1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/fsnotify.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 int refs = 1; 231 232 free_folio = mapping->a_ops->free_folio; 233 if (free_folio) 234 free_folio(folio); 235 236 if (folio_test_large(folio)) 237 refs = folio_nr_pages(folio); 238 folio_put_refs(folio, refs); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_add_lru(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_add_lru(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 /** 370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 371 * @mapping: address space structure to write 372 * @wbc: the writeback_control controlling the writeout 373 * 374 * Call writepages on the mapping using the provided wbc to control the 375 * writeout. 376 * 377 * Return: %0 on success, negative error code otherwise. 378 */ 379 int filemap_fdatawrite_wbc(struct address_space *mapping, 380 struct writeback_control *wbc) 381 { 382 int ret; 383 384 if (!mapping_can_writeback(mapping) || 385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 386 return 0; 387 388 wbc_attach_fdatawrite_inode(wbc, mapping->host); 389 ret = do_writepages(mapping, wbc); 390 wbc_detach_inode(wbc); 391 return ret; 392 } 393 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 394 395 /** 396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * @sync_mode: enable synchronous operation 401 * 402 * Start writeback against all of a mapping's dirty pages that lie 403 * within the byte offsets <start, end> inclusive. 404 * 405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 406 * opposed to a regular memory cleansing writeback. The difference between 407 * these two operations is that if a dirty page/buffer is encountered, it must 408 * be waited upon, and not just skipped over. 409 * 410 * Return: %0 on success, negative error code otherwise. 411 */ 412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 413 loff_t end, int sync_mode) 414 { 415 struct writeback_control wbc = { 416 .sync_mode = sync_mode, 417 .nr_to_write = LONG_MAX, 418 .range_start = start, 419 .range_end = end, 420 }; 421 422 return filemap_fdatawrite_wbc(mapping, &wbc); 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_fdatawrite_range_kick - start writeback on a range 446 * @mapping: target address_space 447 * @start: index to start writeback on 448 * @end: last (inclusive) index for writeback 449 * 450 * This is a non-integrity writeback helper, to start writing back folios 451 * for the indicated range. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 456 loff_t end) 457 { 458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 459 } 460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 461 462 /** 463 * filemap_flush - mostly a non-blocking flush 464 * @mapping: target address_space 465 * 466 * This is a mostly non-blocking flush. Not suitable for data-integrity 467 * purposes - I/O may not be started against all dirty pages. 468 * 469 * Return: %0 on success, negative error code otherwise. 470 */ 471 int filemap_flush(struct address_space *mapping) 472 { 473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 474 } 475 EXPORT_SYMBOL(filemap_flush); 476 477 /** 478 * filemap_range_has_page - check if a page exists in range. 479 * @mapping: address space within which to check 480 * @start_byte: offset in bytes where the range starts 481 * @end_byte: offset in bytes where the range ends (inclusive) 482 * 483 * Find at least one page in the range supplied, usually used to check if 484 * direct writing in this range will trigger a writeback. 485 * 486 * Return: %true if at least one page exists in the specified range, 487 * %false otherwise. 488 */ 489 bool filemap_range_has_page(struct address_space *mapping, 490 loff_t start_byte, loff_t end_byte) 491 { 492 struct folio *folio; 493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 494 pgoff_t max = end_byte >> PAGE_SHIFT; 495 496 if (end_byte < start_byte) 497 return false; 498 499 rcu_read_lock(); 500 for (;;) { 501 folio = xas_find(&xas, max); 502 if (xas_retry(&xas, folio)) 503 continue; 504 /* Shadow entries don't count */ 505 if (xa_is_value(folio)) 506 continue; 507 /* 508 * We don't need to try to pin this page; we're about to 509 * release the RCU lock anyway. It is enough to know that 510 * there was a page here recently. 511 */ 512 break; 513 } 514 rcu_read_unlock(); 515 516 return folio != NULL; 517 } 518 EXPORT_SYMBOL(filemap_range_has_page); 519 520 static void __filemap_fdatawait_range(struct address_space *mapping, 521 loff_t start_byte, loff_t end_byte) 522 { 523 pgoff_t index = start_byte >> PAGE_SHIFT; 524 pgoff_t end = end_byte >> PAGE_SHIFT; 525 struct folio_batch fbatch; 526 unsigned nr_folios; 527 528 folio_batch_init(&fbatch); 529 530 while (index <= end) { 531 unsigned i; 532 533 nr_folios = filemap_get_folios_tag(mapping, &index, end, 534 PAGECACHE_TAG_WRITEBACK, &fbatch); 535 536 if (!nr_folios) 537 break; 538 539 for (i = 0; i < nr_folios; i++) { 540 struct folio *folio = fbatch.folios[i]; 541 542 folio_wait_writeback(folio); 543 } 544 folio_batch_release(&fbatch); 545 cond_resched(); 546 } 547 } 548 549 /** 550 * filemap_fdatawait_range - wait for writeback to complete 551 * @mapping: address space structure to wait for 552 * @start_byte: offset in bytes where the range starts 553 * @end_byte: offset in bytes where the range ends (inclusive) 554 * 555 * Walk the list of under-writeback pages of the given address space 556 * in the given range and wait for all of them. Check error status of 557 * the address space and return it. 558 * 559 * Since the error status of the address space is cleared by this function, 560 * callers are responsible for checking the return value and handling and/or 561 * reporting the error. 562 * 563 * Return: error status of the address space. 564 */ 565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 566 loff_t end_byte) 567 { 568 __filemap_fdatawait_range(mapping, start_byte, end_byte); 569 return filemap_check_errors(mapping); 570 } 571 EXPORT_SYMBOL(filemap_fdatawait_range); 572 573 /** 574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 575 * @mapping: address space structure to wait for 576 * @start_byte: offset in bytes where the range starts 577 * @end_byte: offset in bytes where the range ends (inclusive) 578 * 579 * Walk the list of under-writeback pages of the given address space in the 580 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 581 * this function does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 */ 587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 588 loff_t start_byte, loff_t end_byte) 589 { 590 __filemap_fdatawait_range(mapping, start_byte, end_byte); 591 return filemap_check_and_keep_errors(mapping); 592 } 593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 594 595 /** 596 * file_fdatawait_range - wait for writeback to complete 597 * @file: file pointing to address space structure to wait for 598 * @start_byte: offset in bytes where the range starts 599 * @end_byte: offset in bytes where the range ends (inclusive) 600 * 601 * Walk the list of under-writeback pages of the address space that file 602 * refers to, in the given range and wait for all of them. Check error 603 * status of the address space vs. the file->f_wb_err cursor and return it. 604 * 605 * Since the error status of the file is advanced by this function, 606 * callers are responsible for checking the return value and handling and/or 607 * reporting the error. 608 * 609 * Return: error status of the address space vs. the file->f_wb_err cursor. 610 */ 611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 612 { 613 struct address_space *mapping = file->f_mapping; 614 615 __filemap_fdatawait_range(mapping, start_byte, end_byte); 616 return file_check_and_advance_wb_err(file); 617 } 618 EXPORT_SYMBOL(file_fdatawait_range); 619 620 /** 621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 622 * @mapping: address space structure to wait for 623 * 624 * Walk the list of under-writeback pages of the given address space 625 * and wait for all of them. Unlike filemap_fdatawait(), this function 626 * does not clear error status of the address space. 627 * 628 * Use this function if callers don't handle errors themselves. Expected 629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 630 * fsfreeze(8) 631 * 632 * Return: error status of the address space. 633 */ 634 int filemap_fdatawait_keep_errors(struct address_space *mapping) 635 { 636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 637 return filemap_check_and_keep_errors(mapping); 638 } 639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 640 641 /* Returns true if writeback might be needed or already in progress. */ 642 static bool mapping_needs_writeback(struct address_space *mapping) 643 { 644 return mapping->nrpages; 645 } 646 647 bool filemap_range_has_writeback(struct address_space *mapping, 648 loff_t start_byte, loff_t end_byte) 649 { 650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 651 pgoff_t max = end_byte >> PAGE_SHIFT; 652 struct folio *folio; 653 654 if (end_byte < start_byte) 655 return false; 656 657 rcu_read_lock(); 658 xas_for_each(&xas, folio, max) { 659 if (xas_retry(&xas, folio)) 660 continue; 661 if (xa_is_value(folio)) 662 continue; 663 if (folio_test_dirty(folio) || folio_test_locked(folio) || 664 folio_test_writeback(folio)) 665 break; 666 } 667 rcu_read_unlock(); 668 return folio != NULL; 669 } 670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 671 672 /** 673 * filemap_write_and_wait_range - write out & wait on a file range 674 * @mapping: the address_space for the pages 675 * @lstart: offset in bytes where the range starts 676 * @lend: offset in bytes where the range ends (inclusive) 677 * 678 * Write out and wait upon file offsets lstart->lend, inclusive. 679 * 680 * Note that @lend is inclusive (describes the last byte to be written) so 681 * that this function can be used to write to the very end-of-file (end = -1). 682 * 683 * Return: error status of the address space. 684 */ 685 int filemap_write_and_wait_range(struct address_space *mapping, 686 loff_t lstart, loff_t lend) 687 { 688 int err = 0, err2; 689 690 if (lend < lstart) 691 return 0; 692 693 if (mapping_needs_writeback(mapping)) { 694 err = __filemap_fdatawrite_range(mapping, lstart, lend, 695 WB_SYNC_ALL); 696 /* 697 * Even if the above returned error, the pages may be 698 * written partially (e.g. -ENOSPC), so we wait for it. 699 * But the -EIO is special case, it may indicate the worst 700 * thing (e.g. bug) happened, so we avoid waiting for it. 701 */ 702 if (err != -EIO) 703 __filemap_fdatawait_range(mapping, lstart, lend); 704 } 705 err2 = filemap_check_errors(mapping); 706 if (!err) 707 err = err2; 708 return err; 709 } 710 EXPORT_SYMBOL(filemap_write_and_wait_range); 711 712 void __filemap_set_wb_err(struct address_space *mapping, int err) 713 { 714 errseq_t eseq = errseq_set(&mapping->wb_err, err); 715 716 trace_filemap_set_wb_err(mapping, eseq); 717 } 718 EXPORT_SYMBOL(__filemap_set_wb_err); 719 720 /** 721 * file_check_and_advance_wb_err - report wb error (if any) that was previously 722 * and advance wb_err to current one 723 * @file: struct file on which the error is being reported 724 * 725 * When userland calls fsync (or something like nfsd does the equivalent), we 726 * want to report any writeback errors that occurred since the last fsync (or 727 * since the file was opened if there haven't been any). 728 * 729 * Grab the wb_err from the mapping. If it matches what we have in the file, 730 * then just quickly return 0. The file is all caught up. 731 * 732 * If it doesn't match, then take the mapping value, set the "seen" flag in 733 * it and try to swap it into place. If it works, or another task beat us 734 * to it with the new value, then update the f_wb_err and return the error 735 * portion. The error at this point must be reported via proper channels 736 * (a'la fsync, or NFS COMMIT operation, etc.). 737 * 738 * While we handle mapping->wb_err with atomic operations, the f_wb_err 739 * value is protected by the f_lock since we must ensure that it reflects 740 * the latest value swapped in for this file descriptor. 741 * 742 * Return: %0 on success, negative error code otherwise. 743 */ 744 int file_check_and_advance_wb_err(struct file *file) 745 { 746 int err = 0; 747 errseq_t old = READ_ONCE(file->f_wb_err); 748 struct address_space *mapping = file->f_mapping; 749 750 /* Locklessly handle the common case where nothing has changed */ 751 if (errseq_check(&mapping->wb_err, old)) { 752 /* Something changed, must use slow path */ 753 spin_lock(&file->f_lock); 754 old = file->f_wb_err; 755 err = errseq_check_and_advance(&mapping->wb_err, 756 &file->f_wb_err); 757 trace_file_check_and_advance_wb_err(file, old); 758 spin_unlock(&file->f_lock); 759 } 760 761 /* 762 * We're mostly using this function as a drop in replacement for 763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 764 * that the legacy code would have had on these flags. 765 */ 766 clear_bit(AS_EIO, &mapping->flags); 767 clear_bit(AS_ENOSPC, &mapping->flags); 768 return err; 769 } 770 EXPORT_SYMBOL(file_check_and_advance_wb_err); 771 772 /** 773 * file_write_and_wait_range - write out & wait on a file range 774 * @file: file pointing to address_space with pages 775 * @lstart: offset in bytes where the range starts 776 * @lend: offset in bytes where the range ends (inclusive) 777 * 778 * Write out and wait upon file offsets lstart->lend, inclusive. 779 * 780 * Note that @lend is inclusive (describes the last byte to be written) so 781 * that this function can be used to write to the very end-of-file (end = -1). 782 * 783 * After writing out and waiting on the data, we check and advance the 784 * f_wb_err cursor to the latest value, and return any errors detected there. 785 * 786 * Return: %0 on success, negative error code otherwise. 787 */ 788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 789 { 790 int err = 0, err2; 791 struct address_space *mapping = file->f_mapping; 792 793 if (lend < lstart) 794 return 0; 795 796 if (mapping_needs_writeback(mapping)) { 797 err = __filemap_fdatawrite_range(mapping, lstart, lend, 798 WB_SYNC_ALL); 799 /* See comment of filemap_write_and_wait() */ 800 if (err != -EIO) 801 __filemap_fdatawait_range(mapping, lstart, lend); 802 } 803 err2 = file_check_and_advance_wb_err(file); 804 if (!err) 805 err = err2; 806 return err; 807 } 808 EXPORT_SYMBOL(file_write_and_wait_range); 809 810 /** 811 * replace_page_cache_folio - replace a pagecache folio with a new one 812 * @old: folio to be replaced 813 * @new: folio to replace with 814 * 815 * This function replaces a folio in the pagecache with a new one. On 816 * success it acquires the pagecache reference for the new folio and 817 * drops it for the old folio. Both the old and new folios must be 818 * locked. This function does not add the new folio to the LRU, the 819 * caller must do that. 820 * 821 * The remove + add is atomic. This function cannot fail. 822 */ 823 void replace_page_cache_folio(struct folio *old, struct folio *new) 824 { 825 struct address_space *mapping = old->mapping; 826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 827 pgoff_t offset = old->index; 828 XA_STATE(xas, &mapping->i_pages, offset); 829 830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 832 VM_BUG_ON_FOLIO(new->mapping, new); 833 834 folio_get(new); 835 new->mapping = mapping; 836 new->index = offset; 837 838 mem_cgroup_replace_folio(old, new); 839 840 xas_lock_irq(&xas); 841 xas_store(&xas, new); 842 843 old->mapping = NULL; 844 /* hugetlb pages do not participate in page cache accounting. */ 845 if (!folio_test_hugetlb(old)) 846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 847 if (!folio_test_hugetlb(new)) 848 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 849 if (folio_test_swapbacked(old)) 850 __lruvec_stat_sub_folio(old, NR_SHMEM); 851 if (folio_test_swapbacked(new)) 852 __lruvec_stat_add_folio(new, NR_SHMEM); 853 xas_unlock_irq(&xas); 854 if (free_folio) 855 free_folio(old); 856 folio_put(old); 857 } 858 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 859 860 noinline int __filemap_add_folio(struct address_space *mapping, 861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 862 { 863 XA_STATE(xas, &mapping->i_pages, index); 864 void *alloced_shadow = NULL; 865 int alloced_order = 0; 866 bool huge; 867 long nr; 868 869 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 871 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 872 folio); 873 mapping_set_update(&xas, mapping); 874 875 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 876 xas_set_order(&xas, index, folio_order(folio)); 877 huge = folio_test_hugetlb(folio); 878 nr = folio_nr_pages(folio); 879 880 gfp &= GFP_RECLAIM_MASK; 881 folio_ref_add(folio, nr); 882 folio->mapping = mapping; 883 folio->index = xas.xa_index; 884 885 for (;;) { 886 int order = -1, split_order = 0; 887 void *entry, *old = NULL; 888 889 xas_lock_irq(&xas); 890 xas_for_each_conflict(&xas, entry) { 891 old = entry; 892 if (!xa_is_value(entry)) { 893 xas_set_err(&xas, -EEXIST); 894 goto unlock; 895 } 896 /* 897 * If a larger entry exists, 898 * it will be the first and only entry iterated. 899 */ 900 if (order == -1) 901 order = xas_get_order(&xas); 902 } 903 904 /* entry may have changed before we re-acquire the lock */ 905 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 906 xas_destroy(&xas); 907 alloced_order = 0; 908 } 909 910 if (old) { 911 if (order > 0 && order > folio_order(folio)) { 912 /* How to handle large swap entries? */ 913 BUG_ON(shmem_mapping(mapping)); 914 if (!alloced_order) { 915 split_order = order; 916 goto unlock; 917 } 918 xas_split(&xas, old, order); 919 xas_reset(&xas); 920 } 921 if (shadowp) 922 *shadowp = old; 923 } 924 925 xas_store(&xas, folio); 926 if (xas_error(&xas)) 927 goto unlock; 928 929 mapping->nrpages += nr; 930 931 /* hugetlb pages do not participate in page cache accounting */ 932 if (!huge) { 933 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 934 if (folio_test_pmd_mappable(folio)) 935 __lruvec_stat_mod_folio(folio, 936 NR_FILE_THPS, nr); 937 } 938 939 unlock: 940 xas_unlock_irq(&xas); 941 942 /* split needed, alloc here and retry. */ 943 if (split_order) { 944 xas_split_alloc(&xas, old, split_order, gfp); 945 if (xas_error(&xas)) 946 goto error; 947 alloced_shadow = old; 948 alloced_order = split_order; 949 xas_reset(&xas); 950 continue; 951 } 952 953 if (!xas_nomem(&xas, gfp)) 954 break; 955 } 956 957 if (xas_error(&xas)) 958 goto error; 959 960 trace_mm_filemap_add_to_page_cache(folio); 961 return 0; 962 error: 963 folio->mapping = NULL; 964 /* Leave page->index set: truncation relies upon it */ 965 folio_put_refs(folio, nr); 966 return xas_error(&xas); 967 } 968 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 969 970 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 971 pgoff_t index, gfp_t gfp) 972 { 973 void *shadow = NULL; 974 int ret; 975 976 ret = mem_cgroup_charge(folio, NULL, gfp); 977 if (ret) 978 return ret; 979 980 __folio_set_locked(folio); 981 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 982 if (unlikely(ret)) { 983 mem_cgroup_uncharge(folio); 984 __folio_clear_locked(folio); 985 } else { 986 /* 987 * The folio might have been evicted from cache only 988 * recently, in which case it should be activated like 989 * any other repeatedly accessed folio. 990 * The exception is folios getting rewritten; evicting other 991 * data from the working set, only to cache data that will 992 * get overwritten with something else, is a waste of memory. 993 */ 994 WARN_ON_ONCE(folio_test_active(folio)); 995 if (!(gfp & __GFP_WRITE) && shadow) 996 workingset_refault(folio, shadow); 997 folio_add_lru(folio); 998 } 999 return ret; 1000 } 1001 EXPORT_SYMBOL_GPL(filemap_add_folio); 1002 1003 #ifdef CONFIG_NUMA 1004 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1005 { 1006 int n; 1007 struct folio *folio; 1008 1009 if (cpuset_do_page_mem_spread()) { 1010 unsigned int cpuset_mems_cookie; 1011 do { 1012 cpuset_mems_cookie = read_mems_allowed_begin(); 1013 n = cpuset_mem_spread_node(); 1014 folio = __folio_alloc_node_noprof(gfp, order, n); 1015 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1016 1017 return folio; 1018 } 1019 return folio_alloc_noprof(gfp, order); 1020 } 1021 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1022 #endif 1023 1024 /* 1025 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1026 * 1027 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1028 * 1029 * @mapping1: the first mapping to lock 1030 * @mapping2: the second mapping to lock 1031 */ 1032 void filemap_invalidate_lock_two(struct address_space *mapping1, 1033 struct address_space *mapping2) 1034 { 1035 if (mapping1 > mapping2) 1036 swap(mapping1, mapping2); 1037 if (mapping1) 1038 down_write(&mapping1->invalidate_lock); 1039 if (mapping2 && mapping1 != mapping2) 1040 down_write_nested(&mapping2->invalidate_lock, 1); 1041 } 1042 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1043 1044 /* 1045 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1046 * 1047 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1048 * 1049 * @mapping1: the first mapping to unlock 1050 * @mapping2: the second mapping to unlock 1051 */ 1052 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1053 struct address_space *mapping2) 1054 { 1055 if (mapping1) 1056 up_write(&mapping1->invalidate_lock); 1057 if (mapping2 && mapping1 != mapping2) 1058 up_write(&mapping2->invalidate_lock); 1059 } 1060 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1061 1062 /* 1063 * In order to wait for pages to become available there must be 1064 * waitqueues associated with pages. By using a hash table of 1065 * waitqueues where the bucket discipline is to maintain all 1066 * waiters on the same queue and wake all when any of the pages 1067 * become available, and for the woken contexts to check to be 1068 * sure the appropriate page became available, this saves space 1069 * at a cost of "thundering herd" phenomena during rare hash 1070 * collisions. 1071 */ 1072 #define PAGE_WAIT_TABLE_BITS 8 1073 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1074 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1075 1076 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1077 { 1078 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1079 } 1080 1081 void __init pagecache_init(void) 1082 { 1083 int i; 1084 1085 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1086 init_waitqueue_head(&folio_wait_table[i]); 1087 1088 page_writeback_init(); 1089 } 1090 1091 /* 1092 * The page wait code treats the "wait->flags" somewhat unusually, because 1093 * we have multiple different kinds of waits, not just the usual "exclusive" 1094 * one. 1095 * 1096 * We have: 1097 * 1098 * (a) no special bits set: 1099 * 1100 * We're just waiting for the bit to be released, and when a waker 1101 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1102 * and remove it from the wait queue. 1103 * 1104 * Simple and straightforward. 1105 * 1106 * (b) WQ_FLAG_EXCLUSIVE: 1107 * 1108 * The waiter is waiting to get the lock, and only one waiter should 1109 * be woken up to avoid any thundering herd behavior. We'll set the 1110 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1111 * 1112 * This is the traditional exclusive wait. 1113 * 1114 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1115 * 1116 * The waiter is waiting to get the bit, and additionally wants the 1117 * lock to be transferred to it for fair lock behavior. If the lock 1118 * cannot be taken, we stop walking the wait queue without waking 1119 * the waiter. 1120 * 1121 * This is the "fair lock handoff" case, and in addition to setting 1122 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1123 * that it now has the lock. 1124 */ 1125 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1126 { 1127 unsigned int flags; 1128 struct wait_page_key *key = arg; 1129 struct wait_page_queue *wait_page 1130 = container_of(wait, struct wait_page_queue, wait); 1131 1132 if (!wake_page_match(wait_page, key)) 1133 return 0; 1134 1135 /* 1136 * If it's a lock handoff wait, we get the bit for it, and 1137 * stop walking (and do not wake it up) if we can't. 1138 */ 1139 flags = wait->flags; 1140 if (flags & WQ_FLAG_EXCLUSIVE) { 1141 if (test_bit(key->bit_nr, &key->folio->flags)) 1142 return -1; 1143 if (flags & WQ_FLAG_CUSTOM) { 1144 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1145 return -1; 1146 flags |= WQ_FLAG_DONE; 1147 } 1148 } 1149 1150 /* 1151 * We are holding the wait-queue lock, but the waiter that 1152 * is waiting for this will be checking the flags without 1153 * any locking. 1154 * 1155 * So update the flags atomically, and wake up the waiter 1156 * afterwards to avoid any races. This store-release pairs 1157 * with the load-acquire in folio_wait_bit_common(). 1158 */ 1159 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1160 wake_up_state(wait->private, mode); 1161 1162 /* 1163 * Ok, we have successfully done what we're waiting for, 1164 * and we can unconditionally remove the wait entry. 1165 * 1166 * Note that this pairs with the "finish_wait()" in the 1167 * waiter, and has to be the absolute last thing we do. 1168 * After this list_del_init(&wait->entry) the wait entry 1169 * might be de-allocated and the process might even have 1170 * exited. 1171 */ 1172 list_del_init_careful(&wait->entry); 1173 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1174 } 1175 1176 static void folio_wake_bit(struct folio *folio, int bit_nr) 1177 { 1178 wait_queue_head_t *q = folio_waitqueue(folio); 1179 struct wait_page_key key; 1180 unsigned long flags; 1181 1182 key.folio = folio; 1183 key.bit_nr = bit_nr; 1184 key.page_match = 0; 1185 1186 spin_lock_irqsave(&q->lock, flags); 1187 __wake_up_locked_key(q, TASK_NORMAL, &key); 1188 1189 /* 1190 * It's possible to miss clearing waiters here, when we woke our page 1191 * waiters, but the hashed waitqueue has waiters for other pages on it. 1192 * That's okay, it's a rare case. The next waker will clear it. 1193 * 1194 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1195 * other), the flag may be cleared in the course of freeing the page; 1196 * but that is not required for correctness. 1197 */ 1198 if (!waitqueue_active(q) || !key.page_match) 1199 folio_clear_waiters(folio); 1200 1201 spin_unlock_irqrestore(&q->lock, flags); 1202 } 1203 1204 /* 1205 * A choice of three behaviors for folio_wait_bit_common(): 1206 */ 1207 enum behavior { 1208 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1209 * __folio_lock() waiting on then setting PG_locked. 1210 */ 1211 SHARED, /* Hold ref to page and check the bit when woken, like 1212 * folio_wait_writeback() waiting on PG_writeback. 1213 */ 1214 DROP, /* Drop ref to page before wait, no check when woken, 1215 * like folio_put_wait_locked() on PG_locked. 1216 */ 1217 }; 1218 1219 /* 1220 * Attempt to check (or get) the folio flag, and mark us done 1221 * if successful. 1222 */ 1223 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1224 struct wait_queue_entry *wait) 1225 { 1226 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1227 if (test_and_set_bit(bit_nr, &folio->flags)) 1228 return false; 1229 } else if (test_bit(bit_nr, &folio->flags)) 1230 return false; 1231 1232 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1233 return true; 1234 } 1235 1236 /* How many times do we accept lock stealing from under a waiter? */ 1237 int sysctl_page_lock_unfairness = 5; 1238 1239 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1240 int state, enum behavior behavior) 1241 { 1242 wait_queue_head_t *q = folio_waitqueue(folio); 1243 int unfairness = sysctl_page_lock_unfairness; 1244 struct wait_page_queue wait_page; 1245 wait_queue_entry_t *wait = &wait_page.wait; 1246 bool thrashing = false; 1247 unsigned long pflags; 1248 bool in_thrashing; 1249 1250 if (bit_nr == PG_locked && 1251 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1252 delayacct_thrashing_start(&in_thrashing); 1253 psi_memstall_enter(&pflags); 1254 thrashing = true; 1255 } 1256 1257 init_wait(wait); 1258 wait->func = wake_page_function; 1259 wait_page.folio = folio; 1260 wait_page.bit_nr = bit_nr; 1261 1262 repeat: 1263 wait->flags = 0; 1264 if (behavior == EXCLUSIVE) { 1265 wait->flags = WQ_FLAG_EXCLUSIVE; 1266 if (--unfairness < 0) 1267 wait->flags |= WQ_FLAG_CUSTOM; 1268 } 1269 1270 /* 1271 * Do one last check whether we can get the 1272 * page bit synchronously. 1273 * 1274 * Do the folio_set_waiters() marking before that 1275 * to let any waker we _just_ missed know they 1276 * need to wake us up (otherwise they'll never 1277 * even go to the slow case that looks at the 1278 * page queue), and add ourselves to the wait 1279 * queue if we need to sleep. 1280 * 1281 * This part needs to be done under the queue 1282 * lock to avoid races. 1283 */ 1284 spin_lock_irq(&q->lock); 1285 folio_set_waiters(folio); 1286 if (!folio_trylock_flag(folio, bit_nr, wait)) 1287 __add_wait_queue_entry_tail(q, wait); 1288 spin_unlock_irq(&q->lock); 1289 1290 /* 1291 * From now on, all the logic will be based on 1292 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1293 * see whether the page bit testing has already 1294 * been done by the wake function. 1295 * 1296 * We can drop our reference to the folio. 1297 */ 1298 if (behavior == DROP) 1299 folio_put(folio); 1300 1301 /* 1302 * Note that until the "finish_wait()", or until 1303 * we see the WQ_FLAG_WOKEN flag, we need to 1304 * be very careful with the 'wait->flags', because 1305 * we may race with a waker that sets them. 1306 */ 1307 for (;;) { 1308 unsigned int flags; 1309 1310 set_current_state(state); 1311 1312 /* Loop until we've been woken or interrupted */ 1313 flags = smp_load_acquire(&wait->flags); 1314 if (!(flags & WQ_FLAG_WOKEN)) { 1315 if (signal_pending_state(state, current)) 1316 break; 1317 1318 io_schedule(); 1319 continue; 1320 } 1321 1322 /* If we were non-exclusive, we're done */ 1323 if (behavior != EXCLUSIVE) 1324 break; 1325 1326 /* If the waker got the lock for us, we're done */ 1327 if (flags & WQ_FLAG_DONE) 1328 break; 1329 1330 /* 1331 * Otherwise, if we're getting the lock, we need to 1332 * try to get it ourselves. 1333 * 1334 * And if that fails, we'll have to retry this all. 1335 */ 1336 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1337 goto repeat; 1338 1339 wait->flags |= WQ_FLAG_DONE; 1340 break; 1341 } 1342 1343 /* 1344 * If a signal happened, this 'finish_wait()' may remove the last 1345 * waiter from the wait-queues, but the folio waiters bit will remain 1346 * set. That's ok. The next wakeup will take care of it, and trying 1347 * to do it here would be difficult and prone to races. 1348 */ 1349 finish_wait(q, wait); 1350 1351 if (thrashing) { 1352 delayacct_thrashing_end(&in_thrashing); 1353 psi_memstall_leave(&pflags); 1354 } 1355 1356 /* 1357 * NOTE! The wait->flags weren't stable until we've done the 1358 * 'finish_wait()', and we could have exited the loop above due 1359 * to a signal, and had a wakeup event happen after the signal 1360 * test but before the 'finish_wait()'. 1361 * 1362 * So only after the finish_wait() can we reliably determine 1363 * if we got woken up or not, so we can now figure out the final 1364 * return value based on that state without races. 1365 * 1366 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1367 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1368 */ 1369 if (behavior == EXCLUSIVE) 1370 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1371 1372 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1373 } 1374 1375 #ifdef CONFIG_MIGRATION 1376 /** 1377 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1378 * @entry: migration swap entry. 1379 * @ptl: already locked ptl. This function will drop the lock. 1380 * 1381 * Wait for a migration entry referencing the given page to be removed. This is 1382 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1383 * this can be called without taking a reference on the page. Instead this 1384 * should be called while holding the ptl for the migration entry referencing 1385 * the page. 1386 * 1387 * Returns after unlocking the ptl. 1388 * 1389 * This follows the same logic as folio_wait_bit_common() so see the comments 1390 * there. 1391 */ 1392 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1393 __releases(ptl) 1394 { 1395 struct wait_page_queue wait_page; 1396 wait_queue_entry_t *wait = &wait_page.wait; 1397 bool thrashing = false; 1398 unsigned long pflags; 1399 bool in_thrashing; 1400 wait_queue_head_t *q; 1401 struct folio *folio = pfn_swap_entry_folio(entry); 1402 1403 q = folio_waitqueue(folio); 1404 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1405 delayacct_thrashing_start(&in_thrashing); 1406 psi_memstall_enter(&pflags); 1407 thrashing = true; 1408 } 1409 1410 init_wait(wait); 1411 wait->func = wake_page_function; 1412 wait_page.folio = folio; 1413 wait_page.bit_nr = PG_locked; 1414 wait->flags = 0; 1415 1416 spin_lock_irq(&q->lock); 1417 folio_set_waiters(folio); 1418 if (!folio_trylock_flag(folio, PG_locked, wait)) 1419 __add_wait_queue_entry_tail(q, wait); 1420 spin_unlock_irq(&q->lock); 1421 1422 /* 1423 * If a migration entry exists for the page the migration path must hold 1424 * a valid reference to the page, and it must take the ptl to remove the 1425 * migration entry. So the page is valid until the ptl is dropped. 1426 */ 1427 spin_unlock(ptl); 1428 1429 for (;;) { 1430 unsigned int flags; 1431 1432 set_current_state(TASK_UNINTERRUPTIBLE); 1433 1434 /* Loop until we've been woken or interrupted */ 1435 flags = smp_load_acquire(&wait->flags); 1436 if (!(flags & WQ_FLAG_WOKEN)) { 1437 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1438 break; 1439 1440 io_schedule(); 1441 continue; 1442 } 1443 break; 1444 } 1445 1446 finish_wait(q, wait); 1447 1448 if (thrashing) { 1449 delayacct_thrashing_end(&in_thrashing); 1450 psi_memstall_leave(&pflags); 1451 } 1452 } 1453 #endif 1454 1455 void folio_wait_bit(struct folio *folio, int bit_nr) 1456 { 1457 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1458 } 1459 EXPORT_SYMBOL(folio_wait_bit); 1460 1461 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1462 { 1463 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1464 } 1465 EXPORT_SYMBOL(folio_wait_bit_killable); 1466 1467 /** 1468 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1469 * @folio: The folio to wait for. 1470 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1471 * 1472 * The caller should hold a reference on @folio. They expect the page to 1473 * become unlocked relatively soon, but do not wish to hold up migration 1474 * (for example) by holding the reference while waiting for the folio to 1475 * come unlocked. After this function returns, the caller should not 1476 * dereference @folio. 1477 * 1478 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1479 */ 1480 static int folio_put_wait_locked(struct folio *folio, int state) 1481 { 1482 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1483 } 1484 1485 /** 1486 * folio_unlock - Unlock a locked folio. 1487 * @folio: The folio. 1488 * 1489 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1490 * 1491 * Context: May be called from interrupt or process context. May not be 1492 * called from NMI context. 1493 */ 1494 void folio_unlock(struct folio *folio) 1495 { 1496 /* Bit 7 allows x86 to check the byte's sign bit */ 1497 BUILD_BUG_ON(PG_waiters != 7); 1498 BUILD_BUG_ON(PG_locked > 7); 1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1500 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1501 folio_wake_bit(folio, PG_locked); 1502 } 1503 EXPORT_SYMBOL(folio_unlock); 1504 1505 /** 1506 * folio_end_read - End read on a folio. 1507 * @folio: The folio. 1508 * @success: True if all reads completed successfully. 1509 * 1510 * When all reads against a folio have completed, filesystems should 1511 * call this function to let the pagecache know that no more reads 1512 * are outstanding. This will unlock the folio and wake up any thread 1513 * sleeping on the lock. The folio will also be marked uptodate if all 1514 * reads succeeded. 1515 * 1516 * Context: May be called from interrupt or process context. May not be 1517 * called from NMI context. 1518 */ 1519 void folio_end_read(struct folio *folio, bool success) 1520 { 1521 unsigned long mask = 1 << PG_locked; 1522 1523 /* Must be in bottom byte for x86 to work */ 1524 BUILD_BUG_ON(PG_uptodate > 7); 1525 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1526 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1527 1528 if (likely(success)) 1529 mask |= 1 << PG_uptodate; 1530 if (folio_xor_flags_has_waiters(folio, mask)) 1531 folio_wake_bit(folio, PG_locked); 1532 } 1533 EXPORT_SYMBOL(folio_end_read); 1534 1535 /** 1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1537 * @folio: The folio. 1538 * 1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1540 * it. The folio reference held for PG_private_2 being set is released. 1541 * 1542 * This is, for example, used when a netfs folio is being written to a local 1543 * disk cache, thereby allowing writes to the cache for the same folio to be 1544 * serialised. 1545 */ 1546 void folio_end_private_2(struct folio *folio) 1547 { 1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1550 folio_wake_bit(folio, PG_private_2); 1551 folio_put(folio); 1552 } 1553 EXPORT_SYMBOL(folio_end_private_2); 1554 1555 /** 1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1557 * @folio: The folio to wait on. 1558 * 1559 * Wait for PG_private_2 to be cleared on a folio. 1560 */ 1561 void folio_wait_private_2(struct folio *folio) 1562 { 1563 while (folio_test_private_2(folio)) 1564 folio_wait_bit(folio, PG_private_2); 1565 } 1566 EXPORT_SYMBOL(folio_wait_private_2); 1567 1568 /** 1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1570 * @folio: The folio to wait on. 1571 * 1572 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1573 * received by the calling task. 1574 * 1575 * Return: 1576 * - 0 if successful. 1577 * - -EINTR if a fatal signal was encountered. 1578 */ 1579 int folio_wait_private_2_killable(struct folio *folio) 1580 { 1581 int ret = 0; 1582 1583 while (folio_test_private_2(folio)) { 1584 ret = folio_wait_bit_killable(folio, PG_private_2); 1585 if (ret < 0) 1586 break; 1587 } 1588 1589 return ret; 1590 } 1591 EXPORT_SYMBOL(folio_wait_private_2_killable); 1592 1593 /* 1594 * If folio was marked as dropbehind, then pages should be dropped when writeback 1595 * completes. Do that now. If we fail, it's likely because of a big folio - 1596 * just reset dropbehind for that case and latter completions should invalidate. 1597 */ 1598 static void folio_end_dropbehind_write(struct folio *folio) 1599 { 1600 /* 1601 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1602 * but can happen if normal writeback just happens to find dirty folios 1603 * that were created as part of uncached writeback, and that writeback 1604 * would otherwise not need non-IRQ handling. Just skip the 1605 * invalidation in that case. 1606 */ 1607 if (in_task() && folio_trylock(folio)) { 1608 if (folio->mapping) 1609 folio_unmap_invalidate(folio->mapping, folio, 0); 1610 folio_unlock(folio); 1611 } 1612 } 1613 1614 /** 1615 * folio_end_writeback - End writeback against a folio. 1616 * @folio: The folio. 1617 * 1618 * The folio must actually be under writeback. 1619 * 1620 * Context: May be called from process or interrupt context. 1621 */ 1622 void folio_end_writeback(struct folio *folio) 1623 { 1624 bool folio_dropbehind = false; 1625 1626 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1627 1628 /* 1629 * folio_test_clear_reclaim() could be used here but it is an 1630 * atomic operation and overkill in this particular case. Failing 1631 * to shuffle a folio marked for immediate reclaim is too mild 1632 * a gain to justify taking an atomic operation penalty at the 1633 * end of every folio writeback. 1634 */ 1635 if (folio_test_reclaim(folio)) { 1636 folio_clear_reclaim(folio); 1637 folio_rotate_reclaimable(folio); 1638 } 1639 1640 /* 1641 * Writeback does not hold a folio reference of its own, relying 1642 * on truncation to wait for the clearing of PG_writeback. 1643 * But here we must make sure that the folio is not freed and 1644 * reused before the folio_wake_bit(). 1645 */ 1646 folio_get(folio); 1647 if (!folio_test_dirty(folio)) 1648 folio_dropbehind = folio_test_clear_dropbehind(folio); 1649 if (__folio_end_writeback(folio)) 1650 folio_wake_bit(folio, PG_writeback); 1651 acct_reclaim_writeback(folio); 1652 1653 if (folio_dropbehind) 1654 folio_end_dropbehind_write(folio); 1655 folio_put(folio); 1656 } 1657 EXPORT_SYMBOL(folio_end_writeback); 1658 1659 /** 1660 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1661 * @folio: The folio to lock 1662 */ 1663 void __folio_lock(struct folio *folio) 1664 { 1665 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1666 EXCLUSIVE); 1667 } 1668 EXPORT_SYMBOL(__folio_lock); 1669 1670 int __folio_lock_killable(struct folio *folio) 1671 { 1672 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1673 EXCLUSIVE); 1674 } 1675 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1676 1677 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1678 { 1679 struct wait_queue_head *q = folio_waitqueue(folio); 1680 int ret; 1681 1682 wait->folio = folio; 1683 wait->bit_nr = PG_locked; 1684 1685 spin_lock_irq(&q->lock); 1686 __add_wait_queue_entry_tail(q, &wait->wait); 1687 folio_set_waiters(folio); 1688 ret = !folio_trylock(folio); 1689 /* 1690 * If we were successful now, we know we're still on the 1691 * waitqueue as we're still under the lock. This means it's 1692 * safe to remove and return success, we know the callback 1693 * isn't going to trigger. 1694 */ 1695 if (!ret) 1696 __remove_wait_queue(q, &wait->wait); 1697 else 1698 ret = -EIOCBQUEUED; 1699 spin_unlock_irq(&q->lock); 1700 return ret; 1701 } 1702 1703 /* 1704 * Return values: 1705 * 0 - folio is locked. 1706 * non-zero - folio is not locked. 1707 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1708 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1709 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1710 * 1711 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1712 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1713 */ 1714 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1715 { 1716 unsigned int flags = vmf->flags; 1717 1718 if (fault_flag_allow_retry_first(flags)) { 1719 /* 1720 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1721 * released even though returning VM_FAULT_RETRY. 1722 */ 1723 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1724 return VM_FAULT_RETRY; 1725 1726 release_fault_lock(vmf); 1727 if (flags & FAULT_FLAG_KILLABLE) 1728 folio_wait_locked_killable(folio); 1729 else 1730 folio_wait_locked(folio); 1731 return VM_FAULT_RETRY; 1732 } 1733 if (flags & FAULT_FLAG_KILLABLE) { 1734 bool ret; 1735 1736 ret = __folio_lock_killable(folio); 1737 if (ret) { 1738 release_fault_lock(vmf); 1739 return VM_FAULT_RETRY; 1740 } 1741 } else { 1742 __folio_lock(folio); 1743 } 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * page_cache_next_miss() - Find the next gap in the page cache. 1750 * @mapping: Mapping. 1751 * @index: Index. 1752 * @max_scan: Maximum range to search. 1753 * 1754 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1755 * gap with the lowest index. 1756 * 1757 * This function may be called under the rcu_read_lock. However, this will 1758 * not atomically search a snapshot of the cache at a single point in time. 1759 * For example, if a gap is created at index 5, then subsequently a gap is 1760 * created at index 10, page_cache_next_miss covering both indices may 1761 * return 10 if called under the rcu_read_lock. 1762 * 1763 * Return: The index of the gap if found, otherwise an index outside the 1764 * range specified (in which case 'return - index >= max_scan' will be true). 1765 * In the rare case of index wrap-around, 0 will be returned. 1766 */ 1767 pgoff_t page_cache_next_miss(struct address_space *mapping, 1768 pgoff_t index, unsigned long max_scan) 1769 { 1770 XA_STATE(xas, &mapping->i_pages, index); 1771 1772 while (max_scan--) { 1773 void *entry = xas_next(&xas); 1774 if (!entry || xa_is_value(entry)) 1775 return xas.xa_index; 1776 if (xas.xa_index == 0) 1777 return 0; 1778 } 1779 1780 return index + max_scan; 1781 } 1782 EXPORT_SYMBOL(page_cache_next_miss); 1783 1784 /** 1785 * page_cache_prev_miss() - Find the previous gap in the page cache. 1786 * @mapping: Mapping. 1787 * @index: Index. 1788 * @max_scan: Maximum range to search. 1789 * 1790 * Search the range [max(index - max_scan + 1, 0), index] for the 1791 * gap with the highest index. 1792 * 1793 * This function may be called under the rcu_read_lock. However, this will 1794 * not atomically search a snapshot of the cache at a single point in time. 1795 * For example, if a gap is created at index 10, then subsequently a gap is 1796 * created at index 5, page_cache_prev_miss() covering both indices may 1797 * return 5 if called under the rcu_read_lock. 1798 * 1799 * Return: The index of the gap if found, otherwise an index outside the 1800 * range specified (in which case 'index - return >= max_scan' will be true). 1801 * In the rare case of wrap-around, ULONG_MAX will be returned. 1802 */ 1803 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1804 pgoff_t index, unsigned long max_scan) 1805 { 1806 XA_STATE(xas, &mapping->i_pages, index); 1807 1808 while (max_scan--) { 1809 void *entry = xas_prev(&xas); 1810 if (!entry || xa_is_value(entry)) 1811 break; 1812 if (xas.xa_index == ULONG_MAX) 1813 break; 1814 } 1815 1816 return xas.xa_index; 1817 } 1818 EXPORT_SYMBOL(page_cache_prev_miss); 1819 1820 /* 1821 * Lockless page cache protocol: 1822 * On the lookup side: 1823 * 1. Load the folio from i_pages 1824 * 2. Increment the refcount if it's not zero 1825 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1826 * 1827 * On the removal side: 1828 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1829 * B. Remove the page from i_pages 1830 * C. Return the page to the page allocator 1831 * 1832 * This means that any page may have its reference count temporarily 1833 * increased by a speculative page cache (or GUP-fast) lookup as it can 1834 * be allocated by another user before the RCU grace period expires. 1835 * Because the refcount temporarily acquired here may end up being the 1836 * last refcount on the page, any page allocation must be freeable by 1837 * folio_put(). 1838 */ 1839 1840 /* 1841 * filemap_get_entry - Get a page cache entry. 1842 * @mapping: the address_space to search 1843 * @index: The page cache index. 1844 * 1845 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1846 * it is returned with an increased refcount. If it is a shadow entry 1847 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1848 * it is returned without further action. 1849 * 1850 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1851 */ 1852 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1853 { 1854 XA_STATE(xas, &mapping->i_pages, index); 1855 struct folio *folio; 1856 1857 rcu_read_lock(); 1858 repeat: 1859 xas_reset(&xas); 1860 folio = xas_load(&xas); 1861 if (xas_retry(&xas, folio)) 1862 goto repeat; 1863 /* 1864 * A shadow entry of a recently evicted page, or a swap entry from 1865 * shmem/tmpfs. Return it without attempting to raise page count. 1866 */ 1867 if (!folio || xa_is_value(folio)) 1868 goto out; 1869 1870 if (!folio_try_get(folio)) 1871 goto repeat; 1872 1873 if (unlikely(folio != xas_reload(&xas))) { 1874 folio_put(folio); 1875 goto repeat; 1876 } 1877 out: 1878 rcu_read_unlock(); 1879 1880 return folio; 1881 } 1882 1883 /** 1884 * __filemap_get_folio - Find and get a reference to a folio. 1885 * @mapping: The address_space to search. 1886 * @index: The page index. 1887 * @fgp_flags: %FGP flags modify how the folio is returned. 1888 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1889 * 1890 * Looks up the page cache entry at @mapping & @index. 1891 * 1892 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1893 * if the %GFP flags specified for %FGP_CREAT are atomic. 1894 * 1895 * If this function returns a folio, it is returned with an increased refcount. 1896 * 1897 * Return: The found folio or an ERR_PTR() otherwise. 1898 */ 1899 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1900 fgf_t fgp_flags, gfp_t gfp) 1901 { 1902 struct folio *folio; 1903 1904 repeat: 1905 folio = filemap_get_entry(mapping, index); 1906 if (xa_is_value(folio)) 1907 folio = NULL; 1908 if (!folio) 1909 goto no_page; 1910 1911 if (fgp_flags & FGP_LOCK) { 1912 if (fgp_flags & FGP_NOWAIT) { 1913 if (!folio_trylock(folio)) { 1914 folio_put(folio); 1915 return ERR_PTR(-EAGAIN); 1916 } 1917 } else { 1918 folio_lock(folio); 1919 } 1920 1921 /* Has the page been truncated? */ 1922 if (unlikely(folio->mapping != mapping)) { 1923 folio_unlock(folio); 1924 folio_put(folio); 1925 goto repeat; 1926 } 1927 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1928 } 1929 1930 if (fgp_flags & FGP_ACCESSED) 1931 folio_mark_accessed(folio); 1932 else if (fgp_flags & FGP_WRITE) { 1933 /* Clear idle flag for buffer write */ 1934 if (folio_test_idle(folio)) 1935 folio_clear_idle(folio); 1936 } 1937 1938 if (fgp_flags & FGP_STABLE) 1939 folio_wait_stable(folio); 1940 no_page: 1941 if (!folio && (fgp_flags & FGP_CREAT)) { 1942 unsigned int min_order = mapping_min_folio_order(mapping); 1943 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1944 int err; 1945 index = mapping_align_index(mapping, index); 1946 1947 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1948 gfp |= __GFP_WRITE; 1949 if (fgp_flags & FGP_NOFS) 1950 gfp &= ~__GFP_FS; 1951 if (fgp_flags & FGP_NOWAIT) { 1952 gfp &= ~GFP_KERNEL; 1953 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1954 } 1955 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1956 fgp_flags |= FGP_LOCK; 1957 1958 if (order > mapping_max_folio_order(mapping)) 1959 order = mapping_max_folio_order(mapping); 1960 /* If we're not aligned, allocate a smaller folio */ 1961 if (index & ((1UL << order) - 1)) 1962 order = __ffs(index); 1963 1964 do { 1965 gfp_t alloc_gfp = gfp; 1966 1967 err = -ENOMEM; 1968 if (order > min_order) 1969 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1970 folio = filemap_alloc_folio(alloc_gfp, order); 1971 if (!folio) 1972 continue; 1973 1974 /* Init accessed so avoid atomic mark_page_accessed later */ 1975 if (fgp_flags & FGP_ACCESSED) 1976 __folio_set_referenced(folio); 1977 if (fgp_flags & FGP_DONTCACHE) 1978 __folio_set_dropbehind(folio); 1979 1980 err = filemap_add_folio(mapping, folio, index, gfp); 1981 if (!err) 1982 break; 1983 folio_put(folio); 1984 folio = NULL; 1985 } while (order-- > min_order); 1986 1987 if (err == -EEXIST) 1988 goto repeat; 1989 if (err) { 1990 /* 1991 * When NOWAIT I/O fails to allocate folios this could 1992 * be due to a nonblocking memory allocation and not 1993 * because the system actually is out of memory. 1994 * Return -EAGAIN so that there caller retries in a 1995 * blocking fashion instead of propagating -ENOMEM 1996 * to the application. 1997 */ 1998 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 1999 err = -EAGAIN; 2000 return ERR_PTR(err); 2001 } 2002 /* 2003 * filemap_add_folio locks the page, and for mmap 2004 * we expect an unlocked page. 2005 */ 2006 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2007 folio_unlock(folio); 2008 } 2009 2010 if (!folio) 2011 return ERR_PTR(-ENOENT); 2012 /* not an uncached lookup, clear uncached if set */ 2013 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2014 folio_clear_dropbehind(folio); 2015 return folio; 2016 } 2017 EXPORT_SYMBOL(__filemap_get_folio); 2018 2019 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2020 xa_mark_t mark) 2021 { 2022 struct folio *folio; 2023 2024 retry: 2025 if (mark == XA_PRESENT) 2026 folio = xas_find(xas, max); 2027 else 2028 folio = xas_find_marked(xas, max, mark); 2029 2030 if (xas_retry(xas, folio)) 2031 goto retry; 2032 /* 2033 * A shadow entry of a recently evicted page, a swap 2034 * entry from shmem/tmpfs or a DAX entry. Return it 2035 * without attempting to raise page count. 2036 */ 2037 if (!folio || xa_is_value(folio)) 2038 return folio; 2039 2040 if (!folio_try_get(folio)) 2041 goto reset; 2042 2043 if (unlikely(folio != xas_reload(xas))) { 2044 folio_put(folio); 2045 goto reset; 2046 } 2047 2048 return folio; 2049 reset: 2050 xas_reset(xas); 2051 goto retry; 2052 } 2053 2054 /** 2055 * find_get_entries - gang pagecache lookup 2056 * @mapping: The address_space to search 2057 * @start: The starting page cache index 2058 * @end: The final page index (inclusive). 2059 * @fbatch: Where the resulting entries are placed. 2060 * @indices: The cache indices corresponding to the entries in @entries 2061 * 2062 * find_get_entries() will search for and return a batch of entries in 2063 * the mapping. The entries are placed in @fbatch. find_get_entries() 2064 * takes a reference on any actual folios it returns. 2065 * 2066 * The entries have ascending indexes. The indices may not be consecutive 2067 * due to not-present entries or large folios. 2068 * 2069 * Any shadow entries of evicted folios, or swap entries from 2070 * shmem/tmpfs, are included in the returned array. 2071 * 2072 * Return: The number of entries which were found. 2073 */ 2074 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2075 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2076 { 2077 XA_STATE(xas, &mapping->i_pages, *start); 2078 struct folio *folio; 2079 2080 rcu_read_lock(); 2081 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2082 indices[fbatch->nr] = xas.xa_index; 2083 if (!folio_batch_add(fbatch, folio)) 2084 break; 2085 } 2086 2087 if (folio_batch_count(fbatch)) { 2088 unsigned long nr; 2089 int idx = folio_batch_count(fbatch) - 1; 2090 2091 folio = fbatch->folios[idx]; 2092 if (!xa_is_value(folio)) 2093 nr = folio_nr_pages(folio); 2094 else 2095 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2096 *start = round_down(indices[idx] + nr, nr); 2097 } 2098 rcu_read_unlock(); 2099 2100 return folio_batch_count(fbatch); 2101 } 2102 2103 /** 2104 * find_lock_entries - Find a batch of pagecache entries. 2105 * @mapping: The address_space to search. 2106 * @start: The starting page cache index. 2107 * @end: The final page index (inclusive). 2108 * @fbatch: Where the resulting entries are placed. 2109 * @indices: The cache indices of the entries in @fbatch. 2110 * 2111 * find_lock_entries() will return a batch of entries from @mapping. 2112 * Swap, shadow and DAX entries are included. Folios are returned 2113 * locked and with an incremented refcount. Folios which are locked 2114 * by somebody else or under writeback are skipped. Folios which are 2115 * partially outside the range are not returned. 2116 * 2117 * The entries have ascending indexes. The indices may not be consecutive 2118 * due to not-present entries, large folios, folios which could not be 2119 * locked or folios under writeback. 2120 * 2121 * Return: The number of entries which were found. 2122 */ 2123 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2124 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2125 { 2126 XA_STATE(xas, &mapping->i_pages, *start); 2127 struct folio *folio; 2128 2129 rcu_read_lock(); 2130 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2131 unsigned long base; 2132 unsigned long nr; 2133 2134 if (!xa_is_value(folio)) { 2135 nr = folio_nr_pages(folio); 2136 base = folio->index; 2137 /* Omit large folio which begins before the start */ 2138 if (base < *start) 2139 goto put; 2140 /* Omit large folio which extends beyond the end */ 2141 if (base + nr - 1 > end) 2142 goto put; 2143 if (!folio_trylock(folio)) 2144 goto put; 2145 if (folio->mapping != mapping || 2146 folio_test_writeback(folio)) 2147 goto unlock; 2148 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2149 folio); 2150 } else { 2151 nr = 1 << xas_get_order(&xas); 2152 base = xas.xa_index & ~(nr - 1); 2153 /* Omit order>0 value which begins before the start */ 2154 if (base < *start) 2155 continue; 2156 /* Omit order>0 value which extends beyond the end */ 2157 if (base + nr - 1 > end) 2158 break; 2159 } 2160 2161 /* Update start now so that last update is correct on return */ 2162 *start = base + nr; 2163 indices[fbatch->nr] = xas.xa_index; 2164 if (!folio_batch_add(fbatch, folio)) 2165 break; 2166 continue; 2167 unlock: 2168 folio_unlock(folio); 2169 put: 2170 folio_put(folio); 2171 } 2172 rcu_read_unlock(); 2173 2174 return folio_batch_count(fbatch); 2175 } 2176 2177 /** 2178 * filemap_get_folios - Get a batch of folios 2179 * @mapping: The address_space to search 2180 * @start: The starting page index 2181 * @end: The final page index (inclusive) 2182 * @fbatch: The batch to fill. 2183 * 2184 * Search for and return a batch of folios in the mapping starting at 2185 * index @start and up to index @end (inclusive). The folios are returned 2186 * in @fbatch with an elevated reference count. 2187 * 2188 * Return: The number of folios which were found. 2189 * We also update @start to index the next folio for the traversal. 2190 */ 2191 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2192 pgoff_t end, struct folio_batch *fbatch) 2193 { 2194 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2195 } 2196 EXPORT_SYMBOL(filemap_get_folios); 2197 2198 /** 2199 * filemap_get_folios_contig - Get a batch of contiguous folios 2200 * @mapping: The address_space to search 2201 * @start: The starting page index 2202 * @end: The final page index (inclusive) 2203 * @fbatch: The batch to fill 2204 * 2205 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2206 * except the returned folios are guaranteed to be contiguous. This may 2207 * not return all contiguous folios if the batch gets filled up. 2208 * 2209 * Return: The number of folios found. 2210 * Also update @start to be positioned for traversal of the next folio. 2211 */ 2212 2213 unsigned filemap_get_folios_contig(struct address_space *mapping, 2214 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2215 { 2216 XA_STATE(xas, &mapping->i_pages, *start); 2217 unsigned long nr; 2218 struct folio *folio; 2219 2220 rcu_read_lock(); 2221 2222 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2223 folio = xas_next(&xas)) { 2224 if (xas_retry(&xas, folio)) 2225 continue; 2226 /* 2227 * If the entry has been swapped out, we can stop looking. 2228 * No current caller is looking for DAX entries. 2229 */ 2230 if (xa_is_value(folio)) 2231 goto update_start; 2232 2233 /* If we landed in the middle of a THP, continue at its end. */ 2234 if (xa_is_sibling(folio)) 2235 goto update_start; 2236 2237 if (!folio_try_get(folio)) 2238 goto retry; 2239 2240 if (unlikely(folio != xas_reload(&xas))) 2241 goto put_folio; 2242 2243 if (!folio_batch_add(fbatch, folio)) { 2244 nr = folio_nr_pages(folio); 2245 *start = folio->index + nr; 2246 goto out; 2247 } 2248 continue; 2249 put_folio: 2250 folio_put(folio); 2251 2252 retry: 2253 xas_reset(&xas); 2254 } 2255 2256 update_start: 2257 nr = folio_batch_count(fbatch); 2258 2259 if (nr) { 2260 folio = fbatch->folios[nr - 1]; 2261 *start = folio_next_index(folio); 2262 } 2263 out: 2264 rcu_read_unlock(); 2265 return folio_batch_count(fbatch); 2266 } 2267 EXPORT_SYMBOL(filemap_get_folios_contig); 2268 2269 /** 2270 * filemap_get_folios_tag - Get a batch of folios matching @tag 2271 * @mapping: The address_space to search 2272 * @start: The starting page index 2273 * @end: The final page index (inclusive) 2274 * @tag: The tag index 2275 * @fbatch: The batch to fill 2276 * 2277 * The first folio may start before @start; if it does, it will contain 2278 * @start. The final folio may extend beyond @end; if it does, it will 2279 * contain @end. The folios have ascending indices. There may be gaps 2280 * between the folios if there are indices which have no folio in the 2281 * page cache. If folios are added to or removed from the page cache 2282 * while this is running, they may or may not be found by this call. 2283 * Only returns folios that are tagged with @tag. 2284 * 2285 * Return: The number of folios found. 2286 * Also update @start to index the next folio for traversal. 2287 */ 2288 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2289 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2290 { 2291 XA_STATE(xas, &mapping->i_pages, *start); 2292 struct folio *folio; 2293 2294 rcu_read_lock(); 2295 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2296 /* 2297 * Shadow entries should never be tagged, but this iteration 2298 * is lockless so there is a window for page reclaim to evict 2299 * a page we saw tagged. Skip over it. 2300 */ 2301 if (xa_is_value(folio)) 2302 continue; 2303 if (!folio_batch_add(fbatch, folio)) { 2304 unsigned long nr = folio_nr_pages(folio); 2305 *start = folio->index + nr; 2306 goto out; 2307 } 2308 } 2309 /* 2310 * We come here when there is no page beyond @end. We take care to not 2311 * overflow the index @start as it confuses some of the callers. This 2312 * breaks the iteration when there is a page at index -1 but that is 2313 * already broke anyway. 2314 */ 2315 if (end == (pgoff_t)-1) 2316 *start = (pgoff_t)-1; 2317 else 2318 *start = end + 1; 2319 out: 2320 rcu_read_unlock(); 2321 2322 return folio_batch_count(fbatch); 2323 } 2324 EXPORT_SYMBOL(filemap_get_folios_tag); 2325 2326 /* 2327 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2328 * a _large_ part of the i/o request. Imagine the worst scenario: 2329 * 2330 * ---R__________________________________________B__________ 2331 * ^ reading here ^ bad block(assume 4k) 2332 * 2333 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2334 * => failing the whole request => read(R) => read(R+1) => 2335 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2336 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2337 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2338 * 2339 * It is going insane. Fix it by quickly scaling down the readahead size. 2340 */ 2341 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2342 { 2343 ra->ra_pages /= 4; 2344 } 2345 2346 /* 2347 * filemap_get_read_batch - Get a batch of folios for read 2348 * 2349 * Get a batch of folios which represent a contiguous range of bytes in 2350 * the file. No exceptional entries will be returned. If @index is in 2351 * the middle of a folio, the entire folio will be returned. The last 2352 * folio in the batch may have the readahead flag set or the uptodate flag 2353 * clear so that the caller can take the appropriate action. 2354 */ 2355 static void filemap_get_read_batch(struct address_space *mapping, 2356 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2357 { 2358 XA_STATE(xas, &mapping->i_pages, index); 2359 struct folio *folio; 2360 2361 rcu_read_lock(); 2362 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2363 if (xas_retry(&xas, folio)) 2364 continue; 2365 if (xas.xa_index > max || xa_is_value(folio)) 2366 break; 2367 if (xa_is_sibling(folio)) 2368 break; 2369 if (!folio_try_get(folio)) 2370 goto retry; 2371 2372 if (unlikely(folio != xas_reload(&xas))) 2373 goto put_folio; 2374 2375 if (!folio_batch_add(fbatch, folio)) 2376 break; 2377 if (!folio_test_uptodate(folio)) 2378 break; 2379 if (folio_test_readahead(folio)) 2380 break; 2381 xas_advance(&xas, folio_next_index(folio) - 1); 2382 continue; 2383 put_folio: 2384 folio_put(folio); 2385 retry: 2386 xas_reset(&xas); 2387 } 2388 rcu_read_unlock(); 2389 } 2390 2391 static int filemap_read_folio(struct file *file, filler_t filler, 2392 struct folio *folio) 2393 { 2394 bool workingset = folio_test_workingset(folio); 2395 unsigned long pflags; 2396 int error; 2397 2398 /* Start the actual read. The read will unlock the page. */ 2399 if (unlikely(workingset)) 2400 psi_memstall_enter(&pflags); 2401 error = filler(file, folio); 2402 if (unlikely(workingset)) 2403 psi_memstall_leave(&pflags); 2404 if (error) 2405 return error; 2406 2407 error = folio_wait_locked_killable(folio); 2408 if (error) 2409 return error; 2410 if (folio_test_uptodate(folio)) 2411 return 0; 2412 if (file) 2413 shrink_readahead_size_eio(&file->f_ra); 2414 return -EIO; 2415 } 2416 2417 static bool filemap_range_uptodate(struct address_space *mapping, 2418 loff_t pos, size_t count, struct folio *folio, 2419 bool need_uptodate) 2420 { 2421 if (folio_test_uptodate(folio)) 2422 return true; 2423 /* pipes can't handle partially uptodate pages */ 2424 if (need_uptodate) 2425 return false; 2426 if (!mapping->a_ops->is_partially_uptodate) 2427 return false; 2428 if (mapping->host->i_blkbits >= folio_shift(folio)) 2429 return false; 2430 2431 if (folio_pos(folio) > pos) { 2432 count -= folio_pos(folio) - pos; 2433 pos = 0; 2434 } else { 2435 pos -= folio_pos(folio); 2436 } 2437 2438 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2439 } 2440 2441 static int filemap_update_page(struct kiocb *iocb, 2442 struct address_space *mapping, size_t count, 2443 struct folio *folio, bool need_uptodate) 2444 { 2445 int error; 2446 2447 if (iocb->ki_flags & IOCB_NOWAIT) { 2448 if (!filemap_invalidate_trylock_shared(mapping)) 2449 return -EAGAIN; 2450 } else { 2451 filemap_invalidate_lock_shared(mapping); 2452 } 2453 2454 if (!folio_trylock(folio)) { 2455 error = -EAGAIN; 2456 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2457 goto unlock_mapping; 2458 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2459 filemap_invalidate_unlock_shared(mapping); 2460 /* 2461 * This is where we usually end up waiting for a 2462 * previously submitted readahead to finish. 2463 */ 2464 folio_put_wait_locked(folio, TASK_KILLABLE); 2465 return AOP_TRUNCATED_PAGE; 2466 } 2467 error = __folio_lock_async(folio, iocb->ki_waitq); 2468 if (error) 2469 goto unlock_mapping; 2470 } 2471 2472 error = AOP_TRUNCATED_PAGE; 2473 if (!folio->mapping) 2474 goto unlock; 2475 2476 error = 0; 2477 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2478 need_uptodate)) 2479 goto unlock; 2480 2481 error = -EAGAIN; 2482 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2483 goto unlock; 2484 2485 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2486 folio); 2487 goto unlock_mapping; 2488 unlock: 2489 folio_unlock(folio); 2490 unlock_mapping: 2491 filemap_invalidate_unlock_shared(mapping); 2492 if (error == AOP_TRUNCATED_PAGE) 2493 folio_put(folio); 2494 return error; 2495 } 2496 2497 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2498 { 2499 struct address_space *mapping = iocb->ki_filp->f_mapping; 2500 struct folio *folio; 2501 int error; 2502 unsigned int min_order = mapping_min_folio_order(mapping); 2503 pgoff_t index; 2504 2505 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2506 return -EAGAIN; 2507 2508 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2509 if (!folio) 2510 return -ENOMEM; 2511 if (iocb->ki_flags & IOCB_DONTCACHE) 2512 __folio_set_dropbehind(folio); 2513 2514 /* 2515 * Protect against truncate / hole punch. Grabbing invalidate_lock 2516 * here assures we cannot instantiate and bring uptodate new 2517 * pagecache folios after evicting page cache during truncate 2518 * and before actually freeing blocks. Note that we could 2519 * release invalidate_lock after inserting the folio into 2520 * the page cache as the locked folio would then be enough to 2521 * synchronize with hole punching. But there are code paths 2522 * such as filemap_update_page() filling in partially uptodate 2523 * pages or ->readahead() that need to hold invalidate_lock 2524 * while mapping blocks for IO so let's hold the lock here as 2525 * well to keep locking rules simple. 2526 */ 2527 filemap_invalidate_lock_shared(mapping); 2528 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2529 error = filemap_add_folio(mapping, folio, index, 2530 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2531 if (error == -EEXIST) 2532 error = AOP_TRUNCATED_PAGE; 2533 if (error) 2534 goto error; 2535 2536 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2537 folio); 2538 if (error) 2539 goto error; 2540 2541 filemap_invalidate_unlock_shared(mapping); 2542 folio_batch_add(fbatch, folio); 2543 return 0; 2544 error: 2545 filemap_invalidate_unlock_shared(mapping); 2546 folio_put(folio); 2547 return error; 2548 } 2549 2550 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2551 struct address_space *mapping, struct folio *folio, 2552 pgoff_t last_index) 2553 { 2554 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2555 2556 if (iocb->ki_flags & IOCB_NOIO) 2557 return -EAGAIN; 2558 if (iocb->ki_flags & IOCB_DONTCACHE) 2559 ractl.dropbehind = 1; 2560 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2561 return 0; 2562 } 2563 2564 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2565 struct folio_batch *fbatch, bool need_uptodate) 2566 { 2567 struct file *filp = iocb->ki_filp; 2568 struct address_space *mapping = filp->f_mapping; 2569 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2570 pgoff_t last_index; 2571 struct folio *folio; 2572 unsigned int flags; 2573 int err = 0; 2574 2575 /* "last_index" is the index of the page beyond the end of the read */ 2576 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2577 retry: 2578 if (fatal_signal_pending(current)) 2579 return -EINTR; 2580 2581 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2582 if (!folio_batch_count(fbatch)) { 2583 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2584 2585 if (iocb->ki_flags & IOCB_NOIO) 2586 return -EAGAIN; 2587 if (iocb->ki_flags & IOCB_NOWAIT) 2588 flags = memalloc_noio_save(); 2589 if (iocb->ki_flags & IOCB_DONTCACHE) 2590 ractl.dropbehind = 1; 2591 page_cache_sync_ra(&ractl, last_index - index); 2592 if (iocb->ki_flags & IOCB_NOWAIT) 2593 memalloc_noio_restore(flags); 2594 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2595 } 2596 if (!folio_batch_count(fbatch)) { 2597 err = filemap_create_folio(iocb, fbatch); 2598 if (err == AOP_TRUNCATED_PAGE) 2599 goto retry; 2600 return err; 2601 } 2602 2603 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2604 if (folio_test_readahead(folio)) { 2605 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2606 if (err) 2607 goto err; 2608 } 2609 if (!folio_test_uptodate(folio)) { 2610 if ((iocb->ki_flags & IOCB_WAITQ) && 2611 folio_batch_count(fbatch) > 1) 2612 iocb->ki_flags |= IOCB_NOWAIT; 2613 err = filemap_update_page(iocb, mapping, count, folio, 2614 need_uptodate); 2615 if (err) 2616 goto err; 2617 } 2618 2619 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2620 return 0; 2621 err: 2622 if (err < 0) 2623 folio_put(folio); 2624 if (likely(--fbatch->nr)) 2625 return 0; 2626 if (err == AOP_TRUNCATED_PAGE) 2627 goto retry; 2628 return err; 2629 } 2630 2631 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2632 { 2633 unsigned int shift = folio_shift(folio); 2634 2635 return (pos1 >> shift == pos2 >> shift); 2636 } 2637 2638 static void filemap_end_dropbehind_read(struct address_space *mapping, 2639 struct folio *folio) 2640 { 2641 if (!folio_test_dropbehind(folio)) 2642 return; 2643 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2644 return; 2645 if (folio_trylock(folio)) { 2646 if (folio_test_clear_dropbehind(folio)) 2647 folio_unmap_invalidate(mapping, folio, 0); 2648 folio_unlock(folio); 2649 } 2650 } 2651 2652 /** 2653 * filemap_read - Read data from the page cache. 2654 * @iocb: The iocb to read. 2655 * @iter: Destination for the data. 2656 * @already_read: Number of bytes already read by the caller. 2657 * 2658 * Copies data from the page cache. If the data is not currently present, 2659 * uses the readahead and read_folio address_space operations to fetch it. 2660 * 2661 * Return: Total number of bytes copied, including those already read by 2662 * the caller. If an error happens before any bytes are copied, returns 2663 * a negative error number. 2664 */ 2665 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2666 ssize_t already_read) 2667 { 2668 struct file *filp = iocb->ki_filp; 2669 struct file_ra_state *ra = &filp->f_ra; 2670 struct address_space *mapping = filp->f_mapping; 2671 struct inode *inode = mapping->host; 2672 struct folio_batch fbatch; 2673 int i, error = 0; 2674 bool writably_mapped; 2675 loff_t isize, end_offset; 2676 loff_t last_pos = ra->prev_pos; 2677 2678 if (unlikely(iocb->ki_pos < 0)) 2679 return -EINVAL; 2680 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2681 return 0; 2682 if (unlikely(!iov_iter_count(iter))) 2683 return 0; 2684 2685 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2686 folio_batch_init(&fbatch); 2687 2688 do { 2689 cond_resched(); 2690 2691 /* 2692 * If we've already successfully copied some data, then we 2693 * can no longer safely return -EIOCBQUEUED. Hence mark 2694 * an async read NOWAIT at that point. 2695 */ 2696 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2697 iocb->ki_flags |= IOCB_NOWAIT; 2698 2699 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2700 break; 2701 2702 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2703 if (error < 0) 2704 break; 2705 2706 /* 2707 * i_size must be checked after we know the pages are Uptodate. 2708 * 2709 * Checking i_size after the check allows us to calculate 2710 * the correct value for "nr", which means the zero-filled 2711 * part of the page is not copied back to userspace (unless 2712 * another truncate extends the file - this is desired though). 2713 */ 2714 isize = i_size_read(inode); 2715 if (unlikely(iocb->ki_pos >= isize)) 2716 goto put_folios; 2717 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2718 2719 /* 2720 * Once we start copying data, we don't want to be touching any 2721 * cachelines that might be contended: 2722 */ 2723 writably_mapped = mapping_writably_mapped(mapping); 2724 2725 /* 2726 * When a read accesses the same folio several times, only 2727 * mark it as accessed the first time. 2728 */ 2729 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2730 fbatch.folios[0])) 2731 folio_mark_accessed(fbatch.folios[0]); 2732 2733 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2734 struct folio *folio = fbatch.folios[i]; 2735 size_t fsize = folio_size(folio); 2736 size_t offset = iocb->ki_pos & (fsize - 1); 2737 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2738 fsize - offset); 2739 size_t copied; 2740 2741 if (end_offset < folio_pos(folio)) 2742 break; 2743 if (i > 0) 2744 folio_mark_accessed(folio); 2745 /* 2746 * If users can be writing to this folio using arbitrary 2747 * virtual addresses, take care of potential aliasing 2748 * before reading the folio on the kernel side. 2749 */ 2750 if (writably_mapped) 2751 flush_dcache_folio(folio); 2752 2753 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2754 2755 already_read += copied; 2756 iocb->ki_pos += copied; 2757 last_pos = iocb->ki_pos; 2758 2759 if (copied < bytes) { 2760 error = -EFAULT; 2761 break; 2762 } 2763 } 2764 put_folios: 2765 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2766 struct folio *folio = fbatch.folios[i]; 2767 2768 filemap_end_dropbehind_read(mapping, folio); 2769 folio_put(folio); 2770 } 2771 folio_batch_init(&fbatch); 2772 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2773 2774 file_accessed(filp); 2775 ra->prev_pos = last_pos; 2776 return already_read ? already_read : error; 2777 } 2778 EXPORT_SYMBOL_GPL(filemap_read); 2779 2780 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2781 { 2782 struct address_space *mapping = iocb->ki_filp->f_mapping; 2783 loff_t pos = iocb->ki_pos; 2784 loff_t end = pos + count - 1; 2785 2786 if (iocb->ki_flags & IOCB_NOWAIT) { 2787 if (filemap_range_needs_writeback(mapping, pos, end)) 2788 return -EAGAIN; 2789 return 0; 2790 } 2791 2792 return filemap_write_and_wait_range(mapping, pos, end); 2793 } 2794 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2795 2796 int filemap_invalidate_pages(struct address_space *mapping, 2797 loff_t pos, loff_t end, bool nowait) 2798 { 2799 int ret; 2800 2801 if (nowait) { 2802 /* we could block if there are any pages in the range */ 2803 if (filemap_range_has_page(mapping, pos, end)) 2804 return -EAGAIN; 2805 } else { 2806 ret = filemap_write_and_wait_range(mapping, pos, end); 2807 if (ret) 2808 return ret; 2809 } 2810 2811 /* 2812 * After a write we want buffered reads to be sure to go to disk to get 2813 * the new data. We invalidate clean cached page from the region we're 2814 * about to write. We do this *before* the write so that we can return 2815 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2816 */ 2817 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2818 end >> PAGE_SHIFT); 2819 } 2820 2821 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2822 { 2823 struct address_space *mapping = iocb->ki_filp->f_mapping; 2824 2825 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2826 iocb->ki_pos + count - 1, 2827 iocb->ki_flags & IOCB_NOWAIT); 2828 } 2829 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2830 2831 /** 2832 * generic_file_read_iter - generic filesystem read routine 2833 * @iocb: kernel I/O control block 2834 * @iter: destination for the data read 2835 * 2836 * This is the "read_iter()" routine for all filesystems 2837 * that can use the page cache directly. 2838 * 2839 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2840 * be returned when no data can be read without waiting for I/O requests 2841 * to complete; it doesn't prevent readahead. 2842 * 2843 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2844 * requests shall be made for the read or for readahead. When no data 2845 * can be read, -EAGAIN shall be returned. When readahead would be 2846 * triggered, a partial, possibly empty read shall be returned. 2847 * 2848 * Return: 2849 * * number of bytes copied, even for partial reads 2850 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2851 */ 2852 ssize_t 2853 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2854 { 2855 size_t count = iov_iter_count(iter); 2856 ssize_t retval = 0; 2857 2858 if (!count) 2859 return 0; /* skip atime */ 2860 2861 if (iocb->ki_flags & IOCB_DIRECT) { 2862 struct file *file = iocb->ki_filp; 2863 struct address_space *mapping = file->f_mapping; 2864 struct inode *inode = mapping->host; 2865 2866 retval = kiocb_write_and_wait(iocb, count); 2867 if (retval < 0) 2868 return retval; 2869 file_accessed(file); 2870 2871 retval = mapping->a_ops->direct_IO(iocb, iter); 2872 if (retval >= 0) { 2873 iocb->ki_pos += retval; 2874 count -= retval; 2875 } 2876 if (retval != -EIOCBQUEUED) 2877 iov_iter_revert(iter, count - iov_iter_count(iter)); 2878 2879 /* 2880 * Btrfs can have a short DIO read if we encounter 2881 * compressed extents, so if there was an error, or if 2882 * we've already read everything we wanted to, or if 2883 * there was a short read because we hit EOF, go ahead 2884 * and return. Otherwise fallthrough to buffered io for 2885 * the rest of the read. Buffered reads will not work for 2886 * DAX files, so don't bother trying. 2887 */ 2888 if (retval < 0 || !count || IS_DAX(inode)) 2889 return retval; 2890 if (iocb->ki_pos >= i_size_read(inode)) 2891 return retval; 2892 } 2893 2894 return filemap_read(iocb, iter, retval); 2895 } 2896 EXPORT_SYMBOL(generic_file_read_iter); 2897 2898 /* 2899 * Splice subpages from a folio into a pipe. 2900 */ 2901 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2902 struct folio *folio, loff_t fpos, size_t size) 2903 { 2904 struct page *page; 2905 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2906 2907 page = folio_page(folio, offset / PAGE_SIZE); 2908 size = min(size, folio_size(folio) - offset); 2909 offset %= PAGE_SIZE; 2910 2911 while (spliced < size && !pipe_is_full(pipe)) { 2912 struct pipe_buffer *buf = pipe_head_buf(pipe); 2913 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2914 2915 *buf = (struct pipe_buffer) { 2916 .ops = &page_cache_pipe_buf_ops, 2917 .page = page, 2918 .offset = offset, 2919 .len = part, 2920 }; 2921 folio_get(folio); 2922 pipe->head++; 2923 page++; 2924 spliced += part; 2925 offset = 0; 2926 } 2927 2928 return spliced; 2929 } 2930 2931 /** 2932 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2933 * @in: The file to read from 2934 * @ppos: Pointer to the file position to read from 2935 * @pipe: The pipe to splice into 2936 * @len: The amount to splice 2937 * @flags: The SPLICE_F_* flags 2938 * 2939 * This function gets folios from a file's pagecache and splices them into the 2940 * pipe. Readahead will be called as necessary to fill more folios. This may 2941 * be used for blockdevs also. 2942 * 2943 * Return: On success, the number of bytes read will be returned and *@ppos 2944 * will be updated if appropriate; 0 will be returned if there is no more data 2945 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2946 * other negative error code will be returned on error. A short read may occur 2947 * if the pipe has insufficient space, we reach the end of the data or we hit a 2948 * hole. 2949 */ 2950 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2951 struct pipe_inode_info *pipe, 2952 size_t len, unsigned int flags) 2953 { 2954 struct folio_batch fbatch; 2955 struct kiocb iocb; 2956 size_t total_spliced = 0, used, npages; 2957 loff_t isize, end_offset; 2958 bool writably_mapped; 2959 int i, error = 0; 2960 2961 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2962 return 0; 2963 2964 init_sync_kiocb(&iocb, in); 2965 iocb.ki_pos = *ppos; 2966 2967 /* Work out how much data we can actually add into the pipe */ 2968 used = pipe_buf_usage(pipe); 2969 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2970 len = min_t(size_t, len, npages * PAGE_SIZE); 2971 2972 folio_batch_init(&fbatch); 2973 2974 do { 2975 cond_resched(); 2976 2977 if (*ppos >= i_size_read(in->f_mapping->host)) 2978 break; 2979 2980 iocb.ki_pos = *ppos; 2981 error = filemap_get_pages(&iocb, len, &fbatch, true); 2982 if (error < 0) 2983 break; 2984 2985 /* 2986 * i_size must be checked after we know the pages are Uptodate. 2987 * 2988 * Checking i_size after the check allows us to calculate 2989 * the correct value for "nr", which means the zero-filled 2990 * part of the page is not copied back to userspace (unless 2991 * another truncate extends the file - this is desired though). 2992 */ 2993 isize = i_size_read(in->f_mapping->host); 2994 if (unlikely(*ppos >= isize)) 2995 break; 2996 end_offset = min_t(loff_t, isize, *ppos + len); 2997 2998 /* 2999 * Once we start copying data, we don't want to be touching any 3000 * cachelines that might be contended: 3001 */ 3002 writably_mapped = mapping_writably_mapped(in->f_mapping); 3003 3004 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3005 struct folio *folio = fbatch.folios[i]; 3006 size_t n; 3007 3008 if (folio_pos(folio) >= end_offset) 3009 goto out; 3010 folio_mark_accessed(folio); 3011 3012 /* 3013 * If users can be writing to this folio using arbitrary 3014 * virtual addresses, take care of potential aliasing 3015 * before reading the folio on the kernel side. 3016 */ 3017 if (writably_mapped) 3018 flush_dcache_folio(folio); 3019 3020 n = min_t(loff_t, len, isize - *ppos); 3021 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3022 if (!n) 3023 goto out; 3024 len -= n; 3025 total_spliced += n; 3026 *ppos += n; 3027 in->f_ra.prev_pos = *ppos; 3028 if (pipe_is_full(pipe)) 3029 goto out; 3030 } 3031 3032 folio_batch_release(&fbatch); 3033 } while (len); 3034 3035 out: 3036 folio_batch_release(&fbatch); 3037 file_accessed(in); 3038 3039 return total_spliced ? total_spliced : error; 3040 } 3041 EXPORT_SYMBOL(filemap_splice_read); 3042 3043 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3044 struct address_space *mapping, struct folio *folio, 3045 loff_t start, loff_t end, bool seek_data) 3046 { 3047 const struct address_space_operations *ops = mapping->a_ops; 3048 size_t offset, bsz = i_blocksize(mapping->host); 3049 3050 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3051 return seek_data ? start : end; 3052 if (!ops->is_partially_uptodate) 3053 return seek_data ? end : start; 3054 3055 xas_pause(xas); 3056 rcu_read_unlock(); 3057 folio_lock(folio); 3058 if (unlikely(folio->mapping != mapping)) 3059 goto unlock; 3060 3061 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3062 3063 do { 3064 if (ops->is_partially_uptodate(folio, offset, bsz) == 3065 seek_data) 3066 break; 3067 start = (start + bsz) & ~((u64)bsz - 1); 3068 offset += bsz; 3069 } while (offset < folio_size(folio)); 3070 unlock: 3071 folio_unlock(folio); 3072 rcu_read_lock(); 3073 return start; 3074 } 3075 3076 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3077 { 3078 if (xa_is_value(folio)) 3079 return PAGE_SIZE << xas_get_order(xas); 3080 return folio_size(folio); 3081 } 3082 3083 /** 3084 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3085 * @mapping: Address space to search. 3086 * @start: First byte to consider. 3087 * @end: Limit of search (exclusive). 3088 * @whence: Either SEEK_HOLE or SEEK_DATA. 3089 * 3090 * If the page cache knows which blocks contain holes and which blocks 3091 * contain data, your filesystem can use this function to implement 3092 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3093 * entirely memory-based such as tmpfs, and filesystems which support 3094 * unwritten extents. 3095 * 3096 * Return: The requested offset on success, or -ENXIO if @whence specifies 3097 * SEEK_DATA and there is no data after @start. There is an implicit hole 3098 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3099 * and @end contain data. 3100 */ 3101 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3102 loff_t end, int whence) 3103 { 3104 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3105 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3106 bool seek_data = (whence == SEEK_DATA); 3107 struct folio *folio; 3108 3109 if (end <= start) 3110 return -ENXIO; 3111 3112 rcu_read_lock(); 3113 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3114 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3115 size_t seek_size; 3116 3117 if (start < pos) { 3118 if (!seek_data) 3119 goto unlock; 3120 start = pos; 3121 } 3122 3123 seek_size = seek_folio_size(&xas, folio); 3124 pos = round_up((u64)pos + 1, seek_size); 3125 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3126 seek_data); 3127 if (start < pos) 3128 goto unlock; 3129 if (start >= end) 3130 break; 3131 if (seek_size > PAGE_SIZE) 3132 xas_set(&xas, pos >> PAGE_SHIFT); 3133 if (!xa_is_value(folio)) 3134 folio_put(folio); 3135 } 3136 if (seek_data) 3137 start = -ENXIO; 3138 unlock: 3139 rcu_read_unlock(); 3140 if (folio && !xa_is_value(folio)) 3141 folio_put(folio); 3142 if (start > end) 3143 return end; 3144 return start; 3145 } 3146 3147 #ifdef CONFIG_MMU 3148 #define MMAP_LOTSAMISS (100) 3149 /* 3150 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3151 * @vmf - the vm_fault for this fault. 3152 * @folio - the folio to lock. 3153 * @fpin - the pointer to the file we may pin (or is already pinned). 3154 * 3155 * This works similar to lock_folio_or_retry in that it can drop the 3156 * mmap_lock. It differs in that it actually returns the folio locked 3157 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3158 * to drop the mmap_lock then fpin will point to the pinned file and 3159 * needs to be fput()'ed at a later point. 3160 */ 3161 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3162 struct file **fpin) 3163 { 3164 if (folio_trylock(folio)) 3165 return 1; 3166 3167 /* 3168 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3169 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3170 * is supposed to work. We have way too many special cases.. 3171 */ 3172 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3173 return 0; 3174 3175 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3176 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3177 if (__folio_lock_killable(folio)) { 3178 /* 3179 * We didn't have the right flags to drop the 3180 * fault lock, but all fault_handlers only check 3181 * for fatal signals if we return VM_FAULT_RETRY, 3182 * so we need to drop the fault lock here and 3183 * return 0 if we don't have a fpin. 3184 */ 3185 if (*fpin == NULL) 3186 release_fault_lock(vmf); 3187 return 0; 3188 } 3189 } else 3190 __folio_lock(folio); 3191 3192 return 1; 3193 } 3194 3195 /* 3196 * Synchronous readahead happens when we don't even find a page in the page 3197 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3198 * to drop the mmap sem we return the file that was pinned in order for us to do 3199 * that. If we didn't pin a file then we return NULL. The file that is 3200 * returned needs to be fput()'ed when we're done with it. 3201 */ 3202 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3203 { 3204 struct file *file = vmf->vma->vm_file; 3205 struct file_ra_state *ra = &file->f_ra; 3206 struct address_space *mapping = file->f_mapping; 3207 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3208 struct file *fpin = NULL; 3209 unsigned long vm_flags = vmf->vma->vm_flags; 3210 unsigned int mmap_miss; 3211 3212 /* 3213 * If we have pre-content watches we need to disable readahead to make 3214 * sure that we don't populate our mapping with 0 filled pages that we 3215 * never emitted an event for. 3216 */ 3217 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3218 return fpin; 3219 3220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3221 /* Use the readahead code, even if readahead is disabled */ 3222 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3223 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3224 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3225 ra->size = HPAGE_PMD_NR; 3226 /* 3227 * Fetch two PMD folios, so we get the chance to actually 3228 * readahead, unless we've been told not to. 3229 */ 3230 if (!(vm_flags & VM_RAND_READ)) 3231 ra->size *= 2; 3232 ra->async_size = HPAGE_PMD_NR; 3233 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3234 return fpin; 3235 } 3236 #endif 3237 3238 /* If we don't want any read-ahead, don't bother */ 3239 if (vm_flags & VM_RAND_READ) 3240 return fpin; 3241 if (!ra->ra_pages) 3242 return fpin; 3243 3244 if (vm_flags & VM_SEQ_READ) { 3245 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3246 page_cache_sync_ra(&ractl, ra->ra_pages); 3247 return fpin; 3248 } 3249 3250 /* Avoid banging the cache line if not needed */ 3251 mmap_miss = READ_ONCE(ra->mmap_miss); 3252 if (mmap_miss < MMAP_LOTSAMISS * 10) 3253 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3254 3255 /* 3256 * Do we miss much more than hit in this file? If so, 3257 * stop bothering with read-ahead. It will only hurt. 3258 */ 3259 if (mmap_miss > MMAP_LOTSAMISS) 3260 return fpin; 3261 3262 /* 3263 * mmap read-around 3264 */ 3265 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3266 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3267 ra->size = ra->ra_pages; 3268 ra->async_size = ra->ra_pages / 4; 3269 ractl._index = ra->start; 3270 page_cache_ra_order(&ractl, ra, 0); 3271 return fpin; 3272 } 3273 3274 /* 3275 * Asynchronous readahead happens when we find the page and PG_readahead, 3276 * so we want to possibly extend the readahead further. We return the file that 3277 * was pinned if we have to drop the mmap_lock in order to do IO. 3278 */ 3279 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3280 struct folio *folio) 3281 { 3282 struct file *file = vmf->vma->vm_file; 3283 struct file_ra_state *ra = &file->f_ra; 3284 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3285 struct file *fpin = NULL; 3286 unsigned int mmap_miss; 3287 3288 /* See comment in do_sync_mmap_readahead. */ 3289 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3290 return fpin; 3291 3292 /* If we don't want any read-ahead, don't bother */ 3293 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3294 return fpin; 3295 3296 mmap_miss = READ_ONCE(ra->mmap_miss); 3297 if (mmap_miss) 3298 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3299 3300 if (folio_test_readahead(folio)) { 3301 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3302 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3303 } 3304 return fpin; 3305 } 3306 3307 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3308 { 3309 struct vm_area_struct *vma = vmf->vma; 3310 vm_fault_t ret = 0; 3311 pte_t *ptep; 3312 3313 /* 3314 * We might have COW'ed a pagecache folio and might now have an mlocked 3315 * anon folio mapped. The original pagecache folio is not mlocked and 3316 * might have been evicted. During a read+clear/modify/write update of 3317 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3318 * temporarily clear the PTE under PT lock and might detect it here as 3319 * "none" when not holding the PT lock. 3320 * 3321 * Not rechecking the PTE under PT lock could result in an unexpected 3322 * major fault in an mlock'ed region. Recheck only for this special 3323 * scenario while holding the PT lock, to not degrade non-mlocked 3324 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3325 * the number of times we hold PT lock. 3326 */ 3327 if (!(vma->vm_flags & VM_LOCKED)) 3328 return 0; 3329 3330 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3331 return 0; 3332 3333 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3334 &vmf->ptl); 3335 if (unlikely(!ptep)) 3336 return VM_FAULT_NOPAGE; 3337 3338 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3339 ret = VM_FAULT_NOPAGE; 3340 } else { 3341 spin_lock(vmf->ptl); 3342 if (unlikely(!pte_none(ptep_get(ptep)))) 3343 ret = VM_FAULT_NOPAGE; 3344 spin_unlock(vmf->ptl); 3345 } 3346 pte_unmap(ptep); 3347 return ret; 3348 } 3349 3350 /** 3351 * filemap_fsnotify_fault - maybe emit a pre-content event. 3352 * @vmf: struct vm_fault containing details of the fault. 3353 * 3354 * If we have a pre-content watch on this file we will emit an event for this 3355 * range. If we return anything the fault caller should return immediately, we 3356 * will return VM_FAULT_RETRY if we had to emit an event, which will trigger the 3357 * fault again and then the fault handler will run the second time through. 3358 * 3359 * Return: a bitwise-OR of %VM_FAULT_ codes, 0 if nothing happened. 3360 */ 3361 vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf) 3362 { 3363 struct file *fpin = NULL; 3364 int mask = (vmf->flags & FAULT_FLAG_WRITE) ? MAY_WRITE : MAY_ACCESS; 3365 loff_t pos = vmf->pgoff >> PAGE_SHIFT; 3366 size_t count = PAGE_SIZE; 3367 int err; 3368 3369 /* 3370 * We already did this and now we're retrying with everything locked, 3371 * don't emit the event and continue. 3372 */ 3373 if (vmf->flags & FAULT_FLAG_TRIED) 3374 return 0; 3375 3376 /* No watches, we're done. */ 3377 if (likely(!FMODE_FSNOTIFY_HSM(vmf->vma->vm_file->f_mode))) 3378 return 0; 3379 3380 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3381 if (!fpin) 3382 return VM_FAULT_SIGBUS; 3383 3384 err = fsnotify_file_area_perm(fpin, mask, &pos, count); 3385 fput(fpin); 3386 if (err) 3387 return VM_FAULT_SIGBUS; 3388 return VM_FAULT_RETRY; 3389 } 3390 EXPORT_SYMBOL_GPL(filemap_fsnotify_fault); 3391 3392 /** 3393 * filemap_fault - read in file data for page fault handling 3394 * @vmf: struct vm_fault containing details of the fault 3395 * 3396 * filemap_fault() is invoked via the vma operations vector for a 3397 * mapped memory region to read in file data during a page fault. 3398 * 3399 * The goto's are kind of ugly, but this streamlines the normal case of having 3400 * it in the page cache, and handles the special cases reasonably without 3401 * having a lot of duplicated code. 3402 * 3403 * vma->vm_mm->mmap_lock must be held on entry. 3404 * 3405 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3406 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3407 * 3408 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3409 * has not been released. 3410 * 3411 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3412 * 3413 * Return: bitwise-OR of %VM_FAULT_ codes. 3414 */ 3415 vm_fault_t filemap_fault(struct vm_fault *vmf) 3416 { 3417 int error; 3418 struct file *file = vmf->vma->vm_file; 3419 struct file *fpin = NULL; 3420 struct address_space *mapping = file->f_mapping; 3421 struct inode *inode = mapping->host; 3422 pgoff_t max_idx, index = vmf->pgoff; 3423 struct folio *folio; 3424 vm_fault_t ret = 0; 3425 bool mapping_locked = false; 3426 3427 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3428 if (unlikely(index >= max_idx)) 3429 return VM_FAULT_SIGBUS; 3430 3431 trace_mm_filemap_fault(mapping, index); 3432 3433 /* 3434 * Do we have something in the page cache already? 3435 */ 3436 folio = filemap_get_folio(mapping, index); 3437 if (likely(!IS_ERR(folio))) { 3438 /* 3439 * We found the page, so try async readahead before waiting for 3440 * the lock. 3441 */ 3442 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3443 fpin = do_async_mmap_readahead(vmf, folio); 3444 if (unlikely(!folio_test_uptodate(folio))) { 3445 filemap_invalidate_lock_shared(mapping); 3446 mapping_locked = true; 3447 } 3448 } else { 3449 ret = filemap_fault_recheck_pte_none(vmf); 3450 if (unlikely(ret)) 3451 return ret; 3452 3453 /* No page in the page cache at all */ 3454 count_vm_event(PGMAJFAULT); 3455 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3456 ret = VM_FAULT_MAJOR; 3457 fpin = do_sync_mmap_readahead(vmf); 3458 retry_find: 3459 /* 3460 * See comment in filemap_create_folio() why we need 3461 * invalidate_lock 3462 */ 3463 if (!mapping_locked) { 3464 filemap_invalidate_lock_shared(mapping); 3465 mapping_locked = true; 3466 } 3467 folio = __filemap_get_folio(mapping, index, 3468 FGP_CREAT|FGP_FOR_MMAP, 3469 vmf->gfp_mask); 3470 if (IS_ERR(folio)) { 3471 if (fpin) 3472 goto out_retry; 3473 filemap_invalidate_unlock_shared(mapping); 3474 return VM_FAULT_OOM; 3475 } 3476 } 3477 3478 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3479 goto out_retry; 3480 3481 /* Did it get truncated? */ 3482 if (unlikely(folio->mapping != mapping)) { 3483 folio_unlock(folio); 3484 folio_put(folio); 3485 goto retry_find; 3486 } 3487 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3488 3489 /* 3490 * We have a locked folio in the page cache, now we need to check 3491 * that it's up-to-date. If not, it is going to be due to an error, 3492 * or because readahead was otherwise unable to retrieve it. 3493 */ 3494 if (unlikely(!folio_test_uptodate(folio))) { 3495 /* 3496 * If this is a precontent file we have can now emit an event to 3497 * try and populate the folio. 3498 */ 3499 if (!(vmf->flags & FAULT_FLAG_TRIED) && 3500 unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) { 3501 loff_t pos = folio_pos(folio); 3502 size_t count = folio_size(folio); 3503 3504 /* We're NOWAIT, we have to retry. */ 3505 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) { 3506 folio_unlock(folio); 3507 goto out_retry; 3508 } 3509 3510 if (mapping_locked) 3511 filemap_invalidate_unlock_shared(mapping); 3512 mapping_locked = false; 3513 3514 folio_unlock(folio); 3515 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3516 if (!fpin) 3517 goto out_retry; 3518 3519 error = fsnotify_file_area_perm(fpin, MAY_ACCESS, &pos, 3520 count); 3521 if (error) 3522 ret = VM_FAULT_SIGBUS; 3523 goto out_retry; 3524 } 3525 3526 /* 3527 * If the invalidate lock is not held, the folio was in cache 3528 * and uptodate and now it is not. Strange but possible since we 3529 * didn't hold the page lock all the time. Let's drop 3530 * everything, get the invalidate lock and try again. 3531 */ 3532 if (!mapping_locked) { 3533 folio_unlock(folio); 3534 folio_put(folio); 3535 goto retry_find; 3536 } 3537 3538 /* 3539 * OK, the folio is really not uptodate. This can be because the 3540 * VMA has the VM_RAND_READ flag set, or because an error 3541 * arose. Let's read it in directly. 3542 */ 3543 goto page_not_uptodate; 3544 } 3545 3546 /* 3547 * We've made it this far and we had to drop our mmap_lock, now is the 3548 * time to return to the upper layer and have it re-find the vma and 3549 * redo the fault. 3550 */ 3551 if (fpin) { 3552 folio_unlock(folio); 3553 goto out_retry; 3554 } 3555 if (mapping_locked) 3556 filemap_invalidate_unlock_shared(mapping); 3557 3558 /* 3559 * Found the page and have a reference on it. 3560 * We must recheck i_size under page lock. 3561 */ 3562 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3563 if (unlikely(index >= max_idx)) { 3564 folio_unlock(folio); 3565 folio_put(folio); 3566 return VM_FAULT_SIGBUS; 3567 } 3568 3569 vmf->page = folio_file_page(folio, index); 3570 return ret | VM_FAULT_LOCKED; 3571 3572 page_not_uptodate: 3573 /* 3574 * Umm, take care of errors if the page isn't up-to-date. 3575 * Try to re-read it _once_. We do this synchronously, 3576 * because there really aren't any performance issues here 3577 * and we need to check for errors. 3578 */ 3579 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3580 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3581 if (fpin) 3582 goto out_retry; 3583 folio_put(folio); 3584 3585 if (!error || error == AOP_TRUNCATED_PAGE) 3586 goto retry_find; 3587 filemap_invalidate_unlock_shared(mapping); 3588 3589 return VM_FAULT_SIGBUS; 3590 3591 out_retry: 3592 /* 3593 * We dropped the mmap_lock, we need to return to the fault handler to 3594 * re-find the vma and come back and find our hopefully still populated 3595 * page. 3596 */ 3597 if (!IS_ERR(folio)) 3598 folio_put(folio); 3599 if (mapping_locked) 3600 filemap_invalidate_unlock_shared(mapping); 3601 if (fpin) 3602 fput(fpin); 3603 return ret | VM_FAULT_RETRY; 3604 } 3605 EXPORT_SYMBOL(filemap_fault); 3606 3607 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3608 pgoff_t start) 3609 { 3610 struct mm_struct *mm = vmf->vma->vm_mm; 3611 3612 /* Huge page is mapped? No need to proceed. */ 3613 if (pmd_trans_huge(*vmf->pmd)) { 3614 folio_unlock(folio); 3615 folio_put(folio); 3616 return true; 3617 } 3618 3619 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3620 struct page *page = folio_file_page(folio, start); 3621 vm_fault_t ret = do_set_pmd(vmf, page); 3622 if (!ret) { 3623 /* The page is mapped successfully, reference consumed. */ 3624 folio_unlock(folio); 3625 return true; 3626 } 3627 } 3628 3629 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3630 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3631 3632 return false; 3633 } 3634 3635 static struct folio *next_uptodate_folio(struct xa_state *xas, 3636 struct address_space *mapping, pgoff_t end_pgoff) 3637 { 3638 struct folio *folio = xas_next_entry(xas, end_pgoff); 3639 unsigned long max_idx; 3640 3641 do { 3642 if (!folio) 3643 return NULL; 3644 if (xas_retry(xas, folio)) 3645 continue; 3646 if (xa_is_value(folio)) 3647 continue; 3648 if (!folio_try_get(folio)) 3649 continue; 3650 if (folio_test_locked(folio)) 3651 goto skip; 3652 /* Has the page moved or been split? */ 3653 if (unlikely(folio != xas_reload(xas))) 3654 goto skip; 3655 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3656 goto skip; 3657 if (!folio_trylock(folio)) 3658 goto skip; 3659 if (folio->mapping != mapping) 3660 goto unlock; 3661 if (!folio_test_uptodate(folio)) 3662 goto unlock; 3663 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3664 if (xas->xa_index >= max_idx) 3665 goto unlock; 3666 return folio; 3667 unlock: 3668 folio_unlock(folio); 3669 skip: 3670 folio_put(folio); 3671 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3672 3673 return NULL; 3674 } 3675 3676 /* 3677 * Map page range [start_page, start_page + nr_pages) of folio. 3678 * start_page is gotten from start by folio_page(folio, start) 3679 */ 3680 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3681 struct folio *folio, unsigned long start, 3682 unsigned long addr, unsigned int nr_pages, 3683 unsigned long *rss, unsigned int *mmap_miss) 3684 { 3685 vm_fault_t ret = 0; 3686 struct page *page = folio_page(folio, start); 3687 unsigned int count = 0; 3688 pte_t *old_ptep = vmf->pte; 3689 3690 do { 3691 if (PageHWPoison(page + count)) 3692 goto skip; 3693 3694 /* 3695 * If there are too many folios that are recently evicted 3696 * in a file, they will probably continue to be evicted. 3697 * In such situation, read-ahead is only a waste of IO. 3698 * Don't decrease mmap_miss in this scenario to make sure 3699 * we can stop read-ahead. 3700 */ 3701 if (!folio_test_workingset(folio)) 3702 (*mmap_miss)++; 3703 3704 /* 3705 * NOTE: If there're PTE markers, we'll leave them to be 3706 * handled in the specific fault path, and it'll prohibit the 3707 * fault-around logic. 3708 */ 3709 if (!pte_none(ptep_get(&vmf->pte[count]))) 3710 goto skip; 3711 3712 count++; 3713 continue; 3714 skip: 3715 if (count) { 3716 set_pte_range(vmf, folio, page, count, addr); 3717 *rss += count; 3718 folio_ref_add(folio, count); 3719 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3720 ret = VM_FAULT_NOPAGE; 3721 } 3722 3723 count++; 3724 page += count; 3725 vmf->pte += count; 3726 addr += count * PAGE_SIZE; 3727 count = 0; 3728 } while (--nr_pages > 0); 3729 3730 if (count) { 3731 set_pte_range(vmf, folio, page, count, addr); 3732 *rss += count; 3733 folio_ref_add(folio, count); 3734 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3735 ret = VM_FAULT_NOPAGE; 3736 } 3737 3738 vmf->pte = old_ptep; 3739 3740 return ret; 3741 } 3742 3743 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3744 struct folio *folio, unsigned long addr, 3745 unsigned long *rss, unsigned int *mmap_miss) 3746 { 3747 vm_fault_t ret = 0; 3748 struct page *page = &folio->page; 3749 3750 if (PageHWPoison(page)) 3751 return ret; 3752 3753 /* See comment of filemap_map_folio_range() */ 3754 if (!folio_test_workingset(folio)) 3755 (*mmap_miss)++; 3756 3757 /* 3758 * NOTE: If there're PTE markers, we'll leave them to be 3759 * handled in the specific fault path, and it'll prohibit 3760 * the fault-around logic. 3761 */ 3762 if (!pte_none(ptep_get(vmf->pte))) 3763 return ret; 3764 3765 if (vmf->address == addr) 3766 ret = VM_FAULT_NOPAGE; 3767 3768 set_pte_range(vmf, folio, page, 1, addr); 3769 (*rss)++; 3770 folio_ref_inc(folio); 3771 3772 return ret; 3773 } 3774 3775 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3776 pgoff_t start_pgoff, pgoff_t end_pgoff) 3777 { 3778 struct vm_area_struct *vma = vmf->vma; 3779 struct file *file = vma->vm_file; 3780 struct address_space *mapping = file->f_mapping; 3781 pgoff_t file_end, last_pgoff = start_pgoff; 3782 unsigned long addr; 3783 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3784 struct folio *folio; 3785 vm_fault_t ret = 0; 3786 unsigned long rss = 0; 3787 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3788 3789 rcu_read_lock(); 3790 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3791 if (!folio) 3792 goto out; 3793 3794 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3795 ret = VM_FAULT_NOPAGE; 3796 goto out; 3797 } 3798 3799 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3800 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3801 if (!vmf->pte) { 3802 folio_unlock(folio); 3803 folio_put(folio); 3804 goto out; 3805 } 3806 3807 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3808 if (end_pgoff > file_end) 3809 end_pgoff = file_end; 3810 3811 folio_type = mm_counter_file(folio); 3812 do { 3813 unsigned long end; 3814 3815 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3816 vmf->pte += xas.xa_index - last_pgoff; 3817 last_pgoff = xas.xa_index; 3818 end = folio_next_index(folio) - 1; 3819 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3820 3821 if (!folio_test_large(folio)) 3822 ret |= filemap_map_order0_folio(vmf, 3823 folio, addr, &rss, &mmap_miss); 3824 else 3825 ret |= filemap_map_folio_range(vmf, folio, 3826 xas.xa_index - folio->index, addr, 3827 nr_pages, &rss, &mmap_miss); 3828 3829 folio_unlock(folio); 3830 folio_put(folio); 3831 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3832 add_mm_counter(vma->vm_mm, folio_type, rss); 3833 pte_unmap_unlock(vmf->pte, vmf->ptl); 3834 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3835 out: 3836 rcu_read_unlock(); 3837 3838 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3839 if (mmap_miss >= mmap_miss_saved) 3840 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3841 else 3842 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3843 3844 return ret; 3845 } 3846 EXPORT_SYMBOL(filemap_map_pages); 3847 3848 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3849 { 3850 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3851 struct folio *folio = page_folio(vmf->page); 3852 vm_fault_t ret = VM_FAULT_LOCKED; 3853 3854 sb_start_pagefault(mapping->host->i_sb); 3855 file_update_time(vmf->vma->vm_file); 3856 folio_lock(folio); 3857 if (folio->mapping != mapping) { 3858 folio_unlock(folio); 3859 ret = VM_FAULT_NOPAGE; 3860 goto out; 3861 } 3862 /* 3863 * We mark the folio dirty already here so that when freeze is in 3864 * progress, we are guaranteed that writeback during freezing will 3865 * see the dirty folio and writeprotect it again. 3866 */ 3867 folio_mark_dirty(folio); 3868 folio_wait_stable(folio); 3869 out: 3870 sb_end_pagefault(mapping->host->i_sb); 3871 return ret; 3872 } 3873 3874 const struct vm_operations_struct generic_file_vm_ops = { 3875 .fault = filemap_fault, 3876 .map_pages = filemap_map_pages, 3877 .page_mkwrite = filemap_page_mkwrite, 3878 }; 3879 3880 /* This is used for a general mmap of a disk file */ 3881 3882 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3883 { 3884 struct address_space *mapping = file->f_mapping; 3885 3886 if (!mapping->a_ops->read_folio) 3887 return -ENOEXEC; 3888 file_accessed(file); 3889 vma->vm_ops = &generic_file_vm_ops; 3890 return 0; 3891 } 3892 3893 /* 3894 * This is for filesystems which do not implement ->writepage. 3895 */ 3896 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3897 { 3898 if (vma_is_shared_maywrite(vma)) 3899 return -EINVAL; 3900 return generic_file_mmap(file, vma); 3901 } 3902 #else 3903 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3904 { 3905 return VM_FAULT_SIGBUS; 3906 } 3907 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3908 { 3909 return -ENOSYS; 3910 } 3911 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3912 { 3913 return -ENOSYS; 3914 } 3915 #endif /* CONFIG_MMU */ 3916 3917 EXPORT_SYMBOL(filemap_page_mkwrite); 3918 EXPORT_SYMBOL(generic_file_mmap); 3919 EXPORT_SYMBOL(generic_file_readonly_mmap); 3920 3921 static struct folio *do_read_cache_folio(struct address_space *mapping, 3922 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3923 { 3924 struct folio *folio; 3925 int err; 3926 3927 if (!filler) 3928 filler = mapping->a_ops->read_folio; 3929 repeat: 3930 folio = filemap_get_folio(mapping, index); 3931 if (IS_ERR(folio)) { 3932 folio = filemap_alloc_folio(gfp, 3933 mapping_min_folio_order(mapping)); 3934 if (!folio) 3935 return ERR_PTR(-ENOMEM); 3936 index = mapping_align_index(mapping, index); 3937 err = filemap_add_folio(mapping, folio, index, gfp); 3938 if (unlikely(err)) { 3939 folio_put(folio); 3940 if (err == -EEXIST) 3941 goto repeat; 3942 /* Presumably ENOMEM for xarray node */ 3943 return ERR_PTR(err); 3944 } 3945 3946 goto filler; 3947 } 3948 if (folio_test_uptodate(folio)) 3949 goto out; 3950 3951 if (!folio_trylock(folio)) { 3952 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3953 goto repeat; 3954 } 3955 3956 /* Folio was truncated from mapping */ 3957 if (!folio->mapping) { 3958 folio_unlock(folio); 3959 folio_put(folio); 3960 goto repeat; 3961 } 3962 3963 /* Someone else locked and filled the page in a very small window */ 3964 if (folio_test_uptodate(folio)) { 3965 folio_unlock(folio); 3966 goto out; 3967 } 3968 3969 filler: 3970 err = filemap_read_folio(file, filler, folio); 3971 if (err) { 3972 folio_put(folio); 3973 if (err == AOP_TRUNCATED_PAGE) 3974 goto repeat; 3975 return ERR_PTR(err); 3976 } 3977 3978 out: 3979 folio_mark_accessed(folio); 3980 return folio; 3981 } 3982 3983 /** 3984 * read_cache_folio - Read into page cache, fill it if needed. 3985 * @mapping: The address_space to read from. 3986 * @index: The index to read. 3987 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3988 * @file: Passed to filler function, may be NULL if not required. 3989 * 3990 * Read one page into the page cache. If it succeeds, the folio returned 3991 * will contain @index, but it may not be the first page of the folio. 3992 * 3993 * If the filler function returns an error, it will be returned to the 3994 * caller. 3995 * 3996 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3997 * Return: An uptodate folio on success, ERR_PTR() on failure. 3998 */ 3999 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 4000 filler_t filler, struct file *file) 4001 { 4002 return do_read_cache_folio(mapping, index, filler, file, 4003 mapping_gfp_mask(mapping)); 4004 } 4005 EXPORT_SYMBOL(read_cache_folio); 4006 4007 /** 4008 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 4009 * @mapping: The address_space for the folio. 4010 * @index: The index that the allocated folio will contain. 4011 * @gfp: The page allocator flags to use if allocating. 4012 * 4013 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4014 * any new memory allocations done using the specified allocation flags. 4015 * 4016 * The most likely error from this function is EIO, but ENOMEM is 4017 * possible and so is EINTR. If ->read_folio returns another error, 4018 * that will be returned to the caller. 4019 * 4020 * The function expects mapping->invalidate_lock to be already held. 4021 * 4022 * Return: Uptodate folio on success, ERR_PTR() on failure. 4023 */ 4024 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4025 pgoff_t index, gfp_t gfp) 4026 { 4027 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4028 } 4029 EXPORT_SYMBOL(mapping_read_folio_gfp); 4030 4031 static struct page *do_read_cache_page(struct address_space *mapping, 4032 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4033 { 4034 struct folio *folio; 4035 4036 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4037 if (IS_ERR(folio)) 4038 return &folio->page; 4039 return folio_file_page(folio, index); 4040 } 4041 4042 struct page *read_cache_page(struct address_space *mapping, 4043 pgoff_t index, filler_t *filler, struct file *file) 4044 { 4045 return do_read_cache_page(mapping, index, filler, file, 4046 mapping_gfp_mask(mapping)); 4047 } 4048 EXPORT_SYMBOL(read_cache_page); 4049 4050 /** 4051 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4052 * @mapping: the page's address_space 4053 * @index: the page index 4054 * @gfp: the page allocator flags to use if allocating 4055 * 4056 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4057 * any new page allocations done using the specified allocation flags. 4058 * 4059 * If the page does not get brought uptodate, return -EIO. 4060 * 4061 * The function expects mapping->invalidate_lock to be already held. 4062 * 4063 * Return: up to date page on success, ERR_PTR() on failure. 4064 */ 4065 struct page *read_cache_page_gfp(struct address_space *mapping, 4066 pgoff_t index, 4067 gfp_t gfp) 4068 { 4069 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4070 } 4071 EXPORT_SYMBOL(read_cache_page_gfp); 4072 4073 /* 4074 * Warn about a page cache invalidation failure during a direct I/O write. 4075 */ 4076 static void dio_warn_stale_pagecache(struct file *filp) 4077 { 4078 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4079 char pathname[128]; 4080 char *path; 4081 4082 errseq_set(&filp->f_mapping->wb_err, -EIO); 4083 if (__ratelimit(&_rs)) { 4084 path = file_path(filp, pathname, sizeof(pathname)); 4085 if (IS_ERR(path)) 4086 path = "(unknown)"; 4087 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4088 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4089 current->comm); 4090 } 4091 } 4092 4093 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4094 { 4095 struct address_space *mapping = iocb->ki_filp->f_mapping; 4096 4097 if (mapping->nrpages && 4098 invalidate_inode_pages2_range(mapping, 4099 iocb->ki_pos >> PAGE_SHIFT, 4100 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4101 dio_warn_stale_pagecache(iocb->ki_filp); 4102 } 4103 4104 ssize_t 4105 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4106 { 4107 struct address_space *mapping = iocb->ki_filp->f_mapping; 4108 size_t write_len = iov_iter_count(from); 4109 ssize_t written; 4110 4111 /* 4112 * If a page can not be invalidated, return 0 to fall back 4113 * to buffered write. 4114 */ 4115 written = kiocb_invalidate_pages(iocb, write_len); 4116 if (written) { 4117 if (written == -EBUSY) 4118 return 0; 4119 return written; 4120 } 4121 4122 written = mapping->a_ops->direct_IO(iocb, from); 4123 4124 /* 4125 * Finally, try again to invalidate clean pages which might have been 4126 * cached by non-direct readahead, or faulted in by get_user_pages() 4127 * if the source of the write was an mmap'ed region of the file 4128 * we're writing. Either one is a pretty crazy thing to do, 4129 * so we don't support it 100%. If this invalidation 4130 * fails, tough, the write still worked... 4131 * 4132 * Most of the time we do not need this since dio_complete() will do 4133 * the invalidation for us. However there are some file systems that 4134 * do not end up with dio_complete() being called, so let's not break 4135 * them by removing it completely. 4136 * 4137 * Noticeable example is a blkdev_direct_IO(). 4138 * 4139 * Skip invalidation for async writes or if mapping has no pages. 4140 */ 4141 if (written > 0) { 4142 struct inode *inode = mapping->host; 4143 loff_t pos = iocb->ki_pos; 4144 4145 kiocb_invalidate_post_direct_write(iocb, written); 4146 pos += written; 4147 write_len -= written; 4148 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4149 i_size_write(inode, pos); 4150 mark_inode_dirty(inode); 4151 } 4152 iocb->ki_pos = pos; 4153 } 4154 if (written != -EIOCBQUEUED) 4155 iov_iter_revert(from, write_len - iov_iter_count(from)); 4156 return written; 4157 } 4158 EXPORT_SYMBOL(generic_file_direct_write); 4159 4160 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4161 { 4162 struct file *file = iocb->ki_filp; 4163 loff_t pos = iocb->ki_pos; 4164 struct address_space *mapping = file->f_mapping; 4165 const struct address_space_operations *a_ops = mapping->a_ops; 4166 size_t chunk = mapping_max_folio_size(mapping); 4167 long status = 0; 4168 ssize_t written = 0; 4169 4170 do { 4171 struct folio *folio; 4172 size_t offset; /* Offset into folio */ 4173 size_t bytes; /* Bytes to write to folio */ 4174 size_t copied; /* Bytes copied from user */ 4175 void *fsdata = NULL; 4176 4177 bytes = iov_iter_count(i); 4178 retry: 4179 offset = pos & (chunk - 1); 4180 bytes = min(chunk - offset, bytes); 4181 balance_dirty_pages_ratelimited(mapping); 4182 4183 if (fatal_signal_pending(current)) { 4184 status = -EINTR; 4185 break; 4186 } 4187 4188 status = a_ops->write_begin(file, mapping, pos, bytes, 4189 &folio, &fsdata); 4190 if (unlikely(status < 0)) 4191 break; 4192 4193 offset = offset_in_folio(folio, pos); 4194 if (bytes > folio_size(folio) - offset) 4195 bytes = folio_size(folio) - offset; 4196 4197 if (mapping_writably_mapped(mapping)) 4198 flush_dcache_folio(folio); 4199 4200 /* 4201 * Faults here on mmap()s can recurse into arbitrary 4202 * filesystem code. Lots of locks are held that can 4203 * deadlock. Use an atomic copy to avoid deadlocking 4204 * in page fault handling. 4205 */ 4206 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4207 flush_dcache_folio(folio); 4208 4209 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4210 folio, fsdata); 4211 if (unlikely(status != copied)) { 4212 iov_iter_revert(i, copied - max(status, 0L)); 4213 if (unlikely(status < 0)) 4214 break; 4215 } 4216 cond_resched(); 4217 4218 if (unlikely(status == 0)) { 4219 /* 4220 * A short copy made ->write_end() reject the 4221 * thing entirely. Might be memory poisoning 4222 * halfway through, might be a race with munmap, 4223 * might be severe memory pressure. 4224 */ 4225 if (chunk > PAGE_SIZE) 4226 chunk /= 2; 4227 if (copied) { 4228 bytes = copied; 4229 goto retry; 4230 } 4231 4232 /* 4233 * 'folio' is now unlocked and faults on it can be 4234 * handled. Ensure forward progress by trying to 4235 * fault it in now. 4236 */ 4237 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4238 status = -EFAULT; 4239 break; 4240 } 4241 } else { 4242 pos += status; 4243 written += status; 4244 } 4245 } while (iov_iter_count(i)); 4246 4247 if (!written) 4248 return status; 4249 iocb->ki_pos += written; 4250 return written; 4251 } 4252 EXPORT_SYMBOL(generic_perform_write); 4253 4254 /** 4255 * __generic_file_write_iter - write data to a file 4256 * @iocb: IO state structure (file, offset, etc.) 4257 * @from: iov_iter with data to write 4258 * 4259 * This function does all the work needed for actually writing data to a 4260 * file. It does all basic checks, removes SUID from the file, updates 4261 * modification times and calls proper subroutines depending on whether we 4262 * do direct IO or a standard buffered write. 4263 * 4264 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4265 * object which does not need locking at all. 4266 * 4267 * This function does *not* take care of syncing data in case of O_SYNC write. 4268 * A caller has to handle it. This is mainly due to the fact that we want to 4269 * avoid syncing under i_rwsem. 4270 * 4271 * Return: 4272 * * number of bytes written, even for truncated writes 4273 * * negative error code if no data has been written at all 4274 */ 4275 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4276 { 4277 struct file *file = iocb->ki_filp; 4278 struct address_space *mapping = file->f_mapping; 4279 struct inode *inode = mapping->host; 4280 ssize_t ret; 4281 4282 ret = file_remove_privs(file); 4283 if (ret) 4284 return ret; 4285 4286 ret = file_update_time(file); 4287 if (ret) 4288 return ret; 4289 4290 if (iocb->ki_flags & IOCB_DIRECT) { 4291 ret = generic_file_direct_write(iocb, from); 4292 /* 4293 * If the write stopped short of completing, fall back to 4294 * buffered writes. Some filesystems do this for writes to 4295 * holes, for example. For DAX files, a buffered write will 4296 * not succeed (even if it did, DAX does not handle dirty 4297 * page-cache pages correctly). 4298 */ 4299 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4300 return ret; 4301 return direct_write_fallback(iocb, from, ret, 4302 generic_perform_write(iocb, from)); 4303 } 4304 4305 return generic_perform_write(iocb, from); 4306 } 4307 EXPORT_SYMBOL(__generic_file_write_iter); 4308 4309 /** 4310 * generic_file_write_iter - write data to a file 4311 * @iocb: IO state structure 4312 * @from: iov_iter with data to write 4313 * 4314 * This is a wrapper around __generic_file_write_iter() to be used by most 4315 * filesystems. It takes care of syncing the file in case of O_SYNC file 4316 * and acquires i_rwsem as needed. 4317 * Return: 4318 * * negative error code if no data has been written at all of 4319 * vfs_fsync_range() failed for a synchronous write 4320 * * number of bytes written, even for truncated writes 4321 */ 4322 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4323 { 4324 struct file *file = iocb->ki_filp; 4325 struct inode *inode = file->f_mapping->host; 4326 ssize_t ret; 4327 4328 inode_lock(inode); 4329 ret = generic_write_checks(iocb, from); 4330 if (ret > 0) 4331 ret = __generic_file_write_iter(iocb, from); 4332 inode_unlock(inode); 4333 4334 if (ret > 0) 4335 ret = generic_write_sync(iocb, ret); 4336 return ret; 4337 } 4338 EXPORT_SYMBOL(generic_file_write_iter); 4339 4340 /** 4341 * filemap_release_folio() - Release fs-specific metadata on a folio. 4342 * @folio: The folio which the kernel is trying to free. 4343 * @gfp: Memory allocation flags (and I/O mode). 4344 * 4345 * The address_space is trying to release any data attached to a folio 4346 * (presumably at folio->private). 4347 * 4348 * This will also be called if the private_2 flag is set on a page, 4349 * indicating that the folio has other metadata associated with it. 4350 * 4351 * The @gfp argument specifies whether I/O may be performed to release 4352 * this page (__GFP_IO), and whether the call may block 4353 * (__GFP_RECLAIM & __GFP_FS). 4354 * 4355 * Return: %true if the release was successful, otherwise %false. 4356 */ 4357 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4358 { 4359 struct address_space * const mapping = folio->mapping; 4360 4361 BUG_ON(!folio_test_locked(folio)); 4362 if (!folio_needs_release(folio)) 4363 return true; 4364 if (folio_test_writeback(folio)) 4365 return false; 4366 4367 if (mapping && mapping->a_ops->release_folio) 4368 return mapping->a_ops->release_folio(folio, gfp); 4369 return try_to_free_buffers(folio); 4370 } 4371 EXPORT_SYMBOL(filemap_release_folio); 4372 4373 /** 4374 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4375 * @inode: The inode to flush 4376 * @flush: Set to write back rather than simply invalidate. 4377 * @start: First byte to in range. 4378 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4379 * onwards. 4380 * 4381 * Invalidate all the folios on an inode that contribute to the specified 4382 * range, possibly writing them back first. Whilst the operation is 4383 * undertaken, the invalidate lock is held to prevent new folios from being 4384 * installed. 4385 */ 4386 int filemap_invalidate_inode(struct inode *inode, bool flush, 4387 loff_t start, loff_t end) 4388 { 4389 struct address_space *mapping = inode->i_mapping; 4390 pgoff_t first = start >> PAGE_SHIFT; 4391 pgoff_t last = end >> PAGE_SHIFT; 4392 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4393 4394 if (!mapping || !mapping->nrpages || end < start) 4395 goto out; 4396 4397 /* Prevent new folios from being added to the inode. */ 4398 filemap_invalidate_lock(mapping); 4399 4400 if (!mapping->nrpages) 4401 goto unlock; 4402 4403 unmap_mapping_pages(mapping, first, nr, false); 4404 4405 /* Write back the data if we're asked to. */ 4406 if (flush) { 4407 struct writeback_control wbc = { 4408 .sync_mode = WB_SYNC_ALL, 4409 .nr_to_write = LONG_MAX, 4410 .range_start = start, 4411 .range_end = end, 4412 }; 4413 4414 filemap_fdatawrite_wbc(mapping, &wbc); 4415 } 4416 4417 /* Wait for writeback to complete on all folios and discard. */ 4418 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4419 4420 unlock: 4421 filemap_invalidate_unlock(mapping); 4422 out: 4423 return filemap_check_errors(mapping); 4424 } 4425 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4426 4427 #ifdef CONFIG_CACHESTAT_SYSCALL 4428 /** 4429 * filemap_cachestat() - compute the page cache statistics of a mapping 4430 * @mapping: The mapping to compute the statistics for. 4431 * @first_index: The starting page cache index. 4432 * @last_index: The final page index (inclusive). 4433 * @cs: the cachestat struct to write the result to. 4434 * 4435 * This will query the page cache statistics of a mapping in the 4436 * page range of [first_index, last_index] (inclusive). The statistics 4437 * queried include: number of dirty pages, number of pages marked for 4438 * writeback, and the number of (recently) evicted pages. 4439 */ 4440 static void filemap_cachestat(struct address_space *mapping, 4441 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4442 { 4443 XA_STATE(xas, &mapping->i_pages, first_index); 4444 struct folio *folio; 4445 4446 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4447 mem_cgroup_flush_stats_ratelimited(NULL); 4448 4449 rcu_read_lock(); 4450 xas_for_each(&xas, folio, last_index) { 4451 int order; 4452 unsigned long nr_pages; 4453 pgoff_t folio_first_index, folio_last_index; 4454 4455 /* 4456 * Don't deref the folio. It is not pinned, and might 4457 * get freed (and reused) underneath us. 4458 * 4459 * We *could* pin it, but that would be expensive for 4460 * what should be a fast and lightweight syscall. 4461 * 4462 * Instead, derive all information of interest from 4463 * the rcu-protected xarray. 4464 */ 4465 4466 if (xas_retry(&xas, folio)) 4467 continue; 4468 4469 order = xas_get_order(&xas); 4470 nr_pages = 1 << order; 4471 folio_first_index = round_down(xas.xa_index, 1 << order); 4472 folio_last_index = folio_first_index + nr_pages - 1; 4473 4474 /* Folios might straddle the range boundaries, only count covered pages */ 4475 if (folio_first_index < first_index) 4476 nr_pages -= first_index - folio_first_index; 4477 4478 if (folio_last_index > last_index) 4479 nr_pages -= folio_last_index - last_index; 4480 4481 if (xa_is_value(folio)) { 4482 /* page is evicted */ 4483 void *shadow = (void *)folio; 4484 bool workingset; /* not used */ 4485 4486 cs->nr_evicted += nr_pages; 4487 4488 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4489 if (shmem_mapping(mapping)) { 4490 /* shmem file - in swap cache */ 4491 swp_entry_t swp = radix_to_swp_entry(folio); 4492 4493 /* swapin error results in poisoned entry */ 4494 if (non_swap_entry(swp)) 4495 goto resched; 4496 4497 /* 4498 * Getting a swap entry from the shmem 4499 * inode means we beat 4500 * shmem_unuse(). rcu_read_lock() 4501 * ensures swapoff waits for us before 4502 * freeing the swapper space. However, 4503 * we can race with swapping and 4504 * invalidation, so there might not be 4505 * a shadow in the swapcache (yet). 4506 */ 4507 shadow = get_shadow_from_swap_cache(swp); 4508 if (!shadow) 4509 goto resched; 4510 } 4511 #endif 4512 if (workingset_test_recent(shadow, true, &workingset, false)) 4513 cs->nr_recently_evicted += nr_pages; 4514 4515 goto resched; 4516 } 4517 4518 /* page is in cache */ 4519 cs->nr_cache += nr_pages; 4520 4521 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4522 cs->nr_dirty += nr_pages; 4523 4524 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4525 cs->nr_writeback += nr_pages; 4526 4527 resched: 4528 if (need_resched()) { 4529 xas_pause(&xas); 4530 cond_resched_rcu(); 4531 } 4532 } 4533 rcu_read_unlock(); 4534 } 4535 4536 /* 4537 * See mincore: reveal pagecache information only for files 4538 * that the calling process has write access to, or could (if 4539 * tried) open for writing. 4540 */ 4541 static inline bool can_do_cachestat(struct file *f) 4542 { 4543 if (f->f_mode & FMODE_WRITE) 4544 return true; 4545 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4546 return true; 4547 return file_permission(f, MAY_WRITE) == 0; 4548 } 4549 4550 /* 4551 * The cachestat(2) system call. 4552 * 4553 * cachestat() returns the page cache statistics of a file in the 4554 * bytes range specified by `off` and `len`: number of cached pages, 4555 * number of dirty pages, number of pages marked for writeback, 4556 * number of evicted pages, and number of recently evicted pages. 4557 * 4558 * An evicted page is a page that is previously in the page cache 4559 * but has been evicted since. A page is recently evicted if its last 4560 * eviction was recent enough that its reentry to the cache would 4561 * indicate that it is actively being used by the system, and that 4562 * there is memory pressure on the system. 4563 * 4564 * `off` and `len` must be non-negative integers. If `len` > 0, 4565 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4566 * we will query in the range from `off` to the end of the file. 4567 * 4568 * The `flags` argument is unused for now, but is included for future 4569 * extensibility. User should pass 0 (i.e no flag specified). 4570 * 4571 * Currently, hugetlbfs is not supported. 4572 * 4573 * Because the status of a page can change after cachestat() checks it 4574 * but before it returns to the application, the returned values may 4575 * contain stale information. 4576 * 4577 * return values: 4578 * zero - success 4579 * -EFAULT - cstat or cstat_range points to an illegal address 4580 * -EINVAL - invalid flags 4581 * -EBADF - invalid file descriptor 4582 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4583 */ 4584 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4585 struct cachestat_range __user *, cstat_range, 4586 struct cachestat __user *, cstat, unsigned int, flags) 4587 { 4588 CLASS(fd, f)(fd); 4589 struct address_space *mapping; 4590 struct cachestat_range csr; 4591 struct cachestat cs; 4592 pgoff_t first_index, last_index; 4593 4594 if (fd_empty(f)) 4595 return -EBADF; 4596 4597 if (copy_from_user(&csr, cstat_range, 4598 sizeof(struct cachestat_range))) 4599 return -EFAULT; 4600 4601 /* hugetlbfs is not supported */ 4602 if (is_file_hugepages(fd_file(f))) 4603 return -EOPNOTSUPP; 4604 4605 if (!can_do_cachestat(fd_file(f))) 4606 return -EPERM; 4607 4608 if (flags != 0) 4609 return -EINVAL; 4610 4611 first_index = csr.off >> PAGE_SHIFT; 4612 last_index = 4613 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4614 memset(&cs, 0, sizeof(struct cachestat)); 4615 mapping = fd_file(f)->f_mapping; 4616 filemap_cachestat(mapping, first_index, last_index, &cs); 4617 4618 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4619 return -EFAULT; 4620 4621 return 0; 4622 } 4623 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4624