 gup_put_folio(folio, nr, FOLL_PIN); 366 } 367 } 368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 369 370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 371 { 372 unsigned long i; 373 struct folio *folio; 374 unsigned int nr; 375 376 /* 377 * Don't perform any sanity checks because we might have raced with 378 * fork() and some anonymous pages might now actually be shared -- 379 * which is why we're unpinning after all. 380 */ 381 for (i = 0; i < npages; i += nr) { 382 folio = gup_folio_next(pages, npages, i, &nr); 383 gup_put_folio(folio, nr, FOLL_PIN); 384 } 385 } 386 387 /** 388 * unpin_user_pages() - release an array of gup-pinned pages. 389 * @pages: array of pages to be marked dirty and released. 390 * @npages: number of pages in the @pages array. 391 * 392 * For each page in the @pages array, release the page using unpin_user_page(). 393 * 394 * Please see the unpin_user_page() documentation for details. 395 */ 396 void unpin_user_pages(struct page **pages, unsigned long npages) 397 { 398 unsigned long i; 399 struct folio *folio; 400 unsigned int nr; 401 402 /* 403 * If this WARN_ON() fires, then the system *might* be leaking pages (by 404 * leaving them pinned), but probably not. More likely, gup/pup returned 405 * a hard -ERRNO error to the caller, who erroneously passed it here. 406 */ 407 if (WARN_ON(IS_ERR_VALUE(npages))) 408 return; 409 410 sanity_check_pinned_pages(pages, npages); 411 for (i = 0; i < npages; i += nr) { 412 folio = gup_folio_next(pages, npages, i, &nr); 413 gup_put_folio(folio, nr, FOLL_PIN); 414 } 415 } 416 EXPORT_SYMBOL(unpin_user_pages); 417 418 /** 419 * unpin_user_folio() - release pages of a folio 420 * @folio: pointer to folio to be released 421 * @npages: number of pages of same folio 422 * 423 * Release npages of the folio 424 */ 425 void unpin_user_folio(struct folio *folio, unsigned long npages) 426 { 427 gup_put_folio(folio, npages, FOLL_PIN); 428 } 429 EXPORT_SYMBOL(unpin_user_folio); 430 431 /** 432 * unpin_folios() - release an array of gup-pinned folios. 433 * @folios: array of folios to be marked dirty and released. 434 * @nfolios: number of folios in the @folios array. 435 * 436 * For each folio in the @folios array, release the folio using gup_put_folio. 437 * 438 * Please see the unpin_folio() documentation for details. 439 */ 440 void unpin_folios(struct folio **folios, unsigned long nfolios) 441 { 442 unsigned long i = 0, j; 443 444 /* 445 * If this WARN_ON() fires, then the system *might* be leaking folios 446 * (by leaving them pinned), but probably not. More likely, gup/pup 447 * returned a hard -ERRNO error to the caller, who erroneously passed 448 * it here. 449 */ 450 if (WARN_ON(IS_ERR_VALUE(nfolios))) 451 return; 452 453 while (i < nfolios) { 454 for (j = i + 1; j < nfolios; j++) 455 if (folios[i] != folios[j]) 456 break; 457 458 if (folios[i]) 459 gup_put_folio(folios[i], j - i, FOLL_PIN); 460 i = j; 461 } 462 } 463 EXPORT_SYMBOL_GPL(unpin_folios); 464 465 /* 466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 468 * cache bouncing on large SMP machines for concurrent pinned gups. 469 */ 470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 471 { 472 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 473 set_bit(MMF_HAS_PINNED, mm_flags); 474 } 475 476 #ifdef CONFIG_MMU 477 478 #ifdef CONFIG_HAVE_GUP_FAST 479 static int record_subpages(struct page *page, unsigned long sz, 480 unsigned long addr, unsigned long end, 481 struct page **pages) 482 { 483 struct page *start_page; 484 int nr; 485 486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 488 pages[nr] = nth_page(start_page, nr); 489 490 return nr; 491 } 492 493 /** 494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 495 * @page: pointer to page to be grabbed 496 * @refs: the value to (effectively) add to the folio's refcount 497 * @flags: gup flags: these are the FOLL_* flag values. 498 * 499 * "grab" names in this file mean, "look at flags to decide whether to use 500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 501 * 502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 503 * same time. (That's true throughout the get_user_pages*() and 504 * pin_user_pages*() APIs.) Cases: 505 * 506 * FOLL_GET: folio's refcount will be incremented by @refs. 507 * 508 * FOLL_PIN on large folios: folio's refcount will be incremented by 509 * @refs, and its pincount will be incremented by @refs. 510 * 511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 512 * @refs * GUP_PIN_COUNTING_BIAS. 513 * 514 * Return: The folio containing @page (with refcount appropriately 515 * incremented) for success, or NULL upon failure. If neither FOLL_GET 516 * nor FOLL_PIN was set, that's considered failure, and furthermore, 517 * a likely bug in the caller, so a warning is also emitted. 518 * 519 * It uses add ref unless zero to elevate the folio refcount and must be called 520 * in fast path only. 521 */ 522 static struct folio *try_grab_folio_fast(struct page *page, int refs, 523 unsigned int flags) 524 { 525 struct folio *folio; 526 527 /* Raise warn if it is not called in fast GUP */ 528 VM_WARN_ON_ONCE(!irqs_disabled()); 529 530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 531 return NULL; 532 533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 534 return NULL; 535 536 if (flags & FOLL_GET) 537 return try_get_folio(page, refs); 538 539 /* FOLL_PIN is set */ 540 541 /* 542 * Don't take a pin on the zero page - it's not going anywhere 543 * and it is used in a *lot* of places. 544 */ 545 if (is_zero_page(page)) 546 return page_folio(page); 547 548 folio = try_get_folio(page, refs); 549 if (!folio) 550 return NULL; 551 552 /* 553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 554 * right zone, so fail and let the caller fall back to the slow 555 * path. 556 */ 557 if (unlikely((flags & FOLL_LONGTERM) && 558 !folio_is_longterm_pinnable(folio))) { 559 if (!put_devmap_managed_folio_refs(folio, refs)) 560 folio_put_refs(folio, refs); 561 return NULL; 562 } 563 564 /* 565 * When pinning a large folio, use an exact count to track it. 566 * 567 * However, be sure to *also* increment the normal folio 568 * refcount field at least once, so that the folio really 569 * is pinned. That's why the refcount from the earlier 570 * try_get_folio() is left intact. 571 */ 572 if (folio_test_large(folio)) 573 atomic_add(refs, &folio->_pincount); 574 else 575 folio_ref_add(folio, 576 refs * (GUP_PIN_COUNTING_BIAS - 1)); 577 /* 578 * Adjust the pincount before re-checking the PTE for changes. 579 * This is essentially a smp_mb() and is paired with a memory 580 * barrier in folio_try_share_anon_rmap_*(). 581 */ 582 smp_mb__after_atomic(); 583 584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 585 586 return folio; 587 } 588 #endif /* CONFIG_HAVE_GUP_FAST */ 589 590 static struct page *no_page_table(struct vm_area_struct *vma, 591 unsigned int flags, unsigned long address) 592 { 593 if (!(flags & FOLL_DUMP)) 594 return NULL; 595 596 /* 597 * When core dumping, we don't want to allocate unnecessary pages or 598 * page tables. Return error instead of NULL to skip handle_mm_fault, 599 * then get_dump_page() will return NULL to leave a hole in the dump. 600 * But we can only make this optimization where a hole would surely 601 * be zero-filled if handle_mm_fault() actually did handle it. 602 */ 603 if (is_vm_hugetlb_page(vma)) { 604 struct hstate *h = hstate_vma(vma); 605 606 if (!hugetlbfs_pagecache_present(h, vma, address)) 607 return ERR_PTR(-EFAULT); 608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 609 return ERR_PTR(-EFAULT); 610 } 611 612 return NULL; 613 } 614 615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 616 static struct page *follow_huge_pud(struct vm_area_struct *vma, 617 unsigned long addr, pud_t *pudp, 618 int flags, struct follow_page_context *ctx) 619 { 620 struct mm_struct *mm = vma->vm_mm; 621 struct page *page; 622 pud_t pud = *pudp; 623 unsigned long pfn = pud_pfn(pud); 624 int ret; 625 626 assert_spin_locked(pud_lockptr(mm, pudp)); 627 628 if ((flags & FOLL_WRITE) && !pud_write(pud)) 629 return NULL; 630 631 if (!pud_present(pud)) 632 return NULL; 633 634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 635 636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 637 pud_devmap(pud)) { 638 /* 639 * device mapped pages can only be returned if the caller 640 * will manage the page reference count. 641 * 642 * At least one of FOLL_GET | FOLL_PIN must be set, so 643 * assert that here: 644 */ 645 if (!(flags & (FOLL_GET | FOLL_PIN))) 646 return ERR_PTR(-EEXIST); 647 648 if (flags & FOLL_TOUCH) 649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 650 651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 652 if (!ctx->pgmap) 653 return ERR_PTR(-EFAULT); 654 } 655 656 page = pfn_to_page(pfn); 657 658 if (!pud_devmap(pud) && !pud_write(pud) && 659 gup_must_unshare(vma, flags, page)) 660 return ERR_PTR(-EMLINK); 661 662 ret = try_grab_folio(page_folio(page), 1, flags); 663 if (ret) 664 page = ERR_PTR(ret); 665 else 666 ctx->page_mask = HPAGE_PUD_NR - 1; 667 668 return page; 669 } 670 671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 673 struct vm_area_struct *vma, 674 unsigned int flags) 675 { 676 /* If the pmd is writable, we can write to the page. */ 677 if (pmd_write(pmd)) 678 return true; 679 680 /* Maybe FOLL_FORCE is set to override it? */ 681 if (!(flags & FOLL_FORCE)) 682 return false; 683 684 /* But FOLL_FORCE has no effect on shared mappings */ 685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 686 return false; 687 688 /* ... or read-only private ones */ 689 if (!(vma->vm_flags & VM_MAYWRITE)) 690 return false; 691 692 /* ... or already writable ones that just need to take a write fault */ 693 if (vma->vm_flags & VM_WRITE) 694 return false; 695 696 /* 697 * See can_change_pte_writable(): we broke COW and could map the page 698 * writable if we have an exclusive anonymous page ... 699 */ 700 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 701 return false; 702 703 /* ... and a write-fault isn't required for other reasons. */ 704 if (pmd_needs_soft_dirty_wp(vma, pmd)) 705 return false; 706 return !userfaultfd_huge_pmd_wp(vma, pmd); 707 } 708 709 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 710 unsigned long addr, pmd_t *pmd, 711 unsigned int flags, 712 struct follow_page_context *ctx) 713 { 714 struct mm_struct *mm = vma->vm_mm; 715 pmd_t pmdval = *pmd; 716 struct page *page; 717 int ret; 718 719 assert_spin_locked(pmd_lockptr(mm, pmd)); 720 721 page = pmd_page(pmdval); 722 if ((flags & FOLL_WRITE) && 723 !can_follow_write_pmd(pmdval, page, vma, flags)) 724 return NULL; 725 726 /* Avoid dumping huge zero page */ 727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 728 return ERR_PTR(-EFAULT); 729 730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 731 return NULL; 732 733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 734 return ERR_PTR(-EMLINK); 735 736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 737 !PageAnonExclusive(page), page); 738 739 ret = try_grab_folio(page_folio(page), 1, flags); 740 if (ret) 741 return ERR_PTR(ret); 742 743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 747 748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 749 ctx->page_mask = HPAGE_PMD_NR - 1; 750 751 return page; 752 } 753 754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 755 static struct page *follow_huge_pud(struct vm_area_struct *vma, 756 unsigned long addr, pud_t *pudp, 757 int flags, struct follow_page_context *ctx) 758 { 759 return NULL; 760 } 761 762 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 763 unsigned long addr, pmd_t *pmd, 764 unsigned int flags, 765 struct follow_page_context *ctx) 766 { 767 return NULL; 768 } 769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 770 771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 772 pte_t *pte, unsigned int flags) 773 { 774 if (flags & FOLL_TOUCH) { 775 pte_t orig_entry = ptep_get(pte); 776 pte_t entry = orig_entry; 777 778 if (flags & FOLL_WRITE) 779 entry = pte_mkdirty(entry); 780 entry = pte_mkyoung(entry); 781 782 if (!pte_same(orig_entry, entry)) { 783 set_pte_at(vma->vm_mm, address, pte, entry); 784 update_mmu_cache(vma, address, pte); 785 } 786 } 787 788 /* Proper page table entry exists, but no corresponding struct page */ 789 return -EEXIST; 790 } 791 792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 793 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 794 struct vm_area_struct *vma, 795 unsigned int flags) 796 { 797 /* If the pte is writable, we can write to the page. */ 798 if (pte_write(pte)) 799 return true; 800 801 /* Maybe FOLL_FORCE is set to override it? */ 802 if (!(flags & FOLL_FORCE)) 803 return false; 804 805 /* But FOLL_FORCE has no effect on shared mappings */ 806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 807 return false; 808 809 /* ... or read-only private ones */ 810 if (!(vma->vm_flags & VM_MAYWRITE)) 811 return false; 812 813 /* ... or already writable ones that just need to take a write fault */ 814 if (vma->vm_flags & VM_WRITE) 815 return false; 816 817 /* 818 * See can_change_pte_writable(): we broke COW and could map the page 819 * writable if we have an exclusive anonymous page ... 820 */ 821 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 822 return false; 823 824 /* ... and a write-fault isn't required for other reasons. */ 825 if (pte_needs_soft_dirty_wp(vma, pte)) 826 return false; 827 return !userfaultfd_pte_wp(vma, pte); 828 } 829 830 static struct page *follow_page_pte(struct vm_area_struct *vma, 831 unsigned long address, pmd_t *pmd, unsigned int flags, 832 struct dev_pagemap **pgmap) 833 { 834 struct mm_struct *mm = vma->vm_mm; 835 struct folio *folio; 836 struct page *page; 837 spinlock_t *ptl; 838 pte_t *ptep, pte; 839 int ret; 840 841 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 842 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 843 (FOLL_PIN | FOLL_GET))) 844 return ERR_PTR(-EINVAL); 845 846 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 847 if (!ptep) 848 return no_page_table(vma, flags, address); 849 pte = ptep_get(ptep); 850 if (!pte_present(pte)) 851 goto no_page; 852 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 853 goto no_page; 854 855 page = vm_normal_page(vma, address, pte); 856 857 /* 858 * We only care about anon pages in can_follow_write_pte() and don't 859 * have to worry about pte_devmap() because they are never anon. 860 */ 861 if ((flags & FOLL_WRITE) && 862 !can_follow_write_pte(pte, page, vma, flags)) { 863 page = NULL; 864 goto out; 865 } 866 867 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 868 /* 869 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 870 * case since they are only valid while holding the pgmap 871 * reference. 872 */ 873 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 874 if (*pgmap) 875 page = pte_page(pte); 876 else 877 goto no_page; 878 } else if (unlikely(!page)) { 879 if (flags & FOLL_DUMP) { 880 /* Avoid special (like zero) pages in core dumps */ 881 page = ERR_PTR(-EFAULT); 882 goto out; 883 } 884 885 if (is_zero_pfn(pte_pfn(pte))) { 886 page = pte_page(pte); 887 } else { 888 ret = follow_pfn_pte(vma, address, ptep, flags); 889 page = ERR_PTR(ret); 890 goto out; 891 } 892 } 893 folio = page_folio(page); 894 895 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 896 page = ERR_PTR(-EMLINK); 897 goto out; 898 } 899 900 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 901 !PageAnonExclusive(page), page); 902 903 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 904 ret = try_grab_folio(folio, 1, flags); 905 if (unlikely(ret)) { 906 page = ERR_PTR(ret); 907 goto out; 908 } 909 910 /* 911 * We need to make the page accessible if and only if we are going 912 * to access its content (the FOLL_PIN case). Please see 913 * Documentation/core-api/pin_user_pages.rst for details. 914 */ 915 if (flags & FOLL_PIN) { 916 ret = arch_make_folio_accessible(folio); 917 if (ret) { 918 unpin_user_page(page); 919 page = ERR_PTR(ret); 920 goto out; 921 } 922 } 923 if (flags & FOLL_TOUCH) { 924 if ((flags & FOLL_WRITE) && 925 !pte_dirty(pte) && !PageDirty(page)) 926 set_page_dirty(page); 927 /* 928 * pte_mkyoung() would be more correct here, but atomic care 929 * is needed to avoid losing the dirty bit: it is easier to use 930 * mark_page_accessed(). 931 */ 932 mark_page_accessed(page); 933 } 934 out: 935 pte_unmap_unlock(ptep, ptl); 936 return page; 937 no_page: 938 pte_unmap_unlock(ptep, ptl); 939 if (!pte_none(pte)) 940 return NULL; 941 return no_page_table(vma, flags, address); 942 } 943 944 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 945 unsigned long address, pud_t *pudp, 946 unsigned int flags, 947 struct follow_page_context *ctx) 948 { 949 pmd_t *pmd, pmdval; 950 spinlock_t *ptl; 951 struct page *page; 952 struct mm_struct *mm = vma->vm_mm; 953 954 pmd = pmd_offset(pudp, address); 955 pmdval = pmdp_get_lockless(pmd); 956 if (pmd_none(pmdval)) 957 return no_page_table(vma, flags, address); 958 if (!pmd_present(pmdval)) 959 return no_page_table(vma, flags, address); 960 if (pmd_devmap(pmdval)) { 961 ptl = pmd_lock(mm, pmd); 962 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 963 spin_unlock(ptl); 964 if (page) 965 return page; 966 return no_page_table(vma, flags, address); 967 } 968 if (likely(!pmd_leaf(pmdval))) 969 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 970 971 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 972 return no_page_table(vma, flags, address); 973 974 ptl = pmd_lock(mm, pmd); 975 pmdval = *pmd; 976 if (unlikely(!pmd_present(pmdval))) { 977 spin_unlock(ptl); 978 return no_page_table(vma, flags, address); 979 } 980 if (unlikely(!pmd_leaf(pmdval))) { 981 spin_unlock(ptl); 982 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 983 } 984 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 985 spin_unlock(ptl); 986 split_huge_pmd(vma, pmd, address); 987 /* If pmd was left empty, stuff a page table in there quickly */ 988 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 989 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 990 } 991 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 992 spin_unlock(ptl); 993 return page; 994 } 995 996 static struct page *follow_pud_mask(struct vm_area_struct *vma, 997 unsigned long address, p4d_t *p4dp, 998 unsigned int flags, 999 struct follow_page_context *ctx) 1000 { 1001 pud_t *pudp, pud; 1002 spinlock_t *ptl; 1003 struct page *page; 1004 struct mm_struct *mm = vma->vm_mm; 1005 1006 pudp = pud_offset(p4dp, address); 1007 pud = READ_ONCE(*pudp); 1008 if (!pud_present(pud)) 1009 return no_page_table(vma, flags, address); 1010 if (pud_leaf(pud)) { 1011 ptl = pud_lock(mm, pudp); 1012 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1013 spin_unlock(ptl); 1014 if (page) 1015 return page; 1016 return no_page_table(vma, flags, address); 1017 } 1018 if (unlikely(pud_bad(pud))) 1019 return no_page_table(vma, flags, address); 1020 1021 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1022 } 1023 1024 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1025 unsigned long address, pgd_t *pgdp, 1026 unsigned int flags, 1027 struct follow_page_context *ctx) 1028 { 1029 p4d_t *p4dp, p4d; 1030 1031 p4dp = p4d_offset(pgdp, address); 1032 p4d = READ_ONCE(*p4dp); 1033 BUILD_BUG_ON(p4d_leaf(p4d)); 1034 1035 if (!p4d_present(p4d) || p4d_bad(p4d)) 1036 return no_page_table(vma, flags, address); 1037 1038 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1039 } 1040 1041 /** 1042 * follow_page_mask - look up a page descriptor from a user-virtual address 1043 * @vma: vm_area_struct mapping @address 1044 * @address: virtual address to look up 1045 * @flags: flags modifying lookup behaviour 1046 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1047 * pointer to output page_mask 1048 * 1049 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1050 * 1051 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1052 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1053 * 1054 * When getting an anonymous page and the caller has to trigger unsharing 1055 * of a shared anonymous page first, -EMLINK is returned. The caller should 1056 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1057 * relevant with FOLL_PIN and !FOLL_WRITE. 1058 * 1059 * On output, the @ctx->page_mask is set according to the size of the page. 1060 * 1061 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1062 * an error pointer if there is a mapping to something not represented 1063 * by a page descriptor (see also vm_normal_page()). 1064 */ 1065 static struct page *follow_page_mask(struct vm_area_struct *vma, 1066 unsigned long address, unsigned int flags, 1067 struct follow_page_context *ctx) 1068 { 1069 pgd_t *pgd; 1070 struct mm_struct *mm = vma->vm_mm; 1071 struct page *page; 1072 1073 vma_pgtable_walk_begin(vma); 1074 1075 ctx->page_mask = 0; 1076 pgd = pgd_offset(mm, address); 1077 1078 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1079 page = no_page_table(vma, flags, address); 1080 else 1081 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1082 1083 vma_pgtable_walk_end(vma); 1084 1085 return page; 1086 } 1087 1088 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1089 unsigned int gup_flags, struct vm_area_struct **vma, 1090 struct page **page) 1091 { 1092 pgd_t *pgd; 1093 p4d_t *p4d; 1094 pud_t *pud; 1095 pmd_t *pmd; 1096 pte_t *pte; 1097 pte_t entry; 1098 int ret = -EFAULT; 1099 1100 /* user gate pages are read-only */ 1101 if (gup_flags & FOLL_WRITE) 1102 return -EFAULT; 1103 if (address > TASK_SIZE) 1104 pgd = pgd_offset_k(address); 1105 else 1106 pgd = pgd_offset_gate(mm, address); 1107 if (pgd_none(*pgd)) 1108 return -EFAULT; 1109 p4d = p4d_offset(pgd, address); 1110 if (p4d_none(*p4d)) 1111 return -EFAULT; 1112 pud = pud_offset(p4d, address); 1113 if (pud_none(*pud)) 1114 return -EFAULT; 1115 pmd = pmd_offset(pud, address); 1116 if (!pmd_present(*pmd)) 1117 return -EFAULT; 1118 pte = pte_offset_map(pmd, address); 1119 if (!pte) 1120 return -EFAULT; 1121 entry = ptep_get(pte); 1122 if (pte_none(entry)) 1123 goto unmap; 1124 *vma = get_gate_vma(mm); 1125 if (!page) 1126 goto out; 1127 *page = vm_normal_page(*vma, address, entry); 1128 if (!*page) { 1129 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1130 goto unmap; 1131 *page = pte_page(entry); 1132 } 1133 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1134 if (unlikely(ret)) 1135 goto unmap; 1136 out: 1137 ret = 0; 1138 unmap: 1139 pte_unmap(pte); 1140 return ret; 1141 } 1142 1143 /* 1144 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1145 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1146 * to 0 and -EBUSY returned. 1147 */ 1148 static int faultin_page(struct vm_area_struct *vma, 1149 unsigned long address, unsigned int flags, bool unshare, 1150 int *locked) 1151 { 1152 unsigned int fault_flags = 0; 1153 vm_fault_t ret; 1154 1155 if (flags & FOLL_NOFAULT) 1156 return -EFAULT; 1157 if (flags & FOLL_WRITE) 1158 fault_flags |= FAULT_FLAG_WRITE; 1159 if (flags & FOLL_REMOTE) 1160 fault_flags |= FAULT_FLAG_REMOTE; 1161 if (flags & FOLL_UNLOCKABLE) { 1162 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1163 /* 1164 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1165 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1166 * That's because some callers may not be prepared to 1167 * handle early exits caused by non-fatal signals. 1168 */ 1169 if (flags & FOLL_INTERRUPTIBLE) 1170 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1171 } 1172 if (flags & FOLL_NOWAIT) 1173 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1174 if (flags & FOLL_TRIED) { 1175 /* 1176 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1177 * can co-exist 1178 */ 1179 fault_flags |= FAULT_FLAG_TRIED; 1180 } 1181 if (unshare) { 1182 fault_flags |= FAULT_FLAG_UNSHARE; 1183 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1184 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1185 } 1186 1187 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1188 1189 if (ret & VM_FAULT_COMPLETED) { 1190 /* 1191 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1192 * mmap lock in the page fault handler. Sanity check this. 1193 */ 1194 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1195 *locked = 0; 1196 1197 /* 1198 * We should do the same as VM_FAULT_RETRY, but let's not 1199 * return -EBUSY since that's not reflecting the reality of 1200 * what has happened - we've just fully completed a page 1201 * fault, with the mmap lock released. Use -EAGAIN to show 1202 * that we want to take the mmap lock _again_. 1203 */ 1204 return -EAGAIN; 1205 } 1206 1207 if (ret & VM_FAULT_ERROR) { 1208 int err = vm_fault_to_errno(ret, flags); 1209 1210 if (err) 1211 return err; 1212 BUG(); 1213 } 1214 1215 if (ret & VM_FAULT_RETRY) { 1216 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1217 *locked = 0; 1218 return -EBUSY; 1219 } 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * Writing to file-backed mappings which require folio dirty tracking using GUP 1226 * is a fundamentally broken operation, as kernel write access to GUP mappings 1227 * do not adhere to the semantics expected by a file system. 1228 * 1229 * Consider the following scenario:- 1230 * 1231 * 1. A folio is written to via GUP which write-faults the memory, notifying 1232 * the file system and dirtying the folio. 1233 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1234 * the PTE being marked read-only. 1235 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1236 * direct mapping. 1237 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1238 * (though it does not have to). 1239 * 1240 * This results in both data being written to a folio without writenotify, and 1241 * the folio being dirtied unexpectedly (if the caller decides to do so). 1242 */ 1243 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1244 unsigned long gup_flags) 1245 { 1246 /* 1247 * If we aren't pinning then no problematic write can occur. A long term 1248 * pin is the most egregious case so this is the case we disallow. 1249 */ 1250 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1251 (FOLL_PIN | FOLL_LONGTERM)) 1252 return true; 1253 1254 /* 1255 * If the VMA does not require dirty tracking then no problematic write 1256 * can occur either. 1257 */ 1258 return !vma_needs_dirty_tracking(vma); 1259 } 1260 1261 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1262 { 1263 vm_flags_t vm_flags = vma->vm_flags; 1264 int write = (gup_flags & FOLL_WRITE); 1265 int foreign = (gup_flags & FOLL_REMOTE); 1266 bool vma_anon = vma_is_anonymous(vma); 1267 1268 if (vm_flags & (VM_IO | VM_PFNMAP)) 1269 return -EFAULT; 1270 1271 if ((gup_flags & FOLL_ANON) && !vma_anon) 1272 return -EFAULT; 1273 1274 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1275 return -EOPNOTSUPP; 1276 1277 if (vma_is_secretmem(vma)) 1278 return -EFAULT; 1279 1280 if (write) { 1281 if (!vma_anon && 1282 !writable_file_mapping_allowed(vma, gup_flags)) 1283 return -EFAULT; 1284 1285 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1286 if (!(gup_flags & FOLL_FORCE)) 1287 return -EFAULT; 1288 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1289 if (is_vm_hugetlb_page(vma)) 1290 return -EFAULT; 1291 /* 1292 * We used to let the write,force case do COW in a 1293 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1294 * set a breakpoint in a read-only mapping of an 1295 * executable, without corrupting the file (yet only 1296 * when that file had been opened for writing!). 1297 * Anon pages in shared mappings are surprising: now 1298 * just reject it. 1299 */ 1300 if (!is_cow_mapping(vm_flags)) 1301 return -EFAULT; 1302 } 1303 } else if (!(vm_flags & VM_READ)) { 1304 if (!(gup_flags & FOLL_FORCE)) 1305 return -EFAULT; 1306 /* 1307 * Is there actually any vma we can reach here which does not 1308 * have VM_MAYREAD set? 1309 */ 1310 if (!(vm_flags & VM_MAYREAD)) 1311 return -EFAULT; 1312 } 1313 /* 1314 * gups are always data accesses, not instruction 1315 * fetches, so execute=false here 1316 */ 1317 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1318 return -EFAULT; 1319 return 0; 1320 } 1321 1322 /* 1323 * This is "vma_lookup()", but with a warning if we would have 1324 * historically expanded the stack in the GUP code. 1325 */ 1326 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1327 unsigned long addr) 1328 { 1329 #ifdef CONFIG_STACK_GROWSUP 1330 return vma_lookup(mm, addr); 1331 #else 1332 static volatile unsigned long next_warn; 1333 struct vm_area_struct *vma; 1334 unsigned long now, next; 1335 1336 vma = find_vma(mm, addr); 1337 if (!vma || (addr >= vma->vm_start)) 1338 return vma; 1339 1340 /* Only warn for half-way relevant accesses */ 1341 if (!(vma->vm_flags & VM_GROWSDOWN)) 1342 return NULL; 1343 if (vma->vm_start - addr > 65536) 1344 return NULL; 1345 1346 /* Let's not warn more than once an hour.. */ 1347 now = jiffies; next = next_warn; 1348 if (next && time_before(now, next)) 1349 return NULL; 1350 next_warn = now + 60*60*HZ; 1351 1352 /* Let people know things may have changed. */ 1353 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1354 current->comm, task_pid_nr(current), 1355 vma->vm_start, vma->vm_end, addr); 1356 dump_stack(); 1357 return NULL; 1358 #endif 1359 } 1360 1361 /** 1362 * __get_user_pages() - pin user pages in memory 1363 * @mm: mm_struct of target mm 1364 * @start: starting user address 1365 * @nr_pages: number of pages from start to pin 1366 * @gup_flags: flags modifying pin behaviour 1367 * @pages: array that receives pointers to the pages pinned. 1368 * Should be at least nr_pages long. Or NULL, if caller 1369 * only intends to ensure the pages are faulted in. 1370 * @locked: whether we're still with the mmap_lock held 1371 * 1372 * Returns either number of pages pinned (which may be less than the 1373 * number requested), or an error. Details about the return value: 1374 * 1375 * -- If nr_pages is 0, returns 0. 1376 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1377 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1378 * pages pinned. Again, this may be less than nr_pages. 1379 * -- 0 return value is possible when the fault would need to be retried. 1380 * 1381 * The caller is responsible for releasing returned @pages, via put_page(). 1382 * 1383 * Must be called with mmap_lock held. It may be released. See below. 1384 * 1385 * __get_user_pages walks a process's page tables and takes a reference to 1386 * each struct page that each user address corresponds to at a given 1387 * instant. That is, it takes the page that would be accessed if a user 1388 * thread accesses the given user virtual address at that instant. 1389 * 1390 * This does not guarantee that the page exists in the user mappings when 1391 * __get_user_pages returns, and there may even be a completely different 1392 * page there in some cases (eg. if mmapped pagecache has been invalidated 1393 * and subsequently re-faulted). However it does guarantee that the page 1394 * won't be freed completely. And mostly callers simply care that the page 1395 * contains data that was valid *at some point in time*. Typically, an IO 1396 * or similar operation cannot guarantee anything stronger anyway because 1397 * locks can't be held over the syscall boundary. 1398 * 1399 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1400 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1401 * appropriate) must be called after the page is finished with, and 1402 * before put_page is called. 1403 * 1404 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1405 * be released. If this happens *@locked will be set to 0 on return. 1406 * 1407 * A caller using such a combination of @gup_flags must therefore hold the 1408 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1409 * it must be held for either reading or writing and will not be released. 1410 * 1411 * In most cases, get_user_pages or get_user_pages_fast should be used 1412 * instead of __get_user_pages. __get_user_pages should be used only if 1413 * you need some special @gup_flags. 1414 */ 1415 static long __get_user_pages(struct mm_struct *mm, 1416 unsigned long start, unsigned long nr_pages, 1417 unsigned int gup_flags, struct page **pages, 1418 int *locked) 1419 { 1420 long ret = 0, i = 0; 1421 struct vm_area_struct *vma = NULL; 1422 struct follow_page_context ctx = { NULL }; 1423 1424 if (!nr_pages) 1425 return 0; 1426 1427 start = untagged_addr_remote(mm, start); 1428 1429 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1430 1431 do { 1432 struct page *page; 1433 unsigned int page_increm; 1434 1435 /* first iteration or cross vma bound */ 1436 if (!vma || start >= vma->vm_end) { 1437 /* 1438 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1439 * lookups+error reporting differently. 1440 */ 1441 if (gup_flags & FOLL_MADV_POPULATE) { 1442 vma = vma_lookup(mm, start); 1443 if (!vma) { 1444 ret = -ENOMEM; 1445 goto out; 1446 } 1447 if (check_vma_flags(vma, gup_flags)) { 1448 ret = -EINVAL; 1449 goto out; 1450 } 1451 goto retry; 1452 } 1453 vma = gup_vma_lookup(mm, start); 1454 if (!vma && in_gate_area(mm, start)) { 1455 ret = get_gate_page(mm, start & PAGE_MASK, 1456 gup_flags, &vma, 1457 pages ? &page : NULL); 1458 if (ret) 1459 goto out; 1460 ctx.page_mask = 0; 1461 goto next_page; 1462 } 1463 1464 if (!vma) { 1465 ret = -EFAULT; 1466 goto out; 1467 } 1468 ret = check_vma_flags(vma, gup_flags); 1469 if (ret) 1470 goto out; 1471 } 1472 retry: 1473 /* 1474 * If we have a pending SIGKILL, don't keep faulting pages and 1475 * potentially allocating memory. 1476 */ 1477 if (fatal_signal_pending(current)) { 1478 ret = -EINTR; 1479 goto out; 1480 } 1481 cond_resched(); 1482 1483 page = follow_page_mask(vma, start, gup_flags, &ctx); 1484 if (!page || PTR_ERR(page) == -EMLINK) { 1485 ret = faultin_page(vma, start, gup_flags, 1486 PTR_ERR(page) == -EMLINK, locked); 1487 switch (ret) { 1488 case 0: 1489 goto retry; 1490 case -EBUSY: 1491 case -EAGAIN: 1492 ret = 0; 1493 fallthrough; 1494 case -EFAULT: 1495 case -ENOMEM: 1496 case -EHWPOISON: 1497 goto out; 1498 } 1499 BUG(); 1500 } else if (PTR_ERR(page) == -EEXIST) { 1501 /* 1502 * Proper page table entry exists, but no corresponding 1503 * struct page. If the caller expects **pages to be 1504 * filled in, bail out now, because that can't be done 1505 * for this page. 1506 */ 1507 if (pages) { 1508 ret = PTR_ERR(page); 1509 goto out; 1510 } 1511 } else if (IS_ERR(page)) { 1512 ret = PTR_ERR(page); 1513 goto out; 1514 } 1515 next_page: 1516 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1517 if (page_increm > nr_pages) 1518 page_increm = nr_pages; 1519 1520 if (pages) { 1521 struct page *subpage; 1522 unsigned int j; 1523 1524 /* 1525 * This must be a large folio (and doesn't need to 1526 * be the whole folio; it can be part of it), do 1527 * the refcount work for all the subpages too. 1528 * 1529 * NOTE: here the page may not be the head page 1530 * e.g. when start addr is not thp-size aligned. 1531 * try_grab_folio() should have taken care of tail 1532 * pages. 1533 */ 1534 if (page_increm > 1) { 1535 struct folio *folio = page_folio(page); 1536 1537 /* 1538 * Since we already hold refcount on the 1539 * large folio, this should never fail. 1540 */ 1541 if (try_grab_folio(folio, page_increm - 1, 1542 gup_flags)) { 1543 /* 1544 * Release the 1st page ref if the 1545 * folio is problematic, fail hard. 1546 */ 1547 gup_put_folio(folio, 1, gup_flags); 1548 ret = -EFAULT; 1549 goto out; 1550 } 1551 } 1552 1553 for (j = 0; j < page_increm; j++) { 1554 subpage = nth_page(page, j); 1555 pages[i + j] = subpage; 1556 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1557 flush_dcache_page(subpage); 1558 } 1559 } 1560 1561 i += page_increm; 1562 start += page_increm * PAGE_SIZE; 1563 nr_pages -= page_increm; 1564 } while (nr_pages); 1565 out: 1566 if (ctx.pgmap) 1567 put_dev_pagemap(ctx.pgmap); 1568 return i ? i : ret; 1569 } 1570 1571 static bool vma_permits_fault(struct vm_area_struct *vma, 1572 unsigned int fault_flags) 1573 { 1574 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1575 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1576 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1577 1578 if (!(vm_flags & vma->vm_flags)) 1579 return false; 1580 1581 /* 1582 * The architecture might have a hardware protection 1583 * mechanism other than read/write that can deny access. 1584 * 1585 * gup always represents data access, not instruction 1586 * fetches, so execute=false here: 1587 */ 1588 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1589 return false; 1590 1591 return true; 1592 } 1593 1594 /** 1595 * fixup_user_fault() - manually resolve a user page fault 1596 * @mm: mm_struct of target mm 1597 * @address: user address 1598 * @fault_flags:flags to pass down to handle_mm_fault() 1599 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1600 * does not allow retry. If NULL, the caller must guarantee 1601 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1602 * 1603 * This is meant to be called in the specific scenario where for locking reasons 1604 * we try to access user memory in atomic context (within a pagefault_disable() 1605 * section), this returns -EFAULT, and we want to resolve the user fault before 1606 * trying again. 1607 * 1608 * Typically this is meant to be used by the futex code. 1609 * 1610 * The main difference with get_user_pages() is that this function will 1611 * unconditionally call handle_mm_fault() which will in turn perform all the 1612 * necessary SW fixup of the dirty and young bits in the PTE, while 1613 * get_user_pages() only guarantees to update these in the struct page. 1614 * 1615 * This is important for some architectures where those bits also gate the 1616 * access permission to the page because they are maintained in software. On 1617 * such architectures, gup() will not be enough to make a subsequent access 1618 * succeed. 1619 * 1620 * This function will not return with an unlocked mmap_lock. So it has not the 1621 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1622 */ 1623 int fixup_user_fault(struct mm_struct *mm, 1624 unsigned long address, unsigned int fault_flags, 1625 bool *unlocked) 1626 { 1627 struct vm_area_struct *vma; 1628 vm_fault_t ret; 1629 1630 address = untagged_addr_remote(mm, address); 1631 1632 if (unlocked) 1633 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1634 1635 retry: 1636 vma = gup_vma_lookup(mm, address); 1637 if (!vma) 1638 return -EFAULT; 1639 1640 if (!vma_permits_fault(vma, fault_flags)) 1641 return -EFAULT; 1642 1643 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1644 fatal_signal_pending(current)) 1645 return -EINTR; 1646 1647 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1648 1649 if (ret & VM_FAULT_COMPLETED) { 1650 /* 1651 * NOTE: it's a pity that we need to retake the lock here 1652 * to pair with the unlock() in the callers. Ideally we 1653 * could tell the callers so they do not need to unlock. 1654 */ 1655 mmap_read_lock(mm); 1656 *unlocked = true; 1657 return 0; 1658 } 1659 1660 if (ret & VM_FAULT_ERROR) { 1661 int err = vm_fault_to_errno(ret, 0); 1662 1663 if (err) 1664 return err; 1665 BUG(); 1666 } 1667 1668 if (ret & VM_FAULT_RETRY) { 1669 mmap_read_lock(mm); 1670 *unlocked = true; 1671 fault_flags |= FAULT_FLAG_TRIED; 1672 goto retry; 1673 } 1674 1675 return 0; 1676 } 1677 EXPORT_SYMBOL_GPL(fixup_user_fault); 1678 1679 /* 1680 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1681 * specified, it'll also respond to generic signals. The caller of GUP 1682 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1683 */ 1684 static bool gup_signal_pending(unsigned int flags) 1685 { 1686 if (fatal_signal_pending(current)) 1687 return true; 1688 1689 if (!(flags & FOLL_INTERRUPTIBLE)) 1690 return false; 1691 1692 return signal_pending(current); 1693 } 1694 1695 /* 1696 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1697 * the caller. This function may drop the mmap_lock. If it does so, then it will 1698 * set (*locked = 0). 1699 * 1700 * (*locked == 0) means that the caller expects this function to acquire and 1701 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1702 * the function returns, even though it may have changed temporarily during 1703 * function execution. 1704 * 1705 * Please note that this function, unlike __get_user_pages(), will not return 0 1706 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1707 */ 1708 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1709 unsigned long start, 1710 unsigned long nr_pages, 1711 struct page **pages, 1712 int *locked, 1713 unsigned int flags) 1714 { 1715 long ret, pages_done; 1716 bool must_unlock = false; 1717 1718 if (!nr_pages) 1719 return 0; 1720 1721 /* 1722 * The internal caller expects GUP to manage the lock internally and the 1723 * lock must be released when this returns. 1724 */ 1725 if (!*locked) { 1726 if (mmap_read_lock_killable(mm)) 1727 return -EAGAIN; 1728 must_unlock = true; 1729 *locked = 1; 1730 } 1731 else 1732 mmap_assert_locked(mm); 1733 1734 if (flags & FOLL_PIN) 1735 mm_set_has_pinned_flag(&mm->flags); 1736 1737 /* 1738 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1739 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1740 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1741 * for FOLL_GET, not for the newer FOLL_PIN. 1742 * 1743 * FOLL_PIN always expects pages to be non-null, but no need to assert 1744 * that here, as any failures will be obvious enough. 1745 */ 1746 if (pages && !(flags & FOLL_PIN)) 1747 flags |= FOLL_GET; 1748 1749 pages_done = 0; 1750 for (;;) { 1751 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1752 locked); 1753 if (!(flags & FOLL_UNLOCKABLE)) { 1754 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1755 pages_done = ret; 1756 break; 1757 } 1758 1759 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1760 if (!*locked) { 1761 BUG_ON(ret < 0); 1762 BUG_ON(ret >= nr_pages); 1763 } 1764 1765 if (ret > 0) { 1766 nr_pages -= ret; 1767 pages_done += ret; 1768 if (!nr_pages) 1769 break; 1770 } 1771 if (*locked) { 1772 /* 1773 * VM_FAULT_RETRY didn't trigger or it was a 1774 * FOLL_NOWAIT. 1775 */ 1776 if (!pages_done) 1777 pages_done = ret; 1778 break; 1779 } 1780 /* 1781 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1782 * For the prefault case (!pages) we only update counts. 1783 */ 1784 if (likely(pages)) 1785 pages += ret; 1786 start += ret << PAGE_SHIFT; 1787 1788 /* The lock was temporarily dropped, so we must unlock later */ 1789 must_unlock = true; 1790 1791 retry: 1792 /* 1793 * Repeat on the address that fired VM_FAULT_RETRY 1794 * with both FAULT_FLAG_ALLOW_RETRY and 1795 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1796 * by fatal signals of even common signals, depending on 1797 * the caller's request. So we need to check it before we 1798 * start trying again otherwise it can loop forever. 1799 */ 1800 if (gup_signal_pending(flags)) { 1801 if (!pages_done) 1802 pages_done = -EINTR; 1803 break; 1804 } 1805 1806 ret = mmap_read_lock_killable(mm); 1807 if (ret) { 1808 BUG_ON(ret > 0); 1809 if (!pages_done) 1810 pages_done = ret; 1811 break; 1812 } 1813 1814 *locked = 1; 1815 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1816 pages, locked); 1817 if (!*locked) { 1818 /* Continue to retry until we succeeded */ 1819 BUG_ON(ret != 0); 1820 goto retry; 1821 } 1822 if (ret != 1) { 1823 BUG_ON(ret > 1); 1824 if (!pages_done) 1825 pages_done = ret; 1826 break; 1827 } 1828 nr_pages--; 1829 pages_done++; 1830 if (!nr_pages) 1831 break; 1832 if (likely(pages)) 1833 pages++; 1834 start += PAGE_SIZE; 1835 } 1836 if (must_unlock && *locked) { 1837 /* 1838 * We either temporarily dropped the lock, or the caller 1839 * requested that we both acquire and drop the lock. Either way, 1840 * we must now unlock, and notify the caller of that state. 1841 */ 1842 mmap_read_unlock(mm); 1843 *locked = 0; 1844 } 1845 1846 /* 1847 * Failing to pin anything implies something has gone wrong (except when 1848 * FOLL_NOWAIT is specified). 1849 */ 1850 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1851 return -EFAULT; 1852 1853 return pages_done; 1854 } 1855 1856 /** 1857 * populate_vma_page_range() - populate a range of pages in the vma. 1858 * @vma: target vma 1859 * @start: start address 1860 * @end: end address 1861 * @locked: whether the mmap_lock is still held 1862 * 1863 * This takes care of mlocking the pages too if VM_LOCKED is set. 1864 * 1865 * Return either number of pages pinned in the vma, or a negative error 1866 * code on error. 1867 * 1868 * vma->vm_mm->mmap_lock must be held. 1869 * 1870 * If @locked is NULL, it may be held for read or write and will 1871 * be unperturbed. 1872 * 1873 * If @locked is non-NULL, it must held for read only and may be 1874 * released. If it's released, *@locked will be set to 0. 1875 */ 1876 long populate_vma_page_range(struct vm_area_struct *vma, 1877 unsigned long start, unsigned long end, int *locked) 1878 { 1879 struct mm_struct *mm = vma->vm_mm; 1880 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1881 int local_locked = 1; 1882 int gup_flags; 1883 long ret; 1884 1885 VM_BUG_ON(!PAGE_ALIGNED(start)); 1886 VM_BUG_ON(!PAGE_ALIGNED(end)); 1887 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1888 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1889 mmap_assert_locked(mm); 1890 1891 /* 1892 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1893 * faultin_page() to break COW, so it has no work to do here. 1894 */ 1895 if (vma->vm_flags & VM_LOCKONFAULT) 1896 return nr_pages; 1897 1898 /* ... similarly, we've never faulted in PROT_NONE pages */ 1899 if (!vma_is_accessible(vma)) 1900 return -EFAULT; 1901 1902 gup_flags = FOLL_TOUCH; 1903 /* 1904 * We want to touch writable mappings with a write fault in order 1905 * to break COW, except for shared mappings because these don't COW 1906 * and we would not want to dirty them for nothing. 1907 * 1908 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1909 * readable (ie write-only or executable). 1910 */ 1911 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1912 gup_flags |= FOLL_WRITE; 1913 else 1914 gup_flags |= FOLL_FORCE; 1915 1916 if (locked) 1917 gup_flags |= FOLL_UNLOCKABLE; 1918 1919 /* 1920 * We made sure addr is within a VMA, so the following will 1921 * not result in a stack expansion that recurses back here. 1922 */ 1923 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1924 NULL, locked ? locked : &local_locked); 1925 lru_add_drain(); 1926 return ret; 1927 } 1928 1929 /* 1930 * faultin_page_range() - populate (prefault) page tables inside the 1931 * given range readable/writable 1932 * 1933 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1934 * 1935 * @mm: the mm to populate page tables in 1936 * @start: start address 1937 * @end: end address 1938 * @write: whether to prefault readable or writable 1939 * @locked: whether the mmap_lock is still held 1940 * 1941 * Returns either number of processed pages in the MM, or a negative error 1942 * code on error (see __get_user_pages()). Note that this function reports 1943 * errors related to VMAs, such as incompatible mappings, as expected by 1944 * MADV_POPULATE_(READ|WRITE). 1945 * 1946 * The range must be page-aligned. 1947 * 1948 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1949 */ 1950 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1951 unsigned long end, bool write, int *locked) 1952 { 1953 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1954 int gup_flags; 1955 long ret; 1956 1957 VM_BUG_ON(!PAGE_ALIGNED(start)); 1958 VM_BUG_ON(!PAGE_ALIGNED(end)); 1959 mmap_assert_locked(mm); 1960 1961 /* 1962 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1963 * the page dirty with FOLL_WRITE -- which doesn't make a 1964 * difference with !FOLL_FORCE, because the page is writable 1965 * in the page table. 1966 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1967 * a poisoned page. 1968 * !FOLL_FORCE: Require proper access permissions. 1969 */ 1970 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1971 FOLL_MADV_POPULATE; 1972 if (write) 1973 gup_flags |= FOLL_WRITE; 1974 1975 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1976 gup_flags); 1977 lru_add_drain(); 1978 return ret; 1979 } 1980 1981 /* 1982 * __mm_populate - populate and/or mlock pages within a range of address space. 1983 * 1984 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1985 * flags. VMAs must be already marked with the desired vm_flags, and 1986 * mmap_lock must not be held. 1987 */ 1988 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1989 { 1990 struct mm_struct *mm = current->mm; 1991 unsigned long end, nstart, nend; 1992 struct vm_area_struct *vma = NULL; 1993 int locked = 0; 1994 long ret = 0; 1995 1996 end = start + len; 1997 1998 for (nstart = start; nstart < end; nstart = nend) { 1999 /* 2000 * We want to fault in pages for [nstart; end) address range. 2001 * Find first corresponding VMA. 2002 */ 2003 if (!locked) { 2004 locked = 1; 2005 mmap_read_lock(mm); 2006 vma = find_vma_intersection(mm, nstart, end); 2007 } else if (nstart >= vma->vm_end) 2008 vma = find_vma_intersection(mm, vma->vm_end, end); 2009 2010 if (!vma) 2011 break; 2012 /* 2013 * Set [nstart; nend) to intersection of desired address 2014 * range with the first VMA. Also, skip undesirable VMA types. 2015 */ 2016 nend = min(end, vma->vm_end); 2017 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2018 continue; 2019 if (nstart < vma->vm_start) 2020 nstart = vma->vm_start; 2021 /* 2022 * Now fault in a range of pages. populate_vma_page_range() 2023 * double checks the vma flags, so that it won't mlock pages 2024 * if the vma was already munlocked. 2025 */ 2026 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2027 if (ret < 0) { 2028 if (ignore_errors) { 2029 ret = 0; 2030 continue; /* continue at next VMA */ 2031 } 2032 break; 2033 } 2034 nend = nstart + ret * PAGE_SIZE; 2035 ret = 0; 2036 } 2037 if (locked) 2038 mmap_read_unlock(mm); 2039 return ret; /* 0 or negative error code */ 2040 } 2041 #else /* CONFIG_MMU */ 2042 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2043 unsigned long nr_pages, struct page **pages, 2044 int *locked, unsigned int foll_flags) 2045 { 2046 struct vm_area_struct *vma; 2047 bool must_unlock = false; 2048 unsigned long vm_flags; 2049 long i; 2050 2051 if (!nr_pages) 2052 return 0; 2053 2054 /* 2055 * The internal caller expects GUP to manage the lock internally and the 2056 * lock must be released when this returns. 2057 */ 2058 if (!*locked) { 2059 if (mmap_read_lock_killable(mm)) 2060 return -EAGAIN; 2061 must_unlock = true; 2062 *locked = 1; 2063 } 2064 2065 /* calculate required read or write permissions. 2066 * If FOLL_FORCE is set, we only require the "MAY" flags. 2067 */ 2068 vm_flags = (foll_flags & FOLL_WRITE) ? 2069 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2070 vm_flags &= (foll_flags & FOLL_FORCE) ? 2071 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2072 2073 for (i = 0; i < nr_pages; i++) { 2074 vma = find_vma(mm, start); 2075 if (!vma) 2076 break; 2077 2078 /* protect what we can, including chardevs */ 2079 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2080 !(vm_flags & vma->vm_flags)) 2081 break; 2082 2083 if (pages) { 2084 pages[i] = virt_to_page((void *)start); 2085 if (pages[i]) 2086 get_page(pages[i]); 2087 } 2088 2089 start = (start + PAGE_SIZE) & PAGE_MASK; 2090 } 2091 2092 if (must_unlock && *locked) { 2093 mmap_read_unlock(mm); 2094 *locked = 0; 2095 } 2096 2097 return i ? : -EFAULT; 2098 } 2099 #endif /* !CONFIG_MMU */ 2100 2101 /** 2102 * fault_in_writeable - fault in userspace address range for writing 2103 * @uaddr: start of address range 2104 * @size: size of address range 2105 * 2106 * Returns the number of bytes not faulted in (like copy_to_user() and 2107 * copy_from_user()). 2108 */ 2109 size_t fault_in_writeable(char __user *uaddr, size_t size) 2110 { 2111 char __user *start = uaddr, *end; 2112 2113 if (unlikely(size == 0)) 2114 return 0; 2115 if (!user_write_access_begin(uaddr, size)) 2116 return size; 2117 if (!PAGE_ALIGNED(uaddr)) { 2118 unsafe_put_user(0, uaddr, out); 2119 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2120 } 2121 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2122 if (unlikely(end < start)) 2123 end = NULL; 2124 while (uaddr != end) { 2125 unsafe_put_user(0, uaddr, out); 2126 uaddr += PAGE_SIZE; 2127 } 2128 2129 out: 2130 user_write_access_end(); 2131 if (size > uaddr - start) 2132 return size - (uaddr - start); 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(fault_in_writeable); 2136 2137 /** 2138 * fault_in_subpage_writeable - fault in an address range for writing 2139 * @uaddr: start of address range 2140 * @size: size of address range 2141 * 2142 * Fault in a user address range for writing while checking for permissions at 2143 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2144 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2145 * 2146 * Returns the number of bytes not faulted in (like copy_to_user() and 2147 * copy_from_user()). 2148 */ 2149 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2150 { 2151 size_t faulted_in; 2152 2153 /* 2154 * Attempt faulting in at page granularity first for page table 2155 * permission checking. The arch-specific probe_subpage_writeable() 2156 * functions may not check for this. 2157 */ 2158 faulted_in = size - fault_in_writeable(uaddr, size); 2159 if (faulted_in) 2160 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2161 2162 return size - faulted_in; 2163 } 2164 EXPORT_SYMBOL(fault_in_subpage_writeable); 2165 2166 /* 2167 * fault_in_safe_writeable - fault in an address range for writing 2168 * @uaddr: start of address range 2169 * @size: length of address range 2170 * 2171 * Faults in an address range for writing. This is primarily useful when we 2172 * already know that some or all of the pages in the address range aren't in 2173 * memory. 2174 * 2175 * Unlike fault_in_writeable(), this function is non-destructive. 2176 * 2177 * Note that we don't pin or otherwise hold the pages referenced that we fault 2178 * in. There's no guarantee that they'll stay in memory for any duration of 2179 * time. 2180 * 2181 * Returns the number of bytes not faulted in, like copy_to_user() and 2182 * copy_from_user(). 2183 */ 2184 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2185 { 2186 unsigned long start = (unsigned long)uaddr, end; 2187 struct mm_struct *mm = current->mm; 2188 bool unlocked = false; 2189 2190 if (unlikely(size == 0)) 2191 return 0; 2192 end = PAGE_ALIGN(start + size); 2193 if (end < start) 2194 end = 0; 2195 2196 mmap_read_lock(mm); 2197 do { 2198 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2199 break; 2200 start = (start + PAGE_SIZE) & PAGE_MASK; 2201 } while (start != end); 2202 mmap_read_unlock(mm); 2203 2204 if (size > (unsigned long)uaddr - start) 2205 return size - ((unsigned long)uaddr - start); 2206 return 0; 2207 } 2208 EXPORT_SYMBOL(fault_in_safe_writeable); 2209 2210 /** 2211 * fault_in_readable - fault in userspace address range for reading 2212 * @uaddr: start of user address range 2213 * @size: size of user address range 2214 * 2215 * Returns the number of bytes not faulted in (like copy_to_user() and 2216 * copy_from_user()). 2217 */ 2218 size_t fault_in_readable(const char __user *uaddr, size_t size) 2219 { 2220 const char __user *start = uaddr, *end; 2221 volatile char c; 2222 2223 if (unlikely(size == 0)) 2224 return 0; 2225 if (!user_read_access_begin(uaddr, size)) 2226 return size; 2227 if (!PAGE_ALIGNED(uaddr)) { 2228 unsafe_get_user(c, uaddr, out); 2229 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2230 } 2231 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2232 if (unlikely(end < start)) 2233 end = NULL; 2234 while (uaddr != end) { 2235 unsafe_get_user(c, uaddr, out); 2236 uaddr += PAGE_SIZE; 2237 } 2238 2239 out: 2240 user_read_access_end(); 2241 (void)c; 2242 if (size > uaddr - start) 2243 return size - (uaddr - start); 2244 return 0; 2245 } 2246 EXPORT_SYMBOL(fault_in_readable); 2247 2248 /** 2249 * get_dump_page() - pin user page in memory while writing it to core dump 2250 * @addr: user address 2251 * 2252 * Returns struct page pointer of user page pinned for dump, 2253 * to be freed afterwards by put_page(). 2254 * 2255 * Returns NULL on any kind of failure - a hole must then be inserted into 2256 * the corefile, to preserve alignment with its headers; and also returns 2257 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2258 * allowing a hole to be left in the corefile to save disk space. 2259 * 2260 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2261 */ 2262 #ifdef CONFIG_ELF_CORE 2263 struct page *get_dump_page(unsigned long addr) 2264 { 2265 struct page *page; 2266 int locked = 0; 2267 int ret; 2268 2269 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2270 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2271 return (ret == 1) ? page : NULL; 2272 } 2273 #endif /* CONFIG_ELF_CORE */ 2274 2275 #ifdef CONFIG_MIGRATION 2276 /* 2277 * Returns the number of collected folios. Return value is always >= 0. 2278 */ 2279 static unsigned long collect_longterm_unpinnable_folios( 2280 struct list_head *movable_folio_list, 2281 unsigned long nr_folios, 2282 struct folio **folios) 2283 { 2284 unsigned long i, collected = 0; 2285 struct folio *prev_folio = NULL; 2286 bool drain_allow = true; 2287 2288 for (i = 0; i < nr_folios; i++) { 2289 struct folio *folio = folios[i]; 2290 2291 if (folio == prev_folio) 2292 continue; 2293 prev_folio = folio; 2294 2295 if (folio_is_longterm_pinnable(folio)) 2296 continue; 2297 2298 collected++; 2299 2300 if (folio_is_device_coherent(folio)) 2301 continue; 2302 2303 if (folio_test_hugetlb(folio)) { 2304 isolate_hugetlb(folio, movable_folio_list); 2305 continue; 2306 } 2307 2308 if (!folio_test_lru(folio) && drain_allow) { 2309 lru_add_drain_all(); 2310 drain_allow = false; 2311 } 2312 2313 if (!folio_isolate_lru(folio)) 2314 continue; 2315 2316 list_add_tail(&folio->lru, movable_folio_list); 2317 node_stat_mod_folio(folio, 2318 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2319 folio_nr_pages(folio)); 2320 } 2321 2322 return collected; 2323 } 2324 2325 /* 2326 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2327 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2328 * failure (or partial success). 2329 */ 2330 static int migrate_longterm_unpinnable_folios( 2331 struct list_head *movable_folio_list, 2332 unsigned long nr_folios, 2333 struct folio **folios) 2334 { 2335 int ret; 2336 unsigned long i; 2337 2338 for (i = 0; i < nr_folios; i++) { 2339 struct folio *folio = folios[i]; 2340 2341 if (folio_is_device_coherent(folio)) { 2342 /* 2343 * Migration will fail if the folio is pinned, so 2344 * convert the pin on the source folio to a normal 2345 * reference. 2346 */ 2347 folios[i] = NULL; 2348 folio_get(folio); 2349 gup_put_folio(folio, 1, FOLL_PIN); 2350 2351 if (migrate_device_coherent_folio(folio)) { 2352 ret = -EBUSY; 2353 goto err; 2354 } 2355 2356 continue; 2357 } 2358 2359 /* 2360 * We can't migrate folios with unexpected references, so drop 2361 * the reference obtained by __get_user_pages_locked(). 2362 * Migrating folios have been added to movable_folio_list after 2363 * calling folio_isolate_lru() which takes a reference so the 2364 * folio won't be freed if it's migrating. 2365 */ 2366 unpin_folio(folios[i]); 2367 folios[i] = NULL; 2368 } 2369 2370 if (!list_empty(movable_folio_list)) { 2371 struct migration_target_control mtc = { 2372 .nid = NUMA_NO_NODE, 2373 .gfp_mask = GFP_USER | __GFP_NOWARN, 2374 .reason = MR_LONGTERM_PIN, 2375 }; 2376 2377 if (migrate_pages(movable_folio_list, alloc_migration_target, 2378 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2379 MR_LONGTERM_PIN, NULL)) { 2380 ret = -ENOMEM; 2381 goto err; 2382 } 2383 } 2384 2385 putback_movable_pages(movable_folio_list); 2386 2387 return -EAGAIN; 2388 2389 err: 2390 unpin_folios(folios, nr_folios); 2391 putback_movable_pages(movable_folio_list); 2392 2393 return ret; 2394 } 2395 2396 /* 2397 * Check whether all folios are *allowed* to be pinned indefinitely (long term). 2398 * Rather confusingly, all folios in the range are required to be pinned via 2399 * FOLL_PIN, before calling this routine. 2400 * 2401 * Return values: 2402 * 2403 * 0: if everything is OK and all folios in the range are allowed to be pinned, 2404 * then this routine leaves all folios pinned and returns zero for success. 2405 * 2406 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this 2407 * routine will migrate those folios away, unpin all the folios in the range. If 2408 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The 2409 * caller should re-pin the entire range with FOLL_PIN and then call this 2410 * routine again. 2411 * 2412 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this 2413 * indicates a migration failure. The caller should give up, and propagate the 2414 * error back up the call stack. The caller does not need to unpin any folios in 2415 * that case, because this routine will do the unpinning. 2416 */ 2417 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2418 struct folio **folios) 2419 { 2420 unsigned long collected; 2421 LIST_HEAD(movable_folio_list); 2422 2423 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2424 nr_folios, folios); 2425 if (!collected) 2426 return 0; 2427 2428 return migrate_longterm_unpinnable_folios(&movable_folio_list, 2429 nr_folios, folios); 2430 } 2431 2432 /* 2433 * Return values and behavior are the same as those for 2434 * check_and_migrate_movable_folios(). 2435 */ 2436 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2437 struct page **pages) 2438 { 2439 struct folio **folios; 2440 long i, ret; 2441 2442 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL); 2443 if (!folios) { 2444 unpin_user_pages(pages, nr_pages); 2445 return -ENOMEM; 2446 } 2447 2448 for (i = 0; i < nr_pages; i++) 2449 folios[i] = page_folio(pages[i]); 2450 2451 ret = check_and_migrate_movable_folios(nr_pages, folios); 2452 2453 kfree(folios); 2454 return ret; 2455 } 2456 #else 2457 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2458 struct page **pages) 2459 { 2460 return 0; 2461 } 2462 2463 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2464 struct folio **folios) 2465 { 2466 return 0; 2467 } 2468 #endif /* CONFIG_MIGRATION */ 2469 2470 /* 2471 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2472 * allows us to process the FOLL_LONGTERM flag. 2473 */ 2474 static long __gup_longterm_locked(struct mm_struct *mm, 2475 unsigned long start, 2476 unsigned long nr_pages, 2477 struct page **pages, 2478 int *locked, 2479 unsigned int gup_flags) 2480 { 2481 unsigned int flags; 2482 long rc, nr_pinned_pages; 2483 2484 if (!(gup_flags & FOLL_LONGTERM)) 2485 return __get_user_pages_locked(mm, start, nr_pages, pages, 2486 locked, gup_flags); 2487 2488 flags = memalloc_pin_save(); 2489 do { 2490 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2491 pages, locked, 2492 gup_flags); 2493 if (nr_pinned_pages <= 0) { 2494 rc = nr_pinned_pages; 2495 break; 2496 } 2497 2498 /* FOLL_LONGTERM implies FOLL_PIN */ 2499 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2500 } while (rc == -EAGAIN); 2501 memalloc_pin_restore(flags); 2502 return rc ? rc : nr_pinned_pages; 2503 } 2504 2505 /* 2506 * Check that the given flags are valid for the exported gup/pup interface, and 2507 * update them with the required flags that the caller must have set. 2508 */ 2509 static bool is_valid_gup_args(struct page **pages, int *locked, 2510 unsigned int *gup_flags_p, unsigned int to_set) 2511 { 2512 unsigned int gup_flags = *gup_flags_p; 2513 2514 /* 2515 * These flags not allowed to be specified externally to the gup 2516 * interfaces: 2517 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2518 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2519 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2520 */ 2521 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2522 return false; 2523 2524 gup_flags |= to_set; 2525 if (locked) { 2526 /* At the external interface locked must be set */ 2527 if (WARN_ON_ONCE(*locked != 1)) 2528 return false; 2529 2530 gup_flags |= FOLL_UNLOCKABLE; 2531 } 2532 2533 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2534 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2535 (FOLL_PIN | FOLL_GET))) 2536 return false; 2537 2538 /* LONGTERM can only be specified when pinning */ 2539 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2540 return false; 2541 2542 /* Pages input must be given if using GET/PIN */ 2543 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2544 return false; 2545 2546 /* We want to allow the pgmap to be hot-unplugged at all times */ 2547 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2548 (gup_flags & FOLL_PCI_P2PDMA))) 2549 return false; 2550 2551 *gup_flags_p = gup_flags; 2552 return true; 2553 } 2554 2555 #ifdef CONFIG_MMU 2556 /** 2557 * get_user_pages_remote() - pin user pages in memory 2558 * @mm: mm_struct of target mm 2559 * @start: starting user address 2560 * @nr_pages: number of pages from start to pin 2561 * @gup_flags: flags modifying lookup behaviour 2562 * @pages: array that receives pointers to the pages pinned. 2563 * Should be at least nr_pages long. Or NULL, if caller 2564 * only intends to ensure the pages are faulted in. 2565 * @locked: pointer to lock flag indicating whether lock is held and 2566 * subsequently whether VM_FAULT_RETRY functionality can be 2567 * utilised. Lock must initially be held. 2568 * 2569 * Returns either number of pages pinned (which may be less than the 2570 * number requested), or an error. Details about the return value: 2571 * 2572 * -- If nr_pages is 0, returns 0. 2573 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2574 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2575 * pages pinned. Again, this may be less than nr_pages. 2576 * 2577 * The caller is responsible for releasing returned @pages, via put_page(). 2578 * 2579 * Must be called with mmap_lock held for read or write. 2580 * 2581 * get_user_pages_remote walks a process's page tables and takes a reference 2582 * to each struct page that each user address corresponds to at a given 2583 * instant. That is, it takes the page that would be accessed if a user 2584 * thread accesses the given user virtual address at that instant. 2585 * 2586 * This does not guarantee that the page exists in the user mappings when 2587 * get_user_pages_remote returns, and there may even be a completely different 2588 * page there in some cases (eg. if mmapped pagecache has been invalidated 2589 * and subsequently re-faulted). However it does guarantee that the page 2590 * won't be freed completely. And mostly callers simply care that the page 2591 * contains data that was valid *at some point in time*. Typically, an IO 2592 * or similar operation cannot guarantee anything stronger anyway because 2593 * locks can't be held over the syscall boundary. 2594 * 2595 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2596 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2597 * be called after the page is finished with, and before put_page is called. 2598 * 2599 * get_user_pages_remote is typically used for fewer-copy IO operations, 2600 * to get a handle on the memory by some means other than accesses 2601 * via the user virtual addresses. The pages may be submitted for 2602 * DMA to devices or accessed via their kernel linear mapping (via the 2603 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2604 * 2605 * See also get_user_pages_fast, for performance critical applications. 2606 * 2607 * get_user_pages_remote should be phased out in favor of 2608 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2609 * should use get_user_pages_remote because it cannot pass 2610 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2611 */ 2612 long get_user_pages_remote(struct mm_struct *mm, 2613 unsigned long start, unsigned long nr_pages, 2614 unsigned int gup_flags, struct page **pages, 2615 int *locked) 2616 { 2617 int local_locked = 1; 2618 2619 if (!is_valid_gup_args(pages, locked, &gup_flags, 2620 FOLL_TOUCH | FOLL_REMOTE)) 2621 return -EINVAL; 2622 2623 return __get_user_pages_locked(mm, start, nr_pages, pages, 2624 locked ? locked : &local_locked, 2625 gup_flags); 2626 } 2627 EXPORT_SYMBOL(get_user_pages_remote); 2628 2629 #else /* CONFIG_MMU */ 2630 long get_user_pages_remote(struct mm_struct *mm, 2631 unsigned long start, unsigned long nr_pages, 2632 unsigned int gup_flags, struct page **pages, 2633 int *locked) 2634 { 2635 return 0; 2636 } 2637 #endif /* !CONFIG_MMU */ 2638 2639 /** 2640 * get_user_pages() - pin user pages in memory 2641 * @start: starting user address 2642 * @nr_pages: number of pages from start to pin 2643 * @gup_flags: flags modifying lookup behaviour 2644 * @pages: array that receives pointers to the pages pinned. 2645 * Should be at least nr_pages long. Or NULL, if caller 2646 * only intends to ensure the pages are faulted in. 2647 * 2648 * This is the same as get_user_pages_remote(), just with a less-flexible 2649 * calling convention where we assume that the mm being operated on belongs to 2650 * the current task, and doesn't allow passing of a locked parameter. We also 2651 * obviously don't pass FOLL_REMOTE in here. 2652 */ 2653 long get_user_pages(unsigned long start, unsigned long nr_pages, 2654 unsigned int gup_flags, struct page **pages) 2655 { 2656 int locked = 1; 2657 2658 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2659 return -EINVAL; 2660 2661 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2662 &locked, gup_flags); 2663 } 2664 EXPORT_SYMBOL(get_user_pages); 2665 2666 /* 2667 * get_user_pages_unlocked() is suitable to replace the form: 2668 * 2669 * mmap_read_lock(mm); 2670 * get_user_pages(mm, ..., pages, NULL); 2671 * mmap_read_unlock(mm); 2672 * 2673 * with: 2674 * 2675 * get_user_pages_unlocked(mm, ..., pages); 2676 * 2677 * It is functionally equivalent to get_user_pages_fast so 2678 * get_user_pages_fast should be used instead if specific gup_flags 2679 * (e.g. FOLL_FORCE) are not required. 2680 */ 2681 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2682 struct page **pages, unsigned int gup_flags) 2683 { 2684 int locked = 0; 2685 2686 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2687 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2688 return -EINVAL; 2689 2690 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2691 &locked, gup_flags); 2692 } 2693 EXPORT_SYMBOL(get_user_pages_unlocked); 2694 2695 /* 2696 * GUP-fast 2697 * 2698 * get_user_pages_fast attempts to pin user pages by walking the page 2699 * tables directly and avoids taking locks. Thus the walker needs to be 2700 * protected from page table pages being freed from under it, and should 2701 * block any THP splits. 2702 * 2703 * One way to achieve this is to have the walker disable interrupts, and 2704 * rely on IPIs from the TLB flushing code blocking before the page table 2705 * pages are freed. This is unsuitable for architectures that do not need 2706 * to broadcast an IPI when invalidating TLBs. 2707 * 2708 * Another way to achieve this is to batch up page table containing pages 2709 * belonging to more than one mm_user, then rcu_sched a callback to free those 2710 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2711 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2712 * (which is a relatively rare event). The code below adopts this strategy. 2713 * 2714 * Before activating this code, please be aware that the following assumptions 2715 * are currently made: 2716 * 2717 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2718 * free pages containing page tables or TLB flushing requires IPI broadcast. 2719 * 2720 * *) ptes can be read atomically by the architecture. 2721 * 2722 * *) access_ok is sufficient to validate userspace address ranges. 2723 * 2724 * The last two assumptions can be relaxed by the addition of helper functions. 2725 * 2726 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2727 */ 2728 #ifdef CONFIG_HAVE_GUP_FAST 2729 /* 2730 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2731 * a specific folio. 2732 * 2733 * This call assumes the caller has pinned the folio, that the lowest page table 2734 * level still points to this folio, and that interrupts have been disabled. 2735 * 2736 * GUP-fast must reject all secretmem folios. 2737 * 2738 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2739 * (see comment describing the writable_file_mapping_allowed() function). We 2740 * therefore try to avoid the most egregious case of a long-term mapping doing 2741 * so. 2742 * 2743 * This function cannot be as thorough as that one as the VMA is not available 2744 * in the fast path, so instead we whitelist known good cases and if in doubt, 2745 * fall back to the slow path. 2746 */ 2747 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2748 { 2749 bool reject_file_backed = false; 2750 struct address_space *mapping; 2751 bool check_secretmem = false; 2752 unsigned long mapping_flags; 2753 2754 /* 2755 * If we aren't pinning then no problematic write can occur. A long term 2756 * pin is the most egregious case so this is the one we disallow. 2757 */ 2758 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2759 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2760 reject_file_backed = true; 2761 2762 /* We hold a folio reference, so we can safely access folio fields. */ 2763 2764 /* secretmem folios are always order-0 folios. */ 2765 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2766 check_secretmem = true; 2767 2768 if (!reject_file_backed && !check_secretmem) 2769 return true; 2770 2771 if (WARN_ON_ONCE(folio_test_slab(folio))) 2772 return false; 2773 2774 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2775 if (folio_test_hugetlb(folio)) 2776 return true; 2777 2778 /* 2779 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2780 * cannot proceed, which means no actions performed under RCU can 2781 * proceed either. 2782 * 2783 * inodes and thus their mappings are freed under RCU, which means the 2784 * mapping cannot be freed beneath us and thus we can safely dereference 2785 * it. 2786 */ 2787 lockdep_assert_irqs_disabled(); 2788 2789 /* 2790 * However, there may be operations which _alter_ the mapping, so ensure 2791 * we read it once and only once. 2792 */ 2793 mapping = READ_ONCE(folio->mapping); 2794 2795 /* 2796 * The mapping may have been truncated, in any case we cannot determine 2797 * if this mapping is safe - fall back to slow path to determine how to 2798 * proceed. 2799 */ 2800 if (!mapping) 2801 return false; 2802 2803 /* Anonymous folios pose no problem. */ 2804 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2805 if (mapping_flags) 2806 return mapping_flags & PAGE_MAPPING_ANON; 2807 2808 /* 2809 * At this point, we know the mapping is non-null and points to an 2810 * address_space object. 2811 */ 2812 if (check_secretmem && secretmem_mapping(mapping)) 2813 return false; 2814 /* The only remaining allowed file system is shmem. */ 2815 return !reject_file_backed || shmem_mapping(mapping); 2816 } 2817 2818 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2819 unsigned int flags, struct page **pages) 2820 { 2821 while ((*nr) - nr_start) { 2822 struct folio *folio = page_folio(pages[--(*nr)]); 2823 2824 folio_clear_referenced(folio); 2825 gup_put_folio(folio, 1, flags); 2826 } 2827 } 2828 2829 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2830 /* 2831 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2832 * operations. 2833 * 2834 * To pin the page, GUP-fast needs to do below in order: 2835 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2836 * 2837 * For the rest of pgtable operations where pgtable updates can be racy 2838 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2839 * is pinned. 2840 * 2841 * Above will work for all pte-level operations, including THP split. 2842 * 2843 * For THP collapse, it's a bit more complicated because GUP-fast may be 2844 * walking a pgtable page that is being freed (pte is still valid but pmd 2845 * can be cleared already). To avoid race in such condition, we need to 2846 * also check pmd here to make sure pmd doesn't change (corresponds to 2847 * pmdp_collapse_flush() in the THP collapse code path). 2848 */ 2849 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2850 unsigned long end, unsigned int flags, struct page **pages, 2851 int *nr) 2852 { 2853 struct dev_pagemap *pgmap = NULL; 2854 int nr_start = *nr, ret = 0; 2855 pte_t *ptep, *ptem; 2856 2857 ptem = ptep = pte_offset_map(&pmd, addr); 2858 if (!ptep) 2859 return 0; 2860 do { 2861 pte_t pte = ptep_get_lockless(ptep); 2862 struct page *page; 2863 struct folio *folio; 2864 2865 /* 2866 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2867 * pte_access_permitted() better should reject these pages 2868 * either way: otherwise, GUP-fast might succeed in 2869 * cases where ordinary GUP would fail due to VMA access 2870 * permissions. 2871 */ 2872 if (pte_protnone(pte)) 2873 goto pte_unmap; 2874 2875 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2876 goto pte_unmap; 2877 2878 if (pte_devmap(pte)) { 2879 if (unlikely(flags & FOLL_LONGTERM)) 2880 goto pte_unmap; 2881 2882 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2883 if (unlikely(!pgmap)) { 2884 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2885 goto pte_unmap; 2886 } 2887 } else if (pte_special(pte)) 2888 goto pte_unmap; 2889 2890 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2891 page = pte_page(pte); 2892 2893 folio = try_grab_folio_fast(page, 1, flags); 2894 if (!folio) 2895 goto pte_unmap; 2896 2897 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2898 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2899 gup_put_folio(folio, 1, flags); 2900 goto pte_unmap; 2901 } 2902 2903 if (!gup_fast_folio_allowed(folio, flags)) { 2904 gup_put_folio(folio, 1, flags); 2905 goto pte_unmap; 2906 } 2907 2908 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2909 gup_put_folio(folio, 1, flags); 2910 goto pte_unmap; 2911 } 2912 2913 /* 2914 * We need to make the page accessible if and only if we are 2915 * going to access its content (the FOLL_PIN case). Please 2916 * see Documentation/core-api/pin_user_pages.rst for 2917 * details. 2918 */ 2919 if (flags & FOLL_PIN) { 2920 ret = arch_make_folio_accessible(folio); 2921 if (ret) { 2922 gup_put_folio(folio, 1, flags); 2923 goto pte_unmap; 2924 } 2925 } 2926 folio_set_referenced(folio); 2927 pages[*nr] = page; 2928 (*nr)++; 2929 } while (ptep++, addr += PAGE_SIZE, addr != end); 2930 2931 ret = 1; 2932 2933 pte_unmap: 2934 if (pgmap) 2935 put_dev_pagemap(pgmap); 2936 pte_unmap(ptem); 2937 return ret; 2938 } 2939 #else 2940 2941 /* 2942 * If we can't determine whether or not a pte is special, then fail immediately 2943 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2944 * to be special. 2945 * 2946 * For a futex to be placed on a THP tail page, get_futex_key requires a 2947 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2948 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2949 */ 2950 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2951 unsigned long end, unsigned int flags, struct page **pages, 2952 int *nr) 2953 { 2954 return 0; 2955 } 2956 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2957 2958 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2959 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2960 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2961 { 2962 int nr_start = *nr; 2963 struct dev_pagemap *pgmap = NULL; 2964 2965 do { 2966 struct folio *folio; 2967 struct page *page = pfn_to_page(pfn); 2968 2969 pgmap = get_dev_pagemap(pfn, pgmap); 2970 if (unlikely(!pgmap)) { 2971 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2972 break; 2973 } 2974 2975 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2976 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2977 break; 2978 } 2979 2980 folio = try_grab_folio_fast(page, 1, flags); 2981 if (!folio) { 2982 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2983 break; 2984 } 2985 folio_set_referenced(folio); 2986 pages[*nr] = page; 2987 (*nr)++; 2988 pfn++; 2989 } while (addr += PAGE_SIZE, addr != end); 2990 2991 put_dev_pagemap(pgmap); 2992 return addr == end; 2993 } 2994 2995 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2996 unsigned long end, unsigned int flags, struct page **pages, 2997 int *nr) 2998 { 2999 unsigned long fault_pfn; 3000 int nr_start = *nr; 3001 3002 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3003 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3004 return 0; 3005 3006 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3007 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3008 return 0; 3009 } 3010 return 1; 3011 } 3012 3013 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3014 unsigned long end, unsigned int flags, struct page **pages, 3015 int *nr) 3016 { 3017 unsigned long fault_pfn; 3018 int nr_start = *nr; 3019 3020 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3021 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3022 return 0; 3023 3024 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3025 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3026 return 0; 3027 } 3028 return 1; 3029 } 3030 #else 3031 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3032 unsigned long end, unsigned int flags, struct page **pages, 3033 int *nr) 3034 { 3035 BUILD_BUG(); 3036 return 0; 3037 } 3038 3039 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3040 unsigned long end, unsigned int flags, struct page **pages, 3041 int *nr) 3042 { 3043 BUILD_BUG(); 3044 return 0; 3045 } 3046 #endif 3047 3048 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3049 unsigned long end, unsigned int flags, struct page **pages, 3050 int *nr) 3051 { 3052 struct page *page; 3053 struct folio *folio; 3054 int refs; 3055 3056 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3057 return 0; 3058 3059 if (pmd_special(orig)) 3060 return 0; 3061 3062 if (pmd_devmap(orig)) { 3063 if (unlikely(flags & FOLL_LONGTERM)) 3064 return 0; 3065 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3066 pages, nr); 3067 } 3068 3069 page = pmd_page(orig); 3070 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3071 3072 folio = try_grab_folio_fast(page, refs, flags); 3073 if (!folio) 3074 return 0; 3075 3076 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3077 gup_put_folio(folio, refs, flags); 3078 return 0; 3079 } 3080 3081 if (!gup_fast_folio_allowed(folio, flags)) { 3082 gup_put_folio(folio, refs, flags); 3083 return 0; 3084 } 3085 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3086 gup_put_folio(folio, refs, flags); 3087 return 0; 3088 } 3089 3090 *nr += refs; 3091 folio_set_referenced(folio); 3092 return 1; 3093 } 3094 3095 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3096 unsigned long end, unsigned int flags, struct page **pages, 3097 int *nr) 3098 { 3099 struct page *page; 3100 struct folio *folio; 3101 int refs; 3102 3103 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3104 return 0; 3105 3106 if (pud_special(orig)) 3107 return 0; 3108 3109 if (pud_devmap(orig)) { 3110 if (unlikely(flags & FOLL_LONGTERM)) 3111 return 0; 3112 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3113 pages, nr); 3114 } 3115 3116 page = pud_page(orig); 3117 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3118 3119 folio = try_grab_folio_fast(page, refs, flags); 3120 if (!folio) 3121 return 0; 3122 3123 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3124 gup_put_folio(folio, refs, flags); 3125 return 0; 3126 } 3127 3128 if (!gup_fast_folio_allowed(folio, flags)) { 3129 gup_put_folio(folio, refs, flags); 3130 return 0; 3131 } 3132 3133 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3134 gup_put_folio(folio, refs, flags); 3135 return 0; 3136 } 3137 3138 *nr += refs; 3139 folio_set_referenced(folio); 3140 return 1; 3141 } 3142 3143 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3144 unsigned long end, unsigned int flags, struct page **pages, 3145 int *nr) 3146 { 3147 int refs; 3148 struct page *page; 3149 struct folio *folio; 3150 3151 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3152 return 0; 3153 3154 BUILD_BUG_ON(pgd_devmap(orig)); 3155 3156 page = pgd_page(orig); 3157 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3158 3159 folio = try_grab_folio_fast(page, refs, flags); 3160 if (!folio) 3161 return 0; 3162 3163 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3164 gup_put_folio(folio, refs, flags); 3165 return 0; 3166 } 3167 3168 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3169 gup_put_folio(folio, refs, flags); 3170 return 0; 3171 } 3172 3173 if (!gup_fast_folio_allowed(folio, flags)) { 3174 gup_put_folio(folio, refs, flags); 3175 return 0; 3176 } 3177 3178 *nr += refs; 3179 folio_set_referenced(folio); 3180 return 1; 3181 } 3182 3183 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3184 unsigned long end, unsigned int flags, struct page **pages, 3185 int *nr) 3186 { 3187 unsigned long next; 3188 pmd_t *pmdp; 3189 3190 pmdp = pmd_offset_lockless(pudp, pud, addr); 3191 do { 3192 pmd_t pmd = pmdp_get_lockless(pmdp); 3193 3194 next = pmd_addr_end(addr, end); 3195 if (!pmd_present(pmd)) 3196 return 0; 3197 3198 if (unlikely(pmd_leaf(pmd))) { 3199 /* See gup_fast_pte_range() */ 3200 if (pmd_protnone(pmd)) 3201 return 0; 3202 3203 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3204 pages, nr)) 3205 return 0; 3206 3207 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3208 pages, nr)) 3209 return 0; 3210 } while (pmdp++, addr = next, addr != end); 3211 3212 return 1; 3213 } 3214 3215 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3216 unsigned long end, unsigned int flags, struct page **pages, 3217 int *nr) 3218 { 3219 unsigned long next; 3220 pud_t *pudp; 3221 3222 pudp = pud_offset_lockless(p4dp, p4d, addr); 3223 do { 3224 pud_t pud = READ_ONCE(*pudp); 3225 3226 next = pud_addr_end(addr, end); 3227 if (unlikely(!pud_present(pud))) 3228 return 0; 3229 if (unlikely(pud_leaf(pud))) { 3230 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3231 pages, nr)) 3232 return 0; 3233 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3234 pages, nr)) 3235 return 0; 3236 } while (pudp++, addr = next, addr != end); 3237 3238 return 1; 3239 } 3240 3241 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3242 unsigned long end, unsigned int flags, struct page **pages, 3243 int *nr) 3244 { 3245 unsigned long next; 3246 p4d_t *p4dp; 3247 3248 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3249 do { 3250 p4d_t p4d = READ_ONCE(*p4dp); 3251 3252 next = p4d_addr_end(addr, end); 3253 if (!p4d_present(p4d)) 3254 return 0; 3255 BUILD_BUG_ON(p4d_leaf(p4d)); 3256 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3257 pages, nr)) 3258 return 0; 3259 } while (p4dp++, addr = next, addr != end); 3260 3261 return 1; 3262 } 3263 3264 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3265 unsigned int flags, struct page **pages, int *nr) 3266 { 3267 unsigned long next; 3268 pgd_t *pgdp; 3269 3270 pgdp = pgd_offset(current->mm, addr); 3271 do { 3272 pgd_t pgd = READ_ONCE(*pgdp); 3273 3274 next = pgd_addr_end(addr, end); 3275 if (pgd_none(pgd)) 3276 return; 3277 if (unlikely(pgd_leaf(pgd))) { 3278 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3279 pages, nr)) 3280 return; 3281 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3282 pages, nr)) 3283 return; 3284 } while (pgdp++, addr = next, addr != end); 3285 } 3286 #else 3287 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3288 unsigned int flags, struct page **pages, int *nr) 3289 { 3290 } 3291 #endif /* CONFIG_HAVE_GUP_FAST */ 3292 3293 #ifndef gup_fast_permitted 3294 /* 3295 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3296 * we need to fall back to the slow version: 3297 */ 3298 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3299 { 3300 return true; 3301 } 3302 #endif 3303 3304 static unsigned long gup_fast(unsigned long start, unsigned long end, 3305 unsigned int gup_flags, struct page **pages) 3306 { 3307 unsigned long flags; 3308 int nr_pinned = 0; 3309 unsigned seq; 3310 3311 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3312 !gup_fast_permitted(start, end)) 3313 return 0; 3314 3315 if (gup_flags & FOLL_PIN) { 3316 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3317 if (seq & 1) 3318 return 0; 3319 } 3320 3321 /* 3322 * Disable interrupts. The nested form is used, in order to allow full, 3323 * general purpose use of this routine. 3324 * 3325 * With interrupts disabled, we block page table pages from being freed 3326 * from under us. See struct mmu_table_batch comments in 3327 * include/asm-generic/tlb.h for more details. 3328 * 3329 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3330 * that come from THPs splitting. 3331 */ 3332 local_irq_save(flags); 3333 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3334 local_irq_restore(flags); 3335 3336 /* 3337 * When pinning pages for DMA there could be a concurrent write protect 3338 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3339 */ 3340 if (gup_flags & FOLL_PIN) { 3341 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3342 gup_fast_unpin_user_pages(pages, nr_pinned); 3343 return 0; 3344 } else { 3345 sanity_check_pinned_pages(pages, nr_pinned); 3346 } 3347 } 3348 return nr_pinned; 3349 } 3350 3351 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3352 unsigned int gup_flags, struct page **pages) 3353 { 3354 unsigned long len, end; 3355 unsigned long nr_pinned; 3356 int locked = 0; 3357 int ret; 3358 3359 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3360 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3361 FOLL_FAST_ONLY | FOLL_NOFAULT | 3362 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3363 return -EINVAL; 3364 3365 if (gup_flags & FOLL_PIN) 3366 mm_set_has_pinned_flag(¤t->mm->flags); 3367 3368 if (!(gup_flags & FOLL_FAST_ONLY)) 3369 might_lock_read(¤t->mm->mmap_lock); 3370 3371 start = untagged_addr(start) & PAGE_MASK; 3372 len = nr_pages << PAGE_SHIFT; 3373 if (check_add_overflow(start, len, &end)) 3374 return -EOVERFLOW; 3375 if (end > TASK_SIZE_MAX) 3376 return -EFAULT; 3377 if (unlikely(!access_ok((void __user *)start, len))) 3378 return -EFAULT; 3379 3380 nr_pinned = gup_fast(start, end, gup_flags, pages); 3381 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3382 return nr_pinned; 3383 3384 /* Slow path: try to get the remaining pages with get_user_pages */ 3385 start += nr_pinned << PAGE_SHIFT; 3386 pages += nr_pinned; 3387 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3388 pages, &locked, 3389 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3390 if (ret < 0) { 3391 /* 3392 * The caller has to unpin the pages we already pinned so 3393 * returning -errno is not an option 3394 */ 3395 if (nr_pinned) 3396 return nr_pinned; 3397 return ret; 3398 } 3399 return ret + nr_pinned; 3400 } 3401 3402 /** 3403 * get_user_pages_fast_only() - pin user pages in memory 3404 * @start: starting user address 3405 * @nr_pages: number of pages from start to pin 3406 * @gup_flags: flags modifying pin behaviour 3407 * @pages: array that receives pointers to the pages pinned. 3408 * Should be at least nr_pages long. 3409 * 3410 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3411 * the regular GUP. 3412 * 3413 * If the architecture does not support this function, simply return with no 3414 * pages pinned. 3415 * 3416 * Careful, careful! COW breaking can go either way, so a non-write 3417 * access can get ambiguous page results. If you call this function without 3418 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3419 */ 3420 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3421 unsigned int gup_flags, struct page **pages) 3422 { 3423 /* 3424 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3425 * because gup fast is always a "pin with a +1 page refcount" request. 3426 * 3427 * FOLL_FAST_ONLY is required in order to match the API description of 3428 * this routine: no fall back to regular ("slow") GUP. 3429 */ 3430 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3431 FOLL_GET | FOLL_FAST_ONLY)) 3432 return -EINVAL; 3433 3434 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3435 } 3436 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3437 3438 /** 3439 * get_user_pages_fast() - pin user pages in memory 3440 * @start: starting user address 3441 * @nr_pages: number of pages from start to pin 3442 * @gup_flags: flags modifying pin behaviour 3443 * @pages: array that receives pointers to the pages pinned. 3444 * Should be at least nr_pages long. 3445 * 3446 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3447 * If not successful, it will fall back to taking the lock and 3448 * calling get_user_pages(). 3449 * 3450 * Returns number of pages pinned. This may be fewer than the number requested. 3451 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3452 * -errno. 3453 */ 3454 int get_user_pages_fast(unsigned long start, int nr_pages, 3455 unsigned int gup_flags, struct page **pages) 3456 { 3457 /* 3458 * The caller may or may not have explicitly set FOLL_GET; either way is 3459 * OK. However, internally (within mm/gup.c), gup fast variants must set 3460 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3461 * request. 3462 */ 3463 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3464 return -EINVAL; 3465 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3466 } 3467 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3468 3469 /** 3470 * pin_user_pages_fast() - pin user pages in memory without taking locks 3471 * 3472 * @start: starting user address 3473 * @nr_pages: number of pages from start to pin 3474 * @gup_flags: flags modifying pin behaviour 3475 * @pages: array that receives pointers to the pages pinned. 3476 * Should be at least nr_pages long. 3477 * 3478 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3479 * get_user_pages_fast() for documentation on the function arguments, because 3480 * the arguments here are identical. 3481 * 3482 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3483 * see Documentation/core-api/pin_user_pages.rst for further details. 3484 * 3485 * Note that if a zero_page is amongst the returned pages, it will not have 3486 * pins in it and unpin_user_page() will not remove pins from it. 3487 */ 3488 int pin_user_pages_fast(unsigned long start, int nr_pages, 3489 unsigned int gup_flags, struct page **pages) 3490 { 3491 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3492 return -EINVAL; 3493 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3494 } 3495 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3496 3497 /** 3498 * pin_user_pages_remote() - pin pages of a remote process 3499 * 3500 * @mm: mm_struct of target mm 3501 * @start: starting user address 3502 * @nr_pages: number of pages from start to pin 3503 * @gup_flags: flags modifying lookup behaviour 3504 * @pages: array that receives pointers to the pages pinned. 3505 * Should be at least nr_pages long. 3506 * @locked: pointer to lock flag indicating whether lock is held and 3507 * subsequently whether VM_FAULT_RETRY functionality can be 3508 * utilised. Lock must initially be held. 3509 * 3510 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3511 * get_user_pages_remote() for documentation on the function arguments, because 3512 * the arguments here are identical. 3513 * 3514 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3515 * see Documentation/core-api/pin_user_pages.rst for details. 3516 * 3517 * Note that if a zero_page is amongst the returned pages, it will not have 3518 * pins in it and unpin_user_page*() will not remove pins from it. 3519 */ 3520 long pin_user_pages_remote(struct mm_struct *mm, 3521 unsigned long start, unsigned long nr_pages, 3522 unsigned int gup_flags, struct page **pages, 3523 int *locked) 3524 { 3525 int local_locked = 1; 3526 3527 if (!is_valid_gup_args(pages, locked, &gup_flags, 3528 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3529 return 0; 3530 return __gup_longterm_locked(mm, start, nr_pages, pages, 3531 locked ? locked : &local_locked, 3532 gup_flags); 3533 } 3534 EXPORT_SYMBOL(pin_user_pages_remote); 3535 3536 /** 3537 * pin_user_pages() - pin user pages in memory for use by other devices 3538 * 3539 * @start: starting user address 3540 * @nr_pages: number of pages from start to pin 3541 * @gup_flags: flags modifying lookup behaviour 3542 * @pages: array that receives pointers to the pages pinned. 3543 * Should be at least nr_pages long. 3544 * 3545 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3546 * FOLL_PIN is set. 3547 * 3548 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3549 * see Documentation/core-api/pin_user_pages.rst for details. 3550 * 3551 * Note that if a zero_page is amongst the returned pages, it will not have 3552 * pins in it and unpin_user_page*() will not remove pins from it. 3553 */ 3554 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3555 unsigned int gup_flags, struct page **pages) 3556 { 3557 int locked = 1; 3558 3559 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3560 return 0; 3561 return __gup_longterm_locked(current->mm, start, nr_pages, 3562 pages, &locked, gup_flags); 3563 } 3564 EXPORT_SYMBOL(pin_user_pages); 3565 3566 /* 3567 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3568 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3569 * FOLL_PIN and rejects FOLL_GET. 3570 * 3571 * Note that if a zero_page is amongst the returned pages, it will not have 3572 * pins in it and unpin_user_page*() will not remove pins from it. 3573 */ 3574 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3575 struct page **pages, unsigned int gup_flags) 3576 { 3577 int locked = 0; 3578 3579 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3580 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3581 return 0; 3582 3583 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3584 &locked, gup_flags); 3585 } 3586 EXPORT_SYMBOL(pin_user_pages_unlocked); 3587 3588 /** 3589 * memfd_pin_folios() - pin folios associated with a memfd 3590 * @memfd: the memfd whose folios are to be pinned 3591 * @start: the first memfd offset 3592 * @end: the last memfd offset (inclusive) 3593 * @folios: array that receives pointers to the folios pinned 3594 * @max_folios: maximum number of entries in @folios 3595 * @offset: the offset into the first folio 3596 * 3597 * Attempt to pin folios associated with a memfd in the contiguous range 3598 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3599 * the folios can either be found in the page cache or need to be allocated 3600 * if necessary. Once the folios are located, they are all pinned via 3601 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3602 * And, eventually, these pinned folios must be released either using 3603 * unpin_folios() or unpin_folio(). 3604 * 3605 * It must be noted that the folios may be pinned for an indefinite amount 3606 * of time. And, in most cases, the duration of time they may stay pinned 3607 * would be controlled by the userspace. This behavior is effectively the 3608 * same as using FOLL_LONGTERM with other GUP APIs. 3609 * 3610 * Returns number of folios pinned, which could be less than @max_folios 3611 * as it depends on the folio sizes that cover the range [start, end]. 3612 * If no folios were pinned, it returns -errno. 3613 */ 3614 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3615 struct folio **folios, unsigned int max_folios, 3616 pgoff_t *offset) 3617 { 3618 unsigned int flags, nr_folios, nr_found; 3619 unsigned int i, pgshift = PAGE_SHIFT; 3620 pgoff_t start_idx, end_idx, next_idx; 3621 struct folio *folio = NULL; 3622 struct folio_batch fbatch; 3623 struct hstate *h; 3624 long ret = -EINVAL; 3625 3626 if (start < 0 || start > end || !max_folios) 3627 return -EINVAL; 3628 3629 if (!memfd) 3630 return -EINVAL; 3631 3632 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3633 return -EINVAL; 3634 3635 if (end >= i_size_read(file_inode(memfd))) 3636 return -EINVAL; 3637 3638 if (is_file_hugepages(memfd)) { 3639 h = hstate_file(memfd); 3640 pgshift = huge_page_shift(h); 3641 } 3642 3643 flags = memalloc_pin_save(); 3644 do { 3645 nr_folios = 0; 3646 start_idx = start >> pgshift; 3647 end_idx = end >> pgshift; 3648 if (is_file_hugepages(memfd)) { 3649 start_idx <<= huge_page_order(h); 3650 end_idx <<= huge_page_order(h); 3651 } 3652 3653 folio_batch_init(&fbatch); 3654 while (start_idx <= end_idx && nr_folios < max_folios) { 3655 /* 3656 * In most cases, we should be able to find the folios 3657 * in the page cache. If we cannot find them for some 3658 * reason, we try to allocate them and add them to the 3659 * page cache. 3660 */ 3661 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3662 &start_idx, 3663 end_idx, 3664 &fbatch); 3665 if (folio) { 3666 folio_put(folio); 3667 folio = NULL; 3668 } 3669 3670 next_idx = 0; 3671 for (i = 0; i < nr_found; i++) { 3672 /* 3673 * As there can be multiple entries for a 3674 * given folio in the batch returned by 3675 * filemap_get_folios_contig(), the below 3676 * check is to ensure that we pin and return a 3677 * unique set of folios between start and end. 3678 */ 3679 if (next_idx && 3680 next_idx != folio_index(fbatch.folios[i])) 3681 continue; 3682 3683 folio = page_folio(&fbatch.folios[i]->page); 3684 3685 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3686 folio_batch_release(&fbatch); 3687 ret = -EINVAL; 3688 goto err; 3689 } 3690 3691 if (nr_folios == 0) 3692 *offset = offset_in_folio(folio, start); 3693 3694 folios[nr_folios] = folio; 3695 next_idx = folio_next_index(folio); 3696 if (++nr_folios == max_folios) 3697 break; 3698 } 3699 3700 folio = NULL; 3701 folio_batch_release(&fbatch); 3702 if (!nr_found) { 3703 folio = memfd_alloc_folio(memfd, start_idx); 3704 if (IS_ERR(folio)) { 3705 ret = PTR_ERR(folio); 3706 if (ret != -EEXIST) 3707 goto err; 3708 folio = NULL; 3709 } 3710 } 3711 } 3712 3713 ret = check_and_migrate_movable_folios(nr_folios, folios); 3714 } while (ret == -EAGAIN); 3715 3716 memalloc_pin_restore(flags); 3717 return ret ? ret : nr_folios; 3718 err: 3719 memalloc_pin_restore(flags); 3720 unpin_folios(folios, nr_folios); 3721 3722 return ret; 3723 } 3724 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3725