xref: /linux/mm/gup.c (revision 061834624c87282c6d9d8c5395aaff4380e5e1fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_longterm_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
162 
163 		return folio;
164 	}
165 
166 	WARN_ON_ONCE(1);
167 	return NULL;
168 }
169 
170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 {
172 	if (flags & FOLL_PIN) {
173 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 		if (folio_test_large(folio))
175 			atomic_sub(refs, folio_pincount_ptr(folio));
176 		else
177 			refs *= GUP_PIN_COUNTING_BIAS;
178 	}
179 
180 	if (!put_devmap_managed_page_refs(&folio->page, refs))
181 		folio_put_refs(folio, refs);
182 }
183 
184 /**
185  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186  * @page:    pointer to page to be grabbed
187  * @flags:   gup flags: these are the FOLL_* flag values.
188  *
189  * This might not do anything at all, depending on the flags argument.
190  *
191  * "grab" names in this file mean, "look at flags to decide whether to use
192  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
193  *
194  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195  * time. Cases: please see the try_grab_folio() documentation, with
196  * "refs=1".
197  *
198  * Return: true for success, or if no action was required (if neither FOLL_PIN
199  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200  * FOLL_PIN was set, but the page could not be grabbed.
201  */
202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
203 {
204 	struct folio *folio = page_folio(page);
205 
206 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 		return false;
209 
210 	if (flags & FOLL_GET)
211 		folio_ref_inc(folio);
212 	else if (flags & FOLL_PIN) {
213 		/*
214 		 * Similar to try_grab_folio(): be sure to *also*
215 		 * increment the normal page refcount field at least once,
216 		 * so that the page really is pinned.
217 		 */
218 		if (folio_test_large(folio)) {
219 			folio_ref_add(folio, 1);
220 			atomic_add(1, folio_pincount_ptr(folio));
221 		} else {
222 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223 		}
224 
225 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
226 	}
227 
228 	return true;
229 }
230 
231 /**
232  * unpin_user_page() - release a dma-pinned page
233  * @page:            pointer to page to be released
234  *
235  * Pages that were pinned via pin_user_pages*() must be released via either
236  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237  * that such pages can be separately tracked and uniquely handled. In
238  * particular, interactions with RDMA and filesystems need special handling.
239  */
240 void unpin_user_page(struct page *page)
241 {
242 	sanity_check_pinned_pages(&page, 1);
243 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
244 }
245 EXPORT_SYMBOL(unpin_user_page);
246 
247 static inline struct folio *gup_folio_range_next(struct page *start,
248 		unsigned long npages, unsigned long i, unsigned int *ntails)
249 {
250 	struct page *next = nth_page(start, i);
251 	struct folio *folio = page_folio(next);
252 	unsigned int nr = 1;
253 
254 	if (folio_test_large(folio))
255 		nr = min_t(unsigned int, npages - i,
256 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
257 
258 	*ntails = nr;
259 	return folio;
260 }
261 
262 static inline struct folio *gup_folio_next(struct page **list,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct folio *folio = page_folio(list[i]);
266 	unsigned int nr;
267 
268 	for (nr = i + 1; nr < npages; nr++) {
269 		if (page_folio(list[nr]) != folio)
270 			break;
271 	}
272 
273 	*ntails = nr - i;
274 	return folio;
275 }
276 
277 /**
278  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279  * @pages:  array of pages to be maybe marked dirty, and definitely released.
280  * @npages: number of pages in the @pages array.
281  * @make_dirty: whether to mark the pages dirty
282  *
283  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284  * variants called on that page.
285  *
286  * For each page in the @pages array, make that page (or its head page, if a
287  * compound page) dirty, if @make_dirty is true, and if the page was previously
288  * listed as clean. In any case, releases all pages using unpin_user_page(),
289  * possibly via unpin_user_pages(), for the non-dirty case.
290  *
291  * Please see the unpin_user_page() documentation for details.
292  *
293  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294  * required, then the caller should a) verify that this is really correct,
295  * because _lock() is usually required, and b) hand code it:
296  * set_page_dirty_lock(), unpin_user_page().
297  *
298  */
299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
300 				 bool make_dirty)
301 {
302 	unsigned long i;
303 	struct folio *folio;
304 	unsigned int nr;
305 
306 	if (!make_dirty) {
307 		unpin_user_pages(pages, npages);
308 		return;
309 	}
310 
311 	sanity_check_pinned_pages(pages, npages);
312 	for (i = 0; i < npages; i += nr) {
313 		folio = gup_folio_next(pages, npages, i, &nr);
314 		/*
315 		 * Checking PageDirty at this point may race with
316 		 * clear_page_dirty_for_io(), but that's OK. Two key
317 		 * cases:
318 		 *
319 		 * 1) This code sees the page as already dirty, so it
320 		 * skips the call to set_page_dirty(). That could happen
321 		 * because clear_page_dirty_for_io() called
322 		 * page_mkclean(), followed by set_page_dirty().
323 		 * However, now the page is going to get written back,
324 		 * which meets the original intention of setting it
325 		 * dirty, so all is well: clear_page_dirty_for_io() goes
326 		 * on to call TestClearPageDirty(), and write the page
327 		 * back.
328 		 *
329 		 * 2) This code sees the page as clean, so it calls
330 		 * set_page_dirty(). The page stays dirty, despite being
331 		 * written back, so it gets written back again in the
332 		 * next writeback cycle. This is harmless.
333 		 */
334 		if (!folio_test_dirty(folio)) {
335 			folio_lock(folio);
336 			folio_mark_dirty(folio);
337 			folio_unlock(folio);
338 		}
339 		gup_put_folio(folio, nr, FOLL_PIN);
340 	}
341 }
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343 
344 /**
345  * unpin_user_page_range_dirty_lock() - release and optionally dirty
346  * gup-pinned page range
347  *
348  * @page:  the starting page of a range maybe marked dirty, and definitely released.
349  * @npages: number of consecutive pages to release.
350  * @make_dirty: whether to mark the pages dirty
351  *
352  * "gup-pinned page range" refers to a range of pages that has had one of the
353  * pin_user_pages() variants called on that page.
354  *
355  * For the page ranges defined by [page .. page+npages], make that range (or
356  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357  * page range was previously listed as clean.
358  *
359  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360  * required, then the caller should a) verify that this is really correct,
361  * because _lock() is usually required, and b) hand code it:
362  * set_page_dirty_lock(), unpin_user_page().
363  *
364  */
365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
366 				      bool make_dirty)
367 {
368 	unsigned long i;
369 	struct folio *folio;
370 	unsigned int nr;
371 
372 	for (i = 0; i < npages; i += nr) {
373 		folio = gup_folio_range_next(page, npages, i, &nr);
374 		if (make_dirty && !folio_test_dirty(folio)) {
375 			folio_lock(folio);
376 			folio_mark_dirty(folio);
377 			folio_unlock(folio);
378 		}
379 		gup_put_folio(folio, nr, FOLL_PIN);
380 	}
381 }
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
383 
384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
385 {
386 	unsigned long i;
387 	struct folio *folio;
388 	unsigned int nr;
389 
390 	/*
391 	 * Don't perform any sanity checks because we might have raced with
392 	 * fork() and some anonymous pages might now actually be shared --
393 	 * which is why we're unpinning after all.
394 	 */
395 	for (i = 0; i < npages; i += nr) {
396 		folio = gup_folio_next(pages, npages, i, &nr);
397 		gup_put_folio(folio, nr, FOLL_PIN);
398 	}
399 }
400 
401 /**
402  * unpin_user_pages() - release an array of gup-pinned pages.
403  * @pages:  array of pages to be marked dirty and released.
404  * @npages: number of pages in the @pages array.
405  *
406  * For each page in the @pages array, release the page using unpin_user_page().
407  *
408  * Please see the unpin_user_page() documentation for details.
409  */
410 void unpin_user_pages(struct page **pages, unsigned long npages)
411 {
412 	unsigned long i;
413 	struct folio *folio;
414 	unsigned int nr;
415 
416 	/*
417 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 	 * leaving them pinned), but probably not. More likely, gup/pup returned
419 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
420 	 */
421 	if (WARN_ON(IS_ERR_VALUE(npages)))
422 		return;
423 
424 	sanity_check_pinned_pages(pages, npages);
425 	for (i = 0; i < npages; i += nr) {
426 		folio = gup_folio_next(pages, npages, i, &nr);
427 		gup_put_folio(folio, nr, FOLL_PIN);
428 	}
429 }
430 EXPORT_SYMBOL(unpin_user_pages);
431 
432 /*
433  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
435  * cache bouncing on large SMP machines for concurrent pinned gups.
436  */
437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
438 {
439 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 		set_bit(MMF_HAS_PINNED, mm_flags);
441 }
442 
443 #ifdef CONFIG_MMU
444 static struct page *no_page_table(struct vm_area_struct *vma,
445 		unsigned int flags)
446 {
447 	/*
448 	 * When core dumping an enormous anonymous area that nobody
449 	 * has touched so far, we don't want to allocate unnecessary pages or
450 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
451 	 * then get_dump_page() will return NULL to leave a hole in the dump.
452 	 * But we can only make this optimization where a hole would surely
453 	 * be zero-filled if handle_mm_fault() actually did handle it.
454 	 */
455 	if ((flags & FOLL_DUMP) &&
456 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 		return ERR_PTR(-EFAULT);
458 	return NULL;
459 }
460 
461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 		pte_t *pte, unsigned int flags)
463 {
464 	if (flags & FOLL_TOUCH) {
465 		pte_t entry = *pte;
466 
467 		if (flags & FOLL_WRITE)
468 			entry = pte_mkdirty(entry);
469 		entry = pte_mkyoung(entry);
470 
471 		if (!pte_same(*pte, entry)) {
472 			set_pte_at(vma->vm_mm, address, pte, entry);
473 			update_mmu_cache(vma, address, pte);
474 		}
475 	}
476 
477 	/* Proper page table entry exists, but no corresponding struct page */
478 	return -EEXIST;
479 }
480 
481 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
482 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
483 					struct vm_area_struct *vma,
484 					unsigned int flags)
485 {
486 	/* If the pte is writable, we can write to the page. */
487 	if (pte_write(pte))
488 		return true;
489 
490 	/* Maybe FOLL_FORCE is set to override it? */
491 	if (!(flags & FOLL_FORCE))
492 		return false;
493 
494 	/* But FOLL_FORCE has no effect on shared mappings */
495 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
496 		return false;
497 
498 	/* ... or read-only private ones */
499 	if (!(vma->vm_flags & VM_MAYWRITE))
500 		return false;
501 
502 	/* ... or already writable ones that just need to take a write fault */
503 	if (vma->vm_flags & VM_WRITE)
504 		return false;
505 
506 	/*
507 	 * See can_change_pte_writable(): we broke COW and could map the page
508 	 * writable if we have an exclusive anonymous page ...
509 	 */
510 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
511 		return false;
512 
513 	/* ... and a write-fault isn't required for other reasons. */
514 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
515 		return false;
516 	return !userfaultfd_pte_wp(vma, pte);
517 }
518 
519 static struct page *follow_page_pte(struct vm_area_struct *vma,
520 		unsigned long address, pmd_t *pmd, unsigned int flags,
521 		struct dev_pagemap **pgmap)
522 {
523 	struct mm_struct *mm = vma->vm_mm;
524 	struct page *page;
525 	spinlock_t *ptl;
526 	pte_t *ptep, pte;
527 	int ret;
528 
529 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
530 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
531 			 (FOLL_PIN | FOLL_GET)))
532 		return ERR_PTR(-EINVAL);
533 retry:
534 	if (unlikely(pmd_bad(*pmd)))
535 		return no_page_table(vma, flags);
536 
537 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
538 	pte = *ptep;
539 	if (!pte_present(pte)) {
540 		swp_entry_t entry;
541 		/*
542 		 * KSM's break_ksm() relies upon recognizing a ksm page
543 		 * even while it is being migrated, so for that case we
544 		 * need migration_entry_wait().
545 		 */
546 		if (likely(!(flags & FOLL_MIGRATION)))
547 			goto no_page;
548 		if (pte_none(pte))
549 			goto no_page;
550 		entry = pte_to_swp_entry(pte);
551 		if (!is_migration_entry(entry))
552 			goto no_page;
553 		pte_unmap_unlock(ptep, ptl);
554 		migration_entry_wait(mm, pmd, address);
555 		goto retry;
556 	}
557 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
558 		goto no_page;
559 
560 	page = vm_normal_page(vma, address, pte);
561 
562 	/*
563 	 * We only care about anon pages in can_follow_write_pte() and don't
564 	 * have to worry about pte_devmap() because they are never anon.
565 	 */
566 	if ((flags & FOLL_WRITE) &&
567 	    !can_follow_write_pte(pte, page, vma, flags)) {
568 		page = NULL;
569 		goto out;
570 	}
571 
572 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
573 		/*
574 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
575 		 * case since they are only valid while holding the pgmap
576 		 * reference.
577 		 */
578 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
579 		if (*pgmap)
580 			page = pte_page(pte);
581 		else
582 			goto no_page;
583 	} else if (unlikely(!page)) {
584 		if (flags & FOLL_DUMP) {
585 			/* Avoid special (like zero) pages in core dumps */
586 			page = ERR_PTR(-EFAULT);
587 			goto out;
588 		}
589 
590 		if (is_zero_pfn(pte_pfn(pte))) {
591 			page = pte_page(pte);
592 		} else {
593 			ret = follow_pfn_pte(vma, address, ptep, flags);
594 			page = ERR_PTR(ret);
595 			goto out;
596 		}
597 	}
598 
599 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
600 		page = ERR_PTR(-EMLINK);
601 		goto out;
602 	}
603 
604 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
605 		       !PageAnonExclusive(page), page);
606 
607 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
608 	if (unlikely(!try_grab_page(page, flags))) {
609 		page = ERR_PTR(-ENOMEM);
610 		goto out;
611 	}
612 	/*
613 	 * We need to make the page accessible if and only if we are going
614 	 * to access its content (the FOLL_PIN case).  Please see
615 	 * Documentation/core-api/pin_user_pages.rst for details.
616 	 */
617 	if (flags & FOLL_PIN) {
618 		ret = arch_make_page_accessible(page);
619 		if (ret) {
620 			unpin_user_page(page);
621 			page = ERR_PTR(ret);
622 			goto out;
623 		}
624 	}
625 	if (flags & FOLL_TOUCH) {
626 		if ((flags & FOLL_WRITE) &&
627 		    !pte_dirty(pte) && !PageDirty(page))
628 			set_page_dirty(page);
629 		/*
630 		 * pte_mkyoung() would be more correct here, but atomic care
631 		 * is needed to avoid losing the dirty bit: it is easier to use
632 		 * mark_page_accessed().
633 		 */
634 		mark_page_accessed(page);
635 	}
636 out:
637 	pte_unmap_unlock(ptep, ptl);
638 	return page;
639 no_page:
640 	pte_unmap_unlock(ptep, ptl);
641 	if (!pte_none(pte))
642 		return NULL;
643 	return no_page_table(vma, flags);
644 }
645 
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 				    unsigned long address, pud_t *pudp,
648 				    unsigned int flags,
649 				    struct follow_page_context *ctx)
650 {
651 	pmd_t *pmd, pmdval;
652 	spinlock_t *ptl;
653 	struct page *page;
654 	struct mm_struct *mm = vma->vm_mm;
655 
656 	pmd = pmd_offset(pudp, address);
657 	/*
658 	 * The READ_ONCE() will stabilize the pmdval in a register or
659 	 * on the stack so that it will stop changing under the code.
660 	 */
661 	pmdval = READ_ONCE(*pmd);
662 	if (pmd_none(pmdval))
663 		return no_page_table(vma, flags);
664 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
665 		page = follow_huge_pmd(mm, address, pmd, flags);
666 		if (page)
667 			return page;
668 		return no_page_table(vma, flags);
669 	}
670 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
671 		page = follow_huge_pd(vma, address,
672 				      __hugepd(pmd_val(pmdval)), flags,
673 				      PMD_SHIFT);
674 		if (page)
675 			return page;
676 		return no_page_table(vma, flags);
677 	}
678 retry:
679 	if (!pmd_present(pmdval)) {
680 		/*
681 		 * Should never reach here, if thp migration is not supported;
682 		 * Otherwise, it must be a thp migration entry.
683 		 */
684 		VM_BUG_ON(!thp_migration_supported() ||
685 				  !is_pmd_migration_entry(pmdval));
686 
687 		if (likely(!(flags & FOLL_MIGRATION)))
688 			return no_page_table(vma, flags);
689 
690 		pmd_migration_entry_wait(mm, pmd);
691 		pmdval = READ_ONCE(*pmd);
692 		/*
693 		 * MADV_DONTNEED may convert the pmd to null because
694 		 * mmap_lock is held in read mode
695 		 */
696 		if (pmd_none(pmdval))
697 			return no_page_table(vma, flags);
698 		goto retry;
699 	}
700 	if (pmd_devmap(pmdval)) {
701 		ptl = pmd_lock(mm, pmd);
702 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
703 		spin_unlock(ptl);
704 		if (page)
705 			return page;
706 	}
707 	if (likely(!pmd_trans_huge(pmdval)))
708 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
709 
710 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
711 		return no_page_table(vma, flags);
712 
713 retry_locked:
714 	ptl = pmd_lock(mm, pmd);
715 	if (unlikely(pmd_none(*pmd))) {
716 		spin_unlock(ptl);
717 		return no_page_table(vma, flags);
718 	}
719 	if (unlikely(!pmd_present(*pmd))) {
720 		spin_unlock(ptl);
721 		if (likely(!(flags & FOLL_MIGRATION)))
722 			return no_page_table(vma, flags);
723 		pmd_migration_entry_wait(mm, pmd);
724 		goto retry_locked;
725 	}
726 	if (unlikely(!pmd_trans_huge(*pmd))) {
727 		spin_unlock(ptl);
728 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
729 	}
730 	if (flags & FOLL_SPLIT_PMD) {
731 		int ret;
732 		page = pmd_page(*pmd);
733 		if (is_huge_zero_page(page)) {
734 			spin_unlock(ptl);
735 			ret = 0;
736 			split_huge_pmd(vma, pmd, address);
737 			if (pmd_trans_unstable(pmd))
738 				ret = -EBUSY;
739 		} else {
740 			spin_unlock(ptl);
741 			split_huge_pmd(vma, pmd, address);
742 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
743 		}
744 
745 		return ret ? ERR_PTR(ret) :
746 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
747 	}
748 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
749 	spin_unlock(ptl);
750 	ctx->page_mask = HPAGE_PMD_NR - 1;
751 	return page;
752 }
753 
754 static struct page *follow_pud_mask(struct vm_area_struct *vma,
755 				    unsigned long address, p4d_t *p4dp,
756 				    unsigned int flags,
757 				    struct follow_page_context *ctx)
758 {
759 	pud_t *pud;
760 	spinlock_t *ptl;
761 	struct page *page;
762 	struct mm_struct *mm = vma->vm_mm;
763 
764 	pud = pud_offset(p4dp, address);
765 	if (pud_none(*pud))
766 		return no_page_table(vma, flags);
767 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
768 		page = follow_huge_pud(mm, address, pud, flags);
769 		if (page)
770 			return page;
771 		return no_page_table(vma, flags);
772 	}
773 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
774 		page = follow_huge_pd(vma, address,
775 				      __hugepd(pud_val(*pud)), flags,
776 				      PUD_SHIFT);
777 		if (page)
778 			return page;
779 		return no_page_table(vma, flags);
780 	}
781 	if (pud_devmap(*pud)) {
782 		ptl = pud_lock(mm, pud);
783 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
784 		spin_unlock(ptl);
785 		if (page)
786 			return page;
787 	}
788 	if (unlikely(pud_bad(*pud)))
789 		return no_page_table(vma, flags);
790 
791 	return follow_pmd_mask(vma, address, pud, flags, ctx);
792 }
793 
794 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
795 				    unsigned long address, pgd_t *pgdp,
796 				    unsigned int flags,
797 				    struct follow_page_context *ctx)
798 {
799 	p4d_t *p4d;
800 	struct page *page;
801 
802 	p4d = p4d_offset(pgdp, address);
803 	if (p4d_none(*p4d))
804 		return no_page_table(vma, flags);
805 	BUILD_BUG_ON(p4d_huge(*p4d));
806 	if (unlikely(p4d_bad(*p4d)))
807 		return no_page_table(vma, flags);
808 
809 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
810 		page = follow_huge_pd(vma, address,
811 				      __hugepd(p4d_val(*p4d)), flags,
812 				      P4D_SHIFT);
813 		if (page)
814 			return page;
815 		return no_page_table(vma, flags);
816 	}
817 	return follow_pud_mask(vma, address, p4d, flags, ctx);
818 }
819 
820 /**
821  * follow_page_mask - look up a page descriptor from a user-virtual address
822  * @vma: vm_area_struct mapping @address
823  * @address: virtual address to look up
824  * @flags: flags modifying lookup behaviour
825  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
826  *       pointer to output page_mask
827  *
828  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
829  *
830  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
831  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
832  *
833  * When getting an anonymous page and the caller has to trigger unsharing
834  * of a shared anonymous page first, -EMLINK is returned. The caller should
835  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
836  * relevant with FOLL_PIN and !FOLL_WRITE.
837  *
838  * On output, the @ctx->page_mask is set according to the size of the page.
839  *
840  * Return: the mapped (struct page *), %NULL if no mapping exists, or
841  * an error pointer if there is a mapping to something not represented
842  * by a page descriptor (see also vm_normal_page()).
843  */
844 static struct page *follow_page_mask(struct vm_area_struct *vma,
845 			      unsigned long address, unsigned int flags,
846 			      struct follow_page_context *ctx)
847 {
848 	pgd_t *pgd;
849 	struct page *page;
850 	struct mm_struct *mm = vma->vm_mm;
851 
852 	ctx->page_mask = 0;
853 
854 	/* make this handle hugepd */
855 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
856 	if (!IS_ERR(page)) {
857 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
858 		return page;
859 	}
860 
861 	pgd = pgd_offset(mm, address);
862 
863 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
864 		return no_page_table(vma, flags);
865 
866 	if (pgd_huge(*pgd)) {
867 		page = follow_huge_pgd(mm, address, pgd, flags);
868 		if (page)
869 			return page;
870 		return no_page_table(vma, flags);
871 	}
872 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
873 		page = follow_huge_pd(vma, address,
874 				      __hugepd(pgd_val(*pgd)), flags,
875 				      PGDIR_SHIFT);
876 		if (page)
877 			return page;
878 		return no_page_table(vma, flags);
879 	}
880 
881 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
882 }
883 
884 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
885 			 unsigned int foll_flags)
886 {
887 	struct follow_page_context ctx = { NULL };
888 	struct page *page;
889 
890 	if (vma_is_secretmem(vma))
891 		return NULL;
892 
893 	if (foll_flags & FOLL_PIN)
894 		return NULL;
895 
896 	page = follow_page_mask(vma, address, foll_flags, &ctx);
897 	if (ctx.pgmap)
898 		put_dev_pagemap(ctx.pgmap);
899 	return page;
900 }
901 
902 static int get_gate_page(struct mm_struct *mm, unsigned long address,
903 		unsigned int gup_flags, struct vm_area_struct **vma,
904 		struct page **page)
905 {
906 	pgd_t *pgd;
907 	p4d_t *p4d;
908 	pud_t *pud;
909 	pmd_t *pmd;
910 	pte_t *pte;
911 	int ret = -EFAULT;
912 
913 	/* user gate pages are read-only */
914 	if (gup_flags & FOLL_WRITE)
915 		return -EFAULT;
916 	if (address > TASK_SIZE)
917 		pgd = pgd_offset_k(address);
918 	else
919 		pgd = pgd_offset_gate(mm, address);
920 	if (pgd_none(*pgd))
921 		return -EFAULT;
922 	p4d = p4d_offset(pgd, address);
923 	if (p4d_none(*p4d))
924 		return -EFAULT;
925 	pud = pud_offset(p4d, address);
926 	if (pud_none(*pud))
927 		return -EFAULT;
928 	pmd = pmd_offset(pud, address);
929 	if (!pmd_present(*pmd))
930 		return -EFAULT;
931 	VM_BUG_ON(pmd_trans_huge(*pmd));
932 	pte = pte_offset_map(pmd, address);
933 	if (pte_none(*pte))
934 		goto unmap;
935 	*vma = get_gate_vma(mm);
936 	if (!page)
937 		goto out;
938 	*page = vm_normal_page(*vma, address, *pte);
939 	if (!*page) {
940 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
941 			goto unmap;
942 		*page = pte_page(*pte);
943 	}
944 	if (unlikely(!try_grab_page(*page, gup_flags))) {
945 		ret = -ENOMEM;
946 		goto unmap;
947 	}
948 out:
949 	ret = 0;
950 unmap:
951 	pte_unmap(pte);
952 	return ret;
953 }
954 
955 /*
956  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
957  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
958  * is, *@locked will be set to 0 and -EBUSY returned.
959  */
960 static int faultin_page(struct vm_area_struct *vma,
961 		unsigned long address, unsigned int *flags, bool unshare,
962 		int *locked)
963 {
964 	unsigned int fault_flags = 0;
965 	vm_fault_t ret;
966 
967 	if (*flags & FOLL_NOFAULT)
968 		return -EFAULT;
969 	if (*flags & FOLL_WRITE)
970 		fault_flags |= FAULT_FLAG_WRITE;
971 	if (*flags & FOLL_REMOTE)
972 		fault_flags |= FAULT_FLAG_REMOTE;
973 	if (locked)
974 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
975 	if (*flags & FOLL_NOWAIT)
976 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
977 	if (*flags & FOLL_TRIED) {
978 		/*
979 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
980 		 * can co-exist
981 		 */
982 		fault_flags |= FAULT_FLAG_TRIED;
983 	}
984 	if (unshare) {
985 		fault_flags |= FAULT_FLAG_UNSHARE;
986 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
987 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
988 	}
989 
990 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
991 
992 	if (ret & VM_FAULT_COMPLETED) {
993 		/*
994 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
995 		 * mmap lock in the page fault handler. Sanity check this.
996 		 */
997 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
998 		if (locked)
999 			*locked = 0;
1000 		/*
1001 		 * We should do the same as VM_FAULT_RETRY, but let's not
1002 		 * return -EBUSY since that's not reflecting the reality of
1003 		 * what has happened - we've just fully completed a page
1004 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1005 		 * that we want to take the mmap lock _again_.
1006 		 */
1007 		return -EAGAIN;
1008 	}
1009 
1010 	if (ret & VM_FAULT_ERROR) {
1011 		int err = vm_fault_to_errno(ret, *flags);
1012 
1013 		if (err)
1014 			return err;
1015 		BUG();
1016 	}
1017 
1018 	if (ret & VM_FAULT_RETRY) {
1019 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1020 			*locked = 0;
1021 		return -EBUSY;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1028 {
1029 	vm_flags_t vm_flags = vma->vm_flags;
1030 	int write = (gup_flags & FOLL_WRITE);
1031 	int foreign = (gup_flags & FOLL_REMOTE);
1032 
1033 	if (vm_flags & (VM_IO | VM_PFNMAP))
1034 		return -EFAULT;
1035 
1036 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1037 		return -EFAULT;
1038 
1039 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1040 		return -EOPNOTSUPP;
1041 
1042 	if (vma_is_secretmem(vma))
1043 		return -EFAULT;
1044 
1045 	if (write) {
1046 		if (!(vm_flags & VM_WRITE)) {
1047 			if (!(gup_flags & FOLL_FORCE))
1048 				return -EFAULT;
1049 			/*
1050 			 * We used to let the write,force case do COW in a
1051 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1052 			 * set a breakpoint in a read-only mapping of an
1053 			 * executable, without corrupting the file (yet only
1054 			 * when that file had been opened for writing!).
1055 			 * Anon pages in shared mappings are surprising: now
1056 			 * just reject it.
1057 			 */
1058 			if (!is_cow_mapping(vm_flags))
1059 				return -EFAULT;
1060 		}
1061 	} else if (!(vm_flags & VM_READ)) {
1062 		if (!(gup_flags & FOLL_FORCE))
1063 			return -EFAULT;
1064 		/*
1065 		 * Is there actually any vma we can reach here which does not
1066 		 * have VM_MAYREAD set?
1067 		 */
1068 		if (!(vm_flags & VM_MAYREAD))
1069 			return -EFAULT;
1070 	}
1071 	/*
1072 	 * gups are always data accesses, not instruction
1073 	 * fetches, so execute=false here
1074 	 */
1075 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1076 		return -EFAULT;
1077 	return 0;
1078 }
1079 
1080 /**
1081  * __get_user_pages() - pin user pages in memory
1082  * @mm:		mm_struct of target mm
1083  * @start:	starting user address
1084  * @nr_pages:	number of pages from start to pin
1085  * @gup_flags:	flags modifying pin behaviour
1086  * @pages:	array that receives pointers to the pages pinned.
1087  *		Should be at least nr_pages long. Or NULL, if caller
1088  *		only intends to ensure the pages are faulted in.
1089  * @vmas:	array of pointers to vmas corresponding to each page.
1090  *		Or NULL if the caller does not require them.
1091  * @locked:     whether we're still with the mmap_lock held
1092  *
1093  * Returns either number of pages pinned (which may be less than the
1094  * number requested), or an error. Details about the return value:
1095  *
1096  * -- If nr_pages is 0, returns 0.
1097  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1098  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1099  *    pages pinned. Again, this may be less than nr_pages.
1100  * -- 0 return value is possible when the fault would need to be retried.
1101  *
1102  * The caller is responsible for releasing returned @pages, via put_page().
1103  *
1104  * @vmas are valid only as long as mmap_lock is held.
1105  *
1106  * Must be called with mmap_lock held.  It may be released.  See below.
1107  *
1108  * __get_user_pages walks a process's page tables and takes a reference to
1109  * each struct page that each user address corresponds to at a given
1110  * instant. That is, it takes the page that would be accessed if a user
1111  * thread accesses the given user virtual address at that instant.
1112  *
1113  * This does not guarantee that the page exists in the user mappings when
1114  * __get_user_pages returns, and there may even be a completely different
1115  * page there in some cases (eg. if mmapped pagecache has been invalidated
1116  * and subsequently re faulted). However it does guarantee that the page
1117  * won't be freed completely. And mostly callers simply care that the page
1118  * contains data that was valid *at some point in time*. Typically, an IO
1119  * or similar operation cannot guarantee anything stronger anyway because
1120  * locks can't be held over the syscall boundary.
1121  *
1122  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1123  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1124  * appropriate) must be called after the page is finished with, and
1125  * before put_page is called.
1126  *
1127  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1128  * released by an up_read().  That can happen if @gup_flags does not
1129  * have FOLL_NOWAIT.
1130  *
1131  * A caller using such a combination of @locked and @gup_flags
1132  * must therefore hold the mmap_lock for reading only, and recognize
1133  * when it's been released.  Otherwise, it must be held for either
1134  * reading or writing and will not be released.
1135  *
1136  * In most cases, get_user_pages or get_user_pages_fast should be used
1137  * instead of __get_user_pages. __get_user_pages should be used only if
1138  * you need some special @gup_flags.
1139  */
1140 static long __get_user_pages(struct mm_struct *mm,
1141 		unsigned long start, unsigned long nr_pages,
1142 		unsigned int gup_flags, struct page **pages,
1143 		struct vm_area_struct **vmas, int *locked)
1144 {
1145 	long ret = 0, i = 0;
1146 	struct vm_area_struct *vma = NULL;
1147 	struct follow_page_context ctx = { NULL };
1148 
1149 	if (!nr_pages)
1150 		return 0;
1151 
1152 	start = untagged_addr(start);
1153 
1154 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1155 
1156 	/*
1157 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1158 	 * fault information is unrelated to the reference behaviour of a task
1159 	 * using the address space
1160 	 */
1161 	if (!(gup_flags & FOLL_FORCE))
1162 		gup_flags |= FOLL_NUMA;
1163 
1164 	do {
1165 		struct page *page;
1166 		unsigned int foll_flags = gup_flags;
1167 		unsigned int page_increm;
1168 
1169 		/* first iteration or cross vma bound */
1170 		if (!vma || start >= vma->vm_end) {
1171 			vma = find_extend_vma(mm, start);
1172 			if (!vma && in_gate_area(mm, start)) {
1173 				ret = get_gate_page(mm, start & PAGE_MASK,
1174 						gup_flags, &vma,
1175 						pages ? &pages[i] : NULL);
1176 				if (ret)
1177 					goto out;
1178 				ctx.page_mask = 0;
1179 				goto next_page;
1180 			}
1181 
1182 			if (!vma) {
1183 				ret = -EFAULT;
1184 				goto out;
1185 			}
1186 			ret = check_vma_flags(vma, gup_flags);
1187 			if (ret)
1188 				goto out;
1189 
1190 			if (is_vm_hugetlb_page(vma)) {
1191 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1192 						&start, &nr_pages, i,
1193 						gup_flags, locked);
1194 				if (locked && *locked == 0) {
1195 					/*
1196 					 * We've got a VM_FAULT_RETRY
1197 					 * and we've lost mmap_lock.
1198 					 * We must stop here.
1199 					 */
1200 					BUG_ON(gup_flags & FOLL_NOWAIT);
1201 					goto out;
1202 				}
1203 				continue;
1204 			}
1205 		}
1206 retry:
1207 		/*
1208 		 * If we have a pending SIGKILL, don't keep faulting pages and
1209 		 * potentially allocating memory.
1210 		 */
1211 		if (fatal_signal_pending(current)) {
1212 			ret = -EINTR;
1213 			goto out;
1214 		}
1215 		cond_resched();
1216 
1217 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1218 		if (!page || PTR_ERR(page) == -EMLINK) {
1219 			ret = faultin_page(vma, start, &foll_flags,
1220 					   PTR_ERR(page) == -EMLINK, locked);
1221 			switch (ret) {
1222 			case 0:
1223 				goto retry;
1224 			case -EBUSY:
1225 			case -EAGAIN:
1226 				ret = 0;
1227 				fallthrough;
1228 			case -EFAULT:
1229 			case -ENOMEM:
1230 			case -EHWPOISON:
1231 				goto out;
1232 			}
1233 			BUG();
1234 		} else if (PTR_ERR(page) == -EEXIST) {
1235 			/*
1236 			 * Proper page table entry exists, but no corresponding
1237 			 * struct page. If the caller expects **pages to be
1238 			 * filled in, bail out now, because that can't be done
1239 			 * for this page.
1240 			 */
1241 			if (pages) {
1242 				ret = PTR_ERR(page);
1243 				goto out;
1244 			}
1245 
1246 			goto next_page;
1247 		} else if (IS_ERR(page)) {
1248 			ret = PTR_ERR(page);
1249 			goto out;
1250 		}
1251 		if (pages) {
1252 			pages[i] = page;
1253 			flush_anon_page(vma, page, start);
1254 			flush_dcache_page(page);
1255 			ctx.page_mask = 0;
1256 		}
1257 next_page:
1258 		if (vmas) {
1259 			vmas[i] = vma;
1260 			ctx.page_mask = 0;
1261 		}
1262 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1263 		if (page_increm > nr_pages)
1264 			page_increm = nr_pages;
1265 		i += page_increm;
1266 		start += page_increm * PAGE_SIZE;
1267 		nr_pages -= page_increm;
1268 	} while (nr_pages);
1269 out:
1270 	if (ctx.pgmap)
1271 		put_dev_pagemap(ctx.pgmap);
1272 	return i ? i : ret;
1273 }
1274 
1275 static bool vma_permits_fault(struct vm_area_struct *vma,
1276 			      unsigned int fault_flags)
1277 {
1278 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1279 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1280 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1281 
1282 	if (!(vm_flags & vma->vm_flags))
1283 		return false;
1284 
1285 	/*
1286 	 * The architecture might have a hardware protection
1287 	 * mechanism other than read/write that can deny access.
1288 	 *
1289 	 * gup always represents data access, not instruction
1290 	 * fetches, so execute=false here:
1291 	 */
1292 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1293 		return false;
1294 
1295 	return true;
1296 }
1297 
1298 /**
1299  * fixup_user_fault() - manually resolve a user page fault
1300  * @mm:		mm_struct of target mm
1301  * @address:	user address
1302  * @fault_flags:flags to pass down to handle_mm_fault()
1303  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1304  *		does not allow retry. If NULL, the caller must guarantee
1305  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1306  *
1307  * This is meant to be called in the specific scenario where for locking reasons
1308  * we try to access user memory in atomic context (within a pagefault_disable()
1309  * section), this returns -EFAULT, and we want to resolve the user fault before
1310  * trying again.
1311  *
1312  * Typically this is meant to be used by the futex code.
1313  *
1314  * The main difference with get_user_pages() is that this function will
1315  * unconditionally call handle_mm_fault() which will in turn perform all the
1316  * necessary SW fixup of the dirty and young bits in the PTE, while
1317  * get_user_pages() only guarantees to update these in the struct page.
1318  *
1319  * This is important for some architectures where those bits also gate the
1320  * access permission to the page because they are maintained in software.  On
1321  * such architectures, gup() will not be enough to make a subsequent access
1322  * succeed.
1323  *
1324  * This function will not return with an unlocked mmap_lock. So it has not the
1325  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1326  */
1327 int fixup_user_fault(struct mm_struct *mm,
1328 		     unsigned long address, unsigned int fault_flags,
1329 		     bool *unlocked)
1330 {
1331 	struct vm_area_struct *vma;
1332 	vm_fault_t ret;
1333 
1334 	address = untagged_addr(address);
1335 
1336 	if (unlocked)
1337 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1338 
1339 retry:
1340 	vma = find_extend_vma(mm, address);
1341 	if (!vma || address < vma->vm_start)
1342 		return -EFAULT;
1343 
1344 	if (!vma_permits_fault(vma, fault_flags))
1345 		return -EFAULT;
1346 
1347 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1348 	    fatal_signal_pending(current))
1349 		return -EINTR;
1350 
1351 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1352 
1353 	if (ret & VM_FAULT_COMPLETED) {
1354 		/*
1355 		 * NOTE: it's a pity that we need to retake the lock here
1356 		 * to pair with the unlock() in the callers. Ideally we
1357 		 * could tell the callers so they do not need to unlock.
1358 		 */
1359 		mmap_read_lock(mm);
1360 		*unlocked = true;
1361 		return 0;
1362 	}
1363 
1364 	if (ret & VM_FAULT_ERROR) {
1365 		int err = vm_fault_to_errno(ret, 0);
1366 
1367 		if (err)
1368 			return err;
1369 		BUG();
1370 	}
1371 
1372 	if (ret & VM_FAULT_RETRY) {
1373 		mmap_read_lock(mm);
1374 		*unlocked = true;
1375 		fault_flags |= FAULT_FLAG_TRIED;
1376 		goto retry;
1377 	}
1378 
1379 	return 0;
1380 }
1381 EXPORT_SYMBOL_GPL(fixup_user_fault);
1382 
1383 /*
1384  * Please note that this function, unlike __get_user_pages will not
1385  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1386  */
1387 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1388 						unsigned long start,
1389 						unsigned long nr_pages,
1390 						struct page **pages,
1391 						struct vm_area_struct **vmas,
1392 						int *locked,
1393 						unsigned int flags)
1394 {
1395 	long ret, pages_done;
1396 	bool lock_dropped;
1397 
1398 	if (locked) {
1399 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1400 		BUG_ON(vmas);
1401 		/* check caller initialized locked */
1402 		BUG_ON(*locked != 1);
1403 	}
1404 
1405 	if (flags & FOLL_PIN)
1406 		mm_set_has_pinned_flag(&mm->flags);
1407 
1408 	/*
1409 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1410 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1411 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1412 	 * for FOLL_GET, not for the newer FOLL_PIN.
1413 	 *
1414 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1415 	 * that here, as any failures will be obvious enough.
1416 	 */
1417 	if (pages && !(flags & FOLL_PIN))
1418 		flags |= FOLL_GET;
1419 
1420 	pages_done = 0;
1421 	lock_dropped = false;
1422 	for (;;) {
1423 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1424 				       vmas, locked);
1425 		if (!locked)
1426 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1427 			return ret;
1428 
1429 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1430 		if (!*locked) {
1431 			BUG_ON(ret < 0);
1432 			BUG_ON(ret >= nr_pages);
1433 		}
1434 
1435 		if (ret > 0) {
1436 			nr_pages -= ret;
1437 			pages_done += ret;
1438 			if (!nr_pages)
1439 				break;
1440 		}
1441 		if (*locked) {
1442 			/*
1443 			 * VM_FAULT_RETRY didn't trigger or it was a
1444 			 * FOLL_NOWAIT.
1445 			 */
1446 			if (!pages_done)
1447 				pages_done = ret;
1448 			break;
1449 		}
1450 		/*
1451 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1452 		 * For the prefault case (!pages) we only update counts.
1453 		 */
1454 		if (likely(pages))
1455 			pages += ret;
1456 		start += ret << PAGE_SHIFT;
1457 		lock_dropped = true;
1458 
1459 retry:
1460 		/*
1461 		 * Repeat on the address that fired VM_FAULT_RETRY
1462 		 * with both FAULT_FLAG_ALLOW_RETRY and
1463 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1464 		 * by fatal signals, so we need to check it before we
1465 		 * start trying again otherwise it can loop forever.
1466 		 */
1467 
1468 		if (fatal_signal_pending(current)) {
1469 			if (!pages_done)
1470 				pages_done = -EINTR;
1471 			break;
1472 		}
1473 
1474 		ret = mmap_read_lock_killable(mm);
1475 		if (ret) {
1476 			BUG_ON(ret > 0);
1477 			if (!pages_done)
1478 				pages_done = ret;
1479 			break;
1480 		}
1481 
1482 		*locked = 1;
1483 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1484 				       pages, NULL, locked);
1485 		if (!*locked) {
1486 			/* Continue to retry until we succeeded */
1487 			BUG_ON(ret != 0);
1488 			goto retry;
1489 		}
1490 		if (ret != 1) {
1491 			BUG_ON(ret > 1);
1492 			if (!pages_done)
1493 				pages_done = ret;
1494 			break;
1495 		}
1496 		nr_pages--;
1497 		pages_done++;
1498 		if (!nr_pages)
1499 			break;
1500 		if (likely(pages))
1501 			pages++;
1502 		start += PAGE_SIZE;
1503 	}
1504 	if (lock_dropped && *locked) {
1505 		/*
1506 		 * We must let the caller know we temporarily dropped the lock
1507 		 * and so the critical section protected by it was lost.
1508 		 */
1509 		mmap_read_unlock(mm);
1510 		*locked = 0;
1511 	}
1512 	return pages_done;
1513 }
1514 
1515 /**
1516  * populate_vma_page_range() -  populate a range of pages in the vma.
1517  * @vma:   target vma
1518  * @start: start address
1519  * @end:   end address
1520  * @locked: whether the mmap_lock is still held
1521  *
1522  * This takes care of mlocking the pages too if VM_LOCKED is set.
1523  *
1524  * Return either number of pages pinned in the vma, or a negative error
1525  * code on error.
1526  *
1527  * vma->vm_mm->mmap_lock must be held.
1528  *
1529  * If @locked is NULL, it may be held for read or write and will
1530  * be unperturbed.
1531  *
1532  * If @locked is non-NULL, it must held for read only and may be
1533  * released.  If it's released, *@locked will be set to 0.
1534  */
1535 long populate_vma_page_range(struct vm_area_struct *vma,
1536 		unsigned long start, unsigned long end, int *locked)
1537 {
1538 	struct mm_struct *mm = vma->vm_mm;
1539 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1540 	int gup_flags;
1541 	long ret;
1542 
1543 	VM_BUG_ON(!PAGE_ALIGNED(start));
1544 	VM_BUG_ON(!PAGE_ALIGNED(end));
1545 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1546 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1547 	mmap_assert_locked(mm);
1548 
1549 	/*
1550 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1551 	 * faultin_page() to break COW, so it has no work to do here.
1552 	 */
1553 	if (vma->vm_flags & VM_LOCKONFAULT)
1554 		return nr_pages;
1555 
1556 	gup_flags = FOLL_TOUCH;
1557 	/*
1558 	 * We want to touch writable mappings with a write fault in order
1559 	 * to break COW, except for shared mappings because these don't COW
1560 	 * and we would not want to dirty them for nothing.
1561 	 */
1562 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1563 		gup_flags |= FOLL_WRITE;
1564 
1565 	/*
1566 	 * We want mlock to succeed for regions that have any permissions
1567 	 * other than PROT_NONE.
1568 	 */
1569 	if (vma_is_accessible(vma))
1570 		gup_flags |= FOLL_FORCE;
1571 
1572 	/*
1573 	 * We made sure addr is within a VMA, so the following will
1574 	 * not result in a stack expansion that recurses back here.
1575 	 */
1576 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1577 				NULL, NULL, locked);
1578 	lru_add_drain();
1579 	return ret;
1580 }
1581 
1582 /*
1583  * faultin_vma_page_range() - populate (prefault) page tables inside the
1584  *			      given VMA range readable/writable
1585  *
1586  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1587  *
1588  * @vma: target vma
1589  * @start: start address
1590  * @end: end address
1591  * @write: whether to prefault readable or writable
1592  * @locked: whether the mmap_lock is still held
1593  *
1594  * Returns either number of processed pages in the vma, or a negative error
1595  * code on error (see __get_user_pages()).
1596  *
1597  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1598  * covered by the VMA.
1599  *
1600  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1601  *
1602  * If @locked is non-NULL, it must held for read only and may be released.  If
1603  * it's released, *@locked will be set to 0.
1604  */
1605 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1606 			    unsigned long end, bool write, int *locked)
1607 {
1608 	struct mm_struct *mm = vma->vm_mm;
1609 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1610 	int gup_flags;
1611 	long ret;
1612 
1613 	VM_BUG_ON(!PAGE_ALIGNED(start));
1614 	VM_BUG_ON(!PAGE_ALIGNED(end));
1615 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1616 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1617 	mmap_assert_locked(mm);
1618 
1619 	/*
1620 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1621 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1622 	 *	       difference with !FOLL_FORCE, because the page is writable
1623 	 *	       in the page table.
1624 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1625 	 *		  a poisoned page.
1626 	 * !FOLL_FORCE: Require proper access permissions.
1627 	 */
1628 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1629 	if (write)
1630 		gup_flags |= FOLL_WRITE;
1631 
1632 	/*
1633 	 * We want to report -EINVAL instead of -EFAULT for any permission
1634 	 * problems or incompatible mappings.
1635 	 */
1636 	if (check_vma_flags(vma, gup_flags))
1637 		return -EINVAL;
1638 
1639 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1640 				NULL, NULL, locked);
1641 	lru_add_drain();
1642 	return ret;
1643 }
1644 
1645 /*
1646  * __mm_populate - populate and/or mlock pages within a range of address space.
1647  *
1648  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1649  * flags. VMAs must be already marked with the desired vm_flags, and
1650  * mmap_lock must not be held.
1651  */
1652 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1653 {
1654 	struct mm_struct *mm = current->mm;
1655 	unsigned long end, nstart, nend;
1656 	struct vm_area_struct *vma = NULL;
1657 	int locked = 0;
1658 	long ret = 0;
1659 
1660 	end = start + len;
1661 
1662 	for (nstart = start; nstart < end; nstart = nend) {
1663 		/*
1664 		 * We want to fault in pages for [nstart; end) address range.
1665 		 * Find first corresponding VMA.
1666 		 */
1667 		if (!locked) {
1668 			locked = 1;
1669 			mmap_read_lock(mm);
1670 			vma = find_vma(mm, nstart);
1671 		} else if (nstart >= vma->vm_end)
1672 			vma = vma->vm_next;
1673 		if (!vma || vma->vm_start >= end)
1674 			break;
1675 		/*
1676 		 * Set [nstart; nend) to intersection of desired address
1677 		 * range with the first VMA. Also, skip undesirable VMA types.
1678 		 */
1679 		nend = min(end, vma->vm_end);
1680 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1681 			continue;
1682 		if (nstart < vma->vm_start)
1683 			nstart = vma->vm_start;
1684 		/*
1685 		 * Now fault in a range of pages. populate_vma_page_range()
1686 		 * double checks the vma flags, so that it won't mlock pages
1687 		 * if the vma was already munlocked.
1688 		 */
1689 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1690 		if (ret < 0) {
1691 			if (ignore_errors) {
1692 				ret = 0;
1693 				continue;	/* continue at next VMA */
1694 			}
1695 			break;
1696 		}
1697 		nend = nstart + ret * PAGE_SIZE;
1698 		ret = 0;
1699 	}
1700 	if (locked)
1701 		mmap_read_unlock(mm);
1702 	return ret;	/* 0 or negative error code */
1703 }
1704 #else /* CONFIG_MMU */
1705 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1706 		unsigned long nr_pages, struct page **pages,
1707 		struct vm_area_struct **vmas, int *locked,
1708 		unsigned int foll_flags)
1709 {
1710 	struct vm_area_struct *vma;
1711 	unsigned long vm_flags;
1712 	long i;
1713 
1714 	/* calculate required read or write permissions.
1715 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1716 	 */
1717 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1718 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1719 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1720 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1721 
1722 	for (i = 0; i < nr_pages; i++) {
1723 		vma = find_vma(mm, start);
1724 		if (!vma)
1725 			goto finish_or_fault;
1726 
1727 		/* protect what we can, including chardevs */
1728 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1729 		    !(vm_flags & vma->vm_flags))
1730 			goto finish_or_fault;
1731 
1732 		if (pages) {
1733 			pages[i] = virt_to_page((void *)start);
1734 			if (pages[i])
1735 				get_page(pages[i]);
1736 		}
1737 		if (vmas)
1738 			vmas[i] = vma;
1739 		start = (start + PAGE_SIZE) & PAGE_MASK;
1740 	}
1741 
1742 	return i;
1743 
1744 finish_or_fault:
1745 	return i ? : -EFAULT;
1746 }
1747 #endif /* !CONFIG_MMU */
1748 
1749 /**
1750  * fault_in_writeable - fault in userspace address range for writing
1751  * @uaddr: start of address range
1752  * @size: size of address range
1753  *
1754  * Returns the number of bytes not faulted in (like copy_to_user() and
1755  * copy_from_user()).
1756  */
1757 size_t fault_in_writeable(char __user *uaddr, size_t size)
1758 {
1759 	char __user *start = uaddr, *end;
1760 
1761 	if (unlikely(size == 0))
1762 		return 0;
1763 	if (!user_write_access_begin(uaddr, size))
1764 		return size;
1765 	if (!PAGE_ALIGNED(uaddr)) {
1766 		unsafe_put_user(0, uaddr, out);
1767 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1768 	}
1769 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1770 	if (unlikely(end < start))
1771 		end = NULL;
1772 	while (uaddr != end) {
1773 		unsafe_put_user(0, uaddr, out);
1774 		uaddr += PAGE_SIZE;
1775 	}
1776 
1777 out:
1778 	user_write_access_end();
1779 	if (size > uaddr - start)
1780 		return size - (uaddr - start);
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL(fault_in_writeable);
1784 
1785 /**
1786  * fault_in_subpage_writeable - fault in an address range for writing
1787  * @uaddr: start of address range
1788  * @size: size of address range
1789  *
1790  * Fault in a user address range for writing while checking for permissions at
1791  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1792  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1793  *
1794  * Returns the number of bytes not faulted in (like copy_to_user() and
1795  * copy_from_user()).
1796  */
1797 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1798 {
1799 	size_t faulted_in;
1800 
1801 	/*
1802 	 * Attempt faulting in at page granularity first for page table
1803 	 * permission checking. The arch-specific probe_subpage_writeable()
1804 	 * functions may not check for this.
1805 	 */
1806 	faulted_in = size - fault_in_writeable(uaddr, size);
1807 	if (faulted_in)
1808 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1809 
1810 	return size - faulted_in;
1811 }
1812 EXPORT_SYMBOL(fault_in_subpage_writeable);
1813 
1814 /*
1815  * fault_in_safe_writeable - fault in an address range for writing
1816  * @uaddr: start of address range
1817  * @size: length of address range
1818  *
1819  * Faults in an address range for writing.  This is primarily useful when we
1820  * already know that some or all of the pages in the address range aren't in
1821  * memory.
1822  *
1823  * Unlike fault_in_writeable(), this function is non-destructive.
1824  *
1825  * Note that we don't pin or otherwise hold the pages referenced that we fault
1826  * in.  There's no guarantee that they'll stay in memory for any duration of
1827  * time.
1828  *
1829  * Returns the number of bytes not faulted in, like copy_to_user() and
1830  * copy_from_user().
1831  */
1832 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1833 {
1834 	unsigned long start = (unsigned long)uaddr, end;
1835 	struct mm_struct *mm = current->mm;
1836 	bool unlocked = false;
1837 
1838 	if (unlikely(size == 0))
1839 		return 0;
1840 	end = PAGE_ALIGN(start + size);
1841 	if (end < start)
1842 		end = 0;
1843 
1844 	mmap_read_lock(mm);
1845 	do {
1846 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1847 			break;
1848 		start = (start + PAGE_SIZE) & PAGE_MASK;
1849 	} while (start != end);
1850 	mmap_read_unlock(mm);
1851 
1852 	if (size > (unsigned long)uaddr - start)
1853 		return size - ((unsigned long)uaddr - start);
1854 	return 0;
1855 }
1856 EXPORT_SYMBOL(fault_in_safe_writeable);
1857 
1858 /**
1859  * fault_in_readable - fault in userspace address range for reading
1860  * @uaddr: start of user address range
1861  * @size: size of user address range
1862  *
1863  * Returns the number of bytes not faulted in (like copy_to_user() and
1864  * copy_from_user()).
1865  */
1866 size_t fault_in_readable(const char __user *uaddr, size_t size)
1867 {
1868 	const char __user *start = uaddr, *end;
1869 	volatile char c;
1870 
1871 	if (unlikely(size == 0))
1872 		return 0;
1873 	if (!user_read_access_begin(uaddr, size))
1874 		return size;
1875 	if (!PAGE_ALIGNED(uaddr)) {
1876 		unsafe_get_user(c, uaddr, out);
1877 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1878 	}
1879 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1880 	if (unlikely(end < start))
1881 		end = NULL;
1882 	while (uaddr != end) {
1883 		unsafe_get_user(c, uaddr, out);
1884 		uaddr += PAGE_SIZE;
1885 	}
1886 
1887 out:
1888 	user_read_access_end();
1889 	(void)c;
1890 	if (size > uaddr - start)
1891 		return size - (uaddr - start);
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL(fault_in_readable);
1895 
1896 /**
1897  * get_dump_page() - pin user page in memory while writing it to core dump
1898  * @addr: user address
1899  *
1900  * Returns struct page pointer of user page pinned for dump,
1901  * to be freed afterwards by put_page().
1902  *
1903  * Returns NULL on any kind of failure - a hole must then be inserted into
1904  * the corefile, to preserve alignment with its headers; and also returns
1905  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1906  * allowing a hole to be left in the corefile to save disk space.
1907  *
1908  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1909  */
1910 #ifdef CONFIG_ELF_CORE
1911 struct page *get_dump_page(unsigned long addr)
1912 {
1913 	struct mm_struct *mm = current->mm;
1914 	struct page *page;
1915 	int locked = 1;
1916 	int ret;
1917 
1918 	if (mmap_read_lock_killable(mm))
1919 		return NULL;
1920 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1921 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1922 	if (locked)
1923 		mmap_read_unlock(mm);
1924 	return (ret == 1) ? page : NULL;
1925 }
1926 #endif /* CONFIG_ELF_CORE */
1927 
1928 #ifdef CONFIG_MIGRATION
1929 /*
1930  * Check whether all pages are pinnable, if so return number of pages.  If some
1931  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1932  * pages were migrated, or if some pages were not successfully isolated.
1933  * Return negative error if migration fails.
1934  */
1935 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1936 					    struct page **pages,
1937 					    unsigned int gup_flags)
1938 {
1939 	unsigned long isolation_error_count = 0, i;
1940 	struct folio *prev_folio = NULL;
1941 	LIST_HEAD(movable_page_list);
1942 	bool drain_allow = true, coherent_pages = false;
1943 	int ret = 0;
1944 
1945 	for (i = 0; i < nr_pages; i++) {
1946 		struct folio *folio = page_folio(pages[i]);
1947 
1948 		if (folio == prev_folio)
1949 			continue;
1950 		prev_folio = folio;
1951 
1952 		/*
1953 		 * Device coherent pages are managed by a driver and should not
1954 		 * be pinned indefinitely as it prevents the driver moving the
1955 		 * page. So when trying to pin with FOLL_LONGTERM instead try
1956 		 * to migrate the page out of device memory.
1957 		 */
1958 		if (folio_is_device_coherent(folio)) {
1959 			/*
1960 			 * We always want a new GUP lookup with device coherent
1961 			 * pages.
1962 			 */
1963 			pages[i] = 0;
1964 			coherent_pages = true;
1965 
1966 			/*
1967 			 * Migration will fail if the page is pinned, so convert
1968 			 * the pin on the source page to a normal reference.
1969 			 */
1970 			if (gup_flags & FOLL_PIN) {
1971 				get_page(&folio->page);
1972 				unpin_user_page(&folio->page);
1973 			}
1974 
1975 			ret = migrate_device_coherent_page(&folio->page);
1976 			if (ret)
1977 				goto unpin_pages;
1978 
1979 			continue;
1980 		}
1981 
1982 		if (folio_is_longterm_pinnable(folio))
1983 			continue;
1984 		/*
1985 		 * Try to move out any movable page before pinning the range.
1986 		 */
1987 		if (folio_test_hugetlb(folio)) {
1988 			if (isolate_hugetlb(&folio->page,
1989 						&movable_page_list))
1990 				isolation_error_count++;
1991 			continue;
1992 		}
1993 
1994 		if (!folio_test_lru(folio) && drain_allow) {
1995 			lru_add_drain_all();
1996 			drain_allow = false;
1997 		}
1998 
1999 		if (folio_isolate_lru(folio)) {
2000 			isolation_error_count++;
2001 			continue;
2002 		}
2003 		list_add_tail(&folio->lru, &movable_page_list);
2004 		node_stat_mod_folio(folio,
2005 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2006 				    folio_nr_pages(folio));
2007 	}
2008 
2009 	if (!list_empty(&movable_page_list) || isolation_error_count ||
2010 	    coherent_pages)
2011 		goto unpin_pages;
2012 
2013 	/*
2014 	 * If list is empty, and no isolation errors, means that all pages are
2015 	 * in the correct zone.
2016 	 */
2017 	return nr_pages;
2018 
2019 unpin_pages:
2020 	/*
2021 	 * pages[i] might be NULL if any device coherent pages were found.
2022 	 */
2023 	for (i = 0; i < nr_pages; i++) {
2024 		if (!pages[i])
2025 			continue;
2026 
2027 		if (gup_flags & FOLL_PIN)
2028 			unpin_user_page(pages[i]);
2029 		else
2030 			put_page(pages[i]);
2031 	}
2032 
2033 	if (!list_empty(&movable_page_list)) {
2034 		struct migration_target_control mtc = {
2035 			.nid = NUMA_NO_NODE,
2036 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2037 		};
2038 
2039 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
2040 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2041 				    MR_LONGTERM_PIN, NULL);
2042 		if (ret > 0) /* number of pages not migrated */
2043 			ret = -ENOMEM;
2044 	}
2045 
2046 	if (ret && !list_empty(&movable_page_list))
2047 		putback_movable_pages(&movable_page_list);
2048 	return ret;
2049 }
2050 #else
2051 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2052 					    struct page **pages,
2053 					    unsigned int gup_flags)
2054 {
2055 	return nr_pages;
2056 }
2057 #endif /* CONFIG_MIGRATION */
2058 
2059 /*
2060  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2061  * allows us to process the FOLL_LONGTERM flag.
2062  */
2063 static long __gup_longterm_locked(struct mm_struct *mm,
2064 				  unsigned long start,
2065 				  unsigned long nr_pages,
2066 				  struct page **pages,
2067 				  struct vm_area_struct **vmas,
2068 				  unsigned int gup_flags)
2069 {
2070 	unsigned int flags;
2071 	long rc;
2072 
2073 	if (!(gup_flags & FOLL_LONGTERM))
2074 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2075 					       NULL, gup_flags);
2076 	flags = memalloc_pin_save();
2077 	do {
2078 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2079 					     NULL, gup_flags);
2080 		if (rc <= 0)
2081 			break;
2082 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
2083 	} while (!rc);
2084 	memalloc_pin_restore(flags);
2085 
2086 	return rc;
2087 }
2088 
2089 static bool is_valid_gup_flags(unsigned int gup_flags)
2090 {
2091 	/*
2092 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2093 	 * never directly by the caller, so enforce that with an assertion:
2094 	 */
2095 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2096 		return false;
2097 	/*
2098 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2099 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2100 	 * FOLL_PIN.
2101 	 */
2102 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2103 		return false;
2104 
2105 	return true;
2106 }
2107 
2108 #ifdef CONFIG_MMU
2109 static long __get_user_pages_remote(struct mm_struct *mm,
2110 				    unsigned long start, unsigned long nr_pages,
2111 				    unsigned int gup_flags, struct page **pages,
2112 				    struct vm_area_struct **vmas, int *locked)
2113 {
2114 	/*
2115 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2116 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2117 	 * vmas. However, this only comes up if locked is set, and there are
2118 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2119 	 * allow what we can.
2120 	 */
2121 	if (gup_flags & FOLL_LONGTERM) {
2122 		if (WARN_ON_ONCE(locked))
2123 			return -EINVAL;
2124 		/*
2125 		 * This will check the vmas (even if our vmas arg is NULL)
2126 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2127 		 */
2128 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2129 					     vmas, gup_flags | FOLL_TOUCH |
2130 					     FOLL_REMOTE);
2131 	}
2132 
2133 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2134 				       locked,
2135 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2136 }
2137 
2138 /**
2139  * get_user_pages_remote() - pin user pages in memory
2140  * @mm:		mm_struct of target mm
2141  * @start:	starting user address
2142  * @nr_pages:	number of pages from start to pin
2143  * @gup_flags:	flags modifying lookup behaviour
2144  * @pages:	array that receives pointers to the pages pinned.
2145  *		Should be at least nr_pages long. Or NULL, if caller
2146  *		only intends to ensure the pages are faulted in.
2147  * @vmas:	array of pointers to vmas corresponding to each page.
2148  *		Or NULL if the caller does not require them.
2149  * @locked:	pointer to lock flag indicating whether lock is held and
2150  *		subsequently whether VM_FAULT_RETRY functionality can be
2151  *		utilised. Lock must initially be held.
2152  *
2153  * Returns either number of pages pinned (which may be less than the
2154  * number requested), or an error. Details about the return value:
2155  *
2156  * -- If nr_pages is 0, returns 0.
2157  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2158  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2159  *    pages pinned. Again, this may be less than nr_pages.
2160  *
2161  * The caller is responsible for releasing returned @pages, via put_page().
2162  *
2163  * @vmas are valid only as long as mmap_lock is held.
2164  *
2165  * Must be called with mmap_lock held for read or write.
2166  *
2167  * get_user_pages_remote walks a process's page tables and takes a reference
2168  * to each struct page that each user address corresponds to at a given
2169  * instant. That is, it takes the page that would be accessed if a user
2170  * thread accesses the given user virtual address at that instant.
2171  *
2172  * This does not guarantee that the page exists in the user mappings when
2173  * get_user_pages_remote returns, and there may even be a completely different
2174  * page there in some cases (eg. if mmapped pagecache has been invalidated
2175  * and subsequently re faulted). However it does guarantee that the page
2176  * won't be freed completely. And mostly callers simply care that the page
2177  * contains data that was valid *at some point in time*. Typically, an IO
2178  * or similar operation cannot guarantee anything stronger anyway because
2179  * locks can't be held over the syscall boundary.
2180  *
2181  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2182  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2183  * be called after the page is finished with, and before put_page is called.
2184  *
2185  * get_user_pages_remote is typically used for fewer-copy IO operations,
2186  * to get a handle on the memory by some means other than accesses
2187  * via the user virtual addresses. The pages may be submitted for
2188  * DMA to devices or accessed via their kernel linear mapping (via the
2189  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2190  *
2191  * See also get_user_pages_fast, for performance critical applications.
2192  *
2193  * get_user_pages_remote should be phased out in favor of
2194  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2195  * should use get_user_pages_remote because it cannot pass
2196  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2197  */
2198 long get_user_pages_remote(struct mm_struct *mm,
2199 		unsigned long start, unsigned long nr_pages,
2200 		unsigned int gup_flags, struct page **pages,
2201 		struct vm_area_struct **vmas, int *locked)
2202 {
2203 	if (!is_valid_gup_flags(gup_flags))
2204 		return -EINVAL;
2205 
2206 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2207 				       pages, vmas, locked);
2208 }
2209 EXPORT_SYMBOL(get_user_pages_remote);
2210 
2211 #else /* CONFIG_MMU */
2212 long get_user_pages_remote(struct mm_struct *mm,
2213 			   unsigned long start, unsigned long nr_pages,
2214 			   unsigned int gup_flags, struct page **pages,
2215 			   struct vm_area_struct **vmas, int *locked)
2216 {
2217 	return 0;
2218 }
2219 
2220 static long __get_user_pages_remote(struct mm_struct *mm,
2221 				    unsigned long start, unsigned long nr_pages,
2222 				    unsigned int gup_flags, struct page **pages,
2223 				    struct vm_area_struct **vmas, int *locked)
2224 {
2225 	return 0;
2226 }
2227 #endif /* !CONFIG_MMU */
2228 
2229 /**
2230  * get_user_pages() - pin user pages in memory
2231  * @start:      starting user address
2232  * @nr_pages:   number of pages from start to pin
2233  * @gup_flags:  flags modifying lookup behaviour
2234  * @pages:      array that receives pointers to the pages pinned.
2235  *              Should be at least nr_pages long. Or NULL, if caller
2236  *              only intends to ensure the pages are faulted in.
2237  * @vmas:       array of pointers to vmas corresponding to each page.
2238  *              Or NULL if the caller does not require them.
2239  *
2240  * This is the same as get_user_pages_remote(), just with a less-flexible
2241  * calling convention where we assume that the mm being operated on belongs to
2242  * the current task, and doesn't allow passing of a locked parameter.  We also
2243  * obviously don't pass FOLL_REMOTE in here.
2244  */
2245 long get_user_pages(unsigned long start, unsigned long nr_pages,
2246 		unsigned int gup_flags, struct page **pages,
2247 		struct vm_area_struct **vmas)
2248 {
2249 	if (!is_valid_gup_flags(gup_flags))
2250 		return -EINVAL;
2251 
2252 	return __gup_longterm_locked(current->mm, start, nr_pages,
2253 				     pages, vmas, gup_flags | FOLL_TOUCH);
2254 }
2255 EXPORT_SYMBOL(get_user_pages);
2256 
2257 /*
2258  * get_user_pages_unlocked() is suitable to replace the form:
2259  *
2260  *      mmap_read_lock(mm);
2261  *      get_user_pages(mm, ..., pages, NULL);
2262  *      mmap_read_unlock(mm);
2263  *
2264  *  with:
2265  *
2266  *      get_user_pages_unlocked(mm, ..., pages);
2267  *
2268  * It is functionally equivalent to get_user_pages_fast so
2269  * get_user_pages_fast should be used instead if specific gup_flags
2270  * (e.g. FOLL_FORCE) are not required.
2271  */
2272 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2273 			     struct page **pages, unsigned int gup_flags)
2274 {
2275 	struct mm_struct *mm = current->mm;
2276 	int locked = 1;
2277 	long ret;
2278 
2279 	/*
2280 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2281 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2282 	 * vmas.  As there are no users of this flag in this call we simply
2283 	 * disallow this option for now.
2284 	 */
2285 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2286 		return -EINVAL;
2287 
2288 	mmap_read_lock(mm);
2289 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2290 				      &locked, gup_flags | FOLL_TOUCH);
2291 	if (locked)
2292 		mmap_read_unlock(mm);
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL(get_user_pages_unlocked);
2296 
2297 /*
2298  * Fast GUP
2299  *
2300  * get_user_pages_fast attempts to pin user pages by walking the page
2301  * tables directly and avoids taking locks. Thus the walker needs to be
2302  * protected from page table pages being freed from under it, and should
2303  * block any THP splits.
2304  *
2305  * One way to achieve this is to have the walker disable interrupts, and
2306  * rely on IPIs from the TLB flushing code blocking before the page table
2307  * pages are freed. This is unsuitable for architectures that do not need
2308  * to broadcast an IPI when invalidating TLBs.
2309  *
2310  * Another way to achieve this is to batch up page table containing pages
2311  * belonging to more than one mm_user, then rcu_sched a callback to free those
2312  * pages. Disabling interrupts will allow the fast_gup walker to both block
2313  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2314  * (which is a relatively rare event). The code below adopts this strategy.
2315  *
2316  * Before activating this code, please be aware that the following assumptions
2317  * are currently made:
2318  *
2319  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2320  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2321  *
2322  *  *) ptes can be read atomically by the architecture.
2323  *
2324  *  *) access_ok is sufficient to validate userspace address ranges.
2325  *
2326  * The last two assumptions can be relaxed by the addition of helper functions.
2327  *
2328  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2329  */
2330 #ifdef CONFIG_HAVE_FAST_GUP
2331 
2332 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2333 					    unsigned int flags,
2334 					    struct page **pages)
2335 {
2336 	while ((*nr) - nr_start) {
2337 		struct page *page = pages[--(*nr)];
2338 
2339 		ClearPageReferenced(page);
2340 		if (flags & FOLL_PIN)
2341 			unpin_user_page(page);
2342 		else
2343 			put_page(page);
2344 	}
2345 }
2346 
2347 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2349 			 unsigned int flags, struct page **pages, int *nr)
2350 {
2351 	struct dev_pagemap *pgmap = NULL;
2352 	int nr_start = *nr, ret = 0;
2353 	pte_t *ptep, *ptem;
2354 
2355 	ptem = ptep = pte_offset_map(&pmd, addr);
2356 	do {
2357 		pte_t pte = ptep_get_lockless(ptep);
2358 		struct page *page;
2359 		struct folio *folio;
2360 
2361 		/*
2362 		 * Similar to the PMD case below, NUMA hinting must take slow
2363 		 * path using the pte_protnone check.
2364 		 */
2365 		if (pte_protnone(pte))
2366 			goto pte_unmap;
2367 
2368 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2369 			goto pte_unmap;
2370 
2371 		if (pte_devmap(pte)) {
2372 			if (unlikely(flags & FOLL_LONGTERM))
2373 				goto pte_unmap;
2374 
2375 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2376 			if (unlikely(!pgmap)) {
2377 				undo_dev_pagemap(nr, nr_start, flags, pages);
2378 				goto pte_unmap;
2379 			}
2380 		} else if (pte_special(pte))
2381 			goto pte_unmap;
2382 
2383 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2384 		page = pte_page(pte);
2385 
2386 		folio = try_grab_folio(page, 1, flags);
2387 		if (!folio)
2388 			goto pte_unmap;
2389 
2390 		if (unlikely(page_is_secretmem(page))) {
2391 			gup_put_folio(folio, 1, flags);
2392 			goto pte_unmap;
2393 		}
2394 
2395 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2396 			gup_put_folio(folio, 1, flags);
2397 			goto pte_unmap;
2398 		}
2399 
2400 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2401 			gup_put_folio(folio, 1, flags);
2402 			goto pte_unmap;
2403 		}
2404 
2405 		/*
2406 		 * We need to make the page accessible if and only if we are
2407 		 * going to access its content (the FOLL_PIN case).  Please
2408 		 * see Documentation/core-api/pin_user_pages.rst for
2409 		 * details.
2410 		 */
2411 		if (flags & FOLL_PIN) {
2412 			ret = arch_make_page_accessible(page);
2413 			if (ret) {
2414 				gup_put_folio(folio, 1, flags);
2415 				goto pte_unmap;
2416 			}
2417 		}
2418 		folio_set_referenced(folio);
2419 		pages[*nr] = page;
2420 		(*nr)++;
2421 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2422 
2423 	ret = 1;
2424 
2425 pte_unmap:
2426 	if (pgmap)
2427 		put_dev_pagemap(pgmap);
2428 	pte_unmap(ptem);
2429 	return ret;
2430 }
2431 #else
2432 
2433 /*
2434  * If we can't determine whether or not a pte is special, then fail immediately
2435  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2436  * to be special.
2437  *
2438  * For a futex to be placed on a THP tail page, get_futex_key requires a
2439  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2440  * useful to have gup_huge_pmd even if we can't operate on ptes.
2441  */
2442 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2443 			 unsigned int flags, struct page **pages, int *nr)
2444 {
2445 	return 0;
2446 }
2447 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2448 
2449 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2450 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2451 			     unsigned long end, unsigned int flags,
2452 			     struct page **pages, int *nr)
2453 {
2454 	int nr_start = *nr;
2455 	struct dev_pagemap *pgmap = NULL;
2456 
2457 	do {
2458 		struct page *page = pfn_to_page(pfn);
2459 
2460 		pgmap = get_dev_pagemap(pfn, pgmap);
2461 		if (unlikely(!pgmap)) {
2462 			undo_dev_pagemap(nr, nr_start, flags, pages);
2463 			break;
2464 		}
2465 		SetPageReferenced(page);
2466 		pages[*nr] = page;
2467 		if (unlikely(!try_grab_page(page, flags))) {
2468 			undo_dev_pagemap(nr, nr_start, flags, pages);
2469 			break;
2470 		}
2471 		(*nr)++;
2472 		pfn++;
2473 	} while (addr += PAGE_SIZE, addr != end);
2474 
2475 	put_dev_pagemap(pgmap);
2476 	return addr == end;
2477 }
2478 
2479 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2480 				 unsigned long end, unsigned int flags,
2481 				 struct page **pages, int *nr)
2482 {
2483 	unsigned long fault_pfn;
2484 	int nr_start = *nr;
2485 
2486 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2487 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2488 		return 0;
2489 
2490 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2491 		undo_dev_pagemap(nr, nr_start, flags, pages);
2492 		return 0;
2493 	}
2494 	return 1;
2495 }
2496 
2497 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2498 				 unsigned long end, unsigned int flags,
2499 				 struct page **pages, int *nr)
2500 {
2501 	unsigned long fault_pfn;
2502 	int nr_start = *nr;
2503 
2504 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2505 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2506 		return 0;
2507 
2508 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2509 		undo_dev_pagemap(nr, nr_start, flags, pages);
2510 		return 0;
2511 	}
2512 	return 1;
2513 }
2514 #else
2515 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2516 				 unsigned long end, unsigned int flags,
2517 				 struct page **pages, int *nr)
2518 {
2519 	BUILD_BUG();
2520 	return 0;
2521 }
2522 
2523 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2524 				 unsigned long end, unsigned int flags,
2525 				 struct page **pages, int *nr)
2526 {
2527 	BUILD_BUG();
2528 	return 0;
2529 }
2530 #endif
2531 
2532 static int record_subpages(struct page *page, unsigned long addr,
2533 			   unsigned long end, struct page **pages)
2534 {
2535 	int nr;
2536 
2537 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2538 		pages[nr] = nth_page(page, nr);
2539 
2540 	return nr;
2541 }
2542 
2543 #ifdef CONFIG_ARCH_HAS_HUGEPD
2544 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2545 				      unsigned long sz)
2546 {
2547 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2548 	return (__boundary - 1 < end - 1) ? __boundary : end;
2549 }
2550 
2551 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2552 		       unsigned long end, unsigned int flags,
2553 		       struct page **pages, int *nr)
2554 {
2555 	unsigned long pte_end;
2556 	struct page *page;
2557 	struct folio *folio;
2558 	pte_t pte;
2559 	int refs;
2560 
2561 	pte_end = (addr + sz) & ~(sz-1);
2562 	if (pte_end < end)
2563 		end = pte_end;
2564 
2565 	pte = huge_ptep_get(ptep);
2566 
2567 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2568 		return 0;
2569 
2570 	/* hugepages are never "special" */
2571 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2572 
2573 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2574 	refs = record_subpages(page, addr, end, pages + *nr);
2575 
2576 	folio = try_grab_folio(page, refs, flags);
2577 	if (!folio)
2578 		return 0;
2579 
2580 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2581 		gup_put_folio(folio, refs, flags);
2582 		return 0;
2583 	}
2584 
2585 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2586 		gup_put_folio(folio, refs, flags);
2587 		return 0;
2588 	}
2589 
2590 	*nr += refs;
2591 	folio_set_referenced(folio);
2592 	return 1;
2593 }
2594 
2595 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2596 		unsigned int pdshift, unsigned long end, unsigned int flags,
2597 		struct page **pages, int *nr)
2598 {
2599 	pte_t *ptep;
2600 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2601 	unsigned long next;
2602 
2603 	ptep = hugepte_offset(hugepd, addr, pdshift);
2604 	do {
2605 		next = hugepte_addr_end(addr, end, sz);
2606 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2607 			return 0;
2608 	} while (ptep++, addr = next, addr != end);
2609 
2610 	return 1;
2611 }
2612 #else
2613 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2614 		unsigned int pdshift, unsigned long end, unsigned int flags,
2615 		struct page **pages, int *nr)
2616 {
2617 	return 0;
2618 }
2619 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2620 
2621 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2622 			unsigned long end, unsigned int flags,
2623 			struct page **pages, int *nr)
2624 {
2625 	struct page *page;
2626 	struct folio *folio;
2627 	int refs;
2628 
2629 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2630 		return 0;
2631 
2632 	if (pmd_devmap(orig)) {
2633 		if (unlikely(flags & FOLL_LONGTERM))
2634 			return 0;
2635 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2636 					     pages, nr);
2637 	}
2638 
2639 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2640 	refs = record_subpages(page, addr, end, pages + *nr);
2641 
2642 	folio = try_grab_folio(page, refs, flags);
2643 	if (!folio)
2644 		return 0;
2645 
2646 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2647 		gup_put_folio(folio, refs, flags);
2648 		return 0;
2649 	}
2650 
2651 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2652 		gup_put_folio(folio, refs, flags);
2653 		return 0;
2654 	}
2655 
2656 	*nr += refs;
2657 	folio_set_referenced(folio);
2658 	return 1;
2659 }
2660 
2661 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2662 			unsigned long end, unsigned int flags,
2663 			struct page **pages, int *nr)
2664 {
2665 	struct page *page;
2666 	struct folio *folio;
2667 	int refs;
2668 
2669 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2670 		return 0;
2671 
2672 	if (pud_devmap(orig)) {
2673 		if (unlikely(flags & FOLL_LONGTERM))
2674 			return 0;
2675 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2676 					     pages, nr);
2677 	}
2678 
2679 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2680 	refs = record_subpages(page, addr, end, pages + *nr);
2681 
2682 	folio = try_grab_folio(page, refs, flags);
2683 	if (!folio)
2684 		return 0;
2685 
2686 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2687 		gup_put_folio(folio, refs, flags);
2688 		return 0;
2689 	}
2690 
2691 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2692 		gup_put_folio(folio, refs, flags);
2693 		return 0;
2694 	}
2695 
2696 	*nr += refs;
2697 	folio_set_referenced(folio);
2698 	return 1;
2699 }
2700 
2701 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2702 			unsigned long end, unsigned int flags,
2703 			struct page **pages, int *nr)
2704 {
2705 	int refs;
2706 	struct page *page;
2707 	struct folio *folio;
2708 
2709 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2710 		return 0;
2711 
2712 	BUILD_BUG_ON(pgd_devmap(orig));
2713 
2714 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2715 	refs = record_subpages(page, addr, end, pages + *nr);
2716 
2717 	folio = try_grab_folio(page, refs, flags);
2718 	if (!folio)
2719 		return 0;
2720 
2721 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2722 		gup_put_folio(folio, refs, flags);
2723 		return 0;
2724 	}
2725 
2726 	*nr += refs;
2727 	folio_set_referenced(folio);
2728 	return 1;
2729 }
2730 
2731 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2732 		unsigned int flags, struct page **pages, int *nr)
2733 {
2734 	unsigned long next;
2735 	pmd_t *pmdp;
2736 
2737 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2738 	do {
2739 		pmd_t pmd = READ_ONCE(*pmdp);
2740 
2741 		next = pmd_addr_end(addr, end);
2742 		if (!pmd_present(pmd))
2743 			return 0;
2744 
2745 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2746 			     pmd_devmap(pmd))) {
2747 			/*
2748 			 * NUMA hinting faults need to be handled in the GUP
2749 			 * slowpath for accounting purposes and so that they
2750 			 * can be serialised against THP migration.
2751 			 */
2752 			if (pmd_protnone(pmd))
2753 				return 0;
2754 
2755 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2756 				pages, nr))
2757 				return 0;
2758 
2759 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2760 			/*
2761 			 * architecture have different format for hugetlbfs
2762 			 * pmd format and THP pmd format
2763 			 */
2764 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2765 					 PMD_SHIFT, next, flags, pages, nr))
2766 				return 0;
2767 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2768 			return 0;
2769 	} while (pmdp++, addr = next, addr != end);
2770 
2771 	return 1;
2772 }
2773 
2774 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2775 			 unsigned int flags, struct page **pages, int *nr)
2776 {
2777 	unsigned long next;
2778 	pud_t *pudp;
2779 
2780 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2781 	do {
2782 		pud_t pud = READ_ONCE(*pudp);
2783 
2784 		next = pud_addr_end(addr, end);
2785 		if (unlikely(!pud_present(pud)))
2786 			return 0;
2787 		if (unlikely(pud_huge(pud))) {
2788 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2789 					  pages, nr))
2790 				return 0;
2791 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2792 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2793 					 PUD_SHIFT, next, flags, pages, nr))
2794 				return 0;
2795 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2796 			return 0;
2797 	} while (pudp++, addr = next, addr != end);
2798 
2799 	return 1;
2800 }
2801 
2802 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2803 			 unsigned int flags, struct page **pages, int *nr)
2804 {
2805 	unsigned long next;
2806 	p4d_t *p4dp;
2807 
2808 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2809 	do {
2810 		p4d_t p4d = READ_ONCE(*p4dp);
2811 
2812 		next = p4d_addr_end(addr, end);
2813 		if (p4d_none(p4d))
2814 			return 0;
2815 		BUILD_BUG_ON(p4d_huge(p4d));
2816 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2817 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2818 					 P4D_SHIFT, next, flags, pages, nr))
2819 				return 0;
2820 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2821 			return 0;
2822 	} while (p4dp++, addr = next, addr != end);
2823 
2824 	return 1;
2825 }
2826 
2827 static void gup_pgd_range(unsigned long addr, unsigned long end,
2828 		unsigned int flags, struct page **pages, int *nr)
2829 {
2830 	unsigned long next;
2831 	pgd_t *pgdp;
2832 
2833 	pgdp = pgd_offset(current->mm, addr);
2834 	do {
2835 		pgd_t pgd = READ_ONCE(*pgdp);
2836 
2837 		next = pgd_addr_end(addr, end);
2838 		if (pgd_none(pgd))
2839 			return;
2840 		if (unlikely(pgd_huge(pgd))) {
2841 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2842 					  pages, nr))
2843 				return;
2844 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2845 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2846 					 PGDIR_SHIFT, next, flags, pages, nr))
2847 				return;
2848 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2849 			return;
2850 	} while (pgdp++, addr = next, addr != end);
2851 }
2852 #else
2853 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2854 		unsigned int flags, struct page **pages, int *nr)
2855 {
2856 }
2857 #endif /* CONFIG_HAVE_FAST_GUP */
2858 
2859 #ifndef gup_fast_permitted
2860 /*
2861  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2862  * we need to fall back to the slow version:
2863  */
2864 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2865 {
2866 	return true;
2867 }
2868 #endif
2869 
2870 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2871 				   unsigned int gup_flags, struct page **pages)
2872 {
2873 	int ret;
2874 
2875 	/*
2876 	 * FIXME: FOLL_LONGTERM does not work with
2877 	 * get_user_pages_unlocked() (see comments in that function)
2878 	 */
2879 	if (gup_flags & FOLL_LONGTERM) {
2880 		mmap_read_lock(current->mm);
2881 		ret = __gup_longterm_locked(current->mm,
2882 					    start, nr_pages,
2883 					    pages, NULL, gup_flags);
2884 		mmap_read_unlock(current->mm);
2885 	} else {
2886 		ret = get_user_pages_unlocked(start, nr_pages,
2887 					      pages, gup_flags);
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 static unsigned long lockless_pages_from_mm(unsigned long start,
2894 					    unsigned long end,
2895 					    unsigned int gup_flags,
2896 					    struct page **pages)
2897 {
2898 	unsigned long flags;
2899 	int nr_pinned = 0;
2900 	unsigned seq;
2901 
2902 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2903 	    !gup_fast_permitted(start, end))
2904 		return 0;
2905 
2906 	if (gup_flags & FOLL_PIN) {
2907 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2908 		if (seq & 1)
2909 			return 0;
2910 	}
2911 
2912 	/*
2913 	 * Disable interrupts. The nested form is used, in order to allow full,
2914 	 * general purpose use of this routine.
2915 	 *
2916 	 * With interrupts disabled, we block page table pages from being freed
2917 	 * from under us. See struct mmu_table_batch comments in
2918 	 * include/asm-generic/tlb.h for more details.
2919 	 *
2920 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2921 	 * that come from THPs splitting.
2922 	 */
2923 	local_irq_save(flags);
2924 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2925 	local_irq_restore(flags);
2926 
2927 	/*
2928 	 * When pinning pages for DMA there could be a concurrent write protect
2929 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2930 	 */
2931 	if (gup_flags & FOLL_PIN) {
2932 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2933 			unpin_user_pages_lockless(pages, nr_pinned);
2934 			return 0;
2935 		} else {
2936 			sanity_check_pinned_pages(pages, nr_pinned);
2937 		}
2938 	}
2939 	return nr_pinned;
2940 }
2941 
2942 static int internal_get_user_pages_fast(unsigned long start,
2943 					unsigned long nr_pages,
2944 					unsigned int gup_flags,
2945 					struct page **pages)
2946 {
2947 	unsigned long len, end;
2948 	unsigned long nr_pinned;
2949 	int ret;
2950 
2951 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2952 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2953 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2954 		return -EINVAL;
2955 
2956 	if (gup_flags & FOLL_PIN)
2957 		mm_set_has_pinned_flag(&current->mm->flags);
2958 
2959 	if (!(gup_flags & FOLL_FAST_ONLY))
2960 		might_lock_read(&current->mm->mmap_lock);
2961 
2962 	start = untagged_addr(start) & PAGE_MASK;
2963 	len = nr_pages << PAGE_SHIFT;
2964 	if (check_add_overflow(start, len, &end))
2965 		return 0;
2966 	if (unlikely(!access_ok((void __user *)start, len)))
2967 		return -EFAULT;
2968 
2969 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2970 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2971 		return nr_pinned;
2972 
2973 	/* Slow path: try to get the remaining pages with get_user_pages */
2974 	start += nr_pinned << PAGE_SHIFT;
2975 	pages += nr_pinned;
2976 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2977 				      pages);
2978 	if (ret < 0) {
2979 		/*
2980 		 * The caller has to unpin the pages we already pinned so
2981 		 * returning -errno is not an option
2982 		 */
2983 		if (nr_pinned)
2984 			return nr_pinned;
2985 		return ret;
2986 	}
2987 	return ret + nr_pinned;
2988 }
2989 
2990 /**
2991  * get_user_pages_fast_only() - pin user pages in memory
2992  * @start:      starting user address
2993  * @nr_pages:   number of pages from start to pin
2994  * @gup_flags:  flags modifying pin behaviour
2995  * @pages:      array that receives pointers to the pages pinned.
2996  *              Should be at least nr_pages long.
2997  *
2998  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2999  * the regular GUP.
3000  * Note a difference with get_user_pages_fast: this always returns the
3001  * number of pages pinned, 0 if no pages were pinned.
3002  *
3003  * If the architecture does not support this function, simply return with no
3004  * pages pinned.
3005  *
3006  * Careful, careful! COW breaking can go either way, so a non-write
3007  * access can get ambiguous page results. If you call this function without
3008  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3009  */
3010 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3011 			     unsigned int gup_flags, struct page **pages)
3012 {
3013 	int nr_pinned;
3014 	/*
3015 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3016 	 * because gup fast is always a "pin with a +1 page refcount" request.
3017 	 *
3018 	 * FOLL_FAST_ONLY is required in order to match the API description of
3019 	 * this routine: no fall back to regular ("slow") GUP.
3020 	 */
3021 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3022 
3023 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3024 						 pages);
3025 
3026 	/*
3027 	 * As specified in the API description above, this routine is not
3028 	 * allowed to return negative values. However, the common core
3029 	 * routine internal_get_user_pages_fast() *can* return -errno.
3030 	 * Therefore, correct for that here:
3031 	 */
3032 	if (nr_pinned < 0)
3033 		nr_pinned = 0;
3034 
3035 	return nr_pinned;
3036 }
3037 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3038 
3039 /**
3040  * get_user_pages_fast() - pin user pages in memory
3041  * @start:      starting user address
3042  * @nr_pages:   number of pages from start to pin
3043  * @gup_flags:  flags modifying pin behaviour
3044  * @pages:      array that receives pointers to the pages pinned.
3045  *              Should be at least nr_pages long.
3046  *
3047  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3048  * If not successful, it will fall back to taking the lock and
3049  * calling get_user_pages().
3050  *
3051  * Returns number of pages pinned. This may be fewer than the number requested.
3052  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3053  * -errno.
3054  */
3055 int get_user_pages_fast(unsigned long start, int nr_pages,
3056 			unsigned int gup_flags, struct page **pages)
3057 {
3058 	if (!is_valid_gup_flags(gup_flags))
3059 		return -EINVAL;
3060 
3061 	/*
3062 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3063 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3064 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3065 	 * request.
3066 	 */
3067 	gup_flags |= FOLL_GET;
3068 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3069 }
3070 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3071 
3072 /**
3073  * pin_user_pages_fast() - pin user pages in memory without taking locks
3074  *
3075  * @start:      starting user address
3076  * @nr_pages:   number of pages from start to pin
3077  * @gup_flags:  flags modifying pin behaviour
3078  * @pages:      array that receives pointers to the pages pinned.
3079  *              Should be at least nr_pages long.
3080  *
3081  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3082  * get_user_pages_fast() for documentation on the function arguments, because
3083  * the arguments here are identical.
3084  *
3085  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3086  * see Documentation/core-api/pin_user_pages.rst for further details.
3087  */
3088 int pin_user_pages_fast(unsigned long start, int nr_pages,
3089 			unsigned int gup_flags, struct page **pages)
3090 {
3091 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3092 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3093 		return -EINVAL;
3094 
3095 	if (WARN_ON_ONCE(!pages))
3096 		return -EINVAL;
3097 
3098 	gup_flags |= FOLL_PIN;
3099 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3100 }
3101 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3102 
3103 /*
3104  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3105  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3106  *
3107  * The API rules are the same, too: no negative values may be returned.
3108  */
3109 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3110 			     unsigned int gup_flags, struct page **pages)
3111 {
3112 	int nr_pinned;
3113 
3114 	/*
3115 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3116 	 * rules require returning 0, rather than -errno:
3117 	 */
3118 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3119 		return 0;
3120 
3121 	if (WARN_ON_ONCE(!pages))
3122 		return 0;
3123 	/*
3124 	 * FOLL_FAST_ONLY is required in order to match the API description of
3125 	 * this routine: no fall back to regular ("slow") GUP.
3126 	 */
3127 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3128 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3129 						 pages);
3130 	/*
3131 	 * This routine is not allowed to return negative values. However,
3132 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3133 	 * correct for that here:
3134 	 */
3135 	if (nr_pinned < 0)
3136 		nr_pinned = 0;
3137 
3138 	return nr_pinned;
3139 }
3140 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3141 
3142 /**
3143  * pin_user_pages_remote() - pin pages of a remote process
3144  *
3145  * @mm:		mm_struct of target mm
3146  * @start:	starting user address
3147  * @nr_pages:	number of pages from start to pin
3148  * @gup_flags:	flags modifying lookup behaviour
3149  * @pages:	array that receives pointers to the pages pinned.
3150  *		Should be at least nr_pages long.
3151  * @vmas:	array of pointers to vmas corresponding to each page.
3152  *		Or NULL if the caller does not require them.
3153  * @locked:	pointer to lock flag indicating whether lock is held and
3154  *		subsequently whether VM_FAULT_RETRY functionality can be
3155  *		utilised. Lock must initially be held.
3156  *
3157  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3158  * get_user_pages_remote() for documentation on the function arguments, because
3159  * the arguments here are identical.
3160  *
3161  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3162  * see Documentation/core-api/pin_user_pages.rst for details.
3163  */
3164 long pin_user_pages_remote(struct mm_struct *mm,
3165 			   unsigned long start, unsigned long nr_pages,
3166 			   unsigned int gup_flags, struct page **pages,
3167 			   struct vm_area_struct **vmas, int *locked)
3168 {
3169 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3170 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3171 		return -EINVAL;
3172 
3173 	if (WARN_ON_ONCE(!pages))
3174 		return -EINVAL;
3175 
3176 	gup_flags |= FOLL_PIN;
3177 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3178 				       pages, vmas, locked);
3179 }
3180 EXPORT_SYMBOL(pin_user_pages_remote);
3181 
3182 /**
3183  * pin_user_pages() - pin user pages in memory for use by other devices
3184  *
3185  * @start:	starting user address
3186  * @nr_pages:	number of pages from start to pin
3187  * @gup_flags:	flags modifying lookup behaviour
3188  * @pages:	array that receives pointers to the pages pinned.
3189  *		Should be at least nr_pages long.
3190  * @vmas:	array of pointers to vmas corresponding to each page.
3191  *		Or NULL if the caller does not require them.
3192  *
3193  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3194  * FOLL_PIN is set.
3195  *
3196  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3197  * see Documentation/core-api/pin_user_pages.rst for details.
3198  */
3199 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3200 		    unsigned int gup_flags, struct page **pages,
3201 		    struct vm_area_struct **vmas)
3202 {
3203 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3204 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3205 		return -EINVAL;
3206 
3207 	if (WARN_ON_ONCE(!pages))
3208 		return -EINVAL;
3209 
3210 	gup_flags |= FOLL_PIN;
3211 	return __gup_longterm_locked(current->mm, start, nr_pages,
3212 				     pages, vmas, gup_flags);
3213 }
3214 EXPORT_SYMBOL(pin_user_pages);
3215 
3216 /*
3217  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3218  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3219  * FOLL_PIN and rejects FOLL_GET.
3220  */
3221 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3222 			     struct page **pages, unsigned int gup_flags)
3223 {
3224 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3225 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3226 		return -EINVAL;
3227 
3228 	if (WARN_ON_ONCE(!pages))
3229 		return -EINVAL;
3230 
3231 	gup_flags |= FOLL_PIN;
3232 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3233 }
3234 EXPORT_SYMBOL(pin_user_pages_unlocked);
3235