xref: /linux/mm/gup.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 #define __DISABLE_GUP_DEPRECATED 1
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 
18 #include <asm/mmu_context.h>
19 #include <asm/pgtable.h>
20 #include <asm/tlbflush.h>
21 
22 #include "internal.h"
23 
24 static struct page *no_page_table(struct vm_area_struct *vma,
25 		unsigned int flags)
26 {
27 	/*
28 	 * When core dumping an enormous anonymous area that nobody
29 	 * has touched so far, we don't want to allocate unnecessary pages or
30 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
31 	 * then get_dump_page() will return NULL to leave a hole in the dump.
32 	 * But we can only make this optimization where a hole would surely
33 	 * be zero-filled if handle_mm_fault() actually did handle it.
34 	 */
35 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
36 		return ERR_PTR(-EFAULT);
37 	return NULL;
38 }
39 
40 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
41 		pte_t *pte, unsigned int flags)
42 {
43 	/* No page to get reference */
44 	if (flags & FOLL_GET)
45 		return -EFAULT;
46 
47 	if (flags & FOLL_TOUCH) {
48 		pte_t entry = *pte;
49 
50 		if (flags & FOLL_WRITE)
51 			entry = pte_mkdirty(entry);
52 		entry = pte_mkyoung(entry);
53 
54 		if (!pte_same(*pte, entry)) {
55 			set_pte_at(vma->vm_mm, address, pte, entry);
56 			update_mmu_cache(vma, address, pte);
57 		}
58 	}
59 
60 	/* Proper page table entry exists, but no corresponding struct page */
61 	return -EEXIST;
62 }
63 
64 static struct page *follow_page_pte(struct vm_area_struct *vma,
65 		unsigned long address, pmd_t *pmd, unsigned int flags)
66 {
67 	struct mm_struct *mm = vma->vm_mm;
68 	struct dev_pagemap *pgmap = NULL;
69 	struct page *page;
70 	spinlock_t *ptl;
71 	pte_t *ptep, pte;
72 
73 retry:
74 	if (unlikely(pmd_bad(*pmd)))
75 		return no_page_table(vma, flags);
76 
77 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
78 	pte = *ptep;
79 	if (!pte_present(pte)) {
80 		swp_entry_t entry;
81 		/*
82 		 * KSM's break_ksm() relies upon recognizing a ksm page
83 		 * even while it is being migrated, so for that case we
84 		 * need migration_entry_wait().
85 		 */
86 		if (likely(!(flags & FOLL_MIGRATION)))
87 			goto no_page;
88 		if (pte_none(pte))
89 			goto no_page;
90 		entry = pte_to_swp_entry(pte);
91 		if (!is_migration_entry(entry))
92 			goto no_page;
93 		pte_unmap_unlock(ptep, ptl);
94 		migration_entry_wait(mm, pmd, address);
95 		goto retry;
96 	}
97 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
98 		goto no_page;
99 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
100 		pte_unmap_unlock(ptep, ptl);
101 		return NULL;
102 	}
103 
104 	page = vm_normal_page(vma, address, pte);
105 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
106 		/*
107 		 * Only return device mapping pages in the FOLL_GET case since
108 		 * they are only valid while holding the pgmap reference.
109 		 */
110 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
111 		if (pgmap)
112 			page = pte_page(pte);
113 		else
114 			goto no_page;
115 	} else if (unlikely(!page)) {
116 		if (flags & FOLL_DUMP) {
117 			/* Avoid special (like zero) pages in core dumps */
118 			page = ERR_PTR(-EFAULT);
119 			goto out;
120 		}
121 
122 		if (is_zero_pfn(pte_pfn(pte))) {
123 			page = pte_page(pte);
124 		} else {
125 			int ret;
126 
127 			ret = follow_pfn_pte(vma, address, ptep, flags);
128 			page = ERR_PTR(ret);
129 			goto out;
130 		}
131 	}
132 
133 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
134 		int ret;
135 		get_page(page);
136 		pte_unmap_unlock(ptep, ptl);
137 		lock_page(page);
138 		ret = split_huge_page(page);
139 		unlock_page(page);
140 		put_page(page);
141 		if (ret)
142 			return ERR_PTR(ret);
143 		goto retry;
144 	}
145 
146 	if (flags & FOLL_GET) {
147 		get_page(page);
148 
149 		/* drop the pgmap reference now that we hold the page */
150 		if (pgmap) {
151 			put_dev_pagemap(pgmap);
152 			pgmap = NULL;
153 		}
154 	}
155 	if (flags & FOLL_TOUCH) {
156 		if ((flags & FOLL_WRITE) &&
157 		    !pte_dirty(pte) && !PageDirty(page))
158 			set_page_dirty(page);
159 		/*
160 		 * pte_mkyoung() would be more correct here, but atomic care
161 		 * is needed to avoid losing the dirty bit: it is easier to use
162 		 * mark_page_accessed().
163 		 */
164 		mark_page_accessed(page);
165 	}
166 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
167 		/* Do not mlock pte-mapped THP */
168 		if (PageTransCompound(page))
169 			goto out;
170 
171 		/*
172 		 * The preliminary mapping check is mainly to avoid the
173 		 * pointless overhead of lock_page on the ZERO_PAGE
174 		 * which might bounce very badly if there is contention.
175 		 *
176 		 * If the page is already locked, we don't need to
177 		 * handle it now - vmscan will handle it later if and
178 		 * when it attempts to reclaim the page.
179 		 */
180 		if (page->mapping && trylock_page(page)) {
181 			lru_add_drain();  /* push cached pages to LRU */
182 			/*
183 			 * Because we lock page here, and migration is
184 			 * blocked by the pte's page reference, and we
185 			 * know the page is still mapped, we don't even
186 			 * need to check for file-cache page truncation.
187 			 */
188 			mlock_vma_page(page);
189 			unlock_page(page);
190 		}
191 	}
192 out:
193 	pte_unmap_unlock(ptep, ptl);
194 	return page;
195 no_page:
196 	pte_unmap_unlock(ptep, ptl);
197 	if (!pte_none(pte))
198 		return NULL;
199 	return no_page_table(vma, flags);
200 }
201 
202 /**
203  * follow_page_mask - look up a page descriptor from a user-virtual address
204  * @vma: vm_area_struct mapping @address
205  * @address: virtual address to look up
206  * @flags: flags modifying lookup behaviour
207  * @page_mask: on output, *page_mask is set according to the size of the page
208  *
209  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
210  *
211  * Returns the mapped (struct page *), %NULL if no mapping exists, or
212  * an error pointer if there is a mapping to something not represented
213  * by a page descriptor (see also vm_normal_page()).
214  */
215 struct page *follow_page_mask(struct vm_area_struct *vma,
216 			      unsigned long address, unsigned int flags,
217 			      unsigned int *page_mask)
218 {
219 	pgd_t *pgd;
220 	pud_t *pud;
221 	pmd_t *pmd;
222 	spinlock_t *ptl;
223 	struct page *page;
224 	struct mm_struct *mm = vma->vm_mm;
225 
226 	*page_mask = 0;
227 
228 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
229 	if (!IS_ERR(page)) {
230 		BUG_ON(flags & FOLL_GET);
231 		return page;
232 	}
233 
234 	pgd = pgd_offset(mm, address);
235 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
236 		return no_page_table(vma, flags);
237 
238 	pud = pud_offset(pgd, address);
239 	if (pud_none(*pud))
240 		return no_page_table(vma, flags);
241 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
242 		page = follow_huge_pud(mm, address, pud, flags);
243 		if (page)
244 			return page;
245 		return no_page_table(vma, flags);
246 	}
247 	if (unlikely(pud_bad(*pud)))
248 		return no_page_table(vma, flags);
249 
250 	pmd = pmd_offset(pud, address);
251 	if (pmd_none(*pmd))
252 		return no_page_table(vma, flags);
253 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
254 		page = follow_huge_pmd(mm, address, pmd, flags);
255 		if (page)
256 			return page;
257 		return no_page_table(vma, flags);
258 	}
259 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
260 		return no_page_table(vma, flags);
261 	if (pmd_devmap(*pmd)) {
262 		ptl = pmd_lock(mm, pmd);
263 		page = follow_devmap_pmd(vma, address, pmd, flags);
264 		spin_unlock(ptl);
265 		if (page)
266 			return page;
267 	}
268 	if (likely(!pmd_trans_huge(*pmd)))
269 		return follow_page_pte(vma, address, pmd, flags);
270 
271 	ptl = pmd_lock(mm, pmd);
272 	if (unlikely(!pmd_trans_huge(*pmd))) {
273 		spin_unlock(ptl);
274 		return follow_page_pte(vma, address, pmd, flags);
275 	}
276 	if (flags & FOLL_SPLIT) {
277 		int ret;
278 		page = pmd_page(*pmd);
279 		if (is_huge_zero_page(page)) {
280 			spin_unlock(ptl);
281 			ret = 0;
282 			split_huge_pmd(vma, pmd, address);
283 		} else {
284 			get_page(page);
285 			spin_unlock(ptl);
286 			lock_page(page);
287 			ret = split_huge_page(page);
288 			unlock_page(page);
289 			put_page(page);
290 		}
291 
292 		return ret ? ERR_PTR(ret) :
293 			follow_page_pte(vma, address, pmd, flags);
294 	}
295 
296 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
297 	spin_unlock(ptl);
298 	*page_mask = HPAGE_PMD_NR - 1;
299 	return page;
300 }
301 
302 static int get_gate_page(struct mm_struct *mm, unsigned long address,
303 		unsigned int gup_flags, struct vm_area_struct **vma,
304 		struct page **page)
305 {
306 	pgd_t *pgd;
307 	pud_t *pud;
308 	pmd_t *pmd;
309 	pte_t *pte;
310 	int ret = -EFAULT;
311 
312 	/* user gate pages are read-only */
313 	if (gup_flags & FOLL_WRITE)
314 		return -EFAULT;
315 	if (address > TASK_SIZE)
316 		pgd = pgd_offset_k(address);
317 	else
318 		pgd = pgd_offset_gate(mm, address);
319 	BUG_ON(pgd_none(*pgd));
320 	pud = pud_offset(pgd, address);
321 	BUG_ON(pud_none(*pud));
322 	pmd = pmd_offset(pud, address);
323 	if (pmd_none(*pmd))
324 		return -EFAULT;
325 	VM_BUG_ON(pmd_trans_huge(*pmd));
326 	pte = pte_offset_map(pmd, address);
327 	if (pte_none(*pte))
328 		goto unmap;
329 	*vma = get_gate_vma(mm);
330 	if (!page)
331 		goto out;
332 	*page = vm_normal_page(*vma, address, *pte);
333 	if (!*page) {
334 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
335 			goto unmap;
336 		*page = pte_page(*pte);
337 	}
338 	get_page(*page);
339 out:
340 	ret = 0;
341 unmap:
342 	pte_unmap(pte);
343 	return ret;
344 }
345 
346 /*
347  * mmap_sem must be held on entry.  If @nonblocking != NULL and
348  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
349  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
350  */
351 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
352 		unsigned long address, unsigned int *flags, int *nonblocking)
353 {
354 	struct mm_struct *mm = vma->vm_mm;
355 	unsigned int fault_flags = 0;
356 	int ret;
357 
358 	/* mlock all present pages, but do not fault in new pages */
359 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
360 		return -ENOENT;
361 	/* For mm_populate(), just skip the stack guard page. */
362 	if ((*flags & FOLL_POPULATE) &&
363 			(stack_guard_page_start(vma, address) ||
364 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
365 		return -ENOENT;
366 	if (*flags & FOLL_WRITE)
367 		fault_flags |= FAULT_FLAG_WRITE;
368 	if (*flags & FOLL_REMOTE)
369 		fault_flags |= FAULT_FLAG_REMOTE;
370 	if (nonblocking)
371 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
372 	if (*flags & FOLL_NOWAIT)
373 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
374 	if (*flags & FOLL_TRIED) {
375 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
376 		fault_flags |= FAULT_FLAG_TRIED;
377 	}
378 
379 	ret = handle_mm_fault(mm, vma, address, fault_flags);
380 	if (ret & VM_FAULT_ERROR) {
381 		if (ret & VM_FAULT_OOM)
382 			return -ENOMEM;
383 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
384 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
385 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
386 			return -EFAULT;
387 		BUG();
388 	}
389 
390 	if (tsk) {
391 		if (ret & VM_FAULT_MAJOR)
392 			tsk->maj_flt++;
393 		else
394 			tsk->min_flt++;
395 	}
396 
397 	if (ret & VM_FAULT_RETRY) {
398 		if (nonblocking)
399 			*nonblocking = 0;
400 		return -EBUSY;
401 	}
402 
403 	/*
404 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
405 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
406 	 * can thus safely do subsequent page lookups as if they were reads.
407 	 * But only do so when looping for pte_write is futile: in some cases
408 	 * userspace may also be wanting to write to the gotten user page,
409 	 * which a read fault here might prevent (a readonly page might get
410 	 * reCOWed by userspace write).
411 	 */
412 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
413 		*flags &= ~FOLL_WRITE;
414 	return 0;
415 }
416 
417 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
418 {
419 	vm_flags_t vm_flags = vma->vm_flags;
420 	int write = (gup_flags & FOLL_WRITE);
421 	int foreign = (gup_flags & FOLL_REMOTE);
422 
423 	if (vm_flags & (VM_IO | VM_PFNMAP))
424 		return -EFAULT;
425 
426 	if (write) {
427 		if (!(vm_flags & VM_WRITE)) {
428 			if (!(gup_flags & FOLL_FORCE))
429 				return -EFAULT;
430 			/*
431 			 * We used to let the write,force case do COW in a
432 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
433 			 * set a breakpoint in a read-only mapping of an
434 			 * executable, without corrupting the file (yet only
435 			 * when that file had been opened for writing!).
436 			 * Anon pages in shared mappings are surprising: now
437 			 * just reject it.
438 			 */
439 			if (!is_cow_mapping(vm_flags))
440 				return -EFAULT;
441 		}
442 	} else if (!(vm_flags & VM_READ)) {
443 		if (!(gup_flags & FOLL_FORCE))
444 			return -EFAULT;
445 		/*
446 		 * Is there actually any vma we can reach here which does not
447 		 * have VM_MAYREAD set?
448 		 */
449 		if (!(vm_flags & VM_MAYREAD))
450 			return -EFAULT;
451 	}
452 	/*
453 	 * gups are always data accesses, not instruction
454 	 * fetches, so execute=false here
455 	 */
456 	if (!arch_vma_access_permitted(vma, write, false, foreign))
457 		return -EFAULT;
458 	return 0;
459 }
460 
461 /**
462  * __get_user_pages() - pin user pages in memory
463  * @tsk:	task_struct of target task
464  * @mm:		mm_struct of target mm
465  * @start:	starting user address
466  * @nr_pages:	number of pages from start to pin
467  * @gup_flags:	flags modifying pin behaviour
468  * @pages:	array that receives pointers to the pages pinned.
469  *		Should be at least nr_pages long. Or NULL, if caller
470  *		only intends to ensure the pages are faulted in.
471  * @vmas:	array of pointers to vmas corresponding to each page.
472  *		Or NULL if the caller does not require them.
473  * @nonblocking: whether waiting for disk IO or mmap_sem contention
474  *
475  * Returns number of pages pinned. This may be fewer than the number
476  * requested. If nr_pages is 0 or negative, returns 0. If no pages
477  * were pinned, returns -errno. Each page returned must be released
478  * with a put_page() call when it is finished with. vmas will only
479  * remain valid while mmap_sem is held.
480  *
481  * Must be called with mmap_sem held.  It may be released.  See below.
482  *
483  * __get_user_pages walks a process's page tables and takes a reference to
484  * each struct page that each user address corresponds to at a given
485  * instant. That is, it takes the page that would be accessed if a user
486  * thread accesses the given user virtual address at that instant.
487  *
488  * This does not guarantee that the page exists in the user mappings when
489  * __get_user_pages returns, and there may even be a completely different
490  * page there in some cases (eg. if mmapped pagecache has been invalidated
491  * and subsequently re faulted). However it does guarantee that the page
492  * won't be freed completely. And mostly callers simply care that the page
493  * contains data that was valid *at some point in time*. Typically, an IO
494  * or similar operation cannot guarantee anything stronger anyway because
495  * locks can't be held over the syscall boundary.
496  *
497  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
498  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
499  * appropriate) must be called after the page is finished with, and
500  * before put_page is called.
501  *
502  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
503  * or mmap_sem contention, and if waiting is needed to pin all pages,
504  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
505  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
506  * this case.
507  *
508  * A caller using such a combination of @nonblocking and @gup_flags
509  * must therefore hold the mmap_sem for reading only, and recognize
510  * when it's been released.  Otherwise, it must be held for either
511  * reading or writing and will not be released.
512  *
513  * In most cases, get_user_pages or get_user_pages_fast should be used
514  * instead of __get_user_pages. __get_user_pages should be used only if
515  * you need some special @gup_flags.
516  */
517 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
518 		unsigned long start, unsigned long nr_pages,
519 		unsigned int gup_flags, struct page **pages,
520 		struct vm_area_struct **vmas, int *nonblocking)
521 {
522 	long i = 0;
523 	unsigned int page_mask;
524 	struct vm_area_struct *vma = NULL;
525 
526 	if (!nr_pages)
527 		return 0;
528 
529 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
530 
531 	/*
532 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
533 	 * fault information is unrelated to the reference behaviour of a task
534 	 * using the address space
535 	 */
536 	if (!(gup_flags & FOLL_FORCE))
537 		gup_flags |= FOLL_NUMA;
538 
539 	do {
540 		struct page *page;
541 		unsigned int foll_flags = gup_flags;
542 		unsigned int page_increm;
543 
544 		/* first iteration or cross vma bound */
545 		if (!vma || start >= vma->vm_end) {
546 			vma = find_extend_vma(mm, start);
547 			if (!vma && in_gate_area(mm, start)) {
548 				int ret;
549 				ret = get_gate_page(mm, start & PAGE_MASK,
550 						gup_flags, &vma,
551 						pages ? &pages[i] : NULL);
552 				if (ret)
553 					return i ? : ret;
554 				page_mask = 0;
555 				goto next_page;
556 			}
557 
558 			if (!vma || check_vma_flags(vma, gup_flags))
559 				return i ? : -EFAULT;
560 			if (is_vm_hugetlb_page(vma)) {
561 				i = follow_hugetlb_page(mm, vma, pages, vmas,
562 						&start, &nr_pages, i,
563 						gup_flags);
564 				continue;
565 			}
566 		}
567 retry:
568 		/*
569 		 * If we have a pending SIGKILL, don't keep faulting pages and
570 		 * potentially allocating memory.
571 		 */
572 		if (unlikely(fatal_signal_pending(current)))
573 			return i ? i : -ERESTARTSYS;
574 		cond_resched();
575 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
576 		if (!page) {
577 			int ret;
578 			ret = faultin_page(tsk, vma, start, &foll_flags,
579 					nonblocking);
580 			switch (ret) {
581 			case 0:
582 				goto retry;
583 			case -EFAULT:
584 			case -ENOMEM:
585 			case -EHWPOISON:
586 				return i ? i : ret;
587 			case -EBUSY:
588 				return i;
589 			case -ENOENT:
590 				goto next_page;
591 			}
592 			BUG();
593 		} else if (PTR_ERR(page) == -EEXIST) {
594 			/*
595 			 * Proper page table entry exists, but no corresponding
596 			 * struct page.
597 			 */
598 			goto next_page;
599 		} else if (IS_ERR(page)) {
600 			return i ? i : PTR_ERR(page);
601 		}
602 		if (pages) {
603 			pages[i] = page;
604 			flush_anon_page(vma, page, start);
605 			flush_dcache_page(page);
606 			page_mask = 0;
607 		}
608 next_page:
609 		if (vmas) {
610 			vmas[i] = vma;
611 			page_mask = 0;
612 		}
613 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
614 		if (page_increm > nr_pages)
615 			page_increm = nr_pages;
616 		i += page_increm;
617 		start += page_increm * PAGE_SIZE;
618 		nr_pages -= page_increm;
619 	} while (nr_pages);
620 	return i;
621 }
622 EXPORT_SYMBOL(__get_user_pages);
623 
624 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
625 {
626 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
627 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
628 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
629 
630 	if (!(vm_flags & vma->vm_flags))
631 		return false;
632 
633 	/*
634 	 * The architecture might have a hardware protection
635 	 * mechanism other than read/write that can deny access.
636 	 *
637 	 * gup always represents data access, not instruction
638 	 * fetches, so execute=false here:
639 	 */
640 	if (!arch_vma_access_permitted(vma, write, false, foreign))
641 		return false;
642 
643 	return true;
644 }
645 
646 /*
647  * fixup_user_fault() - manually resolve a user page fault
648  * @tsk:	the task_struct to use for page fault accounting, or
649  *		NULL if faults are not to be recorded.
650  * @mm:		mm_struct of target mm
651  * @address:	user address
652  * @fault_flags:flags to pass down to handle_mm_fault()
653  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
654  *		does not allow retry
655  *
656  * This is meant to be called in the specific scenario where for locking reasons
657  * we try to access user memory in atomic context (within a pagefault_disable()
658  * section), this returns -EFAULT, and we want to resolve the user fault before
659  * trying again.
660  *
661  * Typically this is meant to be used by the futex code.
662  *
663  * The main difference with get_user_pages() is that this function will
664  * unconditionally call handle_mm_fault() which will in turn perform all the
665  * necessary SW fixup of the dirty and young bits in the PTE, while
666  * get_user_pages() only guarantees to update these in the struct page.
667  *
668  * This is important for some architectures where those bits also gate the
669  * access permission to the page because they are maintained in software.  On
670  * such architectures, gup() will not be enough to make a subsequent access
671  * succeed.
672  *
673  * This function will not return with an unlocked mmap_sem. So it has not the
674  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
675  */
676 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
677 		     unsigned long address, unsigned int fault_flags,
678 		     bool *unlocked)
679 {
680 	struct vm_area_struct *vma;
681 	int ret, major = 0;
682 
683 	if (unlocked)
684 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
685 
686 retry:
687 	vma = find_extend_vma(mm, address);
688 	if (!vma || address < vma->vm_start)
689 		return -EFAULT;
690 
691 	if (!vma_permits_fault(vma, fault_flags))
692 		return -EFAULT;
693 
694 	ret = handle_mm_fault(mm, vma, address, fault_flags);
695 	major |= ret & VM_FAULT_MAJOR;
696 	if (ret & VM_FAULT_ERROR) {
697 		if (ret & VM_FAULT_OOM)
698 			return -ENOMEM;
699 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
700 			return -EHWPOISON;
701 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
702 			return -EFAULT;
703 		BUG();
704 	}
705 
706 	if (ret & VM_FAULT_RETRY) {
707 		down_read(&mm->mmap_sem);
708 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
709 			*unlocked = true;
710 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
711 			fault_flags |= FAULT_FLAG_TRIED;
712 			goto retry;
713 		}
714 	}
715 
716 	if (tsk) {
717 		if (major)
718 			tsk->maj_flt++;
719 		else
720 			tsk->min_flt++;
721 	}
722 	return 0;
723 }
724 
725 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
726 						struct mm_struct *mm,
727 						unsigned long start,
728 						unsigned long nr_pages,
729 						int write, int force,
730 						struct page **pages,
731 						struct vm_area_struct **vmas,
732 						int *locked, bool notify_drop,
733 						unsigned int flags)
734 {
735 	long ret, pages_done;
736 	bool lock_dropped;
737 
738 	if (locked) {
739 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
740 		BUG_ON(vmas);
741 		/* check caller initialized locked */
742 		BUG_ON(*locked != 1);
743 	}
744 
745 	if (pages)
746 		flags |= FOLL_GET;
747 	if (write)
748 		flags |= FOLL_WRITE;
749 	if (force)
750 		flags |= FOLL_FORCE;
751 
752 	pages_done = 0;
753 	lock_dropped = false;
754 	for (;;) {
755 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
756 				       vmas, locked);
757 		if (!locked)
758 			/* VM_FAULT_RETRY couldn't trigger, bypass */
759 			return ret;
760 
761 		/* VM_FAULT_RETRY cannot return errors */
762 		if (!*locked) {
763 			BUG_ON(ret < 0);
764 			BUG_ON(ret >= nr_pages);
765 		}
766 
767 		if (!pages)
768 			/* If it's a prefault don't insist harder */
769 			return ret;
770 
771 		if (ret > 0) {
772 			nr_pages -= ret;
773 			pages_done += ret;
774 			if (!nr_pages)
775 				break;
776 		}
777 		if (*locked) {
778 			/* VM_FAULT_RETRY didn't trigger */
779 			if (!pages_done)
780 				pages_done = ret;
781 			break;
782 		}
783 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
784 		pages += ret;
785 		start += ret << PAGE_SHIFT;
786 
787 		/*
788 		 * Repeat on the address that fired VM_FAULT_RETRY
789 		 * without FAULT_FLAG_ALLOW_RETRY but with
790 		 * FAULT_FLAG_TRIED.
791 		 */
792 		*locked = 1;
793 		lock_dropped = true;
794 		down_read(&mm->mmap_sem);
795 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
796 				       pages, NULL, NULL);
797 		if (ret != 1) {
798 			BUG_ON(ret > 1);
799 			if (!pages_done)
800 				pages_done = ret;
801 			break;
802 		}
803 		nr_pages--;
804 		pages_done++;
805 		if (!nr_pages)
806 			break;
807 		pages++;
808 		start += PAGE_SIZE;
809 	}
810 	if (notify_drop && lock_dropped && *locked) {
811 		/*
812 		 * We must let the caller know we temporarily dropped the lock
813 		 * and so the critical section protected by it was lost.
814 		 */
815 		up_read(&mm->mmap_sem);
816 		*locked = 0;
817 	}
818 	return pages_done;
819 }
820 
821 /*
822  * We can leverage the VM_FAULT_RETRY functionality in the page fault
823  * paths better by using either get_user_pages_locked() or
824  * get_user_pages_unlocked().
825  *
826  * get_user_pages_locked() is suitable to replace the form:
827  *
828  *      down_read(&mm->mmap_sem);
829  *      do_something()
830  *      get_user_pages(tsk, mm, ..., pages, NULL);
831  *      up_read(&mm->mmap_sem);
832  *
833  *  to:
834  *
835  *      int locked = 1;
836  *      down_read(&mm->mmap_sem);
837  *      do_something()
838  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
839  *      if (locked)
840  *          up_read(&mm->mmap_sem);
841  */
842 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
843 			   int write, int force, struct page **pages,
844 			   int *locked)
845 {
846 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
847 				       write, force, pages, NULL, locked, true,
848 				       FOLL_TOUCH);
849 }
850 EXPORT_SYMBOL(get_user_pages_locked6);
851 
852 /*
853  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
854  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
855  *
856  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
857  * caller if required (just like with __get_user_pages). "FOLL_GET",
858  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
859  * according to the parameters "pages", "write", "force"
860  * respectively.
861  */
862 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
863 					       unsigned long start, unsigned long nr_pages,
864 					       int write, int force, struct page **pages,
865 					       unsigned int gup_flags)
866 {
867 	long ret;
868 	int locked = 1;
869 	down_read(&mm->mmap_sem);
870 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
871 				      pages, NULL, &locked, false, gup_flags);
872 	if (locked)
873 		up_read(&mm->mmap_sem);
874 	return ret;
875 }
876 EXPORT_SYMBOL(__get_user_pages_unlocked);
877 
878 /*
879  * get_user_pages_unlocked() is suitable to replace the form:
880  *
881  *      down_read(&mm->mmap_sem);
882  *      get_user_pages(tsk, mm, ..., pages, NULL);
883  *      up_read(&mm->mmap_sem);
884  *
885  *  with:
886  *
887  *      get_user_pages_unlocked(tsk, mm, ..., pages);
888  *
889  * It is functionally equivalent to get_user_pages_fast so
890  * get_user_pages_fast should be used instead, if the two parameters
891  * "tsk" and "mm" are respectively equal to current and current->mm,
892  * or if "force" shall be set to 1 (get_user_pages_fast misses the
893  * "force" parameter).
894  */
895 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
896 			     int write, int force, struct page **pages)
897 {
898 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
899 					 write, force, pages, FOLL_TOUCH);
900 }
901 EXPORT_SYMBOL(get_user_pages_unlocked5);
902 
903 /*
904  * get_user_pages_remote() - pin user pages in memory
905  * @tsk:	the task_struct to use for page fault accounting, or
906  *		NULL if faults are not to be recorded.
907  * @mm:		mm_struct of target mm
908  * @start:	starting user address
909  * @nr_pages:	number of pages from start to pin
910  * @write:	whether pages will be written to by the caller
911  * @force:	whether to force access even when user mapping is currently
912  *		protected (but never forces write access to shared mapping).
913  * @pages:	array that receives pointers to the pages pinned.
914  *		Should be at least nr_pages long. Or NULL, if caller
915  *		only intends to ensure the pages are faulted in.
916  * @vmas:	array of pointers to vmas corresponding to each page.
917  *		Or NULL if the caller does not require them.
918  *
919  * Returns number of pages pinned. This may be fewer than the number
920  * requested. If nr_pages is 0 or negative, returns 0. If no pages
921  * were pinned, returns -errno. Each page returned must be released
922  * with a put_page() call when it is finished with. vmas will only
923  * remain valid while mmap_sem is held.
924  *
925  * Must be called with mmap_sem held for read or write.
926  *
927  * get_user_pages walks a process's page tables and takes a reference to
928  * each struct page that each user address corresponds to at a given
929  * instant. That is, it takes the page that would be accessed if a user
930  * thread accesses the given user virtual address at that instant.
931  *
932  * This does not guarantee that the page exists in the user mappings when
933  * get_user_pages returns, and there may even be a completely different
934  * page there in some cases (eg. if mmapped pagecache has been invalidated
935  * and subsequently re faulted). However it does guarantee that the page
936  * won't be freed completely. And mostly callers simply care that the page
937  * contains data that was valid *at some point in time*. Typically, an IO
938  * or similar operation cannot guarantee anything stronger anyway because
939  * locks can't be held over the syscall boundary.
940  *
941  * If write=0, the page must not be written to. If the page is written to,
942  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
943  * after the page is finished with, and before put_page is called.
944  *
945  * get_user_pages is typically used for fewer-copy IO operations, to get a
946  * handle on the memory by some means other than accesses via the user virtual
947  * addresses. The pages may be submitted for DMA to devices or accessed via
948  * their kernel linear mapping (via the kmap APIs). Care should be taken to
949  * use the correct cache flushing APIs.
950  *
951  * See also get_user_pages_fast, for performance critical applications.
952  *
953  * get_user_pages should be phased out in favor of
954  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
955  * should use get_user_pages because it cannot pass
956  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
957  */
958 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
959 		unsigned long start, unsigned long nr_pages,
960 		int write, int force, struct page **pages,
961 		struct vm_area_struct **vmas)
962 {
963 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
964 				       pages, vmas, NULL, false,
965 				       FOLL_TOUCH | FOLL_REMOTE);
966 }
967 EXPORT_SYMBOL(get_user_pages_remote);
968 
969 /*
970  * This is the same as get_user_pages_remote(), just with a
971  * less-flexible calling convention where we assume that the task
972  * and mm being operated on are the current task's.  We also
973  * obviously don't pass FOLL_REMOTE in here.
974  */
975 long get_user_pages6(unsigned long start, unsigned long nr_pages,
976 		int write, int force, struct page **pages,
977 		struct vm_area_struct **vmas)
978 {
979 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
980 				       write, force, pages, vmas, NULL, false,
981 				       FOLL_TOUCH);
982 }
983 EXPORT_SYMBOL(get_user_pages6);
984 
985 /**
986  * populate_vma_page_range() -  populate a range of pages in the vma.
987  * @vma:   target vma
988  * @start: start address
989  * @end:   end address
990  * @nonblocking:
991  *
992  * This takes care of mlocking the pages too if VM_LOCKED is set.
993  *
994  * return 0 on success, negative error code on error.
995  *
996  * vma->vm_mm->mmap_sem must be held.
997  *
998  * If @nonblocking is NULL, it may be held for read or write and will
999  * be unperturbed.
1000  *
1001  * If @nonblocking is non-NULL, it must held for read only and may be
1002  * released.  If it's released, *@nonblocking will be set to 0.
1003  */
1004 long populate_vma_page_range(struct vm_area_struct *vma,
1005 		unsigned long start, unsigned long end, int *nonblocking)
1006 {
1007 	struct mm_struct *mm = vma->vm_mm;
1008 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1009 	int gup_flags;
1010 
1011 	VM_BUG_ON(start & ~PAGE_MASK);
1012 	VM_BUG_ON(end   & ~PAGE_MASK);
1013 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1014 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1015 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1016 
1017 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1018 	if (vma->vm_flags & VM_LOCKONFAULT)
1019 		gup_flags &= ~FOLL_POPULATE;
1020 	/*
1021 	 * We want to touch writable mappings with a write fault in order
1022 	 * to break COW, except for shared mappings because these don't COW
1023 	 * and we would not want to dirty them for nothing.
1024 	 */
1025 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1026 		gup_flags |= FOLL_WRITE;
1027 
1028 	/*
1029 	 * We want mlock to succeed for regions that have any permissions
1030 	 * other than PROT_NONE.
1031 	 */
1032 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1033 		gup_flags |= FOLL_FORCE;
1034 
1035 	/*
1036 	 * We made sure addr is within a VMA, so the following will
1037 	 * not result in a stack expansion that recurses back here.
1038 	 */
1039 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1040 				NULL, NULL, nonblocking);
1041 }
1042 
1043 /*
1044  * __mm_populate - populate and/or mlock pages within a range of address space.
1045  *
1046  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1047  * flags. VMAs must be already marked with the desired vm_flags, and
1048  * mmap_sem must not be held.
1049  */
1050 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1051 {
1052 	struct mm_struct *mm = current->mm;
1053 	unsigned long end, nstart, nend;
1054 	struct vm_area_struct *vma = NULL;
1055 	int locked = 0;
1056 	long ret = 0;
1057 
1058 	VM_BUG_ON(start & ~PAGE_MASK);
1059 	VM_BUG_ON(len != PAGE_ALIGN(len));
1060 	end = start + len;
1061 
1062 	for (nstart = start; nstart < end; nstart = nend) {
1063 		/*
1064 		 * We want to fault in pages for [nstart; end) address range.
1065 		 * Find first corresponding VMA.
1066 		 */
1067 		if (!locked) {
1068 			locked = 1;
1069 			down_read(&mm->mmap_sem);
1070 			vma = find_vma(mm, nstart);
1071 		} else if (nstart >= vma->vm_end)
1072 			vma = vma->vm_next;
1073 		if (!vma || vma->vm_start >= end)
1074 			break;
1075 		/*
1076 		 * Set [nstart; nend) to intersection of desired address
1077 		 * range with the first VMA. Also, skip undesirable VMA types.
1078 		 */
1079 		nend = min(end, vma->vm_end);
1080 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1081 			continue;
1082 		if (nstart < vma->vm_start)
1083 			nstart = vma->vm_start;
1084 		/*
1085 		 * Now fault in a range of pages. populate_vma_page_range()
1086 		 * double checks the vma flags, so that it won't mlock pages
1087 		 * if the vma was already munlocked.
1088 		 */
1089 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1090 		if (ret < 0) {
1091 			if (ignore_errors) {
1092 				ret = 0;
1093 				continue;	/* continue at next VMA */
1094 			}
1095 			break;
1096 		}
1097 		nend = nstart + ret * PAGE_SIZE;
1098 		ret = 0;
1099 	}
1100 	if (locked)
1101 		up_read(&mm->mmap_sem);
1102 	return ret;	/* 0 or negative error code */
1103 }
1104 
1105 /**
1106  * get_dump_page() - pin user page in memory while writing it to core dump
1107  * @addr: user address
1108  *
1109  * Returns struct page pointer of user page pinned for dump,
1110  * to be freed afterwards by put_page().
1111  *
1112  * Returns NULL on any kind of failure - a hole must then be inserted into
1113  * the corefile, to preserve alignment with its headers; and also returns
1114  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1115  * allowing a hole to be left in the corefile to save diskspace.
1116  *
1117  * Called without mmap_sem, but after all other threads have been killed.
1118  */
1119 #ifdef CONFIG_ELF_CORE
1120 struct page *get_dump_page(unsigned long addr)
1121 {
1122 	struct vm_area_struct *vma;
1123 	struct page *page;
1124 
1125 	if (__get_user_pages(current, current->mm, addr, 1,
1126 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1127 			     NULL) < 1)
1128 		return NULL;
1129 	flush_cache_page(vma, addr, page_to_pfn(page));
1130 	return page;
1131 }
1132 #endif /* CONFIG_ELF_CORE */
1133 
1134 /*
1135  * Generic RCU Fast GUP
1136  *
1137  * get_user_pages_fast attempts to pin user pages by walking the page
1138  * tables directly and avoids taking locks. Thus the walker needs to be
1139  * protected from page table pages being freed from under it, and should
1140  * block any THP splits.
1141  *
1142  * One way to achieve this is to have the walker disable interrupts, and
1143  * rely on IPIs from the TLB flushing code blocking before the page table
1144  * pages are freed. This is unsuitable for architectures that do not need
1145  * to broadcast an IPI when invalidating TLBs.
1146  *
1147  * Another way to achieve this is to batch up page table containing pages
1148  * belonging to more than one mm_user, then rcu_sched a callback to free those
1149  * pages. Disabling interrupts will allow the fast_gup walker to both block
1150  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1151  * (which is a relatively rare event). The code below adopts this strategy.
1152  *
1153  * Before activating this code, please be aware that the following assumptions
1154  * are currently made:
1155  *
1156  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1157  *      pages containing page tables.
1158  *
1159  *  *) ptes can be read atomically by the architecture.
1160  *
1161  *  *) access_ok is sufficient to validate userspace address ranges.
1162  *
1163  * The last two assumptions can be relaxed by the addition of helper functions.
1164  *
1165  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1166  */
1167 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1168 
1169 #ifdef __HAVE_ARCH_PTE_SPECIAL
1170 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1171 			 int write, struct page **pages, int *nr)
1172 {
1173 	pte_t *ptep, *ptem;
1174 	int ret = 0;
1175 
1176 	ptem = ptep = pte_offset_map(&pmd, addr);
1177 	do {
1178 		/*
1179 		 * In the line below we are assuming that the pte can be read
1180 		 * atomically. If this is not the case for your architecture,
1181 		 * please wrap this in a helper function!
1182 		 *
1183 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1184 		 */
1185 		pte_t pte = READ_ONCE(*ptep);
1186 		struct page *head, *page;
1187 
1188 		/*
1189 		 * Similar to the PMD case below, NUMA hinting must take slow
1190 		 * path using the pte_protnone check.
1191 		 */
1192 		if (!pte_present(pte) || pte_special(pte) ||
1193 			pte_protnone(pte) || (write && !pte_write(pte)))
1194 			goto pte_unmap;
1195 
1196 		if (!arch_pte_access_permitted(pte, write))
1197 			goto pte_unmap;
1198 
1199 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1200 		page = pte_page(pte);
1201 		head = compound_head(page);
1202 
1203 		if (!page_cache_get_speculative(head))
1204 			goto pte_unmap;
1205 
1206 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1207 			put_page(head);
1208 			goto pte_unmap;
1209 		}
1210 
1211 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1212 		pages[*nr] = page;
1213 		(*nr)++;
1214 
1215 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1216 
1217 	ret = 1;
1218 
1219 pte_unmap:
1220 	pte_unmap(ptem);
1221 	return ret;
1222 }
1223 #else
1224 
1225 /*
1226  * If we can't determine whether or not a pte is special, then fail immediately
1227  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1228  * to be special.
1229  *
1230  * For a futex to be placed on a THP tail page, get_futex_key requires a
1231  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1232  * useful to have gup_huge_pmd even if we can't operate on ptes.
1233  */
1234 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1235 			 int write, struct page **pages, int *nr)
1236 {
1237 	return 0;
1238 }
1239 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1240 
1241 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1242 		unsigned long end, int write, struct page **pages, int *nr)
1243 {
1244 	struct page *head, *page;
1245 	int refs;
1246 
1247 	if (write && !pmd_write(orig))
1248 		return 0;
1249 
1250 	refs = 0;
1251 	head = pmd_page(orig);
1252 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1253 	do {
1254 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1255 		pages[*nr] = page;
1256 		(*nr)++;
1257 		page++;
1258 		refs++;
1259 	} while (addr += PAGE_SIZE, addr != end);
1260 
1261 	if (!page_cache_add_speculative(head, refs)) {
1262 		*nr -= refs;
1263 		return 0;
1264 	}
1265 
1266 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1267 		*nr -= refs;
1268 		while (refs--)
1269 			put_page(head);
1270 		return 0;
1271 	}
1272 
1273 	return 1;
1274 }
1275 
1276 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1277 		unsigned long end, int write, struct page **pages, int *nr)
1278 {
1279 	struct page *head, *page;
1280 	int refs;
1281 
1282 	if (write && !pud_write(orig))
1283 		return 0;
1284 
1285 	refs = 0;
1286 	head = pud_page(orig);
1287 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1288 	do {
1289 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1290 		pages[*nr] = page;
1291 		(*nr)++;
1292 		page++;
1293 		refs++;
1294 	} while (addr += PAGE_SIZE, addr != end);
1295 
1296 	if (!page_cache_add_speculative(head, refs)) {
1297 		*nr -= refs;
1298 		return 0;
1299 	}
1300 
1301 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1302 		*nr -= refs;
1303 		while (refs--)
1304 			put_page(head);
1305 		return 0;
1306 	}
1307 
1308 	return 1;
1309 }
1310 
1311 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1312 			unsigned long end, int write,
1313 			struct page **pages, int *nr)
1314 {
1315 	int refs;
1316 	struct page *head, *page;
1317 
1318 	if (write && !pgd_write(orig))
1319 		return 0;
1320 
1321 	refs = 0;
1322 	head = pgd_page(orig);
1323 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1324 	do {
1325 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1326 		pages[*nr] = page;
1327 		(*nr)++;
1328 		page++;
1329 		refs++;
1330 	} while (addr += PAGE_SIZE, addr != end);
1331 
1332 	if (!page_cache_add_speculative(head, refs)) {
1333 		*nr -= refs;
1334 		return 0;
1335 	}
1336 
1337 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1338 		*nr -= refs;
1339 		while (refs--)
1340 			put_page(head);
1341 		return 0;
1342 	}
1343 
1344 	return 1;
1345 }
1346 
1347 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1348 		int write, struct page **pages, int *nr)
1349 {
1350 	unsigned long next;
1351 	pmd_t *pmdp;
1352 
1353 	pmdp = pmd_offset(&pud, addr);
1354 	do {
1355 		pmd_t pmd = READ_ONCE(*pmdp);
1356 
1357 		next = pmd_addr_end(addr, end);
1358 		if (pmd_none(pmd))
1359 			return 0;
1360 
1361 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1362 			/*
1363 			 * NUMA hinting faults need to be handled in the GUP
1364 			 * slowpath for accounting purposes and so that they
1365 			 * can be serialised against THP migration.
1366 			 */
1367 			if (pmd_protnone(pmd))
1368 				return 0;
1369 
1370 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1371 				pages, nr))
1372 				return 0;
1373 
1374 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1375 			/*
1376 			 * architecture have different format for hugetlbfs
1377 			 * pmd format and THP pmd format
1378 			 */
1379 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1380 					 PMD_SHIFT, next, write, pages, nr))
1381 				return 0;
1382 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1383 				return 0;
1384 	} while (pmdp++, addr = next, addr != end);
1385 
1386 	return 1;
1387 }
1388 
1389 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1390 			 int write, struct page **pages, int *nr)
1391 {
1392 	unsigned long next;
1393 	pud_t *pudp;
1394 
1395 	pudp = pud_offset(&pgd, addr);
1396 	do {
1397 		pud_t pud = READ_ONCE(*pudp);
1398 
1399 		next = pud_addr_end(addr, end);
1400 		if (pud_none(pud))
1401 			return 0;
1402 		if (unlikely(pud_huge(pud))) {
1403 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1404 					  pages, nr))
1405 				return 0;
1406 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1407 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1408 					 PUD_SHIFT, next, write, pages, nr))
1409 				return 0;
1410 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1411 			return 0;
1412 	} while (pudp++, addr = next, addr != end);
1413 
1414 	return 1;
1415 }
1416 
1417 /*
1418  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1419  * the regular GUP. It will only return non-negative values.
1420  */
1421 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1422 			  struct page **pages)
1423 {
1424 	struct mm_struct *mm = current->mm;
1425 	unsigned long addr, len, end;
1426 	unsigned long next, flags;
1427 	pgd_t *pgdp;
1428 	int nr = 0;
1429 
1430 	start &= PAGE_MASK;
1431 	addr = start;
1432 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1433 	end = start + len;
1434 
1435 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1436 					start, len)))
1437 		return 0;
1438 
1439 	/*
1440 	 * Disable interrupts.  We use the nested form as we can already have
1441 	 * interrupts disabled by get_futex_key.
1442 	 *
1443 	 * With interrupts disabled, we block page table pages from being
1444 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1445 	 * for more details.
1446 	 *
1447 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1448 	 * block IPIs that come from THPs splitting.
1449 	 */
1450 
1451 	local_irq_save(flags);
1452 	pgdp = pgd_offset(mm, addr);
1453 	do {
1454 		pgd_t pgd = READ_ONCE(*pgdp);
1455 
1456 		next = pgd_addr_end(addr, end);
1457 		if (pgd_none(pgd))
1458 			break;
1459 		if (unlikely(pgd_huge(pgd))) {
1460 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1461 					  pages, &nr))
1462 				break;
1463 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1464 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1465 					 PGDIR_SHIFT, next, write, pages, &nr))
1466 				break;
1467 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1468 			break;
1469 	} while (pgdp++, addr = next, addr != end);
1470 	local_irq_restore(flags);
1471 
1472 	return nr;
1473 }
1474 
1475 /**
1476  * get_user_pages_fast() - pin user pages in memory
1477  * @start:	starting user address
1478  * @nr_pages:	number of pages from start to pin
1479  * @write:	whether pages will be written to
1480  * @pages:	array that receives pointers to the pages pinned.
1481  *		Should be at least nr_pages long.
1482  *
1483  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1484  * If not successful, it will fall back to taking the lock and
1485  * calling get_user_pages().
1486  *
1487  * Returns number of pages pinned. This may be fewer than the number
1488  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1489  * were pinned, returns -errno.
1490  */
1491 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1492 			struct page **pages)
1493 {
1494 	struct mm_struct *mm = current->mm;
1495 	int nr, ret;
1496 
1497 	start &= PAGE_MASK;
1498 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1499 	ret = nr;
1500 
1501 	if (nr < nr_pages) {
1502 		/* Try to get the remaining pages with get_user_pages */
1503 		start += nr << PAGE_SHIFT;
1504 		pages += nr;
1505 
1506 		ret = get_user_pages_unlocked(current, mm, start,
1507 					      nr_pages - nr, write, 0, pages);
1508 
1509 		/* Have to be a bit careful with return values */
1510 		if (nr > 0) {
1511 			if (ret < 0)
1512 				ret = nr;
1513 			else
1514 				ret += nr;
1515 		}
1516 	}
1517 
1518 	return ret;
1519 }
1520 
1521 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1522 
1523 long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1524 		     unsigned long start, unsigned long nr_pages,
1525 		     int write, int force, struct page **pages,
1526 		     struct vm_area_struct **vmas)
1527 {
1528 	WARN_ONCE(tsk != current, "get_user_pages() called on remote task");
1529 	WARN_ONCE(mm != current->mm, "get_user_pages() called on remote mm");
1530 
1531 	return get_user_pages6(start, nr_pages, write, force, pages, vmas);
1532 }
1533 EXPORT_SYMBOL(get_user_pages8);
1534 
1535 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1536 			    unsigned long start, unsigned long nr_pages,
1537 			    int write, int force, struct page **pages, int *locked)
1538 {
1539 	WARN_ONCE(tsk != current, "get_user_pages_locked() called on remote task");
1540 	WARN_ONCE(mm != current->mm, "get_user_pages_locked() called on remote mm");
1541 
1542 	return get_user_pages_locked6(start, nr_pages, write, force, pages, locked);
1543 }
1544 EXPORT_SYMBOL(get_user_pages_locked8);
1545 
1546 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1547 				  unsigned long start, unsigned long nr_pages,
1548 				  int write, int force, struct page **pages)
1549 {
1550 	WARN_ONCE(tsk != current, "get_user_pages_unlocked() called on remote task");
1551 	WARN_ONCE(mm != current->mm, "get_user_pages_unlocked() called on remote mm");
1552 
1553 	return get_user_pages_unlocked5(start, nr_pages, write, force, pages);
1554 }
1555 EXPORT_SYMBOL(get_user_pages_unlocked7);
1556 
1557