xref: /linux/mm/gup.c (revision 8b789f2b7602a818e7c7488c74414fae21392b63)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 #include "swap.h"
30 
31 struct follow_page_context {
32 	struct dev_pagemap *pgmap;
33 	unsigned int page_mask;
34 };
35 
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)36 static inline void sanity_check_pinned_pages(struct page **pages,
37 					     unsigned long npages)
38 {
39 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 		return;
41 
42 	/*
43 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
44 	 * can no longer turn them possibly shared and PageAnonExclusive() will
45 	 * stick around until the page is freed.
46 	 *
47 	 * We'd like to verify that our pinned anonymous pages are still mapped
48 	 * exclusively. The issue with anon THP is that we don't know how
49 	 * they are/were mapped when pinning them. However, for anon
50 	 * THP we can assume that either the given page (PTE-mapped THP) or
51 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52 	 * neither is the case, there is certainly something wrong.
53 	 */
54 	for (; npages; npages--, pages++) {
55 		struct page *page = *pages;
56 		struct folio *folio;
57 
58 		if (!page)
59 			continue;
60 
61 		folio = page_folio(page);
62 
63 		if (is_zero_page(page) ||
64 		    !folio_test_anon(folio))
65 			continue;
66 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67 			VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio);
68 		else
69 			/* Either a PTE-mapped or a PMD-mapped THP. */
70 			VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) &&
71 					     !PageAnonExclusive(page), page);
72 	}
73 }
74 
75 /*
76  * Return the folio with ref appropriately incremented,
77  * or NULL if that failed.
78  */
try_get_folio(struct page * page,int refs)79 static inline struct folio *try_get_folio(struct page *page, int refs)
80 {
81 	struct folio *folio;
82 
83 retry:
84 	folio = page_folio(page);
85 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
86 		return NULL;
87 	if (unlikely(!folio_ref_try_add(folio, refs)))
88 		return NULL;
89 
90 	/*
91 	 * At this point we have a stable reference to the folio; but it
92 	 * could be that between calling page_folio() and the refcount
93 	 * increment, the folio was split, in which case we'd end up
94 	 * holding a reference on a folio that has nothing to do with the page
95 	 * we were given anymore.
96 	 * So now that the folio is stable, recheck that the page still
97 	 * belongs to this folio.
98 	 */
99 	if (unlikely(page_folio(page) != folio)) {
100 		folio_put_refs(folio, refs);
101 		goto retry;
102 	}
103 
104 	return folio;
105 }
106 
gup_put_folio(struct folio * folio,int refs,unsigned int flags)107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108 {
109 	if (flags & FOLL_PIN) {
110 		if (is_zero_folio(folio))
111 			return;
112 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 		if (folio_has_pincount(folio))
114 			atomic_sub(refs, &folio->_pincount);
115 		else
116 			refs *= GUP_PIN_COUNTING_BIAS;
117 	}
118 
119 	folio_put_refs(folio, refs);
120 }
121 
122 /**
123  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
124  * @folio:    pointer to folio to be grabbed
125  * @refs:     the value to (effectively) add to the folio's refcount
126  * @flags:    gup flags: these are the FOLL_* flag values
127  *
128  * This might not do anything at all, depending on the flags argument.
129  *
130  * "grab" names in this file mean, "look at flags to decide whether to use
131  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
132  *
133  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
134  * time.
135  *
136  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
137  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
138  *
139  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
140  *			be grabbed.
141  *
142  * It is called when we have a stable reference for the folio, typically in
143  * GUP slow path.
144  */
try_grab_folio(struct folio * folio,int refs,unsigned int flags)145 int __must_check try_grab_folio(struct folio *folio, int refs,
146 				unsigned int flags)
147 {
148 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
149 		return -ENOMEM;
150 
151 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
152 		return -EREMOTEIO;
153 
154 	if (flags & FOLL_GET)
155 		folio_ref_add(folio, refs);
156 	else if (flags & FOLL_PIN) {
157 		/*
158 		 * Don't take a pin on the zero page - it's not going anywhere
159 		 * and it is used in a *lot* of places.
160 		 */
161 		if (is_zero_folio(folio))
162 			return 0;
163 
164 		/*
165 		 * Increment the normal page refcount field at least once,
166 		 * so that the page really is pinned.
167 		 */
168 		if (folio_has_pincount(folio)) {
169 			folio_ref_add(folio, refs);
170 			atomic_add(refs, &folio->_pincount);
171 		} else {
172 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
173 		}
174 
175 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
176 	}
177 
178 	return 0;
179 }
180 
181 /**
182  * unpin_user_page() - release a dma-pinned page
183  * @page:            pointer to page to be released
184  *
185  * Pages that were pinned via pin_user_pages*() must be released via either
186  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187  * that such pages can be separately tracked and uniquely handled. In
188  * particular, interactions with RDMA and filesystems need special handling.
189  */
unpin_user_page(struct page * page)190 void unpin_user_page(struct page *page)
191 {
192 	sanity_check_pinned_pages(&page, 1);
193 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
194 }
195 EXPORT_SYMBOL(unpin_user_page);
196 
197 /**
198  * unpin_folio() - release a dma-pinned folio
199  * @folio:         pointer to folio to be released
200  *
201  * Folios that were pinned via memfd_pin_folios() or other similar routines
202  * must be released either using unpin_folio() or unpin_folios().
203  */
unpin_folio(struct folio * folio)204 void unpin_folio(struct folio *folio)
205 {
206 	gup_put_folio(folio, 1, FOLL_PIN);
207 }
208 EXPORT_SYMBOL_GPL(unpin_folio);
209 
210 /**
211  * folio_add_pin - Try to get an additional pin on a pinned folio
212  * @folio: The folio to be pinned
213  *
214  * Get an additional pin on a folio we already have a pin on.  Makes no change
215  * if the folio is a zero_page.
216  */
folio_add_pin(struct folio * folio)217 void folio_add_pin(struct folio *folio)
218 {
219 	if (is_zero_folio(folio))
220 		return;
221 
222 	/*
223 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
224 	 * page refcount field at least once, so that the page really is
225 	 * pinned.
226 	 */
227 	if (folio_has_pincount(folio)) {
228 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229 		folio_ref_inc(folio);
230 		atomic_inc(&folio->_pincount);
231 	} else {
232 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
234 	}
235 }
236 
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)237 static inline struct folio *gup_folio_range_next(struct page *start,
238 		unsigned long npages, unsigned long i, unsigned int *ntails)
239 {
240 	struct page *next = nth_page(start, i);
241 	struct folio *folio = page_folio(next);
242 	unsigned int nr = 1;
243 
244 	if (folio_test_large(folio))
245 		nr = min_t(unsigned int, npages - i,
246 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
247 
248 	*ntails = nr;
249 	return folio;
250 }
251 
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)252 static inline struct folio *gup_folio_next(struct page **list,
253 		unsigned long npages, unsigned long i, unsigned int *ntails)
254 {
255 	struct folio *folio = page_folio(list[i]);
256 	unsigned int nr;
257 
258 	for (nr = i + 1; nr < npages; nr++) {
259 		if (page_folio(list[nr]) != folio)
260 			break;
261 	}
262 
263 	*ntails = nr - i;
264 	return folio;
265 }
266 
267 /**
268  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269  * @pages:  array of pages to be maybe marked dirty, and definitely released.
270  * @npages: number of pages in the @pages array.
271  * @make_dirty: whether to mark the pages dirty
272  *
273  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
274  * variants called on that page.
275  *
276  * For each page in the @pages array, make that page (or its head page, if a
277  * compound page) dirty, if @make_dirty is true, and if the page was previously
278  * listed as clean. In any case, releases all pages using unpin_user_page(),
279  * possibly via unpin_user_pages(), for the non-dirty case.
280  *
281  * Please see the unpin_user_page() documentation for details.
282  *
283  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284  * required, then the caller should a) verify that this is really correct,
285  * because _lock() is usually required, and b) hand code it:
286  * set_page_dirty_lock(), unpin_user_page().
287  *
288  */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
290 				 bool make_dirty)
291 {
292 	unsigned long i;
293 	struct folio *folio;
294 	unsigned int nr;
295 
296 	if (!make_dirty) {
297 		unpin_user_pages(pages, npages);
298 		return;
299 	}
300 
301 	sanity_check_pinned_pages(pages, npages);
302 	for (i = 0; i < npages; i += nr) {
303 		folio = gup_folio_next(pages, npages, i, &nr);
304 		/*
305 		 * Checking PageDirty at this point may race with
306 		 * clear_page_dirty_for_io(), but that's OK. Two key
307 		 * cases:
308 		 *
309 		 * 1) This code sees the page as already dirty, so it
310 		 * skips the call to set_page_dirty(). That could happen
311 		 * because clear_page_dirty_for_io() called
312 		 * folio_mkclean(), followed by set_page_dirty().
313 		 * However, now the page is going to get written back,
314 		 * which meets the original intention of setting it
315 		 * dirty, so all is well: clear_page_dirty_for_io() goes
316 		 * on to call TestClearPageDirty(), and write the page
317 		 * back.
318 		 *
319 		 * 2) This code sees the page as clean, so it calls
320 		 * set_page_dirty(). The page stays dirty, despite being
321 		 * written back, so it gets written back again in the
322 		 * next writeback cycle. This is harmless.
323 		 */
324 		if (!folio_test_dirty(folio)) {
325 			folio_lock(folio);
326 			folio_mark_dirty(folio);
327 			folio_unlock(folio);
328 		}
329 		gup_put_folio(folio, nr, FOLL_PIN);
330 	}
331 }
332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
333 
334 /**
335  * unpin_user_page_range_dirty_lock() - release and optionally dirty
336  * gup-pinned page range
337  *
338  * @page:  the starting page of a range maybe marked dirty, and definitely released.
339  * @npages: number of consecutive pages to release.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page range" refers to a range of pages that has had one of the
343  * pin_user_pages() variants called on that page.
344  *
345  * For the page ranges defined by [page .. page+npages], make that range (or
346  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347  * page range was previously listed as clean.
348  *
349  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350  * required, then the caller should a) verify that this is really correct,
351  * because _lock() is usually required, and b) hand code it:
352  * set_page_dirty_lock(), unpin_user_page().
353  *
354  */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)355 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
356 				      bool make_dirty)
357 {
358 	unsigned long i;
359 	struct folio *folio;
360 	unsigned int nr;
361 
362 	for (i = 0; i < npages; i += nr) {
363 		folio = gup_folio_range_next(page, npages, i, &nr);
364 		if (make_dirty && !folio_test_dirty(folio)) {
365 			folio_lock(folio);
366 			folio_mark_dirty(folio);
367 			folio_unlock(folio);
368 		}
369 		gup_put_folio(folio, nr, FOLL_PIN);
370 	}
371 }
372 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
373 
gup_fast_unpin_user_pages(struct page ** pages,unsigned long npages)374 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
375 {
376 	unsigned long i;
377 	struct folio *folio;
378 	unsigned int nr;
379 
380 	/*
381 	 * Don't perform any sanity checks because we might have raced with
382 	 * fork() and some anonymous pages might now actually be shared --
383 	 * which is why we're unpinning after all.
384 	 */
385 	for (i = 0; i < npages; i += nr) {
386 		folio = gup_folio_next(pages, npages, i, &nr);
387 		gup_put_folio(folio, nr, FOLL_PIN);
388 	}
389 }
390 
391 /**
392  * unpin_user_pages() - release an array of gup-pinned pages.
393  * @pages:  array of pages to be marked dirty and released.
394  * @npages: number of pages in the @pages array.
395  *
396  * For each page in the @pages array, release the page using unpin_user_page().
397  *
398  * Please see the unpin_user_page() documentation for details.
399  */
unpin_user_pages(struct page ** pages,unsigned long npages)400 void unpin_user_pages(struct page **pages, unsigned long npages)
401 {
402 	unsigned long i;
403 	struct folio *folio;
404 	unsigned int nr;
405 
406 	/*
407 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
408 	 * leaving them pinned), but probably not. More likely, gup/pup returned
409 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
410 	 */
411 	if (WARN_ON(IS_ERR_VALUE(npages)))
412 		return;
413 
414 	sanity_check_pinned_pages(pages, npages);
415 	for (i = 0; i < npages; i += nr) {
416 		if (!pages[i]) {
417 			nr = 1;
418 			continue;
419 		}
420 		folio = gup_folio_next(pages, npages, i, &nr);
421 		gup_put_folio(folio, nr, FOLL_PIN);
422 	}
423 }
424 EXPORT_SYMBOL(unpin_user_pages);
425 
426 /**
427  * unpin_user_folio() - release pages of a folio
428  * @folio:  pointer to folio to be released
429  * @npages: number of pages of same folio
430  *
431  * Release npages of the folio
432  */
unpin_user_folio(struct folio * folio,unsigned long npages)433 void unpin_user_folio(struct folio *folio, unsigned long npages)
434 {
435 	gup_put_folio(folio, npages, FOLL_PIN);
436 }
437 EXPORT_SYMBOL(unpin_user_folio);
438 
439 /**
440  * unpin_folios() - release an array of gup-pinned folios.
441  * @folios:  array of folios to be marked dirty and released.
442  * @nfolios: number of folios in the @folios array.
443  *
444  * For each folio in the @folios array, release the folio using gup_put_folio.
445  *
446  * Please see the unpin_folio() documentation for details.
447  */
unpin_folios(struct folio ** folios,unsigned long nfolios)448 void unpin_folios(struct folio **folios, unsigned long nfolios)
449 {
450 	unsigned long i = 0, j;
451 
452 	/*
453 	 * If this WARN_ON() fires, then the system *might* be leaking folios
454 	 * (by leaving them pinned), but probably not. More likely, gup/pup
455 	 * returned a hard -ERRNO error to the caller, who erroneously passed
456 	 * it here.
457 	 */
458 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
459 		return;
460 
461 	while (i < nfolios) {
462 		for (j = i + 1; j < nfolios; j++)
463 			if (folios[i] != folios[j])
464 				break;
465 
466 		if (folios[i])
467 			gup_put_folio(folios[i], j - i, FOLL_PIN);
468 		i = j;
469 	}
470 }
471 EXPORT_SYMBOL_GPL(unpin_folios);
472 
473 /*
474  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
476  * cache bouncing on large SMP machines for concurrent pinned gups.
477  */
mm_set_has_pinned_flag(unsigned long * mm_flags)478 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
479 {
480 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
481 		set_bit(MMF_HAS_PINNED, mm_flags);
482 }
483 
484 #ifdef CONFIG_MMU
485 
486 #ifdef CONFIG_HAVE_GUP_FAST
record_subpages(struct page * page,unsigned long sz,unsigned long addr,unsigned long end,struct page ** pages)487 static int record_subpages(struct page *page, unsigned long sz,
488 			   unsigned long addr, unsigned long end,
489 			   struct page **pages)
490 {
491 	struct page *start_page;
492 	int nr;
493 
494 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496 		pages[nr] = nth_page(start_page, nr);
497 
498 	return nr;
499 }
500 
501 /**
502  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503  * @page:  pointer to page to be grabbed
504  * @refs:  the value to (effectively) add to the folio's refcount
505  * @flags: gup flags: these are the FOLL_* flag values.
506  *
507  * "grab" names in this file mean, "look at flags to decide whether to use
508  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
509  *
510  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511  * same time. (That's true throughout the get_user_pages*() and
512  * pin_user_pages*() APIs.) Cases:
513  *
514  *    FOLL_GET: folio's refcount will be incremented by @refs.
515  *
516  *    FOLL_PIN on large folios: folio's refcount will be incremented by
517  *    @refs, and its pincount will be incremented by @refs.
518  *
519  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
520  *    @refs * GUP_PIN_COUNTING_BIAS.
521  *
522  * Return: The folio containing @page (with refcount appropriately
523  * incremented) for success, or NULL upon failure. If neither FOLL_GET
524  * nor FOLL_PIN was set, that's considered failure, and furthermore,
525  * a likely bug in the caller, so a warning is also emitted.
526  *
527  * It uses add ref unless zero to elevate the folio refcount and must be called
528  * in fast path only.
529  */
try_grab_folio_fast(struct page * page,int refs,unsigned int flags)530 static struct folio *try_grab_folio_fast(struct page *page, int refs,
531 					 unsigned int flags)
532 {
533 	struct folio *folio;
534 
535 	/* Raise warn if it is not called in fast GUP */
536 	VM_WARN_ON_ONCE(!irqs_disabled());
537 
538 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
539 		return NULL;
540 
541 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
542 		return NULL;
543 
544 	if (flags & FOLL_GET)
545 		return try_get_folio(page, refs);
546 
547 	/* FOLL_PIN is set */
548 
549 	/*
550 	 * Don't take a pin on the zero page - it's not going anywhere
551 	 * and it is used in a *lot* of places.
552 	 */
553 	if (is_zero_page(page))
554 		return page_folio(page);
555 
556 	folio = try_get_folio(page, refs);
557 	if (!folio)
558 		return NULL;
559 
560 	/*
561 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562 	 * right zone, so fail and let the caller fall back to the slow
563 	 * path.
564 	 */
565 	if (unlikely((flags & FOLL_LONGTERM) &&
566 		     !folio_is_longterm_pinnable(folio))) {
567 		folio_put_refs(folio, refs);
568 		return NULL;
569 	}
570 
571 	/*
572 	 * When pinning a large folio, use an exact count to track it.
573 	 *
574 	 * However, be sure to *also* increment the normal folio
575 	 * refcount field at least once, so that the folio really
576 	 * is pinned.  That's why the refcount from the earlier
577 	 * try_get_folio() is left intact.
578 	 */
579 	if (folio_has_pincount(folio))
580 		atomic_add(refs, &folio->_pincount);
581 	else
582 		folio_ref_add(folio,
583 				refs * (GUP_PIN_COUNTING_BIAS - 1));
584 	/*
585 	 * Adjust the pincount before re-checking the PTE for changes.
586 	 * This is essentially a smp_mb() and is paired with a memory
587 	 * barrier in folio_try_share_anon_rmap_*().
588 	 */
589 	smp_mb__after_atomic();
590 
591 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
592 
593 	return folio;
594 }
595 #endif	/* CONFIG_HAVE_GUP_FAST */
596 
597 /* Common code for can_follow_write_* */
can_follow_write_common(struct page * page,struct vm_area_struct * vma,unsigned int flags)598 static inline bool can_follow_write_common(struct page *page,
599 		struct vm_area_struct *vma, unsigned int flags)
600 {
601 	/* Maybe FOLL_FORCE is set to override it? */
602 	if (!(flags & FOLL_FORCE))
603 		return false;
604 
605 	/* But FOLL_FORCE has no effect on shared mappings */
606 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
607 		return false;
608 
609 	/* ... or read-only private ones */
610 	if (!(vma->vm_flags & VM_MAYWRITE))
611 		return false;
612 
613 	/* ... or already writable ones that just need to take a write fault */
614 	if (vma->vm_flags & VM_WRITE)
615 		return false;
616 
617 	/*
618 	 * See can_change_pte_writable(): we broke COW and could map the page
619 	 * writable if we have an exclusive anonymous page ...
620 	 */
621 	return page && PageAnon(page) && PageAnonExclusive(page);
622 }
623 
no_page_table(struct vm_area_struct * vma,unsigned int flags,unsigned long address)624 static struct page *no_page_table(struct vm_area_struct *vma,
625 				  unsigned int flags, unsigned long address)
626 {
627 	if (!(flags & FOLL_DUMP))
628 		return NULL;
629 
630 	/*
631 	 * When core dumping, we don't want to allocate unnecessary pages or
632 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
633 	 * then get_dump_page() will return NULL to leave a hole in the dump.
634 	 * But we can only make this optimization where a hole would surely
635 	 * be zero-filled if handle_mm_fault() actually did handle it.
636 	 */
637 	if (is_vm_hugetlb_page(vma)) {
638 		struct hstate *h = hstate_vma(vma);
639 
640 		if (!hugetlbfs_pagecache_present(h, vma, address))
641 			return ERR_PTR(-EFAULT);
642 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643 		return ERR_PTR(-EFAULT);
644 	}
645 
646 	return NULL;
647 }
648 
649 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
can_follow_write_pud(pud_t pud,struct page * page,struct vm_area_struct * vma,unsigned int flags)651 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652 					struct vm_area_struct *vma,
653 					unsigned int flags)
654 {
655 	/* If the pud is writable, we can write to the page. */
656 	if (pud_write(pud))
657 		return true;
658 
659 	return can_follow_write_common(page, vma, flags);
660 }
661 
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)662 static struct page *follow_huge_pud(struct vm_area_struct *vma,
663 				    unsigned long addr, pud_t *pudp,
664 				    int flags, struct follow_page_context *ctx)
665 {
666 	struct mm_struct *mm = vma->vm_mm;
667 	struct page *page;
668 	pud_t pud = *pudp;
669 	unsigned long pfn = pud_pfn(pud);
670 	int ret;
671 
672 	assert_spin_locked(pud_lockptr(mm, pudp));
673 
674 	if (!pud_present(pud))
675 		return NULL;
676 
677 	if ((flags & FOLL_WRITE) &&
678 	    !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
679 		return NULL;
680 
681 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
682 	page = pfn_to_page(pfn);
683 
684 	if (!pud_write(pud) && gup_must_unshare(vma, flags, page))
685 		return ERR_PTR(-EMLINK);
686 
687 	ret = try_grab_folio(page_folio(page), 1, flags);
688 	if (ret)
689 		page = ERR_PTR(ret);
690 	else
691 		ctx->page_mask = HPAGE_PUD_NR - 1;
692 
693 	return page;
694 }
695 
696 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)697 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
698 					struct vm_area_struct *vma,
699 					unsigned int flags)
700 {
701 	/* If the pmd is writable, we can write to the page. */
702 	if (pmd_write(pmd))
703 		return true;
704 
705 	if (!can_follow_write_common(page, vma, flags))
706 		return false;
707 
708 	/* ... and a write-fault isn't required for other reasons. */
709 	if (pmd_needs_soft_dirty_wp(vma, pmd))
710 		return false;
711 	return !userfaultfd_huge_pmd_wp(vma, pmd);
712 }
713 
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)714 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
715 				    unsigned long addr, pmd_t *pmd,
716 				    unsigned int flags,
717 				    struct follow_page_context *ctx)
718 {
719 	struct mm_struct *mm = vma->vm_mm;
720 	pmd_t pmdval = *pmd;
721 	struct page *page;
722 	int ret;
723 
724 	assert_spin_locked(pmd_lockptr(mm, pmd));
725 
726 	page = pmd_page(pmdval);
727 	if ((flags & FOLL_WRITE) &&
728 	    !can_follow_write_pmd(pmdval, page, vma, flags))
729 		return NULL;
730 
731 	/* Avoid dumping huge zero page */
732 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
733 		return ERR_PTR(-EFAULT);
734 
735 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
736 		return NULL;
737 
738 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
739 		return ERR_PTR(-EMLINK);
740 
741 	VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
742 			     !PageAnonExclusive(page), page);
743 
744 	ret = try_grab_folio(page_folio(page), 1, flags);
745 	if (ret)
746 		return ERR_PTR(ret);
747 
748 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
749 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
750 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
751 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
752 
753 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
754 	ctx->page_mask = HPAGE_PMD_NR - 1;
755 
756 	return page;
757 }
758 
759 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)760 static struct page *follow_huge_pud(struct vm_area_struct *vma,
761 				    unsigned long addr, pud_t *pudp,
762 				    int flags, struct follow_page_context *ctx)
763 {
764 	return NULL;
765 }
766 
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)767 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
768 				    unsigned long addr, pmd_t *pmd,
769 				    unsigned int flags,
770 				    struct follow_page_context *ctx)
771 {
772 	return NULL;
773 }
774 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
775 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)776 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
777 		pte_t *pte, unsigned int flags)
778 {
779 	if (flags & FOLL_TOUCH) {
780 		pte_t orig_entry = ptep_get(pte);
781 		pte_t entry = orig_entry;
782 
783 		if (flags & FOLL_WRITE)
784 			entry = pte_mkdirty(entry);
785 		entry = pte_mkyoung(entry);
786 
787 		if (!pte_same(orig_entry, entry)) {
788 			set_pte_at(vma->vm_mm, address, pte, entry);
789 			update_mmu_cache(vma, address, pte);
790 		}
791 	}
792 
793 	/* Proper page table entry exists, but no corresponding struct page */
794 	return -EEXIST;
795 }
796 
797 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)798 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
799 					struct vm_area_struct *vma,
800 					unsigned int flags)
801 {
802 	/* If the pte is writable, we can write to the page. */
803 	if (pte_write(pte))
804 		return true;
805 
806 	if (!can_follow_write_common(page, vma, flags))
807 		return false;
808 
809 	/* ... and a write-fault isn't required for other reasons. */
810 	if (pte_needs_soft_dirty_wp(vma, pte))
811 		return false;
812 	return !userfaultfd_pte_wp(vma, pte);
813 }
814 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)815 static struct page *follow_page_pte(struct vm_area_struct *vma,
816 		unsigned long address, pmd_t *pmd, unsigned int flags,
817 		struct dev_pagemap **pgmap)
818 {
819 	struct mm_struct *mm = vma->vm_mm;
820 	struct folio *folio;
821 	struct page *page;
822 	spinlock_t *ptl;
823 	pte_t *ptep, pte;
824 	int ret;
825 
826 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
827 	if (!ptep)
828 		return no_page_table(vma, flags, address);
829 	pte = ptep_get(ptep);
830 	if (!pte_present(pte))
831 		goto no_page;
832 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
833 		goto no_page;
834 
835 	page = vm_normal_page(vma, address, pte);
836 
837 	/*
838 	 * We only care about anon pages in can_follow_write_pte().
839 	 */
840 	if ((flags & FOLL_WRITE) &&
841 	    !can_follow_write_pte(pte, page, vma, flags)) {
842 		page = NULL;
843 		goto out;
844 	}
845 
846 	if (unlikely(!page)) {
847 		if (flags & FOLL_DUMP) {
848 			/* Avoid special (like zero) pages in core dumps */
849 			page = ERR_PTR(-EFAULT);
850 			goto out;
851 		}
852 
853 		if (is_zero_pfn(pte_pfn(pte))) {
854 			page = pte_page(pte);
855 		} else {
856 			ret = follow_pfn_pte(vma, address, ptep, flags);
857 			page = ERR_PTR(ret);
858 			goto out;
859 		}
860 	}
861 	folio = page_folio(page);
862 
863 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
864 		page = ERR_PTR(-EMLINK);
865 		goto out;
866 	}
867 
868 	VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
869 			     !PageAnonExclusive(page), page);
870 
871 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
872 	ret = try_grab_folio(folio, 1, flags);
873 	if (unlikely(ret)) {
874 		page = ERR_PTR(ret);
875 		goto out;
876 	}
877 
878 	/*
879 	 * We need to make the page accessible if and only if we are going
880 	 * to access its content (the FOLL_PIN case).  Please see
881 	 * Documentation/core-api/pin_user_pages.rst for details.
882 	 */
883 	if (flags & FOLL_PIN) {
884 		ret = arch_make_folio_accessible(folio);
885 		if (ret) {
886 			unpin_user_page(page);
887 			page = ERR_PTR(ret);
888 			goto out;
889 		}
890 	}
891 	if (flags & FOLL_TOUCH) {
892 		if ((flags & FOLL_WRITE) &&
893 		    !pte_dirty(pte) && !folio_test_dirty(folio))
894 			folio_mark_dirty(folio);
895 		/*
896 		 * pte_mkyoung() would be more correct here, but atomic care
897 		 * is needed to avoid losing the dirty bit: it is easier to use
898 		 * folio_mark_accessed().
899 		 */
900 		folio_mark_accessed(folio);
901 	}
902 out:
903 	pte_unmap_unlock(ptep, ptl);
904 	return page;
905 no_page:
906 	pte_unmap_unlock(ptep, ptl);
907 	if (!pte_none(pte))
908 		return NULL;
909 	return no_page_table(vma, flags, address);
910 }
911 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)912 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
913 				    unsigned long address, pud_t *pudp,
914 				    unsigned int flags,
915 				    struct follow_page_context *ctx)
916 {
917 	pmd_t *pmd, pmdval;
918 	spinlock_t *ptl;
919 	struct page *page;
920 	struct mm_struct *mm = vma->vm_mm;
921 
922 	pmd = pmd_offset(pudp, address);
923 	pmdval = pmdp_get_lockless(pmd);
924 	if (pmd_none(pmdval))
925 		return no_page_table(vma, flags, address);
926 	if (!pmd_present(pmdval))
927 		return no_page_table(vma, flags, address);
928 	if (likely(!pmd_leaf(pmdval)))
929 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
930 
931 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
932 		return no_page_table(vma, flags, address);
933 
934 	ptl = pmd_lock(mm, pmd);
935 	pmdval = *pmd;
936 	if (unlikely(!pmd_present(pmdval))) {
937 		spin_unlock(ptl);
938 		return no_page_table(vma, flags, address);
939 	}
940 	if (unlikely(!pmd_leaf(pmdval))) {
941 		spin_unlock(ptl);
942 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
943 	}
944 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
945 		spin_unlock(ptl);
946 		split_huge_pmd(vma, pmd, address);
947 		/* If pmd was left empty, stuff a page table in there quickly */
948 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
949 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
950 	}
951 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
952 	spin_unlock(ptl);
953 	return page;
954 }
955 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)956 static struct page *follow_pud_mask(struct vm_area_struct *vma,
957 				    unsigned long address, p4d_t *p4dp,
958 				    unsigned int flags,
959 				    struct follow_page_context *ctx)
960 {
961 	pud_t *pudp, pud;
962 	spinlock_t *ptl;
963 	struct page *page;
964 	struct mm_struct *mm = vma->vm_mm;
965 
966 	pudp = pud_offset(p4dp, address);
967 	pud = READ_ONCE(*pudp);
968 	if (!pud_present(pud))
969 		return no_page_table(vma, flags, address);
970 	if (pud_leaf(pud)) {
971 		ptl = pud_lock(mm, pudp);
972 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
973 		spin_unlock(ptl);
974 		if (page)
975 			return page;
976 		return no_page_table(vma, flags, address);
977 	}
978 	if (unlikely(pud_bad(pud)))
979 		return no_page_table(vma, flags, address);
980 
981 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
982 }
983 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)984 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
985 				    unsigned long address, pgd_t *pgdp,
986 				    unsigned int flags,
987 				    struct follow_page_context *ctx)
988 {
989 	p4d_t *p4dp, p4d;
990 
991 	p4dp = p4d_offset(pgdp, address);
992 	p4d = READ_ONCE(*p4dp);
993 	BUILD_BUG_ON(p4d_leaf(p4d));
994 
995 	if (!p4d_present(p4d) || p4d_bad(p4d))
996 		return no_page_table(vma, flags, address);
997 
998 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
999 }
1000 
1001 /**
1002  * follow_page_mask - look up a page descriptor from a user-virtual address
1003  * @vma: vm_area_struct mapping @address
1004  * @address: virtual address to look up
1005  * @flags: flags modifying lookup behaviour
1006  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1007  *       pointer to output page_mask
1008  *
1009  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1010  *
1011  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1012  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1013  *
1014  * When getting an anonymous page and the caller has to trigger unsharing
1015  * of a shared anonymous page first, -EMLINK is returned. The caller should
1016  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1017  * relevant with FOLL_PIN and !FOLL_WRITE.
1018  *
1019  * On output, the @ctx->page_mask is set according to the size of the page.
1020  *
1021  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1022  * an error pointer if there is a mapping to something not represented
1023  * by a page descriptor (see also vm_normal_page()).
1024  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)1025 static struct page *follow_page_mask(struct vm_area_struct *vma,
1026 			      unsigned long address, unsigned int flags,
1027 			      struct follow_page_context *ctx)
1028 {
1029 	pgd_t *pgd;
1030 	struct mm_struct *mm = vma->vm_mm;
1031 	struct page *page;
1032 
1033 	vma_pgtable_walk_begin(vma);
1034 
1035 	ctx->page_mask = 0;
1036 	pgd = pgd_offset(mm, address);
1037 
1038 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1039 		page = no_page_table(vma, flags, address);
1040 	else
1041 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1042 
1043 	vma_pgtable_walk_end(vma);
1044 
1045 	return page;
1046 }
1047 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)1048 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1049 		unsigned int gup_flags, struct vm_area_struct **vma,
1050 		struct page **page)
1051 {
1052 	pgd_t *pgd;
1053 	p4d_t *p4d;
1054 	pud_t *pud;
1055 	pmd_t *pmd;
1056 	pte_t *pte;
1057 	pte_t entry;
1058 	int ret = -EFAULT;
1059 
1060 	/* user gate pages are read-only */
1061 	if (gup_flags & FOLL_WRITE)
1062 		return -EFAULT;
1063 	pgd = pgd_offset(mm, address);
1064 	if (pgd_none(*pgd))
1065 		return -EFAULT;
1066 	p4d = p4d_offset(pgd, address);
1067 	if (p4d_none(*p4d))
1068 		return -EFAULT;
1069 	pud = pud_offset(p4d, address);
1070 	if (pud_none(*pud))
1071 		return -EFAULT;
1072 	pmd = pmd_offset(pud, address);
1073 	if (!pmd_present(*pmd))
1074 		return -EFAULT;
1075 	pte = pte_offset_map(pmd, address);
1076 	if (!pte)
1077 		return -EFAULT;
1078 	entry = ptep_get(pte);
1079 	if (pte_none(entry))
1080 		goto unmap;
1081 	*vma = get_gate_vma(mm);
1082 	if (!page)
1083 		goto out;
1084 	*page = vm_normal_page(*vma, address, entry);
1085 	if (!*page) {
1086 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1087 			goto unmap;
1088 		*page = pte_page(entry);
1089 	}
1090 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1091 	if (unlikely(ret))
1092 		goto unmap;
1093 out:
1094 	ret = 0;
1095 unmap:
1096 	pte_unmap(pte);
1097 	return ret;
1098 }
1099 
1100 /*
1101  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1102  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1103  * to 0 and -EBUSY returned.
1104  */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags,bool unshare,int * locked)1105 static int faultin_page(struct vm_area_struct *vma,
1106 		unsigned long address, unsigned int flags, bool unshare,
1107 		int *locked)
1108 {
1109 	unsigned int fault_flags = 0;
1110 	vm_fault_t ret;
1111 
1112 	if (flags & FOLL_NOFAULT)
1113 		return -EFAULT;
1114 	if (flags & FOLL_WRITE)
1115 		fault_flags |= FAULT_FLAG_WRITE;
1116 	if (flags & FOLL_REMOTE)
1117 		fault_flags |= FAULT_FLAG_REMOTE;
1118 	if (flags & FOLL_UNLOCKABLE) {
1119 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1120 		/*
1121 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1122 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1123 		 * That's because some callers may not be prepared to
1124 		 * handle early exits caused by non-fatal signals.
1125 		 */
1126 		if (flags & FOLL_INTERRUPTIBLE)
1127 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1128 	}
1129 	if (flags & FOLL_NOWAIT)
1130 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1131 	if (flags & FOLL_TRIED) {
1132 		/*
1133 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1134 		 * can co-exist
1135 		 */
1136 		fault_flags |= FAULT_FLAG_TRIED;
1137 	}
1138 	if (unshare) {
1139 		fault_flags |= FAULT_FLAG_UNSHARE;
1140 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1141 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE);
1142 	}
1143 
1144 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1145 
1146 	if (ret & VM_FAULT_COMPLETED) {
1147 		/*
1148 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1149 		 * mmap lock in the page fault handler. Sanity check this.
1150 		 */
1151 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1152 		*locked = 0;
1153 
1154 		/*
1155 		 * We should do the same as VM_FAULT_RETRY, but let's not
1156 		 * return -EBUSY since that's not reflecting the reality of
1157 		 * what has happened - we've just fully completed a page
1158 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1159 		 * that we want to take the mmap lock _again_.
1160 		 */
1161 		return -EAGAIN;
1162 	}
1163 
1164 	if (ret & VM_FAULT_ERROR) {
1165 		int err = vm_fault_to_errno(ret, flags);
1166 
1167 		if (err)
1168 			return err;
1169 		BUG();
1170 	}
1171 
1172 	if (ret & VM_FAULT_RETRY) {
1173 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1174 			*locked = 0;
1175 		return -EBUSY;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * Writing to file-backed mappings which require folio dirty tracking using GUP
1183  * is a fundamentally broken operation, as kernel write access to GUP mappings
1184  * do not adhere to the semantics expected by a file system.
1185  *
1186  * Consider the following scenario:-
1187  *
1188  * 1. A folio is written to via GUP which write-faults the memory, notifying
1189  *    the file system and dirtying the folio.
1190  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1191  *    the PTE being marked read-only.
1192  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1193  *    direct mapping.
1194  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1195  *    (though it does not have to).
1196  *
1197  * This results in both data being written to a folio without writenotify, and
1198  * the folio being dirtied unexpectedly (if the caller decides to do so).
1199  */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1200 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1201 					  unsigned long gup_flags)
1202 {
1203 	/*
1204 	 * If we aren't pinning then no problematic write can occur. A long term
1205 	 * pin is the most egregious case so this is the case we disallow.
1206 	 */
1207 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1208 	    (FOLL_PIN | FOLL_LONGTERM))
1209 		return true;
1210 
1211 	/*
1212 	 * If the VMA does not require dirty tracking then no problematic write
1213 	 * can occur either.
1214 	 */
1215 	return !vma_needs_dirty_tracking(vma);
1216 }
1217 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1218 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1219 {
1220 	vm_flags_t vm_flags = vma->vm_flags;
1221 	int write = (gup_flags & FOLL_WRITE);
1222 	int foreign = (gup_flags & FOLL_REMOTE);
1223 	bool vma_anon = vma_is_anonymous(vma);
1224 
1225 	if (vm_flags & (VM_IO | VM_PFNMAP))
1226 		return -EFAULT;
1227 
1228 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1229 		return -EFAULT;
1230 
1231 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1232 		return -EOPNOTSUPP;
1233 
1234 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1235 		return -EOPNOTSUPP;
1236 
1237 	if (vma_is_secretmem(vma))
1238 		return -EFAULT;
1239 
1240 	if (write) {
1241 		if (!vma_anon &&
1242 		    !writable_file_mapping_allowed(vma, gup_flags))
1243 			return -EFAULT;
1244 
1245 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1246 			if (!(gup_flags & FOLL_FORCE))
1247 				return -EFAULT;
1248 			/*
1249 			 * We used to let the write,force case do COW in a
1250 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1251 			 * set a breakpoint in a read-only mapping of an
1252 			 * executable, without corrupting the file (yet only
1253 			 * when that file had been opened for writing!).
1254 			 * Anon pages in shared mappings are surprising: now
1255 			 * just reject it.
1256 			 */
1257 			if (!is_cow_mapping(vm_flags))
1258 				return -EFAULT;
1259 		}
1260 	} else if (!(vm_flags & VM_READ)) {
1261 		if (!(gup_flags & FOLL_FORCE))
1262 			return -EFAULT;
1263 		/*
1264 		 * Is there actually any vma we can reach here which does not
1265 		 * have VM_MAYREAD set?
1266 		 */
1267 		if (!(vm_flags & VM_MAYREAD))
1268 			return -EFAULT;
1269 	}
1270 	/*
1271 	 * gups are always data accesses, not instruction
1272 	 * fetches, so execute=false here
1273 	 */
1274 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1275 		return -EFAULT;
1276 	return 0;
1277 }
1278 
1279 /*
1280  * This is "vma_lookup()", but with a warning if we would have
1281  * historically expanded the stack in the GUP code.
1282  */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1283 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1284 	 unsigned long addr)
1285 {
1286 #ifdef CONFIG_STACK_GROWSUP
1287 	return vma_lookup(mm, addr);
1288 #else
1289 	static volatile unsigned long next_warn;
1290 	struct vm_area_struct *vma;
1291 	unsigned long now, next;
1292 
1293 	vma = find_vma(mm, addr);
1294 	if (!vma || (addr >= vma->vm_start))
1295 		return vma;
1296 
1297 	/* Only warn for half-way relevant accesses */
1298 	if (!(vma->vm_flags & VM_GROWSDOWN))
1299 		return NULL;
1300 	if (vma->vm_start - addr > 65536)
1301 		return NULL;
1302 
1303 	/* Let's not warn more than once an hour.. */
1304 	now = jiffies; next = next_warn;
1305 	if (next && time_before(now, next))
1306 		return NULL;
1307 	next_warn = now + 60*60*HZ;
1308 
1309 	/* Let people know things may have changed. */
1310 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1311 		current->comm, task_pid_nr(current),
1312 		vma->vm_start, vma->vm_end, addr);
1313 	dump_stack();
1314 	return NULL;
1315 #endif
1316 }
1317 
1318 /**
1319  * __get_user_pages() - pin user pages in memory
1320  * @mm:		mm_struct of target mm
1321  * @start:	starting user address
1322  * @nr_pages:	number of pages from start to pin
1323  * @gup_flags:	flags modifying pin behaviour
1324  * @pages:	array that receives pointers to the pages pinned.
1325  *		Should be at least nr_pages long. Or NULL, if caller
1326  *		only intends to ensure the pages are faulted in.
1327  * @locked:     whether we're still with the mmap_lock held
1328  *
1329  * Returns either number of pages pinned (which may be less than the
1330  * number requested), or an error. Details about the return value:
1331  *
1332  * -- If nr_pages is 0, returns 0.
1333  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1334  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1335  *    pages pinned. Again, this may be less than nr_pages.
1336  * -- 0 return value is possible when the fault would need to be retried.
1337  *
1338  * The caller is responsible for releasing returned @pages, via put_page().
1339  *
1340  * Must be called with mmap_lock held.  It may be released.  See below.
1341  *
1342  * __get_user_pages walks a process's page tables and takes a reference to
1343  * each struct page that each user address corresponds to at a given
1344  * instant. That is, it takes the page that would be accessed if a user
1345  * thread accesses the given user virtual address at that instant.
1346  *
1347  * This does not guarantee that the page exists in the user mappings when
1348  * __get_user_pages returns, and there may even be a completely different
1349  * page there in some cases (eg. if mmapped pagecache has been invalidated
1350  * and subsequently re-faulted). However it does guarantee that the page
1351  * won't be freed completely. And mostly callers simply care that the page
1352  * contains data that was valid *at some point in time*. Typically, an IO
1353  * or similar operation cannot guarantee anything stronger anyway because
1354  * locks can't be held over the syscall boundary.
1355  *
1356  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1357  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1358  * appropriate) must be called after the page is finished with, and
1359  * before put_page is called.
1360  *
1361  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1362  * be released. If this happens *@locked will be set to 0 on return.
1363  *
1364  * A caller using such a combination of @gup_flags must therefore hold the
1365  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1366  * it must be held for either reading or writing and will not be released.
1367  *
1368  * In most cases, get_user_pages or get_user_pages_fast should be used
1369  * instead of __get_user_pages. __get_user_pages should be used only if
1370  * you need some special @gup_flags.
1371  */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1372 static long __get_user_pages(struct mm_struct *mm,
1373 		unsigned long start, unsigned long nr_pages,
1374 		unsigned int gup_flags, struct page **pages,
1375 		int *locked)
1376 {
1377 	long ret = 0, i = 0;
1378 	struct vm_area_struct *vma = NULL;
1379 	struct follow_page_context ctx = { NULL };
1380 
1381 	if (!nr_pages)
1382 		return 0;
1383 
1384 	start = untagged_addr_remote(mm, start);
1385 
1386 	VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1387 
1388 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1389 	VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1390 			(FOLL_PIN | FOLL_GET));
1391 
1392 	do {
1393 		struct page *page;
1394 		unsigned int page_increm;
1395 
1396 		/* first iteration or cross vma bound */
1397 		if (!vma || start >= vma->vm_end) {
1398 			/*
1399 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1400 			 * lookups+error reporting differently.
1401 			 */
1402 			if (gup_flags & FOLL_MADV_POPULATE) {
1403 				vma = vma_lookup(mm, start);
1404 				if (!vma) {
1405 					ret = -ENOMEM;
1406 					goto out;
1407 				}
1408 				if (check_vma_flags(vma, gup_flags)) {
1409 					ret = -EINVAL;
1410 					goto out;
1411 				}
1412 				goto retry;
1413 			}
1414 			vma = gup_vma_lookup(mm, start);
1415 			if (!vma && in_gate_area(mm, start)) {
1416 				ret = get_gate_page(mm, start & PAGE_MASK,
1417 						gup_flags, &vma,
1418 						pages ? &page : NULL);
1419 				if (ret)
1420 					goto out;
1421 				ctx.page_mask = 0;
1422 				goto next_page;
1423 			}
1424 
1425 			if (!vma) {
1426 				ret = -EFAULT;
1427 				goto out;
1428 			}
1429 			ret = check_vma_flags(vma, gup_flags);
1430 			if (ret)
1431 				goto out;
1432 		}
1433 retry:
1434 		/*
1435 		 * If we have a pending SIGKILL, don't keep faulting pages and
1436 		 * potentially allocating memory.
1437 		 */
1438 		if (fatal_signal_pending(current)) {
1439 			ret = -EINTR;
1440 			goto out;
1441 		}
1442 		cond_resched();
1443 
1444 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1445 		if (!page || PTR_ERR(page) == -EMLINK) {
1446 			ret = faultin_page(vma, start, gup_flags,
1447 					   PTR_ERR(page) == -EMLINK, locked);
1448 			switch (ret) {
1449 			case 0:
1450 				goto retry;
1451 			case -EBUSY:
1452 			case -EAGAIN:
1453 				ret = 0;
1454 				fallthrough;
1455 			case -EFAULT:
1456 			case -ENOMEM:
1457 			case -EHWPOISON:
1458 				goto out;
1459 			}
1460 			BUG();
1461 		} else if (PTR_ERR(page) == -EEXIST) {
1462 			/*
1463 			 * Proper page table entry exists, but no corresponding
1464 			 * struct page. If the caller expects **pages to be
1465 			 * filled in, bail out now, because that can't be done
1466 			 * for this page.
1467 			 */
1468 			if (pages) {
1469 				ret = PTR_ERR(page);
1470 				goto out;
1471 			}
1472 		} else if (IS_ERR(page)) {
1473 			ret = PTR_ERR(page);
1474 			goto out;
1475 		}
1476 next_page:
1477 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1478 		if (page_increm > nr_pages)
1479 			page_increm = nr_pages;
1480 
1481 		if (pages) {
1482 			struct page *subpage;
1483 			unsigned int j;
1484 
1485 			/*
1486 			 * This must be a large folio (and doesn't need to
1487 			 * be the whole folio; it can be part of it), do
1488 			 * the refcount work for all the subpages too.
1489 			 *
1490 			 * NOTE: here the page may not be the head page
1491 			 * e.g. when start addr is not thp-size aligned.
1492 			 * try_grab_folio() should have taken care of tail
1493 			 * pages.
1494 			 */
1495 			if (page_increm > 1) {
1496 				struct folio *folio = page_folio(page);
1497 
1498 				/*
1499 				 * Since we already hold refcount on the
1500 				 * large folio, this should never fail.
1501 				 */
1502 				if (try_grab_folio(folio, page_increm - 1,
1503 						   gup_flags)) {
1504 					/*
1505 					 * Release the 1st page ref if the
1506 					 * folio is problematic, fail hard.
1507 					 */
1508 					gup_put_folio(folio, 1, gup_flags);
1509 					ret = -EFAULT;
1510 					goto out;
1511 				}
1512 			}
1513 
1514 			for (j = 0; j < page_increm; j++) {
1515 				subpage = nth_page(page, j);
1516 				pages[i + j] = subpage;
1517 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1518 				flush_dcache_page(subpage);
1519 			}
1520 		}
1521 
1522 		i += page_increm;
1523 		start += page_increm * PAGE_SIZE;
1524 		nr_pages -= page_increm;
1525 	} while (nr_pages);
1526 out:
1527 	if (ctx.pgmap)
1528 		put_dev_pagemap(ctx.pgmap);
1529 	return i ? i : ret;
1530 }
1531 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1532 static bool vma_permits_fault(struct vm_area_struct *vma,
1533 			      unsigned int fault_flags)
1534 {
1535 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1536 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1537 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1538 
1539 	if (!(vm_flags & vma->vm_flags))
1540 		return false;
1541 
1542 	/*
1543 	 * The architecture might have a hardware protection
1544 	 * mechanism other than read/write that can deny access.
1545 	 *
1546 	 * gup always represents data access, not instruction
1547 	 * fetches, so execute=false here:
1548 	 */
1549 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1550 		return false;
1551 
1552 	return true;
1553 }
1554 
1555 /**
1556  * fixup_user_fault() - manually resolve a user page fault
1557  * @mm:		mm_struct of target mm
1558  * @address:	user address
1559  * @fault_flags:flags to pass down to handle_mm_fault()
1560  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1561  *		does not allow retry. If NULL, the caller must guarantee
1562  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1563  *
1564  * This is meant to be called in the specific scenario where for locking reasons
1565  * we try to access user memory in atomic context (within a pagefault_disable()
1566  * section), this returns -EFAULT, and we want to resolve the user fault before
1567  * trying again.
1568  *
1569  * Typically this is meant to be used by the futex code.
1570  *
1571  * The main difference with get_user_pages() is that this function will
1572  * unconditionally call handle_mm_fault() which will in turn perform all the
1573  * necessary SW fixup of the dirty and young bits in the PTE, while
1574  * get_user_pages() only guarantees to update these in the struct page.
1575  *
1576  * This is important for some architectures where those bits also gate the
1577  * access permission to the page because they are maintained in software.  On
1578  * such architectures, gup() will not be enough to make a subsequent access
1579  * succeed.
1580  *
1581  * This function will not return with an unlocked mmap_lock. So it has not the
1582  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1583  */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1584 int fixup_user_fault(struct mm_struct *mm,
1585 		     unsigned long address, unsigned int fault_flags,
1586 		     bool *unlocked)
1587 {
1588 	struct vm_area_struct *vma;
1589 	vm_fault_t ret;
1590 
1591 	address = untagged_addr_remote(mm, address);
1592 
1593 	if (unlocked)
1594 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1595 
1596 retry:
1597 	vma = gup_vma_lookup(mm, address);
1598 	if (!vma)
1599 		return -EFAULT;
1600 
1601 	if (!vma_permits_fault(vma, fault_flags))
1602 		return -EFAULT;
1603 
1604 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1605 	    fatal_signal_pending(current))
1606 		return -EINTR;
1607 
1608 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1609 
1610 	if (ret & VM_FAULT_COMPLETED) {
1611 		/*
1612 		 * NOTE: it's a pity that we need to retake the lock here
1613 		 * to pair with the unlock() in the callers. Ideally we
1614 		 * could tell the callers so they do not need to unlock.
1615 		 */
1616 		mmap_read_lock(mm);
1617 		*unlocked = true;
1618 		return 0;
1619 	}
1620 
1621 	if (ret & VM_FAULT_ERROR) {
1622 		int err = vm_fault_to_errno(ret, 0);
1623 
1624 		if (err)
1625 			return err;
1626 		BUG();
1627 	}
1628 
1629 	if (ret & VM_FAULT_RETRY) {
1630 		mmap_read_lock(mm);
1631 		*unlocked = true;
1632 		fault_flags |= FAULT_FLAG_TRIED;
1633 		goto retry;
1634 	}
1635 
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(fixup_user_fault);
1639 
1640 /*
1641  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1642  * specified, it'll also respond to generic signals.  The caller of GUP
1643  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1644  */
gup_signal_pending(unsigned int flags)1645 static bool gup_signal_pending(unsigned int flags)
1646 {
1647 	if (fatal_signal_pending(current))
1648 		return true;
1649 
1650 	if (!(flags & FOLL_INTERRUPTIBLE))
1651 		return false;
1652 
1653 	return signal_pending(current);
1654 }
1655 
1656 /*
1657  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1658  * the caller. This function may drop the mmap_lock. If it does so, then it will
1659  * set (*locked = 0).
1660  *
1661  * (*locked == 0) means that the caller expects this function to acquire and
1662  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1663  * the function returns, even though it may have changed temporarily during
1664  * function execution.
1665  *
1666  * Please note that this function, unlike __get_user_pages(), will not return 0
1667  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1668  */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1669 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1670 						unsigned long start,
1671 						unsigned long nr_pages,
1672 						struct page **pages,
1673 						int *locked,
1674 						unsigned int flags)
1675 {
1676 	long ret, pages_done;
1677 	bool must_unlock = false;
1678 
1679 	if (!nr_pages)
1680 		return 0;
1681 
1682 	/*
1683 	 * The internal caller expects GUP to manage the lock internally and the
1684 	 * lock must be released when this returns.
1685 	 */
1686 	if (!*locked) {
1687 		if (mmap_read_lock_killable(mm))
1688 			return -EAGAIN;
1689 		must_unlock = true;
1690 		*locked = 1;
1691 	}
1692 	else
1693 		mmap_assert_locked(mm);
1694 
1695 	if (flags & FOLL_PIN)
1696 		mm_set_has_pinned_flag(&mm->flags);
1697 
1698 	/*
1699 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1700 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1701 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1702 	 * for FOLL_GET, not for the newer FOLL_PIN.
1703 	 *
1704 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1705 	 * that here, as any failures will be obvious enough.
1706 	 */
1707 	if (pages && !(flags & FOLL_PIN))
1708 		flags |= FOLL_GET;
1709 
1710 	pages_done = 0;
1711 	for (;;) {
1712 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1713 				       locked);
1714 		if (!(flags & FOLL_UNLOCKABLE)) {
1715 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1716 			pages_done = ret;
1717 			break;
1718 		}
1719 
1720 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1721 		VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages));
1722 
1723 		if (ret > 0) {
1724 			nr_pages -= ret;
1725 			pages_done += ret;
1726 			if (!nr_pages)
1727 				break;
1728 		}
1729 		if (*locked) {
1730 			/*
1731 			 * VM_FAULT_RETRY didn't trigger or it was a
1732 			 * FOLL_NOWAIT.
1733 			 */
1734 			if (!pages_done)
1735 				pages_done = ret;
1736 			break;
1737 		}
1738 		/*
1739 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1740 		 * For the prefault case (!pages) we only update counts.
1741 		 */
1742 		if (likely(pages))
1743 			pages += ret;
1744 		start += ret << PAGE_SHIFT;
1745 
1746 		/* The lock was temporarily dropped, so we must unlock later */
1747 		must_unlock = true;
1748 
1749 retry:
1750 		/*
1751 		 * Repeat on the address that fired VM_FAULT_RETRY
1752 		 * with both FAULT_FLAG_ALLOW_RETRY and
1753 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1754 		 * by fatal signals of even common signals, depending on
1755 		 * the caller's request. So we need to check it before we
1756 		 * start trying again otherwise it can loop forever.
1757 		 */
1758 		if (gup_signal_pending(flags)) {
1759 			if (!pages_done)
1760 				pages_done = -EINTR;
1761 			break;
1762 		}
1763 
1764 		ret = mmap_read_lock_killable(mm);
1765 		if (ret) {
1766 			if (!pages_done)
1767 				pages_done = ret;
1768 			break;
1769 		}
1770 
1771 		*locked = 1;
1772 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1773 				       pages, locked);
1774 		if (!*locked) {
1775 			/* Continue to retry until we succeeded */
1776 			VM_WARN_ON_ONCE(ret != 0);
1777 			goto retry;
1778 		}
1779 		if (ret != 1) {
1780 			VM_WARN_ON_ONCE(ret > 1);
1781 			if (!pages_done)
1782 				pages_done = ret;
1783 			break;
1784 		}
1785 		nr_pages--;
1786 		pages_done++;
1787 		if (!nr_pages)
1788 			break;
1789 		if (likely(pages))
1790 			pages++;
1791 		start += PAGE_SIZE;
1792 	}
1793 	if (must_unlock && *locked) {
1794 		/*
1795 		 * We either temporarily dropped the lock, or the caller
1796 		 * requested that we both acquire and drop the lock. Either way,
1797 		 * we must now unlock, and notify the caller of that state.
1798 		 */
1799 		mmap_read_unlock(mm);
1800 		*locked = 0;
1801 	}
1802 
1803 	/*
1804 	 * Failing to pin anything implies something has gone wrong (except when
1805 	 * FOLL_NOWAIT is specified).
1806 	 */
1807 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1808 		return -EFAULT;
1809 
1810 	return pages_done;
1811 }
1812 
1813 /**
1814  * populate_vma_page_range() -  populate a range of pages in the vma.
1815  * @vma:   target vma
1816  * @start: start address
1817  * @end:   end address
1818  * @locked: whether the mmap_lock is still held
1819  *
1820  * This takes care of mlocking the pages too if VM_LOCKED is set.
1821  *
1822  * Return either number of pages pinned in the vma, or a negative error
1823  * code on error.
1824  *
1825  * vma->vm_mm->mmap_lock must be held.
1826  *
1827  * If @locked is NULL, it may be held for read or write and will
1828  * be unperturbed.
1829  *
1830  * If @locked is non-NULL, it must held for read only and may be
1831  * released.  If it's released, *@locked will be set to 0.
1832  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1833 long populate_vma_page_range(struct vm_area_struct *vma,
1834 		unsigned long start, unsigned long end, int *locked)
1835 {
1836 	struct mm_struct *mm = vma->vm_mm;
1837 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1838 	int local_locked = 1;
1839 	int gup_flags;
1840 	long ret;
1841 
1842 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1843 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1844 	VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma);
1845 	VM_WARN_ON_ONCE_VMA(end   > vma->vm_end, vma);
1846 	mmap_assert_locked(mm);
1847 
1848 	/*
1849 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1850 	 * faultin_page() to break COW, so it has no work to do here.
1851 	 */
1852 	if (vma->vm_flags & VM_LOCKONFAULT)
1853 		return nr_pages;
1854 
1855 	/* ... similarly, we've never faulted in PROT_NONE pages */
1856 	if (!vma_is_accessible(vma))
1857 		return -EFAULT;
1858 
1859 	gup_flags = FOLL_TOUCH;
1860 	/*
1861 	 * We want to touch writable mappings with a write fault in order
1862 	 * to break COW, except for shared mappings because these don't COW
1863 	 * and we would not want to dirty them for nothing.
1864 	 *
1865 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1866 	 * readable (ie write-only or executable).
1867 	 */
1868 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1869 		gup_flags |= FOLL_WRITE;
1870 	else
1871 		gup_flags |= FOLL_FORCE;
1872 
1873 	if (locked)
1874 		gup_flags |= FOLL_UNLOCKABLE;
1875 
1876 	/*
1877 	 * We made sure addr is within a VMA, so the following will
1878 	 * not result in a stack expansion that recurses back here.
1879 	 */
1880 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1881 			       NULL, locked ? locked : &local_locked);
1882 	lru_add_drain();
1883 	return ret;
1884 }
1885 
1886 /*
1887  * faultin_page_range() - populate (prefault) page tables inside the
1888  *			  given range readable/writable
1889  *
1890  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1891  *
1892  * @mm: the mm to populate page tables in
1893  * @start: start address
1894  * @end: end address
1895  * @write: whether to prefault readable or writable
1896  * @locked: whether the mmap_lock is still held
1897  *
1898  * Returns either number of processed pages in the MM, or a negative error
1899  * code on error (see __get_user_pages()). Note that this function reports
1900  * errors related to VMAs, such as incompatible mappings, as expected by
1901  * MADV_POPULATE_(READ|WRITE).
1902  *
1903  * The range must be page-aligned.
1904  *
1905  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1906  */
faultin_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool write,int * locked)1907 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1908 			unsigned long end, bool write, int *locked)
1909 {
1910 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1911 	int gup_flags;
1912 	long ret;
1913 
1914 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(start));
1915 	VM_WARN_ON_ONCE(!PAGE_ALIGNED(end));
1916 	mmap_assert_locked(mm);
1917 
1918 	/*
1919 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1920 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1921 	 *	       difference with !FOLL_FORCE, because the page is writable
1922 	 *	       in the page table.
1923 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1924 	 *		  a poisoned page.
1925 	 * !FOLL_FORCE: Require proper access permissions.
1926 	 */
1927 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1928 		    FOLL_MADV_POPULATE;
1929 	if (write)
1930 		gup_flags |= FOLL_WRITE;
1931 
1932 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1933 				      gup_flags);
1934 	lru_add_drain();
1935 	return ret;
1936 }
1937 
1938 /*
1939  * __mm_populate - populate and/or mlock pages within a range of address space.
1940  *
1941  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1942  * flags. VMAs must be already marked with the desired vm_flags, and
1943  * mmap_lock must not be held.
1944  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1945 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1946 {
1947 	struct mm_struct *mm = current->mm;
1948 	unsigned long end, nstart, nend;
1949 	struct vm_area_struct *vma = NULL;
1950 	int locked = 0;
1951 	long ret = 0;
1952 
1953 	end = start + len;
1954 
1955 	for (nstart = start; nstart < end; nstart = nend) {
1956 		/*
1957 		 * We want to fault in pages for [nstart; end) address range.
1958 		 * Find first corresponding VMA.
1959 		 */
1960 		if (!locked) {
1961 			locked = 1;
1962 			mmap_read_lock(mm);
1963 			vma = find_vma_intersection(mm, nstart, end);
1964 		} else if (nstart >= vma->vm_end)
1965 			vma = find_vma_intersection(mm, vma->vm_end, end);
1966 
1967 		if (!vma)
1968 			break;
1969 		/*
1970 		 * Set [nstart; nend) to intersection of desired address
1971 		 * range with the first VMA. Also, skip undesirable VMA types.
1972 		 */
1973 		nend = min(end, vma->vm_end);
1974 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1975 			continue;
1976 		if (nstart < vma->vm_start)
1977 			nstart = vma->vm_start;
1978 		/*
1979 		 * Now fault in a range of pages. populate_vma_page_range()
1980 		 * double checks the vma flags, so that it won't mlock pages
1981 		 * if the vma was already munlocked.
1982 		 */
1983 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1984 		if (ret < 0) {
1985 			if (ignore_errors) {
1986 				ret = 0;
1987 				continue;	/* continue at next VMA */
1988 			}
1989 			break;
1990 		}
1991 		nend = nstart + ret * PAGE_SIZE;
1992 		ret = 0;
1993 	}
1994 	if (locked)
1995 		mmap_read_unlock(mm);
1996 	return ret;	/* 0 or negative error code */
1997 }
1998 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)1999 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2000 		unsigned long nr_pages, struct page **pages,
2001 		int *locked, unsigned int foll_flags)
2002 {
2003 	struct vm_area_struct *vma;
2004 	bool must_unlock = false;
2005 	vm_flags_t vm_flags;
2006 	long i;
2007 
2008 	if (!nr_pages)
2009 		return 0;
2010 
2011 	/*
2012 	 * The internal caller expects GUP to manage the lock internally and the
2013 	 * lock must be released when this returns.
2014 	 */
2015 	if (!*locked) {
2016 		if (mmap_read_lock_killable(mm))
2017 			return -EAGAIN;
2018 		must_unlock = true;
2019 		*locked = 1;
2020 	}
2021 
2022 	/* calculate required read or write permissions.
2023 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2024 	 */
2025 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2026 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2027 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2028 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2029 
2030 	for (i = 0; i < nr_pages; i++) {
2031 		vma = find_vma(mm, start);
2032 		if (!vma)
2033 			break;
2034 
2035 		/* protect what we can, including chardevs */
2036 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2037 		    !(vm_flags & vma->vm_flags))
2038 			break;
2039 
2040 		if (pages) {
2041 			pages[i] = virt_to_page((void *)start);
2042 			if (pages[i])
2043 				get_page(pages[i]);
2044 		}
2045 
2046 		start = (start + PAGE_SIZE) & PAGE_MASK;
2047 	}
2048 
2049 	if (must_unlock && *locked) {
2050 		mmap_read_unlock(mm);
2051 		*locked = 0;
2052 	}
2053 
2054 	return i ? : -EFAULT;
2055 }
2056 #endif /* !CONFIG_MMU */
2057 
2058 /**
2059  * fault_in_writeable - fault in userspace address range for writing
2060  * @uaddr: start of address range
2061  * @size: size of address range
2062  *
2063  * Returns the number of bytes not faulted in (like copy_to_user() and
2064  * copy_from_user()).
2065  */
fault_in_writeable(char __user * uaddr,size_t size)2066 size_t fault_in_writeable(char __user *uaddr, size_t size)
2067 {
2068 	const unsigned long start = (unsigned long)uaddr;
2069 	const unsigned long end = start + size;
2070 	unsigned long cur;
2071 
2072 	if (unlikely(size == 0))
2073 		return 0;
2074 	if (!user_write_access_begin(uaddr, size))
2075 		return size;
2076 
2077 	/* Stop once we overflow to 0. */
2078 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2079 		unsafe_put_user(0, (char __user *)cur, out);
2080 out:
2081 	user_write_access_end();
2082 	if (size > cur - start)
2083 		return size - (cur - start);
2084 	return 0;
2085 }
2086 EXPORT_SYMBOL(fault_in_writeable);
2087 
2088 /**
2089  * fault_in_subpage_writeable - fault in an address range for writing
2090  * @uaddr: start of address range
2091  * @size: size of address range
2092  *
2093  * Fault in a user address range for writing while checking for permissions at
2094  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2095  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2096  *
2097  * Returns the number of bytes not faulted in (like copy_to_user() and
2098  * copy_from_user()).
2099  */
fault_in_subpage_writeable(char __user * uaddr,size_t size)2100 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2101 {
2102 	size_t faulted_in;
2103 
2104 	/*
2105 	 * Attempt faulting in at page granularity first for page table
2106 	 * permission checking. The arch-specific probe_subpage_writeable()
2107 	 * functions may not check for this.
2108 	 */
2109 	faulted_in = size - fault_in_writeable(uaddr, size);
2110 	if (faulted_in)
2111 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2112 
2113 	return size - faulted_in;
2114 }
2115 EXPORT_SYMBOL(fault_in_subpage_writeable);
2116 
2117 /*
2118  * fault_in_safe_writeable - fault in an address range for writing
2119  * @uaddr: start of address range
2120  * @size: length of address range
2121  *
2122  * Faults in an address range for writing.  This is primarily useful when we
2123  * already know that some or all of the pages in the address range aren't in
2124  * memory.
2125  *
2126  * Unlike fault_in_writeable(), this function is non-destructive.
2127  *
2128  * Note that we don't pin or otherwise hold the pages referenced that we fault
2129  * in.  There's no guarantee that they'll stay in memory for any duration of
2130  * time.
2131  *
2132  * Returns the number of bytes not faulted in, like copy_to_user() and
2133  * copy_from_user().
2134  */
fault_in_safe_writeable(const char __user * uaddr,size_t size)2135 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2136 {
2137 	const unsigned long start = (unsigned long)uaddr;
2138 	const unsigned long end = start + size;
2139 	unsigned long cur;
2140 	struct mm_struct *mm = current->mm;
2141 	bool unlocked = false;
2142 
2143 	if (unlikely(size == 0))
2144 		return 0;
2145 
2146 	mmap_read_lock(mm);
2147 	/* Stop once we overflow to 0. */
2148 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2149 		if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2150 			break;
2151 	mmap_read_unlock(mm);
2152 
2153 	if (size > cur - start)
2154 		return size - (cur - start);
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL(fault_in_safe_writeable);
2158 
2159 /**
2160  * fault_in_readable - fault in userspace address range for reading
2161  * @uaddr: start of user address range
2162  * @size: size of user address range
2163  *
2164  * Returns the number of bytes not faulted in (like copy_to_user() and
2165  * copy_from_user()).
2166  */
fault_in_readable(const char __user * uaddr,size_t size)2167 size_t fault_in_readable(const char __user *uaddr, size_t size)
2168 {
2169 	const unsigned long start = (unsigned long)uaddr;
2170 	const unsigned long end = start + size;
2171 	unsigned long cur;
2172 	volatile char c;
2173 
2174 	if (unlikely(size == 0))
2175 		return 0;
2176 	if (!user_read_access_begin(uaddr, size))
2177 		return size;
2178 
2179 	/* Stop once we overflow to 0. */
2180 	for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2181 		unsafe_get_user(c, (const char __user *)cur, out);
2182 out:
2183 	user_read_access_end();
2184 	(void)c;
2185 	if (size > cur - start)
2186 		return size - (cur - start);
2187 	return 0;
2188 }
2189 EXPORT_SYMBOL(fault_in_readable);
2190 
2191 /**
2192  * get_dump_page() - pin user page in memory while writing it to core dump
2193  * @addr: user address
2194  * @locked: a pointer to an int denoting whether the mmap sem is held
2195  *
2196  * Returns struct page pointer of user page pinned for dump,
2197  * to be freed afterwards by put_page().
2198  *
2199  * Returns NULL on any kind of failure - a hole must then be inserted into
2200  * the corefile, to preserve alignment with its headers; and also returns
2201  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2202  * allowing a hole to be left in the corefile to save disk space.
2203  *
2204  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2205  */
2206 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr,int * locked)2207 struct page *get_dump_page(unsigned long addr, int *locked)
2208 {
2209 	struct page *page;
2210 	int ret;
2211 
2212 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2213 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2214 	return (ret == 1) ? page : NULL;
2215 }
2216 #endif /* CONFIG_ELF_CORE */
2217 
2218 #ifdef CONFIG_MIGRATION
2219 
2220 /*
2221  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2222  * avoid this complication, by simply interpreting a list of folios as a list of
2223  * pages, that approach won't work in the longer term, because eventually the
2224  * layouts of struct page and struct folio will become completely different.
2225  * Furthermore, this pof approach avoids excessive page_folio() calls.
2226  */
2227 struct pages_or_folios {
2228 	union {
2229 		struct page **pages;
2230 		struct folio **folios;
2231 		void **entries;
2232 	};
2233 	bool has_folios;
2234 	long nr_entries;
2235 };
2236 
pofs_get_folio(struct pages_or_folios * pofs,long i)2237 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2238 {
2239 	if (pofs->has_folios)
2240 		return pofs->folios[i];
2241 	return page_folio(pofs->pages[i]);
2242 }
2243 
pofs_clear_entry(struct pages_or_folios * pofs,long i)2244 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2245 {
2246 	pofs->entries[i] = NULL;
2247 }
2248 
pofs_unpin(struct pages_or_folios * pofs)2249 static void pofs_unpin(struct pages_or_folios *pofs)
2250 {
2251 	if (pofs->has_folios)
2252 		unpin_folios(pofs->folios, pofs->nr_entries);
2253 	else
2254 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2255 }
2256 
pofs_next_folio(struct folio * folio,struct pages_or_folios * pofs,long * index_ptr)2257 static struct folio *pofs_next_folio(struct folio *folio,
2258 		struct pages_or_folios *pofs, long *index_ptr)
2259 {
2260 	long i = *index_ptr + 1;
2261 
2262 	if (!pofs->has_folios && folio_test_large(folio)) {
2263 		const unsigned long start_pfn = folio_pfn(folio);
2264 		const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2265 
2266 		for (; i < pofs->nr_entries; i++) {
2267 			unsigned long pfn = page_to_pfn(pofs->pages[i]);
2268 
2269 			/* Is this page part of this folio? */
2270 			if (pfn < start_pfn || pfn >= end_pfn)
2271 				break;
2272 		}
2273 	}
2274 
2275 	if (unlikely(i == pofs->nr_entries))
2276 		return NULL;
2277 	*index_ptr = i;
2278 
2279 	return pofs_get_folio(pofs, i);
2280 }
2281 
2282 /*
2283  * Returns the number of collected folios. Return value is always >= 0.
2284  */
collect_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2285 static unsigned long collect_longterm_unpinnable_folios(
2286 		struct list_head *movable_folio_list,
2287 		struct pages_or_folios *pofs)
2288 {
2289 	unsigned long collected = 0;
2290 	struct folio *folio;
2291 	int drained = 0;
2292 	long i = 0;
2293 
2294 	for (folio = pofs_get_folio(pofs, i); folio;
2295 	     folio = pofs_next_folio(folio, pofs, &i)) {
2296 
2297 		if (folio_is_longterm_pinnable(folio))
2298 			continue;
2299 
2300 		collected++;
2301 
2302 		if (folio_is_device_coherent(folio))
2303 			continue;
2304 
2305 		if (folio_test_hugetlb(folio)) {
2306 			folio_isolate_hugetlb(folio, movable_folio_list);
2307 			continue;
2308 		}
2309 
2310 		if (drained == 0 && folio_may_be_lru_cached(folio) &&
2311 				folio_ref_count(folio) !=
2312 				folio_expected_ref_count(folio) + 1) {
2313 			lru_add_drain();
2314 			drained = 1;
2315 		}
2316 		if (drained == 1 && folio_may_be_lru_cached(folio) &&
2317 				folio_ref_count(folio) !=
2318 				folio_expected_ref_count(folio) + 1) {
2319 			lru_add_drain_all();
2320 			drained = 2;
2321 		}
2322 
2323 		if (!folio_isolate_lru(folio))
2324 			continue;
2325 
2326 		list_add_tail(&folio->lru, movable_folio_list);
2327 		node_stat_mod_folio(folio,
2328 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2329 				    folio_nr_pages(folio));
2330 	}
2331 
2332 	return collected;
2333 }
2334 
2335 /*
2336  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2337  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2338  * failure (or partial success).
2339  */
2340 static int
migrate_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2341 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2342 				   struct pages_or_folios *pofs)
2343 {
2344 	int ret;
2345 	unsigned long i;
2346 
2347 	for (i = 0; i < pofs->nr_entries; i++) {
2348 		struct folio *folio = pofs_get_folio(pofs, i);
2349 
2350 		if (folio_is_device_coherent(folio)) {
2351 			/*
2352 			 * Migration will fail if the folio is pinned, so
2353 			 * convert the pin on the source folio to a normal
2354 			 * reference.
2355 			 */
2356 			pofs_clear_entry(pofs, i);
2357 			folio_get(folio);
2358 			gup_put_folio(folio, 1, FOLL_PIN);
2359 
2360 			if (migrate_device_coherent_folio(folio)) {
2361 				ret = -EBUSY;
2362 				goto err;
2363 			}
2364 
2365 			continue;
2366 		}
2367 
2368 		/*
2369 		 * We can't migrate folios with unexpected references, so drop
2370 		 * the reference obtained by __get_user_pages_locked().
2371 		 * Migrating folios have been added to movable_folio_list after
2372 		 * calling folio_isolate_lru() which takes a reference so the
2373 		 * folio won't be freed if it's migrating.
2374 		 */
2375 		unpin_folio(folio);
2376 		pofs_clear_entry(pofs, i);
2377 	}
2378 
2379 	if (!list_empty(movable_folio_list)) {
2380 		struct migration_target_control mtc = {
2381 			.nid = NUMA_NO_NODE,
2382 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2383 			.reason = MR_LONGTERM_PIN,
2384 		};
2385 
2386 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2387 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2388 				  MR_LONGTERM_PIN, NULL)) {
2389 			ret = -ENOMEM;
2390 			goto err;
2391 		}
2392 	}
2393 
2394 	putback_movable_pages(movable_folio_list);
2395 
2396 	return -EAGAIN;
2397 
2398 err:
2399 	pofs_unpin(pofs);
2400 	putback_movable_pages(movable_folio_list);
2401 
2402 	return ret;
2403 }
2404 
2405 static long
check_and_migrate_movable_pages_or_folios(struct pages_or_folios * pofs)2406 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2407 {
2408 	LIST_HEAD(movable_folio_list);
2409 	unsigned long collected;
2410 
2411 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2412 						       pofs);
2413 	if (!collected)
2414 		return 0;
2415 
2416 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2417 }
2418 
2419 /*
2420  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2421  * Rather confusingly, all folios in the range are required to be pinned via
2422  * FOLL_PIN, before calling this routine.
2423  *
2424  * Return values:
2425  *
2426  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2427  * then this routine leaves all folios pinned and returns zero for success.
2428  *
2429  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2430  * routine will migrate those folios away, unpin all the folios in the range. If
2431  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2432  * caller should re-pin the entire range with FOLL_PIN and then call this
2433  * routine again.
2434  *
2435  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2436  * indicates a migration failure. The caller should give up, and propagate the
2437  * error back up the call stack. The caller does not need to unpin any folios in
2438  * that case, because this routine will do the unpinning.
2439  */
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2440 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2441 					     struct folio **folios)
2442 {
2443 	struct pages_or_folios pofs = {
2444 		.folios = folios,
2445 		.has_folios = true,
2446 		.nr_entries = nr_folios,
2447 	};
2448 
2449 	return check_and_migrate_movable_pages_or_folios(&pofs);
2450 }
2451 
2452 /*
2453  * Return values and behavior are the same as those for
2454  * check_and_migrate_movable_folios().
2455  */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2456 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2457 					    struct page **pages)
2458 {
2459 	struct pages_or_folios pofs = {
2460 		.pages = pages,
2461 		.has_folios = false,
2462 		.nr_entries = nr_pages,
2463 	};
2464 
2465 	return check_and_migrate_movable_pages_or_folios(&pofs);
2466 }
2467 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2468 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2469 					    struct page **pages)
2470 {
2471 	return 0;
2472 }
2473 
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2474 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2475 					     struct folio **folios)
2476 {
2477 	return 0;
2478 }
2479 #endif /* CONFIG_MIGRATION */
2480 
2481 /*
2482  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2483  * allows us to process the FOLL_LONGTERM flag.
2484  */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2485 static long __gup_longterm_locked(struct mm_struct *mm,
2486 				  unsigned long start,
2487 				  unsigned long nr_pages,
2488 				  struct page **pages,
2489 				  int *locked,
2490 				  unsigned int gup_flags)
2491 {
2492 	unsigned int flags;
2493 	long rc, nr_pinned_pages;
2494 
2495 	if (!(gup_flags & FOLL_LONGTERM))
2496 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2497 					       locked, gup_flags);
2498 
2499 	flags = memalloc_pin_save();
2500 	do {
2501 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2502 							  pages, locked,
2503 							  gup_flags);
2504 		if (nr_pinned_pages <= 0) {
2505 			rc = nr_pinned_pages;
2506 			break;
2507 		}
2508 
2509 		/* FOLL_LONGTERM implies FOLL_PIN */
2510 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2511 	} while (rc == -EAGAIN);
2512 	memalloc_pin_restore(flags);
2513 	return rc ? rc : nr_pinned_pages;
2514 }
2515 
2516 /*
2517  * Check that the given flags are valid for the exported gup/pup interface, and
2518  * update them with the required flags that the caller must have set.
2519  */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2520 static bool is_valid_gup_args(struct page **pages, int *locked,
2521 			      unsigned int *gup_flags_p, unsigned int to_set)
2522 {
2523 	unsigned int gup_flags = *gup_flags_p;
2524 
2525 	/*
2526 	 * These flags not allowed to be specified externally to the gup
2527 	 * interfaces:
2528 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2529 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2530 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2531 	 */
2532 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2533 		return false;
2534 
2535 	gup_flags |= to_set;
2536 	if (locked) {
2537 		/* At the external interface locked must be set */
2538 		if (WARN_ON_ONCE(*locked != 1))
2539 			return false;
2540 
2541 		gup_flags |= FOLL_UNLOCKABLE;
2542 	}
2543 
2544 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2545 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2546 			 (FOLL_PIN | FOLL_GET)))
2547 		return false;
2548 
2549 	/* LONGTERM can only be specified when pinning */
2550 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2551 		return false;
2552 
2553 	/* Pages input must be given if using GET/PIN */
2554 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2555 		return false;
2556 
2557 	/* We want to allow the pgmap to be hot-unplugged at all times */
2558 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2559 			 (gup_flags & FOLL_PCI_P2PDMA)))
2560 		return false;
2561 
2562 	*gup_flags_p = gup_flags;
2563 	return true;
2564 }
2565 
2566 #ifdef CONFIG_MMU
2567 /**
2568  * get_user_pages_remote() - pin user pages in memory
2569  * @mm:		mm_struct of target mm
2570  * @start:	starting user address
2571  * @nr_pages:	number of pages from start to pin
2572  * @gup_flags:	flags modifying lookup behaviour
2573  * @pages:	array that receives pointers to the pages pinned.
2574  *		Should be at least nr_pages long. Or NULL, if caller
2575  *		only intends to ensure the pages are faulted in.
2576  * @locked:	pointer to lock flag indicating whether lock is held and
2577  *		subsequently whether VM_FAULT_RETRY functionality can be
2578  *		utilised. Lock must initially be held.
2579  *
2580  * Returns either number of pages pinned (which may be less than the
2581  * number requested), or an error. Details about the return value:
2582  *
2583  * -- If nr_pages is 0, returns 0.
2584  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2585  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2586  *    pages pinned. Again, this may be less than nr_pages.
2587  *
2588  * The caller is responsible for releasing returned @pages, via put_page().
2589  *
2590  * Must be called with mmap_lock held for read or write.
2591  *
2592  * get_user_pages_remote walks a process's page tables and takes a reference
2593  * to each struct page that each user address corresponds to at a given
2594  * instant. That is, it takes the page that would be accessed if a user
2595  * thread accesses the given user virtual address at that instant.
2596  *
2597  * This does not guarantee that the page exists in the user mappings when
2598  * get_user_pages_remote returns, and there may even be a completely different
2599  * page there in some cases (eg. if mmapped pagecache has been invalidated
2600  * and subsequently re-faulted). However it does guarantee that the page
2601  * won't be freed completely. And mostly callers simply care that the page
2602  * contains data that was valid *at some point in time*. Typically, an IO
2603  * or similar operation cannot guarantee anything stronger anyway because
2604  * locks can't be held over the syscall boundary.
2605  *
2606  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2607  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2608  * be called after the page is finished with, and before put_page is called.
2609  *
2610  * get_user_pages_remote is typically used for fewer-copy IO operations,
2611  * to get a handle on the memory by some means other than accesses
2612  * via the user virtual addresses. The pages may be submitted for
2613  * DMA to devices or accessed via their kernel linear mapping (via the
2614  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2615  *
2616  * See also get_user_pages_fast, for performance critical applications.
2617  *
2618  * get_user_pages_remote should be phased out in favor of
2619  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2620  * should use get_user_pages_remote because it cannot pass
2621  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2622  */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2623 long get_user_pages_remote(struct mm_struct *mm,
2624 		unsigned long start, unsigned long nr_pages,
2625 		unsigned int gup_flags, struct page **pages,
2626 		int *locked)
2627 {
2628 	int local_locked = 1;
2629 
2630 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2631 			       FOLL_TOUCH | FOLL_REMOTE))
2632 		return -EINVAL;
2633 
2634 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2635 				       locked ? locked : &local_locked,
2636 				       gup_flags);
2637 }
2638 EXPORT_SYMBOL(get_user_pages_remote);
2639 
2640 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2641 long get_user_pages_remote(struct mm_struct *mm,
2642 			   unsigned long start, unsigned long nr_pages,
2643 			   unsigned int gup_flags, struct page **pages,
2644 			   int *locked)
2645 {
2646 	return 0;
2647 }
2648 #endif /* !CONFIG_MMU */
2649 
2650 /**
2651  * get_user_pages() - pin user pages in memory
2652  * @start:      starting user address
2653  * @nr_pages:   number of pages from start to pin
2654  * @gup_flags:  flags modifying lookup behaviour
2655  * @pages:      array that receives pointers to the pages pinned.
2656  *              Should be at least nr_pages long. Or NULL, if caller
2657  *              only intends to ensure the pages are faulted in.
2658  *
2659  * This is the same as get_user_pages_remote(), just with a less-flexible
2660  * calling convention where we assume that the mm being operated on belongs to
2661  * the current task, and doesn't allow passing of a locked parameter.  We also
2662  * obviously don't pass FOLL_REMOTE in here.
2663  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2664 long get_user_pages(unsigned long start, unsigned long nr_pages,
2665 		    unsigned int gup_flags, struct page **pages)
2666 {
2667 	int locked = 1;
2668 
2669 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2670 		return -EINVAL;
2671 
2672 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2673 				       &locked, gup_flags);
2674 }
2675 EXPORT_SYMBOL(get_user_pages);
2676 
2677 /*
2678  * get_user_pages_unlocked() is suitable to replace the form:
2679  *
2680  *      mmap_read_lock(mm);
2681  *      get_user_pages(mm, ..., pages, NULL);
2682  *      mmap_read_unlock(mm);
2683  *
2684  *  with:
2685  *
2686  *      get_user_pages_unlocked(mm, ..., pages);
2687  *
2688  * It is functionally equivalent to get_user_pages_fast so
2689  * get_user_pages_fast should be used instead if specific gup_flags
2690  * (e.g. FOLL_FORCE) are not required.
2691  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2692 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2693 			     struct page **pages, unsigned int gup_flags)
2694 {
2695 	int locked = 0;
2696 
2697 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2698 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2699 		return -EINVAL;
2700 
2701 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2702 				       &locked, gup_flags);
2703 }
2704 EXPORT_SYMBOL(get_user_pages_unlocked);
2705 
2706 /*
2707  * GUP-fast
2708  *
2709  * get_user_pages_fast attempts to pin user pages by walking the page
2710  * tables directly and avoids taking locks. Thus the walker needs to be
2711  * protected from page table pages being freed from under it, and should
2712  * block any THP splits.
2713  *
2714  * One way to achieve this is to have the walker disable interrupts, and
2715  * rely on IPIs from the TLB flushing code blocking before the page table
2716  * pages are freed. This is unsuitable for architectures that do not need
2717  * to broadcast an IPI when invalidating TLBs.
2718  *
2719  * Another way to achieve this is to batch up page table containing pages
2720  * belonging to more than one mm_user, then rcu_sched a callback to free those
2721  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2722  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2723  * (which is a relatively rare event). The code below adopts this strategy.
2724  *
2725  * Before activating this code, please be aware that the following assumptions
2726  * are currently made:
2727  *
2728  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2729  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2730  *
2731  *  *) ptes can be read atomically by the architecture.
2732  *
2733  *  *) valid user addesses are below TASK_MAX_SIZE
2734  *
2735  * The last two assumptions can be relaxed by the addition of helper functions.
2736  *
2737  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2738  */
2739 #ifdef CONFIG_HAVE_GUP_FAST
2740 /*
2741  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2742  * a specific folio.
2743  *
2744  * This call assumes the caller has pinned the folio, that the lowest page table
2745  * level still points to this folio, and that interrupts have been disabled.
2746  *
2747  * GUP-fast must reject all secretmem folios.
2748  *
2749  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2750  * (see comment describing the writable_file_mapping_allowed() function). We
2751  * therefore try to avoid the most egregious case of a long-term mapping doing
2752  * so.
2753  *
2754  * This function cannot be as thorough as that one as the VMA is not available
2755  * in the fast path, so instead we whitelist known good cases and if in doubt,
2756  * fall back to the slow path.
2757  */
gup_fast_folio_allowed(struct folio * folio,unsigned int flags)2758 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2759 {
2760 	bool reject_file_backed = false;
2761 	struct address_space *mapping;
2762 	bool check_secretmem = false;
2763 	unsigned long mapping_flags;
2764 
2765 	/*
2766 	 * If we aren't pinning then no problematic write can occur. A long term
2767 	 * pin is the most egregious case so this is the one we disallow.
2768 	 */
2769 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2770 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2771 		reject_file_backed = true;
2772 
2773 	/* We hold a folio reference, so we can safely access folio fields. */
2774 
2775 	/* secretmem folios are always order-0 folios. */
2776 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2777 		check_secretmem = true;
2778 
2779 	if (!reject_file_backed && !check_secretmem)
2780 		return true;
2781 
2782 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2783 		return false;
2784 
2785 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2786 	if (folio_test_hugetlb(folio))
2787 		return true;
2788 
2789 	/*
2790 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2791 	 * cannot proceed, which means no actions performed under RCU can
2792 	 * proceed either.
2793 	 *
2794 	 * inodes and thus their mappings are freed under RCU, which means the
2795 	 * mapping cannot be freed beneath us and thus we can safely dereference
2796 	 * it.
2797 	 */
2798 	lockdep_assert_irqs_disabled();
2799 
2800 	/*
2801 	 * However, there may be operations which _alter_ the mapping, so ensure
2802 	 * we read it once and only once.
2803 	 */
2804 	mapping = READ_ONCE(folio->mapping);
2805 
2806 	/*
2807 	 * The mapping may have been truncated, in any case we cannot determine
2808 	 * if this mapping is safe - fall back to slow path to determine how to
2809 	 * proceed.
2810 	 */
2811 	if (!mapping)
2812 		return false;
2813 
2814 	/* Anonymous folios pose no problem. */
2815 	mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS;
2816 	if (mapping_flags)
2817 		return mapping_flags & FOLIO_MAPPING_ANON;
2818 
2819 	/*
2820 	 * At this point, we know the mapping is non-null and points to an
2821 	 * address_space object.
2822 	 */
2823 	if (check_secretmem && secretmem_mapping(mapping))
2824 		return false;
2825 	/* The only remaining allowed file system is shmem. */
2826 	return !reject_file_backed || shmem_mapping(mapping);
2827 }
2828 
gup_fast_undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2829 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2830 		unsigned int flags, struct page **pages)
2831 {
2832 	while ((*nr) - nr_start) {
2833 		struct folio *folio = page_folio(pages[--(*nr)]);
2834 
2835 		folio_clear_referenced(folio);
2836 		gup_put_folio(folio, 1, flags);
2837 	}
2838 }
2839 
2840 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2841 /*
2842  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2843  * operations.
2844  *
2845  * To pin the page, GUP-fast needs to do below in order:
2846  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2847  *
2848  * For the rest of pgtable operations where pgtable updates can be racy
2849  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2850  * is pinned.
2851  *
2852  * Above will work for all pte-level operations, including THP split.
2853  *
2854  * For THP collapse, it's a bit more complicated because GUP-fast may be
2855  * walking a pgtable page that is being freed (pte is still valid but pmd
2856  * can be cleared already).  To avoid race in such condition, we need to
2857  * also check pmd here to make sure pmd doesn't change (corresponds to
2858  * pmdp_collapse_flush() in the THP collapse code path).
2859  */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2860 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2861 		unsigned long end, unsigned int flags, struct page **pages,
2862 		int *nr)
2863 {
2864 	struct dev_pagemap *pgmap = NULL;
2865 	int ret = 0;
2866 	pte_t *ptep, *ptem;
2867 
2868 	ptem = ptep = pte_offset_map(&pmd, addr);
2869 	if (!ptep)
2870 		return 0;
2871 	do {
2872 		pte_t pte = ptep_get_lockless(ptep);
2873 		struct page *page;
2874 		struct folio *folio;
2875 
2876 		/*
2877 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2878 		 * pte_access_permitted() better should reject these pages
2879 		 * either way: otherwise, GUP-fast might succeed in
2880 		 * cases where ordinary GUP would fail due to VMA access
2881 		 * permissions.
2882 		 */
2883 		if (pte_protnone(pte))
2884 			goto pte_unmap;
2885 
2886 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2887 			goto pte_unmap;
2888 
2889 		if (pte_special(pte))
2890 			goto pte_unmap;
2891 
2892 		/* If it's not marked as special it must have a valid memmap. */
2893 		VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte)));
2894 		page = pte_page(pte);
2895 
2896 		folio = try_grab_folio_fast(page, 1, flags);
2897 		if (!folio)
2898 			goto pte_unmap;
2899 
2900 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2901 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2902 			gup_put_folio(folio, 1, flags);
2903 			goto pte_unmap;
2904 		}
2905 
2906 		if (!gup_fast_folio_allowed(folio, flags)) {
2907 			gup_put_folio(folio, 1, flags);
2908 			goto pte_unmap;
2909 		}
2910 
2911 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2912 			gup_put_folio(folio, 1, flags);
2913 			goto pte_unmap;
2914 		}
2915 
2916 		/*
2917 		 * We need to make the page accessible if and only if we are
2918 		 * going to access its content (the FOLL_PIN case).  Please
2919 		 * see Documentation/core-api/pin_user_pages.rst for
2920 		 * details.
2921 		 */
2922 		if (flags & FOLL_PIN) {
2923 			ret = arch_make_folio_accessible(folio);
2924 			if (ret) {
2925 				gup_put_folio(folio, 1, flags);
2926 				goto pte_unmap;
2927 			}
2928 		}
2929 		folio_set_referenced(folio);
2930 		pages[*nr] = page;
2931 		(*nr)++;
2932 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2933 
2934 	ret = 1;
2935 
2936 pte_unmap:
2937 	if (pgmap)
2938 		put_dev_pagemap(pgmap);
2939 	pte_unmap(ptem);
2940 	return ret;
2941 }
2942 #else
2943 
2944 /*
2945  * If we can't determine whether or not a pte is special, then fail immediately
2946  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2947  * to be special.
2948  *
2949  * For a futex to be placed on a THP tail page, get_futex_key requires a
2950  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2951  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2952  */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2953 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2954 		unsigned long end, unsigned int flags, struct page **pages,
2955 		int *nr)
2956 {
2957 	return 0;
2958 }
2959 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2960 
gup_fast_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2961 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2962 		unsigned long end, unsigned int flags, struct page **pages,
2963 		int *nr)
2964 {
2965 	struct page *page;
2966 	struct folio *folio;
2967 	int refs;
2968 
2969 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2970 		return 0;
2971 
2972 	if (pmd_special(orig))
2973 		return 0;
2974 
2975 	page = pmd_page(orig);
2976 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
2977 
2978 	folio = try_grab_folio_fast(page, refs, flags);
2979 	if (!folio)
2980 		return 0;
2981 
2982 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2983 		gup_put_folio(folio, refs, flags);
2984 		return 0;
2985 	}
2986 
2987 	if (!gup_fast_folio_allowed(folio, flags)) {
2988 		gup_put_folio(folio, refs, flags);
2989 		return 0;
2990 	}
2991 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2992 		gup_put_folio(folio, refs, flags);
2993 		return 0;
2994 	}
2995 
2996 	*nr += refs;
2997 	folio_set_referenced(folio);
2998 	return 1;
2999 }
3000 
gup_fast_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3001 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3002 		unsigned long end, unsigned int flags, struct page **pages,
3003 		int *nr)
3004 {
3005 	struct page *page;
3006 	struct folio *folio;
3007 	int refs;
3008 
3009 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3010 		return 0;
3011 
3012 	if (pud_special(orig))
3013 		return 0;
3014 
3015 	page = pud_page(orig);
3016 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3017 
3018 	folio = try_grab_folio_fast(page, refs, flags);
3019 	if (!folio)
3020 		return 0;
3021 
3022 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3023 		gup_put_folio(folio, refs, flags);
3024 		return 0;
3025 	}
3026 
3027 	if (!gup_fast_folio_allowed(folio, flags)) {
3028 		gup_put_folio(folio, refs, flags);
3029 		return 0;
3030 	}
3031 
3032 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3033 		gup_put_folio(folio, refs, flags);
3034 		return 0;
3035 	}
3036 
3037 	*nr += refs;
3038 	folio_set_referenced(folio);
3039 	return 1;
3040 }
3041 
gup_fast_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3042 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3043 		unsigned long end, unsigned int flags, struct page **pages,
3044 		int *nr)
3045 {
3046 	unsigned long next;
3047 	pmd_t *pmdp;
3048 
3049 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3050 	do {
3051 		pmd_t pmd = pmdp_get_lockless(pmdp);
3052 
3053 		next = pmd_addr_end(addr, end);
3054 		if (!pmd_present(pmd))
3055 			return 0;
3056 
3057 		if (unlikely(pmd_leaf(pmd))) {
3058 			/* See gup_fast_pte_range() */
3059 			if (pmd_protnone(pmd))
3060 				return 0;
3061 
3062 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3063 				pages, nr))
3064 				return 0;
3065 
3066 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3067 					       pages, nr))
3068 			return 0;
3069 	} while (pmdp++, addr = next, addr != end);
3070 
3071 	return 1;
3072 }
3073 
gup_fast_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3074 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3075 		unsigned long end, unsigned int flags, struct page **pages,
3076 		int *nr)
3077 {
3078 	unsigned long next;
3079 	pud_t *pudp;
3080 
3081 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3082 	do {
3083 		pud_t pud = READ_ONCE(*pudp);
3084 
3085 		next = pud_addr_end(addr, end);
3086 		if (unlikely(!pud_present(pud)))
3087 			return 0;
3088 		if (unlikely(pud_leaf(pud))) {
3089 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3090 					       pages, nr))
3091 				return 0;
3092 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3093 					       pages, nr))
3094 			return 0;
3095 	} while (pudp++, addr = next, addr != end);
3096 
3097 	return 1;
3098 }
3099 
gup_fast_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3100 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3101 		unsigned long end, unsigned int flags, struct page **pages,
3102 		int *nr)
3103 {
3104 	unsigned long next;
3105 	p4d_t *p4dp;
3106 
3107 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3108 	do {
3109 		p4d_t p4d = READ_ONCE(*p4dp);
3110 
3111 		next = p4d_addr_end(addr, end);
3112 		if (!p4d_present(p4d))
3113 			return 0;
3114 		BUILD_BUG_ON(p4d_leaf(p4d));
3115 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3116 					pages, nr))
3117 			return 0;
3118 	} while (p4dp++, addr = next, addr != end);
3119 
3120 	return 1;
3121 }
3122 
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3123 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3124 		unsigned int flags, struct page **pages, int *nr)
3125 {
3126 	unsigned long next;
3127 	pgd_t *pgdp;
3128 
3129 	pgdp = pgd_offset(current->mm, addr);
3130 	do {
3131 		pgd_t pgd = READ_ONCE(*pgdp);
3132 
3133 		next = pgd_addr_end(addr, end);
3134 		if (pgd_none(pgd))
3135 			return;
3136 		BUILD_BUG_ON(pgd_leaf(pgd));
3137 		if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3138 					pages, nr))
3139 			return;
3140 	} while (pgdp++, addr = next, addr != end);
3141 }
3142 #else
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3143 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3144 		unsigned int flags, struct page **pages, int *nr)
3145 {
3146 }
3147 #endif /* CONFIG_HAVE_GUP_FAST */
3148 
3149 #ifndef gup_fast_permitted
3150 /*
3151  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3152  * we need to fall back to the slow version:
3153  */
gup_fast_permitted(unsigned long start,unsigned long end)3154 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3155 {
3156 	return true;
3157 }
3158 #endif
3159 
gup_fast(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3160 static unsigned long gup_fast(unsigned long start, unsigned long end,
3161 		unsigned int gup_flags, struct page **pages)
3162 {
3163 	unsigned long flags;
3164 	int nr_pinned = 0;
3165 	unsigned seq;
3166 
3167 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3168 	    !gup_fast_permitted(start, end))
3169 		return 0;
3170 
3171 	if (gup_flags & FOLL_PIN) {
3172 		if (!raw_seqcount_try_begin(&current->mm->write_protect_seq, seq))
3173 			return 0;
3174 	}
3175 
3176 	/*
3177 	 * Disable interrupts. The nested form is used, in order to allow full,
3178 	 * general purpose use of this routine.
3179 	 *
3180 	 * With interrupts disabled, we block page table pages from being freed
3181 	 * from under us. See struct mmu_table_batch comments in
3182 	 * include/asm-generic/tlb.h for more details.
3183 	 *
3184 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3185 	 * that come from callers of tlb_remove_table_sync_one().
3186 	 */
3187 	local_irq_save(flags);
3188 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3189 	local_irq_restore(flags);
3190 
3191 	/*
3192 	 * When pinning pages for DMA there could be a concurrent write protect
3193 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3194 	 */
3195 	if (gup_flags & FOLL_PIN) {
3196 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3197 			gup_fast_unpin_user_pages(pages, nr_pinned);
3198 			return 0;
3199 		} else {
3200 			sanity_check_pinned_pages(pages, nr_pinned);
3201 		}
3202 	}
3203 	return nr_pinned;
3204 }
3205 
gup_fast_fallback(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3206 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3207 		unsigned int gup_flags, struct page **pages)
3208 {
3209 	unsigned long len, end;
3210 	unsigned long nr_pinned;
3211 	int locked = 0;
3212 	int ret;
3213 
3214 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3215 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3216 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3217 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3218 		return -EINVAL;
3219 
3220 	if (gup_flags & FOLL_PIN)
3221 		mm_set_has_pinned_flag(&current->mm->flags);
3222 
3223 	if (!(gup_flags & FOLL_FAST_ONLY))
3224 		might_lock_read(&current->mm->mmap_lock);
3225 
3226 	start = untagged_addr(start) & PAGE_MASK;
3227 	len = nr_pages << PAGE_SHIFT;
3228 	if (check_add_overflow(start, len, &end))
3229 		return -EOVERFLOW;
3230 	if (end > TASK_SIZE_MAX)
3231 		return -EFAULT;
3232 
3233 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3234 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3235 		return nr_pinned;
3236 
3237 	/* Slow path: try to get the remaining pages with get_user_pages */
3238 	start += nr_pinned << PAGE_SHIFT;
3239 	pages += nr_pinned;
3240 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3241 				    pages, &locked,
3242 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3243 	if (ret < 0) {
3244 		/*
3245 		 * The caller has to unpin the pages we already pinned so
3246 		 * returning -errno is not an option
3247 		 */
3248 		if (nr_pinned)
3249 			return nr_pinned;
3250 		return ret;
3251 	}
3252 	return ret + nr_pinned;
3253 }
3254 
3255 /**
3256  * get_user_pages_fast_only() - pin user pages in memory
3257  * @start:      starting user address
3258  * @nr_pages:   number of pages from start to pin
3259  * @gup_flags:  flags modifying pin behaviour
3260  * @pages:      array that receives pointers to the pages pinned.
3261  *              Should be at least nr_pages long.
3262  *
3263  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3264  * the regular GUP.
3265  *
3266  * If the architecture does not support this function, simply return with no
3267  * pages pinned.
3268  *
3269  * Careful, careful! COW breaking can go either way, so a non-write
3270  * access can get ambiguous page results. If you call this function without
3271  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3272  */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3273 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3274 			     unsigned int gup_flags, struct page **pages)
3275 {
3276 	/*
3277 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3278 	 * because gup fast is always a "pin with a +1 page refcount" request.
3279 	 *
3280 	 * FOLL_FAST_ONLY is required in order to match the API description of
3281 	 * this routine: no fall back to regular ("slow") GUP.
3282 	 */
3283 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3284 			       FOLL_GET | FOLL_FAST_ONLY))
3285 		return -EINVAL;
3286 
3287 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3288 }
3289 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3290 
3291 /**
3292  * get_user_pages_fast() - pin user pages in memory
3293  * @start:      starting user address
3294  * @nr_pages:   number of pages from start to pin
3295  * @gup_flags:  flags modifying pin behaviour
3296  * @pages:      array that receives pointers to the pages pinned.
3297  *              Should be at least nr_pages long.
3298  *
3299  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3300  * If not successful, it will fall back to taking the lock and
3301  * calling get_user_pages().
3302  *
3303  * Returns number of pages pinned. This may be fewer than the number requested.
3304  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3305  * -errno.
3306  */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3307 int get_user_pages_fast(unsigned long start, int nr_pages,
3308 			unsigned int gup_flags, struct page **pages)
3309 {
3310 	/*
3311 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3312 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3313 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3314 	 * request.
3315 	 */
3316 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3317 		return -EINVAL;
3318 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3319 }
3320 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3321 
3322 /**
3323  * pin_user_pages_fast() - pin user pages in memory without taking locks
3324  *
3325  * @start:      starting user address
3326  * @nr_pages:   number of pages from start to pin
3327  * @gup_flags:  flags modifying pin behaviour
3328  * @pages:      array that receives pointers to the pages pinned.
3329  *              Should be at least nr_pages long.
3330  *
3331  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3332  * get_user_pages_fast() for documentation on the function arguments, because
3333  * the arguments here are identical.
3334  *
3335  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3336  * see Documentation/core-api/pin_user_pages.rst for further details.
3337  *
3338  * Note that if a zero_page is amongst the returned pages, it will not have
3339  * pins in it and unpin_user_page() will not remove pins from it.
3340  */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3341 int pin_user_pages_fast(unsigned long start, int nr_pages,
3342 			unsigned int gup_flags, struct page **pages)
3343 {
3344 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3345 		return -EINVAL;
3346 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3347 }
3348 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3349 
3350 /**
3351  * pin_user_pages_remote() - pin pages of a remote process
3352  *
3353  * @mm:		mm_struct of target mm
3354  * @start:	starting user address
3355  * @nr_pages:	number of pages from start to pin
3356  * @gup_flags:	flags modifying lookup behaviour
3357  * @pages:	array that receives pointers to the pages pinned.
3358  *		Should be at least nr_pages long.
3359  * @locked:	pointer to lock flag indicating whether lock is held and
3360  *		subsequently whether VM_FAULT_RETRY functionality can be
3361  *		utilised. Lock must initially be held.
3362  *
3363  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3364  * get_user_pages_remote() for documentation on the function arguments, because
3365  * the arguments here are identical.
3366  *
3367  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3368  * see Documentation/core-api/pin_user_pages.rst for details.
3369  *
3370  * Note that if a zero_page is amongst the returned pages, it will not have
3371  * pins in it and unpin_user_page*() will not remove pins from it.
3372  */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3373 long pin_user_pages_remote(struct mm_struct *mm,
3374 			   unsigned long start, unsigned long nr_pages,
3375 			   unsigned int gup_flags, struct page **pages,
3376 			   int *locked)
3377 {
3378 	int local_locked = 1;
3379 
3380 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3381 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3382 		return 0;
3383 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3384 				     locked ? locked : &local_locked,
3385 				     gup_flags);
3386 }
3387 EXPORT_SYMBOL(pin_user_pages_remote);
3388 
3389 /**
3390  * pin_user_pages() - pin user pages in memory for use by other devices
3391  *
3392  * @start:	starting user address
3393  * @nr_pages:	number of pages from start to pin
3394  * @gup_flags:	flags modifying lookup behaviour
3395  * @pages:	array that receives pointers to the pages pinned.
3396  *		Should be at least nr_pages long.
3397  *
3398  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3399  * FOLL_PIN is set.
3400  *
3401  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3402  * see Documentation/core-api/pin_user_pages.rst for details.
3403  *
3404  * Note that if a zero_page is amongst the returned pages, it will not have
3405  * pins in it and unpin_user_page*() will not remove pins from it.
3406  */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3407 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3408 		    unsigned int gup_flags, struct page **pages)
3409 {
3410 	int locked = 1;
3411 
3412 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3413 		return 0;
3414 	return __gup_longterm_locked(current->mm, start, nr_pages,
3415 				     pages, &locked, gup_flags);
3416 }
3417 EXPORT_SYMBOL(pin_user_pages);
3418 
3419 /*
3420  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3421  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3422  * FOLL_PIN and rejects FOLL_GET.
3423  *
3424  * Note that if a zero_page is amongst the returned pages, it will not have
3425  * pins in it and unpin_user_page*() will not remove pins from it.
3426  */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3427 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3428 			     struct page **pages, unsigned int gup_flags)
3429 {
3430 	int locked = 0;
3431 
3432 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3433 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3434 		return 0;
3435 
3436 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3437 				     &locked, gup_flags);
3438 }
3439 EXPORT_SYMBOL(pin_user_pages_unlocked);
3440 
3441 /**
3442  * memfd_pin_folios() - pin folios associated with a memfd
3443  * @memfd:      the memfd whose folios are to be pinned
3444  * @start:      the first memfd offset
3445  * @end:        the last memfd offset (inclusive)
3446  * @folios:     array that receives pointers to the folios pinned
3447  * @max_folios: maximum number of entries in @folios
3448  * @offset:     the offset into the first folio
3449  *
3450  * Attempt to pin folios associated with a memfd in the contiguous range
3451  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3452  * the folios can either be found in the page cache or need to be allocated
3453  * if necessary. Once the folios are located, they are all pinned via
3454  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3455  * And, eventually, these pinned folios must be released either using
3456  * unpin_folios() or unpin_folio().
3457  *
3458  * It must be noted that the folios may be pinned for an indefinite amount
3459  * of time. And, in most cases, the duration of time they may stay pinned
3460  * would be controlled by the userspace. This behavior is effectively the
3461  * same as using FOLL_LONGTERM with other GUP APIs.
3462  *
3463  * Returns number of folios pinned, which could be less than @max_folios
3464  * as it depends on the folio sizes that cover the range [start, end].
3465  * If no folios were pinned, it returns -errno.
3466  */
memfd_pin_folios(struct file * memfd,loff_t start,loff_t end,struct folio ** folios,unsigned int max_folios,pgoff_t * offset)3467 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3468 		      struct folio **folios, unsigned int max_folios,
3469 		      pgoff_t *offset)
3470 {
3471 	unsigned int flags, nr_folios, nr_found;
3472 	unsigned int i, pgshift = PAGE_SHIFT;
3473 	pgoff_t start_idx, end_idx;
3474 	struct folio *folio = NULL;
3475 	struct folio_batch fbatch;
3476 	struct hstate *h;
3477 	long ret = -EINVAL;
3478 
3479 	if (start < 0 || start > end || !max_folios)
3480 		return -EINVAL;
3481 
3482 	if (!memfd)
3483 		return -EINVAL;
3484 
3485 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3486 		return -EINVAL;
3487 
3488 	if (end >= i_size_read(file_inode(memfd)))
3489 		return -EINVAL;
3490 
3491 	if (is_file_hugepages(memfd)) {
3492 		h = hstate_file(memfd);
3493 		pgshift = huge_page_shift(h);
3494 	}
3495 
3496 	flags = memalloc_pin_save();
3497 	do {
3498 		nr_folios = 0;
3499 		start_idx = start >> pgshift;
3500 		end_idx = end >> pgshift;
3501 		if (is_file_hugepages(memfd)) {
3502 			start_idx <<= huge_page_order(h);
3503 			end_idx <<= huge_page_order(h);
3504 		}
3505 
3506 		folio_batch_init(&fbatch);
3507 		while (start_idx <= end_idx && nr_folios < max_folios) {
3508 			/*
3509 			 * In most cases, we should be able to find the folios
3510 			 * in the page cache. If we cannot find them for some
3511 			 * reason, we try to allocate them and add them to the
3512 			 * page cache.
3513 			 */
3514 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3515 							     &start_idx,
3516 							     end_idx,
3517 							     &fbatch);
3518 			if (folio) {
3519 				folio_put(folio);
3520 				folio = NULL;
3521 			}
3522 
3523 			for (i = 0; i < nr_found; i++) {
3524 				folio = fbatch.folios[i];
3525 
3526 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3527 					folio_batch_release(&fbatch);
3528 					ret = -EINVAL;
3529 					goto err;
3530 				}
3531 
3532 				if (nr_folios == 0)
3533 					*offset = offset_in_folio(folio, start);
3534 
3535 				folios[nr_folios] = folio;
3536 				if (++nr_folios == max_folios)
3537 					break;
3538 			}
3539 
3540 			folio = NULL;
3541 			folio_batch_release(&fbatch);
3542 			if (!nr_found) {
3543 				folio = memfd_alloc_folio(memfd, start_idx);
3544 				if (IS_ERR(folio)) {
3545 					ret = PTR_ERR(folio);
3546 					if (ret != -EEXIST)
3547 						goto err;
3548 					folio = NULL;
3549 				}
3550 			}
3551 		}
3552 
3553 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3554 	} while (ret == -EAGAIN);
3555 
3556 	memalloc_pin_restore(flags);
3557 	return ret ? ret : nr_folios;
3558 err:
3559 	memalloc_pin_restore(flags);
3560 	unpin_folios(folios, nr_folios);
3561 
3562 	return ret;
3563 }
3564 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3565 
3566 /**
3567  * folio_add_pins() - add pins to an already-pinned folio
3568  * @folio: the folio to add more pins to
3569  * @pins: number of pins to add
3570  *
3571  * Try to add more pins to an already-pinned folio. The semantics
3572  * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3573  * be changed.
3574  *
3575  * This function is helpful when having obtained a pin on a large folio
3576  * using memfd_pin_folios(), but wanting to logically unpin parts
3577  * (e.g., individual pages) of the folio later, for example, using
3578  * unpin_user_page_range_dirty_lock().
3579  *
3580  * This is not the right interface to initially pin a folio.
3581  */
folio_add_pins(struct folio * folio,unsigned int pins)3582 int folio_add_pins(struct folio *folio, unsigned int pins)
3583 {
3584 	VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3585 
3586 	return try_grab_folio(folio, pins, FOLL_PIN);
3587 }
3588 EXPORT_SYMBOL_GPL(folio_add_pins);
3589