xref: /linux/mm/filemap.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54 
55 /*
56  * FIXME: remove all knowledge of the buffer layer from the core VM
57  */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59 
60 #include <asm/mman.h>
61 
62 #include "swap.h"
63 
64 /*
65  * Shared mappings implemented 30.11.1994. It's not fully working yet,
66  * though.
67  *
68  * Shared mappings now work. 15.8.1995  Bruno.
69  *
70  * finished 'unifying' the page and buffer cache and SMP-threaded the
71  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72  *
73  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74  */
75 
76 /*
77  * Lock ordering:
78  *
79  *  ->i_mmap_rwsem		(truncate_pagecache)
80  *    ->private_lock		(__free_pte->block_dirty_folio)
81  *      ->swap_lock		(exclusive_swap_page, others)
82  *        ->i_pages lock
83  *
84  *  ->i_rwsem
85  *    ->invalidate_lock		(acquired by fs in truncate path)
86  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
87  *
88  *  ->mmap_lock
89  *    ->i_mmap_rwsem
90  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
91  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
92  *
93  *  ->mmap_lock
94  *    ->invalidate_lock		(filemap_fault)
95  *      ->lock_page		(filemap_fault, access_process_vm)
96  *
97  *  ->i_rwsem			(generic_perform_write)
98  *    ->mmap_lock		(fault_in_readable->do_page_fault)
99  *
100  *  bdi->wb.list_lock
101  *    sb_lock			(fs/fs-writeback.c)
102  *    ->i_pages lock		(__sync_single_inode)
103  *
104  *  ->i_mmap_rwsem
105  *    ->anon_vma.lock		(vma_merge)
106  *
107  *  ->anon_vma.lock
108  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
109  *
110  *  ->page_table_lock or pte_lock
111  *    ->swap_lock		(try_to_unmap_one)
112  *    ->private_lock		(try_to_unmap_one)
113  *    ->i_pages lock		(try_to_unmap_one)
114  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
115  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
116  *    ->private_lock		(page_remove_rmap->set_page_dirty)
117  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
118  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
119  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
120  *    ->memcg->move_lock	(page_remove_rmap->folio_memcg_lock)
121  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
122  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
123  *    ->private_lock		(zap_pte_range->block_dirty_folio)
124  *
125  * ->i_mmap_rwsem
126  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
127  */
128 
129 static void page_cache_delete(struct address_space *mapping,
130 				   struct folio *folio, void *shadow)
131 {
132 	XA_STATE(xas, &mapping->i_pages, folio->index);
133 	long nr = 1;
134 
135 	mapping_set_update(&xas, mapping);
136 
137 	/* hugetlb pages are represented by a single entry in the xarray */
138 	if (!folio_test_hugetlb(folio)) {
139 		xas_set_order(&xas, folio->index, folio_order(folio));
140 		nr = folio_nr_pages(folio);
141 	}
142 
143 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
144 
145 	xas_store(&xas, shadow);
146 	xas_init_marks(&xas);
147 
148 	folio->mapping = NULL;
149 	/* Leave page->index set: truncation lookup relies upon it */
150 	mapping->nrpages -= nr;
151 }
152 
153 static void filemap_unaccount_folio(struct address_space *mapping,
154 		struct folio *folio)
155 {
156 	long nr;
157 
158 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
159 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
160 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
161 			 current->comm, folio_pfn(folio));
162 		dump_page(&folio->page, "still mapped when deleted");
163 		dump_stack();
164 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
165 
166 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
167 			int mapcount = page_mapcount(&folio->page);
168 
169 			if (folio_ref_count(folio) >= mapcount + 2) {
170 				/*
171 				 * All vmas have already been torn down, so it's
172 				 * a good bet that actually the page is unmapped
173 				 * and we'd rather not leak it: if we're wrong,
174 				 * another bad page check should catch it later.
175 				 */
176 				page_mapcount_reset(&folio->page);
177 				folio_ref_sub(folio, mapcount);
178 			}
179 		}
180 	}
181 
182 	/* hugetlb folios do not participate in page cache accounting. */
183 	if (folio_test_hugetlb(folio))
184 		return;
185 
186 	nr = folio_nr_pages(folio);
187 
188 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
189 	if (folio_test_swapbacked(folio)) {
190 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
191 		if (folio_test_pmd_mappable(folio))
192 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
193 	} else if (folio_test_pmd_mappable(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
195 		filemap_nr_thps_dec(mapping);
196 	}
197 
198 	/*
199 	 * At this point folio must be either written or cleaned by
200 	 * truncate.  Dirty folio here signals a bug and loss of
201 	 * unwritten data - on ordinary filesystems.
202 	 *
203 	 * But it's harmless on in-memory filesystems like tmpfs; and can
204 	 * occur when a driver which did get_user_pages() sets page dirty
205 	 * before putting it, while the inode is being finally evicted.
206 	 *
207 	 * Below fixes dirty accounting after removing the folio entirely
208 	 * but leaves the dirty flag set: it has no effect for truncated
209 	 * folio and anyway will be cleared before returning folio to
210 	 * buddy allocator.
211 	 */
212 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 			 mapping_can_writeback(mapping)))
214 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
215 }
216 
217 /*
218  * Delete a page from the page cache and free it. Caller has to make
219  * sure the page is locked and that nobody else uses it - or that usage
220  * is safe.  The caller must hold the i_pages lock.
221  */
222 void __filemap_remove_folio(struct folio *folio, void *shadow)
223 {
224 	struct address_space *mapping = folio->mapping;
225 
226 	trace_mm_filemap_delete_from_page_cache(folio);
227 	filemap_unaccount_folio(mapping, folio);
228 	page_cache_delete(mapping, folio, shadow);
229 }
230 
231 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232 {
233 	void (*free_folio)(struct folio *);
234 	int refs = 1;
235 
236 	free_folio = mapping->a_ops->free_folio;
237 	if (free_folio)
238 		free_folio(folio);
239 
240 	if (folio_test_large(folio) && !folio_test_hugetlb(folio))
241 		refs = folio_nr_pages(folio);
242 	folio_put_refs(folio, refs);
243 }
244 
245 /**
246  * filemap_remove_folio - Remove folio from page cache.
247  * @folio: The folio.
248  *
249  * This must be called only on folios that are locked and have been
250  * verified to be in the page cache.  It will never put the folio into
251  * the free list because the caller has a reference on the page.
252  */
253 void filemap_remove_folio(struct folio *folio)
254 {
255 	struct address_space *mapping = folio->mapping;
256 
257 	BUG_ON(!folio_test_locked(folio));
258 	spin_lock(&mapping->host->i_lock);
259 	xa_lock_irq(&mapping->i_pages);
260 	__filemap_remove_folio(folio, NULL);
261 	xa_unlock_irq(&mapping->i_pages);
262 	if (mapping_shrinkable(mapping))
263 		inode_add_lru(mapping->host);
264 	spin_unlock(&mapping->host->i_lock);
265 
266 	filemap_free_folio(mapping, folio);
267 }
268 
269 /*
270  * page_cache_delete_batch - delete several folios from page cache
271  * @mapping: the mapping to which folios belong
272  * @fbatch: batch of folios to delete
273  *
274  * The function walks over mapping->i_pages and removes folios passed in
275  * @fbatch from the mapping. The function expects @fbatch to be sorted
276  * by page index and is optimised for it to be dense.
277  * It tolerates holes in @fbatch (mapping entries at those indices are not
278  * modified).
279  *
280  * The function expects the i_pages lock to be held.
281  */
282 static void page_cache_delete_batch(struct address_space *mapping,
283 			     struct folio_batch *fbatch)
284 {
285 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
286 	long total_pages = 0;
287 	int i = 0;
288 	struct folio *folio;
289 
290 	mapping_set_update(&xas, mapping);
291 	xas_for_each(&xas, folio, ULONG_MAX) {
292 		if (i >= folio_batch_count(fbatch))
293 			break;
294 
295 		/* A swap/dax/shadow entry got inserted? Skip it. */
296 		if (xa_is_value(folio))
297 			continue;
298 		/*
299 		 * A page got inserted in our range? Skip it. We have our
300 		 * pages locked so they are protected from being removed.
301 		 * If we see a page whose index is higher than ours, it
302 		 * means our page has been removed, which shouldn't be
303 		 * possible because we're holding the PageLock.
304 		 */
305 		if (folio != fbatch->folios[i]) {
306 			VM_BUG_ON_FOLIO(folio->index >
307 					fbatch->folios[i]->index, folio);
308 			continue;
309 		}
310 
311 		WARN_ON_ONCE(!folio_test_locked(folio));
312 
313 		folio->mapping = NULL;
314 		/* Leave folio->index set: truncation lookup relies on it */
315 
316 		i++;
317 		xas_store(&xas, NULL);
318 		total_pages += folio_nr_pages(folio);
319 	}
320 	mapping->nrpages -= total_pages;
321 }
322 
323 void delete_from_page_cache_batch(struct address_space *mapping,
324 				  struct folio_batch *fbatch)
325 {
326 	int i;
327 
328 	if (!folio_batch_count(fbatch))
329 		return;
330 
331 	spin_lock(&mapping->host->i_lock);
332 	xa_lock_irq(&mapping->i_pages);
333 	for (i = 0; i < folio_batch_count(fbatch); i++) {
334 		struct folio *folio = fbatch->folios[i];
335 
336 		trace_mm_filemap_delete_from_page_cache(folio);
337 		filemap_unaccount_folio(mapping, folio);
338 	}
339 	page_cache_delete_batch(mapping, fbatch);
340 	xa_unlock_irq(&mapping->i_pages);
341 	if (mapping_shrinkable(mapping))
342 		inode_add_lru(mapping->host);
343 	spin_unlock(&mapping->host->i_lock);
344 
345 	for (i = 0; i < folio_batch_count(fbatch); i++)
346 		filemap_free_folio(mapping, fbatch->folios[i]);
347 }
348 
349 int filemap_check_errors(struct address_space *mapping)
350 {
351 	int ret = 0;
352 	/* Check for outstanding write errors */
353 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
354 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
355 		ret = -ENOSPC;
356 	if (test_bit(AS_EIO, &mapping->flags) &&
357 	    test_and_clear_bit(AS_EIO, &mapping->flags))
358 		ret = -EIO;
359 	return ret;
360 }
361 EXPORT_SYMBOL(filemap_check_errors);
362 
363 static int filemap_check_and_keep_errors(struct address_space *mapping)
364 {
365 	/* Check for outstanding write errors */
366 	if (test_bit(AS_EIO, &mapping->flags))
367 		return -EIO;
368 	if (test_bit(AS_ENOSPC, &mapping->flags))
369 		return -ENOSPC;
370 	return 0;
371 }
372 
373 /**
374  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
375  * @mapping:	address space structure to write
376  * @wbc:	the writeback_control controlling the writeout
377  *
378  * Call writepages on the mapping using the provided wbc to control the
379  * writeout.
380  *
381  * Return: %0 on success, negative error code otherwise.
382  */
383 int filemap_fdatawrite_wbc(struct address_space *mapping,
384 			   struct writeback_control *wbc)
385 {
386 	int ret;
387 
388 	if (!mapping_can_writeback(mapping) ||
389 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
390 		return 0;
391 
392 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
393 	ret = do_writepages(mapping, wbc);
394 	wbc_detach_inode(wbc);
395 	return ret;
396 }
397 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
398 
399 /**
400  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
401  * @mapping:	address space structure to write
402  * @start:	offset in bytes where the range starts
403  * @end:	offset in bytes where the range ends (inclusive)
404  * @sync_mode:	enable synchronous operation
405  *
406  * Start writeback against all of a mapping's dirty pages that lie
407  * within the byte offsets <start, end> inclusive.
408  *
409  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
410  * opposed to a regular memory cleansing writeback.  The difference between
411  * these two operations is that if a dirty page/buffer is encountered, it must
412  * be waited upon, and not just skipped over.
413  *
414  * Return: %0 on success, negative error code otherwise.
415  */
416 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
417 				loff_t end, int sync_mode)
418 {
419 	struct writeback_control wbc = {
420 		.sync_mode = sync_mode,
421 		.nr_to_write = LONG_MAX,
422 		.range_start = start,
423 		.range_end = end,
424 	};
425 
426 	return filemap_fdatawrite_wbc(mapping, &wbc);
427 }
428 
429 static inline int __filemap_fdatawrite(struct address_space *mapping,
430 	int sync_mode)
431 {
432 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 }
434 
435 int filemap_fdatawrite(struct address_space *mapping)
436 {
437 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite);
440 
441 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 				loff_t end)
443 {
444 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445 }
446 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 
448 /**
449  * filemap_flush - mostly a non-blocking flush
450  * @mapping:	target address_space
451  *
452  * This is a mostly non-blocking flush.  Not suitable for data-integrity
453  * purposes - I/O may not be started against all dirty pages.
454  *
455  * Return: %0 on success, negative error code otherwise.
456  */
457 int filemap_flush(struct address_space *mapping)
458 {
459 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460 }
461 EXPORT_SYMBOL(filemap_flush);
462 
463 /**
464  * filemap_range_has_page - check if a page exists in range.
465  * @mapping:           address space within which to check
466  * @start_byte:        offset in bytes where the range starts
467  * @end_byte:          offset in bytes where the range ends (inclusive)
468  *
469  * Find at least one page in the range supplied, usually used to check if
470  * direct writing in this range will trigger a writeback.
471  *
472  * Return: %true if at least one page exists in the specified range,
473  * %false otherwise.
474  */
475 bool filemap_range_has_page(struct address_space *mapping,
476 			   loff_t start_byte, loff_t end_byte)
477 {
478 	struct folio *folio;
479 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 	pgoff_t max = end_byte >> PAGE_SHIFT;
481 
482 	if (end_byte < start_byte)
483 		return false;
484 
485 	rcu_read_lock();
486 	for (;;) {
487 		folio = xas_find(&xas, max);
488 		if (xas_retry(&xas, folio))
489 			continue;
490 		/* Shadow entries don't count */
491 		if (xa_is_value(folio))
492 			continue;
493 		/*
494 		 * We don't need to try to pin this page; we're about to
495 		 * release the RCU lock anyway.  It is enough to know that
496 		 * there was a page here recently.
497 		 */
498 		break;
499 	}
500 	rcu_read_unlock();
501 
502 	return folio != NULL;
503 }
504 EXPORT_SYMBOL(filemap_range_has_page);
505 
506 static void __filemap_fdatawait_range(struct address_space *mapping,
507 				     loff_t start_byte, loff_t end_byte)
508 {
509 	pgoff_t index = start_byte >> PAGE_SHIFT;
510 	pgoff_t end = end_byte >> PAGE_SHIFT;
511 	struct folio_batch fbatch;
512 	unsigned nr_folios;
513 
514 	folio_batch_init(&fbatch);
515 
516 	while (index <= end) {
517 		unsigned i;
518 
519 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
520 				PAGECACHE_TAG_WRITEBACK, &fbatch);
521 
522 		if (!nr_folios)
523 			break;
524 
525 		for (i = 0; i < nr_folios; i++) {
526 			struct folio *folio = fbatch.folios[i];
527 
528 			folio_wait_writeback(folio);
529 			folio_clear_error(folio);
530 		}
531 		folio_batch_release(&fbatch);
532 		cond_resched();
533 	}
534 }
535 
536 /**
537  * filemap_fdatawait_range - wait for writeback to complete
538  * @mapping:		address space structure to wait for
539  * @start_byte:		offset in bytes where the range starts
540  * @end_byte:		offset in bytes where the range ends (inclusive)
541  *
542  * Walk the list of under-writeback pages of the given address space
543  * in the given range and wait for all of them.  Check error status of
544  * the address space and return it.
545  *
546  * Since the error status of the address space is cleared by this function,
547  * callers are responsible for checking the return value and handling and/or
548  * reporting the error.
549  *
550  * Return: error status of the address space.
551  */
552 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
553 			    loff_t end_byte)
554 {
555 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
556 	return filemap_check_errors(mapping);
557 }
558 EXPORT_SYMBOL(filemap_fdatawait_range);
559 
560 /**
561  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
562  * @mapping:		address space structure to wait for
563  * @start_byte:		offset in bytes where the range starts
564  * @end_byte:		offset in bytes where the range ends (inclusive)
565  *
566  * Walk the list of under-writeback pages of the given address space in the
567  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
568  * this function does not clear error status of the address space.
569  *
570  * Use this function if callers don't handle errors themselves.  Expected
571  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
572  * fsfreeze(8)
573  */
574 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
575 		loff_t start_byte, loff_t end_byte)
576 {
577 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
578 	return filemap_check_and_keep_errors(mapping);
579 }
580 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
581 
582 /**
583  * file_fdatawait_range - wait for writeback to complete
584  * @file:		file pointing to address space structure to wait for
585  * @start_byte:		offset in bytes where the range starts
586  * @end_byte:		offset in bytes where the range ends (inclusive)
587  *
588  * Walk the list of under-writeback pages of the address space that file
589  * refers to, in the given range and wait for all of them.  Check error
590  * status of the address space vs. the file->f_wb_err cursor and return it.
591  *
592  * Since the error status of the file is advanced by this function,
593  * callers are responsible for checking the return value and handling and/or
594  * reporting the error.
595  *
596  * Return: error status of the address space vs. the file->f_wb_err cursor.
597  */
598 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
599 {
600 	struct address_space *mapping = file->f_mapping;
601 
602 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
603 	return file_check_and_advance_wb_err(file);
604 }
605 EXPORT_SYMBOL(file_fdatawait_range);
606 
607 /**
608  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
609  * @mapping: address space structure to wait for
610  *
611  * Walk the list of under-writeback pages of the given address space
612  * and wait for all of them.  Unlike filemap_fdatawait(), this function
613  * does not clear error status of the address space.
614  *
615  * Use this function if callers don't handle errors themselves.  Expected
616  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
617  * fsfreeze(8)
618  *
619  * Return: error status of the address space.
620  */
621 int filemap_fdatawait_keep_errors(struct address_space *mapping)
622 {
623 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
624 	return filemap_check_and_keep_errors(mapping);
625 }
626 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
627 
628 /* Returns true if writeback might be needed or already in progress. */
629 static bool mapping_needs_writeback(struct address_space *mapping)
630 {
631 	return mapping->nrpages;
632 }
633 
634 bool filemap_range_has_writeback(struct address_space *mapping,
635 				 loff_t start_byte, loff_t end_byte)
636 {
637 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
638 	pgoff_t max = end_byte >> PAGE_SHIFT;
639 	struct folio *folio;
640 
641 	if (end_byte < start_byte)
642 		return false;
643 
644 	rcu_read_lock();
645 	xas_for_each(&xas, folio, max) {
646 		if (xas_retry(&xas, folio))
647 			continue;
648 		if (xa_is_value(folio))
649 			continue;
650 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
651 				folio_test_writeback(folio))
652 			break;
653 	}
654 	rcu_read_unlock();
655 	return folio != NULL;
656 }
657 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
658 
659 /**
660  * filemap_write_and_wait_range - write out & wait on a file range
661  * @mapping:	the address_space for the pages
662  * @lstart:	offset in bytes where the range starts
663  * @lend:	offset in bytes where the range ends (inclusive)
664  *
665  * Write out and wait upon file offsets lstart->lend, inclusive.
666  *
667  * Note that @lend is inclusive (describes the last byte to be written) so
668  * that this function can be used to write to the very end-of-file (end = -1).
669  *
670  * Return: error status of the address space.
671  */
672 int filemap_write_and_wait_range(struct address_space *mapping,
673 				 loff_t lstart, loff_t lend)
674 {
675 	int err = 0, err2;
676 
677 	if (lend < lstart)
678 		return 0;
679 
680 	if (mapping_needs_writeback(mapping)) {
681 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 						 WB_SYNC_ALL);
683 		/*
684 		 * Even if the above returned error, the pages may be
685 		 * written partially (e.g. -ENOSPC), so we wait for it.
686 		 * But the -EIO is special case, it may indicate the worst
687 		 * thing (e.g. bug) happened, so we avoid waiting for it.
688 		 */
689 		if (err != -EIO)
690 			__filemap_fdatawait_range(mapping, lstart, lend);
691 	}
692 	err2 = filemap_check_errors(mapping);
693 	if (!err)
694 		err = err2;
695 	return err;
696 }
697 EXPORT_SYMBOL(filemap_write_and_wait_range);
698 
699 void __filemap_set_wb_err(struct address_space *mapping, int err)
700 {
701 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
702 
703 	trace_filemap_set_wb_err(mapping, eseq);
704 }
705 EXPORT_SYMBOL(__filemap_set_wb_err);
706 
707 /**
708  * file_check_and_advance_wb_err - report wb error (if any) that was previously
709  * 				   and advance wb_err to current one
710  * @file: struct file on which the error is being reported
711  *
712  * When userland calls fsync (or something like nfsd does the equivalent), we
713  * want to report any writeback errors that occurred since the last fsync (or
714  * since the file was opened if there haven't been any).
715  *
716  * Grab the wb_err from the mapping. If it matches what we have in the file,
717  * then just quickly return 0. The file is all caught up.
718  *
719  * If it doesn't match, then take the mapping value, set the "seen" flag in
720  * it and try to swap it into place. If it works, or another task beat us
721  * to it with the new value, then update the f_wb_err and return the error
722  * portion. The error at this point must be reported via proper channels
723  * (a'la fsync, or NFS COMMIT operation, etc.).
724  *
725  * While we handle mapping->wb_err with atomic operations, the f_wb_err
726  * value is protected by the f_lock since we must ensure that it reflects
727  * the latest value swapped in for this file descriptor.
728  *
729  * Return: %0 on success, negative error code otherwise.
730  */
731 int file_check_and_advance_wb_err(struct file *file)
732 {
733 	int err = 0;
734 	errseq_t old = READ_ONCE(file->f_wb_err);
735 	struct address_space *mapping = file->f_mapping;
736 
737 	/* Locklessly handle the common case where nothing has changed */
738 	if (errseq_check(&mapping->wb_err, old)) {
739 		/* Something changed, must use slow path */
740 		spin_lock(&file->f_lock);
741 		old = file->f_wb_err;
742 		err = errseq_check_and_advance(&mapping->wb_err,
743 						&file->f_wb_err);
744 		trace_file_check_and_advance_wb_err(file, old);
745 		spin_unlock(&file->f_lock);
746 	}
747 
748 	/*
749 	 * We're mostly using this function as a drop in replacement for
750 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 	 * that the legacy code would have had on these flags.
752 	 */
753 	clear_bit(AS_EIO, &mapping->flags);
754 	clear_bit(AS_ENOSPC, &mapping->flags);
755 	return err;
756 }
757 EXPORT_SYMBOL(file_check_and_advance_wb_err);
758 
759 /**
760  * file_write_and_wait_range - write out & wait on a file range
761  * @file:	file pointing to address_space with pages
762  * @lstart:	offset in bytes where the range starts
763  * @lend:	offset in bytes where the range ends (inclusive)
764  *
765  * Write out and wait upon file offsets lstart->lend, inclusive.
766  *
767  * Note that @lend is inclusive (describes the last byte to be written) so
768  * that this function can be used to write to the very end-of-file (end = -1).
769  *
770  * After writing out and waiting on the data, we check and advance the
771  * f_wb_err cursor to the latest value, and return any errors detected there.
772  *
773  * Return: %0 on success, negative error code otherwise.
774  */
775 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776 {
777 	int err = 0, err2;
778 	struct address_space *mapping = file->f_mapping;
779 
780 	if (lend < lstart)
781 		return 0;
782 
783 	if (mapping_needs_writeback(mapping)) {
784 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
785 						 WB_SYNC_ALL);
786 		/* See comment of filemap_write_and_wait() */
787 		if (err != -EIO)
788 			__filemap_fdatawait_range(mapping, lstart, lend);
789 	}
790 	err2 = file_check_and_advance_wb_err(file);
791 	if (!err)
792 		err = err2;
793 	return err;
794 }
795 EXPORT_SYMBOL(file_write_and_wait_range);
796 
797 /**
798  * replace_page_cache_folio - replace a pagecache folio with a new one
799  * @old:	folio to be replaced
800  * @new:	folio to replace with
801  *
802  * This function replaces a folio in the pagecache with a new one.  On
803  * success it acquires the pagecache reference for the new folio and
804  * drops it for the old folio.  Both the old and new folios must be
805  * locked.  This function does not add the new folio to the LRU, the
806  * caller must do that.
807  *
808  * The remove + add is atomic.  This function cannot fail.
809  */
810 void replace_page_cache_folio(struct folio *old, struct folio *new)
811 {
812 	struct address_space *mapping = old->mapping;
813 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
814 	pgoff_t offset = old->index;
815 	XA_STATE(xas, &mapping->i_pages, offset);
816 
817 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
818 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
819 	VM_BUG_ON_FOLIO(new->mapping, new);
820 
821 	folio_get(new);
822 	new->mapping = mapping;
823 	new->index = offset;
824 
825 	mem_cgroup_migrate(old, new);
826 
827 	xas_lock_irq(&xas);
828 	xas_store(&xas, new);
829 
830 	old->mapping = NULL;
831 	/* hugetlb pages do not participate in page cache accounting. */
832 	if (!folio_test_hugetlb(old))
833 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
834 	if (!folio_test_hugetlb(new))
835 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
836 	if (folio_test_swapbacked(old))
837 		__lruvec_stat_sub_folio(old, NR_SHMEM);
838 	if (folio_test_swapbacked(new))
839 		__lruvec_stat_add_folio(new, NR_SHMEM);
840 	xas_unlock_irq(&xas);
841 	if (free_folio)
842 		free_folio(old);
843 	folio_put(old);
844 }
845 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
846 
847 noinline int __filemap_add_folio(struct address_space *mapping,
848 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
849 {
850 	XA_STATE(xas, &mapping->i_pages, index);
851 	int huge = folio_test_hugetlb(folio);
852 	bool charged = false;
853 	long nr = 1;
854 
855 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
856 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
857 	mapping_set_update(&xas, mapping);
858 
859 	if (!huge) {
860 		int error = mem_cgroup_charge(folio, NULL, gfp);
861 		VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 		if (error)
863 			return error;
864 		charged = true;
865 		xas_set_order(&xas, index, folio_order(folio));
866 		nr = folio_nr_pages(folio);
867 	}
868 
869 	gfp &= GFP_RECLAIM_MASK;
870 	folio_ref_add(folio, nr);
871 	folio->mapping = mapping;
872 	folio->index = xas.xa_index;
873 
874 	do {
875 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
876 		void *entry, *old = NULL;
877 
878 		if (order > folio_order(folio))
879 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
880 					order, gfp);
881 		xas_lock_irq(&xas);
882 		xas_for_each_conflict(&xas, entry) {
883 			old = entry;
884 			if (!xa_is_value(entry)) {
885 				xas_set_err(&xas, -EEXIST);
886 				goto unlock;
887 			}
888 		}
889 
890 		if (old) {
891 			if (shadowp)
892 				*shadowp = old;
893 			/* entry may have been split before we acquired lock */
894 			order = xa_get_order(xas.xa, xas.xa_index);
895 			if (order > folio_order(folio)) {
896 				/* How to handle large swap entries? */
897 				BUG_ON(shmem_mapping(mapping));
898 				xas_split(&xas, old, order);
899 				xas_reset(&xas);
900 			}
901 		}
902 
903 		xas_store(&xas, folio);
904 		if (xas_error(&xas))
905 			goto unlock;
906 
907 		mapping->nrpages += nr;
908 
909 		/* hugetlb pages do not participate in page cache accounting */
910 		if (!huge) {
911 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
912 			if (folio_test_pmd_mappable(folio))
913 				__lruvec_stat_mod_folio(folio,
914 						NR_FILE_THPS, nr);
915 		}
916 unlock:
917 		xas_unlock_irq(&xas);
918 	} while (xas_nomem(&xas, gfp));
919 
920 	if (xas_error(&xas))
921 		goto error;
922 
923 	trace_mm_filemap_add_to_page_cache(folio);
924 	return 0;
925 error:
926 	if (charged)
927 		mem_cgroup_uncharge(folio);
928 	folio->mapping = NULL;
929 	/* Leave page->index set: truncation relies upon it */
930 	folio_put_refs(folio, nr);
931 	return xas_error(&xas);
932 }
933 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
934 
935 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
936 				pgoff_t index, gfp_t gfp)
937 {
938 	void *shadow = NULL;
939 	int ret;
940 
941 	__folio_set_locked(folio);
942 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
943 	if (unlikely(ret))
944 		__folio_clear_locked(folio);
945 	else {
946 		/*
947 		 * The folio might have been evicted from cache only
948 		 * recently, in which case it should be activated like
949 		 * any other repeatedly accessed folio.
950 		 * The exception is folios getting rewritten; evicting other
951 		 * data from the working set, only to cache data that will
952 		 * get overwritten with something else, is a waste of memory.
953 		 */
954 		WARN_ON_ONCE(folio_test_active(folio));
955 		if (!(gfp & __GFP_WRITE) && shadow)
956 			workingset_refault(folio, shadow);
957 		folio_add_lru(folio);
958 	}
959 	return ret;
960 }
961 EXPORT_SYMBOL_GPL(filemap_add_folio);
962 
963 #ifdef CONFIG_NUMA
964 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
965 {
966 	int n;
967 	struct folio *folio;
968 
969 	if (cpuset_do_page_mem_spread()) {
970 		unsigned int cpuset_mems_cookie;
971 		do {
972 			cpuset_mems_cookie = read_mems_allowed_begin();
973 			n = cpuset_mem_spread_node();
974 			folio = __folio_alloc_node(gfp, order, n);
975 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
976 
977 		return folio;
978 	}
979 	return folio_alloc(gfp, order);
980 }
981 EXPORT_SYMBOL(filemap_alloc_folio);
982 #endif
983 
984 /*
985  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
986  *
987  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
988  *
989  * @mapping1: the first mapping to lock
990  * @mapping2: the second mapping to lock
991  */
992 void filemap_invalidate_lock_two(struct address_space *mapping1,
993 				 struct address_space *mapping2)
994 {
995 	if (mapping1 > mapping2)
996 		swap(mapping1, mapping2);
997 	if (mapping1)
998 		down_write(&mapping1->invalidate_lock);
999 	if (mapping2 && mapping1 != mapping2)
1000 		down_write_nested(&mapping2->invalidate_lock, 1);
1001 }
1002 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1003 
1004 /*
1005  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1006  *
1007  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1008  *
1009  * @mapping1: the first mapping to unlock
1010  * @mapping2: the second mapping to unlock
1011  */
1012 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1013 				   struct address_space *mapping2)
1014 {
1015 	if (mapping1)
1016 		up_write(&mapping1->invalidate_lock);
1017 	if (mapping2 && mapping1 != mapping2)
1018 		up_write(&mapping2->invalidate_lock);
1019 }
1020 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1021 
1022 /*
1023  * In order to wait for pages to become available there must be
1024  * waitqueues associated with pages. By using a hash table of
1025  * waitqueues where the bucket discipline is to maintain all
1026  * waiters on the same queue and wake all when any of the pages
1027  * become available, and for the woken contexts to check to be
1028  * sure the appropriate page became available, this saves space
1029  * at a cost of "thundering herd" phenomena during rare hash
1030  * collisions.
1031  */
1032 #define PAGE_WAIT_TABLE_BITS 8
1033 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1034 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1035 
1036 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1037 {
1038 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1039 }
1040 
1041 void __init pagecache_init(void)
1042 {
1043 	int i;
1044 
1045 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1046 		init_waitqueue_head(&folio_wait_table[i]);
1047 
1048 	page_writeback_init();
1049 }
1050 
1051 /*
1052  * The page wait code treats the "wait->flags" somewhat unusually, because
1053  * we have multiple different kinds of waits, not just the usual "exclusive"
1054  * one.
1055  *
1056  * We have:
1057  *
1058  *  (a) no special bits set:
1059  *
1060  *	We're just waiting for the bit to be released, and when a waker
1061  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1062  *	and remove it from the wait queue.
1063  *
1064  *	Simple and straightforward.
1065  *
1066  *  (b) WQ_FLAG_EXCLUSIVE:
1067  *
1068  *	The waiter is waiting to get the lock, and only one waiter should
1069  *	be woken up to avoid any thundering herd behavior. We'll set the
1070  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1071  *
1072  *	This is the traditional exclusive wait.
1073  *
1074  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1075  *
1076  *	The waiter is waiting to get the bit, and additionally wants the
1077  *	lock to be transferred to it for fair lock behavior. If the lock
1078  *	cannot be taken, we stop walking the wait queue without waking
1079  *	the waiter.
1080  *
1081  *	This is the "fair lock handoff" case, and in addition to setting
1082  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1083  *	that it now has the lock.
1084  */
1085 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1086 {
1087 	unsigned int flags;
1088 	struct wait_page_key *key = arg;
1089 	struct wait_page_queue *wait_page
1090 		= container_of(wait, struct wait_page_queue, wait);
1091 
1092 	if (!wake_page_match(wait_page, key))
1093 		return 0;
1094 
1095 	/*
1096 	 * If it's a lock handoff wait, we get the bit for it, and
1097 	 * stop walking (and do not wake it up) if we can't.
1098 	 */
1099 	flags = wait->flags;
1100 	if (flags & WQ_FLAG_EXCLUSIVE) {
1101 		if (test_bit(key->bit_nr, &key->folio->flags))
1102 			return -1;
1103 		if (flags & WQ_FLAG_CUSTOM) {
1104 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1105 				return -1;
1106 			flags |= WQ_FLAG_DONE;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * We are holding the wait-queue lock, but the waiter that
1112 	 * is waiting for this will be checking the flags without
1113 	 * any locking.
1114 	 *
1115 	 * So update the flags atomically, and wake up the waiter
1116 	 * afterwards to avoid any races. This store-release pairs
1117 	 * with the load-acquire in folio_wait_bit_common().
1118 	 */
1119 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1120 	wake_up_state(wait->private, mode);
1121 
1122 	/*
1123 	 * Ok, we have successfully done what we're waiting for,
1124 	 * and we can unconditionally remove the wait entry.
1125 	 *
1126 	 * Note that this pairs with the "finish_wait()" in the
1127 	 * waiter, and has to be the absolute last thing we do.
1128 	 * After this list_del_init(&wait->entry) the wait entry
1129 	 * might be de-allocated and the process might even have
1130 	 * exited.
1131 	 */
1132 	list_del_init_careful(&wait->entry);
1133 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1134 }
1135 
1136 static void folio_wake_bit(struct folio *folio, int bit_nr)
1137 {
1138 	wait_queue_head_t *q = folio_waitqueue(folio);
1139 	struct wait_page_key key;
1140 	unsigned long flags;
1141 	wait_queue_entry_t bookmark;
1142 
1143 	key.folio = folio;
1144 	key.bit_nr = bit_nr;
1145 	key.page_match = 0;
1146 
1147 	bookmark.flags = 0;
1148 	bookmark.private = NULL;
1149 	bookmark.func = NULL;
1150 	INIT_LIST_HEAD(&bookmark.entry);
1151 
1152 	spin_lock_irqsave(&q->lock, flags);
1153 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154 
1155 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1156 		/*
1157 		 * Take a breather from holding the lock,
1158 		 * allow pages that finish wake up asynchronously
1159 		 * to acquire the lock and remove themselves
1160 		 * from wait queue
1161 		 */
1162 		spin_unlock_irqrestore(&q->lock, flags);
1163 		cpu_relax();
1164 		spin_lock_irqsave(&q->lock, flags);
1165 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1166 	}
1167 
1168 	/*
1169 	 * It's possible to miss clearing waiters here, when we woke our page
1170 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1171 	 * That's okay, it's a rare case. The next waker will clear it.
1172 	 *
1173 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1174 	 * other), the flag may be cleared in the course of freeing the page;
1175 	 * but that is not required for correctness.
1176 	 */
1177 	if (!waitqueue_active(q) || !key.page_match)
1178 		folio_clear_waiters(folio);
1179 
1180 	spin_unlock_irqrestore(&q->lock, flags);
1181 }
1182 
1183 static void folio_wake(struct folio *folio, int bit)
1184 {
1185 	if (!folio_test_waiters(folio))
1186 		return;
1187 	folio_wake_bit(folio, bit);
1188 }
1189 
1190 /*
1191  * A choice of three behaviors for folio_wait_bit_common():
1192  */
1193 enum behavior {
1194 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1195 			 * __folio_lock() waiting on then setting PG_locked.
1196 			 */
1197 	SHARED,		/* Hold ref to page and check the bit when woken, like
1198 			 * folio_wait_writeback() waiting on PG_writeback.
1199 			 */
1200 	DROP,		/* Drop ref to page before wait, no check when woken,
1201 			 * like folio_put_wait_locked() on PG_locked.
1202 			 */
1203 };
1204 
1205 /*
1206  * Attempt to check (or get) the folio flag, and mark us done
1207  * if successful.
1208  */
1209 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1210 					struct wait_queue_entry *wait)
1211 {
1212 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1213 		if (test_and_set_bit(bit_nr, &folio->flags))
1214 			return false;
1215 	} else if (test_bit(bit_nr, &folio->flags))
1216 		return false;
1217 
1218 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1219 	return true;
1220 }
1221 
1222 /* How many times do we accept lock stealing from under a waiter? */
1223 int sysctl_page_lock_unfairness = 5;
1224 
1225 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1226 		int state, enum behavior behavior)
1227 {
1228 	wait_queue_head_t *q = folio_waitqueue(folio);
1229 	int unfairness = sysctl_page_lock_unfairness;
1230 	struct wait_page_queue wait_page;
1231 	wait_queue_entry_t *wait = &wait_page.wait;
1232 	bool thrashing = false;
1233 	unsigned long pflags;
1234 	bool in_thrashing;
1235 
1236 	if (bit_nr == PG_locked &&
1237 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1238 		delayacct_thrashing_start(&in_thrashing);
1239 		psi_memstall_enter(&pflags);
1240 		thrashing = true;
1241 	}
1242 
1243 	init_wait(wait);
1244 	wait->func = wake_page_function;
1245 	wait_page.folio = folio;
1246 	wait_page.bit_nr = bit_nr;
1247 
1248 repeat:
1249 	wait->flags = 0;
1250 	if (behavior == EXCLUSIVE) {
1251 		wait->flags = WQ_FLAG_EXCLUSIVE;
1252 		if (--unfairness < 0)
1253 			wait->flags |= WQ_FLAG_CUSTOM;
1254 	}
1255 
1256 	/*
1257 	 * Do one last check whether we can get the
1258 	 * page bit synchronously.
1259 	 *
1260 	 * Do the folio_set_waiters() marking before that
1261 	 * to let any waker we _just_ missed know they
1262 	 * need to wake us up (otherwise they'll never
1263 	 * even go to the slow case that looks at the
1264 	 * page queue), and add ourselves to the wait
1265 	 * queue if we need to sleep.
1266 	 *
1267 	 * This part needs to be done under the queue
1268 	 * lock to avoid races.
1269 	 */
1270 	spin_lock_irq(&q->lock);
1271 	folio_set_waiters(folio);
1272 	if (!folio_trylock_flag(folio, bit_nr, wait))
1273 		__add_wait_queue_entry_tail(q, wait);
1274 	spin_unlock_irq(&q->lock);
1275 
1276 	/*
1277 	 * From now on, all the logic will be based on
1278 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1279 	 * see whether the page bit testing has already
1280 	 * been done by the wake function.
1281 	 *
1282 	 * We can drop our reference to the folio.
1283 	 */
1284 	if (behavior == DROP)
1285 		folio_put(folio);
1286 
1287 	/*
1288 	 * Note that until the "finish_wait()", or until
1289 	 * we see the WQ_FLAG_WOKEN flag, we need to
1290 	 * be very careful with the 'wait->flags', because
1291 	 * we may race with a waker that sets them.
1292 	 */
1293 	for (;;) {
1294 		unsigned int flags;
1295 
1296 		set_current_state(state);
1297 
1298 		/* Loop until we've been woken or interrupted */
1299 		flags = smp_load_acquire(&wait->flags);
1300 		if (!(flags & WQ_FLAG_WOKEN)) {
1301 			if (signal_pending_state(state, current))
1302 				break;
1303 
1304 			io_schedule();
1305 			continue;
1306 		}
1307 
1308 		/* If we were non-exclusive, we're done */
1309 		if (behavior != EXCLUSIVE)
1310 			break;
1311 
1312 		/* If the waker got the lock for us, we're done */
1313 		if (flags & WQ_FLAG_DONE)
1314 			break;
1315 
1316 		/*
1317 		 * Otherwise, if we're getting the lock, we need to
1318 		 * try to get it ourselves.
1319 		 *
1320 		 * And if that fails, we'll have to retry this all.
1321 		 */
1322 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1323 			goto repeat;
1324 
1325 		wait->flags |= WQ_FLAG_DONE;
1326 		break;
1327 	}
1328 
1329 	/*
1330 	 * If a signal happened, this 'finish_wait()' may remove the last
1331 	 * waiter from the wait-queues, but the folio waiters bit will remain
1332 	 * set. That's ok. The next wakeup will take care of it, and trying
1333 	 * to do it here would be difficult and prone to races.
1334 	 */
1335 	finish_wait(q, wait);
1336 
1337 	if (thrashing) {
1338 		delayacct_thrashing_end(&in_thrashing);
1339 		psi_memstall_leave(&pflags);
1340 	}
1341 
1342 	/*
1343 	 * NOTE! The wait->flags weren't stable until we've done the
1344 	 * 'finish_wait()', and we could have exited the loop above due
1345 	 * to a signal, and had a wakeup event happen after the signal
1346 	 * test but before the 'finish_wait()'.
1347 	 *
1348 	 * So only after the finish_wait() can we reliably determine
1349 	 * if we got woken up or not, so we can now figure out the final
1350 	 * return value based on that state without races.
1351 	 *
1352 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1353 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1354 	 */
1355 	if (behavior == EXCLUSIVE)
1356 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1357 
1358 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1359 }
1360 
1361 #ifdef CONFIG_MIGRATION
1362 /**
1363  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1364  * @entry: migration swap entry.
1365  * @ptl: already locked ptl. This function will drop the lock.
1366  *
1367  * Wait for a migration entry referencing the given page to be removed. This is
1368  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1369  * this can be called without taking a reference on the page. Instead this
1370  * should be called while holding the ptl for the migration entry referencing
1371  * the page.
1372  *
1373  * Returns after unlocking the ptl.
1374  *
1375  * This follows the same logic as folio_wait_bit_common() so see the comments
1376  * there.
1377  */
1378 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1379 	__releases(ptl)
1380 {
1381 	struct wait_page_queue wait_page;
1382 	wait_queue_entry_t *wait = &wait_page.wait;
1383 	bool thrashing = false;
1384 	unsigned long pflags;
1385 	bool in_thrashing;
1386 	wait_queue_head_t *q;
1387 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1388 
1389 	q = folio_waitqueue(folio);
1390 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1391 		delayacct_thrashing_start(&in_thrashing);
1392 		psi_memstall_enter(&pflags);
1393 		thrashing = true;
1394 	}
1395 
1396 	init_wait(wait);
1397 	wait->func = wake_page_function;
1398 	wait_page.folio = folio;
1399 	wait_page.bit_nr = PG_locked;
1400 	wait->flags = 0;
1401 
1402 	spin_lock_irq(&q->lock);
1403 	folio_set_waiters(folio);
1404 	if (!folio_trylock_flag(folio, PG_locked, wait))
1405 		__add_wait_queue_entry_tail(q, wait);
1406 	spin_unlock_irq(&q->lock);
1407 
1408 	/*
1409 	 * If a migration entry exists for the page the migration path must hold
1410 	 * a valid reference to the page, and it must take the ptl to remove the
1411 	 * migration entry. So the page is valid until the ptl is dropped.
1412 	 */
1413 	spin_unlock(ptl);
1414 
1415 	for (;;) {
1416 		unsigned int flags;
1417 
1418 		set_current_state(TASK_UNINTERRUPTIBLE);
1419 
1420 		/* Loop until we've been woken or interrupted */
1421 		flags = smp_load_acquire(&wait->flags);
1422 		if (!(flags & WQ_FLAG_WOKEN)) {
1423 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1424 				break;
1425 
1426 			io_schedule();
1427 			continue;
1428 		}
1429 		break;
1430 	}
1431 
1432 	finish_wait(q, wait);
1433 
1434 	if (thrashing) {
1435 		delayacct_thrashing_end(&in_thrashing);
1436 		psi_memstall_leave(&pflags);
1437 	}
1438 }
1439 #endif
1440 
1441 void folio_wait_bit(struct folio *folio, int bit_nr)
1442 {
1443 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1444 }
1445 EXPORT_SYMBOL(folio_wait_bit);
1446 
1447 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1448 {
1449 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1450 }
1451 EXPORT_SYMBOL(folio_wait_bit_killable);
1452 
1453 /**
1454  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1455  * @folio: The folio to wait for.
1456  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1457  *
1458  * The caller should hold a reference on @folio.  They expect the page to
1459  * become unlocked relatively soon, but do not wish to hold up migration
1460  * (for example) by holding the reference while waiting for the folio to
1461  * come unlocked.  After this function returns, the caller should not
1462  * dereference @folio.
1463  *
1464  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1465  */
1466 static int folio_put_wait_locked(struct folio *folio, int state)
1467 {
1468 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1469 }
1470 
1471 /**
1472  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1473  * @folio: Folio defining the wait queue of interest
1474  * @waiter: Waiter to add to the queue
1475  *
1476  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1477  */
1478 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1479 {
1480 	wait_queue_head_t *q = folio_waitqueue(folio);
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&q->lock, flags);
1484 	__add_wait_queue_entry_tail(q, waiter);
1485 	folio_set_waiters(folio);
1486 	spin_unlock_irqrestore(&q->lock, flags);
1487 }
1488 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1489 
1490 #ifndef clear_bit_unlock_is_negative_byte
1491 
1492 /*
1493  * PG_waiters is the high bit in the same byte as PG_lock.
1494  *
1495  * On x86 (and on many other architectures), we can clear PG_lock and
1496  * test the sign bit at the same time. But if the architecture does
1497  * not support that special operation, we just do this all by hand
1498  * instead.
1499  *
1500  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1501  * being cleared, but a memory barrier should be unnecessary since it is
1502  * in the same byte as PG_locked.
1503  */
1504 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1505 {
1506 	clear_bit_unlock(nr, mem);
1507 	/* smp_mb__after_atomic(); */
1508 	return test_bit(PG_waiters, mem);
1509 }
1510 
1511 #endif
1512 
1513 /**
1514  * folio_unlock - Unlock a locked folio.
1515  * @folio: The folio.
1516  *
1517  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1518  *
1519  * Context: May be called from interrupt or process context.  May not be
1520  * called from NMI context.
1521  */
1522 void folio_unlock(struct folio *folio)
1523 {
1524 	/* Bit 7 allows x86 to check the byte's sign bit */
1525 	BUILD_BUG_ON(PG_waiters != 7);
1526 	BUILD_BUG_ON(PG_locked > 7);
1527 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1528 	if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1529 		folio_wake_bit(folio, PG_locked);
1530 }
1531 EXPORT_SYMBOL(folio_unlock);
1532 
1533 /**
1534  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1535  * @folio: The folio.
1536  *
1537  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1538  * it.  The folio reference held for PG_private_2 being set is released.
1539  *
1540  * This is, for example, used when a netfs folio is being written to a local
1541  * disk cache, thereby allowing writes to the cache for the same folio to be
1542  * serialised.
1543  */
1544 void folio_end_private_2(struct folio *folio)
1545 {
1546 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1547 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1548 	folio_wake_bit(folio, PG_private_2);
1549 	folio_put(folio);
1550 }
1551 EXPORT_SYMBOL(folio_end_private_2);
1552 
1553 /**
1554  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1555  * @folio: The folio to wait on.
1556  *
1557  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1558  */
1559 void folio_wait_private_2(struct folio *folio)
1560 {
1561 	while (folio_test_private_2(folio))
1562 		folio_wait_bit(folio, PG_private_2);
1563 }
1564 EXPORT_SYMBOL(folio_wait_private_2);
1565 
1566 /**
1567  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1568  * @folio: The folio to wait on.
1569  *
1570  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1571  * fatal signal is received by the calling task.
1572  *
1573  * Return:
1574  * - 0 if successful.
1575  * - -EINTR if a fatal signal was encountered.
1576  */
1577 int folio_wait_private_2_killable(struct folio *folio)
1578 {
1579 	int ret = 0;
1580 
1581 	while (folio_test_private_2(folio)) {
1582 		ret = folio_wait_bit_killable(folio, PG_private_2);
1583 		if (ret < 0)
1584 			break;
1585 	}
1586 
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(folio_wait_private_2_killable);
1590 
1591 /**
1592  * folio_end_writeback - End writeback against a folio.
1593  * @folio: The folio.
1594  */
1595 void folio_end_writeback(struct folio *folio)
1596 {
1597 	/*
1598 	 * folio_test_clear_reclaim() could be used here but it is an
1599 	 * atomic operation and overkill in this particular case. Failing
1600 	 * to shuffle a folio marked for immediate reclaim is too mild
1601 	 * a gain to justify taking an atomic operation penalty at the
1602 	 * end of every folio writeback.
1603 	 */
1604 	if (folio_test_reclaim(folio)) {
1605 		folio_clear_reclaim(folio);
1606 		folio_rotate_reclaimable(folio);
1607 	}
1608 
1609 	/*
1610 	 * Writeback does not hold a folio reference of its own, relying
1611 	 * on truncation to wait for the clearing of PG_writeback.
1612 	 * But here we must make sure that the folio is not freed and
1613 	 * reused before the folio_wake().
1614 	 */
1615 	folio_get(folio);
1616 	if (!__folio_end_writeback(folio))
1617 		BUG();
1618 
1619 	smp_mb__after_atomic();
1620 	folio_wake(folio, PG_writeback);
1621 	acct_reclaim_writeback(folio);
1622 	folio_put(folio);
1623 }
1624 EXPORT_SYMBOL(folio_end_writeback);
1625 
1626 /**
1627  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1628  * @folio: The folio to lock
1629  */
1630 void __folio_lock(struct folio *folio)
1631 {
1632 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1633 				EXCLUSIVE);
1634 }
1635 EXPORT_SYMBOL(__folio_lock);
1636 
1637 int __folio_lock_killable(struct folio *folio)
1638 {
1639 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1640 					EXCLUSIVE);
1641 }
1642 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1643 
1644 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1645 {
1646 	struct wait_queue_head *q = folio_waitqueue(folio);
1647 	int ret = 0;
1648 
1649 	wait->folio = folio;
1650 	wait->bit_nr = PG_locked;
1651 
1652 	spin_lock_irq(&q->lock);
1653 	__add_wait_queue_entry_tail(q, &wait->wait);
1654 	folio_set_waiters(folio);
1655 	ret = !folio_trylock(folio);
1656 	/*
1657 	 * If we were successful now, we know we're still on the
1658 	 * waitqueue as we're still under the lock. This means it's
1659 	 * safe to remove and return success, we know the callback
1660 	 * isn't going to trigger.
1661 	 */
1662 	if (!ret)
1663 		__remove_wait_queue(q, &wait->wait);
1664 	else
1665 		ret = -EIOCBQUEUED;
1666 	spin_unlock_irq(&q->lock);
1667 	return ret;
1668 }
1669 
1670 /*
1671  * Return values:
1672  * 0 - folio is locked.
1673  * non-zero - folio is not locked.
1674  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1675  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1676  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1677  *
1678  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1679  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1680  */
1681 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1682 {
1683 	unsigned int flags = vmf->flags;
1684 
1685 	if (fault_flag_allow_retry_first(flags)) {
1686 		/*
1687 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1688 		 * released even though returning VM_FAULT_RETRY.
1689 		 */
1690 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1691 			return VM_FAULT_RETRY;
1692 
1693 		release_fault_lock(vmf);
1694 		if (flags & FAULT_FLAG_KILLABLE)
1695 			folio_wait_locked_killable(folio);
1696 		else
1697 			folio_wait_locked(folio);
1698 		return VM_FAULT_RETRY;
1699 	}
1700 	if (flags & FAULT_FLAG_KILLABLE) {
1701 		bool ret;
1702 
1703 		ret = __folio_lock_killable(folio);
1704 		if (ret) {
1705 			release_fault_lock(vmf);
1706 			return VM_FAULT_RETRY;
1707 		}
1708 	} else {
1709 		__folio_lock(folio);
1710 	}
1711 
1712 	return 0;
1713 }
1714 
1715 /**
1716  * page_cache_next_miss() - Find the next gap in the page cache.
1717  * @mapping: Mapping.
1718  * @index: Index.
1719  * @max_scan: Maximum range to search.
1720  *
1721  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1722  * gap with the lowest index.
1723  *
1724  * This function may be called under the rcu_read_lock.  However, this will
1725  * not atomically search a snapshot of the cache at a single point in time.
1726  * For example, if a gap is created at index 5, then subsequently a gap is
1727  * created at index 10, page_cache_next_miss covering both indices may
1728  * return 10 if called under the rcu_read_lock.
1729  *
1730  * Return: The index of the gap if found, otherwise an index outside the
1731  * range specified (in which case 'return - index >= max_scan' will be true).
1732  * In the rare case of index wrap-around, 0 will be returned.
1733  */
1734 pgoff_t page_cache_next_miss(struct address_space *mapping,
1735 			     pgoff_t index, unsigned long max_scan)
1736 {
1737 	XA_STATE(xas, &mapping->i_pages, index);
1738 
1739 	while (max_scan--) {
1740 		void *entry = xas_next(&xas);
1741 		if (!entry || xa_is_value(entry))
1742 			break;
1743 		if (xas.xa_index == 0)
1744 			break;
1745 	}
1746 
1747 	return xas.xa_index;
1748 }
1749 EXPORT_SYMBOL(page_cache_next_miss);
1750 
1751 /**
1752  * page_cache_prev_miss() - Find the previous gap in the page cache.
1753  * @mapping: Mapping.
1754  * @index: Index.
1755  * @max_scan: Maximum range to search.
1756  *
1757  * Search the range [max(index - max_scan + 1, 0), index] for the
1758  * gap with the highest index.
1759  *
1760  * This function may be called under the rcu_read_lock.  However, this will
1761  * not atomically search a snapshot of the cache at a single point in time.
1762  * For example, if a gap is created at index 10, then subsequently a gap is
1763  * created at index 5, page_cache_prev_miss() covering both indices may
1764  * return 5 if called under the rcu_read_lock.
1765  *
1766  * Return: The index of the gap if found, otherwise an index outside the
1767  * range specified (in which case 'index - return >= max_scan' will be true).
1768  * In the rare case of wrap-around, ULONG_MAX will be returned.
1769  */
1770 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1771 			     pgoff_t index, unsigned long max_scan)
1772 {
1773 	XA_STATE(xas, &mapping->i_pages, index);
1774 
1775 	while (max_scan--) {
1776 		void *entry = xas_prev(&xas);
1777 		if (!entry || xa_is_value(entry))
1778 			break;
1779 		if (xas.xa_index == ULONG_MAX)
1780 			break;
1781 	}
1782 
1783 	return xas.xa_index;
1784 }
1785 EXPORT_SYMBOL(page_cache_prev_miss);
1786 
1787 /*
1788  * Lockless page cache protocol:
1789  * On the lookup side:
1790  * 1. Load the folio from i_pages
1791  * 2. Increment the refcount if it's not zero
1792  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1793  *
1794  * On the removal side:
1795  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1796  * B. Remove the page from i_pages
1797  * C. Return the page to the page allocator
1798  *
1799  * This means that any page may have its reference count temporarily
1800  * increased by a speculative page cache (or fast GUP) lookup as it can
1801  * be allocated by another user before the RCU grace period expires.
1802  * Because the refcount temporarily acquired here may end up being the
1803  * last refcount on the page, any page allocation must be freeable by
1804  * folio_put().
1805  */
1806 
1807 /*
1808  * filemap_get_entry - Get a page cache entry.
1809  * @mapping: the address_space to search
1810  * @index: The page cache index.
1811  *
1812  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1813  * it is returned with an increased refcount.  If it is a shadow entry
1814  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1815  * it is returned without further action.
1816  *
1817  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1818  */
1819 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1820 {
1821 	XA_STATE(xas, &mapping->i_pages, index);
1822 	struct folio *folio;
1823 
1824 	rcu_read_lock();
1825 repeat:
1826 	xas_reset(&xas);
1827 	folio = xas_load(&xas);
1828 	if (xas_retry(&xas, folio))
1829 		goto repeat;
1830 	/*
1831 	 * A shadow entry of a recently evicted page, or a swap entry from
1832 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1833 	 */
1834 	if (!folio || xa_is_value(folio))
1835 		goto out;
1836 
1837 	if (!folio_try_get_rcu(folio))
1838 		goto repeat;
1839 
1840 	if (unlikely(folio != xas_reload(&xas))) {
1841 		folio_put(folio);
1842 		goto repeat;
1843 	}
1844 out:
1845 	rcu_read_unlock();
1846 
1847 	return folio;
1848 }
1849 
1850 /**
1851  * __filemap_get_folio - Find and get a reference to a folio.
1852  * @mapping: The address_space to search.
1853  * @index: The page index.
1854  * @fgp_flags: %FGP flags modify how the folio is returned.
1855  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1856  *
1857  * Looks up the page cache entry at @mapping & @index.
1858  *
1859  * @fgp_flags can be zero or more of these flags:
1860  *
1861  * * %FGP_ACCESSED - The folio will be marked accessed.
1862  * * %FGP_LOCK - The folio is returned locked.
1863  * * %FGP_CREAT - If no page is present then a new page is allocated using
1864  *   @gfp and added to the page cache and the VM's LRU list.
1865  *   The page is returned locked and with an increased refcount.
1866  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1867  *   page is already in cache.  If the page was allocated, unlock it before
1868  *   returning so the caller can do the same dance.
1869  * * %FGP_WRITE - The page will be written to by the caller.
1870  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1871  * * %FGP_NOWAIT - Don't get blocked by page lock.
1872  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1873  *
1874  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1875  * if the %GFP flags specified for %FGP_CREAT are atomic.
1876  *
1877  * If there is a page cache page, it is returned with an increased refcount.
1878  *
1879  * Return: The found folio or an ERR_PTR() otherwise.
1880  */
1881 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1882 		int fgp_flags, gfp_t gfp)
1883 {
1884 	struct folio *folio;
1885 
1886 repeat:
1887 	folio = filemap_get_entry(mapping, index);
1888 	if (xa_is_value(folio))
1889 		folio = NULL;
1890 	if (!folio)
1891 		goto no_page;
1892 
1893 	if (fgp_flags & FGP_LOCK) {
1894 		if (fgp_flags & FGP_NOWAIT) {
1895 			if (!folio_trylock(folio)) {
1896 				folio_put(folio);
1897 				return ERR_PTR(-EAGAIN);
1898 			}
1899 		} else {
1900 			folio_lock(folio);
1901 		}
1902 
1903 		/* Has the page been truncated? */
1904 		if (unlikely(folio->mapping != mapping)) {
1905 			folio_unlock(folio);
1906 			folio_put(folio);
1907 			goto repeat;
1908 		}
1909 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1910 	}
1911 
1912 	if (fgp_flags & FGP_ACCESSED)
1913 		folio_mark_accessed(folio);
1914 	else if (fgp_flags & FGP_WRITE) {
1915 		/* Clear idle flag for buffer write */
1916 		if (folio_test_idle(folio))
1917 			folio_clear_idle(folio);
1918 	}
1919 
1920 	if (fgp_flags & FGP_STABLE)
1921 		folio_wait_stable(folio);
1922 no_page:
1923 	if (!folio && (fgp_flags & FGP_CREAT)) {
1924 		int err;
1925 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1926 			gfp |= __GFP_WRITE;
1927 		if (fgp_flags & FGP_NOFS)
1928 			gfp &= ~__GFP_FS;
1929 		if (fgp_flags & FGP_NOWAIT) {
1930 			gfp &= ~GFP_KERNEL;
1931 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1932 		}
1933 
1934 		folio = filemap_alloc_folio(gfp, 0);
1935 		if (!folio)
1936 			return ERR_PTR(-ENOMEM);
1937 
1938 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1939 			fgp_flags |= FGP_LOCK;
1940 
1941 		/* Init accessed so avoid atomic mark_page_accessed later */
1942 		if (fgp_flags & FGP_ACCESSED)
1943 			__folio_set_referenced(folio);
1944 
1945 		err = filemap_add_folio(mapping, folio, index, gfp);
1946 		if (unlikely(err)) {
1947 			folio_put(folio);
1948 			folio = NULL;
1949 			if (err == -EEXIST)
1950 				goto repeat;
1951 		}
1952 
1953 		/*
1954 		 * filemap_add_folio locks the page, and for mmap
1955 		 * we expect an unlocked page.
1956 		 */
1957 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1958 			folio_unlock(folio);
1959 	}
1960 
1961 	if (!folio)
1962 		return ERR_PTR(-ENOENT);
1963 	return folio;
1964 }
1965 EXPORT_SYMBOL(__filemap_get_folio);
1966 
1967 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1968 		xa_mark_t mark)
1969 {
1970 	struct folio *folio;
1971 
1972 retry:
1973 	if (mark == XA_PRESENT)
1974 		folio = xas_find(xas, max);
1975 	else
1976 		folio = xas_find_marked(xas, max, mark);
1977 
1978 	if (xas_retry(xas, folio))
1979 		goto retry;
1980 	/*
1981 	 * A shadow entry of a recently evicted page, a swap
1982 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1983 	 * without attempting to raise page count.
1984 	 */
1985 	if (!folio || xa_is_value(folio))
1986 		return folio;
1987 
1988 	if (!folio_try_get_rcu(folio))
1989 		goto reset;
1990 
1991 	if (unlikely(folio != xas_reload(xas))) {
1992 		folio_put(folio);
1993 		goto reset;
1994 	}
1995 
1996 	return folio;
1997 reset:
1998 	xas_reset(xas);
1999 	goto retry;
2000 }
2001 
2002 /**
2003  * find_get_entries - gang pagecache lookup
2004  * @mapping:	The address_space to search
2005  * @start:	The starting page cache index
2006  * @end:	The final page index (inclusive).
2007  * @fbatch:	Where the resulting entries are placed.
2008  * @indices:	The cache indices corresponding to the entries in @entries
2009  *
2010  * find_get_entries() will search for and return a batch of entries in
2011  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2012  * takes a reference on any actual folios it returns.
2013  *
2014  * The entries have ascending indexes.  The indices may not be consecutive
2015  * due to not-present entries or large folios.
2016  *
2017  * Any shadow entries of evicted folios, or swap entries from
2018  * shmem/tmpfs, are included in the returned array.
2019  *
2020  * Return: The number of entries which were found.
2021  */
2022 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2023 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2024 {
2025 	XA_STATE(xas, &mapping->i_pages, *start);
2026 	struct folio *folio;
2027 
2028 	rcu_read_lock();
2029 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2030 		indices[fbatch->nr] = xas.xa_index;
2031 		if (!folio_batch_add(fbatch, folio))
2032 			break;
2033 	}
2034 	rcu_read_unlock();
2035 
2036 	if (folio_batch_count(fbatch)) {
2037 		unsigned long nr = 1;
2038 		int idx = folio_batch_count(fbatch) - 1;
2039 
2040 		folio = fbatch->folios[idx];
2041 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2042 			nr = folio_nr_pages(folio);
2043 		*start = indices[idx] + nr;
2044 	}
2045 	return folio_batch_count(fbatch);
2046 }
2047 
2048 /**
2049  * find_lock_entries - Find a batch of pagecache entries.
2050  * @mapping:	The address_space to search.
2051  * @start:	The starting page cache index.
2052  * @end:	The final page index (inclusive).
2053  * @fbatch:	Where the resulting entries are placed.
2054  * @indices:	The cache indices of the entries in @fbatch.
2055  *
2056  * find_lock_entries() will return a batch of entries from @mapping.
2057  * Swap, shadow and DAX entries are included.  Folios are returned
2058  * locked and with an incremented refcount.  Folios which are locked
2059  * by somebody else or under writeback are skipped.  Folios which are
2060  * partially outside the range are not returned.
2061  *
2062  * The entries have ascending indexes.  The indices may not be consecutive
2063  * due to not-present entries, large folios, folios which could not be
2064  * locked or folios under writeback.
2065  *
2066  * Return: The number of entries which were found.
2067  */
2068 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2069 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2070 {
2071 	XA_STATE(xas, &mapping->i_pages, *start);
2072 	struct folio *folio;
2073 
2074 	rcu_read_lock();
2075 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2076 		if (!xa_is_value(folio)) {
2077 			if (folio->index < *start)
2078 				goto put;
2079 			if (folio_next_index(folio) - 1 > end)
2080 				goto put;
2081 			if (!folio_trylock(folio))
2082 				goto put;
2083 			if (folio->mapping != mapping ||
2084 			    folio_test_writeback(folio))
2085 				goto unlock;
2086 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2087 					folio);
2088 		}
2089 		indices[fbatch->nr] = xas.xa_index;
2090 		if (!folio_batch_add(fbatch, folio))
2091 			break;
2092 		continue;
2093 unlock:
2094 		folio_unlock(folio);
2095 put:
2096 		folio_put(folio);
2097 	}
2098 	rcu_read_unlock();
2099 
2100 	if (folio_batch_count(fbatch)) {
2101 		unsigned long nr = 1;
2102 		int idx = folio_batch_count(fbatch) - 1;
2103 
2104 		folio = fbatch->folios[idx];
2105 		if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2106 			nr = folio_nr_pages(folio);
2107 		*start = indices[idx] + nr;
2108 	}
2109 	return folio_batch_count(fbatch);
2110 }
2111 
2112 /**
2113  * filemap_get_folios - Get a batch of folios
2114  * @mapping:	The address_space to search
2115  * @start:	The starting page index
2116  * @end:	The final page index (inclusive)
2117  * @fbatch:	The batch to fill.
2118  *
2119  * Search for and return a batch of folios in the mapping starting at
2120  * index @start and up to index @end (inclusive).  The folios are returned
2121  * in @fbatch with an elevated reference count.
2122  *
2123  * The first folio may start before @start; if it does, it will contain
2124  * @start.  The final folio may extend beyond @end; if it does, it will
2125  * contain @end.  The folios have ascending indices.  There may be gaps
2126  * between the folios if there are indices which have no folio in the
2127  * page cache.  If folios are added to or removed from the page cache
2128  * while this is running, they may or may not be found by this call.
2129  *
2130  * Return: The number of folios which were found.
2131  * We also update @start to index the next folio for the traversal.
2132  */
2133 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2134 		pgoff_t end, struct folio_batch *fbatch)
2135 {
2136 	XA_STATE(xas, &mapping->i_pages, *start);
2137 	struct folio *folio;
2138 
2139 	rcu_read_lock();
2140 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2141 		/* Skip over shadow, swap and DAX entries */
2142 		if (xa_is_value(folio))
2143 			continue;
2144 		if (!folio_batch_add(fbatch, folio)) {
2145 			unsigned long nr = folio_nr_pages(folio);
2146 
2147 			if (folio_test_hugetlb(folio))
2148 				nr = 1;
2149 			*start = folio->index + nr;
2150 			goto out;
2151 		}
2152 	}
2153 
2154 	/*
2155 	 * We come here when there is no page beyond @end. We take care to not
2156 	 * overflow the index @start as it confuses some of the callers. This
2157 	 * breaks the iteration when there is a page at index -1 but that is
2158 	 * already broken anyway.
2159 	 */
2160 	if (end == (pgoff_t)-1)
2161 		*start = (pgoff_t)-1;
2162 	else
2163 		*start = end + 1;
2164 out:
2165 	rcu_read_unlock();
2166 
2167 	return folio_batch_count(fbatch);
2168 }
2169 EXPORT_SYMBOL(filemap_get_folios);
2170 
2171 static inline
2172 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2173 {
2174 	if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2175 		return false;
2176 	if (index >= max)
2177 		return false;
2178 	return index < folio_next_index(folio) - 1;
2179 }
2180 
2181 /**
2182  * filemap_get_folios_contig - Get a batch of contiguous folios
2183  * @mapping:	The address_space to search
2184  * @start:	The starting page index
2185  * @end:	The final page index (inclusive)
2186  * @fbatch:	The batch to fill
2187  *
2188  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2189  * except the returned folios are guaranteed to be contiguous. This may
2190  * not return all contiguous folios if the batch gets filled up.
2191  *
2192  * Return: The number of folios found.
2193  * Also update @start to be positioned for traversal of the next folio.
2194  */
2195 
2196 unsigned filemap_get_folios_contig(struct address_space *mapping,
2197 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2198 {
2199 	XA_STATE(xas, &mapping->i_pages, *start);
2200 	unsigned long nr;
2201 	struct folio *folio;
2202 
2203 	rcu_read_lock();
2204 
2205 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2206 			folio = xas_next(&xas)) {
2207 		if (xas_retry(&xas, folio))
2208 			continue;
2209 		/*
2210 		 * If the entry has been swapped out, we can stop looking.
2211 		 * No current caller is looking for DAX entries.
2212 		 */
2213 		if (xa_is_value(folio))
2214 			goto update_start;
2215 
2216 		if (!folio_try_get_rcu(folio))
2217 			goto retry;
2218 
2219 		if (unlikely(folio != xas_reload(&xas)))
2220 			goto put_folio;
2221 
2222 		if (!folio_batch_add(fbatch, folio)) {
2223 			nr = folio_nr_pages(folio);
2224 
2225 			if (folio_test_hugetlb(folio))
2226 				nr = 1;
2227 			*start = folio->index + nr;
2228 			goto out;
2229 		}
2230 		continue;
2231 put_folio:
2232 		folio_put(folio);
2233 
2234 retry:
2235 		xas_reset(&xas);
2236 	}
2237 
2238 update_start:
2239 	nr = folio_batch_count(fbatch);
2240 
2241 	if (nr) {
2242 		folio = fbatch->folios[nr - 1];
2243 		if (folio_test_hugetlb(folio))
2244 			*start = folio->index + 1;
2245 		else
2246 			*start = folio_next_index(folio);
2247 	}
2248 out:
2249 	rcu_read_unlock();
2250 	return folio_batch_count(fbatch);
2251 }
2252 EXPORT_SYMBOL(filemap_get_folios_contig);
2253 
2254 /**
2255  * filemap_get_folios_tag - Get a batch of folios matching @tag
2256  * @mapping:    The address_space to search
2257  * @start:      The starting page index
2258  * @end:        The final page index (inclusive)
2259  * @tag:        The tag index
2260  * @fbatch:     The batch to fill
2261  *
2262  * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2263  *
2264  * Return: The number of folios found.
2265  * Also update @start to index the next folio for traversal.
2266  */
2267 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2268 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2269 {
2270 	XA_STATE(xas, &mapping->i_pages, *start);
2271 	struct folio *folio;
2272 
2273 	rcu_read_lock();
2274 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2275 		/*
2276 		 * Shadow entries should never be tagged, but this iteration
2277 		 * is lockless so there is a window for page reclaim to evict
2278 		 * a page we saw tagged. Skip over it.
2279 		 */
2280 		if (xa_is_value(folio))
2281 			continue;
2282 		if (!folio_batch_add(fbatch, folio)) {
2283 			unsigned long nr = folio_nr_pages(folio);
2284 
2285 			if (folio_test_hugetlb(folio))
2286 				nr = 1;
2287 			*start = folio->index + nr;
2288 			goto out;
2289 		}
2290 	}
2291 	/*
2292 	 * We come here when there is no page beyond @end. We take care to not
2293 	 * overflow the index @start as it confuses some of the callers. This
2294 	 * breaks the iteration when there is a page at index -1 but that is
2295 	 * already broke anyway.
2296 	 */
2297 	if (end == (pgoff_t)-1)
2298 		*start = (pgoff_t)-1;
2299 	else
2300 		*start = end + 1;
2301 out:
2302 	rcu_read_unlock();
2303 
2304 	return folio_batch_count(fbatch);
2305 }
2306 EXPORT_SYMBOL(filemap_get_folios_tag);
2307 
2308 /*
2309  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2310  * a _large_ part of the i/o request. Imagine the worst scenario:
2311  *
2312  *      ---R__________________________________________B__________
2313  *         ^ reading here                             ^ bad block(assume 4k)
2314  *
2315  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2316  * => failing the whole request => read(R) => read(R+1) =>
2317  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2318  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2319  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2320  *
2321  * It is going insane. Fix it by quickly scaling down the readahead size.
2322  */
2323 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2324 {
2325 	ra->ra_pages /= 4;
2326 }
2327 
2328 /*
2329  * filemap_get_read_batch - Get a batch of folios for read
2330  *
2331  * Get a batch of folios which represent a contiguous range of bytes in
2332  * the file.  No exceptional entries will be returned.  If @index is in
2333  * the middle of a folio, the entire folio will be returned.  The last
2334  * folio in the batch may have the readahead flag set or the uptodate flag
2335  * clear so that the caller can take the appropriate action.
2336  */
2337 static void filemap_get_read_batch(struct address_space *mapping,
2338 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2339 {
2340 	XA_STATE(xas, &mapping->i_pages, index);
2341 	struct folio *folio;
2342 
2343 	rcu_read_lock();
2344 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2345 		if (xas_retry(&xas, folio))
2346 			continue;
2347 		if (xas.xa_index > max || xa_is_value(folio))
2348 			break;
2349 		if (xa_is_sibling(folio))
2350 			break;
2351 		if (!folio_try_get_rcu(folio))
2352 			goto retry;
2353 
2354 		if (unlikely(folio != xas_reload(&xas)))
2355 			goto put_folio;
2356 
2357 		if (!folio_batch_add(fbatch, folio))
2358 			break;
2359 		if (!folio_test_uptodate(folio))
2360 			break;
2361 		if (folio_test_readahead(folio))
2362 			break;
2363 		xas_advance(&xas, folio_next_index(folio) - 1);
2364 		continue;
2365 put_folio:
2366 		folio_put(folio);
2367 retry:
2368 		xas_reset(&xas);
2369 	}
2370 	rcu_read_unlock();
2371 }
2372 
2373 static int filemap_read_folio(struct file *file, filler_t filler,
2374 		struct folio *folio)
2375 {
2376 	bool workingset = folio_test_workingset(folio);
2377 	unsigned long pflags;
2378 	int error;
2379 
2380 	/*
2381 	 * A previous I/O error may have been due to temporary failures,
2382 	 * eg. multipath errors.  PG_error will be set again if read_folio
2383 	 * fails.
2384 	 */
2385 	folio_clear_error(folio);
2386 
2387 	/* Start the actual read. The read will unlock the page. */
2388 	if (unlikely(workingset))
2389 		psi_memstall_enter(&pflags);
2390 	error = filler(file, folio);
2391 	if (unlikely(workingset))
2392 		psi_memstall_leave(&pflags);
2393 	if (error)
2394 		return error;
2395 
2396 	error = folio_wait_locked_killable(folio);
2397 	if (error)
2398 		return error;
2399 	if (folio_test_uptodate(folio))
2400 		return 0;
2401 	if (file)
2402 		shrink_readahead_size_eio(&file->f_ra);
2403 	return -EIO;
2404 }
2405 
2406 static bool filemap_range_uptodate(struct address_space *mapping,
2407 		loff_t pos, size_t count, struct folio *folio,
2408 		bool need_uptodate)
2409 {
2410 	if (folio_test_uptodate(folio))
2411 		return true;
2412 	/* pipes can't handle partially uptodate pages */
2413 	if (need_uptodate)
2414 		return false;
2415 	if (!mapping->a_ops->is_partially_uptodate)
2416 		return false;
2417 	if (mapping->host->i_blkbits >= folio_shift(folio))
2418 		return false;
2419 
2420 	if (folio_pos(folio) > pos) {
2421 		count -= folio_pos(folio) - pos;
2422 		pos = 0;
2423 	} else {
2424 		pos -= folio_pos(folio);
2425 	}
2426 
2427 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2428 }
2429 
2430 static int filemap_update_page(struct kiocb *iocb,
2431 		struct address_space *mapping, size_t count,
2432 		struct folio *folio, bool need_uptodate)
2433 {
2434 	int error;
2435 
2436 	if (iocb->ki_flags & IOCB_NOWAIT) {
2437 		if (!filemap_invalidate_trylock_shared(mapping))
2438 			return -EAGAIN;
2439 	} else {
2440 		filemap_invalidate_lock_shared(mapping);
2441 	}
2442 
2443 	if (!folio_trylock(folio)) {
2444 		error = -EAGAIN;
2445 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2446 			goto unlock_mapping;
2447 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2448 			filemap_invalidate_unlock_shared(mapping);
2449 			/*
2450 			 * This is where we usually end up waiting for a
2451 			 * previously submitted readahead to finish.
2452 			 */
2453 			folio_put_wait_locked(folio, TASK_KILLABLE);
2454 			return AOP_TRUNCATED_PAGE;
2455 		}
2456 		error = __folio_lock_async(folio, iocb->ki_waitq);
2457 		if (error)
2458 			goto unlock_mapping;
2459 	}
2460 
2461 	error = AOP_TRUNCATED_PAGE;
2462 	if (!folio->mapping)
2463 		goto unlock;
2464 
2465 	error = 0;
2466 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2467 				   need_uptodate))
2468 		goto unlock;
2469 
2470 	error = -EAGAIN;
2471 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2472 		goto unlock;
2473 
2474 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2475 			folio);
2476 	goto unlock_mapping;
2477 unlock:
2478 	folio_unlock(folio);
2479 unlock_mapping:
2480 	filemap_invalidate_unlock_shared(mapping);
2481 	if (error == AOP_TRUNCATED_PAGE)
2482 		folio_put(folio);
2483 	return error;
2484 }
2485 
2486 static int filemap_create_folio(struct file *file,
2487 		struct address_space *mapping, pgoff_t index,
2488 		struct folio_batch *fbatch)
2489 {
2490 	struct folio *folio;
2491 	int error;
2492 
2493 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2494 	if (!folio)
2495 		return -ENOMEM;
2496 
2497 	/*
2498 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2499 	 * here assures we cannot instantiate and bring uptodate new
2500 	 * pagecache folios after evicting page cache during truncate
2501 	 * and before actually freeing blocks.	Note that we could
2502 	 * release invalidate_lock after inserting the folio into
2503 	 * the page cache as the locked folio would then be enough to
2504 	 * synchronize with hole punching. But there are code paths
2505 	 * such as filemap_update_page() filling in partially uptodate
2506 	 * pages or ->readahead() that need to hold invalidate_lock
2507 	 * while mapping blocks for IO so let's hold the lock here as
2508 	 * well to keep locking rules simple.
2509 	 */
2510 	filemap_invalidate_lock_shared(mapping);
2511 	error = filemap_add_folio(mapping, folio, index,
2512 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2513 	if (error == -EEXIST)
2514 		error = AOP_TRUNCATED_PAGE;
2515 	if (error)
2516 		goto error;
2517 
2518 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2519 	if (error)
2520 		goto error;
2521 
2522 	filemap_invalidate_unlock_shared(mapping);
2523 	folio_batch_add(fbatch, folio);
2524 	return 0;
2525 error:
2526 	filemap_invalidate_unlock_shared(mapping);
2527 	folio_put(folio);
2528 	return error;
2529 }
2530 
2531 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2532 		struct address_space *mapping, struct folio *folio,
2533 		pgoff_t last_index)
2534 {
2535 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2536 
2537 	if (iocb->ki_flags & IOCB_NOIO)
2538 		return -EAGAIN;
2539 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2540 	return 0;
2541 }
2542 
2543 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2544 		struct folio_batch *fbatch, bool need_uptodate)
2545 {
2546 	struct file *filp = iocb->ki_filp;
2547 	struct address_space *mapping = filp->f_mapping;
2548 	struct file_ra_state *ra = &filp->f_ra;
2549 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2550 	pgoff_t last_index;
2551 	struct folio *folio;
2552 	int err = 0;
2553 
2554 	/* "last_index" is the index of the page beyond the end of the read */
2555 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2556 retry:
2557 	if (fatal_signal_pending(current))
2558 		return -EINTR;
2559 
2560 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2561 	if (!folio_batch_count(fbatch)) {
2562 		if (iocb->ki_flags & IOCB_NOIO)
2563 			return -EAGAIN;
2564 		page_cache_sync_readahead(mapping, ra, filp, index,
2565 				last_index - index);
2566 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2567 	}
2568 	if (!folio_batch_count(fbatch)) {
2569 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2570 			return -EAGAIN;
2571 		err = filemap_create_folio(filp, mapping,
2572 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2573 		if (err == AOP_TRUNCATED_PAGE)
2574 			goto retry;
2575 		return err;
2576 	}
2577 
2578 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2579 	if (folio_test_readahead(folio)) {
2580 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2581 		if (err)
2582 			goto err;
2583 	}
2584 	if (!folio_test_uptodate(folio)) {
2585 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2586 		    folio_batch_count(fbatch) > 1)
2587 			iocb->ki_flags |= IOCB_NOWAIT;
2588 		err = filemap_update_page(iocb, mapping, count, folio,
2589 					  need_uptodate);
2590 		if (err)
2591 			goto err;
2592 	}
2593 
2594 	return 0;
2595 err:
2596 	if (err < 0)
2597 		folio_put(folio);
2598 	if (likely(--fbatch->nr))
2599 		return 0;
2600 	if (err == AOP_TRUNCATED_PAGE)
2601 		goto retry;
2602 	return err;
2603 }
2604 
2605 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2606 {
2607 	unsigned int shift = folio_shift(folio);
2608 
2609 	return (pos1 >> shift == pos2 >> shift);
2610 }
2611 
2612 /**
2613  * filemap_read - Read data from the page cache.
2614  * @iocb: The iocb to read.
2615  * @iter: Destination for the data.
2616  * @already_read: Number of bytes already read by the caller.
2617  *
2618  * Copies data from the page cache.  If the data is not currently present,
2619  * uses the readahead and read_folio address_space operations to fetch it.
2620  *
2621  * Return: Total number of bytes copied, including those already read by
2622  * the caller.  If an error happens before any bytes are copied, returns
2623  * a negative error number.
2624  */
2625 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2626 		ssize_t already_read)
2627 {
2628 	struct file *filp = iocb->ki_filp;
2629 	struct file_ra_state *ra = &filp->f_ra;
2630 	struct address_space *mapping = filp->f_mapping;
2631 	struct inode *inode = mapping->host;
2632 	struct folio_batch fbatch;
2633 	int i, error = 0;
2634 	bool writably_mapped;
2635 	loff_t isize, end_offset;
2636 	loff_t last_pos = ra->prev_pos;
2637 
2638 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2639 		return 0;
2640 	if (unlikely(!iov_iter_count(iter)))
2641 		return 0;
2642 
2643 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2644 	folio_batch_init(&fbatch);
2645 
2646 	do {
2647 		cond_resched();
2648 
2649 		/*
2650 		 * If we've already successfully copied some data, then we
2651 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2652 		 * an async read NOWAIT at that point.
2653 		 */
2654 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2655 			iocb->ki_flags |= IOCB_NOWAIT;
2656 
2657 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2658 			break;
2659 
2660 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2661 		if (error < 0)
2662 			break;
2663 
2664 		/*
2665 		 * i_size must be checked after we know the pages are Uptodate.
2666 		 *
2667 		 * Checking i_size after the check allows us to calculate
2668 		 * the correct value for "nr", which means the zero-filled
2669 		 * part of the page is not copied back to userspace (unless
2670 		 * another truncate extends the file - this is desired though).
2671 		 */
2672 		isize = i_size_read(inode);
2673 		if (unlikely(iocb->ki_pos >= isize))
2674 			goto put_folios;
2675 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2676 
2677 		/*
2678 		 * Once we start copying data, we don't want to be touching any
2679 		 * cachelines that might be contended:
2680 		 */
2681 		writably_mapped = mapping_writably_mapped(mapping);
2682 
2683 		/*
2684 		 * When a read accesses the same folio several times, only
2685 		 * mark it as accessed the first time.
2686 		 */
2687 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2688 				    fbatch.folios[0]))
2689 			folio_mark_accessed(fbatch.folios[0]);
2690 
2691 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2692 			struct folio *folio = fbatch.folios[i];
2693 			size_t fsize = folio_size(folio);
2694 			size_t offset = iocb->ki_pos & (fsize - 1);
2695 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2696 					     fsize - offset);
2697 			size_t copied;
2698 
2699 			if (end_offset < folio_pos(folio))
2700 				break;
2701 			if (i > 0)
2702 				folio_mark_accessed(folio);
2703 			/*
2704 			 * If users can be writing to this folio using arbitrary
2705 			 * virtual addresses, take care of potential aliasing
2706 			 * before reading the folio on the kernel side.
2707 			 */
2708 			if (writably_mapped)
2709 				flush_dcache_folio(folio);
2710 
2711 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2712 
2713 			already_read += copied;
2714 			iocb->ki_pos += copied;
2715 			last_pos = iocb->ki_pos;
2716 
2717 			if (copied < bytes) {
2718 				error = -EFAULT;
2719 				break;
2720 			}
2721 		}
2722 put_folios:
2723 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2724 			folio_put(fbatch.folios[i]);
2725 		folio_batch_init(&fbatch);
2726 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2727 
2728 	file_accessed(filp);
2729 	ra->prev_pos = last_pos;
2730 	return already_read ? already_read : error;
2731 }
2732 EXPORT_SYMBOL_GPL(filemap_read);
2733 
2734 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2735 {
2736 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2737 	loff_t pos = iocb->ki_pos;
2738 	loff_t end = pos + count - 1;
2739 
2740 	if (iocb->ki_flags & IOCB_NOWAIT) {
2741 		if (filemap_range_needs_writeback(mapping, pos, end))
2742 			return -EAGAIN;
2743 		return 0;
2744 	}
2745 
2746 	return filemap_write_and_wait_range(mapping, pos, end);
2747 }
2748 
2749 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2750 {
2751 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2752 	loff_t pos = iocb->ki_pos;
2753 	loff_t end = pos + count - 1;
2754 	int ret;
2755 
2756 	if (iocb->ki_flags & IOCB_NOWAIT) {
2757 		/* we could block if there are any pages in the range */
2758 		if (filemap_range_has_page(mapping, pos, end))
2759 			return -EAGAIN;
2760 	} else {
2761 		ret = filemap_write_and_wait_range(mapping, pos, end);
2762 		if (ret)
2763 			return ret;
2764 	}
2765 
2766 	/*
2767 	 * After a write we want buffered reads to be sure to go to disk to get
2768 	 * the new data.  We invalidate clean cached page from the region we're
2769 	 * about to write.  We do this *before* the write so that we can return
2770 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2771 	 */
2772 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2773 					     end >> PAGE_SHIFT);
2774 }
2775 
2776 /**
2777  * generic_file_read_iter - generic filesystem read routine
2778  * @iocb:	kernel I/O control block
2779  * @iter:	destination for the data read
2780  *
2781  * This is the "read_iter()" routine for all filesystems
2782  * that can use the page cache directly.
2783  *
2784  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2785  * be returned when no data can be read without waiting for I/O requests
2786  * to complete; it doesn't prevent readahead.
2787  *
2788  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2789  * requests shall be made for the read or for readahead.  When no data
2790  * can be read, -EAGAIN shall be returned.  When readahead would be
2791  * triggered, a partial, possibly empty read shall be returned.
2792  *
2793  * Return:
2794  * * number of bytes copied, even for partial reads
2795  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2796  */
2797 ssize_t
2798 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2799 {
2800 	size_t count = iov_iter_count(iter);
2801 	ssize_t retval = 0;
2802 
2803 	if (!count)
2804 		return 0; /* skip atime */
2805 
2806 	if (iocb->ki_flags & IOCB_DIRECT) {
2807 		struct file *file = iocb->ki_filp;
2808 		struct address_space *mapping = file->f_mapping;
2809 		struct inode *inode = mapping->host;
2810 
2811 		retval = kiocb_write_and_wait(iocb, count);
2812 		if (retval < 0)
2813 			return retval;
2814 		file_accessed(file);
2815 
2816 		retval = mapping->a_ops->direct_IO(iocb, iter);
2817 		if (retval >= 0) {
2818 			iocb->ki_pos += retval;
2819 			count -= retval;
2820 		}
2821 		if (retval != -EIOCBQUEUED)
2822 			iov_iter_revert(iter, count - iov_iter_count(iter));
2823 
2824 		/*
2825 		 * Btrfs can have a short DIO read if we encounter
2826 		 * compressed extents, so if there was an error, or if
2827 		 * we've already read everything we wanted to, or if
2828 		 * there was a short read because we hit EOF, go ahead
2829 		 * and return.  Otherwise fallthrough to buffered io for
2830 		 * the rest of the read.  Buffered reads will not work for
2831 		 * DAX files, so don't bother trying.
2832 		 */
2833 		if (retval < 0 || !count || IS_DAX(inode))
2834 			return retval;
2835 		if (iocb->ki_pos >= i_size_read(inode))
2836 			return retval;
2837 	}
2838 
2839 	return filemap_read(iocb, iter, retval);
2840 }
2841 EXPORT_SYMBOL(generic_file_read_iter);
2842 
2843 /*
2844  * Splice subpages from a folio into a pipe.
2845  */
2846 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2847 			      struct folio *folio, loff_t fpos, size_t size)
2848 {
2849 	struct page *page;
2850 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2851 
2852 	page = folio_page(folio, offset / PAGE_SIZE);
2853 	size = min(size, folio_size(folio) - offset);
2854 	offset %= PAGE_SIZE;
2855 
2856 	while (spliced < size &&
2857 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2858 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2859 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2860 
2861 		*buf = (struct pipe_buffer) {
2862 			.ops	= &page_cache_pipe_buf_ops,
2863 			.page	= page,
2864 			.offset	= offset,
2865 			.len	= part,
2866 		};
2867 		folio_get(folio);
2868 		pipe->head++;
2869 		page++;
2870 		spliced += part;
2871 		offset = 0;
2872 	}
2873 
2874 	return spliced;
2875 }
2876 
2877 /**
2878  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2879  * @in: The file to read from
2880  * @ppos: Pointer to the file position to read from
2881  * @pipe: The pipe to splice into
2882  * @len: The amount to splice
2883  * @flags: The SPLICE_F_* flags
2884  *
2885  * This function gets folios from a file's pagecache and splices them into the
2886  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2887  * be used for blockdevs also.
2888  *
2889  * Return: On success, the number of bytes read will be returned and *@ppos
2890  * will be updated if appropriate; 0 will be returned if there is no more data
2891  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2892  * other negative error code will be returned on error.  A short read may occur
2893  * if the pipe has insufficient space, we reach the end of the data or we hit a
2894  * hole.
2895  */
2896 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2897 			    struct pipe_inode_info *pipe,
2898 			    size_t len, unsigned int flags)
2899 {
2900 	struct folio_batch fbatch;
2901 	struct kiocb iocb;
2902 	size_t total_spliced = 0, used, npages;
2903 	loff_t isize, end_offset;
2904 	bool writably_mapped;
2905 	int i, error = 0;
2906 
2907 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2908 		return 0;
2909 
2910 	init_sync_kiocb(&iocb, in);
2911 	iocb.ki_pos = *ppos;
2912 
2913 	/* Work out how much data we can actually add into the pipe */
2914 	used = pipe_occupancy(pipe->head, pipe->tail);
2915 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2916 	len = min_t(size_t, len, npages * PAGE_SIZE);
2917 
2918 	folio_batch_init(&fbatch);
2919 
2920 	do {
2921 		cond_resched();
2922 
2923 		if (*ppos >= i_size_read(in->f_mapping->host))
2924 			break;
2925 
2926 		iocb.ki_pos = *ppos;
2927 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2928 		if (error < 0)
2929 			break;
2930 
2931 		/*
2932 		 * i_size must be checked after we know the pages are Uptodate.
2933 		 *
2934 		 * Checking i_size after the check allows us to calculate
2935 		 * the correct value for "nr", which means the zero-filled
2936 		 * part of the page is not copied back to userspace (unless
2937 		 * another truncate extends the file - this is desired though).
2938 		 */
2939 		isize = i_size_read(in->f_mapping->host);
2940 		if (unlikely(*ppos >= isize))
2941 			break;
2942 		end_offset = min_t(loff_t, isize, *ppos + len);
2943 
2944 		/*
2945 		 * Once we start copying data, we don't want to be touching any
2946 		 * cachelines that might be contended:
2947 		 */
2948 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2949 
2950 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2951 			struct folio *folio = fbatch.folios[i];
2952 			size_t n;
2953 
2954 			if (folio_pos(folio) >= end_offset)
2955 				goto out;
2956 			folio_mark_accessed(folio);
2957 
2958 			/*
2959 			 * If users can be writing to this folio using arbitrary
2960 			 * virtual addresses, take care of potential aliasing
2961 			 * before reading the folio on the kernel side.
2962 			 */
2963 			if (writably_mapped)
2964 				flush_dcache_folio(folio);
2965 
2966 			n = min_t(loff_t, len, isize - *ppos);
2967 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2968 			if (!n)
2969 				goto out;
2970 			len -= n;
2971 			total_spliced += n;
2972 			*ppos += n;
2973 			in->f_ra.prev_pos = *ppos;
2974 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2975 				goto out;
2976 		}
2977 
2978 		folio_batch_release(&fbatch);
2979 	} while (len);
2980 
2981 out:
2982 	folio_batch_release(&fbatch);
2983 	file_accessed(in);
2984 
2985 	return total_spliced ? total_spliced : error;
2986 }
2987 EXPORT_SYMBOL(filemap_splice_read);
2988 
2989 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2990 		struct address_space *mapping, struct folio *folio,
2991 		loff_t start, loff_t end, bool seek_data)
2992 {
2993 	const struct address_space_operations *ops = mapping->a_ops;
2994 	size_t offset, bsz = i_blocksize(mapping->host);
2995 
2996 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2997 		return seek_data ? start : end;
2998 	if (!ops->is_partially_uptodate)
2999 		return seek_data ? end : start;
3000 
3001 	xas_pause(xas);
3002 	rcu_read_unlock();
3003 	folio_lock(folio);
3004 	if (unlikely(folio->mapping != mapping))
3005 		goto unlock;
3006 
3007 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3008 
3009 	do {
3010 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3011 							seek_data)
3012 			break;
3013 		start = (start + bsz) & ~(bsz - 1);
3014 		offset += bsz;
3015 	} while (offset < folio_size(folio));
3016 unlock:
3017 	folio_unlock(folio);
3018 	rcu_read_lock();
3019 	return start;
3020 }
3021 
3022 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3023 {
3024 	if (xa_is_value(folio))
3025 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3026 	return folio_size(folio);
3027 }
3028 
3029 /**
3030  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3031  * @mapping: Address space to search.
3032  * @start: First byte to consider.
3033  * @end: Limit of search (exclusive).
3034  * @whence: Either SEEK_HOLE or SEEK_DATA.
3035  *
3036  * If the page cache knows which blocks contain holes and which blocks
3037  * contain data, your filesystem can use this function to implement
3038  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3039  * entirely memory-based such as tmpfs, and filesystems which support
3040  * unwritten extents.
3041  *
3042  * Return: The requested offset on success, or -ENXIO if @whence specifies
3043  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3044  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3045  * and @end contain data.
3046  */
3047 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3048 		loff_t end, int whence)
3049 {
3050 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3051 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3052 	bool seek_data = (whence == SEEK_DATA);
3053 	struct folio *folio;
3054 
3055 	if (end <= start)
3056 		return -ENXIO;
3057 
3058 	rcu_read_lock();
3059 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3060 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3061 		size_t seek_size;
3062 
3063 		if (start < pos) {
3064 			if (!seek_data)
3065 				goto unlock;
3066 			start = pos;
3067 		}
3068 
3069 		seek_size = seek_folio_size(&xas, folio);
3070 		pos = round_up((u64)pos + 1, seek_size);
3071 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3072 				seek_data);
3073 		if (start < pos)
3074 			goto unlock;
3075 		if (start >= end)
3076 			break;
3077 		if (seek_size > PAGE_SIZE)
3078 			xas_set(&xas, pos >> PAGE_SHIFT);
3079 		if (!xa_is_value(folio))
3080 			folio_put(folio);
3081 	}
3082 	if (seek_data)
3083 		start = -ENXIO;
3084 unlock:
3085 	rcu_read_unlock();
3086 	if (folio && !xa_is_value(folio))
3087 		folio_put(folio);
3088 	if (start > end)
3089 		return end;
3090 	return start;
3091 }
3092 
3093 #ifdef CONFIG_MMU
3094 #define MMAP_LOTSAMISS  (100)
3095 /*
3096  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3097  * @vmf - the vm_fault for this fault.
3098  * @folio - the folio to lock.
3099  * @fpin - the pointer to the file we may pin (or is already pinned).
3100  *
3101  * This works similar to lock_folio_or_retry in that it can drop the
3102  * mmap_lock.  It differs in that it actually returns the folio locked
3103  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3104  * to drop the mmap_lock then fpin will point to the pinned file and
3105  * needs to be fput()'ed at a later point.
3106  */
3107 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3108 				     struct file **fpin)
3109 {
3110 	if (folio_trylock(folio))
3111 		return 1;
3112 
3113 	/*
3114 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3115 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3116 	 * is supposed to work. We have way too many special cases..
3117 	 */
3118 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3119 		return 0;
3120 
3121 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3122 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3123 		if (__folio_lock_killable(folio)) {
3124 			/*
3125 			 * We didn't have the right flags to drop the mmap_lock,
3126 			 * but all fault_handlers only check for fatal signals
3127 			 * if we return VM_FAULT_RETRY, so we need to drop the
3128 			 * mmap_lock here and return 0 if we don't have a fpin.
3129 			 */
3130 			if (*fpin == NULL)
3131 				mmap_read_unlock(vmf->vma->vm_mm);
3132 			return 0;
3133 		}
3134 	} else
3135 		__folio_lock(folio);
3136 
3137 	return 1;
3138 }
3139 
3140 /*
3141  * Synchronous readahead happens when we don't even find a page in the page
3142  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3143  * to drop the mmap sem we return the file that was pinned in order for us to do
3144  * that.  If we didn't pin a file then we return NULL.  The file that is
3145  * returned needs to be fput()'ed when we're done with it.
3146  */
3147 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3148 {
3149 	struct file *file = vmf->vma->vm_file;
3150 	struct file_ra_state *ra = &file->f_ra;
3151 	struct address_space *mapping = file->f_mapping;
3152 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3153 	struct file *fpin = NULL;
3154 	unsigned long vm_flags = vmf->vma->vm_flags;
3155 	unsigned int mmap_miss;
3156 
3157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3158 	/* Use the readahead code, even if readahead is disabled */
3159 	if (vm_flags & VM_HUGEPAGE) {
3160 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3161 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3162 		ra->size = HPAGE_PMD_NR;
3163 		/*
3164 		 * Fetch two PMD folios, so we get the chance to actually
3165 		 * readahead, unless we've been told not to.
3166 		 */
3167 		if (!(vm_flags & VM_RAND_READ))
3168 			ra->size *= 2;
3169 		ra->async_size = HPAGE_PMD_NR;
3170 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3171 		return fpin;
3172 	}
3173 #endif
3174 
3175 	/* If we don't want any read-ahead, don't bother */
3176 	if (vm_flags & VM_RAND_READ)
3177 		return fpin;
3178 	if (!ra->ra_pages)
3179 		return fpin;
3180 
3181 	if (vm_flags & VM_SEQ_READ) {
3182 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3183 		page_cache_sync_ra(&ractl, ra->ra_pages);
3184 		return fpin;
3185 	}
3186 
3187 	/* Avoid banging the cache line if not needed */
3188 	mmap_miss = READ_ONCE(ra->mmap_miss);
3189 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3190 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3191 
3192 	/*
3193 	 * Do we miss much more than hit in this file? If so,
3194 	 * stop bothering with read-ahead. It will only hurt.
3195 	 */
3196 	if (mmap_miss > MMAP_LOTSAMISS)
3197 		return fpin;
3198 
3199 	/*
3200 	 * mmap read-around
3201 	 */
3202 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3203 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3204 	ra->size = ra->ra_pages;
3205 	ra->async_size = ra->ra_pages / 4;
3206 	ractl._index = ra->start;
3207 	page_cache_ra_order(&ractl, ra, 0);
3208 	return fpin;
3209 }
3210 
3211 /*
3212  * Asynchronous readahead happens when we find the page and PG_readahead,
3213  * so we want to possibly extend the readahead further.  We return the file that
3214  * was pinned if we have to drop the mmap_lock in order to do IO.
3215  */
3216 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3217 					    struct folio *folio)
3218 {
3219 	struct file *file = vmf->vma->vm_file;
3220 	struct file_ra_state *ra = &file->f_ra;
3221 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3222 	struct file *fpin = NULL;
3223 	unsigned int mmap_miss;
3224 
3225 	/* If we don't want any read-ahead, don't bother */
3226 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3227 		return fpin;
3228 
3229 	mmap_miss = READ_ONCE(ra->mmap_miss);
3230 	if (mmap_miss)
3231 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3232 
3233 	if (folio_test_readahead(folio)) {
3234 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3235 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3236 	}
3237 	return fpin;
3238 }
3239 
3240 /**
3241  * filemap_fault - read in file data for page fault handling
3242  * @vmf:	struct vm_fault containing details of the fault
3243  *
3244  * filemap_fault() is invoked via the vma operations vector for a
3245  * mapped memory region to read in file data during a page fault.
3246  *
3247  * The goto's are kind of ugly, but this streamlines the normal case of having
3248  * it in the page cache, and handles the special cases reasonably without
3249  * having a lot of duplicated code.
3250  *
3251  * vma->vm_mm->mmap_lock must be held on entry.
3252  *
3253  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3254  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3255  *
3256  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3257  * has not been released.
3258  *
3259  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3260  *
3261  * Return: bitwise-OR of %VM_FAULT_ codes.
3262  */
3263 vm_fault_t filemap_fault(struct vm_fault *vmf)
3264 {
3265 	int error;
3266 	struct file *file = vmf->vma->vm_file;
3267 	struct file *fpin = NULL;
3268 	struct address_space *mapping = file->f_mapping;
3269 	struct inode *inode = mapping->host;
3270 	pgoff_t max_idx, index = vmf->pgoff;
3271 	struct folio *folio;
3272 	vm_fault_t ret = 0;
3273 	bool mapping_locked = false;
3274 
3275 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3276 	if (unlikely(index >= max_idx))
3277 		return VM_FAULT_SIGBUS;
3278 
3279 	/*
3280 	 * Do we have something in the page cache already?
3281 	 */
3282 	folio = filemap_get_folio(mapping, index);
3283 	if (likely(!IS_ERR(folio))) {
3284 		/*
3285 		 * We found the page, so try async readahead before waiting for
3286 		 * the lock.
3287 		 */
3288 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3289 			fpin = do_async_mmap_readahead(vmf, folio);
3290 		if (unlikely(!folio_test_uptodate(folio))) {
3291 			filemap_invalidate_lock_shared(mapping);
3292 			mapping_locked = true;
3293 		}
3294 	} else {
3295 		/* No page in the page cache at all */
3296 		count_vm_event(PGMAJFAULT);
3297 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3298 		ret = VM_FAULT_MAJOR;
3299 		fpin = do_sync_mmap_readahead(vmf);
3300 retry_find:
3301 		/*
3302 		 * See comment in filemap_create_folio() why we need
3303 		 * invalidate_lock
3304 		 */
3305 		if (!mapping_locked) {
3306 			filemap_invalidate_lock_shared(mapping);
3307 			mapping_locked = true;
3308 		}
3309 		folio = __filemap_get_folio(mapping, index,
3310 					  FGP_CREAT|FGP_FOR_MMAP,
3311 					  vmf->gfp_mask);
3312 		if (IS_ERR(folio)) {
3313 			if (fpin)
3314 				goto out_retry;
3315 			filemap_invalidate_unlock_shared(mapping);
3316 			return VM_FAULT_OOM;
3317 		}
3318 	}
3319 
3320 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3321 		goto out_retry;
3322 
3323 	/* Did it get truncated? */
3324 	if (unlikely(folio->mapping != mapping)) {
3325 		folio_unlock(folio);
3326 		folio_put(folio);
3327 		goto retry_find;
3328 	}
3329 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3330 
3331 	/*
3332 	 * We have a locked page in the page cache, now we need to check
3333 	 * that it's up-to-date. If not, it is going to be due to an error.
3334 	 */
3335 	if (unlikely(!folio_test_uptodate(folio))) {
3336 		/*
3337 		 * The page was in cache and uptodate and now it is not.
3338 		 * Strange but possible since we didn't hold the page lock all
3339 		 * the time. Let's drop everything get the invalidate lock and
3340 		 * try again.
3341 		 */
3342 		if (!mapping_locked) {
3343 			folio_unlock(folio);
3344 			folio_put(folio);
3345 			goto retry_find;
3346 		}
3347 		goto page_not_uptodate;
3348 	}
3349 
3350 	/*
3351 	 * We've made it this far and we had to drop our mmap_lock, now is the
3352 	 * time to return to the upper layer and have it re-find the vma and
3353 	 * redo the fault.
3354 	 */
3355 	if (fpin) {
3356 		folio_unlock(folio);
3357 		goto out_retry;
3358 	}
3359 	if (mapping_locked)
3360 		filemap_invalidate_unlock_shared(mapping);
3361 
3362 	/*
3363 	 * Found the page and have a reference on it.
3364 	 * We must recheck i_size under page lock.
3365 	 */
3366 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3367 	if (unlikely(index >= max_idx)) {
3368 		folio_unlock(folio);
3369 		folio_put(folio);
3370 		return VM_FAULT_SIGBUS;
3371 	}
3372 
3373 	vmf->page = folio_file_page(folio, index);
3374 	return ret | VM_FAULT_LOCKED;
3375 
3376 page_not_uptodate:
3377 	/*
3378 	 * Umm, take care of errors if the page isn't up-to-date.
3379 	 * Try to re-read it _once_. We do this synchronously,
3380 	 * because there really aren't any performance issues here
3381 	 * and we need to check for errors.
3382 	 */
3383 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3384 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3385 	if (fpin)
3386 		goto out_retry;
3387 	folio_put(folio);
3388 
3389 	if (!error || error == AOP_TRUNCATED_PAGE)
3390 		goto retry_find;
3391 	filemap_invalidate_unlock_shared(mapping);
3392 
3393 	return VM_FAULT_SIGBUS;
3394 
3395 out_retry:
3396 	/*
3397 	 * We dropped the mmap_lock, we need to return to the fault handler to
3398 	 * re-find the vma and come back and find our hopefully still populated
3399 	 * page.
3400 	 */
3401 	if (!IS_ERR(folio))
3402 		folio_put(folio);
3403 	if (mapping_locked)
3404 		filemap_invalidate_unlock_shared(mapping);
3405 	if (fpin)
3406 		fput(fpin);
3407 	return ret | VM_FAULT_RETRY;
3408 }
3409 EXPORT_SYMBOL(filemap_fault);
3410 
3411 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3412 		pgoff_t start)
3413 {
3414 	struct mm_struct *mm = vmf->vma->vm_mm;
3415 
3416 	/* Huge page is mapped? No need to proceed. */
3417 	if (pmd_trans_huge(*vmf->pmd)) {
3418 		folio_unlock(folio);
3419 		folio_put(folio);
3420 		return true;
3421 	}
3422 
3423 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3424 		struct page *page = folio_file_page(folio, start);
3425 		vm_fault_t ret = do_set_pmd(vmf, page);
3426 		if (!ret) {
3427 			/* The page is mapped successfully, reference consumed. */
3428 			folio_unlock(folio);
3429 			return true;
3430 		}
3431 	}
3432 
3433 	if (pmd_none(*vmf->pmd))
3434 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3435 
3436 	return false;
3437 }
3438 
3439 static struct folio *next_uptodate_page(struct folio *folio,
3440 				       struct address_space *mapping,
3441 				       struct xa_state *xas, pgoff_t end_pgoff)
3442 {
3443 	unsigned long max_idx;
3444 
3445 	do {
3446 		if (!folio)
3447 			return NULL;
3448 		if (xas_retry(xas, folio))
3449 			continue;
3450 		if (xa_is_value(folio))
3451 			continue;
3452 		if (folio_test_locked(folio))
3453 			continue;
3454 		if (!folio_try_get_rcu(folio))
3455 			continue;
3456 		/* Has the page moved or been split? */
3457 		if (unlikely(folio != xas_reload(xas)))
3458 			goto skip;
3459 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3460 			goto skip;
3461 		if (!folio_trylock(folio))
3462 			goto skip;
3463 		if (folio->mapping != mapping)
3464 			goto unlock;
3465 		if (!folio_test_uptodate(folio))
3466 			goto unlock;
3467 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3468 		if (xas->xa_index >= max_idx)
3469 			goto unlock;
3470 		return folio;
3471 unlock:
3472 		folio_unlock(folio);
3473 skip:
3474 		folio_put(folio);
3475 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3476 
3477 	return NULL;
3478 }
3479 
3480 static inline struct folio *first_map_page(struct address_space *mapping,
3481 					  struct xa_state *xas,
3482 					  pgoff_t end_pgoff)
3483 {
3484 	return next_uptodate_page(xas_find(xas, end_pgoff),
3485 				  mapping, xas, end_pgoff);
3486 }
3487 
3488 static inline struct folio *next_map_page(struct address_space *mapping,
3489 					 struct xa_state *xas,
3490 					 pgoff_t end_pgoff)
3491 {
3492 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3493 				  mapping, xas, end_pgoff);
3494 }
3495 
3496 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3497 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3498 {
3499 	struct vm_area_struct *vma = vmf->vma;
3500 	struct file *file = vma->vm_file;
3501 	struct address_space *mapping = file->f_mapping;
3502 	pgoff_t last_pgoff = start_pgoff;
3503 	unsigned long addr;
3504 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3505 	struct folio *folio;
3506 	struct page *page;
3507 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3508 	vm_fault_t ret = 0;
3509 
3510 	rcu_read_lock();
3511 	folio = first_map_page(mapping, &xas, end_pgoff);
3512 	if (!folio)
3513 		goto out;
3514 
3515 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3516 		ret = VM_FAULT_NOPAGE;
3517 		goto out;
3518 	}
3519 
3520 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3521 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3522 	if (!vmf->pte) {
3523 		folio_unlock(folio);
3524 		folio_put(folio);
3525 		goto out;
3526 	}
3527 	do {
3528 again:
3529 		page = folio_file_page(folio, xas.xa_index);
3530 		if (PageHWPoison(page))
3531 			goto unlock;
3532 
3533 		if (mmap_miss > 0)
3534 			mmap_miss--;
3535 
3536 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3537 		vmf->pte += xas.xa_index - last_pgoff;
3538 		last_pgoff = xas.xa_index;
3539 
3540 		/*
3541 		 * NOTE: If there're PTE markers, we'll leave them to be
3542 		 * handled in the specific fault path, and it'll prohibit the
3543 		 * fault-around logic.
3544 		 */
3545 		if (!pte_none(ptep_get(vmf->pte)))
3546 			goto unlock;
3547 
3548 		/* We're about to handle the fault */
3549 		if (vmf->address == addr)
3550 			ret = VM_FAULT_NOPAGE;
3551 
3552 		do_set_pte(vmf, page, addr);
3553 		/* no need to invalidate: a not-present page won't be cached */
3554 		update_mmu_cache(vma, addr, vmf->pte);
3555 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3556 			xas.xa_index++;
3557 			folio_ref_inc(folio);
3558 			goto again;
3559 		}
3560 		folio_unlock(folio);
3561 		continue;
3562 unlock:
3563 		if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3564 			xas.xa_index++;
3565 			goto again;
3566 		}
3567 		folio_unlock(folio);
3568 		folio_put(folio);
3569 	} while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3570 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3571 out:
3572 	rcu_read_unlock();
3573 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3574 	return ret;
3575 }
3576 EXPORT_SYMBOL(filemap_map_pages);
3577 
3578 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3579 {
3580 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3581 	struct folio *folio = page_folio(vmf->page);
3582 	vm_fault_t ret = VM_FAULT_LOCKED;
3583 
3584 	sb_start_pagefault(mapping->host->i_sb);
3585 	file_update_time(vmf->vma->vm_file);
3586 	folio_lock(folio);
3587 	if (folio->mapping != mapping) {
3588 		folio_unlock(folio);
3589 		ret = VM_FAULT_NOPAGE;
3590 		goto out;
3591 	}
3592 	/*
3593 	 * We mark the folio dirty already here so that when freeze is in
3594 	 * progress, we are guaranteed that writeback during freezing will
3595 	 * see the dirty folio and writeprotect it again.
3596 	 */
3597 	folio_mark_dirty(folio);
3598 	folio_wait_stable(folio);
3599 out:
3600 	sb_end_pagefault(mapping->host->i_sb);
3601 	return ret;
3602 }
3603 
3604 const struct vm_operations_struct generic_file_vm_ops = {
3605 	.fault		= filemap_fault,
3606 	.map_pages	= filemap_map_pages,
3607 	.page_mkwrite	= filemap_page_mkwrite,
3608 };
3609 
3610 /* This is used for a general mmap of a disk file */
3611 
3612 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3613 {
3614 	struct address_space *mapping = file->f_mapping;
3615 
3616 	if (!mapping->a_ops->read_folio)
3617 		return -ENOEXEC;
3618 	file_accessed(file);
3619 	vma->vm_ops = &generic_file_vm_ops;
3620 	return 0;
3621 }
3622 
3623 /*
3624  * This is for filesystems which do not implement ->writepage.
3625  */
3626 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3627 {
3628 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3629 		return -EINVAL;
3630 	return generic_file_mmap(file, vma);
3631 }
3632 #else
3633 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3634 {
3635 	return VM_FAULT_SIGBUS;
3636 }
3637 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3638 {
3639 	return -ENOSYS;
3640 }
3641 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3642 {
3643 	return -ENOSYS;
3644 }
3645 #endif /* CONFIG_MMU */
3646 
3647 EXPORT_SYMBOL(filemap_page_mkwrite);
3648 EXPORT_SYMBOL(generic_file_mmap);
3649 EXPORT_SYMBOL(generic_file_readonly_mmap);
3650 
3651 static struct folio *do_read_cache_folio(struct address_space *mapping,
3652 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3653 {
3654 	struct folio *folio;
3655 	int err;
3656 
3657 	if (!filler)
3658 		filler = mapping->a_ops->read_folio;
3659 repeat:
3660 	folio = filemap_get_folio(mapping, index);
3661 	if (IS_ERR(folio)) {
3662 		folio = filemap_alloc_folio(gfp, 0);
3663 		if (!folio)
3664 			return ERR_PTR(-ENOMEM);
3665 		err = filemap_add_folio(mapping, folio, index, gfp);
3666 		if (unlikely(err)) {
3667 			folio_put(folio);
3668 			if (err == -EEXIST)
3669 				goto repeat;
3670 			/* Presumably ENOMEM for xarray node */
3671 			return ERR_PTR(err);
3672 		}
3673 
3674 		goto filler;
3675 	}
3676 	if (folio_test_uptodate(folio))
3677 		goto out;
3678 
3679 	if (!folio_trylock(folio)) {
3680 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3681 		goto repeat;
3682 	}
3683 
3684 	/* Folio was truncated from mapping */
3685 	if (!folio->mapping) {
3686 		folio_unlock(folio);
3687 		folio_put(folio);
3688 		goto repeat;
3689 	}
3690 
3691 	/* Someone else locked and filled the page in a very small window */
3692 	if (folio_test_uptodate(folio)) {
3693 		folio_unlock(folio);
3694 		goto out;
3695 	}
3696 
3697 filler:
3698 	err = filemap_read_folio(file, filler, folio);
3699 	if (err) {
3700 		folio_put(folio);
3701 		if (err == AOP_TRUNCATED_PAGE)
3702 			goto repeat;
3703 		return ERR_PTR(err);
3704 	}
3705 
3706 out:
3707 	folio_mark_accessed(folio);
3708 	return folio;
3709 }
3710 
3711 /**
3712  * read_cache_folio - Read into page cache, fill it if needed.
3713  * @mapping: The address_space to read from.
3714  * @index: The index to read.
3715  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3716  * @file: Passed to filler function, may be NULL if not required.
3717  *
3718  * Read one page into the page cache.  If it succeeds, the folio returned
3719  * will contain @index, but it may not be the first page of the folio.
3720  *
3721  * If the filler function returns an error, it will be returned to the
3722  * caller.
3723  *
3724  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3725  * Return: An uptodate folio on success, ERR_PTR() on failure.
3726  */
3727 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3728 		filler_t filler, struct file *file)
3729 {
3730 	return do_read_cache_folio(mapping, index, filler, file,
3731 			mapping_gfp_mask(mapping));
3732 }
3733 EXPORT_SYMBOL(read_cache_folio);
3734 
3735 /**
3736  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3737  * @mapping:	The address_space for the folio.
3738  * @index:	The index that the allocated folio will contain.
3739  * @gfp:	The page allocator flags to use if allocating.
3740  *
3741  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3742  * any new memory allocations done using the specified allocation flags.
3743  *
3744  * The most likely error from this function is EIO, but ENOMEM is
3745  * possible and so is EINTR.  If ->read_folio returns another error,
3746  * that will be returned to the caller.
3747  *
3748  * The function expects mapping->invalidate_lock to be already held.
3749  *
3750  * Return: Uptodate folio on success, ERR_PTR() on failure.
3751  */
3752 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3753 		pgoff_t index, gfp_t gfp)
3754 {
3755 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3756 }
3757 EXPORT_SYMBOL(mapping_read_folio_gfp);
3758 
3759 static struct page *do_read_cache_page(struct address_space *mapping,
3760 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3761 {
3762 	struct folio *folio;
3763 
3764 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3765 	if (IS_ERR(folio))
3766 		return &folio->page;
3767 	return folio_file_page(folio, index);
3768 }
3769 
3770 struct page *read_cache_page(struct address_space *mapping,
3771 			pgoff_t index, filler_t *filler, struct file *file)
3772 {
3773 	return do_read_cache_page(mapping, index, filler, file,
3774 			mapping_gfp_mask(mapping));
3775 }
3776 EXPORT_SYMBOL(read_cache_page);
3777 
3778 /**
3779  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3780  * @mapping:	the page's address_space
3781  * @index:	the page index
3782  * @gfp:	the page allocator flags to use if allocating
3783  *
3784  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3785  * any new page allocations done using the specified allocation flags.
3786  *
3787  * If the page does not get brought uptodate, return -EIO.
3788  *
3789  * The function expects mapping->invalidate_lock to be already held.
3790  *
3791  * Return: up to date page on success, ERR_PTR() on failure.
3792  */
3793 struct page *read_cache_page_gfp(struct address_space *mapping,
3794 				pgoff_t index,
3795 				gfp_t gfp)
3796 {
3797 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3798 }
3799 EXPORT_SYMBOL(read_cache_page_gfp);
3800 
3801 /*
3802  * Warn about a page cache invalidation failure during a direct I/O write.
3803  */
3804 static void dio_warn_stale_pagecache(struct file *filp)
3805 {
3806 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3807 	char pathname[128];
3808 	char *path;
3809 
3810 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3811 	if (__ratelimit(&_rs)) {
3812 		path = file_path(filp, pathname, sizeof(pathname));
3813 		if (IS_ERR(path))
3814 			path = "(unknown)";
3815 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3816 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3817 			current->comm);
3818 	}
3819 }
3820 
3821 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3822 {
3823 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3824 
3825 	if (mapping->nrpages &&
3826 	    invalidate_inode_pages2_range(mapping,
3827 			iocb->ki_pos >> PAGE_SHIFT,
3828 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3829 		dio_warn_stale_pagecache(iocb->ki_filp);
3830 }
3831 
3832 ssize_t
3833 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3834 {
3835 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3836 	size_t write_len = iov_iter_count(from);
3837 	ssize_t written;
3838 
3839 	/*
3840 	 * If a page can not be invalidated, return 0 to fall back
3841 	 * to buffered write.
3842 	 */
3843 	written = kiocb_invalidate_pages(iocb, write_len);
3844 	if (written) {
3845 		if (written == -EBUSY)
3846 			return 0;
3847 		return written;
3848 	}
3849 
3850 	written = mapping->a_ops->direct_IO(iocb, from);
3851 
3852 	/*
3853 	 * Finally, try again to invalidate clean pages which might have been
3854 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3855 	 * if the source of the write was an mmap'ed region of the file
3856 	 * we're writing.  Either one is a pretty crazy thing to do,
3857 	 * so we don't support it 100%.  If this invalidation
3858 	 * fails, tough, the write still worked...
3859 	 *
3860 	 * Most of the time we do not need this since dio_complete() will do
3861 	 * the invalidation for us. However there are some file systems that
3862 	 * do not end up with dio_complete() being called, so let's not break
3863 	 * them by removing it completely.
3864 	 *
3865 	 * Noticeable example is a blkdev_direct_IO().
3866 	 *
3867 	 * Skip invalidation for async writes or if mapping has no pages.
3868 	 */
3869 	if (written > 0) {
3870 		struct inode *inode = mapping->host;
3871 		loff_t pos = iocb->ki_pos;
3872 
3873 		kiocb_invalidate_post_direct_write(iocb, written);
3874 		pos += written;
3875 		write_len -= written;
3876 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3877 			i_size_write(inode, pos);
3878 			mark_inode_dirty(inode);
3879 		}
3880 		iocb->ki_pos = pos;
3881 	}
3882 	if (written != -EIOCBQUEUED)
3883 		iov_iter_revert(from, write_len - iov_iter_count(from));
3884 	return written;
3885 }
3886 EXPORT_SYMBOL(generic_file_direct_write);
3887 
3888 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3889 {
3890 	struct file *file = iocb->ki_filp;
3891 	loff_t pos = iocb->ki_pos;
3892 	struct address_space *mapping = file->f_mapping;
3893 	const struct address_space_operations *a_ops = mapping->a_ops;
3894 	long status = 0;
3895 	ssize_t written = 0;
3896 
3897 	do {
3898 		struct page *page;
3899 		unsigned long offset;	/* Offset into pagecache page */
3900 		unsigned long bytes;	/* Bytes to write to page */
3901 		size_t copied;		/* Bytes copied from user */
3902 		void *fsdata = NULL;
3903 
3904 		offset = (pos & (PAGE_SIZE - 1));
3905 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3906 						iov_iter_count(i));
3907 
3908 again:
3909 		/*
3910 		 * Bring in the user page that we will copy from _first_.
3911 		 * Otherwise there's a nasty deadlock on copying from the
3912 		 * same page as we're writing to, without it being marked
3913 		 * up-to-date.
3914 		 */
3915 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3916 			status = -EFAULT;
3917 			break;
3918 		}
3919 
3920 		if (fatal_signal_pending(current)) {
3921 			status = -EINTR;
3922 			break;
3923 		}
3924 
3925 		status = a_ops->write_begin(file, mapping, pos, bytes,
3926 						&page, &fsdata);
3927 		if (unlikely(status < 0))
3928 			break;
3929 
3930 		if (mapping_writably_mapped(mapping))
3931 			flush_dcache_page(page);
3932 
3933 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3934 		flush_dcache_page(page);
3935 
3936 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3937 						page, fsdata);
3938 		if (unlikely(status != copied)) {
3939 			iov_iter_revert(i, copied - max(status, 0L));
3940 			if (unlikely(status < 0))
3941 				break;
3942 		}
3943 		cond_resched();
3944 
3945 		if (unlikely(status == 0)) {
3946 			/*
3947 			 * A short copy made ->write_end() reject the
3948 			 * thing entirely.  Might be memory poisoning
3949 			 * halfway through, might be a race with munmap,
3950 			 * might be severe memory pressure.
3951 			 */
3952 			if (copied)
3953 				bytes = copied;
3954 			goto again;
3955 		}
3956 		pos += status;
3957 		written += status;
3958 
3959 		balance_dirty_pages_ratelimited(mapping);
3960 	} while (iov_iter_count(i));
3961 
3962 	if (!written)
3963 		return status;
3964 	iocb->ki_pos += written;
3965 	return written;
3966 }
3967 EXPORT_SYMBOL(generic_perform_write);
3968 
3969 /**
3970  * __generic_file_write_iter - write data to a file
3971  * @iocb:	IO state structure (file, offset, etc.)
3972  * @from:	iov_iter with data to write
3973  *
3974  * This function does all the work needed for actually writing data to a
3975  * file. It does all basic checks, removes SUID from the file, updates
3976  * modification times and calls proper subroutines depending on whether we
3977  * do direct IO or a standard buffered write.
3978  *
3979  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3980  * object which does not need locking at all.
3981  *
3982  * This function does *not* take care of syncing data in case of O_SYNC write.
3983  * A caller has to handle it. This is mainly due to the fact that we want to
3984  * avoid syncing under i_rwsem.
3985  *
3986  * Return:
3987  * * number of bytes written, even for truncated writes
3988  * * negative error code if no data has been written at all
3989  */
3990 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3991 {
3992 	struct file *file = iocb->ki_filp;
3993 	struct address_space *mapping = file->f_mapping;
3994 	struct inode *inode = mapping->host;
3995 	ssize_t ret;
3996 
3997 	ret = file_remove_privs(file);
3998 	if (ret)
3999 		return ret;
4000 
4001 	ret = file_update_time(file);
4002 	if (ret)
4003 		return ret;
4004 
4005 	if (iocb->ki_flags & IOCB_DIRECT) {
4006 		ret = generic_file_direct_write(iocb, from);
4007 		/*
4008 		 * If the write stopped short of completing, fall back to
4009 		 * buffered writes.  Some filesystems do this for writes to
4010 		 * holes, for example.  For DAX files, a buffered write will
4011 		 * not succeed (even if it did, DAX does not handle dirty
4012 		 * page-cache pages correctly).
4013 		 */
4014 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4015 			return ret;
4016 		return direct_write_fallback(iocb, from, ret,
4017 				generic_perform_write(iocb, from));
4018 	}
4019 
4020 	return generic_perform_write(iocb, from);
4021 }
4022 EXPORT_SYMBOL(__generic_file_write_iter);
4023 
4024 /**
4025  * generic_file_write_iter - write data to a file
4026  * @iocb:	IO state structure
4027  * @from:	iov_iter with data to write
4028  *
4029  * This is a wrapper around __generic_file_write_iter() to be used by most
4030  * filesystems. It takes care of syncing the file in case of O_SYNC file
4031  * and acquires i_rwsem as needed.
4032  * Return:
4033  * * negative error code if no data has been written at all of
4034  *   vfs_fsync_range() failed for a synchronous write
4035  * * number of bytes written, even for truncated writes
4036  */
4037 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4038 {
4039 	struct file *file = iocb->ki_filp;
4040 	struct inode *inode = file->f_mapping->host;
4041 	ssize_t ret;
4042 
4043 	inode_lock(inode);
4044 	ret = generic_write_checks(iocb, from);
4045 	if (ret > 0)
4046 		ret = __generic_file_write_iter(iocb, from);
4047 	inode_unlock(inode);
4048 
4049 	if (ret > 0)
4050 		ret = generic_write_sync(iocb, ret);
4051 	return ret;
4052 }
4053 EXPORT_SYMBOL(generic_file_write_iter);
4054 
4055 /**
4056  * filemap_release_folio() - Release fs-specific metadata on a folio.
4057  * @folio: The folio which the kernel is trying to free.
4058  * @gfp: Memory allocation flags (and I/O mode).
4059  *
4060  * The address_space is trying to release any data attached to a folio
4061  * (presumably at folio->private).
4062  *
4063  * This will also be called if the private_2 flag is set on a page,
4064  * indicating that the folio has other metadata associated with it.
4065  *
4066  * The @gfp argument specifies whether I/O may be performed to release
4067  * this page (__GFP_IO), and whether the call may block
4068  * (__GFP_RECLAIM & __GFP_FS).
4069  *
4070  * Return: %true if the release was successful, otherwise %false.
4071  */
4072 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4073 {
4074 	struct address_space * const mapping = folio->mapping;
4075 
4076 	BUG_ON(!folio_test_locked(folio));
4077 	if (!folio_needs_release(folio))
4078 		return true;
4079 	if (folio_test_writeback(folio))
4080 		return false;
4081 
4082 	if (mapping && mapping->a_ops->release_folio)
4083 		return mapping->a_ops->release_folio(folio, gfp);
4084 	return try_to_free_buffers(folio);
4085 }
4086 EXPORT_SYMBOL(filemap_release_folio);
4087 
4088 #ifdef CONFIG_CACHESTAT_SYSCALL
4089 /**
4090  * filemap_cachestat() - compute the page cache statistics of a mapping
4091  * @mapping:	The mapping to compute the statistics for.
4092  * @first_index:	The starting page cache index.
4093  * @last_index:	The final page index (inclusive).
4094  * @cs:	the cachestat struct to write the result to.
4095  *
4096  * This will query the page cache statistics of a mapping in the
4097  * page range of [first_index, last_index] (inclusive). The statistics
4098  * queried include: number of dirty pages, number of pages marked for
4099  * writeback, and the number of (recently) evicted pages.
4100  */
4101 static void filemap_cachestat(struct address_space *mapping,
4102 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4103 {
4104 	XA_STATE(xas, &mapping->i_pages, first_index);
4105 	struct folio *folio;
4106 
4107 	rcu_read_lock();
4108 	xas_for_each(&xas, folio, last_index) {
4109 		unsigned long nr_pages;
4110 		pgoff_t folio_first_index, folio_last_index;
4111 
4112 		if (xas_retry(&xas, folio))
4113 			continue;
4114 
4115 		if (xa_is_value(folio)) {
4116 			/* page is evicted */
4117 			void *shadow = (void *)folio;
4118 			bool workingset; /* not used */
4119 			int order = xa_get_order(xas.xa, xas.xa_index);
4120 
4121 			nr_pages = 1 << order;
4122 			folio_first_index = round_down(xas.xa_index, 1 << order);
4123 			folio_last_index = folio_first_index + nr_pages - 1;
4124 
4125 			/* Folios might straddle the range boundaries, only count covered pages */
4126 			if (folio_first_index < first_index)
4127 				nr_pages -= first_index - folio_first_index;
4128 
4129 			if (folio_last_index > last_index)
4130 				nr_pages -= folio_last_index - last_index;
4131 
4132 			cs->nr_evicted += nr_pages;
4133 
4134 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4135 			if (shmem_mapping(mapping)) {
4136 				/* shmem file - in swap cache */
4137 				swp_entry_t swp = radix_to_swp_entry(folio);
4138 
4139 				shadow = get_shadow_from_swap_cache(swp);
4140 			}
4141 #endif
4142 			if (workingset_test_recent(shadow, true, &workingset))
4143 				cs->nr_recently_evicted += nr_pages;
4144 
4145 			goto resched;
4146 		}
4147 
4148 		nr_pages = folio_nr_pages(folio);
4149 		folio_first_index = folio_pgoff(folio);
4150 		folio_last_index = folio_first_index + nr_pages - 1;
4151 
4152 		/* Folios might straddle the range boundaries, only count covered pages */
4153 		if (folio_first_index < first_index)
4154 			nr_pages -= first_index - folio_first_index;
4155 
4156 		if (folio_last_index > last_index)
4157 			nr_pages -= folio_last_index - last_index;
4158 
4159 		/* page is in cache */
4160 		cs->nr_cache += nr_pages;
4161 
4162 		if (folio_test_dirty(folio))
4163 			cs->nr_dirty += nr_pages;
4164 
4165 		if (folio_test_writeback(folio))
4166 			cs->nr_writeback += nr_pages;
4167 
4168 resched:
4169 		if (need_resched()) {
4170 			xas_pause(&xas);
4171 			cond_resched_rcu();
4172 		}
4173 	}
4174 	rcu_read_unlock();
4175 }
4176 
4177 /*
4178  * The cachestat(2) system call.
4179  *
4180  * cachestat() returns the page cache statistics of a file in the
4181  * bytes range specified by `off` and `len`: number of cached pages,
4182  * number of dirty pages, number of pages marked for writeback,
4183  * number of evicted pages, and number of recently evicted pages.
4184  *
4185  * An evicted page is a page that is previously in the page cache
4186  * but has been evicted since. A page is recently evicted if its last
4187  * eviction was recent enough that its reentry to the cache would
4188  * indicate that it is actively being used by the system, and that
4189  * there is memory pressure on the system.
4190  *
4191  * `off` and `len` must be non-negative integers. If `len` > 0,
4192  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4193  * we will query in the range from `off` to the end of the file.
4194  *
4195  * The `flags` argument is unused for now, but is included for future
4196  * extensibility. User should pass 0 (i.e no flag specified).
4197  *
4198  * Currently, hugetlbfs is not supported.
4199  *
4200  * Because the status of a page can change after cachestat() checks it
4201  * but before it returns to the application, the returned values may
4202  * contain stale information.
4203  *
4204  * return values:
4205  *  zero        - success
4206  *  -EFAULT     - cstat or cstat_range points to an illegal address
4207  *  -EINVAL     - invalid flags
4208  *  -EBADF      - invalid file descriptor
4209  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4210  */
4211 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4212 		struct cachestat_range __user *, cstat_range,
4213 		struct cachestat __user *, cstat, unsigned int, flags)
4214 {
4215 	struct fd f = fdget(fd);
4216 	struct address_space *mapping;
4217 	struct cachestat_range csr;
4218 	struct cachestat cs;
4219 	pgoff_t first_index, last_index;
4220 
4221 	if (!f.file)
4222 		return -EBADF;
4223 
4224 	if (copy_from_user(&csr, cstat_range,
4225 			sizeof(struct cachestat_range))) {
4226 		fdput(f);
4227 		return -EFAULT;
4228 	}
4229 
4230 	/* hugetlbfs is not supported */
4231 	if (is_file_hugepages(f.file)) {
4232 		fdput(f);
4233 		return -EOPNOTSUPP;
4234 	}
4235 
4236 	if (flags != 0) {
4237 		fdput(f);
4238 		return -EINVAL;
4239 	}
4240 
4241 	first_index = csr.off >> PAGE_SHIFT;
4242 	last_index =
4243 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4244 	memset(&cs, 0, sizeof(struct cachestat));
4245 	mapping = f.file->f_mapping;
4246 	filemap_cachestat(mapping, first_index, last_index, &cs);
4247 	fdput(f);
4248 
4249 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4250 		return -EFAULT;
4251 
4252 	return 0;
4253 }
4254 #endif /* CONFIG_CACHESTAT_SYSCALL */
4255