xref: /linux/mm/filemap.c (revision fba2689ee77e63b05e203b3f26079ef915e55660)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->block_dirty_folio)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->block_dirty_folio)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct folio *folio, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, folio->index);
128 	long nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!folio_test_hugetlb(folio)) {
134 		xas_set_order(&xas, folio->index, folio_order(folio));
135 		nr = folio_nr_pages(folio);
136 	}
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
156 			 current->comm, folio_pfn(folio));
157 		dump_page(&folio->page, "still mapped when deleted");
158 		dump_stack();
159 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 
161 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 			int mapcount = page_mapcount(&folio->page);
163 
164 			if (folio_ref_count(folio) >= mapcount + 2) {
165 				/*
166 				 * All vmas have already been torn down, so it's
167 				 * a good bet that actually the page is unmapped
168 				 * and we'd rather not leak it: if we're wrong,
169 				 * another bad page check should catch it later.
170 				 */
171 				page_mapcount_reset(&folio->page);
172 				folio_ref_sub(folio, mapcount);
173 			}
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data - on ordinary filesystems.
197 	 *
198 	 * But it's harmless on in-memory filesystems like tmpfs; and can
199 	 * occur when a driver which did get_user_pages() sets page dirty
200 	 * before putting it, while the inode is being finally evicted.
201 	 *
202 	 * Below fixes dirty accounting after removing the folio entirely
203 	 * but leaves the dirty flag set: it has no effect for truncated
204 	 * folio and anyway will be cleared before returning folio to
205 	 * buddy allocator.
206 	 */
207 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 			 mapping_can_writeback(mapping)))
209 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211 
212 /*
213  * Delete a page from the page cache and free it. Caller has to make
214  * sure the page is locked and that nobody else uses it - or that usage
215  * is safe.  The caller must hold the i_pages lock.
216  */
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 	struct address_space *mapping = folio->mapping;
220 
221 	trace_mm_filemap_delete_from_page_cache(folio);
222 	filemap_unaccount_folio(mapping, folio);
223 	page_cache_delete(mapping, folio, shadow);
224 }
225 
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 	void (*freepage)(struct page *);
229 	int refs = 1;
230 
231 	freepage = mapping->a_ops->freepage;
232 	if (freepage)
233 		freepage(&folio->page);
234 
235 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 		refs = folio_nr_pages(folio);
237 	folio_put_refs(folio, refs);
238 }
239 
240 /**
241  * filemap_remove_folio - Remove folio from page cache.
242  * @folio: The folio.
243  *
244  * This must be called only on folios that are locked and have been
245  * verified to be in the page cache.  It will never put the folio into
246  * the free list because the caller has a reference on the page.
247  */
248 void filemap_remove_folio(struct folio *folio)
249 {
250 	struct address_space *mapping = folio->mapping;
251 
252 	BUG_ON(!folio_test_locked(folio));
253 	spin_lock(&mapping->host->i_lock);
254 	xa_lock_irq(&mapping->i_pages);
255 	__filemap_remove_folio(folio, NULL);
256 	xa_unlock_irq(&mapping->i_pages);
257 	if (mapping_shrinkable(mapping))
258 		inode_add_lru(mapping->host);
259 	spin_unlock(&mapping->host->i_lock);
260 
261 	filemap_free_folio(mapping, folio);
262 }
263 
264 /*
265  * page_cache_delete_batch - delete several folios from page cache
266  * @mapping: the mapping to which folios belong
267  * @fbatch: batch of folios to delete
268  *
269  * The function walks over mapping->i_pages and removes folios passed in
270  * @fbatch from the mapping. The function expects @fbatch to be sorted
271  * by page index and is optimised for it to be dense.
272  * It tolerates holes in @fbatch (mapping entries at those indices are not
273  * modified).
274  *
275  * The function expects the i_pages lock to be held.
276  */
277 static void page_cache_delete_batch(struct address_space *mapping,
278 			     struct folio_batch *fbatch)
279 {
280 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 	long total_pages = 0;
282 	int i = 0;
283 	struct folio *folio;
284 
285 	mapping_set_update(&xas, mapping);
286 	xas_for_each(&xas, folio, ULONG_MAX) {
287 		if (i >= folio_batch_count(fbatch))
288 			break;
289 
290 		/* A swap/dax/shadow entry got inserted? Skip it. */
291 		if (xa_is_value(folio))
292 			continue;
293 		/*
294 		 * A page got inserted in our range? Skip it. We have our
295 		 * pages locked so they are protected from being removed.
296 		 * If we see a page whose index is higher than ours, it
297 		 * means our page has been removed, which shouldn't be
298 		 * possible because we're holding the PageLock.
299 		 */
300 		if (folio != fbatch->folios[i]) {
301 			VM_BUG_ON_FOLIO(folio->index >
302 					fbatch->folios[i]->index, folio);
303 			continue;
304 		}
305 
306 		WARN_ON_ONCE(!folio_test_locked(folio));
307 
308 		folio->mapping = NULL;
309 		/* Leave folio->index set: truncation lookup relies on it */
310 
311 		i++;
312 		xas_store(&xas, NULL);
313 		total_pages += folio_nr_pages(folio);
314 	}
315 	mapping->nrpages -= total_pages;
316 }
317 
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 				  struct folio_batch *fbatch)
320 {
321 	int i;
322 
323 	if (!folio_batch_count(fbatch))
324 		return;
325 
326 	spin_lock(&mapping->host->i_lock);
327 	xa_lock_irq(&mapping->i_pages);
328 	for (i = 0; i < folio_batch_count(fbatch); i++) {
329 		struct folio *folio = fbatch->folios[i];
330 
331 		trace_mm_filemap_delete_from_page_cache(folio);
332 		filemap_unaccount_folio(mapping, folio);
333 	}
334 	page_cache_delete_batch(mapping, fbatch);
335 	xa_unlock_irq(&mapping->i_pages);
336 	if (mapping_shrinkable(mapping))
337 		inode_add_lru(mapping->host);
338 	spin_unlock(&mapping->host->i_lock);
339 
340 	for (i = 0; i < folio_batch_count(fbatch); i++)
341 		filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343 
344 int filemap_check_errors(struct address_space *mapping)
345 {
346 	int ret = 0;
347 	/* Check for outstanding write errors */
348 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 		ret = -ENOSPC;
351 	if (test_bit(AS_EIO, &mapping->flags) &&
352 	    test_and_clear_bit(AS_EIO, &mapping->flags))
353 		ret = -EIO;
354 	return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357 
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_EIO, &mapping->flags))
362 		return -EIO;
363 	if (test_bit(AS_ENOSPC, &mapping->flags))
364 		return -ENOSPC;
365 	return 0;
366 }
367 
368 /**
369  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370  * @mapping:	address space structure to write
371  * @wbc:	the writeback_control controlling the writeout
372  *
373  * Call writepages on the mapping using the provided wbc to control the
374  * writeout.
375  *
376  * Return: %0 on success, negative error code otherwise.
377  */
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 			   struct writeback_control *wbc)
380 {
381 	int ret;
382 
383 	if (!mapping_can_writeback(mapping) ||
384 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 		return 0;
386 
387 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 	ret = do_writepages(mapping, wbc);
389 	wbc_detach_inode(wbc);
390 	return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393 
394 /**
395  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396  * @mapping:	address space structure to write
397  * @start:	offset in bytes where the range starts
398  * @end:	offset in bytes where the range ends (inclusive)
399  * @sync_mode:	enable synchronous operation
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405  * opposed to a regular memory cleansing writeback.  The difference between
406  * these two operations is that if a dirty page/buffer is encountered, it must
407  * be waited upon, and not just skipped over.
408  *
409  * Return: %0 on success, negative error code otherwise.
410  */
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 				loff_t end, int sync_mode)
413 {
414 	struct writeback_control wbc = {
415 		.sync_mode = sync_mode,
416 		.nr_to_write = LONG_MAX,
417 		.range_start = start,
418 		.range_end = end,
419 	};
420 
421 	return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423 
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 	int sync_mode)
426 {
427 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429 
430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435 
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 				loff_t end)
438 {
439 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442 
443 /**
444  * filemap_flush - mostly a non-blocking flush
445  * @mapping:	target address_space
446  *
447  * This is a mostly non-blocking flush.  Not suitable for data-integrity
448  * purposes - I/O may not be started against all dirty pages.
449  *
450  * Return: %0 on success, negative error code otherwise.
451  */
452 int filemap_flush(struct address_space *mapping)
453 {
454 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457 
458 /**
459  * filemap_range_has_page - check if a page exists in range.
460  * @mapping:           address space within which to check
461  * @start_byte:        offset in bytes where the range starts
462  * @end_byte:          offset in bytes where the range ends (inclusive)
463  *
464  * Find at least one page in the range supplied, usually used to check if
465  * direct writing in this range will trigger a writeback.
466  *
467  * Return: %true if at least one page exists in the specified range,
468  * %false otherwise.
469  */
470 bool filemap_range_has_page(struct address_space *mapping,
471 			   loff_t start_byte, loff_t end_byte)
472 {
473 	struct page *page;
474 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 	pgoff_t max = end_byte >> PAGE_SHIFT;
476 
477 	if (end_byte < start_byte)
478 		return false;
479 
480 	rcu_read_lock();
481 	for (;;) {
482 		page = xas_find(&xas, max);
483 		if (xas_retry(&xas, page))
484 			continue;
485 		/* Shadow entries don't count */
486 		if (xa_is_value(page))
487 			continue;
488 		/*
489 		 * We don't need to try to pin this page; we're about to
490 		 * release the RCU lock anyway.  It is enough to know that
491 		 * there was a page here recently.
492 		 */
493 		break;
494 	}
495 	rcu_read_unlock();
496 
497 	return page != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500 
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 				     loff_t start_byte, loff_t end_byte)
503 {
504 	pgoff_t index = start_byte >> PAGE_SHIFT;
505 	pgoff_t end = end_byte >> PAGE_SHIFT;
506 	struct pagevec pvec;
507 	int nr_pages;
508 
509 	if (end_byte < start_byte)
510 		return;
511 
512 	pagevec_init(&pvec);
513 	while (index <= end) {
514 		unsigned i;
515 
516 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 				end, PAGECACHE_TAG_WRITEBACK);
518 		if (!nr_pages)
519 			break;
520 
521 		for (i = 0; i < nr_pages; i++) {
522 			struct page *page = pvec.pages[i];
523 
524 			wait_on_page_writeback(page);
525 			ClearPageError(page);
526 		}
527 		pagevec_release(&pvec);
528 		cond_resched();
529 	}
530 }
531 
532 /**
533  * filemap_fdatawait_range - wait for writeback to complete
534  * @mapping:		address space structure to wait for
535  * @start_byte:		offset in bytes where the range starts
536  * @end_byte:		offset in bytes where the range ends (inclusive)
537  *
538  * Walk the list of under-writeback pages of the given address space
539  * in the given range and wait for all of them.  Check error status of
540  * the address space and return it.
541  *
542  * Since the error status of the address space is cleared by this function,
543  * callers are responsible for checking the return value and handling and/or
544  * reporting the error.
545  *
546  * Return: error status of the address space.
547  */
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 			    loff_t end_byte)
550 {
551 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
552 	return filemap_check_errors(mapping);
553 }
554 EXPORT_SYMBOL(filemap_fdatawait_range);
555 
556 /**
557  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558  * @mapping:		address space structure to wait for
559  * @start_byte:		offset in bytes where the range starts
560  * @end_byte:		offset in bytes where the range ends (inclusive)
561  *
562  * Walk the list of under-writeback pages of the given address space in the
563  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
564  * this function does not clear error status of the address space.
565  *
566  * Use this function if callers don't handle errors themselves.  Expected
567  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568  * fsfreeze(8)
569  */
570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 		loff_t start_byte, loff_t end_byte)
572 {
573 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
574 	return filemap_check_and_keep_errors(mapping);
575 }
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577 
578 /**
579  * file_fdatawait_range - wait for writeback to complete
580  * @file:		file pointing to address space structure to wait for
581  * @start_byte:		offset in bytes where the range starts
582  * @end_byte:		offset in bytes where the range ends (inclusive)
583  *
584  * Walk the list of under-writeback pages of the address space that file
585  * refers to, in the given range and wait for all of them.  Check error
586  * status of the address space vs. the file->f_wb_err cursor and return it.
587  *
588  * Since the error status of the file is advanced by this function,
589  * callers are responsible for checking the return value and handling and/or
590  * reporting the error.
591  *
592  * Return: error status of the address space vs. the file->f_wb_err cursor.
593  */
594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595 {
596 	struct address_space *mapping = file->f_mapping;
597 
598 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
599 	return file_check_and_advance_wb_err(file);
600 }
601 EXPORT_SYMBOL(file_fdatawait_range);
602 
603 /**
604  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605  * @mapping: address space structure to wait for
606  *
607  * Walk the list of under-writeback pages of the given address space
608  * and wait for all of them.  Unlike filemap_fdatawait(), this function
609  * does not clear error status of the address space.
610  *
611  * Use this function if callers don't handle errors themselves.  Expected
612  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613  * fsfreeze(8)
614  *
615  * Return: error status of the address space.
616  */
617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
618 {
619 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 	return filemap_check_and_keep_errors(mapping);
621 }
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623 
624 /* Returns true if writeback might be needed or already in progress. */
625 static bool mapping_needs_writeback(struct address_space *mapping)
626 {
627 	return mapping->nrpages;
628 }
629 
630 bool filemap_range_has_writeback(struct address_space *mapping,
631 				 loff_t start_byte, loff_t end_byte)
632 {
633 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 	pgoff_t max = end_byte >> PAGE_SHIFT;
635 	struct page *page;
636 
637 	if (end_byte < start_byte)
638 		return false;
639 
640 	rcu_read_lock();
641 	xas_for_each(&xas, page, max) {
642 		if (xas_retry(&xas, page))
643 			continue;
644 		if (xa_is_value(page))
645 			continue;
646 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
647 			break;
648 	}
649 	rcu_read_unlock();
650 	return page != NULL;
651 }
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653 
654 /**
655  * filemap_write_and_wait_range - write out & wait on a file range
656  * @mapping:	the address_space for the pages
657  * @lstart:	offset in bytes where the range starts
658  * @lend:	offset in bytes where the range ends (inclusive)
659  *
660  * Write out and wait upon file offsets lstart->lend, inclusive.
661  *
662  * Note that @lend is inclusive (describes the last byte to be written) so
663  * that this function can be used to write to the very end-of-file (end = -1).
664  *
665  * Return: error status of the address space.
666  */
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 				 loff_t lstart, loff_t lend)
669 {
670 	int err = 0;
671 
672 	if (mapping_needs_writeback(mapping)) {
673 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
674 						 WB_SYNC_ALL);
675 		/*
676 		 * Even if the above returned error, the pages may be
677 		 * written partially (e.g. -ENOSPC), so we wait for it.
678 		 * But the -EIO is special case, it may indicate the worst
679 		 * thing (e.g. bug) happened, so we avoid waiting for it.
680 		 */
681 		if (err != -EIO) {
682 			int err2 = filemap_fdatawait_range(mapping,
683 						lstart, lend);
684 			if (!err)
685 				err = err2;
686 		} else {
687 			/* Clear any previously stored errors */
688 			filemap_check_errors(mapping);
689 		}
690 	} else {
691 		err = filemap_check_errors(mapping);
692 	}
693 	return err;
694 }
695 EXPORT_SYMBOL(filemap_write_and_wait_range);
696 
697 void __filemap_set_wb_err(struct address_space *mapping, int err)
698 {
699 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
700 
701 	trace_filemap_set_wb_err(mapping, eseq);
702 }
703 EXPORT_SYMBOL(__filemap_set_wb_err);
704 
705 /**
706  * file_check_and_advance_wb_err - report wb error (if any) that was previously
707  * 				   and advance wb_err to current one
708  * @file: struct file on which the error is being reported
709  *
710  * When userland calls fsync (or something like nfsd does the equivalent), we
711  * want to report any writeback errors that occurred since the last fsync (or
712  * since the file was opened if there haven't been any).
713  *
714  * Grab the wb_err from the mapping. If it matches what we have in the file,
715  * then just quickly return 0. The file is all caught up.
716  *
717  * If it doesn't match, then take the mapping value, set the "seen" flag in
718  * it and try to swap it into place. If it works, or another task beat us
719  * to it with the new value, then update the f_wb_err and return the error
720  * portion. The error at this point must be reported via proper channels
721  * (a'la fsync, or NFS COMMIT operation, etc.).
722  *
723  * While we handle mapping->wb_err with atomic operations, the f_wb_err
724  * value is protected by the f_lock since we must ensure that it reflects
725  * the latest value swapped in for this file descriptor.
726  *
727  * Return: %0 on success, negative error code otherwise.
728  */
729 int file_check_and_advance_wb_err(struct file *file)
730 {
731 	int err = 0;
732 	errseq_t old = READ_ONCE(file->f_wb_err);
733 	struct address_space *mapping = file->f_mapping;
734 
735 	/* Locklessly handle the common case where nothing has changed */
736 	if (errseq_check(&mapping->wb_err, old)) {
737 		/* Something changed, must use slow path */
738 		spin_lock(&file->f_lock);
739 		old = file->f_wb_err;
740 		err = errseq_check_and_advance(&mapping->wb_err,
741 						&file->f_wb_err);
742 		trace_file_check_and_advance_wb_err(file, old);
743 		spin_unlock(&file->f_lock);
744 	}
745 
746 	/*
747 	 * We're mostly using this function as a drop in replacement for
748 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
749 	 * that the legacy code would have had on these flags.
750 	 */
751 	clear_bit(AS_EIO, &mapping->flags);
752 	clear_bit(AS_ENOSPC, &mapping->flags);
753 	return err;
754 }
755 EXPORT_SYMBOL(file_check_and_advance_wb_err);
756 
757 /**
758  * file_write_and_wait_range - write out & wait on a file range
759  * @file:	file pointing to address_space with pages
760  * @lstart:	offset in bytes where the range starts
761  * @lend:	offset in bytes where the range ends (inclusive)
762  *
763  * Write out and wait upon file offsets lstart->lend, inclusive.
764  *
765  * Note that @lend is inclusive (describes the last byte to be written) so
766  * that this function can be used to write to the very end-of-file (end = -1).
767  *
768  * After writing out and waiting on the data, we check and advance the
769  * f_wb_err cursor to the latest value, and return any errors detected there.
770  *
771  * Return: %0 on success, negative error code otherwise.
772  */
773 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
774 {
775 	int err = 0, err2;
776 	struct address_space *mapping = file->f_mapping;
777 
778 	if (mapping_needs_writeback(mapping)) {
779 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 						 WB_SYNC_ALL);
781 		/* See comment of filemap_write_and_wait() */
782 		if (err != -EIO)
783 			__filemap_fdatawait_range(mapping, lstart, lend);
784 	}
785 	err2 = file_check_and_advance_wb_err(file);
786 	if (!err)
787 		err = err2;
788 	return err;
789 }
790 EXPORT_SYMBOL(file_write_and_wait_range);
791 
792 /**
793  * replace_page_cache_page - replace a pagecache page with a new one
794  * @old:	page to be replaced
795  * @new:	page to replace with
796  *
797  * This function replaces a page in the pagecache with a new one.  On
798  * success it acquires the pagecache reference for the new page and
799  * drops it for the old page.  Both the old and new pages must be
800  * locked.  This function does not add the new page to the LRU, the
801  * caller must do that.
802  *
803  * The remove + add is atomic.  This function cannot fail.
804  */
805 void replace_page_cache_page(struct page *old, struct page *new)
806 {
807 	struct folio *fold = page_folio(old);
808 	struct folio *fnew = page_folio(new);
809 	struct address_space *mapping = old->mapping;
810 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
811 	pgoff_t offset = old->index;
812 	XA_STATE(xas, &mapping->i_pages, offset);
813 
814 	VM_BUG_ON_PAGE(!PageLocked(old), old);
815 	VM_BUG_ON_PAGE(!PageLocked(new), new);
816 	VM_BUG_ON_PAGE(new->mapping, new);
817 
818 	get_page(new);
819 	new->mapping = mapping;
820 	new->index = offset;
821 
822 	mem_cgroup_migrate(fold, fnew);
823 
824 	xas_lock_irq(&xas);
825 	xas_store(&xas, new);
826 
827 	old->mapping = NULL;
828 	/* hugetlb pages do not participate in page cache accounting. */
829 	if (!PageHuge(old))
830 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
831 	if (!PageHuge(new))
832 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
833 	if (PageSwapBacked(old))
834 		__dec_lruvec_page_state(old, NR_SHMEM);
835 	if (PageSwapBacked(new))
836 		__inc_lruvec_page_state(new, NR_SHMEM);
837 	xas_unlock_irq(&xas);
838 	if (freepage)
839 		freepage(old);
840 	put_page(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_page);
843 
844 noinline int __filemap_add_folio(struct address_space *mapping,
845 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 	XA_STATE(xas, &mapping->i_pages, index);
848 	int huge = folio_test_hugetlb(folio);
849 	bool charged = false;
850 	long nr = 1;
851 
852 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 	mapping_set_update(&xas, mapping);
855 
856 	if (!huge) {
857 		int error = mem_cgroup_charge(folio, NULL, gfp);
858 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 		if (error)
860 			return error;
861 		charged = true;
862 		xas_set_order(&xas, index, folio_order(folio));
863 		nr = folio_nr_pages(folio);
864 	}
865 
866 	gfp &= GFP_RECLAIM_MASK;
867 	folio_ref_add(folio, nr);
868 	folio->mapping = mapping;
869 	folio->index = xas.xa_index;
870 
871 	do {
872 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 		void *entry, *old = NULL;
874 
875 		if (order > folio_order(folio))
876 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 					order, gfp);
878 		xas_lock_irq(&xas);
879 		xas_for_each_conflict(&xas, entry) {
880 			old = entry;
881 			if (!xa_is_value(entry)) {
882 				xas_set_err(&xas, -EEXIST);
883 				goto unlock;
884 			}
885 		}
886 
887 		if (old) {
888 			if (shadowp)
889 				*shadowp = old;
890 			/* entry may have been split before we acquired lock */
891 			order = xa_get_order(xas.xa, xas.xa_index);
892 			if (order > folio_order(folio)) {
893 				/* How to handle large swap entries? */
894 				BUG_ON(shmem_mapping(mapping));
895 				xas_split(&xas, old, order);
896 				xas_reset(&xas);
897 			}
898 		}
899 
900 		xas_store(&xas, folio);
901 		if (xas_error(&xas))
902 			goto unlock;
903 
904 		mapping->nrpages += nr;
905 
906 		/* hugetlb pages do not participate in page cache accounting */
907 		if (!huge) {
908 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 			if (folio_test_pmd_mappable(folio))
910 				__lruvec_stat_mod_folio(folio,
911 						NR_FILE_THPS, nr);
912 		}
913 unlock:
914 		xas_unlock_irq(&xas);
915 	} while (xas_nomem(&xas, gfp));
916 
917 	if (xas_error(&xas))
918 		goto error;
919 
920 	trace_mm_filemap_add_to_page_cache(folio);
921 	return 0;
922 error:
923 	if (charged)
924 		mem_cgroup_uncharge(folio);
925 	folio->mapping = NULL;
926 	/* Leave page->index set: truncation relies upon it */
927 	folio_put_refs(folio, nr);
928 	return xas_error(&xas);
929 }
930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931 
932 /**
933  * add_to_page_cache_locked - add a locked page to the pagecache
934  * @page:	page to add
935  * @mapping:	the page's address_space
936  * @offset:	page index
937  * @gfp_mask:	page allocation mode
938  *
939  * This function is used to add a page to the pagecache. It must be locked.
940  * This function does not add the page to the LRU.  The caller must do that.
941  *
942  * Return: %0 on success, negative error code otherwise.
943  */
944 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
945 		pgoff_t offset, gfp_t gfp_mask)
946 {
947 	return __filemap_add_folio(mapping, page_folio(page), offset,
948 					  gfp_mask, NULL);
949 }
950 EXPORT_SYMBOL(add_to_page_cache_locked);
951 
952 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
953 				pgoff_t index, gfp_t gfp)
954 {
955 	void *shadow = NULL;
956 	int ret;
957 
958 	__folio_set_locked(folio);
959 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
960 	if (unlikely(ret))
961 		__folio_clear_locked(folio);
962 	else {
963 		/*
964 		 * The folio might have been evicted from cache only
965 		 * recently, in which case it should be activated like
966 		 * any other repeatedly accessed folio.
967 		 * The exception is folios getting rewritten; evicting other
968 		 * data from the working set, only to cache data that will
969 		 * get overwritten with something else, is a waste of memory.
970 		 */
971 		WARN_ON_ONCE(folio_test_active(folio));
972 		if (!(gfp & __GFP_WRITE) && shadow)
973 			workingset_refault(folio, shadow);
974 		folio_add_lru(folio);
975 	}
976 	return ret;
977 }
978 EXPORT_SYMBOL_GPL(filemap_add_folio);
979 
980 #ifdef CONFIG_NUMA
981 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
982 {
983 	int n;
984 	struct folio *folio;
985 
986 	if (cpuset_do_page_mem_spread()) {
987 		unsigned int cpuset_mems_cookie;
988 		do {
989 			cpuset_mems_cookie = read_mems_allowed_begin();
990 			n = cpuset_mem_spread_node();
991 			folio = __folio_alloc_node(gfp, order, n);
992 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
993 
994 		return folio;
995 	}
996 	return folio_alloc(gfp, order);
997 }
998 EXPORT_SYMBOL(filemap_alloc_folio);
999 #endif
1000 
1001 /*
1002  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1003  *
1004  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1005  *
1006  * @mapping1: the first mapping to lock
1007  * @mapping2: the second mapping to lock
1008  */
1009 void filemap_invalidate_lock_two(struct address_space *mapping1,
1010 				 struct address_space *mapping2)
1011 {
1012 	if (mapping1 > mapping2)
1013 		swap(mapping1, mapping2);
1014 	if (mapping1)
1015 		down_write(&mapping1->invalidate_lock);
1016 	if (mapping2 && mapping1 != mapping2)
1017 		down_write_nested(&mapping2->invalidate_lock, 1);
1018 }
1019 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1020 
1021 /*
1022  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1023  *
1024  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1025  *
1026  * @mapping1: the first mapping to unlock
1027  * @mapping2: the second mapping to unlock
1028  */
1029 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1030 				   struct address_space *mapping2)
1031 {
1032 	if (mapping1)
1033 		up_write(&mapping1->invalidate_lock);
1034 	if (mapping2 && mapping1 != mapping2)
1035 		up_write(&mapping2->invalidate_lock);
1036 }
1037 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1038 
1039 /*
1040  * In order to wait for pages to become available there must be
1041  * waitqueues associated with pages. By using a hash table of
1042  * waitqueues where the bucket discipline is to maintain all
1043  * waiters on the same queue and wake all when any of the pages
1044  * become available, and for the woken contexts to check to be
1045  * sure the appropriate page became available, this saves space
1046  * at a cost of "thundering herd" phenomena during rare hash
1047  * collisions.
1048  */
1049 #define PAGE_WAIT_TABLE_BITS 8
1050 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1051 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1052 
1053 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1054 {
1055 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1056 }
1057 
1058 void __init pagecache_init(void)
1059 {
1060 	int i;
1061 
1062 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1063 		init_waitqueue_head(&folio_wait_table[i]);
1064 
1065 	page_writeback_init();
1066 
1067 	/*
1068 	 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date,
1069 	 * and splice's page_cache_pipe_buf_confirm() needs to see that.
1070 	 */
1071 	SetPageUptodate(ZERO_PAGE(0));
1072 }
1073 
1074 /*
1075  * The page wait code treats the "wait->flags" somewhat unusually, because
1076  * we have multiple different kinds of waits, not just the usual "exclusive"
1077  * one.
1078  *
1079  * We have:
1080  *
1081  *  (a) no special bits set:
1082  *
1083  *	We're just waiting for the bit to be released, and when a waker
1084  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1085  *	and remove it from the wait queue.
1086  *
1087  *	Simple and straightforward.
1088  *
1089  *  (b) WQ_FLAG_EXCLUSIVE:
1090  *
1091  *	The waiter is waiting to get the lock, and only one waiter should
1092  *	be woken up to avoid any thundering herd behavior. We'll set the
1093  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1094  *
1095  *	This is the traditional exclusive wait.
1096  *
1097  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1098  *
1099  *	The waiter is waiting to get the bit, and additionally wants the
1100  *	lock to be transferred to it for fair lock behavior. If the lock
1101  *	cannot be taken, we stop walking the wait queue without waking
1102  *	the waiter.
1103  *
1104  *	This is the "fair lock handoff" case, and in addition to setting
1105  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1106  *	that it now has the lock.
1107  */
1108 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1109 {
1110 	unsigned int flags;
1111 	struct wait_page_key *key = arg;
1112 	struct wait_page_queue *wait_page
1113 		= container_of(wait, struct wait_page_queue, wait);
1114 
1115 	if (!wake_page_match(wait_page, key))
1116 		return 0;
1117 
1118 	/*
1119 	 * If it's a lock handoff wait, we get the bit for it, and
1120 	 * stop walking (and do not wake it up) if we can't.
1121 	 */
1122 	flags = wait->flags;
1123 	if (flags & WQ_FLAG_EXCLUSIVE) {
1124 		if (test_bit(key->bit_nr, &key->folio->flags))
1125 			return -1;
1126 		if (flags & WQ_FLAG_CUSTOM) {
1127 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1128 				return -1;
1129 			flags |= WQ_FLAG_DONE;
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * We are holding the wait-queue lock, but the waiter that
1135 	 * is waiting for this will be checking the flags without
1136 	 * any locking.
1137 	 *
1138 	 * So update the flags atomically, and wake up the waiter
1139 	 * afterwards to avoid any races. This store-release pairs
1140 	 * with the load-acquire in folio_wait_bit_common().
1141 	 */
1142 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1143 	wake_up_state(wait->private, mode);
1144 
1145 	/*
1146 	 * Ok, we have successfully done what we're waiting for,
1147 	 * and we can unconditionally remove the wait entry.
1148 	 *
1149 	 * Note that this pairs with the "finish_wait()" in the
1150 	 * waiter, and has to be the absolute last thing we do.
1151 	 * After this list_del_init(&wait->entry) the wait entry
1152 	 * might be de-allocated and the process might even have
1153 	 * exited.
1154 	 */
1155 	list_del_init_careful(&wait->entry);
1156 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1157 }
1158 
1159 static void folio_wake_bit(struct folio *folio, int bit_nr)
1160 {
1161 	wait_queue_head_t *q = folio_waitqueue(folio);
1162 	struct wait_page_key key;
1163 	unsigned long flags;
1164 	wait_queue_entry_t bookmark;
1165 
1166 	key.folio = folio;
1167 	key.bit_nr = bit_nr;
1168 	key.page_match = 0;
1169 
1170 	bookmark.flags = 0;
1171 	bookmark.private = NULL;
1172 	bookmark.func = NULL;
1173 	INIT_LIST_HEAD(&bookmark.entry);
1174 
1175 	spin_lock_irqsave(&q->lock, flags);
1176 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1177 
1178 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1179 		/*
1180 		 * Take a breather from holding the lock,
1181 		 * allow pages that finish wake up asynchronously
1182 		 * to acquire the lock and remove themselves
1183 		 * from wait queue
1184 		 */
1185 		spin_unlock_irqrestore(&q->lock, flags);
1186 		cpu_relax();
1187 		spin_lock_irqsave(&q->lock, flags);
1188 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1189 	}
1190 
1191 	/*
1192 	 * It's possible to miss clearing waiters here, when we woke our page
1193 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1194 	 * That's okay, it's a rare case. The next waker will clear it.
1195 	 *
1196 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1197 	 * other), the flag may be cleared in the course of freeing the page;
1198 	 * but that is not required for correctness.
1199 	 */
1200 	if (!waitqueue_active(q) || !key.page_match)
1201 		folio_clear_waiters(folio);
1202 
1203 	spin_unlock_irqrestore(&q->lock, flags);
1204 }
1205 
1206 static void folio_wake(struct folio *folio, int bit)
1207 {
1208 	if (!folio_test_waiters(folio))
1209 		return;
1210 	folio_wake_bit(folio, bit);
1211 }
1212 
1213 /*
1214  * A choice of three behaviors for folio_wait_bit_common():
1215  */
1216 enum behavior {
1217 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1218 			 * __folio_lock() waiting on then setting PG_locked.
1219 			 */
1220 	SHARED,		/* Hold ref to page and check the bit when woken, like
1221 			 * folio_wait_writeback() waiting on PG_writeback.
1222 			 */
1223 	DROP,		/* Drop ref to page before wait, no check when woken,
1224 			 * like folio_put_wait_locked() on PG_locked.
1225 			 */
1226 };
1227 
1228 /*
1229  * Attempt to check (or get) the folio flag, and mark us done
1230  * if successful.
1231  */
1232 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1233 					struct wait_queue_entry *wait)
1234 {
1235 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1236 		if (test_and_set_bit(bit_nr, &folio->flags))
1237 			return false;
1238 	} else if (test_bit(bit_nr, &folio->flags))
1239 		return false;
1240 
1241 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1242 	return true;
1243 }
1244 
1245 /* How many times do we accept lock stealing from under a waiter? */
1246 int sysctl_page_lock_unfairness = 5;
1247 
1248 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1249 		int state, enum behavior behavior)
1250 {
1251 	wait_queue_head_t *q = folio_waitqueue(folio);
1252 	int unfairness = sysctl_page_lock_unfairness;
1253 	struct wait_page_queue wait_page;
1254 	wait_queue_entry_t *wait = &wait_page.wait;
1255 	bool thrashing = false;
1256 	bool delayacct = false;
1257 	unsigned long pflags;
1258 
1259 	if (bit_nr == PG_locked &&
1260 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1261 		if (!folio_test_swapbacked(folio)) {
1262 			delayacct_thrashing_start();
1263 			delayacct = true;
1264 		}
1265 		psi_memstall_enter(&pflags);
1266 		thrashing = true;
1267 	}
1268 
1269 	init_wait(wait);
1270 	wait->func = wake_page_function;
1271 	wait_page.folio = folio;
1272 	wait_page.bit_nr = bit_nr;
1273 
1274 repeat:
1275 	wait->flags = 0;
1276 	if (behavior == EXCLUSIVE) {
1277 		wait->flags = WQ_FLAG_EXCLUSIVE;
1278 		if (--unfairness < 0)
1279 			wait->flags |= WQ_FLAG_CUSTOM;
1280 	}
1281 
1282 	/*
1283 	 * Do one last check whether we can get the
1284 	 * page bit synchronously.
1285 	 *
1286 	 * Do the folio_set_waiters() marking before that
1287 	 * to let any waker we _just_ missed know they
1288 	 * need to wake us up (otherwise they'll never
1289 	 * even go to the slow case that looks at the
1290 	 * page queue), and add ourselves to the wait
1291 	 * queue if we need to sleep.
1292 	 *
1293 	 * This part needs to be done under the queue
1294 	 * lock to avoid races.
1295 	 */
1296 	spin_lock_irq(&q->lock);
1297 	folio_set_waiters(folio);
1298 	if (!folio_trylock_flag(folio, bit_nr, wait))
1299 		__add_wait_queue_entry_tail(q, wait);
1300 	spin_unlock_irq(&q->lock);
1301 
1302 	/*
1303 	 * From now on, all the logic will be based on
1304 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1305 	 * see whether the page bit testing has already
1306 	 * been done by the wake function.
1307 	 *
1308 	 * We can drop our reference to the folio.
1309 	 */
1310 	if (behavior == DROP)
1311 		folio_put(folio);
1312 
1313 	/*
1314 	 * Note that until the "finish_wait()", or until
1315 	 * we see the WQ_FLAG_WOKEN flag, we need to
1316 	 * be very careful with the 'wait->flags', because
1317 	 * we may race with a waker that sets them.
1318 	 */
1319 	for (;;) {
1320 		unsigned int flags;
1321 
1322 		set_current_state(state);
1323 
1324 		/* Loop until we've been woken or interrupted */
1325 		flags = smp_load_acquire(&wait->flags);
1326 		if (!(flags & WQ_FLAG_WOKEN)) {
1327 			if (signal_pending_state(state, current))
1328 				break;
1329 
1330 			io_schedule();
1331 			continue;
1332 		}
1333 
1334 		/* If we were non-exclusive, we're done */
1335 		if (behavior != EXCLUSIVE)
1336 			break;
1337 
1338 		/* If the waker got the lock for us, we're done */
1339 		if (flags & WQ_FLAG_DONE)
1340 			break;
1341 
1342 		/*
1343 		 * Otherwise, if we're getting the lock, we need to
1344 		 * try to get it ourselves.
1345 		 *
1346 		 * And if that fails, we'll have to retry this all.
1347 		 */
1348 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1349 			goto repeat;
1350 
1351 		wait->flags |= WQ_FLAG_DONE;
1352 		break;
1353 	}
1354 
1355 	/*
1356 	 * If a signal happened, this 'finish_wait()' may remove the last
1357 	 * waiter from the wait-queues, but the folio waiters bit will remain
1358 	 * set. That's ok. The next wakeup will take care of it, and trying
1359 	 * to do it here would be difficult and prone to races.
1360 	 */
1361 	finish_wait(q, wait);
1362 
1363 	if (thrashing) {
1364 		if (delayacct)
1365 			delayacct_thrashing_end();
1366 		psi_memstall_leave(&pflags);
1367 	}
1368 
1369 	/*
1370 	 * NOTE! The wait->flags weren't stable until we've done the
1371 	 * 'finish_wait()', and we could have exited the loop above due
1372 	 * to a signal, and had a wakeup event happen after the signal
1373 	 * test but before the 'finish_wait()'.
1374 	 *
1375 	 * So only after the finish_wait() can we reliably determine
1376 	 * if we got woken up or not, so we can now figure out the final
1377 	 * return value based on that state without races.
1378 	 *
1379 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1380 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1381 	 */
1382 	if (behavior == EXCLUSIVE)
1383 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1384 
1385 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1386 }
1387 
1388 #ifdef CONFIG_MIGRATION
1389 /**
1390  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1391  * @entry: migration swap entry.
1392  * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1393  *        for pte entries, pass NULL for pmd entries.
1394  * @ptl: already locked ptl. This function will drop the lock.
1395  *
1396  * Wait for a migration entry referencing the given page to be removed. This is
1397  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1398  * this can be called without taking a reference on the page. Instead this
1399  * should be called while holding the ptl for the migration entry referencing
1400  * the page.
1401  *
1402  * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1403  *
1404  * This follows the same logic as folio_wait_bit_common() so see the comments
1405  * there.
1406  */
1407 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1408 				spinlock_t *ptl)
1409 {
1410 	struct wait_page_queue wait_page;
1411 	wait_queue_entry_t *wait = &wait_page.wait;
1412 	bool thrashing = false;
1413 	bool delayacct = false;
1414 	unsigned long pflags;
1415 	wait_queue_head_t *q;
1416 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1417 
1418 	q = folio_waitqueue(folio);
1419 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1420 		if (!folio_test_swapbacked(folio)) {
1421 			delayacct_thrashing_start();
1422 			delayacct = true;
1423 		}
1424 		psi_memstall_enter(&pflags);
1425 		thrashing = true;
1426 	}
1427 
1428 	init_wait(wait);
1429 	wait->func = wake_page_function;
1430 	wait_page.folio = folio;
1431 	wait_page.bit_nr = PG_locked;
1432 	wait->flags = 0;
1433 
1434 	spin_lock_irq(&q->lock);
1435 	folio_set_waiters(folio);
1436 	if (!folio_trylock_flag(folio, PG_locked, wait))
1437 		__add_wait_queue_entry_tail(q, wait);
1438 	spin_unlock_irq(&q->lock);
1439 
1440 	/*
1441 	 * If a migration entry exists for the page the migration path must hold
1442 	 * a valid reference to the page, and it must take the ptl to remove the
1443 	 * migration entry. So the page is valid until the ptl is dropped.
1444 	 */
1445 	if (ptep)
1446 		pte_unmap_unlock(ptep, ptl);
1447 	else
1448 		spin_unlock(ptl);
1449 
1450 	for (;;) {
1451 		unsigned int flags;
1452 
1453 		set_current_state(TASK_UNINTERRUPTIBLE);
1454 
1455 		/* Loop until we've been woken or interrupted */
1456 		flags = smp_load_acquire(&wait->flags);
1457 		if (!(flags & WQ_FLAG_WOKEN)) {
1458 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1459 				break;
1460 
1461 			io_schedule();
1462 			continue;
1463 		}
1464 		break;
1465 	}
1466 
1467 	finish_wait(q, wait);
1468 
1469 	if (thrashing) {
1470 		if (delayacct)
1471 			delayacct_thrashing_end();
1472 		psi_memstall_leave(&pflags);
1473 	}
1474 }
1475 #endif
1476 
1477 void folio_wait_bit(struct folio *folio, int bit_nr)
1478 {
1479 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1480 }
1481 EXPORT_SYMBOL(folio_wait_bit);
1482 
1483 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1484 {
1485 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1486 }
1487 EXPORT_SYMBOL(folio_wait_bit_killable);
1488 
1489 /**
1490  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1491  * @folio: The folio to wait for.
1492  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1493  *
1494  * The caller should hold a reference on @folio.  They expect the page to
1495  * become unlocked relatively soon, but do not wish to hold up migration
1496  * (for example) by holding the reference while waiting for the folio to
1497  * come unlocked.  After this function returns, the caller should not
1498  * dereference @folio.
1499  *
1500  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1501  */
1502 int folio_put_wait_locked(struct folio *folio, int state)
1503 {
1504 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1505 }
1506 
1507 /**
1508  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1509  * @folio: Folio defining the wait queue of interest
1510  * @waiter: Waiter to add to the queue
1511  *
1512  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1513  */
1514 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1515 {
1516 	wait_queue_head_t *q = folio_waitqueue(folio);
1517 	unsigned long flags;
1518 
1519 	spin_lock_irqsave(&q->lock, flags);
1520 	__add_wait_queue_entry_tail(q, waiter);
1521 	folio_set_waiters(folio);
1522 	spin_unlock_irqrestore(&q->lock, flags);
1523 }
1524 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1525 
1526 #ifndef clear_bit_unlock_is_negative_byte
1527 
1528 /*
1529  * PG_waiters is the high bit in the same byte as PG_lock.
1530  *
1531  * On x86 (and on many other architectures), we can clear PG_lock and
1532  * test the sign bit at the same time. But if the architecture does
1533  * not support that special operation, we just do this all by hand
1534  * instead.
1535  *
1536  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1537  * being cleared, but a memory barrier should be unnecessary since it is
1538  * in the same byte as PG_locked.
1539  */
1540 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1541 {
1542 	clear_bit_unlock(nr, mem);
1543 	/* smp_mb__after_atomic(); */
1544 	return test_bit(PG_waiters, mem);
1545 }
1546 
1547 #endif
1548 
1549 /**
1550  * folio_unlock - Unlock a locked folio.
1551  * @folio: The folio.
1552  *
1553  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1554  *
1555  * Context: May be called from interrupt or process context.  May not be
1556  * called from NMI context.
1557  */
1558 void folio_unlock(struct folio *folio)
1559 {
1560 	/* Bit 7 allows x86 to check the byte's sign bit */
1561 	BUILD_BUG_ON(PG_waiters != 7);
1562 	BUILD_BUG_ON(PG_locked > 7);
1563 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1565 		folio_wake_bit(folio, PG_locked);
1566 }
1567 EXPORT_SYMBOL(folio_unlock);
1568 
1569 /**
1570  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1571  * @folio: The folio.
1572  *
1573  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1574  * it.  The folio reference held for PG_private_2 being set is released.
1575  *
1576  * This is, for example, used when a netfs folio is being written to a local
1577  * disk cache, thereby allowing writes to the cache for the same folio to be
1578  * serialised.
1579  */
1580 void folio_end_private_2(struct folio *folio)
1581 {
1582 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1583 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1584 	folio_wake_bit(folio, PG_private_2);
1585 	folio_put(folio);
1586 }
1587 EXPORT_SYMBOL(folio_end_private_2);
1588 
1589 /**
1590  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1591  * @folio: The folio to wait on.
1592  *
1593  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1594  */
1595 void folio_wait_private_2(struct folio *folio)
1596 {
1597 	while (folio_test_private_2(folio))
1598 		folio_wait_bit(folio, PG_private_2);
1599 }
1600 EXPORT_SYMBOL(folio_wait_private_2);
1601 
1602 /**
1603  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1604  * @folio: The folio to wait on.
1605  *
1606  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1607  * fatal signal is received by the calling task.
1608  *
1609  * Return:
1610  * - 0 if successful.
1611  * - -EINTR if a fatal signal was encountered.
1612  */
1613 int folio_wait_private_2_killable(struct folio *folio)
1614 {
1615 	int ret = 0;
1616 
1617 	while (folio_test_private_2(folio)) {
1618 		ret = folio_wait_bit_killable(folio, PG_private_2);
1619 		if (ret < 0)
1620 			break;
1621 	}
1622 
1623 	return ret;
1624 }
1625 EXPORT_SYMBOL(folio_wait_private_2_killable);
1626 
1627 /**
1628  * folio_end_writeback - End writeback against a folio.
1629  * @folio: The folio.
1630  */
1631 void folio_end_writeback(struct folio *folio)
1632 {
1633 	/*
1634 	 * folio_test_clear_reclaim() could be used here but it is an
1635 	 * atomic operation and overkill in this particular case. Failing
1636 	 * to shuffle a folio marked for immediate reclaim is too mild
1637 	 * a gain to justify taking an atomic operation penalty at the
1638 	 * end of every folio writeback.
1639 	 */
1640 	if (folio_test_reclaim(folio)) {
1641 		folio_clear_reclaim(folio);
1642 		folio_rotate_reclaimable(folio);
1643 	}
1644 
1645 	/*
1646 	 * Writeback does not hold a folio reference of its own, relying
1647 	 * on truncation to wait for the clearing of PG_writeback.
1648 	 * But here we must make sure that the folio is not freed and
1649 	 * reused before the folio_wake().
1650 	 */
1651 	folio_get(folio);
1652 	if (!__folio_end_writeback(folio))
1653 		BUG();
1654 
1655 	smp_mb__after_atomic();
1656 	folio_wake(folio, PG_writeback);
1657 	acct_reclaim_writeback(folio);
1658 	folio_put(folio);
1659 }
1660 EXPORT_SYMBOL(folio_end_writeback);
1661 
1662 /*
1663  * After completing I/O on a page, call this routine to update the page
1664  * flags appropriately
1665  */
1666 void page_endio(struct page *page, bool is_write, int err)
1667 {
1668 	if (!is_write) {
1669 		if (!err) {
1670 			SetPageUptodate(page);
1671 		} else {
1672 			ClearPageUptodate(page);
1673 			SetPageError(page);
1674 		}
1675 		unlock_page(page);
1676 	} else {
1677 		if (err) {
1678 			struct address_space *mapping;
1679 
1680 			SetPageError(page);
1681 			mapping = page_mapping(page);
1682 			if (mapping)
1683 				mapping_set_error(mapping, err);
1684 		}
1685 		end_page_writeback(page);
1686 	}
1687 }
1688 EXPORT_SYMBOL_GPL(page_endio);
1689 
1690 /**
1691  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1692  * @folio: The folio to lock
1693  */
1694 void __folio_lock(struct folio *folio)
1695 {
1696 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1697 				EXCLUSIVE);
1698 }
1699 EXPORT_SYMBOL(__folio_lock);
1700 
1701 int __folio_lock_killable(struct folio *folio)
1702 {
1703 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1704 					EXCLUSIVE);
1705 }
1706 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1707 
1708 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1709 {
1710 	struct wait_queue_head *q = folio_waitqueue(folio);
1711 	int ret = 0;
1712 
1713 	wait->folio = folio;
1714 	wait->bit_nr = PG_locked;
1715 
1716 	spin_lock_irq(&q->lock);
1717 	__add_wait_queue_entry_tail(q, &wait->wait);
1718 	folio_set_waiters(folio);
1719 	ret = !folio_trylock(folio);
1720 	/*
1721 	 * If we were successful now, we know we're still on the
1722 	 * waitqueue as we're still under the lock. This means it's
1723 	 * safe to remove and return success, we know the callback
1724 	 * isn't going to trigger.
1725 	 */
1726 	if (!ret)
1727 		__remove_wait_queue(q, &wait->wait);
1728 	else
1729 		ret = -EIOCBQUEUED;
1730 	spin_unlock_irq(&q->lock);
1731 	return ret;
1732 }
1733 
1734 /*
1735  * Return values:
1736  * true - folio is locked; mmap_lock is still held.
1737  * false - folio is not locked.
1738  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1739  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1740  *     which case mmap_lock is still held.
1741  *
1742  * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1743  * with the folio locked and the mmap_lock unperturbed.
1744  */
1745 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1746 			 unsigned int flags)
1747 {
1748 	if (fault_flag_allow_retry_first(flags)) {
1749 		/*
1750 		 * CAUTION! In this case, mmap_lock is not released
1751 		 * even though return 0.
1752 		 */
1753 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1754 			return false;
1755 
1756 		mmap_read_unlock(mm);
1757 		if (flags & FAULT_FLAG_KILLABLE)
1758 			folio_wait_locked_killable(folio);
1759 		else
1760 			folio_wait_locked(folio);
1761 		return false;
1762 	}
1763 	if (flags & FAULT_FLAG_KILLABLE) {
1764 		bool ret;
1765 
1766 		ret = __folio_lock_killable(folio);
1767 		if (ret) {
1768 			mmap_read_unlock(mm);
1769 			return false;
1770 		}
1771 	} else {
1772 		__folio_lock(folio);
1773 	}
1774 
1775 	return true;
1776 }
1777 
1778 /**
1779  * page_cache_next_miss() - Find the next gap in the page cache.
1780  * @mapping: Mapping.
1781  * @index: Index.
1782  * @max_scan: Maximum range to search.
1783  *
1784  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1785  * gap with the lowest index.
1786  *
1787  * This function may be called under the rcu_read_lock.  However, this will
1788  * not atomically search a snapshot of the cache at a single point in time.
1789  * For example, if a gap is created at index 5, then subsequently a gap is
1790  * created at index 10, page_cache_next_miss covering both indices may
1791  * return 10 if called under the rcu_read_lock.
1792  *
1793  * Return: The index of the gap if found, otherwise an index outside the
1794  * range specified (in which case 'return - index >= max_scan' will be true).
1795  * In the rare case of index wrap-around, 0 will be returned.
1796  */
1797 pgoff_t page_cache_next_miss(struct address_space *mapping,
1798 			     pgoff_t index, unsigned long max_scan)
1799 {
1800 	XA_STATE(xas, &mapping->i_pages, index);
1801 
1802 	while (max_scan--) {
1803 		void *entry = xas_next(&xas);
1804 		if (!entry || xa_is_value(entry))
1805 			break;
1806 		if (xas.xa_index == 0)
1807 			break;
1808 	}
1809 
1810 	return xas.xa_index;
1811 }
1812 EXPORT_SYMBOL(page_cache_next_miss);
1813 
1814 /**
1815  * page_cache_prev_miss() - Find the previous gap in the page cache.
1816  * @mapping: Mapping.
1817  * @index: Index.
1818  * @max_scan: Maximum range to search.
1819  *
1820  * Search the range [max(index - max_scan + 1, 0), index] for the
1821  * gap with the highest index.
1822  *
1823  * This function may be called under the rcu_read_lock.  However, this will
1824  * not atomically search a snapshot of the cache at a single point in time.
1825  * For example, if a gap is created at index 10, then subsequently a gap is
1826  * created at index 5, page_cache_prev_miss() covering both indices may
1827  * return 5 if called under the rcu_read_lock.
1828  *
1829  * Return: The index of the gap if found, otherwise an index outside the
1830  * range specified (in which case 'index - return >= max_scan' will be true).
1831  * In the rare case of wrap-around, ULONG_MAX will be returned.
1832  */
1833 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1834 			     pgoff_t index, unsigned long max_scan)
1835 {
1836 	XA_STATE(xas, &mapping->i_pages, index);
1837 
1838 	while (max_scan--) {
1839 		void *entry = xas_prev(&xas);
1840 		if (!entry || xa_is_value(entry))
1841 			break;
1842 		if (xas.xa_index == ULONG_MAX)
1843 			break;
1844 	}
1845 
1846 	return xas.xa_index;
1847 }
1848 EXPORT_SYMBOL(page_cache_prev_miss);
1849 
1850 /*
1851  * Lockless page cache protocol:
1852  * On the lookup side:
1853  * 1. Load the folio from i_pages
1854  * 2. Increment the refcount if it's not zero
1855  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1856  *
1857  * On the removal side:
1858  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1859  * B. Remove the page from i_pages
1860  * C. Return the page to the page allocator
1861  *
1862  * This means that any page may have its reference count temporarily
1863  * increased by a speculative page cache (or fast GUP) lookup as it can
1864  * be allocated by another user before the RCU grace period expires.
1865  * Because the refcount temporarily acquired here may end up being the
1866  * last refcount on the page, any page allocation must be freeable by
1867  * folio_put().
1868  */
1869 
1870 /*
1871  * mapping_get_entry - Get a page cache entry.
1872  * @mapping: the address_space to search
1873  * @index: The page cache index.
1874  *
1875  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1876  * it is returned with an increased refcount.  If it is a shadow entry
1877  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1878  * it is returned without further action.
1879  *
1880  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1881  */
1882 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1883 {
1884 	XA_STATE(xas, &mapping->i_pages, index);
1885 	struct folio *folio;
1886 
1887 	rcu_read_lock();
1888 repeat:
1889 	xas_reset(&xas);
1890 	folio = xas_load(&xas);
1891 	if (xas_retry(&xas, folio))
1892 		goto repeat;
1893 	/*
1894 	 * A shadow entry of a recently evicted page, or a swap entry from
1895 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1896 	 */
1897 	if (!folio || xa_is_value(folio))
1898 		goto out;
1899 
1900 	if (!folio_try_get_rcu(folio))
1901 		goto repeat;
1902 
1903 	if (unlikely(folio != xas_reload(&xas))) {
1904 		folio_put(folio);
1905 		goto repeat;
1906 	}
1907 out:
1908 	rcu_read_unlock();
1909 
1910 	return folio;
1911 }
1912 
1913 /**
1914  * __filemap_get_folio - Find and get a reference to a folio.
1915  * @mapping: The address_space to search.
1916  * @index: The page index.
1917  * @fgp_flags: %FGP flags modify how the folio is returned.
1918  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1919  *
1920  * Looks up the page cache entry at @mapping & @index.
1921  *
1922  * @fgp_flags can be zero or more of these flags:
1923  *
1924  * * %FGP_ACCESSED - The folio will be marked accessed.
1925  * * %FGP_LOCK - The folio is returned locked.
1926  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1927  *   instead of allocating a new folio to replace it.
1928  * * %FGP_CREAT - If no page is present then a new page is allocated using
1929  *   @gfp and added to the page cache and the VM's LRU list.
1930  *   The page is returned locked and with an increased refcount.
1931  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1932  *   page is already in cache.  If the page was allocated, unlock it before
1933  *   returning so the caller can do the same dance.
1934  * * %FGP_WRITE - The page will be written to by the caller.
1935  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1936  * * %FGP_NOWAIT - Don't get blocked by page lock.
1937  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1938  *
1939  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1940  * if the %GFP flags specified for %FGP_CREAT are atomic.
1941  *
1942  * If there is a page cache page, it is returned with an increased refcount.
1943  *
1944  * Return: The found folio or %NULL otherwise.
1945  */
1946 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1947 		int fgp_flags, gfp_t gfp)
1948 {
1949 	struct folio *folio;
1950 
1951 repeat:
1952 	folio = mapping_get_entry(mapping, index);
1953 	if (xa_is_value(folio)) {
1954 		if (fgp_flags & FGP_ENTRY)
1955 			return folio;
1956 		folio = NULL;
1957 	}
1958 	if (!folio)
1959 		goto no_page;
1960 
1961 	if (fgp_flags & FGP_LOCK) {
1962 		if (fgp_flags & FGP_NOWAIT) {
1963 			if (!folio_trylock(folio)) {
1964 				folio_put(folio);
1965 				return NULL;
1966 			}
1967 		} else {
1968 			folio_lock(folio);
1969 		}
1970 
1971 		/* Has the page been truncated? */
1972 		if (unlikely(folio->mapping != mapping)) {
1973 			folio_unlock(folio);
1974 			folio_put(folio);
1975 			goto repeat;
1976 		}
1977 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1978 	}
1979 
1980 	if (fgp_flags & FGP_ACCESSED)
1981 		folio_mark_accessed(folio);
1982 	else if (fgp_flags & FGP_WRITE) {
1983 		/* Clear idle flag for buffer write */
1984 		if (folio_test_idle(folio))
1985 			folio_clear_idle(folio);
1986 	}
1987 
1988 	if (fgp_flags & FGP_STABLE)
1989 		folio_wait_stable(folio);
1990 no_page:
1991 	if (!folio && (fgp_flags & FGP_CREAT)) {
1992 		int err;
1993 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1994 			gfp |= __GFP_WRITE;
1995 		if (fgp_flags & FGP_NOFS)
1996 			gfp &= ~__GFP_FS;
1997 
1998 		folio = filemap_alloc_folio(gfp, 0);
1999 		if (!folio)
2000 			return NULL;
2001 
2002 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2003 			fgp_flags |= FGP_LOCK;
2004 
2005 		/* Init accessed so avoid atomic mark_page_accessed later */
2006 		if (fgp_flags & FGP_ACCESSED)
2007 			__folio_set_referenced(folio);
2008 
2009 		err = filemap_add_folio(mapping, folio, index, gfp);
2010 		if (unlikely(err)) {
2011 			folio_put(folio);
2012 			folio = NULL;
2013 			if (err == -EEXIST)
2014 				goto repeat;
2015 		}
2016 
2017 		/*
2018 		 * filemap_add_folio locks the page, and for mmap
2019 		 * we expect an unlocked page.
2020 		 */
2021 		if (folio && (fgp_flags & FGP_FOR_MMAP))
2022 			folio_unlock(folio);
2023 	}
2024 
2025 	return folio;
2026 }
2027 EXPORT_SYMBOL(__filemap_get_folio);
2028 
2029 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2030 		xa_mark_t mark)
2031 {
2032 	struct folio *folio;
2033 
2034 retry:
2035 	if (mark == XA_PRESENT)
2036 		folio = xas_find(xas, max);
2037 	else
2038 		folio = xas_find_marked(xas, max, mark);
2039 
2040 	if (xas_retry(xas, folio))
2041 		goto retry;
2042 	/*
2043 	 * A shadow entry of a recently evicted page, a swap
2044 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2045 	 * without attempting to raise page count.
2046 	 */
2047 	if (!folio || xa_is_value(folio))
2048 		return folio;
2049 
2050 	if (!folio_try_get_rcu(folio))
2051 		goto reset;
2052 
2053 	if (unlikely(folio != xas_reload(xas))) {
2054 		folio_put(folio);
2055 		goto reset;
2056 	}
2057 
2058 	return folio;
2059 reset:
2060 	xas_reset(xas);
2061 	goto retry;
2062 }
2063 
2064 /**
2065  * find_get_entries - gang pagecache lookup
2066  * @mapping:	The address_space to search
2067  * @start:	The starting page cache index
2068  * @end:	The final page index (inclusive).
2069  * @fbatch:	Where the resulting entries are placed.
2070  * @indices:	The cache indices corresponding to the entries in @entries
2071  *
2072  * find_get_entries() will search for and return a batch of entries in
2073  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2074  * takes a reference on any actual folios it returns.
2075  *
2076  * The entries have ascending indexes.  The indices may not be consecutive
2077  * due to not-present entries or large folios.
2078  *
2079  * Any shadow entries of evicted folios, or swap entries from
2080  * shmem/tmpfs, are included in the returned array.
2081  *
2082  * Return: The number of entries which were found.
2083  */
2084 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2085 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2086 {
2087 	XA_STATE(xas, &mapping->i_pages, start);
2088 	struct folio *folio;
2089 
2090 	rcu_read_lock();
2091 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2092 		indices[fbatch->nr] = xas.xa_index;
2093 		if (!folio_batch_add(fbatch, folio))
2094 			break;
2095 	}
2096 	rcu_read_unlock();
2097 
2098 	return folio_batch_count(fbatch);
2099 }
2100 
2101 /**
2102  * find_lock_entries - Find a batch of pagecache entries.
2103  * @mapping:	The address_space to search.
2104  * @start:	The starting page cache index.
2105  * @end:	The final page index (inclusive).
2106  * @fbatch:	Where the resulting entries are placed.
2107  * @indices:	The cache indices of the entries in @fbatch.
2108  *
2109  * find_lock_entries() will return a batch of entries from @mapping.
2110  * Swap, shadow and DAX entries are included.  Folios are returned
2111  * locked and with an incremented refcount.  Folios which are locked
2112  * by somebody else or under writeback are skipped.  Folios which are
2113  * partially outside the range are not returned.
2114  *
2115  * The entries have ascending indexes.  The indices may not be consecutive
2116  * due to not-present entries, large folios, folios which could not be
2117  * locked or folios under writeback.
2118  *
2119  * Return: The number of entries which were found.
2120  */
2121 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2122 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2123 {
2124 	XA_STATE(xas, &mapping->i_pages, start);
2125 	struct folio *folio;
2126 
2127 	rcu_read_lock();
2128 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2129 		if (!xa_is_value(folio)) {
2130 			if (folio->index < start)
2131 				goto put;
2132 			if (folio->index + folio_nr_pages(folio) - 1 > end)
2133 				goto put;
2134 			if (!folio_trylock(folio))
2135 				goto put;
2136 			if (folio->mapping != mapping ||
2137 			    folio_test_writeback(folio))
2138 				goto unlock;
2139 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2140 					folio);
2141 		}
2142 		indices[fbatch->nr] = xas.xa_index;
2143 		if (!folio_batch_add(fbatch, folio))
2144 			break;
2145 		continue;
2146 unlock:
2147 		folio_unlock(folio);
2148 put:
2149 		folio_put(folio);
2150 	}
2151 	rcu_read_unlock();
2152 
2153 	return folio_batch_count(fbatch);
2154 }
2155 
2156 static inline
2157 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2158 {
2159 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2160 		return false;
2161 	if (index >= max)
2162 		return false;
2163 	return index < folio->index + folio_nr_pages(folio) - 1;
2164 }
2165 
2166 /**
2167  * find_get_pages_range - gang pagecache lookup
2168  * @mapping:	The address_space to search
2169  * @start:	The starting page index
2170  * @end:	The final page index (inclusive)
2171  * @nr_pages:	The maximum number of pages
2172  * @pages:	Where the resulting pages are placed
2173  *
2174  * find_get_pages_range() will search for and return a group of up to @nr_pages
2175  * pages in the mapping starting at index @start and up to index @end
2176  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2177  * a reference against the returned pages.
2178  *
2179  * The search returns a group of mapping-contiguous pages with ascending
2180  * indexes.  There may be holes in the indices due to not-present pages.
2181  * We also update @start to index the next page for the traversal.
2182  *
2183  * Return: the number of pages which were found. If this number is
2184  * smaller than @nr_pages, the end of specified range has been
2185  * reached.
2186  */
2187 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2188 			      pgoff_t end, unsigned int nr_pages,
2189 			      struct page **pages)
2190 {
2191 	XA_STATE(xas, &mapping->i_pages, *start);
2192 	struct folio *folio;
2193 	unsigned ret = 0;
2194 
2195 	if (unlikely(!nr_pages))
2196 		return 0;
2197 
2198 	rcu_read_lock();
2199 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2200 		/* Skip over shadow, swap and DAX entries */
2201 		if (xa_is_value(folio))
2202 			continue;
2203 
2204 again:
2205 		pages[ret] = folio_file_page(folio, xas.xa_index);
2206 		if (++ret == nr_pages) {
2207 			*start = xas.xa_index + 1;
2208 			goto out;
2209 		}
2210 		if (folio_more_pages(folio, xas.xa_index, end)) {
2211 			xas.xa_index++;
2212 			folio_ref_inc(folio);
2213 			goto again;
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * We come here when there is no page beyond @end. We take care to not
2219 	 * overflow the index @start as it confuses some of the callers. This
2220 	 * breaks the iteration when there is a page at index -1 but that is
2221 	 * already broken anyway.
2222 	 */
2223 	if (end == (pgoff_t)-1)
2224 		*start = (pgoff_t)-1;
2225 	else
2226 		*start = end + 1;
2227 out:
2228 	rcu_read_unlock();
2229 
2230 	return ret;
2231 }
2232 
2233 /**
2234  * find_get_pages_contig - gang contiguous pagecache lookup
2235  * @mapping:	The address_space to search
2236  * @index:	The starting page index
2237  * @nr_pages:	The maximum number of pages
2238  * @pages:	Where the resulting pages are placed
2239  *
2240  * find_get_pages_contig() works exactly like find_get_pages_range(),
2241  * except that the returned number of pages are guaranteed to be
2242  * contiguous.
2243  *
2244  * Return: the number of pages which were found.
2245  */
2246 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2247 			       unsigned int nr_pages, struct page **pages)
2248 {
2249 	XA_STATE(xas, &mapping->i_pages, index);
2250 	struct folio *folio;
2251 	unsigned int ret = 0;
2252 
2253 	if (unlikely(!nr_pages))
2254 		return 0;
2255 
2256 	rcu_read_lock();
2257 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2258 		if (xas_retry(&xas, folio))
2259 			continue;
2260 		/*
2261 		 * If the entry has been swapped out, we can stop looking.
2262 		 * No current caller is looking for DAX entries.
2263 		 */
2264 		if (xa_is_value(folio))
2265 			break;
2266 
2267 		if (!folio_try_get_rcu(folio))
2268 			goto retry;
2269 
2270 		if (unlikely(folio != xas_reload(&xas)))
2271 			goto put_page;
2272 
2273 again:
2274 		pages[ret] = folio_file_page(folio, xas.xa_index);
2275 		if (++ret == nr_pages)
2276 			break;
2277 		if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2278 			xas.xa_index++;
2279 			folio_ref_inc(folio);
2280 			goto again;
2281 		}
2282 		continue;
2283 put_page:
2284 		folio_put(folio);
2285 retry:
2286 		xas_reset(&xas);
2287 	}
2288 	rcu_read_unlock();
2289 	return ret;
2290 }
2291 EXPORT_SYMBOL(find_get_pages_contig);
2292 
2293 /**
2294  * find_get_pages_range_tag - Find and return head pages matching @tag.
2295  * @mapping:	the address_space to search
2296  * @index:	the starting page index
2297  * @end:	The final page index (inclusive)
2298  * @tag:	the tag index
2299  * @nr_pages:	the maximum number of pages
2300  * @pages:	where the resulting pages are placed
2301  *
2302  * Like find_get_pages_range(), except we only return head pages which are
2303  * tagged with @tag.  @index is updated to the index immediately after the
2304  * last page we return, ready for the next iteration.
2305  *
2306  * Return: the number of pages which were found.
2307  */
2308 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2309 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2310 			struct page **pages)
2311 {
2312 	XA_STATE(xas, &mapping->i_pages, *index);
2313 	struct folio *folio;
2314 	unsigned ret = 0;
2315 
2316 	if (unlikely(!nr_pages))
2317 		return 0;
2318 
2319 	rcu_read_lock();
2320 	while ((folio = find_get_entry(&xas, end, tag))) {
2321 		/*
2322 		 * Shadow entries should never be tagged, but this iteration
2323 		 * is lockless so there is a window for page reclaim to evict
2324 		 * a page we saw tagged.  Skip over it.
2325 		 */
2326 		if (xa_is_value(folio))
2327 			continue;
2328 
2329 		pages[ret] = &folio->page;
2330 		if (++ret == nr_pages) {
2331 			*index = folio->index + folio_nr_pages(folio);
2332 			goto out;
2333 		}
2334 	}
2335 
2336 	/*
2337 	 * We come here when we got to @end. We take care to not overflow the
2338 	 * index @index as it confuses some of the callers. This breaks the
2339 	 * iteration when there is a page at index -1 but that is already
2340 	 * broken anyway.
2341 	 */
2342 	if (end == (pgoff_t)-1)
2343 		*index = (pgoff_t)-1;
2344 	else
2345 		*index = end + 1;
2346 out:
2347 	rcu_read_unlock();
2348 
2349 	return ret;
2350 }
2351 EXPORT_SYMBOL(find_get_pages_range_tag);
2352 
2353 /*
2354  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2355  * a _large_ part of the i/o request. Imagine the worst scenario:
2356  *
2357  *      ---R__________________________________________B__________
2358  *         ^ reading here                             ^ bad block(assume 4k)
2359  *
2360  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2361  * => failing the whole request => read(R) => read(R+1) =>
2362  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2363  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2364  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2365  *
2366  * It is going insane. Fix it by quickly scaling down the readahead size.
2367  */
2368 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2369 {
2370 	ra->ra_pages /= 4;
2371 }
2372 
2373 /*
2374  * filemap_get_read_batch - Get a batch of folios for read
2375  *
2376  * Get a batch of folios which represent a contiguous range of bytes in
2377  * the file.  No exceptional entries will be returned.  If @index is in
2378  * the middle of a folio, the entire folio will be returned.  The last
2379  * folio in the batch may have the readahead flag set or the uptodate flag
2380  * clear so that the caller can take the appropriate action.
2381  */
2382 static void filemap_get_read_batch(struct address_space *mapping,
2383 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2384 {
2385 	XA_STATE(xas, &mapping->i_pages, index);
2386 	struct folio *folio;
2387 
2388 	rcu_read_lock();
2389 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2390 		if (xas_retry(&xas, folio))
2391 			continue;
2392 		if (xas.xa_index > max || xa_is_value(folio))
2393 			break;
2394 		if (!folio_try_get_rcu(folio))
2395 			goto retry;
2396 
2397 		if (unlikely(folio != xas_reload(&xas)))
2398 			goto put_folio;
2399 
2400 		if (!folio_batch_add(fbatch, folio))
2401 			break;
2402 		if (!folio_test_uptodate(folio))
2403 			break;
2404 		if (folio_test_readahead(folio))
2405 			break;
2406 		xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2407 		continue;
2408 put_folio:
2409 		folio_put(folio);
2410 retry:
2411 		xas_reset(&xas);
2412 	}
2413 	rcu_read_unlock();
2414 }
2415 
2416 static int filemap_read_folio(struct file *file, struct address_space *mapping,
2417 		struct folio *folio)
2418 {
2419 	int error;
2420 
2421 	/*
2422 	 * A previous I/O error may have been due to temporary failures,
2423 	 * eg. multipath errors.  PG_error will be set again if readpage
2424 	 * fails.
2425 	 */
2426 	folio_clear_error(folio);
2427 	/* Start the actual read. The read will unlock the page. */
2428 	error = mapping->a_ops->readpage(file, &folio->page);
2429 	if (error)
2430 		return error;
2431 
2432 	error = folio_wait_locked_killable(folio);
2433 	if (error)
2434 		return error;
2435 	if (folio_test_uptodate(folio))
2436 		return 0;
2437 	shrink_readahead_size_eio(&file->f_ra);
2438 	return -EIO;
2439 }
2440 
2441 static bool filemap_range_uptodate(struct address_space *mapping,
2442 		loff_t pos, struct iov_iter *iter, struct folio *folio)
2443 {
2444 	int count;
2445 
2446 	if (folio_test_uptodate(folio))
2447 		return true;
2448 	/* pipes can't handle partially uptodate pages */
2449 	if (iov_iter_is_pipe(iter))
2450 		return false;
2451 	if (!mapping->a_ops->is_partially_uptodate)
2452 		return false;
2453 	if (mapping->host->i_blkbits >= folio_shift(folio))
2454 		return false;
2455 
2456 	count = iter->count;
2457 	if (folio_pos(folio) > pos) {
2458 		count -= folio_pos(folio) - pos;
2459 		pos = 0;
2460 	} else {
2461 		pos -= folio_pos(folio);
2462 	}
2463 
2464 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2465 }
2466 
2467 static int filemap_update_page(struct kiocb *iocb,
2468 		struct address_space *mapping, struct iov_iter *iter,
2469 		struct folio *folio)
2470 {
2471 	int error;
2472 
2473 	if (iocb->ki_flags & IOCB_NOWAIT) {
2474 		if (!filemap_invalidate_trylock_shared(mapping))
2475 			return -EAGAIN;
2476 	} else {
2477 		filemap_invalidate_lock_shared(mapping);
2478 	}
2479 
2480 	if (!folio_trylock(folio)) {
2481 		error = -EAGAIN;
2482 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2483 			goto unlock_mapping;
2484 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2485 			filemap_invalidate_unlock_shared(mapping);
2486 			/*
2487 			 * This is where we usually end up waiting for a
2488 			 * previously submitted readahead to finish.
2489 			 */
2490 			folio_put_wait_locked(folio, TASK_KILLABLE);
2491 			return AOP_TRUNCATED_PAGE;
2492 		}
2493 		error = __folio_lock_async(folio, iocb->ki_waitq);
2494 		if (error)
2495 			goto unlock_mapping;
2496 	}
2497 
2498 	error = AOP_TRUNCATED_PAGE;
2499 	if (!folio->mapping)
2500 		goto unlock;
2501 
2502 	error = 0;
2503 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2504 		goto unlock;
2505 
2506 	error = -EAGAIN;
2507 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2508 		goto unlock;
2509 
2510 	error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2511 	goto unlock_mapping;
2512 unlock:
2513 	folio_unlock(folio);
2514 unlock_mapping:
2515 	filemap_invalidate_unlock_shared(mapping);
2516 	if (error == AOP_TRUNCATED_PAGE)
2517 		folio_put(folio);
2518 	return error;
2519 }
2520 
2521 static int filemap_create_folio(struct file *file,
2522 		struct address_space *mapping, pgoff_t index,
2523 		struct folio_batch *fbatch)
2524 {
2525 	struct folio *folio;
2526 	int error;
2527 
2528 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2529 	if (!folio)
2530 		return -ENOMEM;
2531 
2532 	/*
2533 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2534 	 * here assures we cannot instantiate and bring uptodate new
2535 	 * pagecache folios after evicting page cache during truncate
2536 	 * and before actually freeing blocks.	Note that we could
2537 	 * release invalidate_lock after inserting the folio into
2538 	 * the page cache as the locked folio would then be enough to
2539 	 * synchronize with hole punching. But there are code paths
2540 	 * such as filemap_update_page() filling in partially uptodate
2541 	 * pages or ->readahead() that need to hold invalidate_lock
2542 	 * while mapping blocks for IO so let's hold the lock here as
2543 	 * well to keep locking rules simple.
2544 	 */
2545 	filemap_invalidate_lock_shared(mapping);
2546 	error = filemap_add_folio(mapping, folio, index,
2547 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2548 	if (error == -EEXIST)
2549 		error = AOP_TRUNCATED_PAGE;
2550 	if (error)
2551 		goto error;
2552 
2553 	error = filemap_read_folio(file, mapping, folio);
2554 	if (error)
2555 		goto error;
2556 
2557 	filemap_invalidate_unlock_shared(mapping);
2558 	folio_batch_add(fbatch, folio);
2559 	return 0;
2560 error:
2561 	filemap_invalidate_unlock_shared(mapping);
2562 	folio_put(folio);
2563 	return error;
2564 }
2565 
2566 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2567 		struct address_space *mapping, struct folio *folio,
2568 		pgoff_t last_index)
2569 {
2570 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2571 
2572 	if (iocb->ki_flags & IOCB_NOIO)
2573 		return -EAGAIN;
2574 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2575 	return 0;
2576 }
2577 
2578 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2579 		struct folio_batch *fbatch)
2580 {
2581 	struct file *filp = iocb->ki_filp;
2582 	struct address_space *mapping = filp->f_mapping;
2583 	struct file_ra_state *ra = &filp->f_ra;
2584 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2585 	pgoff_t last_index;
2586 	struct folio *folio;
2587 	int err = 0;
2588 
2589 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2590 retry:
2591 	if (fatal_signal_pending(current))
2592 		return -EINTR;
2593 
2594 	filemap_get_read_batch(mapping, index, last_index, fbatch);
2595 	if (!folio_batch_count(fbatch)) {
2596 		if (iocb->ki_flags & IOCB_NOIO)
2597 			return -EAGAIN;
2598 		page_cache_sync_readahead(mapping, ra, filp, index,
2599 				last_index - index);
2600 		filemap_get_read_batch(mapping, index, last_index, fbatch);
2601 	}
2602 	if (!folio_batch_count(fbatch)) {
2603 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2604 			return -EAGAIN;
2605 		err = filemap_create_folio(filp, mapping,
2606 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2607 		if (err == AOP_TRUNCATED_PAGE)
2608 			goto retry;
2609 		return err;
2610 	}
2611 
2612 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2613 	if (folio_test_readahead(folio)) {
2614 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2615 		if (err)
2616 			goto err;
2617 	}
2618 	if (!folio_test_uptodate(folio)) {
2619 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2620 		    folio_batch_count(fbatch) > 1)
2621 			iocb->ki_flags |= IOCB_NOWAIT;
2622 		err = filemap_update_page(iocb, mapping, iter, folio);
2623 		if (err)
2624 			goto err;
2625 	}
2626 
2627 	return 0;
2628 err:
2629 	if (err < 0)
2630 		folio_put(folio);
2631 	if (likely(--fbatch->nr))
2632 		return 0;
2633 	if (err == AOP_TRUNCATED_PAGE)
2634 		goto retry;
2635 	return err;
2636 }
2637 
2638 /**
2639  * filemap_read - Read data from the page cache.
2640  * @iocb: The iocb to read.
2641  * @iter: Destination for the data.
2642  * @already_read: Number of bytes already read by the caller.
2643  *
2644  * Copies data from the page cache.  If the data is not currently present,
2645  * uses the readahead and readpage address_space operations to fetch it.
2646  *
2647  * Return: Total number of bytes copied, including those already read by
2648  * the caller.  If an error happens before any bytes are copied, returns
2649  * a negative error number.
2650  */
2651 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2652 		ssize_t already_read)
2653 {
2654 	struct file *filp = iocb->ki_filp;
2655 	struct file_ra_state *ra = &filp->f_ra;
2656 	struct address_space *mapping = filp->f_mapping;
2657 	struct inode *inode = mapping->host;
2658 	struct folio_batch fbatch;
2659 	int i, error = 0;
2660 	bool writably_mapped;
2661 	loff_t isize, end_offset;
2662 
2663 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2664 		return 0;
2665 	if (unlikely(!iov_iter_count(iter)))
2666 		return 0;
2667 
2668 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2669 	folio_batch_init(&fbatch);
2670 
2671 	do {
2672 		cond_resched();
2673 
2674 		/*
2675 		 * If we've already successfully copied some data, then we
2676 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2677 		 * an async read NOWAIT at that point.
2678 		 */
2679 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2680 			iocb->ki_flags |= IOCB_NOWAIT;
2681 
2682 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2683 			break;
2684 
2685 		error = filemap_get_pages(iocb, iter, &fbatch);
2686 		if (error < 0)
2687 			break;
2688 
2689 		/*
2690 		 * i_size must be checked after we know the pages are Uptodate.
2691 		 *
2692 		 * Checking i_size after the check allows us to calculate
2693 		 * the correct value for "nr", which means the zero-filled
2694 		 * part of the page is not copied back to userspace (unless
2695 		 * another truncate extends the file - this is desired though).
2696 		 */
2697 		isize = i_size_read(inode);
2698 		if (unlikely(iocb->ki_pos >= isize))
2699 			goto put_folios;
2700 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2701 
2702 		/*
2703 		 * Once we start copying data, we don't want to be touching any
2704 		 * cachelines that might be contended:
2705 		 */
2706 		writably_mapped = mapping_writably_mapped(mapping);
2707 
2708 		/*
2709 		 * When a sequential read accesses a page several times, only
2710 		 * mark it as accessed the first time.
2711 		 */
2712 		if (iocb->ki_pos >> PAGE_SHIFT !=
2713 		    ra->prev_pos >> PAGE_SHIFT)
2714 			folio_mark_accessed(fbatch.folios[0]);
2715 
2716 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2717 			struct folio *folio = fbatch.folios[i];
2718 			size_t fsize = folio_size(folio);
2719 			size_t offset = iocb->ki_pos & (fsize - 1);
2720 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2721 					     fsize - offset);
2722 			size_t copied;
2723 
2724 			if (end_offset < folio_pos(folio))
2725 				break;
2726 			if (i > 0)
2727 				folio_mark_accessed(folio);
2728 			/*
2729 			 * If users can be writing to this folio using arbitrary
2730 			 * virtual addresses, take care of potential aliasing
2731 			 * before reading the folio on the kernel side.
2732 			 */
2733 			if (writably_mapped)
2734 				flush_dcache_folio(folio);
2735 
2736 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2737 
2738 			already_read += copied;
2739 			iocb->ki_pos += copied;
2740 			ra->prev_pos = iocb->ki_pos;
2741 
2742 			if (copied < bytes) {
2743 				error = -EFAULT;
2744 				break;
2745 			}
2746 		}
2747 put_folios:
2748 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2749 			folio_put(fbatch.folios[i]);
2750 		folio_batch_init(&fbatch);
2751 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2752 
2753 	file_accessed(filp);
2754 
2755 	return already_read ? already_read : error;
2756 }
2757 EXPORT_SYMBOL_GPL(filemap_read);
2758 
2759 /**
2760  * generic_file_read_iter - generic filesystem read routine
2761  * @iocb:	kernel I/O control block
2762  * @iter:	destination for the data read
2763  *
2764  * This is the "read_iter()" routine for all filesystems
2765  * that can use the page cache directly.
2766  *
2767  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2768  * be returned when no data can be read without waiting for I/O requests
2769  * to complete; it doesn't prevent readahead.
2770  *
2771  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2772  * requests shall be made for the read or for readahead.  When no data
2773  * can be read, -EAGAIN shall be returned.  When readahead would be
2774  * triggered, a partial, possibly empty read shall be returned.
2775  *
2776  * Return:
2777  * * number of bytes copied, even for partial reads
2778  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2779  */
2780 ssize_t
2781 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2782 {
2783 	size_t count = iov_iter_count(iter);
2784 	ssize_t retval = 0;
2785 
2786 	if (!count)
2787 		return 0; /* skip atime */
2788 
2789 	if (iocb->ki_flags & IOCB_DIRECT) {
2790 		struct file *file = iocb->ki_filp;
2791 		struct address_space *mapping = file->f_mapping;
2792 		struct inode *inode = mapping->host;
2793 
2794 		if (iocb->ki_flags & IOCB_NOWAIT) {
2795 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2796 						iocb->ki_pos + count - 1))
2797 				return -EAGAIN;
2798 		} else {
2799 			retval = filemap_write_and_wait_range(mapping,
2800 						iocb->ki_pos,
2801 					        iocb->ki_pos + count - 1);
2802 			if (retval < 0)
2803 				return retval;
2804 		}
2805 
2806 		file_accessed(file);
2807 
2808 		retval = mapping->a_ops->direct_IO(iocb, iter);
2809 		if (retval >= 0) {
2810 			iocb->ki_pos += retval;
2811 			count -= retval;
2812 		}
2813 		if (retval != -EIOCBQUEUED)
2814 			iov_iter_revert(iter, count - iov_iter_count(iter));
2815 
2816 		/*
2817 		 * Btrfs can have a short DIO read if we encounter
2818 		 * compressed extents, so if there was an error, or if
2819 		 * we've already read everything we wanted to, or if
2820 		 * there was a short read because we hit EOF, go ahead
2821 		 * and return.  Otherwise fallthrough to buffered io for
2822 		 * the rest of the read.  Buffered reads will not work for
2823 		 * DAX files, so don't bother trying.
2824 		 */
2825 		if (retval < 0 || !count || IS_DAX(inode))
2826 			return retval;
2827 		if (iocb->ki_pos >= i_size_read(inode))
2828 			return retval;
2829 	}
2830 
2831 	return filemap_read(iocb, iter, retval);
2832 }
2833 EXPORT_SYMBOL(generic_file_read_iter);
2834 
2835 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2836 		struct address_space *mapping, struct folio *folio,
2837 		loff_t start, loff_t end, bool seek_data)
2838 {
2839 	const struct address_space_operations *ops = mapping->a_ops;
2840 	size_t offset, bsz = i_blocksize(mapping->host);
2841 
2842 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2843 		return seek_data ? start : end;
2844 	if (!ops->is_partially_uptodate)
2845 		return seek_data ? end : start;
2846 
2847 	xas_pause(xas);
2848 	rcu_read_unlock();
2849 	folio_lock(folio);
2850 	if (unlikely(folio->mapping != mapping))
2851 		goto unlock;
2852 
2853 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2854 
2855 	do {
2856 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2857 							seek_data)
2858 			break;
2859 		start = (start + bsz) & ~(bsz - 1);
2860 		offset += bsz;
2861 	} while (offset < folio_size(folio));
2862 unlock:
2863 	folio_unlock(folio);
2864 	rcu_read_lock();
2865 	return start;
2866 }
2867 
2868 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2869 {
2870 	if (xa_is_value(folio))
2871 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2872 	return folio_size(folio);
2873 }
2874 
2875 /**
2876  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2877  * @mapping: Address space to search.
2878  * @start: First byte to consider.
2879  * @end: Limit of search (exclusive).
2880  * @whence: Either SEEK_HOLE or SEEK_DATA.
2881  *
2882  * If the page cache knows which blocks contain holes and which blocks
2883  * contain data, your filesystem can use this function to implement
2884  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2885  * entirely memory-based such as tmpfs, and filesystems which support
2886  * unwritten extents.
2887  *
2888  * Return: The requested offset on success, or -ENXIO if @whence specifies
2889  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2890  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2891  * and @end contain data.
2892  */
2893 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2894 		loff_t end, int whence)
2895 {
2896 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2897 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2898 	bool seek_data = (whence == SEEK_DATA);
2899 	struct folio *folio;
2900 
2901 	if (end <= start)
2902 		return -ENXIO;
2903 
2904 	rcu_read_lock();
2905 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2906 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2907 		size_t seek_size;
2908 
2909 		if (start < pos) {
2910 			if (!seek_data)
2911 				goto unlock;
2912 			start = pos;
2913 		}
2914 
2915 		seek_size = seek_folio_size(&xas, folio);
2916 		pos = round_up((u64)pos + 1, seek_size);
2917 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2918 				seek_data);
2919 		if (start < pos)
2920 			goto unlock;
2921 		if (start >= end)
2922 			break;
2923 		if (seek_size > PAGE_SIZE)
2924 			xas_set(&xas, pos >> PAGE_SHIFT);
2925 		if (!xa_is_value(folio))
2926 			folio_put(folio);
2927 	}
2928 	if (seek_data)
2929 		start = -ENXIO;
2930 unlock:
2931 	rcu_read_unlock();
2932 	if (folio && !xa_is_value(folio))
2933 		folio_put(folio);
2934 	if (start > end)
2935 		return end;
2936 	return start;
2937 }
2938 
2939 #ifdef CONFIG_MMU
2940 #define MMAP_LOTSAMISS  (100)
2941 /*
2942  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2943  * @vmf - the vm_fault for this fault.
2944  * @folio - the folio to lock.
2945  * @fpin - the pointer to the file we may pin (or is already pinned).
2946  *
2947  * This works similar to lock_folio_or_retry in that it can drop the
2948  * mmap_lock.  It differs in that it actually returns the folio locked
2949  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
2950  * to drop the mmap_lock then fpin will point to the pinned file and
2951  * needs to be fput()'ed at a later point.
2952  */
2953 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2954 				     struct file **fpin)
2955 {
2956 	if (folio_trylock(folio))
2957 		return 1;
2958 
2959 	/*
2960 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2961 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2962 	 * is supposed to work. We have way too many special cases..
2963 	 */
2964 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2965 		return 0;
2966 
2967 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2968 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2969 		if (__folio_lock_killable(folio)) {
2970 			/*
2971 			 * We didn't have the right flags to drop the mmap_lock,
2972 			 * but all fault_handlers only check for fatal signals
2973 			 * if we return VM_FAULT_RETRY, so we need to drop the
2974 			 * mmap_lock here and return 0 if we don't have a fpin.
2975 			 */
2976 			if (*fpin == NULL)
2977 				mmap_read_unlock(vmf->vma->vm_mm);
2978 			return 0;
2979 		}
2980 	} else
2981 		__folio_lock(folio);
2982 
2983 	return 1;
2984 }
2985 
2986 /*
2987  * Synchronous readahead happens when we don't even find a page in the page
2988  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2989  * to drop the mmap sem we return the file that was pinned in order for us to do
2990  * that.  If we didn't pin a file then we return NULL.  The file that is
2991  * returned needs to be fput()'ed when we're done with it.
2992  */
2993 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2994 {
2995 	struct file *file = vmf->vma->vm_file;
2996 	struct file_ra_state *ra = &file->f_ra;
2997 	struct address_space *mapping = file->f_mapping;
2998 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2999 	struct file *fpin = NULL;
3000 	unsigned int mmap_miss;
3001 
3002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3003 	/* Use the readahead code, even if readahead is disabled */
3004 	if (vmf->vma->vm_flags & VM_HUGEPAGE) {
3005 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3006 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3007 		ra->size = HPAGE_PMD_NR;
3008 		/*
3009 		 * Fetch two PMD folios, so we get the chance to actually
3010 		 * readahead, unless we've been told not to.
3011 		 */
3012 		if (!(vmf->vma->vm_flags & VM_RAND_READ))
3013 			ra->size *= 2;
3014 		ra->async_size = HPAGE_PMD_NR;
3015 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3016 		return fpin;
3017 	}
3018 #endif
3019 
3020 	/* If we don't want any read-ahead, don't bother */
3021 	if (vmf->vma->vm_flags & VM_RAND_READ)
3022 		return fpin;
3023 	if (!ra->ra_pages)
3024 		return fpin;
3025 
3026 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
3027 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3028 		page_cache_sync_ra(&ractl, ra->ra_pages);
3029 		return fpin;
3030 	}
3031 
3032 	/* Avoid banging the cache line if not needed */
3033 	mmap_miss = READ_ONCE(ra->mmap_miss);
3034 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3035 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3036 
3037 	/*
3038 	 * Do we miss much more than hit in this file? If so,
3039 	 * stop bothering with read-ahead. It will only hurt.
3040 	 */
3041 	if (mmap_miss > MMAP_LOTSAMISS)
3042 		return fpin;
3043 
3044 	/*
3045 	 * mmap read-around
3046 	 */
3047 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3048 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3049 	ra->size = ra->ra_pages;
3050 	ra->async_size = ra->ra_pages / 4;
3051 	ractl._index = ra->start;
3052 	page_cache_ra_order(&ractl, ra, 0);
3053 	return fpin;
3054 }
3055 
3056 /*
3057  * Asynchronous readahead happens when we find the page and PG_readahead,
3058  * so we want to possibly extend the readahead further.  We return the file that
3059  * was pinned if we have to drop the mmap_lock in order to do IO.
3060  */
3061 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3062 					    struct folio *folio)
3063 {
3064 	struct file *file = vmf->vma->vm_file;
3065 	struct file_ra_state *ra = &file->f_ra;
3066 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3067 	struct file *fpin = NULL;
3068 	unsigned int mmap_miss;
3069 
3070 	/* If we don't want any read-ahead, don't bother */
3071 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3072 		return fpin;
3073 
3074 	mmap_miss = READ_ONCE(ra->mmap_miss);
3075 	if (mmap_miss)
3076 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3077 
3078 	if (folio_test_readahead(folio)) {
3079 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3080 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3081 	}
3082 	return fpin;
3083 }
3084 
3085 /**
3086  * filemap_fault - read in file data for page fault handling
3087  * @vmf:	struct vm_fault containing details of the fault
3088  *
3089  * filemap_fault() is invoked via the vma operations vector for a
3090  * mapped memory region to read in file data during a page fault.
3091  *
3092  * The goto's are kind of ugly, but this streamlines the normal case of having
3093  * it in the page cache, and handles the special cases reasonably without
3094  * having a lot of duplicated code.
3095  *
3096  * vma->vm_mm->mmap_lock must be held on entry.
3097  *
3098  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3099  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3100  *
3101  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3102  * has not been released.
3103  *
3104  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3105  *
3106  * Return: bitwise-OR of %VM_FAULT_ codes.
3107  */
3108 vm_fault_t filemap_fault(struct vm_fault *vmf)
3109 {
3110 	int error;
3111 	struct file *file = vmf->vma->vm_file;
3112 	struct file *fpin = NULL;
3113 	struct address_space *mapping = file->f_mapping;
3114 	struct inode *inode = mapping->host;
3115 	pgoff_t max_idx, index = vmf->pgoff;
3116 	struct folio *folio;
3117 	vm_fault_t ret = 0;
3118 	bool mapping_locked = false;
3119 
3120 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3121 	if (unlikely(index >= max_idx))
3122 		return VM_FAULT_SIGBUS;
3123 
3124 	/*
3125 	 * Do we have something in the page cache already?
3126 	 */
3127 	folio = filemap_get_folio(mapping, index);
3128 	if (likely(folio)) {
3129 		/*
3130 		 * We found the page, so try async readahead before waiting for
3131 		 * the lock.
3132 		 */
3133 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3134 			fpin = do_async_mmap_readahead(vmf, folio);
3135 		if (unlikely(!folio_test_uptodate(folio))) {
3136 			filemap_invalidate_lock_shared(mapping);
3137 			mapping_locked = true;
3138 		}
3139 	} else {
3140 		/* No page in the page cache at all */
3141 		count_vm_event(PGMAJFAULT);
3142 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3143 		ret = VM_FAULT_MAJOR;
3144 		fpin = do_sync_mmap_readahead(vmf);
3145 retry_find:
3146 		/*
3147 		 * See comment in filemap_create_folio() why we need
3148 		 * invalidate_lock
3149 		 */
3150 		if (!mapping_locked) {
3151 			filemap_invalidate_lock_shared(mapping);
3152 			mapping_locked = true;
3153 		}
3154 		folio = __filemap_get_folio(mapping, index,
3155 					  FGP_CREAT|FGP_FOR_MMAP,
3156 					  vmf->gfp_mask);
3157 		if (!folio) {
3158 			if (fpin)
3159 				goto out_retry;
3160 			filemap_invalidate_unlock_shared(mapping);
3161 			return VM_FAULT_OOM;
3162 		}
3163 	}
3164 
3165 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3166 		goto out_retry;
3167 
3168 	/* Did it get truncated? */
3169 	if (unlikely(folio->mapping != mapping)) {
3170 		folio_unlock(folio);
3171 		folio_put(folio);
3172 		goto retry_find;
3173 	}
3174 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3175 
3176 	/*
3177 	 * We have a locked page in the page cache, now we need to check
3178 	 * that it's up-to-date. If not, it is going to be due to an error.
3179 	 */
3180 	if (unlikely(!folio_test_uptodate(folio))) {
3181 		/*
3182 		 * The page was in cache and uptodate and now it is not.
3183 		 * Strange but possible since we didn't hold the page lock all
3184 		 * the time. Let's drop everything get the invalidate lock and
3185 		 * try again.
3186 		 */
3187 		if (!mapping_locked) {
3188 			folio_unlock(folio);
3189 			folio_put(folio);
3190 			goto retry_find;
3191 		}
3192 		goto page_not_uptodate;
3193 	}
3194 
3195 	/*
3196 	 * We've made it this far and we had to drop our mmap_lock, now is the
3197 	 * time to return to the upper layer and have it re-find the vma and
3198 	 * redo the fault.
3199 	 */
3200 	if (fpin) {
3201 		folio_unlock(folio);
3202 		goto out_retry;
3203 	}
3204 	if (mapping_locked)
3205 		filemap_invalidate_unlock_shared(mapping);
3206 
3207 	/*
3208 	 * Found the page and have a reference on it.
3209 	 * We must recheck i_size under page lock.
3210 	 */
3211 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3212 	if (unlikely(index >= max_idx)) {
3213 		folio_unlock(folio);
3214 		folio_put(folio);
3215 		return VM_FAULT_SIGBUS;
3216 	}
3217 
3218 	vmf->page = folio_file_page(folio, index);
3219 	return ret | VM_FAULT_LOCKED;
3220 
3221 page_not_uptodate:
3222 	/*
3223 	 * Umm, take care of errors if the page isn't up-to-date.
3224 	 * Try to re-read it _once_. We do this synchronously,
3225 	 * because there really aren't any performance issues here
3226 	 * and we need to check for errors.
3227 	 */
3228 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3229 	error = filemap_read_folio(file, mapping, folio);
3230 	if (fpin)
3231 		goto out_retry;
3232 	folio_put(folio);
3233 
3234 	if (!error || error == AOP_TRUNCATED_PAGE)
3235 		goto retry_find;
3236 	filemap_invalidate_unlock_shared(mapping);
3237 
3238 	return VM_FAULT_SIGBUS;
3239 
3240 out_retry:
3241 	/*
3242 	 * We dropped the mmap_lock, we need to return to the fault handler to
3243 	 * re-find the vma and come back and find our hopefully still populated
3244 	 * page.
3245 	 */
3246 	if (folio)
3247 		folio_put(folio);
3248 	if (mapping_locked)
3249 		filemap_invalidate_unlock_shared(mapping);
3250 	if (fpin)
3251 		fput(fpin);
3252 	return ret | VM_FAULT_RETRY;
3253 }
3254 EXPORT_SYMBOL(filemap_fault);
3255 
3256 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3257 {
3258 	struct mm_struct *mm = vmf->vma->vm_mm;
3259 
3260 	/* Huge page is mapped? No need to proceed. */
3261 	if (pmd_trans_huge(*vmf->pmd)) {
3262 		unlock_page(page);
3263 		put_page(page);
3264 		return true;
3265 	}
3266 
3267 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3268 		vm_fault_t ret = do_set_pmd(vmf, page);
3269 		if (!ret) {
3270 			/* The page is mapped successfully, reference consumed. */
3271 			unlock_page(page);
3272 			return true;
3273 		}
3274 	}
3275 
3276 	if (pmd_none(*vmf->pmd))
3277 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3278 
3279 	/* See comment in handle_pte_fault() */
3280 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3281 		unlock_page(page);
3282 		put_page(page);
3283 		return true;
3284 	}
3285 
3286 	return false;
3287 }
3288 
3289 static struct folio *next_uptodate_page(struct folio *folio,
3290 				       struct address_space *mapping,
3291 				       struct xa_state *xas, pgoff_t end_pgoff)
3292 {
3293 	unsigned long max_idx;
3294 
3295 	do {
3296 		if (!folio)
3297 			return NULL;
3298 		if (xas_retry(xas, folio))
3299 			continue;
3300 		if (xa_is_value(folio))
3301 			continue;
3302 		if (folio_test_locked(folio))
3303 			continue;
3304 		if (!folio_try_get_rcu(folio))
3305 			continue;
3306 		/* Has the page moved or been split? */
3307 		if (unlikely(folio != xas_reload(xas)))
3308 			goto skip;
3309 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3310 			goto skip;
3311 		if (!folio_trylock(folio))
3312 			goto skip;
3313 		if (folio->mapping != mapping)
3314 			goto unlock;
3315 		if (!folio_test_uptodate(folio))
3316 			goto unlock;
3317 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3318 		if (xas->xa_index >= max_idx)
3319 			goto unlock;
3320 		return folio;
3321 unlock:
3322 		folio_unlock(folio);
3323 skip:
3324 		folio_put(folio);
3325 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3326 
3327 	return NULL;
3328 }
3329 
3330 static inline struct folio *first_map_page(struct address_space *mapping,
3331 					  struct xa_state *xas,
3332 					  pgoff_t end_pgoff)
3333 {
3334 	return next_uptodate_page(xas_find(xas, end_pgoff),
3335 				  mapping, xas, end_pgoff);
3336 }
3337 
3338 static inline struct folio *next_map_page(struct address_space *mapping,
3339 					 struct xa_state *xas,
3340 					 pgoff_t end_pgoff)
3341 {
3342 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3343 				  mapping, xas, end_pgoff);
3344 }
3345 
3346 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3347 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3348 {
3349 	struct vm_area_struct *vma = vmf->vma;
3350 	struct file *file = vma->vm_file;
3351 	struct address_space *mapping = file->f_mapping;
3352 	pgoff_t last_pgoff = start_pgoff;
3353 	unsigned long addr;
3354 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3355 	struct folio *folio;
3356 	struct page *page;
3357 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3358 	vm_fault_t ret = 0;
3359 
3360 	rcu_read_lock();
3361 	folio = first_map_page(mapping, &xas, end_pgoff);
3362 	if (!folio)
3363 		goto out;
3364 
3365 	if (filemap_map_pmd(vmf, &folio->page)) {
3366 		ret = VM_FAULT_NOPAGE;
3367 		goto out;
3368 	}
3369 
3370 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3371 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3372 	do {
3373 again:
3374 		page = folio_file_page(folio, xas.xa_index);
3375 		if (PageHWPoison(page))
3376 			goto unlock;
3377 
3378 		if (mmap_miss > 0)
3379 			mmap_miss--;
3380 
3381 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3382 		vmf->pte += xas.xa_index - last_pgoff;
3383 		last_pgoff = xas.xa_index;
3384 
3385 		if (!pte_none(*vmf->pte))
3386 			goto unlock;
3387 
3388 		/* We're about to handle the fault */
3389 		if (vmf->address == addr)
3390 			ret = VM_FAULT_NOPAGE;
3391 
3392 		do_set_pte(vmf, page, addr);
3393 		/* no need to invalidate: a not-present page won't be cached */
3394 		update_mmu_cache(vma, addr, vmf->pte);
3395 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3396 			xas.xa_index++;
3397 			folio_ref_inc(folio);
3398 			goto again;
3399 		}
3400 		folio_unlock(folio);
3401 		continue;
3402 unlock:
3403 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3404 			xas.xa_index++;
3405 			goto again;
3406 		}
3407 		folio_unlock(folio);
3408 		folio_put(folio);
3409 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3410 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3411 out:
3412 	rcu_read_unlock();
3413 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3414 	return ret;
3415 }
3416 EXPORT_SYMBOL(filemap_map_pages);
3417 
3418 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3419 {
3420 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3421 	struct folio *folio = page_folio(vmf->page);
3422 	vm_fault_t ret = VM_FAULT_LOCKED;
3423 
3424 	sb_start_pagefault(mapping->host->i_sb);
3425 	file_update_time(vmf->vma->vm_file);
3426 	folio_lock(folio);
3427 	if (folio->mapping != mapping) {
3428 		folio_unlock(folio);
3429 		ret = VM_FAULT_NOPAGE;
3430 		goto out;
3431 	}
3432 	/*
3433 	 * We mark the folio dirty already here so that when freeze is in
3434 	 * progress, we are guaranteed that writeback during freezing will
3435 	 * see the dirty folio and writeprotect it again.
3436 	 */
3437 	folio_mark_dirty(folio);
3438 	folio_wait_stable(folio);
3439 out:
3440 	sb_end_pagefault(mapping->host->i_sb);
3441 	return ret;
3442 }
3443 
3444 const struct vm_operations_struct generic_file_vm_ops = {
3445 	.fault		= filemap_fault,
3446 	.map_pages	= filemap_map_pages,
3447 	.page_mkwrite	= filemap_page_mkwrite,
3448 };
3449 
3450 /* This is used for a general mmap of a disk file */
3451 
3452 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3453 {
3454 	struct address_space *mapping = file->f_mapping;
3455 
3456 	if (!mapping->a_ops->readpage)
3457 		return -ENOEXEC;
3458 	file_accessed(file);
3459 	vma->vm_ops = &generic_file_vm_ops;
3460 	return 0;
3461 }
3462 
3463 /*
3464  * This is for filesystems which do not implement ->writepage.
3465  */
3466 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3467 {
3468 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3469 		return -EINVAL;
3470 	return generic_file_mmap(file, vma);
3471 }
3472 #else
3473 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3474 {
3475 	return VM_FAULT_SIGBUS;
3476 }
3477 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3478 {
3479 	return -ENOSYS;
3480 }
3481 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3482 {
3483 	return -ENOSYS;
3484 }
3485 #endif /* CONFIG_MMU */
3486 
3487 EXPORT_SYMBOL(filemap_page_mkwrite);
3488 EXPORT_SYMBOL(generic_file_mmap);
3489 EXPORT_SYMBOL(generic_file_readonly_mmap);
3490 
3491 static struct folio *do_read_cache_folio(struct address_space *mapping,
3492 		pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3493 {
3494 	struct folio *folio;
3495 	int err;
3496 repeat:
3497 	folio = filemap_get_folio(mapping, index);
3498 	if (!folio) {
3499 		folio = filemap_alloc_folio(gfp, 0);
3500 		if (!folio)
3501 			return ERR_PTR(-ENOMEM);
3502 		err = filemap_add_folio(mapping, folio, index, gfp);
3503 		if (unlikely(err)) {
3504 			folio_put(folio);
3505 			if (err == -EEXIST)
3506 				goto repeat;
3507 			/* Presumably ENOMEM for xarray node */
3508 			return ERR_PTR(err);
3509 		}
3510 
3511 filler:
3512 		if (filler)
3513 			err = filler(data, &folio->page);
3514 		else
3515 			err = mapping->a_ops->readpage(data, &folio->page);
3516 
3517 		if (err < 0) {
3518 			folio_put(folio);
3519 			return ERR_PTR(err);
3520 		}
3521 
3522 		folio_wait_locked(folio);
3523 		if (!folio_test_uptodate(folio)) {
3524 			folio_put(folio);
3525 			return ERR_PTR(-EIO);
3526 		}
3527 
3528 		goto out;
3529 	}
3530 	if (folio_test_uptodate(folio))
3531 		goto out;
3532 
3533 	if (!folio_trylock(folio)) {
3534 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3535 		goto repeat;
3536 	}
3537 
3538 	/* Folio was truncated from mapping */
3539 	if (!folio->mapping) {
3540 		folio_unlock(folio);
3541 		folio_put(folio);
3542 		goto repeat;
3543 	}
3544 
3545 	/* Someone else locked and filled the page in a very small window */
3546 	if (folio_test_uptodate(folio)) {
3547 		folio_unlock(folio);
3548 		goto out;
3549 	}
3550 
3551 	/*
3552 	 * A previous I/O error may have been due to temporary
3553 	 * failures.
3554 	 * Clear page error before actual read, PG_error will be
3555 	 * set again if read page fails.
3556 	 */
3557 	folio_clear_error(folio);
3558 	goto filler;
3559 
3560 out:
3561 	folio_mark_accessed(folio);
3562 	return folio;
3563 }
3564 
3565 /**
3566  * read_cache_folio - read into page cache, fill it if needed
3567  * @mapping:	the page's address_space
3568  * @index:	the page index
3569  * @filler:	function to perform the read
3570  * @data:	first arg to filler(data, page) function, often left as NULL
3571  *
3572  * Read into the page cache. If a page already exists, and PageUptodate() is
3573  * not set, try to fill the page and wait for it to become unlocked.
3574  *
3575  * If the page does not get brought uptodate, return -EIO.
3576  *
3577  * The function expects mapping->invalidate_lock to be already held.
3578  *
3579  * Return: up to date page on success, ERR_PTR() on failure.
3580  */
3581 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3582 		filler_t filler, void *data)
3583 {
3584 	return do_read_cache_folio(mapping, index, filler, data,
3585 			mapping_gfp_mask(mapping));
3586 }
3587 EXPORT_SYMBOL(read_cache_folio);
3588 
3589 static struct page *do_read_cache_page(struct address_space *mapping,
3590 		pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3591 {
3592 	struct folio *folio;
3593 
3594 	folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3595 	if (IS_ERR(folio))
3596 		return &folio->page;
3597 	return folio_file_page(folio, index);
3598 }
3599 
3600 struct page *read_cache_page(struct address_space *mapping,
3601 				pgoff_t index, filler_t *filler, void *data)
3602 {
3603 	return do_read_cache_page(mapping, index, filler, data,
3604 			mapping_gfp_mask(mapping));
3605 }
3606 EXPORT_SYMBOL(read_cache_page);
3607 
3608 /**
3609  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3610  * @mapping:	the page's address_space
3611  * @index:	the page index
3612  * @gfp:	the page allocator flags to use if allocating
3613  *
3614  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3615  * any new page allocations done using the specified allocation flags.
3616  *
3617  * If the page does not get brought uptodate, return -EIO.
3618  *
3619  * The function expects mapping->invalidate_lock to be already held.
3620  *
3621  * Return: up to date page on success, ERR_PTR() on failure.
3622  */
3623 struct page *read_cache_page_gfp(struct address_space *mapping,
3624 				pgoff_t index,
3625 				gfp_t gfp)
3626 {
3627 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3628 }
3629 EXPORT_SYMBOL(read_cache_page_gfp);
3630 
3631 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3632 				loff_t pos, unsigned len, unsigned flags,
3633 				struct page **pagep, void **fsdata)
3634 {
3635 	const struct address_space_operations *aops = mapping->a_ops;
3636 
3637 	return aops->write_begin(file, mapping, pos, len, flags,
3638 							pagep, fsdata);
3639 }
3640 EXPORT_SYMBOL(pagecache_write_begin);
3641 
3642 int pagecache_write_end(struct file *file, struct address_space *mapping,
3643 				loff_t pos, unsigned len, unsigned copied,
3644 				struct page *page, void *fsdata)
3645 {
3646 	const struct address_space_operations *aops = mapping->a_ops;
3647 
3648 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3649 }
3650 EXPORT_SYMBOL(pagecache_write_end);
3651 
3652 /*
3653  * Warn about a page cache invalidation failure during a direct I/O write.
3654  */
3655 void dio_warn_stale_pagecache(struct file *filp)
3656 {
3657 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3658 	char pathname[128];
3659 	char *path;
3660 
3661 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3662 	if (__ratelimit(&_rs)) {
3663 		path = file_path(filp, pathname, sizeof(pathname));
3664 		if (IS_ERR(path))
3665 			path = "(unknown)";
3666 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3667 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3668 			current->comm);
3669 	}
3670 }
3671 
3672 ssize_t
3673 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3674 {
3675 	struct file	*file = iocb->ki_filp;
3676 	struct address_space *mapping = file->f_mapping;
3677 	struct inode	*inode = mapping->host;
3678 	loff_t		pos = iocb->ki_pos;
3679 	ssize_t		written;
3680 	size_t		write_len;
3681 	pgoff_t		end;
3682 
3683 	write_len = iov_iter_count(from);
3684 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3685 
3686 	if (iocb->ki_flags & IOCB_NOWAIT) {
3687 		/* If there are pages to writeback, return */
3688 		if (filemap_range_has_page(file->f_mapping, pos,
3689 					   pos + write_len - 1))
3690 			return -EAGAIN;
3691 	} else {
3692 		written = filemap_write_and_wait_range(mapping, pos,
3693 							pos + write_len - 1);
3694 		if (written)
3695 			goto out;
3696 	}
3697 
3698 	/*
3699 	 * After a write we want buffered reads to be sure to go to disk to get
3700 	 * the new data.  We invalidate clean cached page from the region we're
3701 	 * about to write.  We do this *before* the write so that we can return
3702 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3703 	 */
3704 	written = invalidate_inode_pages2_range(mapping,
3705 					pos >> PAGE_SHIFT, end);
3706 	/*
3707 	 * If a page can not be invalidated, return 0 to fall back
3708 	 * to buffered write.
3709 	 */
3710 	if (written) {
3711 		if (written == -EBUSY)
3712 			return 0;
3713 		goto out;
3714 	}
3715 
3716 	written = mapping->a_ops->direct_IO(iocb, from);
3717 
3718 	/*
3719 	 * Finally, try again to invalidate clean pages which might have been
3720 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3721 	 * if the source of the write was an mmap'ed region of the file
3722 	 * we're writing.  Either one is a pretty crazy thing to do,
3723 	 * so we don't support it 100%.  If this invalidation
3724 	 * fails, tough, the write still worked...
3725 	 *
3726 	 * Most of the time we do not need this since dio_complete() will do
3727 	 * the invalidation for us. However there are some file systems that
3728 	 * do not end up with dio_complete() being called, so let's not break
3729 	 * them by removing it completely.
3730 	 *
3731 	 * Noticeable example is a blkdev_direct_IO().
3732 	 *
3733 	 * Skip invalidation for async writes or if mapping has no pages.
3734 	 */
3735 	if (written > 0 && mapping->nrpages &&
3736 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3737 		dio_warn_stale_pagecache(file);
3738 
3739 	if (written > 0) {
3740 		pos += written;
3741 		write_len -= written;
3742 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3743 			i_size_write(inode, pos);
3744 			mark_inode_dirty(inode);
3745 		}
3746 		iocb->ki_pos = pos;
3747 	}
3748 	if (written != -EIOCBQUEUED)
3749 		iov_iter_revert(from, write_len - iov_iter_count(from));
3750 out:
3751 	return written;
3752 }
3753 EXPORT_SYMBOL(generic_file_direct_write);
3754 
3755 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3756 {
3757 	struct file *file = iocb->ki_filp;
3758 	loff_t pos = iocb->ki_pos;
3759 	struct address_space *mapping = file->f_mapping;
3760 	const struct address_space_operations *a_ops = mapping->a_ops;
3761 	long status = 0;
3762 	ssize_t written = 0;
3763 	unsigned int flags = 0;
3764 
3765 	do {
3766 		struct page *page;
3767 		unsigned long offset;	/* Offset into pagecache page */
3768 		unsigned long bytes;	/* Bytes to write to page */
3769 		size_t copied;		/* Bytes copied from user */
3770 		void *fsdata;
3771 
3772 		offset = (pos & (PAGE_SIZE - 1));
3773 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3774 						iov_iter_count(i));
3775 
3776 again:
3777 		/*
3778 		 * Bring in the user page that we will copy from _first_.
3779 		 * Otherwise there's a nasty deadlock on copying from the
3780 		 * same page as we're writing to, without it being marked
3781 		 * up-to-date.
3782 		 */
3783 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3784 			status = -EFAULT;
3785 			break;
3786 		}
3787 
3788 		if (fatal_signal_pending(current)) {
3789 			status = -EINTR;
3790 			break;
3791 		}
3792 
3793 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3794 						&page, &fsdata);
3795 		if (unlikely(status < 0))
3796 			break;
3797 
3798 		if (mapping_writably_mapped(mapping))
3799 			flush_dcache_page(page);
3800 
3801 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3802 		flush_dcache_page(page);
3803 
3804 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3805 						page, fsdata);
3806 		if (unlikely(status != copied)) {
3807 			iov_iter_revert(i, copied - max(status, 0L));
3808 			if (unlikely(status < 0))
3809 				break;
3810 		}
3811 		cond_resched();
3812 
3813 		if (unlikely(status == 0)) {
3814 			/*
3815 			 * A short copy made ->write_end() reject the
3816 			 * thing entirely.  Might be memory poisoning
3817 			 * halfway through, might be a race with munmap,
3818 			 * might be severe memory pressure.
3819 			 */
3820 			if (copied)
3821 				bytes = copied;
3822 			goto again;
3823 		}
3824 		pos += status;
3825 		written += status;
3826 
3827 		balance_dirty_pages_ratelimited(mapping);
3828 	} while (iov_iter_count(i));
3829 
3830 	return written ? written : status;
3831 }
3832 EXPORT_SYMBOL(generic_perform_write);
3833 
3834 /**
3835  * __generic_file_write_iter - write data to a file
3836  * @iocb:	IO state structure (file, offset, etc.)
3837  * @from:	iov_iter with data to write
3838  *
3839  * This function does all the work needed for actually writing data to a
3840  * file. It does all basic checks, removes SUID from the file, updates
3841  * modification times and calls proper subroutines depending on whether we
3842  * do direct IO or a standard buffered write.
3843  *
3844  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3845  * object which does not need locking at all.
3846  *
3847  * This function does *not* take care of syncing data in case of O_SYNC write.
3848  * A caller has to handle it. This is mainly due to the fact that we want to
3849  * avoid syncing under i_rwsem.
3850  *
3851  * Return:
3852  * * number of bytes written, even for truncated writes
3853  * * negative error code if no data has been written at all
3854  */
3855 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3856 {
3857 	struct file *file = iocb->ki_filp;
3858 	struct address_space *mapping = file->f_mapping;
3859 	struct inode 	*inode = mapping->host;
3860 	ssize_t		written = 0;
3861 	ssize_t		err;
3862 	ssize_t		status;
3863 
3864 	/* We can write back this queue in page reclaim */
3865 	current->backing_dev_info = inode_to_bdi(inode);
3866 	err = file_remove_privs(file);
3867 	if (err)
3868 		goto out;
3869 
3870 	err = file_update_time(file);
3871 	if (err)
3872 		goto out;
3873 
3874 	if (iocb->ki_flags & IOCB_DIRECT) {
3875 		loff_t pos, endbyte;
3876 
3877 		written = generic_file_direct_write(iocb, from);
3878 		/*
3879 		 * If the write stopped short of completing, fall back to
3880 		 * buffered writes.  Some filesystems do this for writes to
3881 		 * holes, for example.  For DAX files, a buffered write will
3882 		 * not succeed (even if it did, DAX does not handle dirty
3883 		 * page-cache pages correctly).
3884 		 */
3885 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3886 			goto out;
3887 
3888 		pos = iocb->ki_pos;
3889 		status = generic_perform_write(iocb, from);
3890 		/*
3891 		 * If generic_perform_write() returned a synchronous error
3892 		 * then we want to return the number of bytes which were
3893 		 * direct-written, or the error code if that was zero.  Note
3894 		 * that this differs from normal direct-io semantics, which
3895 		 * will return -EFOO even if some bytes were written.
3896 		 */
3897 		if (unlikely(status < 0)) {
3898 			err = status;
3899 			goto out;
3900 		}
3901 		/*
3902 		 * We need to ensure that the page cache pages are written to
3903 		 * disk and invalidated to preserve the expected O_DIRECT
3904 		 * semantics.
3905 		 */
3906 		endbyte = pos + status - 1;
3907 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3908 		if (err == 0) {
3909 			iocb->ki_pos = endbyte + 1;
3910 			written += status;
3911 			invalidate_mapping_pages(mapping,
3912 						 pos >> PAGE_SHIFT,
3913 						 endbyte >> PAGE_SHIFT);
3914 		} else {
3915 			/*
3916 			 * We don't know how much we wrote, so just return
3917 			 * the number of bytes which were direct-written
3918 			 */
3919 		}
3920 	} else {
3921 		written = generic_perform_write(iocb, from);
3922 		if (likely(written > 0))
3923 			iocb->ki_pos += written;
3924 	}
3925 out:
3926 	current->backing_dev_info = NULL;
3927 	return written ? written : err;
3928 }
3929 EXPORT_SYMBOL(__generic_file_write_iter);
3930 
3931 /**
3932  * generic_file_write_iter - write data to a file
3933  * @iocb:	IO state structure
3934  * @from:	iov_iter with data to write
3935  *
3936  * This is a wrapper around __generic_file_write_iter() to be used by most
3937  * filesystems. It takes care of syncing the file in case of O_SYNC file
3938  * and acquires i_rwsem as needed.
3939  * Return:
3940  * * negative error code if no data has been written at all of
3941  *   vfs_fsync_range() failed for a synchronous write
3942  * * number of bytes written, even for truncated writes
3943  */
3944 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3945 {
3946 	struct file *file = iocb->ki_filp;
3947 	struct inode *inode = file->f_mapping->host;
3948 	ssize_t ret;
3949 
3950 	inode_lock(inode);
3951 	ret = generic_write_checks(iocb, from);
3952 	if (ret > 0)
3953 		ret = __generic_file_write_iter(iocb, from);
3954 	inode_unlock(inode);
3955 
3956 	if (ret > 0)
3957 		ret = generic_write_sync(iocb, ret);
3958 	return ret;
3959 }
3960 EXPORT_SYMBOL(generic_file_write_iter);
3961 
3962 /**
3963  * filemap_release_folio() - Release fs-specific metadata on a folio.
3964  * @folio: The folio which the kernel is trying to free.
3965  * @gfp: Memory allocation flags (and I/O mode).
3966  *
3967  * The address_space is trying to release any data attached to a folio
3968  * (presumably at folio->private).
3969  *
3970  * This will also be called if the private_2 flag is set on a page,
3971  * indicating that the folio has other metadata associated with it.
3972  *
3973  * The @gfp argument specifies whether I/O may be performed to release
3974  * this page (__GFP_IO), and whether the call may block
3975  * (__GFP_RECLAIM & __GFP_FS).
3976  *
3977  * Return: %true if the release was successful, otherwise %false.
3978  */
3979 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3980 {
3981 	struct address_space * const mapping = folio->mapping;
3982 
3983 	BUG_ON(!folio_test_locked(folio));
3984 	if (folio_test_writeback(folio))
3985 		return false;
3986 
3987 	if (mapping && mapping->a_ops->releasepage)
3988 		return mapping->a_ops->releasepage(&folio->page, gfp);
3989 	return try_to_free_buffers(&folio->page);
3990 }
3991 EXPORT_SYMBOL(filemap_release_folio);
3992