1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*freepage)(struct page *); 229 int refs = 1; 230 231 freepage = mapping->a_ops->freepage; 232 if (freepage) 233 freepage(&folio->page); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 if (end_byte < start_byte) 510 return; 511 512 pagevec_init(&pvec); 513 while (index <= end) { 514 unsigned i; 515 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 517 end, PAGECACHE_TAG_WRITEBACK); 518 if (!nr_pages) 519 break; 520 521 for (i = 0; i < nr_pages; i++) { 522 struct page *page = pvec.pages[i]; 523 524 wait_on_page_writeback(page); 525 ClearPageError(page); 526 } 527 pagevec_release(&pvec); 528 cond_resched(); 529 } 530 } 531 532 /** 533 * filemap_fdatawait_range - wait for writeback to complete 534 * @mapping: address space structure to wait for 535 * @start_byte: offset in bytes where the range starts 536 * @end_byte: offset in bytes where the range ends (inclusive) 537 * 538 * Walk the list of under-writeback pages of the given address space 539 * in the given range and wait for all of them. Check error status of 540 * the address space and return it. 541 * 542 * Since the error status of the address space is cleared by this function, 543 * callers are responsible for checking the return value and handling and/or 544 * reporting the error. 545 * 546 * Return: error status of the address space. 547 */ 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 549 loff_t end_byte) 550 { 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 552 return filemap_check_errors(mapping); 553 } 554 EXPORT_SYMBOL(filemap_fdatawait_range); 555 556 /** 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 558 * @mapping: address space structure to wait for 559 * @start_byte: offset in bytes where the range starts 560 * @end_byte: offset in bytes where the range ends (inclusive) 561 * 562 * Walk the list of under-writeback pages of the given address space in the 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 564 * this function does not clear error status of the address space. 565 * 566 * Use this function if callers don't handle errors themselves. Expected 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 568 * fsfreeze(8) 569 */ 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 571 loff_t start_byte, loff_t end_byte) 572 { 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 574 return filemap_check_and_keep_errors(mapping); 575 } 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 577 578 /** 579 * file_fdatawait_range - wait for writeback to complete 580 * @file: file pointing to address space structure to wait for 581 * @start_byte: offset in bytes where the range starts 582 * @end_byte: offset in bytes where the range ends (inclusive) 583 * 584 * Walk the list of under-writeback pages of the address space that file 585 * refers to, in the given range and wait for all of them. Check error 586 * status of the address space vs. the file->f_wb_err cursor and return it. 587 * 588 * Since the error status of the file is advanced by this function, 589 * callers are responsible for checking the return value and handling and/or 590 * reporting the error. 591 * 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 593 */ 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 595 { 596 struct address_space *mapping = file->f_mapping; 597 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 599 return file_check_and_advance_wb_err(file); 600 } 601 EXPORT_SYMBOL(file_fdatawait_range); 602 603 /** 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 605 * @mapping: address space structure to wait for 606 * 607 * Walk the list of under-writeback pages of the given address space 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 609 * does not clear error status of the address space. 610 * 611 * Use this function if callers don't handle errors themselves. Expected 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 613 * fsfreeze(8) 614 * 615 * Return: error status of the address space. 616 */ 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 618 { 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 620 return filemap_check_and_keep_errors(mapping); 621 } 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 623 624 /* Returns true if writeback might be needed or already in progress. */ 625 static bool mapping_needs_writeback(struct address_space *mapping) 626 { 627 return mapping->nrpages; 628 } 629 630 bool filemap_range_has_writeback(struct address_space *mapping, 631 loff_t start_byte, loff_t end_byte) 632 { 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 634 pgoff_t max = end_byte >> PAGE_SHIFT; 635 struct page *page; 636 637 if (end_byte < start_byte) 638 return false; 639 640 rcu_read_lock(); 641 xas_for_each(&xas, page, max) { 642 if (xas_retry(&xas, page)) 643 continue; 644 if (xa_is_value(page)) 645 continue; 646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 647 break; 648 } 649 rcu_read_unlock(); 650 return page != NULL; 651 } 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 653 654 /** 655 * filemap_write_and_wait_range - write out & wait on a file range 656 * @mapping: the address_space for the pages 657 * @lstart: offset in bytes where the range starts 658 * @lend: offset in bytes where the range ends (inclusive) 659 * 660 * Write out and wait upon file offsets lstart->lend, inclusive. 661 * 662 * Note that @lend is inclusive (describes the last byte to be written) so 663 * that this function can be used to write to the very end-of-file (end = -1). 664 * 665 * Return: error status of the address space. 666 */ 667 int filemap_write_and_wait_range(struct address_space *mapping, 668 loff_t lstart, loff_t lend) 669 { 670 int err = 0; 671 672 if (mapping_needs_writeback(mapping)) { 673 err = __filemap_fdatawrite_range(mapping, lstart, lend, 674 WB_SYNC_ALL); 675 /* 676 * Even if the above returned error, the pages may be 677 * written partially (e.g. -ENOSPC), so we wait for it. 678 * But the -EIO is special case, it may indicate the worst 679 * thing (e.g. bug) happened, so we avoid waiting for it. 680 */ 681 if (err != -EIO) { 682 int err2 = filemap_fdatawait_range(mapping, 683 lstart, lend); 684 if (!err) 685 err = err2; 686 } else { 687 /* Clear any previously stored errors */ 688 filemap_check_errors(mapping); 689 } 690 } else { 691 err = filemap_check_errors(mapping); 692 } 693 return err; 694 } 695 EXPORT_SYMBOL(filemap_write_and_wait_range); 696 697 void __filemap_set_wb_err(struct address_space *mapping, int err) 698 { 699 errseq_t eseq = errseq_set(&mapping->wb_err, err); 700 701 trace_filemap_set_wb_err(mapping, eseq); 702 } 703 EXPORT_SYMBOL(__filemap_set_wb_err); 704 705 /** 706 * file_check_and_advance_wb_err - report wb error (if any) that was previously 707 * and advance wb_err to current one 708 * @file: struct file on which the error is being reported 709 * 710 * When userland calls fsync (or something like nfsd does the equivalent), we 711 * want to report any writeback errors that occurred since the last fsync (or 712 * since the file was opened if there haven't been any). 713 * 714 * Grab the wb_err from the mapping. If it matches what we have in the file, 715 * then just quickly return 0. The file is all caught up. 716 * 717 * If it doesn't match, then take the mapping value, set the "seen" flag in 718 * it and try to swap it into place. If it works, or another task beat us 719 * to it with the new value, then update the f_wb_err and return the error 720 * portion. The error at this point must be reported via proper channels 721 * (a'la fsync, or NFS COMMIT operation, etc.). 722 * 723 * While we handle mapping->wb_err with atomic operations, the f_wb_err 724 * value is protected by the f_lock since we must ensure that it reflects 725 * the latest value swapped in for this file descriptor. 726 * 727 * Return: %0 on success, negative error code otherwise. 728 */ 729 int file_check_and_advance_wb_err(struct file *file) 730 { 731 int err = 0; 732 errseq_t old = READ_ONCE(file->f_wb_err); 733 struct address_space *mapping = file->f_mapping; 734 735 /* Locklessly handle the common case where nothing has changed */ 736 if (errseq_check(&mapping->wb_err, old)) { 737 /* Something changed, must use slow path */ 738 spin_lock(&file->f_lock); 739 old = file->f_wb_err; 740 err = errseq_check_and_advance(&mapping->wb_err, 741 &file->f_wb_err); 742 trace_file_check_and_advance_wb_err(file, old); 743 spin_unlock(&file->f_lock); 744 } 745 746 /* 747 * We're mostly using this function as a drop in replacement for 748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 749 * that the legacy code would have had on these flags. 750 */ 751 clear_bit(AS_EIO, &mapping->flags); 752 clear_bit(AS_ENOSPC, &mapping->flags); 753 return err; 754 } 755 EXPORT_SYMBOL(file_check_and_advance_wb_err); 756 757 /** 758 * file_write_and_wait_range - write out & wait on a file range 759 * @file: file pointing to address_space with pages 760 * @lstart: offset in bytes where the range starts 761 * @lend: offset in bytes where the range ends (inclusive) 762 * 763 * Write out and wait upon file offsets lstart->lend, inclusive. 764 * 765 * Note that @lend is inclusive (describes the last byte to be written) so 766 * that this function can be used to write to the very end-of-file (end = -1). 767 * 768 * After writing out and waiting on the data, we check and advance the 769 * f_wb_err cursor to the latest value, and return any errors detected there. 770 * 771 * Return: %0 on success, negative error code otherwise. 772 */ 773 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 774 { 775 int err = 0, err2; 776 struct address_space *mapping = file->f_mapping; 777 778 if (mapping_needs_writeback(mapping)) { 779 err = __filemap_fdatawrite_range(mapping, lstart, lend, 780 WB_SYNC_ALL); 781 /* See comment of filemap_write_and_wait() */ 782 if (err != -EIO) 783 __filemap_fdatawait_range(mapping, lstart, lend); 784 } 785 err2 = file_check_and_advance_wb_err(file); 786 if (!err) 787 err = err2; 788 return err; 789 } 790 EXPORT_SYMBOL(file_write_and_wait_range); 791 792 /** 793 * replace_page_cache_page - replace a pagecache page with a new one 794 * @old: page to be replaced 795 * @new: page to replace with 796 * 797 * This function replaces a page in the pagecache with a new one. On 798 * success it acquires the pagecache reference for the new page and 799 * drops it for the old page. Both the old and new pages must be 800 * locked. This function does not add the new page to the LRU, the 801 * caller must do that. 802 * 803 * The remove + add is atomic. This function cannot fail. 804 */ 805 void replace_page_cache_page(struct page *old, struct page *new) 806 { 807 struct folio *fold = page_folio(old); 808 struct folio *fnew = page_folio(new); 809 struct address_space *mapping = old->mapping; 810 void (*freepage)(struct page *) = mapping->a_ops->freepage; 811 pgoff_t offset = old->index; 812 XA_STATE(xas, &mapping->i_pages, offset); 813 814 VM_BUG_ON_PAGE(!PageLocked(old), old); 815 VM_BUG_ON_PAGE(!PageLocked(new), new); 816 VM_BUG_ON_PAGE(new->mapping, new); 817 818 get_page(new); 819 new->mapping = mapping; 820 new->index = offset; 821 822 mem_cgroup_migrate(fold, fnew); 823 824 xas_lock_irq(&xas); 825 xas_store(&xas, new); 826 827 old->mapping = NULL; 828 /* hugetlb pages do not participate in page cache accounting. */ 829 if (!PageHuge(old)) 830 __dec_lruvec_page_state(old, NR_FILE_PAGES); 831 if (!PageHuge(new)) 832 __inc_lruvec_page_state(new, NR_FILE_PAGES); 833 if (PageSwapBacked(old)) 834 __dec_lruvec_page_state(old, NR_SHMEM); 835 if (PageSwapBacked(new)) 836 __inc_lruvec_page_state(new, NR_SHMEM); 837 xas_unlock_irq(&xas); 838 if (freepage) 839 freepage(old); 840 put_page(old); 841 } 842 EXPORT_SYMBOL_GPL(replace_page_cache_page); 843 844 noinline int __filemap_add_folio(struct address_space *mapping, 845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 846 { 847 XA_STATE(xas, &mapping->i_pages, index); 848 int huge = folio_test_hugetlb(folio); 849 bool charged = false; 850 long nr = 1; 851 852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 854 mapping_set_update(&xas, mapping); 855 856 if (!huge) { 857 int error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 return error; 861 charged = true; 862 xas_set_order(&xas, index, folio_order(folio)); 863 nr = folio_nr_pages(folio); 864 } 865 866 gfp &= GFP_RECLAIM_MASK; 867 folio_ref_add(folio, nr); 868 folio->mapping = mapping; 869 folio->index = xas.xa_index; 870 871 do { 872 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 873 void *entry, *old = NULL; 874 875 if (order > folio_order(folio)) 876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 877 order, gfp); 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 } 886 887 if (old) { 888 if (shadowp) 889 *shadowp = old; 890 /* entry may have been split before we acquired lock */ 891 order = xa_get_order(xas.xa, xas.xa_index); 892 if (order > folio_order(folio)) { 893 /* How to handle large swap entries? */ 894 BUG_ON(shmem_mapping(mapping)); 895 xas_split(&xas, old, order); 896 xas_reset(&xas); 897 } 898 } 899 900 xas_store(&xas, folio); 901 if (xas_error(&xas)) 902 goto unlock; 903 904 mapping->nrpages += nr; 905 906 /* hugetlb pages do not participate in page cache accounting */ 907 if (!huge) { 908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 909 if (folio_test_pmd_mappable(folio)) 910 __lruvec_stat_mod_folio(folio, 911 NR_FILE_THPS, nr); 912 } 913 unlock: 914 xas_unlock_irq(&xas); 915 } while (xas_nomem(&xas, gfp)); 916 917 if (xas_error(&xas)) 918 goto error; 919 920 trace_mm_filemap_add_to_page_cache(folio); 921 return 0; 922 error: 923 if (charged) 924 mem_cgroup_uncharge(folio); 925 folio->mapping = NULL; 926 /* Leave page->index set: truncation relies upon it */ 927 folio_put_refs(folio, nr); 928 return xas_error(&xas); 929 } 930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 931 932 /** 933 * add_to_page_cache_locked - add a locked page to the pagecache 934 * @page: page to add 935 * @mapping: the page's address_space 936 * @offset: page index 937 * @gfp_mask: page allocation mode 938 * 939 * This function is used to add a page to the pagecache. It must be locked. 940 * This function does not add the page to the LRU. The caller must do that. 941 * 942 * Return: %0 on success, negative error code otherwise. 943 */ 944 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 945 pgoff_t offset, gfp_t gfp_mask) 946 { 947 return __filemap_add_folio(mapping, page_folio(page), offset, 948 gfp_mask, NULL); 949 } 950 EXPORT_SYMBOL(add_to_page_cache_locked); 951 952 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 953 pgoff_t index, gfp_t gfp) 954 { 955 void *shadow = NULL; 956 int ret; 957 958 __folio_set_locked(folio); 959 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 960 if (unlikely(ret)) 961 __folio_clear_locked(folio); 962 else { 963 /* 964 * The folio might have been evicted from cache only 965 * recently, in which case it should be activated like 966 * any other repeatedly accessed folio. 967 * The exception is folios getting rewritten; evicting other 968 * data from the working set, only to cache data that will 969 * get overwritten with something else, is a waste of memory. 970 */ 971 WARN_ON_ONCE(folio_test_active(folio)); 972 if (!(gfp & __GFP_WRITE) && shadow) 973 workingset_refault(folio, shadow); 974 folio_add_lru(folio); 975 } 976 return ret; 977 } 978 EXPORT_SYMBOL_GPL(filemap_add_folio); 979 980 #ifdef CONFIG_NUMA 981 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 982 { 983 int n; 984 struct folio *folio; 985 986 if (cpuset_do_page_mem_spread()) { 987 unsigned int cpuset_mems_cookie; 988 do { 989 cpuset_mems_cookie = read_mems_allowed_begin(); 990 n = cpuset_mem_spread_node(); 991 folio = __folio_alloc_node(gfp, order, n); 992 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 993 994 return folio; 995 } 996 return folio_alloc(gfp, order); 997 } 998 EXPORT_SYMBOL(filemap_alloc_folio); 999 #endif 1000 1001 /* 1002 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1003 * 1004 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1005 * 1006 * @mapping1: the first mapping to lock 1007 * @mapping2: the second mapping to lock 1008 */ 1009 void filemap_invalidate_lock_two(struct address_space *mapping1, 1010 struct address_space *mapping2) 1011 { 1012 if (mapping1 > mapping2) 1013 swap(mapping1, mapping2); 1014 if (mapping1) 1015 down_write(&mapping1->invalidate_lock); 1016 if (mapping2 && mapping1 != mapping2) 1017 down_write_nested(&mapping2->invalidate_lock, 1); 1018 } 1019 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1020 1021 /* 1022 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1023 * 1024 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1025 * 1026 * @mapping1: the first mapping to unlock 1027 * @mapping2: the second mapping to unlock 1028 */ 1029 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1030 struct address_space *mapping2) 1031 { 1032 if (mapping1) 1033 up_write(&mapping1->invalidate_lock); 1034 if (mapping2 && mapping1 != mapping2) 1035 up_write(&mapping2->invalidate_lock); 1036 } 1037 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1038 1039 /* 1040 * In order to wait for pages to become available there must be 1041 * waitqueues associated with pages. By using a hash table of 1042 * waitqueues where the bucket discipline is to maintain all 1043 * waiters on the same queue and wake all when any of the pages 1044 * become available, and for the woken contexts to check to be 1045 * sure the appropriate page became available, this saves space 1046 * at a cost of "thundering herd" phenomena during rare hash 1047 * collisions. 1048 */ 1049 #define PAGE_WAIT_TABLE_BITS 8 1050 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1051 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1052 1053 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1054 { 1055 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1056 } 1057 1058 void __init pagecache_init(void) 1059 { 1060 int i; 1061 1062 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1063 init_waitqueue_head(&folio_wait_table[i]); 1064 1065 page_writeback_init(); 1066 1067 /* 1068 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date, 1069 * and splice's page_cache_pipe_buf_confirm() needs to see that. 1070 */ 1071 SetPageUptodate(ZERO_PAGE(0)); 1072 } 1073 1074 /* 1075 * The page wait code treats the "wait->flags" somewhat unusually, because 1076 * we have multiple different kinds of waits, not just the usual "exclusive" 1077 * one. 1078 * 1079 * We have: 1080 * 1081 * (a) no special bits set: 1082 * 1083 * We're just waiting for the bit to be released, and when a waker 1084 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1085 * and remove it from the wait queue. 1086 * 1087 * Simple and straightforward. 1088 * 1089 * (b) WQ_FLAG_EXCLUSIVE: 1090 * 1091 * The waiter is waiting to get the lock, and only one waiter should 1092 * be woken up to avoid any thundering herd behavior. We'll set the 1093 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1094 * 1095 * This is the traditional exclusive wait. 1096 * 1097 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1098 * 1099 * The waiter is waiting to get the bit, and additionally wants the 1100 * lock to be transferred to it for fair lock behavior. If the lock 1101 * cannot be taken, we stop walking the wait queue without waking 1102 * the waiter. 1103 * 1104 * This is the "fair lock handoff" case, and in addition to setting 1105 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1106 * that it now has the lock. 1107 */ 1108 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1109 { 1110 unsigned int flags; 1111 struct wait_page_key *key = arg; 1112 struct wait_page_queue *wait_page 1113 = container_of(wait, struct wait_page_queue, wait); 1114 1115 if (!wake_page_match(wait_page, key)) 1116 return 0; 1117 1118 /* 1119 * If it's a lock handoff wait, we get the bit for it, and 1120 * stop walking (and do not wake it up) if we can't. 1121 */ 1122 flags = wait->flags; 1123 if (flags & WQ_FLAG_EXCLUSIVE) { 1124 if (test_bit(key->bit_nr, &key->folio->flags)) 1125 return -1; 1126 if (flags & WQ_FLAG_CUSTOM) { 1127 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1128 return -1; 1129 flags |= WQ_FLAG_DONE; 1130 } 1131 } 1132 1133 /* 1134 * We are holding the wait-queue lock, but the waiter that 1135 * is waiting for this will be checking the flags without 1136 * any locking. 1137 * 1138 * So update the flags atomically, and wake up the waiter 1139 * afterwards to avoid any races. This store-release pairs 1140 * with the load-acquire in folio_wait_bit_common(). 1141 */ 1142 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1143 wake_up_state(wait->private, mode); 1144 1145 /* 1146 * Ok, we have successfully done what we're waiting for, 1147 * and we can unconditionally remove the wait entry. 1148 * 1149 * Note that this pairs with the "finish_wait()" in the 1150 * waiter, and has to be the absolute last thing we do. 1151 * After this list_del_init(&wait->entry) the wait entry 1152 * might be de-allocated and the process might even have 1153 * exited. 1154 */ 1155 list_del_init_careful(&wait->entry); 1156 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1157 } 1158 1159 static void folio_wake_bit(struct folio *folio, int bit_nr) 1160 { 1161 wait_queue_head_t *q = folio_waitqueue(folio); 1162 struct wait_page_key key; 1163 unsigned long flags; 1164 wait_queue_entry_t bookmark; 1165 1166 key.folio = folio; 1167 key.bit_nr = bit_nr; 1168 key.page_match = 0; 1169 1170 bookmark.flags = 0; 1171 bookmark.private = NULL; 1172 bookmark.func = NULL; 1173 INIT_LIST_HEAD(&bookmark.entry); 1174 1175 spin_lock_irqsave(&q->lock, flags); 1176 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1177 1178 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1179 /* 1180 * Take a breather from holding the lock, 1181 * allow pages that finish wake up asynchronously 1182 * to acquire the lock and remove themselves 1183 * from wait queue 1184 */ 1185 spin_unlock_irqrestore(&q->lock, flags); 1186 cpu_relax(); 1187 spin_lock_irqsave(&q->lock, flags); 1188 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1189 } 1190 1191 /* 1192 * It's possible to miss clearing waiters here, when we woke our page 1193 * waiters, but the hashed waitqueue has waiters for other pages on it. 1194 * That's okay, it's a rare case. The next waker will clear it. 1195 * 1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1197 * other), the flag may be cleared in the course of freeing the page; 1198 * but that is not required for correctness. 1199 */ 1200 if (!waitqueue_active(q) || !key.page_match) 1201 folio_clear_waiters(folio); 1202 1203 spin_unlock_irqrestore(&q->lock, flags); 1204 } 1205 1206 static void folio_wake(struct folio *folio, int bit) 1207 { 1208 if (!folio_test_waiters(folio)) 1209 return; 1210 folio_wake_bit(folio, bit); 1211 } 1212 1213 /* 1214 * A choice of three behaviors for folio_wait_bit_common(): 1215 */ 1216 enum behavior { 1217 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1218 * __folio_lock() waiting on then setting PG_locked. 1219 */ 1220 SHARED, /* Hold ref to page and check the bit when woken, like 1221 * folio_wait_writeback() waiting on PG_writeback. 1222 */ 1223 DROP, /* Drop ref to page before wait, no check when woken, 1224 * like folio_put_wait_locked() on PG_locked. 1225 */ 1226 }; 1227 1228 /* 1229 * Attempt to check (or get) the folio flag, and mark us done 1230 * if successful. 1231 */ 1232 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1233 struct wait_queue_entry *wait) 1234 { 1235 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1236 if (test_and_set_bit(bit_nr, &folio->flags)) 1237 return false; 1238 } else if (test_bit(bit_nr, &folio->flags)) 1239 return false; 1240 1241 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1242 return true; 1243 } 1244 1245 /* How many times do we accept lock stealing from under a waiter? */ 1246 int sysctl_page_lock_unfairness = 5; 1247 1248 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1249 int state, enum behavior behavior) 1250 { 1251 wait_queue_head_t *q = folio_waitqueue(folio); 1252 int unfairness = sysctl_page_lock_unfairness; 1253 struct wait_page_queue wait_page; 1254 wait_queue_entry_t *wait = &wait_page.wait; 1255 bool thrashing = false; 1256 bool delayacct = false; 1257 unsigned long pflags; 1258 1259 if (bit_nr == PG_locked && 1260 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1261 if (!folio_test_swapbacked(folio)) { 1262 delayacct_thrashing_start(); 1263 delayacct = true; 1264 } 1265 psi_memstall_enter(&pflags); 1266 thrashing = true; 1267 } 1268 1269 init_wait(wait); 1270 wait->func = wake_page_function; 1271 wait_page.folio = folio; 1272 wait_page.bit_nr = bit_nr; 1273 1274 repeat: 1275 wait->flags = 0; 1276 if (behavior == EXCLUSIVE) { 1277 wait->flags = WQ_FLAG_EXCLUSIVE; 1278 if (--unfairness < 0) 1279 wait->flags |= WQ_FLAG_CUSTOM; 1280 } 1281 1282 /* 1283 * Do one last check whether we can get the 1284 * page bit synchronously. 1285 * 1286 * Do the folio_set_waiters() marking before that 1287 * to let any waker we _just_ missed know they 1288 * need to wake us up (otherwise they'll never 1289 * even go to the slow case that looks at the 1290 * page queue), and add ourselves to the wait 1291 * queue if we need to sleep. 1292 * 1293 * This part needs to be done under the queue 1294 * lock to avoid races. 1295 */ 1296 spin_lock_irq(&q->lock); 1297 folio_set_waiters(folio); 1298 if (!folio_trylock_flag(folio, bit_nr, wait)) 1299 __add_wait_queue_entry_tail(q, wait); 1300 spin_unlock_irq(&q->lock); 1301 1302 /* 1303 * From now on, all the logic will be based on 1304 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1305 * see whether the page bit testing has already 1306 * been done by the wake function. 1307 * 1308 * We can drop our reference to the folio. 1309 */ 1310 if (behavior == DROP) 1311 folio_put(folio); 1312 1313 /* 1314 * Note that until the "finish_wait()", or until 1315 * we see the WQ_FLAG_WOKEN flag, we need to 1316 * be very careful with the 'wait->flags', because 1317 * we may race with a waker that sets them. 1318 */ 1319 for (;;) { 1320 unsigned int flags; 1321 1322 set_current_state(state); 1323 1324 /* Loop until we've been woken or interrupted */ 1325 flags = smp_load_acquire(&wait->flags); 1326 if (!(flags & WQ_FLAG_WOKEN)) { 1327 if (signal_pending_state(state, current)) 1328 break; 1329 1330 io_schedule(); 1331 continue; 1332 } 1333 1334 /* If we were non-exclusive, we're done */ 1335 if (behavior != EXCLUSIVE) 1336 break; 1337 1338 /* If the waker got the lock for us, we're done */ 1339 if (flags & WQ_FLAG_DONE) 1340 break; 1341 1342 /* 1343 * Otherwise, if we're getting the lock, we need to 1344 * try to get it ourselves. 1345 * 1346 * And if that fails, we'll have to retry this all. 1347 */ 1348 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1349 goto repeat; 1350 1351 wait->flags |= WQ_FLAG_DONE; 1352 break; 1353 } 1354 1355 /* 1356 * If a signal happened, this 'finish_wait()' may remove the last 1357 * waiter from the wait-queues, but the folio waiters bit will remain 1358 * set. That's ok. The next wakeup will take care of it, and trying 1359 * to do it here would be difficult and prone to races. 1360 */ 1361 finish_wait(q, wait); 1362 1363 if (thrashing) { 1364 if (delayacct) 1365 delayacct_thrashing_end(); 1366 psi_memstall_leave(&pflags); 1367 } 1368 1369 /* 1370 * NOTE! The wait->flags weren't stable until we've done the 1371 * 'finish_wait()', and we could have exited the loop above due 1372 * to a signal, and had a wakeup event happen after the signal 1373 * test but before the 'finish_wait()'. 1374 * 1375 * So only after the finish_wait() can we reliably determine 1376 * if we got woken up or not, so we can now figure out the final 1377 * return value based on that state without races. 1378 * 1379 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1380 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1381 */ 1382 if (behavior == EXCLUSIVE) 1383 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1384 1385 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1386 } 1387 1388 #ifdef CONFIG_MIGRATION 1389 /** 1390 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1391 * @entry: migration swap entry. 1392 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1393 * for pte entries, pass NULL for pmd entries. 1394 * @ptl: already locked ptl. This function will drop the lock. 1395 * 1396 * Wait for a migration entry referencing the given page to be removed. This is 1397 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1398 * this can be called without taking a reference on the page. Instead this 1399 * should be called while holding the ptl for the migration entry referencing 1400 * the page. 1401 * 1402 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1403 * 1404 * This follows the same logic as folio_wait_bit_common() so see the comments 1405 * there. 1406 */ 1407 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1408 spinlock_t *ptl) 1409 { 1410 struct wait_page_queue wait_page; 1411 wait_queue_entry_t *wait = &wait_page.wait; 1412 bool thrashing = false; 1413 bool delayacct = false; 1414 unsigned long pflags; 1415 wait_queue_head_t *q; 1416 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1417 1418 q = folio_waitqueue(folio); 1419 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1420 if (!folio_test_swapbacked(folio)) { 1421 delayacct_thrashing_start(); 1422 delayacct = true; 1423 } 1424 psi_memstall_enter(&pflags); 1425 thrashing = true; 1426 } 1427 1428 init_wait(wait); 1429 wait->func = wake_page_function; 1430 wait_page.folio = folio; 1431 wait_page.bit_nr = PG_locked; 1432 wait->flags = 0; 1433 1434 spin_lock_irq(&q->lock); 1435 folio_set_waiters(folio); 1436 if (!folio_trylock_flag(folio, PG_locked, wait)) 1437 __add_wait_queue_entry_tail(q, wait); 1438 spin_unlock_irq(&q->lock); 1439 1440 /* 1441 * If a migration entry exists for the page the migration path must hold 1442 * a valid reference to the page, and it must take the ptl to remove the 1443 * migration entry. So the page is valid until the ptl is dropped. 1444 */ 1445 if (ptep) 1446 pte_unmap_unlock(ptep, ptl); 1447 else 1448 spin_unlock(ptl); 1449 1450 for (;;) { 1451 unsigned int flags; 1452 1453 set_current_state(TASK_UNINTERRUPTIBLE); 1454 1455 /* Loop until we've been woken or interrupted */ 1456 flags = smp_load_acquire(&wait->flags); 1457 if (!(flags & WQ_FLAG_WOKEN)) { 1458 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1459 break; 1460 1461 io_schedule(); 1462 continue; 1463 } 1464 break; 1465 } 1466 1467 finish_wait(q, wait); 1468 1469 if (thrashing) { 1470 if (delayacct) 1471 delayacct_thrashing_end(); 1472 psi_memstall_leave(&pflags); 1473 } 1474 } 1475 #endif 1476 1477 void folio_wait_bit(struct folio *folio, int bit_nr) 1478 { 1479 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1480 } 1481 EXPORT_SYMBOL(folio_wait_bit); 1482 1483 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1484 { 1485 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1486 } 1487 EXPORT_SYMBOL(folio_wait_bit_killable); 1488 1489 /** 1490 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1491 * @folio: The folio to wait for. 1492 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1493 * 1494 * The caller should hold a reference on @folio. They expect the page to 1495 * become unlocked relatively soon, but do not wish to hold up migration 1496 * (for example) by holding the reference while waiting for the folio to 1497 * come unlocked. After this function returns, the caller should not 1498 * dereference @folio. 1499 * 1500 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1501 */ 1502 int folio_put_wait_locked(struct folio *folio, int state) 1503 { 1504 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1505 } 1506 1507 /** 1508 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1509 * @folio: Folio defining the wait queue of interest 1510 * @waiter: Waiter to add to the queue 1511 * 1512 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1513 */ 1514 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1515 { 1516 wait_queue_head_t *q = folio_waitqueue(folio); 1517 unsigned long flags; 1518 1519 spin_lock_irqsave(&q->lock, flags); 1520 __add_wait_queue_entry_tail(q, waiter); 1521 folio_set_waiters(folio); 1522 spin_unlock_irqrestore(&q->lock, flags); 1523 } 1524 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1525 1526 #ifndef clear_bit_unlock_is_negative_byte 1527 1528 /* 1529 * PG_waiters is the high bit in the same byte as PG_lock. 1530 * 1531 * On x86 (and on many other architectures), we can clear PG_lock and 1532 * test the sign bit at the same time. But if the architecture does 1533 * not support that special operation, we just do this all by hand 1534 * instead. 1535 * 1536 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1537 * being cleared, but a memory barrier should be unnecessary since it is 1538 * in the same byte as PG_locked. 1539 */ 1540 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1541 { 1542 clear_bit_unlock(nr, mem); 1543 /* smp_mb__after_atomic(); */ 1544 return test_bit(PG_waiters, mem); 1545 } 1546 1547 #endif 1548 1549 /** 1550 * folio_unlock - Unlock a locked folio. 1551 * @folio: The folio. 1552 * 1553 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1554 * 1555 * Context: May be called from interrupt or process context. May not be 1556 * called from NMI context. 1557 */ 1558 void folio_unlock(struct folio *folio) 1559 { 1560 /* Bit 7 allows x86 to check the byte's sign bit */ 1561 BUILD_BUG_ON(PG_waiters != 7); 1562 BUILD_BUG_ON(PG_locked > 7); 1563 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1564 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1565 folio_wake_bit(folio, PG_locked); 1566 } 1567 EXPORT_SYMBOL(folio_unlock); 1568 1569 /** 1570 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1571 * @folio: The folio. 1572 * 1573 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1574 * it. The folio reference held for PG_private_2 being set is released. 1575 * 1576 * This is, for example, used when a netfs folio is being written to a local 1577 * disk cache, thereby allowing writes to the cache for the same folio to be 1578 * serialised. 1579 */ 1580 void folio_end_private_2(struct folio *folio) 1581 { 1582 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1583 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1584 folio_wake_bit(folio, PG_private_2); 1585 folio_put(folio); 1586 } 1587 EXPORT_SYMBOL(folio_end_private_2); 1588 1589 /** 1590 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1591 * @folio: The folio to wait on. 1592 * 1593 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1594 */ 1595 void folio_wait_private_2(struct folio *folio) 1596 { 1597 while (folio_test_private_2(folio)) 1598 folio_wait_bit(folio, PG_private_2); 1599 } 1600 EXPORT_SYMBOL(folio_wait_private_2); 1601 1602 /** 1603 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1604 * @folio: The folio to wait on. 1605 * 1606 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1607 * fatal signal is received by the calling task. 1608 * 1609 * Return: 1610 * - 0 if successful. 1611 * - -EINTR if a fatal signal was encountered. 1612 */ 1613 int folio_wait_private_2_killable(struct folio *folio) 1614 { 1615 int ret = 0; 1616 1617 while (folio_test_private_2(folio)) { 1618 ret = folio_wait_bit_killable(folio, PG_private_2); 1619 if (ret < 0) 1620 break; 1621 } 1622 1623 return ret; 1624 } 1625 EXPORT_SYMBOL(folio_wait_private_2_killable); 1626 1627 /** 1628 * folio_end_writeback - End writeback against a folio. 1629 * @folio: The folio. 1630 */ 1631 void folio_end_writeback(struct folio *folio) 1632 { 1633 /* 1634 * folio_test_clear_reclaim() could be used here but it is an 1635 * atomic operation and overkill in this particular case. Failing 1636 * to shuffle a folio marked for immediate reclaim is too mild 1637 * a gain to justify taking an atomic operation penalty at the 1638 * end of every folio writeback. 1639 */ 1640 if (folio_test_reclaim(folio)) { 1641 folio_clear_reclaim(folio); 1642 folio_rotate_reclaimable(folio); 1643 } 1644 1645 /* 1646 * Writeback does not hold a folio reference of its own, relying 1647 * on truncation to wait for the clearing of PG_writeback. 1648 * But here we must make sure that the folio is not freed and 1649 * reused before the folio_wake(). 1650 */ 1651 folio_get(folio); 1652 if (!__folio_end_writeback(folio)) 1653 BUG(); 1654 1655 smp_mb__after_atomic(); 1656 folio_wake(folio, PG_writeback); 1657 acct_reclaim_writeback(folio); 1658 folio_put(folio); 1659 } 1660 EXPORT_SYMBOL(folio_end_writeback); 1661 1662 /* 1663 * After completing I/O on a page, call this routine to update the page 1664 * flags appropriately 1665 */ 1666 void page_endio(struct page *page, bool is_write, int err) 1667 { 1668 if (!is_write) { 1669 if (!err) { 1670 SetPageUptodate(page); 1671 } else { 1672 ClearPageUptodate(page); 1673 SetPageError(page); 1674 } 1675 unlock_page(page); 1676 } else { 1677 if (err) { 1678 struct address_space *mapping; 1679 1680 SetPageError(page); 1681 mapping = page_mapping(page); 1682 if (mapping) 1683 mapping_set_error(mapping, err); 1684 } 1685 end_page_writeback(page); 1686 } 1687 } 1688 EXPORT_SYMBOL_GPL(page_endio); 1689 1690 /** 1691 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1692 * @folio: The folio to lock 1693 */ 1694 void __folio_lock(struct folio *folio) 1695 { 1696 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1697 EXCLUSIVE); 1698 } 1699 EXPORT_SYMBOL(__folio_lock); 1700 1701 int __folio_lock_killable(struct folio *folio) 1702 { 1703 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1704 EXCLUSIVE); 1705 } 1706 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1707 1708 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1709 { 1710 struct wait_queue_head *q = folio_waitqueue(folio); 1711 int ret = 0; 1712 1713 wait->folio = folio; 1714 wait->bit_nr = PG_locked; 1715 1716 spin_lock_irq(&q->lock); 1717 __add_wait_queue_entry_tail(q, &wait->wait); 1718 folio_set_waiters(folio); 1719 ret = !folio_trylock(folio); 1720 /* 1721 * If we were successful now, we know we're still on the 1722 * waitqueue as we're still under the lock. This means it's 1723 * safe to remove and return success, we know the callback 1724 * isn't going to trigger. 1725 */ 1726 if (!ret) 1727 __remove_wait_queue(q, &wait->wait); 1728 else 1729 ret = -EIOCBQUEUED; 1730 spin_unlock_irq(&q->lock); 1731 return ret; 1732 } 1733 1734 /* 1735 * Return values: 1736 * true - folio is locked; mmap_lock is still held. 1737 * false - folio is not locked. 1738 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1739 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1740 * which case mmap_lock is still held. 1741 * 1742 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1743 * with the folio locked and the mmap_lock unperturbed. 1744 */ 1745 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1746 unsigned int flags) 1747 { 1748 if (fault_flag_allow_retry_first(flags)) { 1749 /* 1750 * CAUTION! In this case, mmap_lock is not released 1751 * even though return 0. 1752 */ 1753 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1754 return false; 1755 1756 mmap_read_unlock(mm); 1757 if (flags & FAULT_FLAG_KILLABLE) 1758 folio_wait_locked_killable(folio); 1759 else 1760 folio_wait_locked(folio); 1761 return false; 1762 } 1763 if (flags & FAULT_FLAG_KILLABLE) { 1764 bool ret; 1765 1766 ret = __folio_lock_killable(folio); 1767 if (ret) { 1768 mmap_read_unlock(mm); 1769 return false; 1770 } 1771 } else { 1772 __folio_lock(folio); 1773 } 1774 1775 return true; 1776 } 1777 1778 /** 1779 * page_cache_next_miss() - Find the next gap in the page cache. 1780 * @mapping: Mapping. 1781 * @index: Index. 1782 * @max_scan: Maximum range to search. 1783 * 1784 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1785 * gap with the lowest index. 1786 * 1787 * This function may be called under the rcu_read_lock. However, this will 1788 * not atomically search a snapshot of the cache at a single point in time. 1789 * For example, if a gap is created at index 5, then subsequently a gap is 1790 * created at index 10, page_cache_next_miss covering both indices may 1791 * return 10 if called under the rcu_read_lock. 1792 * 1793 * Return: The index of the gap if found, otherwise an index outside the 1794 * range specified (in which case 'return - index >= max_scan' will be true). 1795 * In the rare case of index wrap-around, 0 will be returned. 1796 */ 1797 pgoff_t page_cache_next_miss(struct address_space *mapping, 1798 pgoff_t index, unsigned long max_scan) 1799 { 1800 XA_STATE(xas, &mapping->i_pages, index); 1801 1802 while (max_scan--) { 1803 void *entry = xas_next(&xas); 1804 if (!entry || xa_is_value(entry)) 1805 break; 1806 if (xas.xa_index == 0) 1807 break; 1808 } 1809 1810 return xas.xa_index; 1811 } 1812 EXPORT_SYMBOL(page_cache_next_miss); 1813 1814 /** 1815 * page_cache_prev_miss() - Find the previous gap in the page cache. 1816 * @mapping: Mapping. 1817 * @index: Index. 1818 * @max_scan: Maximum range to search. 1819 * 1820 * Search the range [max(index - max_scan + 1, 0), index] for the 1821 * gap with the highest index. 1822 * 1823 * This function may be called under the rcu_read_lock. However, this will 1824 * not atomically search a snapshot of the cache at a single point in time. 1825 * For example, if a gap is created at index 10, then subsequently a gap is 1826 * created at index 5, page_cache_prev_miss() covering both indices may 1827 * return 5 if called under the rcu_read_lock. 1828 * 1829 * Return: The index of the gap if found, otherwise an index outside the 1830 * range specified (in which case 'index - return >= max_scan' will be true). 1831 * In the rare case of wrap-around, ULONG_MAX will be returned. 1832 */ 1833 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1834 pgoff_t index, unsigned long max_scan) 1835 { 1836 XA_STATE(xas, &mapping->i_pages, index); 1837 1838 while (max_scan--) { 1839 void *entry = xas_prev(&xas); 1840 if (!entry || xa_is_value(entry)) 1841 break; 1842 if (xas.xa_index == ULONG_MAX) 1843 break; 1844 } 1845 1846 return xas.xa_index; 1847 } 1848 EXPORT_SYMBOL(page_cache_prev_miss); 1849 1850 /* 1851 * Lockless page cache protocol: 1852 * On the lookup side: 1853 * 1. Load the folio from i_pages 1854 * 2. Increment the refcount if it's not zero 1855 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1856 * 1857 * On the removal side: 1858 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1859 * B. Remove the page from i_pages 1860 * C. Return the page to the page allocator 1861 * 1862 * This means that any page may have its reference count temporarily 1863 * increased by a speculative page cache (or fast GUP) lookup as it can 1864 * be allocated by another user before the RCU grace period expires. 1865 * Because the refcount temporarily acquired here may end up being the 1866 * last refcount on the page, any page allocation must be freeable by 1867 * folio_put(). 1868 */ 1869 1870 /* 1871 * mapping_get_entry - Get a page cache entry. 1872 * @mapping: the address_space to search 1873 * @index: The page cache index. 1874 * 1875 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1876 * it is returned with an increased refcount. If it is a shadow entry 1877 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1878 * it is returned without further action. 1879 * 1880 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1881 */ 1882 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1883 { 1884 XA_STATE(xas, &mapping->i_pages, index); 1885 struct folio *folio; 1886 1887 rcu_read_lock(); 1888 repeat: 1889 xas_reset(&xas); 1890 folio = xas_load(&xas); 1891 if (xas_retry(&xas, folio)) 1892 goto repeat; 1893 /* 1894 * A shadow entry of a recently evicted page, or a swap entry from 1895 * shmem/tmpfs. Return it without attempting to raise page count. 1896 */ 1897 if (!folio || xa_is_value(folio)) 1898 goto out; 1899 1900 if (!folio_try_get_rcu(folio)) 1901 goto repeat; 1902 1903 if (unlikely(folio != xas_reload(&xas))) { 1904 folio_put(folio); 1905 goto repeat; 1906 } 1907 out: 1908 rcu_read_unlock(); 1909 1910 return folio; 1911 } 1912 1913 /** 1914 * __filemap_get_folio - Find and get a reference to a folio. 1915 * @mapping: The address_space to search. 1916 * @index: The page index. 1917 * @fgp_flags: %FGP flags modify how the folio is returned. 1918 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1919 * 1920 * Looks up the page cache entry at @mapping & @index. 1921 * 1922 * @fgp_flags can be zero or more of these flags: 1923 * 1924 * * %FGP_ACCESSED - The folio will be marked accessed. 1925 * * %FGP_LOCK - The folio is returned locked. 1926 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1927 * instead of allocating a new folio to replace it. 1928 * * %FGP_CREAT - If no page is present then a new page is allocated using 1929 * @gfp and added to the page cache and the VM's LRU list. 1930 * The page is returned locked and with an increased refcount. 1931 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1932 * page is already in cache. If the page was allocated, unlock it before 1933 * returning so the caller can do the same dance. 1934 * * %FGP_WRITE - The page will be written to by the caller. 1935 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1936 * * %FGP_NOWAIT - Don't get blocked by page lock. 1937 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1938 * 1939 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1940 * if the %GFP flags specified for %FGP_CREAT are atomic. 1941 * 1942 * If there is a page cache page, it is returned with an increased refcount. 1943 * 1944 * Return: The found folio or %NULL otherwise. 1945 */ 1946 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1947 int fgp_flags, gfp_t gfp) 1948 { 1949 struct folio *folio; 1950 1951 repeat: 1952 folio = mapping_get_entry(mapping, index); 1953 if (xa_is_value(folio)) { 1954 if (fgp_flags & FGP_ENTRY) 1955 return folio; 1956 folio = NULL; 1957 } 1958 if (!folio) 1959 goto no_page; 1960 1961 if (fgp_flags & FGP_LOCK) { 1962 if (fgp_flags & FGP_NOWAIT) { 1963 if (!folio_trylock(folio)) { 1964 folio_put(folio); 1965 return NULL; 1966 } 1967 } else { 1968 folio_lock(folio); 1969 } 1970 1971 /* Has the page been truncated? */ 1972 if (unlikely(folio->mapping != mapping)) { 1973 folio_unlock(folio); 1974 folio_put(folio); 1975 goto repeat; 1976 } 1977 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1978 } 1979 1980 if (fgp_flags & FGP_ACCESSED) 1981 folio_mark_accessed(folio); 1982 else if (fgp_flags & FGP_WRITE) { 1983 /* Clear idle flag for buffer write */ 1984 if (folio_test_idle(folio)) 1985 folio_clear_idle(folio); 1986 } 1987 1988 if (fgp_flags & FGP_STABLE) 1989 folio_wait_stable(folio); 1990 no_page: 1991 if (!folio && (fgp_flags & FGP_CREAT)) { 1992 int err; 1993 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1994 gfp |= __GFP_WRITE; 1995 if (fgp_flags & FGP_NOFS) 1996 gfp &= ~__GFP_FS; 1997 1998 folio = filemap_alloc_folio(gfp, 0); 1999 if (!folio) 2000 return NULL; 2001 2002 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 2003 fgp_flags |= FGP_LOCK; 2004 2005 /* Init accessed so avoid atomic mark_page_accessed later */ 2006 if (fgp_flags & FGP_ACCESSED) 2007 __folio_set_referenced(folio); 2008 2009 err = filemap_add_folio(mapping, folio, index, gfp); 2010 if (unlikely(err)) { 2011 folio_put(folio); 2012 folio = NULL; 2013 if (err == -EEXIST) 2014 goto repeat; 2015 } 2016 2017 /* 2018 * filemap_add_folio locks the page, and for mmap 2019 * we expect an unlocked page. 2020 */ 2021 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2022 folio_unlock(folio); 2023 } 2024 2025 return folio; 2026 } 2027 EXPORT_SYMBOL(__filemap_get_folio); 2028 2029 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2030 xa_mark_t mark) 2031 { 2032 struct folio *folio; 2033 2034 retry: 2035 if (mark == XA_PRESENT) 2036 folio = xas_find(xas, max); 2037 else 2038 folio = xas_find_marked(xas, max, mark); 2039 2040 if (xas_retry(xas, folio)) 2041 goto retry; 2042 /* 2043 * A shadow entry of a recently evicted page, a swap 2044 * entry from shmem/tmpfs or a DAX entry. Return it 2045 * without attempting to raise page count. 2046 */ 2047 if (!folio || xa_is_value(folio)) 2048 return folio; 2049 2050 if (!folio_try_get_rcu(folio)) 2051 goto reset; 2052 2053 if (unlikely(folio != xas_reload(xas))) { 2054 folio_put(folio); 2055 goto reset; 2056 } 2057 2058 return folio; 2059 reset: 2060 xas_reset(xas); 2061 goto retry; 2062 } 2063 2064 /** 2065 * find_get_entries - gang pagecache lookup 2066 * @mapping: The address_space to search 2067 * @start: The starting page cache index 2068 * @end: The final page index (inclusive). 2069 * @fbatch: Where the resulting entries are placed. 2070 * @indices: The cache indices corresponding to the entries in @entries 2071 * 2072 * find_get_entries() will search for and return a batch of entries in 2073 * the mapping. The entries are placed in @fbatch. find_get_entries() 2074 * takes a reference on any actual folios it returns. 2075 * 2076 * The entries have ascending indexes. The indices may not be consecutive 2077 * due to not-present entries or large folios. 2078 * 2079 * Any shadow entries of evicted folios, or swap entries from 2080 * shmem/tmpfs, are included in the returned array. 2081 * 2082 * Return: The number of entries which were found. 2083 */ 2084 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2086 { 2087 XA_STATE(xas, &mapping->i_pages, start); 2088 struct folio *folio; 2089 2090 rcu_read_lock(); 2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2092 indices[fbatch->nr] = xas.xa_index; 2093 if (!folio_batch_add(fbatch, folio)) 2094 break; 2095 } 2096 rcu_read_unlock(); 2097 2098 return folio_batch_count(fbatch); 2099 } 2100 2101 /** 2102 * find_lock_entries - Find a batch of pagecache entries. 2103 * @mapping: The address_space to search. 2104 * @start: The starting page cache index. 2105 * @end: The final page index (inclusive). 2106 * @fbatch: Where the resulting entries are placed. 2107 * @indices: The cache indices of the entries in @fbatch. 2108 * 2109 * find_lock_entries() will return a batch of entries from @mapping. 2110 * Swap, shadow and DAX entries are included. Folios are returned 2111 * locked and with an incremented refcount. Folios which are locked 2112 * by somebody else or under writeback are skipped. Folios which are 2113 * partially outside the range are not returned. 2114 * 2115 * The entries have ascending indexes. The indices may not be consecutive 2116 * due to not-present entries, large folios, folios which could not be 2117 * locked or folios under writeback. 2118 * 2119 * Return: The number of entries which were found. 2120 */ 2121 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2122 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2123 { 2124 XA_STATE(xas, &mapping->i_pages, start); 2125 struct folio *folio; 2126 2127 rcu_read_lock(); 2128 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2129 if (!xa_is_value(folio)) { 2130 if (folio->index < start) 2131 goto put; 2132 if (folio->index + folio_nr_pages(folio) - 1 > end) 2133 goto put; 2134 if (!folio_trylock(folio)) 2135 goto put; 2136 if (folio->mapping != mapping || 2137 folio_test_writeback(folio)) 2138 goto unlock; 2139 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2140 folio); 2141 } 2142 indices[fbatch->nr] = xas.xa_index; 2143 if (!folio_batch_add(fbatch, folio)) 2144 break; 2145 continue; 2146 unlock: 2147 folio_unlock(folio); 2148 put: 2149 folio_put(folio); 2150 } 2151 rcu_read_unlock(); 2152 2153 return folio_batch_count(fbatch); 2154 } 2155 2156 static inline 2157 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2158 { 2159 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2160 return false; 2161 if (index >= max) 2162 return false; 2163 return index < folio->index + folio_nr_pages(folio) - 1; 2164 } 2165 2166 /** 2167 * find_get_pages_range - gang pagecache lookup 2168 * @mapping: The address_space to search 2169 * @start: The starting page index 2170 * @end: The final page index (inclusive) 2171 * @nr_pages: The maximum number of pages 2172 * @pages: Where the resulting pages are placed 2173 * 2174 * find_get_pages_range() will search for and return a group of up to @nr_pages 2175 * pages in the mapping starting at index @start and up to index @end 2176 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2177 * a reference against the returned pages. 2178 * 2179 * The search returns a group of mapping-contiguous pages with ascending 2180 * indexes. There may be holes in the indices due to not-present pages. 2181 * We also update @start to index the next page for the traversal. 2182 * 2183 * Return: the number of pages which were found. If this number is 2184 * smaller than @nr_pages, the end of specified range has been 2185 * reached. 2186 */ 2187 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2188 pgoff_t end, unsigned int nr_pages, 2189 struct page **pages) 2190 { 2191 XA_STATE(xas, &mapping->i_pages, *start); 2192 struct folio *folio; 2193 unsigned ret = 0; 2194 2195 if (unlikely(!nr_pages)) 2196 return 0; 2197 2198 rcu_read_lock(); 2199 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2200 /* Skip over shadow, swap and DAX entries */ 2201 if (xa_is_value(folio)) 2202 continue; 2203 2204 again: 2205 pages[ret] = folio_file_page(folio, xas.xa_index); 2206 if (++ret == nr_pages) { 2207 *start = xas.xa_index + 1; 2208 goto out; 2209 } 2210 if (folio_more_pages(folio, xas.xa_index, end)) { 2211 xas.xa_index++; 2212 folio_ref_inc(folio); 2213 goto again; 2214 } 2215 } 2216 2217 /* 2218 * We come here when there is no page beyond @end. We take care to not 2219 * overflow the index @start as it confuses some of the callers. This 2220 * breaks the iteration when there is a page at index -1 but that is 2221 * already broken anyway. 2222 */ 2223 if (end == (pgoff_t)-1) 2224 *start = (pgoff_t)-1; 2225 else 2226 *start = end + 1; 2227 out: 2228 rcu_read_unlock(); 2229 2230 return ret; 2231 } 2232 2233 /** 2234 * find_get_pages_contig - gang contiguous pagecache lookup 2235 * @mapping: The address_space to search 2236 * @index: The starting page index 2237 * @nr_pages: The maximum number of pages 2238 * @pages: Where the resulting pages are placed 2239 * 2240 * find_get_pages_contig() works exactly like find_get_pages_range(), 2241 * except that the returned number of pages are guaranteed to be 2242 * contiguous. 2243 * 2244 * Return: the number of pages which were found. 2245 */ 2246 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2247 unsigned int nr_pages, struct page **pages) 2248 { 2249 XA_STATE(xas, &mapping->i_pages, index); 2250 struct folio *folio; 2251 unsigned int ret = 0; 2252 2253 if (unlikely(!nr_pages)) 2254 return 0; 2255 2256 rcu_read_lock(); 2257 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2258 if (xas_retry(&xas, folio)) 2259 continue; 2260 /* 2261 * If the entry has been swapped out, we can stop looking. 2262 * No current caller is looking for DAX entries. 2263 */ 2264 if (xa_is_value(folio)) 2265 break; 2266 2267 if (!folio_try_get_rcu(folio)) 2268 goto retry; 2269 2270 if (unlikely(folio != xas_reload(&xas))) 2271 goto put_page; 2272 2273 again: 2274 pages[ret] = folio_file_page(folio, xas.xa_index); 2275 if (++ret == nr_pages) 2276 break; 2277 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2278 xas.xa_index++; 2279 folio_ref_inc(folio); 2280 goto again; 2281 } 2282 continue; 2283 put_page: 2284 folio_put(folio); 2285 retry: 2286 xas_reset(&xas); 2287 } 2288 rcu_read_unlock(); 2289 return ret; 2290 } 2291 EXPORT_SYMBOL(find_get_pages_contig); 2292 2293 /** 2294 * find_get_pages_range_tag - Find and return head pages matching @tag. 2295 * @mapping: the address_space to search 2296 * @index: the starting page index 2297 * @end: The final page index (inclusive) 2298 * @tag: the tag index 2299 * @nr_pages: the maximum number of pages 2300 * @pages: where the resulting pages are placed 2301 * 2302 * Like find_get_pages_range(), except we only return head pages which are 2303 * tagged with @tag. @index is updated to the index immediately after the 2304 * last page we return, ready for the next iteration. 2305 * 2306 * Return: the number of pages which were found. 2307 */ 2308 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2309 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2310 struct page **pages) 2311 { 2312 XA_STATE(xas, &mapping->i_pages, *index); 2313 struct folio *folio; 2314 unsigned ret = 0; 2315 2316 if (unlikely(!nr_pages)) 2317 return 0; 2318 2319 rcu_read_lock(); 2320 while ((folio = find_get_entry(&xas, end, tag))) { 2321 /* 2322 * Shadow entries should never be tagged, but this iteration 2323 * is lockless so there is a window for page reclaim to evict 2324 * a page we saw tagged. Skip over it. 2325 */ 2326 if (xa_is_value(folio)) 2327 continue; 2328 2329 pages[ret] = &folio->page; 2330 if (++ret == nr_pages) { 2331 *index = folio->index + folio_nr_pages(folio); 2332 goto out; 2333 } 2334 } 2335 2336 /* 2337 * We come here when we got to @end. We take care to not overflow the 2338 * index @index as it confuses some of the callers. This breaks the 2339 * iteration when there is a page at index -1 but that is already 2340 * broken anyway. 2341 */ 2342 if (end == (pgoff_t)-1) 2343 *index = (pgoff_t)-1; 2344 else 2345 *index = end + 1; 2346 out: 2347 rcu_read_unlock(); 2348 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(find_get_pages_range_tag); 2352 2353 /* 2354 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2355 * a _large_ part of the i/o request. Imagine the worst scenario: 2356 * 2357 * ---R__________________________________________B__________ 2358 * ^ reading here ^ bad block(assume 4k) 2359 * 2360 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2361 * => failing the whole request => read(R) => read(R+1) => 2362 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2363 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2364 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2365 * 2366 * It is going insane. Fix it by quickly scaling down the readahead size. 2367 */ 2368 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2369 { 2370 ra->ra_pages /= 4; 2371 } 2372 2373 /* 2374 * filemap_get_read_batch - Get a batch of folios for read 2375 * 2376 * Get a batch of folios which represent a contiguous range of bytes in 2377 * the file. No exceptional entries will be returned. If @index is in 2378 * the middle of a folio, the entire folio will be returned. The last 2379 * folio in the batch may have the readahead flag set or the uptodate flag 2380 * clear so that the caller can take the appropriate action. 2381 */ 2382 static void filemap_get_read_batch(struct address_space *mapping, 2383 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2384 { 2385 XA_STATE(xas, &mapping->i_pages, index); 2386 struct folio *folio; 2387 2388 rcu_read_lock(); 2389 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2390 if (xas_retry(&xas, folio)) 2391 continue; 2392 if (xas.xa_index > max || xa_is_value(folio)) 2393 break; 2394 if (!folio_try_get_rcu(folio)) 2395 goto retry; 2396 2397 if (unlikely(folio != xas_reload(&xas))) 2398 goto put_folio; 2399 2400 if (!folio_batch_add(fbatch, folio)) 2401 break; 2402 if (!folio_test_uptodate(folio)) 2403 break; 2404 if (folio_test_readahead(folio)) 2405 break; 2406 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2407 continue; 2408 put_folio: 2409 folio_put(folio); 2410 retry: 2411 xas_reset(&xas); 2412 } 2413 rcu_read_unlock(); 2414 } 2415 2416 static int filemap_read_folio(struct file *file, struct address_space *mapping, 2417 struct folio *folio) 2418 { 2419 int error; 2420 2421 /* 2422 * A previous I/O error may have been due to temporary failures, 2423 * eg. multipath errors. PG_error will be set again if readpage 2424 * fails. 2425 */ 2426 folio_clear_error(folio); 2427 /* Start the actual read. The read will unlock the page. */ 2428 error = mapping->a_ops->readpage(file, &folio->page); 2429 if (error) 2430 return error; 2431 2432 error = folio_wait_locked_killable(folio); 2433 if (error) 2434 return error; 2435 if (folio_test_uptodate(folio)) 2436 return 0; 2437 shrink_readahead_size_eio(&file->f_ra); 2438 return -EIO; 2439 } 2440 2441 static bool filemap_range_uptodate(struct address_space *mapping, 2442 loff_t pos, struct iov_iter *iter, struct folio *folio) 2443 { 2444 int count; 2445 2446 if (folio_test_uptodate(folio)) 2447 return true; 2448 /* pipes can't handle partially uptodate pages */ 2449 if (iov_iter_is_pipe(iter)) 2450 return false; 2451 if (!mapping->a_ops->is_partially_uptodate) 2452 return false; 2453 if (mapping->host->i_blkbits >= folio_shift(folio)) 2454 return false; 2455 2456 count = iter->count; 2457 if (folio_pos(folio) > pos) { 2458 count -= folio_pos(folio) - pos; 2459 pos = 0; 2460 } else { 2461 pos -= folio_pos(folio); 2462 } 2463 2464 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2465 } 2466 2467 static int filemap_update_page(struct kiocb *iocb, 2468 struct address_space *mapping, struct iov_iter *iter, 2469 struct folio *folio) 2470 { 2471 int error; 2472 2473 if (iocb->ki_flags & IOCB_NOWAIT) { 2474 if (!filemap_invalidate_trylock_shared(mapping)) 2475 return -EAGAIN; 2476 } else { 2477 filemap_invalidate_lock_shared(mapping); 2478 } 2479 2480 if (!folio_trylock(folio)) { 2481 error = -EAGAIN; 2482 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2483 goto unlock_mapping; 2484 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2485 filemap_invalidate_unlock_shared(mapping); 2486 /* 2487 * This is where we usually end up waiting for a 2488 * previously submitted readahead to finish. 2489 */ 2490 folio_put_wait_locked(folio, TASK_KILLABLE); 2491 return AOP_TRUNCATED_PAGE; 2492 } 2493 error = __folio_lock_async(folio, iocb->ki_waitq); 2494 if (error) 2495 goto unlock_mapping; 2496 } 2497 2498 error = AOP_TRUNCATED_PAGE; 2499 if (!folio->mapping) 2500 goto unlock; 2501 2502 error = 0; 2503 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2504 goto unlock; 2505 2506 error = -EAGAIN; 2507 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2508 goto unlock; 2509 2510 error = filemap_read_folio(iocb->ki_filp, mapping, folio); 2511 goto unlock_mapping; 2512 unlock: 2513 folio_unlock(folio); 2514 unlock_mapping: 2515 filemap_invalidate_unlock_shared(mapping); 2516 if (error == AOP_TRUNCATED_PAGE) 2517 folio_put(folio); 2518 return error; 2519 } 2520 2521 static int filemap_create_folio(struct file *file, 2522 struct address_space *mapping, pgoff_t index, 2523 struct folio_batch *fbatch) 2524 { 2525 struct folio *folio; 2526 int error; 2527 2528 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2529 if (!folio) 2530 return -ENOMEM; 2531 2532 /* 2533 * Protect against truncate / hole punch. Grabbing invalidate_lock 2534 * here assures we cannot instantiate and bring uptodate new 2535 * pagecache folios after evicting page cache during truncate 2536 * and before actually freeing blocks. Note that we could 2537 * release invalidate_lock after inserting the folio into 2538 * the page cache as the locked folio would then be enough to 2539 * synchronize with hole punching. But there are code paths 2540 * such as filemap_update_page() filling in partially uptodate 2541 * pages or ->readahead() that need to hold invalidate_lock 2542 * while mapping blocks for IO so let's hold the lock here as 2543 * well to keep locking rules simple. 2544 */ 2545 filemap_invalidate_lock_shared(mapping); 2546 error = filemap_add_folio(mapping, folio, index, 2547 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2548 if (error == -EEXIST) 2549 error = AOP_TRUNCATED_PAGE; 2550 if (error) 2551 goto error; 2552 2553 error = filemap_read_folio(file, mapping, folio); 2554 if (error) 2555 goto error; 2556 2557 filemap_invalidate_unlock_shared(mapping); 2558 folio_batch_add(fbatch, folio); 2559 return 0; 2560 error: 2561 filemap_invalidate_unlock_shared(mapping); 2562 folio_put(folio); 2563 return error; 2564 } 2565 2566 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2567 struct address_space *mapping, struct folio *folio, 2568 pgoff_t last_index) 2569 { 2570 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2571 2572 if (iocb->ki_flags & IOCB_NOIO) 2573 return -EAGAIN; 2574 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2575 return 0; 2576 } 2577 2578 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2579 struct folio_batch *fbatch) 2580 { 2581 struct file *filp = iocb->ki_filp; 2582 struct address_space *mapping = filp->f_mapping; 2583 struct file_ra_state *ra = &filp->f_ra; 2584 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2585 pgoff_t last_index; 2586 struct folio *folio; 2587 int err = 0; 2588 2589 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2590 retry: 2591 if (fatal_signal_pending(current)) 2592 return -EINTR; 2593 2594 filemap_get_read_batch(mapping, index, last_index, fbatch); 2595 if (!folio_batch_count(fbatch)) { 2596 if (iocb->ki_flags & IOCB_NOIO) 2597 return -EAGAIN; 2598 page_cache_sync_readahead(mapping, ra, filp, index, 2599 last_index - index); 2600 filemap_get_read_batch(mapping, index, last_index, fbatch); 2601 } 2602 if (!folio_batch_count(fbatch)) { 2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2604 return -EAGAIN; 2605 err = filemap_create_folio(filp, mapping, 2606 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2607 if (err == AOP_TRUNCATED_PAGE) 2608 goto retry; 2609 return err; 2610 } 2611 2612 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2613 if (folio_test_readahead(folio)) { 2614 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2615 if (err) 2616 goto err; 2617 } 2618 if (!folio_test_uptodate(folio)) { 2619 if ((iocb->ki_flags & IOCB_WAITQ) && 2620 folio_batch_count(fbatch) > 1) 2621 iocb->ki_flags |= IOCB_NOWAIT; 2622 err = filemap_update_page(iocb, mapping, iter, folio); 2623 if (err) 2624 goto err; 2625 } 2626 2627 return 0; 2628 err: 2629 if (err < 0) 2630 folio_put(folio); 2631 if (likely(--fbatch->nr)) 2632 return 0; 2633 if (err == AOP_TRUNCATED_PAGE) 2634 goto retry; 2635 return err; 2636 } 2637 2638 /** 2639 * filemap_read - Read data from the page cache. 2640 * @iocb: The iocb to read. 2641 * @iter: Destination for the data. 2642 * @already_read: Number of bytes already read by the caller. 2643 * 2644 * Copies data from the page cache. If the data is not currently present, 2645 * uses the readahead and readpage address_space operations to fetch it. 2646 * 2647 * Return: Total number of bytes copied, including those already read by 2648 * the caller. If an error happens before any bytes are copied, returns 2649 * a negative error number. 2650 */ 2651 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2652 ssize_t already_read) 2653 { 2654 struct file *filp = iocb->ki_filp; 2655 struct file_ra_state *ra = &filp->f_ra; 2656 struct address_space *mapping = filp->f_mapping; 2657 struct inode *inode = mapping->host; 2658 struct folio_batch fbatch; 2659 int i, error = 0; 2660 bool writably_mapped; 2661 loff_t isize, end_offset; 2662 2663 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2664 return 0; 2665 if (unlikely(!iov_iter_count(iter))) 2666 return 0; 2667 2668 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2669 folio_batch_init(&fbatch); 2670 2671 do { 2672 cond_resched(); 2673 2674 /* 2675 * If we've already successfully copied some data, then we 2676 * can no longer safely return -EIOCBQUEUED. Hence mark 2677 * an async read NOWAIT at that point. 2678 */ 2679 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2680 iocb->ki_flags |= IOCB_NOWAIT; 2681 2682 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2683 break; 2684 2685 error = filemap_get_pages(iocb, iter, &fbatch); 2686 if (error < 0) 2687 break; 2688 2689 /* 2690 * i_size must be checked after we know the pages are Uptodate. 2691 * 2692 * Checking i_size after the check allows us to calculate 2693 * the correct value for "nr", which means the zero-filled 2694 * part of the page is not copied back to userspace (unless 2695 * another truncate extends the file - this is desired though). 2696 */ 2697 isize = i_size_read(inode); 2698 if (unlikely(iocb->ki_pos >= isize)) 2699 goto put_folios; 2700 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2701 2702 /* 2703 * Once we start copying data, we don't want to be touching any 2704 * cachelines that might be contended: 2705 */ 2706 writably_mapped = mapping_writably_mapped(mapping); 2707 2708 /* 2709 * When a sequential read accesses a page several times, only 2710 * mark it as accessed the first time. 2711 */ 2712 if (iocb->ki_pos >> PAGE_SHIFT != 2713 ra->prev_pos >> PAGE_SHIFT) 2714 folio_mark_accessed(fbatch.folios[0]); 2715 2716 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2717 struct folio *folio = fbatch.folios[i]; 2718 size_t fsize = folio_size(folio); 2719 size_t offset = iocb->ki_pos & (fsize - 1); 2720 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2721 fsize - offset); 2722 size_t copied; 2723 2724 if (end_offset < folio_pos(folio)) 2725 break; 2726 if (i > 0) 2727 folio_mark_accessed(folio); 2728 /* 2729 * If users can be writing to this folio using arbitrary 2730 * virtual addresses, take care of potential aliasing 2731 * before reading the folio on the kernel side. 2732 */ 2733 if (writably_mapped) 2734 flush_dcache_folio(folio); 2735 2736 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2737 2738 already_read += copied; 2739 iocb->ki_pos += copied; 2740 ra->prev_pos = iocb->ki_pos; 2741 2742 if (copied < bytes) { 2743 error = -EFAULT; 2744 break; 2745 } 2746 } 2747 put_folios: 2748 for (i = 0; i < folio_batch_count(&fbatch); i++) 2749 folio_put(fbatch.folios[i]); 2750 folio_batch_init(&fbatch); 2751 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2752 2753 file_accessed(filp); 2754 2755 return already_read ? already_read : error; 2756 } 2757 EXPORT_SYMBOL_GPL(filemap_read); 2758 2759 /** 2760 * generic_file_read_iter - generic filesystem read routine 2761 * @iocb: kernel I/O control block 2762 * @iter: destination for the data read 2763 * 2764 * This is the "read_iter()" routine for all filesystems 2765 * that can use the page cache directly. 2766 * 2767 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2768 * be returned when no data can be read without waiting for I/O requests 2769 * to complete; it doesn't prevent readahead. 2770 * 2771 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2772 * requests shall be made for the read or for readahead. When no data 2773 * can be read, -EAGAIN shall be returned. When readahead would be 2774 * triggered, a partial, possibly empty read shall be returned. 2775 * 2776 * Return: 2777 * * number of bytes copied, even for partial reads 2778 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2779 */ 2780 ssize_t 2781 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2782 { 2783 size_t count = iov_iter_count(iter); 2784 ssize_t retval = 0; 2785 2786 if (!count) 2787 return 0; /* skip atime */ 2788 2789 if (iocb->ki_flags & IOCB_DIRECT) { 2790 struct file *file = iocb->ki_filp; 2791 struct address_space *mapping = file->f_mapping; 2792 struct inode *inode = mapping->host; 2793 2794 if (iocb->ki_flags & IOCB_NOWAIT) { 2795 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2796 iocb->ki_pos + count - 1)) 2797 return -EAGAIN; 2798 } else { 2799 retval = filemap_write_and_wait_range(mapping, 2800 iocb->ki_pos, 2801 iocb->ki_pos + count - 1); 2802 if (retval < 0) 2803 return retval; 2804 } 2805 2806 file_accessed(file); 2807 2808 retval = mapping->a_ops->direct_IO(iocb, iter); 2809 if (retval >= 0) { 2810 iocb->ki_pos += retval; 2811 count -= retval; 2812 } 2813 if (retval != -EIOCBQUEUED) 2814 iov_iter_revert(iter, count - iov_iter_count(iter)); 2815 2816 /* 2817 * Btrfs can have a short DIO read if we encounter 2818 * compressed extents, so if there was an error, or if 2819 * we've already read everything we wanted to, or if 2820 * there was a short read because we hit EOF, go ahead 2821 * and return. Otherwise fallthrough to buffered io for 2822 * the rest of the read. Buffered reads will not work for 2823 * DAX files, so don't bother trying. 2824 */ 2825 if (retval < 0 || !count || IS_DAX(inode)) 2826 return retval; 2827 if (iocb->ki_pos >= i_size_read(inode)) 2828 return retval; 2829 } 2830 2831 return filemap_read(iocb, iter, retval); 2832 } 2833 EXPORT_SYMBOL(generic_file_read_iter); 2834 2835 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2836 struct address_space *mapping, struct folio *folio, 2837 loff_t start, loff_t end, bool seek_data) 2838 { 2839 const struct address_space_operations *ops = mapping->a_ops; 2840 size_t offset, bsz = i_blocksize(mapping->host); 2841 2842 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2843 return seek_data ? start : end; 2844 if (!ops->is_partially_uptodate) 2845 return seek_data ? end : start; 2846 2847 xas_pause(xas); 2848 rcu_read_unlock(); 2849 folio_lock(folio); 2850 if (unlikely(folio->mapping != mapping)) 2851 goto unlock; 2852 2853 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2854 2855 do { 2856 if (ops->is_partially_uptodate(folio, offset, bsz) == 2857 seek_data) 2858 break; 2859 start = (start + bsz) & ~(bsz - 1); 2860 offset += bsz; 2861 } while (offset < folio_size(folio)); 2862 unlock: 2863 folio_unlock(folio); 2864 rcu_read_lock(); 2865 return start; 2866 } 2867 2868 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2869 { 2870 if (xa_is_value(folio)) 2871 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2872 return folio_size(folio); 2873 } 2874 2875 /** 2876 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2877 * @mapping: Address space to search. 2878 * @start: First byte to consider. 2879 * @end: Limit of search (exclusive). 2880 * @whence: Either SEEK_HOLE or SEEK_DATA. 2881 * 2882 * If the page cache knows which blocks contain holes and which blocks 2883 * contain data, your filesystem can use this function to implement 2884 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2885 * entirely memory-based such as tmpfs, and filesystems which support 2886 * unwritten extents. 2887 * 2888 * Return: The requested offset on success, or -ENXIO if @whence specifies 2889 * SEEK_DATA and there is no data after @start. There is an implicit hole 2890 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2891 * and @end contain data. 2892 */ 2893 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2894 loff_t end, int whence) 2895 { 2896 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2897 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2898 bool seek_data = (whence == SEEK_DATA); 2899 struct folio *folio; 2900 2901 if (end <= start) 2902 return -ENXIO; 2903 2904 rcu_read_lock(); 2905 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2906 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2907 size_t seek_size; 2908 2909 if (start < pos) { 2910 if (!seek_data) 2911 goto unlock; 2912 start = pos; 2913 } 2914 2915 seek_size = seek_folio_size(&xas, folio); 2916 pos = round_up((u64)pos + 1, seek_size); 2917 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2918 seek_data); 2919 if (start < pos) 2920 goto unlock; 2921 if (start >= end) 2922 break; 2923 if (seek_size > PAGE_SIZE) 2924 xas_set(&xas, pos >> PAGE_SHIFT); 2925 if (!xa_is_value(folio)) 2926 folio_put(folio); 2927 } 2928 if (seek_data) 2929 start = -ENXIO; 2930 unlock: 2931 rcu_read_unlock(); 2932 if (folio && !xa_is_value(folio)) 2933 folio_put(folio); 2934 if (start > end) 2935 return end; 2936 return start; 2937 } 2938 2939 #ifdef CONFIG_MMU 2940 #define MMAP_LOTSAMISS (100) 2941 /* 2942 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2943 * @vmf - the vm_fault for this fault. 2944 * @folio - the folio to lock. 2945 * @fpin - the pointer to the file we may pin (or is already pinned). 2946 * 2947 * This works similar to lock_folio_or_retry in that it can drop the 2948 * mmap_lock. It differs in that it actually returns the folio locked 2949 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2950 * to drop the mmap_lock then fpin will point to the pinned file and 2951 * needs to be fput()'ed at a later point. 2952 */ 2953 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2954 struct file **fpin) 2955 { 2956 if (folio_trylock(folio)) 2957 return 1; 2958 2959 /* 2960 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2961 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2962 * is supposed to work. We have way too many special cases.. 2963 */ 2964 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2965 return 0; 2966 2967 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2968 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2969 if (__folio_lock_killable(folio)) { 2970 /* 2971 * We didn't have the right flags to drop the mmap_lock, 2972 * but all fault_handlers only check for fatal signals 2973 * if we return VM_FAULT_RETRY, so we need to drop the 2974 * mmap_lock here and return 0 if we don't have a fpin. 2975 */ 2976 if (*fpin == NULL) 2977 mmap_read_unlock(vmf->vma->vm_mm); 2978 return 0; 2979 } 2980 } else 2981 __folio_lock(folio); 2982 2983 return 1; 2984 } 2985 2986 /* 2987 * Synchronous readahead happens when we don't even find a page in the page 2988 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2989 * to drop the mmap sem we return the file that was pinned in order for us to do 2990 * that. If we didn't pin a file then we return NULL. The file that is 2991 * returned needs to be fput()'ed when we're done with it. 2992 */ 2993 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2994 { 2995 struct file *file = vmf->vma->vm_file; 2996 struct file_ra_state *ra = &file->f_ra; 2997 struct address_space *mapping = file->f_mapping; 2998 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2999 struct file *fpin = NULL; 3000 unsigned int mmap_miss; 3001 3002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3003 /* Use the readahead code, even if readahead is disabled */ 3004 if (vmf->vma->vm_flags & VM_HUGEPAGE) { 3005 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3006 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3007 ra->size = HPAGE_PMD_NR; 3008 /* 3009 * Fetch two PMD folios, so we get the chance to actually 3010 * readahead, unless we've been told not to. 3011 */ 3012 if (!(vmf->vma->vm_flags & VM_RAND_READ)) 3013 ra->size *= 2; 3014 ra->async_size = HPAGE_PMD_NR; 3015 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3016 return fpin; 3017 } 3018 #endif 3019 3020 /* If we don't want any read-ahead, don't bother */ 3021 if (vmf->vma->vm_flags & VM_RAND_READ) 3022 return fpin; 3023 if (!ra->ra_pages) 3024 return fpin; 3025 3026 if (vmf->vma->vm_flags & VM_SEQ_READ) { 3027 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3028 page_cache_sync_ra(&ractl, ra->ra_pages); 3029 return fpin; 3030 } 3031 3032 /* Avoid banging the cache line if not needed */ 3033 mmap_miss = READ_ONCE(ra->mmap_miss); 3034 if (mmap_miss < MMAP_LOTSAMISS * 10) 3035 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3036 3037 /* 3038 * Do we miss much more than hit in this file? If so, 3039 * stop bothering with read-ahead. It will only hurt. 3040 */ 3041 if (mmap_miss > MMAP_LOTSAMISS) 3042 return fpin; 3043 3044 /* 3045 * mmap read-around 3046 */ 3047 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3048 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3049 ra->size = ra->ra_pages; 3050 ra->async_size = ra->ra_pages / 4; 3051 ractl._index = ra->start; 3052 page_cache_ra_order(&ractl, ra, 0); 3053 return fpin; 3054 } 3055 3056 /* 3057 * Asynchronous readahead happens when we find the page and PG_readahead, 3058 * so we want to possibly extend the readahead further. We return the file that 3059 * was pinned if we have to drop the mmap_lock in order to do IO. 3060 */ 3061 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3062 struct folio *folio) 3063 { 3064 struct file *file = vmf->vma->vm_file; 3065 struct file_ra_state *ra = &file->f_ra; 3066 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3067 struct file *fpin = NULL; 3068 unsigned int mmap_miss; 3069 3070 /* If we don't want any read-ahead, don't bother */ 3071 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3072 return fpin; 3073 3074 mmap_miss = READ_ONCE(ra->mmap_miss); 3075 if (mmap_miss) 3076 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3077 3078 if (folio_test_readahead(folio)) { 3079 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3080 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3081 } 3082 return fpin; 3083 } 3084 3085 /** 3086 * filemap_fault - read in file data for page fault handling 3087 * @vmf: struct vm_fault containing details of the fault 3088 * 3089 * filemap_fault() is invoked via the vma operations vector for a 3090 * mapped memory region to read in file data during a page fault. 3091 * 3092 * The goto's are kind of ugly, but this streamlines the normal case of having 3093 * it in the page cache, and handles the special cases reasonably without 3094 * having a lot of duplicated code. 3095 * 3096 * vma->vm_mm->mmap_lock must be held on entry. 3097 * 3098 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3099 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3100 * 3101 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3102 * has not been released. 3103 * 3104 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3105 * 3106 * Return: bitwise-OR of %VM_FAULT_ codes. 3107 */ 3108 vm_fault_t filemap_fault(struct vm_fault *vmf) 3109 { 3110 int error; 3111 struct file *file = vmf->vma->vm_file; 3112 struct file *fpin = NULL; 3113 struct address_space *mapping = file->f_mapping; 3114 struct inode *inode = mapping->host; 3115 pgoff_t max_idx, index = vmf->pgoff; 3116 struct folio *folio; 3117 vm_fault_t ret = 0; 3118 bool mapping_locked = false; 3119 3120 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3121 if (unlikely(index >= max_idx)) 3122 return VM_FAULT_SIGBUS; 3123 3124 /* 3125 * Do we have something in the page cache already? 3126 */ 3127 folio = filemap_get_folio(mapping, index); 3128 if (likely(folio)) { 3129 /* 3130 * We found the page, so try async readahead before waiting for 3131 * the lock. 3132 */ 3133 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3134 fpin = do_async_mmap_readahead(vmf, folio); 3135 if (unlikely(!folio_test_uptodate(folio))) { 3136 filemap_invalidate_lock_shared(mapping); 3137 mapping_locked = true; 3138 } 3139 } else { 3140 /* No page in the page cache at all */ 3141 count_vm_event(PGMAJFAULT); 3142 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3143 ret = VM_FAULT_MAJOR; 3144 fpin = do_sync_mmap_readahead(vmf); 3145 retry_find: 3146 /* 3147 * See comment in filemap_create_folio() why we need 3148 * invalidate_lock 3149 */ 3150 if (!mapping_locked) { 3151 filemap_invalidate_lock_shared(mapping); 3152 mapping_locked = true; 3153 } 3154 folio = __filemap_get_folio(mapping, index, 3155 FGP_CREAT|FGP_FOR_MMAP, 3156 vmf->gfp_mask); 3157 if (!folio) { 3158 if (fpin) 3159 goto out_retry; 3160 filemap_invalidate_unlock_shared(mapping); 3161 return VM_FAULT_OOM; 3162 } 3163 } 3164 3165 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3166 goto out_retry; 3167 3168 /* Did it get truncated? */ 3169 if (unlikely(folio->mapping != mapping)) { 3170 folio_unlock(folio); 3171 folio_put(folio); 3172 goto retry_find; 3173 } 3174 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3175 3176 /* 3177 * We have a locked page in the page cache, now we need to check 3178 * that it's up-to-date. If not, it is going to be due to an error. 3179 */ 3180 if (unlikely(!folio_test_uptodate(folio))) { 3181 /* 3182 * The page was in cache and uptodate and now it is not. 3183 * Strange but possible since we didn't hold the page lock all 3184 * the time. Let's drop everything get the invalidate lock and 3185 * try again. 3186 */ 3187 if (!mapping_locked) { 3188 folio_unlock(folio); 3189 folio_put(folio); 3190 goto retry_find; 3191 } 3192 goto page_not_uptodate; 3193 } 3194 3195 /* 3196 * We've made it this far and we had to drop our mmap_lock, now is the 3197 * time to return to the upper layer and have it re-find the vma and 3198 * redo the fault. 3199 */ 3200 if (fpin) { 3201 folio_unlock(folio); 3202 goto out_retry; 3203 } 3204 if (mapping_locked) 3205 filemap_invalidate_unlock_shared(mapping); 3206 3207 /* 3208 * Found the page and have a reference on it. 3209 * We must recheck i_size under page lock. 3210 */ 3211 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3212 if (unlikely(index >= max_idx)) { 3213 folio_unlock(folio); 3214 folio_put(folio); 3215 return VM_FAULT_SIGBUS; 3216 } 3217 3218 vmf->page = folio_file_page(folio, index); 3219 return ret | VM_FAULT_LOCKED; 3220 3221 page_not_uptodate: 3222 /* 3223 * Umm, take care of errors if the page isn't up-to-date. 3224 * Try to re-read it _once_. We do this synchronously, 3225 * because there really aren't any performance issues here 3226 * and we need to check for errors. 3227 */ 3228 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3229 error = filemap_read_folio(file, mapping, folio); 3230 if (fpin) 3231 goto out_retry; 3232 folio_put(folio); 3233 3234 if (!error || error == AOP_TRUNCATED_PAGE) 3235 goto retry_find; 3236 filemap_invalidate_unlock_shared(mapping); 3237 3238 return VM_FAULT_SIGBUS; 3239 3240 out_retry: 3241 /* 3242 * We dropped the mmap_lock, we need to return to the fault handler to 3243 * re-find the vma and come back and find our hopefully still populated 3244 * page. 3245 */ 3246 if (folio) 3247 folio_put(folio); 3248 if (mapping_locked) 3249 filemap_invalidate_unlock_shared(mapping); 3250 if (fpin) 3251 fput(fpin); 3252 return ret | VM_FAULT_RETRY; 3253 } 3254 EXPORT_SYMBOL(filemap_fault); 3255 3256 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3257 { 3258 struct mm_struct *mm = vmf->vma->vm_mm; 3259 3260 /* Huge page is mapped? No need to proceed. */ 3261 if (pmd_trans_huge(*vmf->pmd)) { 3262 unlock_page(page); 3263 put_page(page); 3264 return true; 3265 } 3266 3267 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3268 vm_fault_t ret = do_set_pmd(vmf, page); 3269 if (!ret) { 3270 /* The page is mapped successfully, reference consumed. */ 3271 unlock_page(page); 3272 return true; 3273 } 3274 } 3275 3276 if (pmd_none(*vmf->pmd)) 3277 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3278 3279 /* See comment in handle_pte_fault() */ 3280 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3281 unlock_page(page); 3282 put_page(page); 3283 return true; 3284 } 3285 3286 return false; 3287 } 3288 3289 static struct folio *next_uptodate_page(struct folio *folio, 3290 struct address_space *mapping, 3291 struct xa_state *xas, pgoff_t end_pgoff) 3292 { 3293 unsigned long max_idx; 3294 3295 do { 3296 if (!folio) 3297 return NULL; 3298 if (xas_retry(xas, folio)) 3299 continue; 3300 if (xa_is_value(folio)) 3301 continue; 3302 if (folio_test_locked(folio)) 3303 continue; 3304 if (!folio_try_get_rcu(folio)) 3305 continue; 3306 /* Has the page moved or been split? */ 3307 if (unlikely(folio != xas_reload(xas))) 3308 goto skip; 3309 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3310 goto skip; 3311 if (!folio_trylock(folio)) 3312 goto skip; 3313 if (folio->mapping != mapping) 3314 goto unlock; 3315 if (!folio_test_uptodate(folio)) 3316 goto unlock; 3317 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3318 if (xas->xa_index >= max_idx) 3319 goto unlock; 3320 return folio; 3321 unlock: 3322 folio_unlock(folio); 3323 skip: 3324 folio_put(folio); 3325 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3326 3327 return NULL; 3328 } 3329 3330 static inline struct folio *first_map_page(struct address_space *mapping, 3331 struct xa_state *xas, 3332 pgoff_t end_pgoff) 3333 { 3334 return next_uptodate_page(xas_find(xas, end_pgoff), 3335 mapping, xas, end_pgoff); 3336 } 3337 3338 static inline struct folio *next_map_page(struct address_space *mapping, 3339 struct xa_state *xas, 3340 pgoff_t end_pgoff) 3341 { 3342 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3343 mapping, xas, end_pgoff); 3344 } 3345 3346 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3347 pgoff_t start_pgoff, pgoff_t end_pgoff) 3348 { 3349 struct vm_area_struct *vma = vmf->vma; 3350 struct file *file = vma->vm_file; 3351 struct address_space *mapping = file->f_mapping; 3352 pgoff_t last_pgoff = start_pgoff; 3353 unsigned long addr; 3354 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3355 struct folio *folio; 3356 struct page *page; 3357 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3358 vm_fault_t ret = 0; 3359 3360 rcu_read_lock(); 3361 folio = first_map_page(mapping, &xas, end_pgoff); 3362 if (!folio) 3363 goto out; 3364 3365 if (filemap_map_pmd(vmf, &folio->page)) { 3366 ret = VM_FAULT_NOPAGE; 3367 goto out; 3368 } 3369 3370 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3372 do { 3373 again: 3374 page = folio_file_page(folio, xas.xa_index); 3375 if (PageHWPoison(page)) 3376 goto unlock; 3377 3378 if (mmap_miss > 0) 3379 mmap_miss--; 3380 3381 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3382 vmf->pte += xas.xa_index - last_pgoff; 3383 last_pgoff = xas.xa_index; 3384 3385 if (!pte_none(*vmf->pte)) 3386 goto unlock; 3387 3388 /* We're about to handle the fault */ 3389 if (vmf->address == addr) 3390 ret = VM_FAULT_NOPAGE; 3391 3392 do_set_pte(vmf, page, addr); 3393 /* no need to invalidate: a not-present page won't be cached */ 3394 update_mmu_cache(vma, addr, vmf->pte); 3395 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3396 xas.xa_index++; 3397 folio_ref_inc(folio); 3398 goto again; 3399 } 3400 folio_unlock(folio); 3401 continue; 3402 unlock: 3403 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3404 xas.xa_index++; 3405 goto again; 3406 } 3407 folio_unlock(folio); 3408 folio_put(folio); 3409 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3410 pte_unmap_unlock(vmf->pte, vmf->ptl); 3411 out: 3412 rcu_read_unlock(); 3413 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3414 return ret; 3415 } 3416 EXPORT_SYMBOL(filemap_map_pages); 3417 3418 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3419 { 3420 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3421 struct folio *folio = page_folio(vmf->page); 3422 vm_fault_t ret = VM_FAULT_LOCKED; 3423 3424 sb_start_pagefault(mapping->host->i_sb); 3425 file_update_time(vmf->vma->vm_file); 3426 folio_lock(folio); 3427 if (folio->mapping != mapping) { 3428 folio_unlock(folio); 3429 ret = VM_FAULT_NOPAGE; 3430 goto out; 3431 } 3432 /* 3433 * We mark the folio dirty already here so that when freeze is in 3434 * progress, we are guaranteed that writeback during freezing will 3435 * see the dirty folio and writeprotect it again. 3436 */ 3437 folio_mark_dirty(folio); 3438 folio_wait_stable(folio); 3439 out: 3440 sb_end_pagefault(mapping->host->i_sb); 3441 return ret; 3442 } 3443 3444 const struct vm_operations_struct generic_file_vm_ops = { 3445 .fault = filemap_fault, 3446 .map_pages = filemap_map_pages, 3447 .page_mkwrite = filemap_page_mkwrite, 3448 }; 3449 3450 /* This is used for a general mmap of a disk file */ 3451 3452 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3453 { 3454 struct address_space *mapping = file->f_mapping; 3455 3456 if (!mapping->a_ops->readpage) 3457 return -ENOEXEC; 3458 file_accessed(file); 3459 vma->vm_ops = &generic_file_vm_ops; 3460 return 0; 3461 } 3462 3463 /* 3464 * This is for filesystems which do not implement ->writepage. 3465 */ 3466 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3467 { 3468 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3469 return -EINVAL; 3470 return generic_file_mmap(file, vma); 3471 } 3472 #else 3473 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3474 { 3475 return VM_FAULT_SIGBUS; 3476 } 3477 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3478 { 3479 return -ENOSYS; 3480 } 3481 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3482 { 3483 return -ENOSYS; 3484 } 3485 #endif /* CONFIG_MMU */ 3486 3487 EXPORT_SYMBOL(filemap_page_mkwrite); 3488 EXPORT_SYMBOL(generic_file_mmap); 3489 EXPORT_SYMBOL(generic_file_readonly_mmap); 3490 3491 static struct folio *do_read_cache_folio(struct address_space *mapping, 3492 pgoff_t index, filler_t filler, void *data, gfp_t gfp) 3493 { 3494 struct folio *folio; 3495 int err; 3496 repeat: 3497 folio = filemap_get_folio(mapping, index); 3498 if (!folio) { 3499 folio = filemap_alloc_folio(gfp, 0); 3500 if (!folio) 3501 return ERR_PTR(-ENOMEM); 3502 err = filemap_add_folio(mapping, folio, index, gfp); 3503 if (unlikely(err)) { 3504 folio_put(folio); 3505 if (err == -EEXIST) 3506 goto repeat; 3507 /* Presumably ENOMEM for xarray node */ 3508 return ERR_PTR(err); 3509 } 3510 3511 filler: 3512 if (filler) 3513 err = filler(data, &folio->page); 3514 else 3515 err = mapping->a_ops->readpage(data, &folio->page); 3516 3517 if (err < 0) { 3518 folio_put(folio); 3519 return ERR_PTR(err); 3520 } 3521 3522 folio_wait_locked(folio); 3523 if (!folio_test_uptodate(folio)) { 3524 folio_put(folio); 3525 return ERR_PTR(-EIO); 3526 } 3527 3528 goto out; 3529 } 3530 if (folio_test_uptodate(folio)) 3531 goto out; 3532 3533 if (!folio_trylock(folio)) { 3534 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3535 goto repeat; 3536 } 3537 3538 /* Folio was truncated from mapping */ 3539 if (!folio->mapping) { 3540 folio_unlock(folio); 3541 folio_put(folio); 3542 goto repeat; 3543 } 3544 3545 /* Someone else locked and filled the page in a very small window */ 3546 if (folio_test_uptodate(folio)) { 3547 folio_unlock(folio); 3548 goto out; 3549 } 3550 3551 /* 3552 * A previous I/O error may have been due to temporary 3553 * failures. 3554 * Clear page error before actual read, PG_error will be 3555 * set again if read page fails. 3556 */ 3557 folio_clear_error(folio); 3558 goto filler; 3559 3560 out: 3561 folio_mark_accessed(folio); 3562 return folio; 3563 } 3564 3565 /** 3566 * read_cache_folio - read into page cache, fill it if needed 3567 * @mapping: the page's address_space 3568 * @index: the page index 3569 * @filler: function to perform the read 3570 * @data: first arg to filler(data, page) function, often left as NULL 3571 * 3572 * Read into the page cache. If a page already exists, and PageUptodate() is 3573 * not set, try to fill the page and wait for it to become unlocked. 3574 * 3575 * If the page does not get brought uptodate, return -EIO. 3576 * 3577 * The function expects mapping->invalidate_lock to be already held. 3578 * 3579 * Return: up to date page on success, ERR_PTR() on failure. 3580 */ 3581 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3582 filler_t filler, void *data) 3583 { 3584 return do_read_cache_folio(mapping, index, filler, data, 3585 mapping_gfp_mask(mapping)); 3586 } 3587 EXPORT_SYMBOL(read_cache_folio); 3588 3589 static struct page *do_read_cache_page(struct address_space *mapping, 3590 pgoff_t index, filler_t *filler, void *data, gfp_t gfp) 3591 { 3592 struct folio *folio; 3593 3594 folio = do_read_cache_folio(mapping, index, filler, data, gfp); 3595 if (IS_ERR(folio)) 3596 return &folio->page; 3597 return folio_file_page(folio, index); 3598 } 3599 3600 struct page *read_cache_page(struct address_space *mapping, 3601 pgoff_t index, filler_t *filler, void *data) 3602 { 3603 return do_read_cache_page(mapping, index, filler, data, 3604 mapping_gfp_mask(mapping)); 3605 } 3606 EXPORT_SYMBOL(read_cache_page); 3607 3608 /** 3609 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3610 * @mapping: the page's address_space 3611 * @index: the page index 3612 * @gfp: the page allocator flags to use if allocating 3613 * 3614 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3615 * any new page allocations done using the specified allocation flags. 3616 * 3617 * If the page does not get brought uptodate, return -EIO. 3618 * 3619 * The function expects mapping->invalidate_lock to be already held. 3620 * 3621 * Return: up to date page on success, ERR_PTR() on failure. 3622 */ 3623 struct page *read_cache_page_gfp(struct address_space *mapping, 3624 pgoff_t index, 3625 gfp_t gfp) 3626 { 3627 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3628 } 3629 EXPORT_SYMBOL(read_cache_page_gfp); 3630 3631 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3632 loff_t pos, unsigned len, unsigned flags, 3633 struct page **pagep, void **fsdata) 3634 { 3635 const struct address_space_operations *aops = mapping->a_ops; 3636 3637 return aops->write_begin(file, mapping, pos, len, flags, 3638 pagep, fsdata); 3639 } 3640 EXPORT_SYMBOL(pagecache_write_begin); 3641 3642 int pagecache_write_end(struct file *file, struct address_space *mapping, 3643 loff_t pos, unsigned len, unsigned copied, 3644 struct page *page, void *fsdata) 3645 { 3646 const struct address_space_operations *aops = mapping->a_ops; 3647 3648 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3649 } 3650 EXPORT_SYMBOL(pagecache_write_end); 3651 3652 /* 3653 * Warn about a page cache invalidation failure during a direct I/O write. 3654 */ 3655 void dio_warn_stale_pagecache(struct file *filp) 3656 { 3657 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3658 char pathname[128]; 3659 char *path; 3660 3661 errseq_set(&filp->f_mapping->wb_err, -EIO); 3662 if (__ratelimit(&_rs)) { 3663 path = file_path(filp, pathname, sizeof(pathname)); 3664 if (IS_ERR(path)) 3665 path = "(unknown)"; 3666 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3667 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3668 current->comm); 3669 } 3670 } 3671 3672 ssize_t 3673 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3674 { 3675 struct file *file = iocb->ki_filp; 3676 struct address_space *mapping = file->f_mapping; 3677 struct inode *inode = mapping->host; 3678 loff_t pos = iocb->ki_pos; 3679 ssize_t written; 3680 size_t write_len; 3681 pgoff_t end; 3682 3683 write_len = iov_iter_count(from); 3684 end = (pos + write_len - 1) >> PAGE_SHIFT; 3685 3686 if (iocb->ki_flags & IOCB_NOWAIT) { 3687 /* If there are pages to writeback, return */ 3688 if (filemap_range_has_page(file->f_mapping, pos, 3689 pos + write_len - 1)) 3690 return -EAGAIN; 3691 } else { 3692 written = filemap_write_and_wait_range(mapping, pos, 3693 pos + write_len - 1); 3694 if (written) 3695 goto out; 3696 } 3697 3698 /* 3699 * After a write we want buffered reads to be sure to go to disk to get 3700 * the new data. We invalidate clean cached page from the region we're 3701 * about to write. We do this *before* the write so that we can return 3702 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3703 */ 3704 written = invalidate_inode_pages2_range(mapping, 3705 pos >> PAGE_SHIFT, end); 3706 /* 3707 * If a page can not be invalidated, return 0 to fall back 3708 * to buffered write. 3709 */ 3710 if (written) { 3711 if (written == -EBUSY) 3712 return 0; 3713 goto out; 3714 } 3715 3716 written = mapping->a_ops->direct_IO(iocb, from); 3717 3718 /* 3719 * Finally, try again to invalidate clean pages which might have been 3720 * cached by non-direct readahead, or faulted in by get_user_pages() 3721 * if the source of the write was an mmap'ed region of the file 3722 * we're writing. Either one is a pretty crazy thing to do, 3723 * so we don't support it 100%. If this invalidation 3724 * fails, tough, the write still worked... 3725 * 3726 * Most of the time we do not need this since dio_complete() will do 3727 * the invalidation for us. However there are some file systems that 3728 * do not end up with dio_complete() being called, so let's not break 3729 * them by removing it completely. 3730 * 3731 * Noticeable example is a blkdev_direct_IO(). 3732 * 3733 * Skip invalidation for async writes or if mapping has no pages. 3734 */ 3735 if (written > 0 && mapping->nrpages && 3736 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3737 dio_warn_stale_pagecache(file); 3738 3739 if (written > 0) { 3740 pos += written; 3741 write_len -= written; 3742 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3743 i_size_write(inode, pos); 3744 mark_inode_dirty(inode); 3745 } 3746 iocb->ki_pos = pos; 3747 } 3748 if (written != -EIOCBQUEUED) 3749 iov_iter_revert(from, write_len - iov_iter_count(from)); 3750 out: 3751 return written; 3752 } 3753 EXPORT_SYMBOL(generic_file_direct_write); 3754 3755 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3756 { 3757 struct file *file = iocb->ki_filp; 3758 loff_t pos = iocb->ki_pos; 3759 struct address_space *mapping = file->f_mapping; 3760 const struct address_space_operations *a_ops = mapping->a_ops; 3761 long status = 0; 3762 ssize_t written = 0; 3763 unsigned int flags = 0; 3764 3765 do { 3766 struct page *page; 3767 unsigned long offset; /* Offset into pagecache page */ 3768 unsigned long bytes; /* Bytes to write to page */ 3769 size_t copied; /* Bytes copied from user */ 3770 void *fsdata; 3771 3772 offset = (pos & (PAGE_SIZE - 1)); 3773 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3774 iov_iter_count(i)); 3775 3776 again: 3777 /* 3778 * Bring in the user page that we will copy from _first_. 3779 * Otherwise there's a nasty deadlock on copying from the 3780 * same page as we're writing to, without it being marked 3781 * up-to-date. 3782 */ 3783 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3784 status = -EFAULT; 3785 break; 3786 } 3787 3788 if (fatal_signal_pending(current)) { 3789 status = -EINTR; 3790 break; 3791 } 3792 3793 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3794 &page, &fsdata); 3795 if (unlikely(status < 0)) 3796 break; 3797 3798 if (mapping_writably_mapped(mapping)) 3799 flush_dcache_page(page); 3800 3801 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3802 flush_dcache_page(page); 3803 3804 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3805 page, fsdata); 3806 if (unlikely(status != copied)) { 3807 iov_iter_revert(i, copied - max(status, 0L)); 3808 if (unlikely(status < 0)) 3809 break; 3810 } 3811 cond_resched(); 3812 3813 if (unlikely(status == 0)) { 3814 /* 3815 * A short copy made ->write_end() reject the 3816 * thing entirely. Might be memory poisoning 3817 * halfway through, might be a race with munmap, 3818 * might be severe memory pressure. 3819 */ 3820 if (copied) 3821 bytes = copied; 3822 goto again; 3823 } 3824 pos += status; 3825 written += status; 3826 3827 balance_dirty_pages_ratelimited(mapping); 3828 } while (iov_iter_count(i)); 3829 3830 return written ? written : status; 3831 } 3832 EXPORT_SYMBOL(generic_perform_write); 3833 3834 /** 3835 * __generic_file_write_iter - write data to a file 3836 * @iocb: IO state structure (file, offset, etc.) 3837 * @from: iov_iter with data to write 3838 * 3839 * This function does all the work needed for actually writing data to a 3840 * file. It does all basic checks, removes SUID from the file, updates 3841 * modification times and calls proper subroutines depending on whether we 3842 * do direct IO or a standard buffered write. 3843 * 3844 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3845 * object which does not need locking at all. 3846 * 3847 * This function does *not* take care of syncing data in case of O_SYNC write. 3848 * A caller has to handle it. This is mainly due to the fact that we want to 3849 * avoid syncing under i_rwsem. 3850 * 3851 * Return: 3852 * * number of bytes written, even for truncated writes 3853 * * negative error code if no data has been written at all 3854 */ 3855 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3856 { 3857 struct file *file = iocb->ki_filp; 3858 struct address_space *mapping = file->f_mapping; 3859 struct inode *inode = mapping->host; 3860 ssize_t written = 0; 3861 ssize_t err; 3862 ssize_t status; 3863 3864 /* We can write back this queue in page reclaim */ 3865 current->backing_dev_info = inode_to_bdi(inode); 3866 err = file_remove_privs(file); 3867 if (err) 3868 goto out; 3869 3870 err = file_update_time(file); 3871 if (err) 3872 goto out; 3873 3874 if (iocb->ki_flags & IOCB_DIRECT) { 3875 loff_t pos, endbyte; 3876 3877 written = generic_file_direct_write(iocb, from); 3878 /* 3879 * If the write stopped short of completing, fall back to 3880 * buffered writes. Some filesystems do this for writes to 3881 * holes, for example. For DAX files, a buffered write will 3882 * not succeed (even if it did, DAX does not handle dirty 3883 * page-cache pages correctly). 3884 */ 3885 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3886 goto out; 3887 3888 pos = iocb->ki_pos; 3889 status = generic_perform_write(iocb, from); 3890 /* 3891 * If generic_perform_write() returned a synchronous error 3892 * then we want to return the number of bytes which were 3893 * direct-written, or the error code if that was zero. Note 3894 * that this differs from normal direct-io semantics, which 3895 * will return -EFOO even if some bytes were written. 3896 */ 3897 if (unlikely(status < 0)) { 3898 err = status; 3899 goto out; 3900 } 3901 /* 3902 * We need to ensure that the page cache pages are written to 3903 * disk and invalidated to preserve the expected O_DIRECT 3904 * semantics. 3905 */ 3906 endbyte = pos + status - 1; 3907 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3908 if (err == 0) { 3909 iocb->ki_pos = endbyte + 1; 3910 written += status; 3911 invalidate_mapping_pages(mapping, 3912 pos >> PAGE_SHIFT, 3913 endbyte >> PAGE_SHIFT); 3914 } else { 3915 /* 3916 * We don't know how much we wrote, so just return 3917 * the number of bytes which were direct-written 3918 */ 3919 } 3920 } else { 3921 written = generic_perform_write(iocb, from); 3922 if (likely(written > 0)) 3923 iocb->ki_pos += written; 3924 } 3925 out: 3926 current->backing_dev_info = NULL; 3927 return written ? written : err; 3928 } 3929 EXPORT_SYMBOL(__generic_file_write_iter); 3930 3931 /** 3932 * generic_file_write_iter - write data to a file 3933 * @iocb: IO state structure 3934 * @from: iov_iter with data to write 3935 * 3936 * This is a wrapper around __generic_file_write_iter() to be used by most 3937 * filesystems. It takes care of syncing the file in case of O_SYNC file 3938 * and acquires i_rwsem as needed. 3939 * Return: 3940 * * negative error code if no data has been written at all of 3941 * vfs_fsync_range() failed for a synchronous write 3942 * * number of bytes written, even for truncated writes 3943 */ 3944 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3945 { 3946 struct file *file = iocb->ki_filp; 3947 struct inode *inode = file->f_mapping->host; 3948 ssize_t ret; 3949 3950 inode_lock(inode); 3951 ret = generic_write_checks(iocb, from); 3952 if (ret > 0) 3953 ret = __generic_file_write_iter(iocb, from); 3954 inode_unlock(inode); 3955 3956 if (ret > 0) 3957 ret = generic_write_sync(iocb, ret); 3958 return ret; 3959 } 3960 EXPORT_SYMBOL(generic_file_write_iter); 3961 3962 /** 3963 * filemap_release_folio() - Release fs-specific metadata on a folio. 3964 * @folio: The folio which the kernel is trying to free. 3965 * @gfp: Memory allocation flags (and I/O mode). 3966 * 3967 * The address_space is trying to release any data attached to a folio 3968 * (presumably at folio->private). 3969 * 3970 * This will also be called if the private_2 flag is set on a page, 3971 * indicating that the folio has other metadata associated with it. 3972 * 3973 * The @gfp argument specifies whether I/O may be performed to release 3974 * this page (__GFP_IO), and whether the call may block 3975 * (__GFP_RECLAIM & __GFP_FS). 3976 * 3977 * Return: %true if the release was successful, otherwise %false. 3978 */ 3979 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3980 { 3981 struct address_space * const mapping = folio->mapping; 3982 3983 BUG_ON(!folio_test_locked(folio)); 3984 if (folio_test_writeback(folio)) 3985 return false; 3986 3987 if (mapping && mapping->a_ops->releasepage) 3988 return mapping->a_ops->releasepage(&folio->page, gfp); 3989 return try_to_free_buffers(&folio->page); 3990 } 3991 EXPORT_SYMBOL(filemap_release_folio); 3992