1 #define __DISABLE_GUP_DEPRECATED 1 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 18 #include <asm/mmu_context.h> 19 #include <asm/pgtable.h> 20 #include <asm/tlbflush.h> 21 22 #include "internal.h" 23 24 static struct page *no_page_table(struct vm_area_struct *vma, 25 unsigned int flags) 26 { 27 /* 28 * When core dumping an enormous anonymous area that nobody 29 * has touched so far, we don't want to allocate unnecessary pages or 30 * page tables. Return error instead of NULL to skip handle_mm_fault, 31 * then get_dump_page() will return NULL to leave a hole in the dump. 32 * But we can only make this optimization where a hole would surely 33 * be zero-filled if handle_mm_fault() actually did handle it. 34 */ 35 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 36 return ERR_PTR(-EFAULT); 37 return NULL; 38 } 39 40 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 41 pte_t *pte, unsigned int flags) 42 { 43 /* No page to get reference */ 44 if (flags & FOLL_GET) 45 return -EFAULT; 46 47 if (flags & FOLL_TOUCH) { 48 pte_t entry = *pte; 49 50 if (flags & FOLL_WRITE) 51 entry = pte_mkdirty(entry); 52 entry = pte_mkyoung(entry); 53 54 if (!pte_same(*pte, entry)) { 55 set_pte_at(vma->vm_mm, address, pte, entry); 56 update_mmu_cache(vma, address, pte); 57 } 58 } 59 60 /* Proper page table entry exists, but no corresponding struct page */ 61 return -EEXIST; 62 } 63 64 static struct page *follow_page_pte(struct vm_area_struct *vma, 65 unsigned long address, pmd_t *pmd, unsigned int flags) 66 { 67 struct mm_struct *mm = vma->vm_mm; 68 struct dev_pagemap *pgmap = NULL; 69 struct page *page; 70 spinlock_t *ptl; 71 pte_t *ptep, pte; 72 73 retry: 74 if (unlikely(pmd_bad(*pmd))) 75 return no_page_table(vma, flags); 76 77 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 78 pte = *ptep; 79 if (!pte_present(pte)) { 80 swp_entry_t entry; 81 /* 82 * KSM's break_ksm() relies upon recognizing a ksm page 83 * even while it is being migrated, so for that case we 84 * need migration_entry_wait(). 85 */ 86 if (likely(!(flags & FOLL_MIGRATION))) 87 goto no_page; 88 if (pte_none(pte)) 89 goto no_page; 90 entry = pte_to_swp_entry(pte); 91 if (!is_migration_entry(entry)) 92 goto no_page; 93 pte_unmap_unlock(ptep, ptl); 94 migration_entry_wait(mm, pmd, address); 95 goto retry; 96 } 97 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 98 goto no_page; 99 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 100 pte_unmap_unlock(ptep, ptl); 101 return NULL; 102 } 103 104 page = vm_normal_page(vma, address, pte); 105 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 106 /* 107 * Only return device mapping pages in the FOLL_GET case since 108 * they are only valid while holding the pgmap reference. 109 */ 110 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 111 if (pgmap) 112 page = pte_page(pte); 113 else 114 goto no_page; 115 } else if (unlikely(!page)) { 116 if (flags & FOLL_DUMP) { 117 /* Avoid special (like zero) pages in core dumps */ 118 page = ERR_PTR(-EFAULT); 119 goto out; 120 } 121 122 if (is_zero_pfn(pte_pfn(pte))) { 123 page = pte_page(pte); 124 } else { 125 int ret; 126 127 ret = follow_pfn_pte(vma, address, ptep, flags); 128 page = ERR_PTR(ret); 129 goto out; 130 } 131 } 132 133 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 134 int ret; 135 get_page(page); 136 pte_unmap_unlock(ptep, ptl); 137 lock_page(page); 138 ret = split_huge_page(page); 139 unlock_page(page); 140 put_page(page); 141 if (ret) 142 return ERR_PTR(ret); 143 goto retry; 144 } 145 146 if (flags & FOLL_GET) { 147 get_page(page); 148 149 /* drop the pgmap reference now that we hold the page */ 150 if (pgmap) { 151 put_dev_pagemap(pgmap); 152 pgmap = NULL; 153 } 154 } 155 if (flags & FOLL_TOUCH) { 156 if ((flags & FOLL_WRITE) && 157 !pte_dirty(pte) && !PageDirty(page)) 158 set_page_dirty(page); 159 /* 160 * pte_mkyoung() would be more correct here, but atomic care 161 * is needed to avoid losing the dirty bit: it is easier to use 162 * mark_page_accessed(). 163 */ 164 mark_page_accessed(page); 165 } 166 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 167 /* Do not mlock pte-mapped THP */ 168 if (PageTransCompound(page)) 169 goto out; 170 171 /* 172 * The preliminary mapping check is mainly to avoid the 173 * pointless overhead of lock_page on the ZERO_PAGE 174 * which might bounce very badly if there is contention. 175 * 176 * If the page is already locked, we don't need to 177 * handle it now - vmscan will handle it later if and 178 * when it attempts to reclaim the page. 179 */ 180 if (page->mapping && trylock_page(page)) { 181 lru_add_drain(); /* push cached pages to LRU */ 182 /* 183 * Because we lock page here, and migration is 184 * blocked by the pte's page reference, and we 185 * know the page is still mapped, we don't even 186 * need to check for file-cache page truncation. 187 */ 188 mlock_vma_page(page); 189 unlock_page(page); 190 } 191 } 192 out: 193 pte_unmap_unlock(ptep, ptl); 194 return page; 195 no_page: 196 pte_unmap_unlock(ptep, ptl); 197 if (!pte_none(pte)) 198 return NULL; 199 return no_page_table(vma, flags); 200 } 201 202 /** 203 * follow_page_mask - look up a page descriptor from a user-virtual address 204 * @vma: vm_area_struct mapping @address 205 * @address: virtual address to look up 206 * @flags: flags modifying lookup behaviour 207 * @page_mask: on output, *page_mask is set according to the size of the page 208 * 209 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 210 * 211 * Returns the mapped (struct page *), %NULL if no mapping exists, or 212 * an error pointer if there is a mapping to something not represented 213 * by a page descriptor (see also vm_normal_page()). 214 */ 215 struct page *follow_page_mask(struct vm_area_struct *vma, 216 unsigned long address, unsigned int flags, 217 unsigned int *page_mask) 218 { 219 pgd_t *pgd; 220 pud_t *pud; 221 pmd_t *pmd; 222 spinlock_t *ptl; 223 struct page *page; 224 struct mm_struct *mm = vma->vm_mm; 225 226 *page_mask = 0; 227 228 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 229 if (!IS_ERR(page)) { 230 BUG_ON(flags & FOLL_GET); 231 return page; 232 } 233 234 pgd = pgd_offset(mm, address); 235 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 236 return no_page_table(vma, flags); 237 238 pud = pud_offset(pgd, address); 239 if (pud_none(*pud)) 240 return no_page_table(vma, flags); 241 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 242 page = follow_huge_pud(mm, address, pud, flags); 243 if (page) 244 return page; 245 return no_page_table(vma, flags); 246 } 247 if (unlikely(pud_bad(*pud))) 248 return no_page_table(vma, flags); 249 250 pmd = pmd_offset(pud, address); 251 if (pmd_none(*pmd)) 252 return no_page_table(vma, flags); 253 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 254 page = follow_huge_pmd(mm, address, pmd, flags); 255 if (page) 256 return page; 257 return no_page_table(vma, flags); 258 } 259 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 260 return no_page_table(vma, flags); 261 if (pmd_devmap(*pmd)) { 262 ptl = pmd_lock(mm, pmd); 263 page = follow_devmap_pmd(vma, address, pmd, flags); 264 spin_unlock(ptl); 265 if (page) 266 return page; 267 } 268 if (likely(!pmd_trans_huge(*pmd))) 269 return follow_page_pte(vma, address, pmd, flags); 270 271 ptl = pmd_lock(mm, pmd); 272 if (unlikely(!pmd_trans_huge(*pmd))) { 273 spin_unlock(ptl); 274 return follow_page_pte(vma, address, pmd, flags); 275 } 276 if (flags & FOLL_SPLIT) { 277 int ret; 278 page = pmd_page(*pmd); 279 if (is_huge_zero_page(page)) { 280 spin_unlock(ptl); 281 ret = 0; 282 split_huge_pmd(vma, pmd, address); 283 } else { 284 get_page(page); 285 spin_unlock(ptl); 286 lock_page(page); 287 ret = split_huge_page(page); 288 unlock_page(page); 289 put_page(page); 290 } 291 292 return ret ? ERR_PTR(ret) : 293 follow_page_pte(vma, address, pmd, flags); 294 } 295 296 page = follow_trans_huge_pmd(vma, address, pmd, flags); 297 spin_unlock(ptl); 298 *page_mask = HPAGE_PMD_NR - 1; 299 return page; 300 } 301 302 static int get_gate_page(struct mm_struct *mm, unsigned long address, 303 unsigned int gup_flags, struct vm_area_struct **vma, 304 struct page **page) 305 { 306 pgd_t *pgd; 307 pud_t *pud; 308 pmd_t *pmd; 309 pte_t *pte; 310 int ret = -EFAULT; 311 312 /* user gate pages are read-only */ 313 if (gup_flags & FOLL_WRITE) 314 return -EFAULT; 315 if (address > TASK_SIZE) 316 pgd = pgd_offset_k(address); 317 else 318 pgd = pgd_offset_gate(mm, address); 319 BUG_ON(pgd_none(*pgd)); 320 pud = pud_offset(pgd, address); 321 BUG_ON(pud_none(*pud)); 322 pmd = pmd_offset(pud, address); 323 if (pmd_none(*pmd)) 324 return -EFAULT; 325 VM_BUG_ON(pmd_trans_huge(*pmd)); 326 pte = pte_offset_map(pmd, address); 327 if (pte_none(*pte)) 328 goto unmap; 329 *vma = get_gate_vma(mm); 330 if (!page) 331 goto out; 332 *page = vm_normal_page(*vma, address, *pte); 333 if (!*page) { 334 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 335 goto unmap; 336 *page = pte_page(*pte); 337 } 338 get_page(*page); 339 out: 340 ret = 0; 341 unmap: 342 pte_unmap(pte); 343 return ret; 344 } 345 346 /* 347 * mmap_sem must be held on entry. If @nonblocking != NULL and 348 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 349 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 350 */ 351 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 352 unsigned long address, unsigned int *flags, int *nonblocking) 353 { 354 struct mm_struct *mm = vma->vm_mm; 355 unsigned int fault_flags = 0; 356 int ret; 357 358 /* mlock all present pages, but do not fault in new pages */ 359 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 360 return -ENOENT; 361 /* For mm_populate(), just skip the stack guard page. */ 362 if ((*flags & FOLL_POPULATE) && 363 (stack_guard_page_start(vma, address) || 364 stack_guard_page_end(vma, address + PAGE_SIZE))) 365 return -ENOENT; 366 if (*flags & FOLL_WRITE) 367 fault_flags |= FAULT_FLAG_WRITE; 368 if (*flags & FOLL_REMOTE) 369 fault_flags |= FAULT_FLAG_REMOTE; 370 if (nonblocking) 371 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 372 if (*flags & FOLL_NOWAIT) 373 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 374 if (*flags & FOLL_TRIED) { 375 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 376 fault_flags |= FAULT_FLAG_TRIED; 377 } 378 379 ret = handle_mm_fault(mm, vma, address, fault_flags); 380 if (ret & VM_FAULT_ERROR) { 381 if (ret & VM_FAULT_OOM) 382 return -ENOMEM; 383 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 384 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 385 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 386 return -EFAULT; 387 BUG(); 388 } 389 390 if (tsk) { 391 if (ret & VM_FAULT_MAJOR) 392 tsk->maj_flt++; 393 else 394 tsk->min_flt++; 395 } 396 397 if (ret & VM_FAULT_RETRY) { 398 if (nonblocking) 399 *nonblocking = 0; 400 return -EBUSY; 401 } 402 403 /* 404 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 405 * necessary, even if maybe_mkwrite decided not to set pte_write. We 406 * can thus safely do subsequent page lookups as if they were reads. 407 * But only do so when looping for pte_write is futile: in some cases 408 * userspace may also be wanting to write to the gotten user page, 409 * which a read fault here might prevent (a readonly page might get 410 * reCOWed by userspace write). 411 */ 412 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 413 *flags &= ~FOLL_WRITE; 414 return 0; 415 } 416 417 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 418 { 419 vm_flags_t vm_flags = vma->vm_flags; 420 int write = (gup_flags & FOLL_WRITE); 421 int foreign = (gup_flags & FOLL_REMOTE); 422 423 if (vm_flags & (VM_IO | VM_PFNMAP)) 424 return -EFAULT; 425 426 if (write) { 427 if (!(vm_flags & VM_WRITE)) { 428 if (!(gup_flags & FOLL_FORCE)) 429 return -EFAULT; 430 /* 431 * We used to let the write,force case do COW in a 432 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 433 * set a breakpoint in a read-only mapping of an 434 * executable, without corrupting the file (yet only 435 * when that file had been opened for writing!). 436 * Anon pages in shared mappings are surprising: now 437 * just reject it. 438 */ 439 if (!is_cow_mapping(vm_flags)) 440 return -EFAULT; 441 } 442 } else if (!(vm_flags & VM_READ)) { 443 if (!(gup_flags & FOLL_FORCE)) 444 return -EFAULT; 445 /* 446 * Is there actually any vma we can reach here which does not 447 * have VM_MAYREAD set? 448 */ 449 if (!(vm_flags & VM_MAYREAD)) 450 return -EFAULT; 451 } 452 /* 453 * gups are always data accesses, not instruction 454 * fetches, so execute=false here 455 */ 456 if (!arch_vma_access_permitted(vma, write, false, foreign)) 457 return -EFAULT; 458 return 0; 459 } 460 461 /** 462 * __get_user_pages() - pin user pages in memory 463 * @tsk: task_struct of target task 464 * @mm: mm_struct of target mm 465 * @start: starting user address 466 * @nr_pages: number of pages from start to pin 467 * @gup_flags: flags modifying pin behaviour 468 * @pages: array that receives pointers to the pages pinned. 469 * Should be at least nr_pages long. Or NULL, if caller 470 * only intends to ensure the pages are faulted in. 471 * @vmas: array of pointers to vmas corresponding to each page. 472 * Or NULL if the caller does not require them. 473 * @nonblocking: whether waiting for disk IO or mmap_sem contention 474 * 475 * Returns number of pages pinned. This may be fewer than the number 476 * requested. If nr_pages is 0 or negative, returns 0. If no pages 477 * were pinned, returns -errno. Each page returned must be released 478 * with a put_page() call when it is finished with. vmas will only 479 * remain valid while mmap_sem is held. 480 * 481 * Must be called with mmap_sem held. It may be released. See below. 482 * 483 * __get_user_pages walks a process's page tables and takes a reference to 484 * each struct page that each user address corresponds to at a given 485 * instant. That is, it takes the page that would be accessed if a user 486 * thread accesses the given user virtual address at that instant. 487 * 488 * This does not guarantee that the page exists in the user mappings when 489 * __get_user_pages returns, and there may even be a completely different 490 * page there in some cases (eg. if mmapped pagecache has been invalidated 491 * and subsequently re faulted). However it does guarantee that the page 492 * won't be freed completely. And mostly callers simply care that the page 493 * contains data that was valid *at some point in time*. Typically, an IO 494 * or similar operation cannot guarantee anything stronger anyway because 495 * locks can't be held over the syscall boundary. 496 * 497 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 498 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 499 * appropriate) must be called after the page is finished with, and 500 * before put_page is called. 501 * 502 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 503 * or mmap_sem contention, and if waiting is needed to pin all pages, 504 * *@nonblocking will be set to 0. Further, if @gup_flags does not 505 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 506 * this case. 507 * 508 * A caller using such a combination of @nonblocking and @gup_flags 509 * must therefore hold the mmap_sem for reading only, and recognize 510 * when it's been released. Otherwise, it must be held for either 511 * reading or writing and will not be released. 512 * 513 * In most cases, get_user_pages or get_user_pages_fast should be used 514 * instead of __get_user_pages. __get_user_pages should be used only if 515 * you need some special @gup_flags. 516 */ 517 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 518 unsigned long start, unsigned long nr_pages, 519 unsigned int gup_flags, struct page **pages, 520 struct vm_area_struct **vmas, int *nonblocking) 521 { 522 long i = 0; 523 unsigned int page_mask; 524 struct vm_area_struct *vma = NULL; 525 526 if (!nr_pages) 527 return 0; 528 529 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 530 531 /* 532 * If FOLL_FORCE is set then do not force a full fault as the hinting 533 * fault information is unrelated to the reference behaviour of a task 534 * using the address space 535 */ 536 if (!(gup_flags & FOLL_FORCE)) 537 gup_flags |= FOLL_NUMA; 538 539 do { 540 struct page *page; 541 unsigned int foll_flags = gup_flags; 542 unsigned int page_increm; 543 544 /* first iteration or cross vma bound */ 545 if (!vma || start >= vma->vm_end) { 546 vma = find_extend_vma(mm, start); 547 if (!vma && in_gate_area(mm, start)) { 548 int ret; 549 ret = get_gate_page(mm, start & PAGE_MASK, 550 gup_flags, &vma, 551 pages ? &pages[i] : NULL); 552 if (ret) 553 return i ? : ret; 554 page_mask = 0; 555 goto next_page; 556 } 557 558 if (!vma || check_vma_flags(vma, gup_flags)) 559 return i ? : -EFAULT; 560 if (is_vm_hugetlb_page(vma)) { 561 i = follow_hugetlb_page(mm, vma, pages, vmas, 562 &start, &nr_pages, i, 563 gup_flags); 564 continue; 565 } 566 } 567 retry: 568 /* 569 * If we have a pending SIGKILL, don't keep faulting pages and 570 * potentially allocating memory. 571 */ 572 if (unlikely(fatal_signal_pending(current))) 573 return i ? i : -ERESTARTSYS; 574 cond_resched(); 575 page = follow_page_mask(vma, start, foll_flags, &page_mask); 576 if (!page) { 577 int ret; 578 ret = faultin_page(tsk, vma, start, &foll_flags, 579 nonblocking); 580 switch (ret) { 581 case 0: 582 goto retry; 583 case -EFAULT: 584 case -ENOMEM: 585 case -EHWPOISON: 586 return i ? i : ret; 587 case -EBUSY: 588 return i; 589 case -ENOENT: 590 goto next_page; 591 } 592 BUG(); 593 } else if (PTR_ERR(page) == -EEXIST) { 594 /* 595 * Proper page table entry exists, but no corresponding 596 * struct page. 597 */ 598 goto next_page; 599 } else if (IS_ERR(page)) { 600 return i ? i : PTR_ERR(page); 601 } 602 if (pages) { 603 pages[i] = page; 604 flush_anon_page(vma, page, start); 605 flush_dcache_page(page); 606 page_mask = 0; 607 } 608 next_page: 609 if (vmas) { 610 vmas[i] = vma; 611 page_mask = 0; 612 } 613 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 614 if (page_increm > nr_pages) 615 page_increm = nr_pages; 616 i += page_increm; 617 start += page_increm * PAGE_SIZE; 618 nr_pages -= page_increm; 619 } while (nr_pages); 620 return i; 621 } 622 EXPORT_SYMBOL(__get_user_pages); 623 624 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags) 625 { 626 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 627 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 628 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 629 630 if (!(vm_flags & vma->vm_flags)) 631 return false; 632 633 /* 634 * The architecture might have a hardware protection 635 * mechanism other than read/write that can deny access. 636 * 637 * gup always represents data access, not instruction 638 * fetches, so execute=false here: 639 */ 640 if (!arch_vma_access_permitted(vma, write, false, foreign)) 641 return false; 642 643 return true; 644 } 645 646 /* 647 * fixup_user_fault() - manually resolve a user page fault 648 * @tsk: the task_struct to use for page fault accounting, or 649 * NULL if faults are not to be recorded. 650 * @mm: mm_struct of target mm 651 * @address: user address 652 * @fault_flags:flags to pass down to handle_mm_fault() 653 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 654 * does not allow retry 655 * 656 * This is meant to be called in the specific scenario where for locking reasons 657 * we try to access user memory in atomic context (within a pagefault_disable() 658 * section), this returns -EFAULT, and we want to resolve the user fault before 659 * trying again. 660 * 661 * Typically this is meant to be used by the futex code. 662 * 663 * The main difference with get_user_pages() is that this function will 664 * unconditionally call handle_mm_fault() which will in turn perform all the 665 * necessary SW fixup of the dirty and young bits in the PTE, while 666 * get_user_pages() only guarantees to update these in the struct page. 667 * 668 * This is important for some architectures where those bits also gate the 669 * access permission to the page because they are maintained in software. On 670 * such architectures, gup() will not be enough to make a subsequent access 671 * succeed. 672 * 673 * This function will not return with an unlocked mmap_sem. So it has not the 674 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 675 */ 676 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 677 unsigned long address, unsigned int fault_flags, 678 bool *unlocked) 679 { 680 struct vm_area_struct *vma; 681 int ret, major = 0; 682 683 if (unlocked) 684 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 685 686 retry: 687 vma = find_extend_vma(mm, address); 688 if (!vma || address < vma->vm_start) 689 return -EFAULT; 690 691 if (!vma_permits_fault(vma, fault_flags)) 692 return -EFAULT; 693 694 ret = handle_mm_fault(mm, vma, address, fault_flags); 695 major |= ret & VM_FAULT_MAJOR; 696 if (ret & VM_FAULT_ERROR) { 697 if (ret & VM_FAULT_OOM) 698 return -ENOMEM; 699 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 700 return -EHWPOISON; 701 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 702 return -EFAULT; 703 BUG(); 704 } 705 706 if (ret & VM_FAULT_RETRY) { 707 down_read(&mm->mmap_sem); 708 if (!(fault_flags & FAULT_FLAG_TRIED)) { 709 *unlocked = true; 710 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 711 fault_flags |= FAULT_FLAG_TRIED; 712 goto retry; 713 } 714 } 715 716 if (tsk) { 717 if (major) 718 tsk->maj_flt++; 719 else 720 tsk->min_flt++; 721 } 722 return 0; 723 } 724 725 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 726 struct mm_struct *mm, 727 unsigned long start, 728 unsigned long nr_pages, 729 int write, int force, 730 struct page **pages, 731 struct vm_area_struct **vmas, 732 int *locked, bool notify_drop, 733 unsigned int flags) 734 { 735 long ret, pages_done; 736 bool lock_dropped; 737 738 if (locked) { 739 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 740 BUG_ON(vmas); 741 /* check caller initialized locked */ 742 BUG_ON(*locked != 1); 743 } 744 745 if (pages) 746 flags |= FOLL_GET; 747 if (write) 748 flags |= FOLL_WRITE; 749 if (force) 750 flags |= FOLL_FORCE; 751 752 pages_done = 0; 753 lock_dropped = false; 754 for (;;) { 755 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 756 vmas, locked); 757 if (!locked) 758 /* VM_FAULT_RETRY couldn't trigger, bypass */ 759 return ret; 760 761 /* VM_FAULT_RETRY cannot return errors */ 762 if (!*locked) { 763 BUG_ON(ret < 0); 764 BUG_ON(ret >= nr_pages); 765 } 766 767 if (!pages) 768 /* If it's a prefault don't insist harder */ 769 return ret; 770 771 if (ret > 0) { 772 nr_pages -= ret; 773 pages_done += ret; 774 if (!nr_pages) 775 break; 776 } 777 if (*locked) { 778 /* VM_FAULT_RETRY didn't trigger */ 779 if (!pages_done) 780 pages_done = ret; 781 break; 782 } 783 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 784 pages += ret; 785 start += ret << PAGE_SHIFT; 786 787 /* 788 * Repeat on the address that fired VM_FAULT_RETRY 789 * without FAULT_FLAG_ALLOW_RETRY but with 790 * FAULT_FLAG_TRIED. 791 */ 792 *locked = 1; 793 lock_dropped = true; 794 down_read(&mm->mmap_sem); 795 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 796 pages, NULL, NULL); 797 if (ret != 1) { 798 BUG_ON(ret > 1); 799 if (!pages_done) 800 pages_done = ret; 801 break; 802 } 803 nr_pages--; 804 pages_done++; 805 if (!nr_pages) 806 break; 807 pages++; 808 start += PAGE_SIZE; 809 } 810 if (notify_drop && lock_dropped && *locked) { 811 /* 812 * We must let the caller know we temporarily dropped the lock 813 * and so the critical section protected by it was lost. 814 */ 815 up_read(&mm->mmap_sem); 816 *locked = 0; 817 } 818 return pages_done; 819 } 820 821 /* 822 * We can leverage the VM_FAULT_RETRY functionality in the page fault 823 * paths better by using either get_user_pages_locked() or 824 * get_user_pages_unlocked(). 825 * 826 * get_user_pages_locked() is suitable to replace the form: 827 * 828 * down_read(&mm->mmap_sem); 829 * do_something() 830 * get_user_pages(tsk, mm, ..., pages, NULL); 831 * up_read(&mm->mmap_sem); 832 * 833 * to: 834 * 835 * int locked = 1; 836 * down_read(&mm->mmap_sem); 837 * do_something() 838 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 839 * if (locked) 840 * up_read(&mm->mmap_sem); 841 */ 842 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages, 843 int write, int force, struct page **pages, 844 int *locked) 845 { 846 return __get_user_pages_locked(current, current->mm, start, nr_pages, 847 write, force, pages, NULL, locked, true, 848 FOLL_TOUCH); 849 } 850 EXPORT_SYMBOL(get_user_pages_locked6); 851 852 /* 853 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to 854 * pass additional gup_flags as last parameter (like FOLL_HWPOISON). 855 * 856 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 857 * caller if required (just like with __get_user_pages). "FOLL_GET", 858 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed 859 * according to the parameters "pages", "write", "force" 860 * respectively. 861 */ 862 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 863 unsigned long start, unsigned long nr_pages, 864 int write, int force, struct page **pages, 865 unsigned int gup_flags) 866 { 867 long ret; 868 int locked = 1; 869 down_read(&mm->mmap_sem); 870 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 871 pages, NULL, &locked, false, gup_flags); 872 if (locked) 873 up_read(&mm->mmap_sem); 874 return ret; 875 } 876 EXPORT_SYMBOL(__get_user_pages_unlocked); 877 878 /* 879 * get_user_pages_unlocked() is suitable to replace the form: 880 * 881 * down_read(&mm->mmap_sem); 882 * get_user_pages(tsk, mm, ..., pages, NULL); 883 * up_read(&mm->mmap_sem); 884 * 885 * with: 886 * 887 * get_user_pages_unlocked(tsk, mm, ..., pages); 888 * 889 * It is functionally equivalent to get_user_pages_fast so 890 * get_user_pages_fast should be used instead, if the two parameters 891 * "tsk" and "mm" are respectively equal to current and current->mm, 892 * or if "force" shall be set to 1 (get_user_pages_fast misses the 893 * "force" parameter). 894 */ 895 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages, 896 int write, int force, struct page **pages) 897 { 898 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 899 write, force, pages, FOLL_TOUCH); 900 } 901 EXPORT_SYMBOL(get_user_pages_unlocked5); 902 903 /* 904 * get_user_pages_remote() - pin user pages in memory 905 * @tsk: the task_struct to use for page fault accounting, or 906 * NULL if faults are not to be recorded. 907 * @mm: mm_struct of target mm 908 * @start: starting user address 909 * @nr_pages: number of pages from start to pin 910 * @write: whether pages will be written to by the caller 911 * @force: whether to force access even when user mapping is currently 912 * protected (but never forces write access to shared mapping). 913 * @pages: array that receives pointers to the pages pinned. 914 * Should be at least nr_pages long. Or NULL, if caller 915 * only intends to ensure the pages are faulted in. 916 * @vmas: array of pointers to vmas corresponding to each page. 917 * Or NULL if the caller does not require them. 918 * 919 * Returns number of pages pinned. This may be fewer than the number 920 * requested. If nr_pages is 0 or negative, returns 0. If no pages 921 * were pinned, returns -errno. Each page returned must be released 922 * with a put_page() call when it is finished with. vmas will only 923 * remain valid while mmap_sem is held. 924 * 925 * Must be called with mmap_sem held for read or write. 926 * 927 * get_user_pages walks a process's page tables and takes a reference to 928 * each struct page that each user address corresponds to at a given 929 * instant. That is, it takes the page that would be accessed if a user 930 * thread accesses the given user virtual address at that instant. 931 * 932 * This does not guarantee that the page exists in the user mappings when 933 * get_user_pages returns, and there may even be a completely different 934 * page there in some cases (eg. if mmapped pagecache has been invalidated 935 * and subsequently re faulted). However it does guarantee that the page 936 * won't be freed completely. And mostly callers simply care that the page 937 * contains data that was valid *at some point in time*. Typically, an IO 938 * or similar operation cannot guarantee anything stronger anyway because 939 * locks can't be held over the syscall boundary. 940 * 941 * If write=0, the page must not be written to. If the page is written to, 942 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 943 * after the page is finished with, and before put_page is called. 944 * 945 * get_user_pages is typically used for fewer-copy IO operations, to get a 946 * handle on the memory by some means other than accesses via the user virtual 947 * addresses. The pages may be submitted for DMA to devices or accessed via 948 * their kernel linear mapping (via the kmap APIs). Care should be taken to 949 * use the correct cache flushing APIs. 950 * 951 * See also get_user_pages_fast, for performance critical applications. 952 * 953 * get_user_pages should be phased out in favor of 954 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 955 * should use get_user_pages because it cannot pass 956 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 957 */ 958 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 959 unsigned long start, unsigned long nr_pages, 960 int write, int force, struct page **pages, 961 struct vm_area_struct **vmas) 962 { 963 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 964 pages, vmas, NULL, false, 965 FOLL_TOUCH | FOLL_REMOTE); 966 } 967 EXPORT_SYMBOL(get_user_pages_remote); 968 969 /* 970 * This is the same as get_user_pages_remote(), just with a 971 * less-flexible calling convention where we assume that the task 972 * and mm being operated on are the current task's. We also 973 * obviously don't pass FOLL_REMOTE in here. 974 */ 975 long get_user_pages6(unsigned long start, unsigned long nr_pages, 976 int write, int force, struct page **pages, 977 struct vm_area_struct **vmas) 978 { 979 return __get_user_pages_locked(current, current->mm, start, nr_pages, 980 write, force, pages, vmas, NULL, false, 981 FOLL_TOUCH); 982 } 983 EXPORT_SYMBOL(get_user_pages6); 984 985 /** 986 * populate_vma_page_range() - populate a range of pages in the vma. 987 * @vma: target vma 988 * @start: start address 989 * @end: end address 990 * @nonblocking: 991 * 992 * This takes care of mlocking the pages too if VM_LOCKED is set. 993 * 994 * return 0 on success, negative error code on error. 995 * 996 * vma->vm_mm->mmap_sem must be held. 997 * 998 * If @nonblocking is NULL, it may be held for read or write and will 999 * be unperturbed. 1000 * 1001 * If @nonblocking is non-NULL, it must held for read only and may be 1002 * released. If it's released, *@nonblocking will be set to 0. 1003 */ 1004 long populate_vma_page_range(struct vm_area_struct *vma, 1005 unsigned long start, unsigned long end, int *nonblocking) 1006 { 1007 struct mm_struct *mm = vma->vm_mm; 1008 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1009 int gup_flags; 1010 1011 VM_BUG_ON(start & ~PAGE_MASK); 1012 VM_BUG_ON(end & ~PAGE_MASK); 1013 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1014 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1015 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1016 1017 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1018 if (vma->vm_flags & VM_LOCKONFAULT) 1019 gup_flags &= ~FOLL_POPULATE; 1020 /* 1021 * We want to touch writable mappings with a write fault in order 1022 * to break COW, except for shared mappings because these don't COW 1023 * and we would not want to dirty them for nothing. 1024 */ 1025 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1026 gup_flags |= FOLL_WRITE; 1027 1028 /* 1029 * We want mlock to succeed for regions that have any permissions 1030 * other than PROT_NONE. 1031 */ 1032 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1033 gup_flags |= FOLL_FORCE; 1034 1035 /* 1036 * We made sure addr is within a VMA, so the following will 1037 * not result in a stack expansion that recurses back here. 1038 */ 1039 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1040 NULL, NULL, nonblocking); 1041 } 1042 1043 /* 1044 * __mm_populate - populate and/or mlock pages within a range of address space. 1045 * 1046 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1047 * flags. VMAs must be already marked with the desired vm_flags, and 1048 * mmap_sem must not be held. 1049 */ 1050 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1051 { 1052 struct mm_struct *mm = current->mm; 1053 unsigned long end, nstart, nend; 1054 struct vm_area_struct *vma = NULL; 1055 int locked = 0; 1056 long ret = 0; 1057 1058 VM_BUG_ON(start & ~PAGE_MASK); 1059 VM_BUG_ON(len != PAGE_ALIGN(len)); 1060 end = start + len; 1061 1062 for (nstart = start; nstart < end; nstart = nend) { 1063 /* 1064 * We want to fault in pages for [nstart; end) address range. 1065 * Find first corresponding VMA. 1066 */ 1067 if (!locked) { 1068 locked = 1; 1069 down_read(&mm->mmap_sem); 1070 vma = find_vma(mm, nstart); 1071 } else if (nstart >= vma->vm_end) 1072 vma = vma->vm_next; 1073 if (!vma || vma->vm_start >= end) 1074 break; 1075 /* 1076 * Set [nstart; nend) to intersection of desired address 1077 * range with the first VMA. Also, skip undesirable VMA types. 1078 */ 1079 nend = min(end, vma->vm_end); 1080 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1081 continue; 1082 if (nstart < vma->vm_start) 1083 nstart = vma->vm_start; 1084 /* 1085 * Now fault in a range of pages. populate_vma_page_range() 1086 * double checks the vma flags, so that it won't mlock pages 1087 * if the vma was already munlocked. 1088 */ 1089 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1090 if (ret < 0) { 1091 if (ignore_errors) { 1092 ret = 0; 1093 continue; /* continue at next VMA */ 1094 } 1095 break; 1096 } 1097 nend = nstart + ret * PAGE_SIZE; 1098 ret = 0; 1099 } 1100 if (locked) 1101 up_read(&mm->mmap_sem); 1102 return ret; /* 0 or negative error code */ 1103 } 1104 1105 /** 1106 * get_dump_page() - pin user page in memory while writing it to core dump 1107 * @addr: user address 1108 * 1109 * Returns struct page pointer of user page pinned for dump, 1110 * to be freed afterwards by put_page(). 1111 * 1112 * Returns NULL on any kind of failure - a hole must then be inserted into 1113 * the corefile, to preserve alignment with its headers; and also returns 1114 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1115 * allowing a hole to be left in the corefile to save diskspace. 1116 * 1117 * Called without mmap_sem, but after all other threads have been killed. 1118 */ 1119 #ifdef CONFIG_ELF_CORE 1120 struct page *get_dump_page(unsigned long addr) 1121 { 1122 struct vm_area_struct *vma; 1123 struct page *page; 1124 1125 if (__get_user_pages(current, current->mm, addr, 1, 1126 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1127 NULL) < 1) 1128 return NULL; 1129 flush_cache_page(vma, addr, page_to_pfn(page)); 1130 return page; 1131 } 1132 #endif /* CONFIG_ELF_CORE */ 1133 1134 /* 1135 * Generic RCU Fast GUP 1136 * 1137 * get_user_pages_fast attempts to pin user pages by walking the page 1138 * tables directly and avoids taking locks. Thus the walker needs to be 1139 * protected from page table pages being freed from under it, and should 1140 * block any THP splits. 1141 * 1142 * One way to achieve this is to have the walker disable interrupts, and 1143 * rely on IPIs from the TLB flushing code blocking before the page table 1144 * pages are freed. This is unsuitable for architectures that do not need 1145 * to broadcast an IPI when invalidating TLBs. 1146 * 1147 * Another way to achieve this is to batch up page table containing pages 1148 * belonging to more than one mm_user, then rcu_sched a callback to free those 1149 * pages. Disabling interrupts will allow the fast_gup walker to both block 1150 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1151 * (which is a relatively rare event). The code below adopts this strategy. 1152 * 1153 * Before activating this code, please be aware that the following assumptions 1154 * are currently made: 1155 * 1156 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 1157 * pages containing page tables. 1158 * 1159 * *) ptes can be read atomically by the architecture. 1160 * 1161 * *) access_ok is sufficient to validate userspace address ranges. 1162 * 1163 * The last two assumptions can be relaxed by the addition of helper functions. 1164 * 1165 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1166 */ 1167 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1168 1169 #ifdef __HAVE_ARCH_PTE_SPECIAL 1170 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1171 int write, struct page **pages, int *nr) 1172 { 1173 pte_t *ptep, *ptem; 1174 int ret = 0; 1175 1176 ptem = ptep = pte_offset_map(&pmd, addr); 1177 do { 1178 /* 1179 * In the line below we are assuming that the pte can be read 1180 * atomically. If this is not the case for your architecture, 1181 * please wrap this in a helper function! 1182 * 1183 * for an example see gup_get_pte in arch/x86/mm/gup.c 1184 */ 1185 pte_t pte = READ_ONCE(*ptep); 1186 struct page *head, *page; 1187 1188 /* 1189 * Similar to the PMD case below, NUMA hinting must take slow 1190 * path using the pte_protnone check. 1191 */ 1192 if (!pte_present(pte) || pte_special(pte) || 1193 pte_protnone(pte) || (write && !pte_write(pte))) 1194 goto pte_unmap; 1195 1196 if (!arch_pte_access_permitted(pte, write)) 1197 goto pte_unmap; 1198 1199 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1200 page = pte_page(pte); 1201 head = compound_head(page); 1202 1203 if (!page_cache_get_speculative(head)) 1204 goto pte_unmap; 1205 1206 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1207 put_page(head); 1208 goto pte_unmap; 1209 } 1210 1211 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1212 pages[*nr] = page; 1213 (*nr)++; 1214 1215 } while (ptep++, addr += PAGE_SIZE, addr != end); 1216 1217 ret = 1; 1218 1219 pte_unmap: 1220 pte_unmap(ptem); 1221 return ret; 1222 } 1223 #else 1224 1225 /* 1226 * If we can't determine whether or not a pte is special, then fail immediately 1227 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1228 * to be special. 1229 * 1230 * For a futex to be placed on a THP tail page, get_futex_key requires a 1231 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1232 * useful to have gup_huge_pmd even if we can't operate on ptes. 1233 */ 1234 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1235 int write, struct page **pages, int *nr) 1236 { 1237 return 0; 1238 } 1239 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1240 1241 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1242 unsigned long end, int write, struct page **pages, int *nr) 1243 { 1244 struct page *head, *page; 1245 int refs; 1246 1247 if (write && !pmd_write(orig)) 1248 return 0; 1249 1250 refs = 0; 1251 head = pmd_page(orig); 1252 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1253 do { 1254 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1255 pages[*nr] = page; 1256 (*nr)++; 1257 page++; 1258 refs++; 1259 } while (addr += PAGE_SIZE, addr != end); 1260 1261 if (!page_cache_add_speculative(head, refs)) { 1262 *nr -= refs; 1263 return 0; 1264 } 1265 1266 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1267 *nr -= refs; 1268 while (refs--) 1269 put_page(head); 1270 return 0; 1271 } 1272 1273 return 1; 1274 } 1275 1276 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1277 unsigned long end, int write, struct page **pages, int *nr) 1278 { 1279 struct page *head, *page; 1280 int refs; 1281 1282 if (write && !pud_write(orig)) 1283 return 0; 1284 1285 refs = 0; 1286 head = pud_page(orig); 1287 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1288 do { 1289 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1290 pages[*nr] = page; 1291 (*nr)++; 1292 page++; 1293 refs++; 1294 } while (addr += PAGE_SIZE, addr != end); 1295 1296 if (!page_cache_add_speculative(head, refs)) { 1297 *nr -= refs; 1298 return 0; 1299 } 1300 1301 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1302 *nr -= refs; 1303 while (refs--) 1304 put_page(head); 1305 return 0; 1306 } 1307 1308 return 1; 1309 } 1310 1311 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1312 unsigned long end, int write, 1313 struct page **pages, int *nr) 1314 { 1315 int refs; 1316 struct page *head, *page; 1317 1318 if (write && !pgd_write(orig)) 1319 return 0; 1320 1321 refs = 0; 1322 head = pgd_page(orig); 1323 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1324 do { 1325 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1326 pages[*nr] = page; 1327 (*nr)++; 1328 page++; 1329 refs++; 1330 } while (addr += PAGE_SIZE, addr != end); 1331 1332 if (!page_cache_add_speculative(head, refs)) { 1333 *nr -= refs; 1334 return 0; 1335 } 1336 1337 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1338 *nr -= refs; 1339 while (refs--) 1340 put_page(head); 1341 return 0; 1342 } 1343 1344 return 1; 1345 } 1346 1347 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1348 int write, struct page **pages, int *nr) 1349 { 1350 unsigned long next; 1351 pmd_t *pmdp; 1352 1353 pmdp = pmd_offset(&pud, addr); 1354 do { 1355 pmd_t pmd = READ_ONCE(*pmdp); 1356 1357 next = pmd_addr_end(addr, end); 1358 if (pmd_none(pmd)) 1359 return 0; 1360 1361 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1362 /* 1363 * NUMA hinting faults need to be handled in the GUP 1364 * slowpath for accounting purposes and so that they 1365 * can be serialised against THP migration. 1366 */ 1367 if (pmd_protnone(pmd)) 1368 return 0; 1369 1370 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1371 pages, nr)) 1372 return 0; 1373 1374 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1375 /* 1376 * architecture have different format for hugetlbfs 1377 * pmd format and THP pmd format 1378 */ 1379 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1380 PMD_SHIFT, next, write, pages, nr)) 1381 return 0; 1382 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1383 return 0; 1384 } while (pmdp++, addr = next, addr != end); 1385 1386 return 1; 1387 } 1388 1389 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, 1390 int write, struct page **pages, int *nr) 1391 { 1392 unsigned long next; 1393 pud_t *pudp; 1394 1395 pudp = pud_offset(&pgd, addr); 1396 do { 1397 pud_t pud = READ_ONCE(*pudp); 1398 1399 next = pud_addr_end(addr, end); 1400 if (pud_none(pud)) 1401 return 0; 1402 if (unlikely(pud_huge(pud))) { 1403 if (!gup_huge_pud(pud, pudp, addr, next, write, 1404 pages, nr)) 1405 return 0; 1406 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1407 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1408 PUD_SHIFT, next, write, pages, nr)) 1409 return 0; 1410 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1411 return 0; 1412 } while (pudp++, addr = next, addr != end); 1413 1414 return 1; 1415 } 1416 1417 /* 1418 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1419 * the regular GUP. It will only return non-negative values. 1420 */ 1421 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1422 struct page **pages) 1423 { 1424 struct mm_struct *mm = current->mm; 1425 unsigned long addr, len, end; 1426 unsigned long next, flags; 1427 pgd_t *pgdp; 1428 int nr = 0; 1429 1430 start &= PAGE_MASK; 1431 addr = start; 1432 len = (unsigned long) nr_pages << PAGE_SHIFT; 1433 end = start + len; 1434 1435 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1436 start, len))) 1437 return 0; 1438 1439 /* 1440 * Disable interrupts. We use the nested form as we can already have 1441 * interrupts disabled by get_futex_key. 1442 * 1443 * With interrupts disabled, we block page table pages from being 1444 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1445 * for more details. 1446 * 1447 * We do not adopt an rcu_read_lock(.) here as we also want to 1448 * block IPIs that come from THPs splitting. 1449 */ 1450 1451 local_irq_save(flags); 1452 pgdp = pgd_offset(mm, addr); 1453 do { 1454 pgd_t pgd = READ_ONCE(*pgdp); 1455 1456 next = pgd_addr_end(addr, end); 1457 if (pgd_none(pgd)) 1458 break; 1459 if (unlikely(pgd_huge(pgd))) { 1460 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1461 pages, &nr)) 1462 break; 1463 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1464 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1465 PGDIR_SHIFT, next, write, pages, &nr)) 1466 break; 1467 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) 1468 break; 1469 } while (pgdp++, addr = next, addr != end); 1470 local_irq_restore(flags); 1471 1472 return nr; 1473 } 1474 1475 /** 1476 * get_user_pages_fast() - pin user pages in memory 1477 * @start: starting user address 1478 * @nr_pages: number of pages from start to pin 1479 * @write: whether pages will be written to 1480 * @pages: array that receives pointers to the pages pinned. 1481 * Should be at least nr_pages long. 1482 * 1483 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1484 * If not successful, it will fall back to taking the lock and 1485 * calling get_user_pages(). 1486 * 1487 * Returns number of pages pinned. This may be fewer than the number 1488 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1489 * were pinned, returns -errno. 1490 */ 1491 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1492 struct page **pages) 1493 { 1494 struct mm_struct *mm = current->mm; 1495 int nr, ret; 1496 1497 start &= PAGE_MASK; 1498 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1499 ret = nr; 1500 1501 if (nr < nr_pages) { 1502 /* Try to get the remaining pages with get_user_pages */ 1503 start += nr << PAGE_SHIFT; 1504 pages += nr; 1505 1506 ret = get_user_pages_unlocked(current, mm, start, 1507 nr_pages - nr, write, 0, pages); 1508 1509 /* Have to be a bit careful with return values */ 1510 if (nr > 0) { 1511 if (ret < 0) 1512 ret = nr; 1513 else 1514 ret += nr; 1515 } 1516 } 1517 1518 return ret; 1519 } 1520 1521 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1522 1523 long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm, 1524 unsigned long start, unsigned long nr_pages, 1525 int write, int force, struct page **pages, 1526 struct vm_area_struct **vmas) 1527 { 1528 WARN_ONCE(tsk != current, "get_user_pages() called on remote task"); 1529 WARN_ONCE(mm != current->mm, "get_user_pages() called on remote mm"); 1530 1531 return get_user_pages6(start, nr_pages, write, force, pages, vmas); 1532 } 1533 EXPORT_SYMBOL(get_user_pages8); 1534 1535 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm, 1536 unsigned long start, unsigned long nr_pages, 1537 int write, int force, struct page **pages, int *locked) 1538 { 1539 WARN_ONCE(tsk != current, "get_user_pages_locked() called on remote task"); 1540 WARN_ONCE(mm != current->mm, "get_user_pages_locked() called on remote mm"); 1541 1542 return get_user_pages_locked6(start, nr_pages, write, force, pages, locked); 1543 } 1544 EXPORT_SYMBOL(get_user_pages_locked8); 1545 1546 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm, 1547 unsigned long start, unsigned long nr_pages, 1548 int write, int force, struct page **pages) 1549 { 1550 WARN_ONCE(tsk != current, "get_user_pages_unlocked() called on remote task"); 1551 WARN_ONCE(mm != current->mm, "get_user_pages_unlocked() called on remote mm"); 1552 1553 return get_user_pages_unlocked5(start, nr_pages, write, force, pages); 1554 } 1555 EXPORT_SYMBOL(get_user_pages_unlocked7); 1556 1557