xref: /linux/mm/filemap.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 	loff_t offset, unsigned long nr_segs);
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock		(vmtruncate)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_lock
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_file_buffered_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  ->i_mutex
84  *    ->i_alloc_sem             (various)
85  *
86  *  ->inode_lock
87  *    ->sb_lock			(fs/fs-writeback.c)
88  *    ->mapping->tree_lock	(__sync_single_inode)
89  *
90  *  ->i_mmap_lock
91  *    ->anon_vma.lock		(vma_adjust)
92  *
93  *  ->anon_vma.lock
94  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95  *
96  *  ->page_table_lock or pte_lock
97  *    ->swap_lock		(try_to_unmap_one)
98  *    ->private_lock		(try_to_unmap_one)
99  *    ->tree_lock		(try_to_unmap_one)
100  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102  *    ->private_lock		(page_remove_rmap->set_page_dirty)
103  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  ->task->proc_lock
109  *    ->dcache_lock		(proc_pid_lookup)
110  */
111 
112 /*
113  * Remove a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116  */
117 void __remove_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	mem_cgroup_uncharge_page(page);
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	BUG_ON(page_mapped(page));
127 
128 	/*
129 	 * Some filesystems seem to re-dirty the page even after
130 	 * the VM has canceled the dirty bit (eg ext3 journaling).
131 	 *
132 	 * Fix it up by doing a final dirty accounting check after
133 	 * having removed the page entirely.
134 	 */
135 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 		dec_zone_page_state(page, NR_FILE_DIRTY);
137 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 	}
139 }
140 
141 void remove_from_page_cache(struct page *page)
142 {
143 	struct address_space *mapping = page->mapping;
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	write_lock_irq(&mapping->tree_lock);
148 	__remove_from_page_cache(page);
149 	write_unlock_irq(&mapping->tree_lock);
150 }
151 
152 static int sync_page(void *word)
153 {
154 	struct address_space *mapping;
155 	struct page *page;
156 
157 	page = container_of((unsigned long *)word, struct page, flags);
158 
159 	/*
160 	 * page_mapping() is being called without PG_locked held.
161 	 * Some knowledge of the state and use of the page is used to
162 	 * reduce the requirements down to a memory barrier.
163 	 * The danger here is of a stale page_mapping() return value
164 	 * indicating a struct address_space different from the one it's
165 	 * associated with when it is associated with one.
166 	 * After smp_mb(), it's either the correct page_mapping() for
167 	 * the page, or an old page_mapping() and the page's own
168 	 * page_mapping() has gone NULL.
169 	 * The ->sync_page() address_space operation must tolerate
170 	 * page_mapping() going NULL. By an amazing coincidence,
171 	 * this comes about because none of the users of the page
172 	 * in the ->sync_page() methods make essential use of the
173 	 * page_mapping(), merely passing the page down to the backing
174 	 * device's unplug functions when it's non-NULL, which in turn
175 	 * ignore it for all cases but swap, where only page_private(page) is
176 	 * of interest. When page_mapping() does go NULL, the entire
177 	 * call stack gracefully ignores the page and returns.
178 	 * -- wli
179 	 */
180 	smp_mb();
181 	mapping = page_mapping(page);
182 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 		mapping->a_ops->sync_page(page);
184 	io_schedule();
185 	return 0;
186 }
187 
188 static int sync_page_killable(void *word)
189 {
190 	sync_page(word);
191 	return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193 
194 /**
195  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196  * @mapping:	address space structure to write
197  * @start:	offset in bytes where the range starts
198  * @end:	offset in bytes where the range ends (inclusive)
199  * @sync_mode:	enable synchronous operation
200  *
201  * Start writeback against all of a mapping's dirty pages that lie
202  * within the byte offsets <start, end> inclusive.
203  *
204  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205  * opposed to a regular memory cleansing writeback.  The difference between
206  * these two operations is that if a dirty page/buffer is encountered, it must
207  * be waited upon, and not just skipped over.
208  */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 				loff_t end, int sync_mode)
211 {
212 	int ret;
213 	struct writeback_control wbc = {
214 		.sync_mode = sync_mode,
215 		.nr_to_write = mapping->nrpages * 2,
216 		.range_start = start,
217 		.range_end = end,
218 	};
219 
220 	if (!mapping_cap_writeback_dirty(mapping))
221 		return 0;
222 
223 	ret = do_writepages(mapping, &wbc);
224 	return ret;
225 }
226 
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 	int sync_mode)
229 {
230 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232 
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238 
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 				loff_t end)
241 {
242 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244 
245 /**
246  * filemap_flush - mostly a non-blocking flush
247  * @mapping:	target address_space
248  *
249  * This is a mostly non-blocking flush.  Not suitable for data-integrity
250  * purposes - I/O may not be started against all dirty pages.
251  */
252 int filemap_flush(struct address_space *mapping)
253 {
254 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257 
258 /**
259  * wait_on_page_writeback_range - wait for writeback to complete
260  * @mapping:	target address_space
261  * @start:	beginning page index
262  * @end:	ending page index
263  *
264  * Wait for writeback to complete against pages indexed by start->end
265  * inclusive
266  */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 				pgoff_t start, pgoff_t end)
269 {
270 	struct pagevec pvec;
271 	int nr_pages;
272 	int ret = 0;
273 	pgoff_t index;
274 
275 	if (end < start)
276 		return 0;
277 
278 	pagevec_init(&pvec, 0);
279 	index = start;
280 	while ((index <= end) &&
281 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 			PAGECACHE_TAG_WRITEBACK,
283 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 		unsigned i;
285 
286 		for (i = 0; i < nr_pages; i++) {
287 			struct page *page = pvec.pages[i];
288 
289 			/* until radix tree lookup accepts end_index */
290 			if (page->index > end)
291 				continue;
292 
293 			wait_on_page_writeback(page);
294 			if (PageError(page))
295 				ret = -EIO;
296 		}
297 		pagevec_release(&pvec);
298 		cond_resched();
299 	}
300 
301 	/* Check for outstanding write errors */
302 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 		ret = -EIO;
306 
307 	return ret;
308 }
309 
310 /**
311  * sync_page_range - write and wait on all pages in the passed range
312  * @inode:	target inode
313  * @mapping:	target address_space
314  * @pos:	beginning offset in pages to write
315  * @count:	number of bytes to write
316  *
317  * Write and wait upon all the pages in the passed range.  This is a "data
318  * integrity" operation.  It waits upon in-flight writeout before starting and
319  * waiting upon new writeout.  If there was an IO error, return it.
320  *
321  * We need to re-take i_mutex during the generic_osync_inode list walk because
322  * it is otherwise livelockable.
323  */
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 			loff_t pos, loff_t count)
326 {
327 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 	int ret;
330 
331 	if (!mapping_cap_writeback_dirty(mapping) || !count)
332 		return 0;
333 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 	if (ret == 0) {
335 		mutex_lock(&inode->i_mutex);
336 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 		mutex_unlock(&inode->i_mutex);
338 	}
339 	if (ret == 0)
340 		ret = wait_on_page_writeback_range(mapping, start, end);
341 	return ret;
342 }
343 EXPORT_SYMBOL(sync_page_range);
344 
345 /**
346  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347  * @inode:	target inode
348  * @mapping:	target address_space
349  * @pos:	beginning offset in pages to write
350  * @count:	number of bytes to write
351  *
352  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353  * as it forces O_SYNC writers to different parts of the same file
354  * to be serialised right until io completion.
355  */
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 			   loff_t pos, loff_t count)
358 {
359 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 	int ret;
362 
363 	if (!mapping_cap_writeback_dirty(mapping) || !count)
364 		return 0;
365 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 	if (ret == 0)
367 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 	if (ret == 0)
369 		ret = wait_on_page_writeback_range(mapping, start, end);
370 	return ret;
371 }
372 EXPORT_SYMBOL(sync_page_range_nolock);
373 
374 /**
375  * filemap_fdatawait - wait for all under-writeback pages to complete
376  * @mapping: address space structure to wait for
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * and wait for all of them.
380  */
381 int filemap_fdatawait(struct address_space *mapping)
382 {
383 	loff_t i_size = i_size_read(mapping->host);
384 
385 	if (i_size == 0)
386 		return 0;
387 
388 	return wait_on_page_writeback_range(mapping, 0,
389 				(i_size - 1) >> PAGE_CACHE_SHIFT);
390 }
391 EXPORT_SYMBOL(filemap_fdatawait);
392 
393 int filemap_write_and_wait(struct address_space *mapping)
394 {
395 	int err = 0;
396 
397 	if (mapping->nrpages) {
398 		err = filemap_fdatawrite(mapping);
399 		/*
400 		 * Even if the above returned error, the pages may be
401 		 * written partially (e.g. -ENOSPC), so we wait for it.
402 		 * But the -EIO is special case, it may indicate the worst
403 		 * thing (e.g. bug) happened, so we avoid waiting for it.
404 		 */
405 		if (err != -EIO) {
406 			int err2 = filemap_fdatawait(mapping);
407 			if (!err)
408 				err = err2;
409 		}
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = wait_on_page_writeback_range(mapping,
437 						lstart >> PAGE_CACHE_SHIFT,
438 						lend >> PAGE_CACHE_SHIFT);
439 			if (!err)
440 				err = err2;
441 		}
442 	}
443 	return err;
444 }
445 
446 /**
447  * add_to_page_cache - add newly allocated pagecache pages
448  * @page:	page to add
449  * @mapping:	the page's address_space
450  * @offset:	page index
451  * @gfp_mask:	page allocation mode
452  *
453  * This function is used to add newly allocated pagecache pages;
454  * the page is new, so we can just run SetPageLocked() against it.
455  * The other page state flags were set by rmqueue().
456  *
457  * This function does not add the page to the LRU.  The caller must do that.
458  */
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 		pgoff_t offset, gfp_t gfp_mask)
461 {
462 	int error = mem_cgroup_cache_charge(page, current->mm,
463 					gfp_mask & ~__GFP_HIGHMEM);
464 	if (error)
465 		goto out;
466 
467 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 	if (error == 0) {
469 		write_lock_irq(&mapping->tree_lock);
470 		error = radix_tree_insert(&mapping->page_tree, offset, page);
471 		if (!error) {
472 			page_cache_get(page);
473 			SetPageLocked(page);
474 			page->mapping = mapping;
475 			page->index = offset;
476 			mapping->nrpages++;
477 			__inc_zone_page_state(page, NR_FILE_PAGES);
478 		} else
479 			mem_cgroup_uncharge_page(page);
480 
481 		write_unlock_irq(&mapping->tree_lock);
482 		radix_tree_preload_end();
483 	} else
484 		mem_cgroup_uncharge_page(page);
485 out:
486 	return error;
487 }
488 EXPORT_SYMBOL(add_to_page_cache);
489 
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 				pgoff_t offset, gfp_t gfp_mask)
492 {
493 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494 	if (ret == 0)
495 		lru_cache_add(page);
496 	return ret;
497 }
498 
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
501 {
502 	if (cpuset_do_page_mem_spread()) {
503 		int n = cpuset_mem_spread_node();
504 		return alloc_pages_node(n, gfp, 0);
505 	}
506 	return alloc_pages(gfp, 0);
507 }
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
510 
511 static int __sleep_on_page_lock(void *word)
512 {
513 	io_schedule();
514 	return 0;
515 }
516 
517 /*
518  * In order to wait for pages to become available there must be
519  * waitqueues associated with pages. By using a hash table of
520  * waitqueues where the bucket discipline is to maintain all
521  * waiters on the same queue and wake all when any of the pages
522  * become available, and for the woken contexts to check to be
523  * sure the appropriate page became available, this saves space
524  * at a cost of "thundering herd" phenomena during rare hash
525  * collisions.
526  */
527 static wait_queue_head_t *page_waitqueue(struct page *page)
528 {
529 	const struct zone *zone = page_zone(page);
530 
531 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532 }
533 
534 static inline void wake_up_page(struct page *page, int bit)
535 {
536 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
537 }
538 
539 void wait_on_page_bit(struct page *page, int bit_nr)
540 {
541 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542 
543 	if (test_bit(bit_nr, &page->flags))
544 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
545 							TASK_UNINTERRUPTIBLE);
546 }
547 EXPORT_SYMBOL(wait_on_page_bit);
548 
549 /**
550  * unlock_page - unlock a locked page
551  * @page: the page
552  *
553  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555  * mechananism between PageLocked pages and PageWriteback pages is shared.
556  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557  *
558  * The first mb is necessary to safely close the critical section opened by the
559  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561  * parallel wait_on_page_locked()).
562  */
563 void unlock_page(struct page *page)
564 {
565 	smp_mb__before_clear_bit();
566 	if (!TestClearPageLocked(page))
567 		BUG();
568 	smp_mb__after_clear_bit();
569 	wake_up_page(page, PG_locked);
570 }
571 EXPORT_SYMBOL(unlock_page);
572 
573 /**
574  * end_page_writeback - end writeback against a page
575  * @page: the page
576  */
577 void end_page_writeback(struct page *page)
578 {
579 	if (TestClearPageReclaim(page))
580 		rotate_reclaimable_page(page);
581 
582 	if (!test_clear_page_writeback(page))
583 		BUG();
584 
585 	smp_mb__after_clear_bit();
586 	wake_up_page(page, PG_writeback);
587 }
588 EXPORT_SYMBOL(end_page_writeback);
589 
590 /**
591  * __lock_page - get a lock on the page, assuming we need to sleep to get it
592  * @page: the page to lock
593  *
594  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
595  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
596  * chances are that on the second loop, the block layer's plug list is empty,
597  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
598  */
599 void __lock_page(struct page *page)
600 {
601 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
602 
603 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
604 							TASK_UNINTERRUPTIBLE);
605 }
606 EXPORT_SYMBOL(__lock_page);
607 
608 int __lock_page_killable(struct page *page)
609 {
610 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611 
612 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
613 					sync_page_killable, TASK_KILLABLE);
614 }
615 
616 /**
617  * __lock_page_nosync - get a lock on the page, without calling sync_page()
618  * @page: the page to lock
619  *
620  * Variant of lock_page that does not require the caller to hold a reference
621  * on the page's mapping.
622  */
623 void __lock_page_nosync(struct page *page)
624 {
625 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
627 							TASK_UNINTERRUPTIBLE);
628 }
629 
630 /**
631  * find_get_page - find and get a page reference
632  * @mapping: the address_space to search
633  * @offset: the page index
634  *
635  * Is there a pagecache struct page at the given (mapping, offset) tuple?
636  * If yes, increment its refcount and return it; if no, return NULL.
637  */
638 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
639 {
640 	struct page *page;
641 
642 	read_lock_irq(&mapping->tree_lock);
643 	page = radix_tree_lookup(&mapping->page_tree, offset);
644 	if (page)
645 		page_cache_get(page);
646 	read_unlock_irq(&mapping->tree_lock);
647 	return page;
648 }
649 EXPORT_SYMBOL(find_get_page);
650 
651 /**
652  * find_lock_page - locate, pin and lock a pagecache page
653  * @mapping: the address_space to search
654  * @offset: the page index
655  *
656  * Locates the desired pagecache page, locks it, increments its reference
657  * count and returns its address.
658  *
659  * Returns zero if the page was not present. find_lock_page() may sleep.
660  */
661 struct page *find_lock_page(struct address_space *mapping,
662 				pgoff_t offset)
663 {
664 	struct page *page;
665 
666 repeat:
667 	read_lock_irq(&mapping->tree_lock);
668 	page = radix_tree_lookup(&mapping->page_tree, offset);
669 	if (page) {
670 		page_cache_get(page);
671 		if (TestSetPageLocked(page)) {
672 			read_unlock_irq(&mapping->tree_lock);
673 			__lock_page(page);
674 
675 			/* Has the page been truncated while we slept? */
676 			if (unlikely(page->mapping != mapping)) {
677 				unlock_page(page);
678 				page_cache_release(page);
679 				goto repeat;
680 			}
681 			VM_BUG_ON(page->index != offset);
682 			goto out;
683 		}
684 	}
685 	read_unlock_irq(&mapping->tree_lock);
686 out:
687 	return page;
688 }
689 EXPORT_SYMBOL(find_lock_page);
690 
691 /**
692  * find_or_create_page - locate or add a pagecache page
693  * @mapping: the page's address_space
694  * @index: the page's index into the mapping
695  * @gfp_mask: page allocation mode
696  *
697  * Locates a page in the pagecache.  If the page is not present, a new page
698  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699  * LRU list.  The returned page is locked and has its reference count
700  * incremented.
701  *
702  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
703  * allocation!
704  *
705  * find_or_create_page() returns the desired page's address, or zero on
706  * memory exhaustion.
707  */
708 struct page *find_or_create_page(struct address_space *mapping,
709 		pgoff_t index, gfp_t gfp_mask)
710 {
711 	struct page *page;
712 	int err;
713 repeat:
714 	page = find_lock_page(mapping, index);
715 	if (!page) {
716 		page = __page_cache_alloc(gfp_mask);
717 		if (!page)
718 			return NULL;
719 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
720 		if (unlikely(err)) {
721 			page_cache_release(page);
722 			page = NULL;
723 			if (err == -EEXIST)
724 				goto repeat;
725 		}
726 	}
727 	return page;
728 }
729 EXPORT_SYMBOL(find_or_create_page);
730 
731 /**
732  * find_get_pages - gang pagecache lookup
733  * @mapping:	The address_space to search
734  * @start:	The starting page index
735  * @nr_pages:	The maximum number of pages
736  * @pages:	Where the resulting pages are placed
737  *
738  * find_get_pages() will search for and return a group of up to
739  * @nr_pages pages in the mapping.  The pages are placed at @pages.
740  * find_get_pages() takes a reference against the returned pages.
741  *
742  * The search returns a group of mapping-contiguous pages with ascending
743  * indexes.  There may be holes in the indices due to not-present pages.
744  *
745  * find_get_pages() returns the number of pages which were found.
746  */
747 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
748 			    unsigned int nr_pages, struct page **pages)
749 {
750 	unsigned int i;
751 	unsigned int ret;
752 
753 	read_lock_irq(&mapping->tree_lock);
754 	ret = radix_tree_gang_lookup(&mapping->page_tree,
755 				(void **)pages, start, nr_pages);
756 	for (i = 0; i < ret; i++)
757 		page_cache_get(pages[i]);
758 	read_unlock_irq(&mapping->tree_lock);
759 	return ret;
760 }
761 
762 /**
763  * find_get_pages_contig - gang contiguous pagecache lookup
764  * @mapping:	The address_space to search
765  * @index:	The starting page index
766  * @nr_pages:	The maximum number of pages
767  * @pages:	Where the resulting pages are placed
768  *
769  * find_get_pages_contig() works exactly like find_get_pages(), except
770  * that the returned number of pages are guaranteed to be contiguous.
771  *
772  * find_get_pages_contig() returns the number of pages which were found.
773  */
774 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
775 			       unsigned int nr_pages, struct page **pages)
776 {
777 	unsigned int i;
778 	unsigned int ret;
779 
780 	read_lock_irq(&mapping->tree_lock);
781 	ret = radix_tree_gang_lookup(&mapping->page_tree,
782 				(void **)pages, index, nr_pages);
783 	for (i = 0; i < ret; i++) {
784 		if (pages[i]->mapping == NULL || pages[i]->index != index)
785 			break;
786 
787 		page_cache_get(pages[i]);
788 		index++;
789 	}
790 	read_unlock_irq(&mapping->tree_lock);
791 	return i;
792 }
793 EXPORT_SYMBOL(find_get_pages_contig);
794 
795 /**
796  * find_get_pages_tag - find and return pages that match @tag
797  * @mapping:	the address_space to search
798  * @index:	the starting page index
799  * @tag:	the tag index
800  * @nr_pages:	the maximum number of pages
801  * @pages:	where the resulting pages are placed
802  *
803  * Like find_get_pages, except we only return pages which are tagged with
804  * @tag.   We update @index to index the next page for the traversal.
805  */
806 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
807 			int tag, unsigned int nr_pages, struct page **pages)
808 {
809 	unsigned int i;
810 	unsigned int ret;
811 
812 	read_lock_irq(&mapping->tree_lock);
813 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
814 				(void **)pages, *index, nr_pages, tag);
815 	for (i = 0; i < ret; i++)
816 		page_cache_get(pages[i]);
817 	if (ret)
818 		*index = pages[ret - 1]->index + 1;
819 	read_unlock_irq(&mapping->tree_lock);
820 	return ret;
821 }
822 EXPORT_SYMBOL(find_get_pages_tag);
823 
824 /**
825  * grab_cache_page_nowait - returns locked page at given index in given cache
826  * @mapping: target address_space
827  * @index: the page index
828  *
829  * Same as grab_cache_page(), but do not wait if the page is unavailable.
830  * This is intended for speculative data generators, where the data can
831  * be regenerated if the page couldn't be grabbed.  This routine should
832  * be safe to call while holding the lock for another page.
833  *
834  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835  * and deadlock against the caller's locked page.
836  */
837 struct page *
838 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
839 {
840 	struct page *page = find_get_page(mapping, index);
841 
842 	if (page) {
843 		if (!TestSetPageLocked(page))
844 			return page;
845 		page_cache_release(page);
846 		return NULL;
847 	}
848 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
849 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
850 		page_cache_release(page);
851 		page = NULL;
852 	}
853 	return page;
854 }
855 EXPORT_SYMBOL(grab_cache_page_nowait);
856 
857 /*
858  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859  * a _large_ part of the i/o request. Imagine the worst scenario:
860  *
861  *      ---R__________________________________________B__________
862  *         ^ reading here                             ^ bad block(assume 4k)
863  *
864  * read(R) => miss => readahead(R...B) => media error => frustrating retries
865  * => failing the whole request => read(R) => read(R+1) =>
866  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
869  *
870  * It is going insane. Fix it by quickly scaling down the readahead size.
871  */
872 static void shrink_readahead_size_eio(struct file *filp,
873 					struct file_ra_state *ra)
874 {
875 	if (!ra->ra_pages)
876 		return;
877 
878 	ra->ra_pages /= 4;
879 }
880 
881 /**
882  * do_generic_file_read - generic file read routine
883  * @filp:	the file to read
884  * @ppos:	current file position
885  * @desc:	read_descriptor
886  * @actor:	read method
887  *
888  * This is a generic file read routine, and uses the
889  * mapping->a_ops->readpage() function for the actual low-level stuff.
890  *
891  * This is really ugly. But the goto's actually try to clarify some
892  * of the logic when it comes to error handling etc.
893  */
894 static void do_generic_file_read(struct file *filp, loff_t *ppos,
895 		read_descriptor_t *desc, read_actor_t actor)
896 {
897 	struct address_space *mapping = filp->f_mapping;
898 	struct inode *inode = mapping->host;
899 	struct file_ra_state *ra = &filp->f_ra;
900 	pgoff_t index;
901 	pgoff_t last_index;
902 	pgoff_t prev_index;
903 	unsigned long offset;      /* offset into pagecache page */
904 	unsigned int prev_offset;
905 	int error;
906 
907 	index = *ppos >> PAGE_CACHE_SHIFT;
908 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
909 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
910 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
911 	offset = *ppos & ~PAGE_CACHE_MASK;
912 
913 	for (;;) {
914 		struct page *page;
915 		pgoff_t end_index;
916 		loff_t isize;
917 		unsigned long nr, ret;
918 
919 		cond_resched();
920 find_page:
921 		page = find_get_page(mapping, index);
922 		if (!page) {
923 			page_cache_sync_readahead(mapping,
924 					ra, filp,
925 					index, last_index - index);
926 			page = find_get_page(mapping, index);
927 			if (unlikely(page == NULL))
928 				goto no_cached_page;
929 		}
930 		if (PageReadahead(page)) {
931 			page_cache_async_readahead(mapping,
932 					ra, filp, page,
933 					index, last_index - index);
934 		}
935 		if (!PageUptodate(page))
936 			goto page_not_up_to_date;
937 page_ok:
938 		/*
939 		 * i_size must be checked after we know the page is Uptodate.
940 		 *
941 		 * Checking i_size after the check allows us to calculate
942 		 * the correct value for "nr", which means the zero-filled
943 		 * part of the page is not copied back to userspace (unless
944 		 * another truncate extends the file - this is desired though).
945 		 */
946 
947 		isize = i_size_read(inode);
948 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
949 		if (unlikely(!isize || index > end_index)) {
950 			page_cache_release(page);
951 			goto out;
952 		}
953 
954 		/* nr is the maximum number of bytes to copy from this page */
955 		nr = PAGE_CACHE_SIZE;
956 		if (index == end_index) {
957 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
958 			if (nr <= offset) {
959 				page_cache_release(page);
960 				goto out;
961 			}
962 		}
963 		nr = nr - offset;
964 
965 		/* If users can be writing to this page using arbitrary
966 		 * virtual addresses, take care about potential aliasing
967 		 * before reading the page on the kernel side.
968 		 */
969 		if (mapping_writably_mapped(mapping))
970 			flush_dcache_page(page);
971 
972 		/*
973 		 * When a sequential read accesses a page several times,
974 		 * only mark it as accessed the first time.
975 		 */
976 		if (prev_index != index || offset != prev_offset)
977 			mark_page_accessed(page);
978 		prev_index = index;
979 
980 		/*
981 		 * Ok, we have the page, and it's up-to-date, so
982 		 * now we can copy it to user space...
983 		 *
984 		 * The actor routine returns how many bytes were actually used..
985 		 * NOTE! This may not be the same as how much of a user buffer
986 		 * we filled up (we may be padding etc), so we can only update
987 		 * "pos" here (the actor routine has to update the user buffer
988 		 * pointers and the remaining count).
989 		 */
990 		ret = actor(desc, page, offset, nr);
991 		offset += ret;
992 		index += offset >> PAGE_CACHE_SHIFT;
993 		offset &= ~PAGE_CACHE_MASK;
994 		prev_offset = offset;
995 
996 		page_cache_release(page);
997 		if (ret == nr && desc->count)
998 			continue;
999 		goto out;
1000 
1001 page_not_up_to_date:
1002 		/* Get exclusive access to the page ... */
1003 		if (lock_page_killable(page))
1004 			goto readpage_eio;
1005 
1006 		/* Did it get truncated before we got the lock? */
1007 		if (!page->mapping) {
1008 			unlock_page(page);
1009 			page_cache_release(page);
1010 			continue;
1011 		}
1012 
1013 		/* Did somebody else fill it already? */
1014 		if (PageUptodate(page)) {
1015 			unlock_page(page);
1016 			goto page_ok;
1017 		}
1018 
1019 readpage:
1020 		/* Start the actual read. The read will unlock the page. */
1021 		error = mapping->a_ops->readpage(filp, page);
1022 
1023 		if (unlikely(error)) {
1024 			if (error == AOP_TRUNCATED_PAGE) {
1025 				page_cache_release(page);
1026 				goto find_page;
1027 			}
1028 			goto readpage_error;
1029 		}
1030 
1031 		if (!PageUptodate(page)) {
1032 			if (lock_page_killable(page))
1033 				goto readpage_eio;
1034 			if (!PageUptodate(page)) {
1035 				if (page->mapping == NULL) {
1036 					/*
1037 					 * invalidate_inode_pages got it
1038 					 */
1039 					unlock_page(page);
1040 					page_cache_release(page);
1041 					goto find_page;
1042 				}
1043 				unlock_page(page);
1044 				shrink_readahead_size_eio(filp, ra);
1045 				goto readpage_eio;
1046 			}
1047 			unlock_page(page);
1048 		}
1049 
1050 		goto page_ok;
1051 
1052 readpage_eio:
1053 		error = -EIO;
1054 readpage_error:
1055 		/* UHHUH! A synchronous read error occurred. Report it */
1056 		desc->error = error;
1057 		page_cache_release(page);
1058 		goto out;
1059 
1060 no_cached_page:
1061 		/*
1062 		 * Ok, it wasn't cached, so we need to create a new
1063 		 * page..
1064 		 */
1065 		page = page_cache_alloc_cold(mapping);
1066 		if (!page) {
1067 			desc->error = -ENOMEM;
1068 			goto out;
1069 		}
1070 		error = add_to_page_cache_lru(page, mapping,
1071 						index, GFP_KERNEL);
1072 		if (error) {
1073 			page_cache_release(page);
1074 			if (error == -EEXIST)
1075 				goto find_page;
1076 			desc->error = error;
1077 			goto out;
1078 		}
1079 		goto readpage;
1080 	}
1081 
1082 out:
1083 	ra->prev_pos = prev_index;
1084 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1085 	ra->prev_pos |= prev_offset;
1086 
1087 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1088 	if (filp)
1089 		file_accessed(filp);
1090 }
1091 
1092 int file_read_actor(read_descriptor_t *desc, struct page *page,
1093 			unsigned long offset, unsigned long size)
1094 {
1095 	char *kaddr;
1096 	unsigned long left, count = desc->count;
1097 
1098 	if (size > count)
1099 		size = count;
1100 
1101 	/*
1102 	 * Faults on the destination of a read are common, so do it before
1103 	 * taking the kmap.
1104 	 */
1105 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1106 		kaddr = kmap_atomic(page, KM_USER0);
1107 		left = __copy_to_user_inatomic(desc->arg.buf,
1108 						kaddr + offset, size);
1109 		kunmap_atomic(kaddr, KM_USER0);
1110 		if (left == 0)
1111 			goto success;
1112 	}
1113 
1114 	/* Do it the slow way */
1115 	kaddr = kmap(page);
1116 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1117 	kunmap(page);
1118 
1119 	if (left) {
1120 		size -= left;
1121 		desc->error = -EFAULT;
1122 	}
1123 success:
1124 	desc->count = count - size;
1125 	desc->written += size;
1126 	desc->arg.buf += size;
1127 	return size;
1128 }
1129 
1130 /*
1131  * Performs necessary checks before doing a write
1132  * @iov:	io vector request
1133  * @nr_segs:	number of segments in the iovec
1134  * @count:	number of bytes to write
1135  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1136  *
1137  * Adjust number of segments and amount of bytes to write (nr_segs should be
1138  * properly initialized first). Returns appropriate error code that caller
1139  * should return or zero in case that write should be allowed.
1140  */
1141 int generic_segment_checks(const struct iovec *iov,
1142 			unsigned long *nr_segs, size_t *count, int access_flags)
1143 {
1144 	unsigned long   seg;
1145 	size_t cnt = 0;
1146 	for (seg = 0; seg < *nr_segs; seg++) {
1147 		const struct iovec *iv = &iov[seg];
1148 
1149 		/*
1150 		 * If any segment has a negative length, or the cumulative
1151 		 * length ever wraps negative then return -EINVAL.
1152 		 */
1153 		cnt += iv->iov_len;
1154 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1155 			return -EINVAL;
1156 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1157 			continue;
1158 		if (seg == 0)
1159 			return -EFAULT;
1160 		*nr_segs = seg;
1161 		cnt -= iv->iov_len;	/* This segment is no good */
1162 		break;
1163 	}
1164 	*count = cnt;
1165 	return 0;
1166 }
1167 EXPORT_SYMBOL(generic_segment_checks);
1168 
1169 /**
1170  * generic_file_aio_read - generic filesystem read routine
1171  * @iocb:	kernel I/O control block
1172  * @iov:	io vector request
1173  * @nr_segs:	number of segments in the iovec
1174  * @pos:	current file position
1175  *
1176  * This is the "read()" routine for all filesystems
1177  * that can use the page cache directly.
1178  */
1179 ssize_t
1180 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1181 		unsigned long nr_segs, loff_t pos)
1182 {
1183 	struct file *filp = iocb->ki_filp;
1184 	ssize_t retval;
1185 	unsigned long seg;
1186 	size_t count;
1187 	loff_t *ppos = &iocb->ki_pos;
1188 
1189 	count = 0;
1190 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1191 	if (retval)
1192 		return retval;
1193 
1194 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195 	if (filp->f_flags & O_DIRECT) {
1196 		loff_t size;
1197 		struct address_space *mapping;
1198 		struct inode *inode;
1199 
1200 		mapping = filp->f_mapping;
1201 		inode = mapping->host;
1202 		retval = 0;
1203 		if (!count)
1204 			goto out; /* skip atime */
1205 		size = i_size_read(inode);
1206 		if (pos < size) {
1207 			retval = generic_file_direct_IO(READ, iocb,
1208 						iov, pos, nr_segs);
1209 			if (retval > 0)
1210 				*ppos = pos + retval;
1211 		}
1212 		if (likely(retval != 0)) {
1213 			file_accessed(filp);
1214 			goto out;
1215 		}
1216 	}
1217 
1218 	retval = 0;
1219 	if (count) {
1220 		for (seg = 0; seg < nr_segs; seg++) {
1221 			read_descriptor_t desc;
1222 
1223 			desc.written = 0;
1224 			desc.arg.buf = iov[seg].iov_base;
1225 			desc.count = iov[seg].iov_len;
1226 			if (desc.count == 0)
1227 				continue;
1228 			desc.error = 0;
1229 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1230 			retval += desc.written;
1231 			if (desc.error) {
1232 				retval = retval ?: desc.error;
1233 				break;
1234 			}
1235 			if (desc.count > 0)
1236 				break;
1237 		}
1238 	}
1239 out:
1240 	return retval;
1241 }
1242 EXPORT_SYMBOL(generic_file_aio_read);
1243 
1244 static ssize_t
1245 do_readahead(struct address_space *mapping, struct file *filp,
1246 	     pgoff_t index, unsigned long nr)
1247 {
1248 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1249 		return -EINVAL;
1250 
1251 	force_page_cache_readahead(mapping, filp, index,
1252 					max_sane_readahead(nr));
1253 	return 0;
1254 }
1255 
1256 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1257 {
1258 	ssize_t ret;
1259 	struct file *file;
1260 
1261 	ret = -EBADF;
1262 	file = fget(fd);
1263 	if (file) {
1264 		if (file->f_mode & FMODE_READ) {
1265 			struct address_space *mapping = file->f_mapping;
1266 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1267 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1268 			unsigned long len = end - start + 1;
1269 			ret = do_readahead(mapping, file, start, len);
1270 		}
1271 		fput(file);
1272 	}
1273 	return ret;
1274 }
1275 
1276 #ifdef CONFIG_MMU
1277 /**
1278  * page_cache_read - adds requested page to the page cache if not already there
1279  * @file:	file to read
1280  * @offset:	page index
1281  *
1282  * This adds the requested page to the page cache if it isn't already there,
1283  * and schedules an I/O to read in its contents from disk.
1284  */
1285 static int page_cache_read(struct file *file, pgoff_t offset)
1286 {
1287 	struct address_space *mapping = file->f_mapping;
1288 	struct page *page;
1289 	int ret;
1290 
1291 	do {
1292 		page = page_cache_alloc_cold(mapping);
1293 		if (!page)
1294 			return -ENOMEM;
1295 
1296 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1297 		if (ret == 0)
1298 			ret = mapping->a_ops->readpage(file, page);
1299 		else if (ret == -EEXIST)
1300 			ret = 0; /* losing race to add is OK */
1301 
1302 		page_cache_release(page);
1303 
1304 	} while (ret == AOP_TRUNCATED_PAGE);
1305 
1306 	return ret;
1307 }
1308 
1309 #define MMAP_LOTSAMISS  (100)
1310 
1311 /**
1312  * filemap_fault - read in file data for page fault handling
1313  * @vma:	vma in which the fault was taken
1314  * @vmf:	struct vm_fault containing details of the fault
1315  *
1316  * filemap_fault() is invoked via the vma operations vector for a
1317  * mapped memory region to read in file data during a page fault.
1318  *
1319  * The goto's are kind of ugly, but this streamlines the normal case of having
1320  * it in the page cache, and handles the special cases reasonably without
1321  * having a lot of duplicated code.
1322  */
1323 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325 	int error;
1326 	struct file *file = vma->vm_file;
1327 	struct address_space *mapping = file->f_mapping;
1328 	struct file_ra_state *ra = &file->f_ra;
1329 	struct inode *inode = mapping->host;
1330 	struct page *page;
1331 	pgoff_t size;
1332 	int did_readaround = 0;
1333 	int ret = 0;
1334 
1335 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1336 	if (vmf->pgoff >= size)
1337 		return VM_FAULT_SIGBUS;
1338 
1339 	/* If we don't want any read-ahead, don't bother */
1340 	if (VM_RandomReadHint(vma))
1341 		goto no_cached_page;
1342 
1343 	/*
1344 	 * Do we have something in the page cache already?
1345 	 */
1346 retry_find:
1347 	page = find_lock_page(mapping, vmf->pgoff);
1348 	/*
1349 	 * For sequential accesses, we use the generic readahead logic.
1350 	 */
1351 	if (VM_SequentialReadHint(vma)) {
1352 		if (!page) {
1353 			page_cache_sync_readahead(mapping, ra, file,
1354 							   vmf->pgoff, 1);
1355 			page = find_lock_page(mapping, vmf->pgoff);
1356 			if (!page)
1357 				goto no_cached_page;
1358 		}
1359 		if (PageReadahead(page)) {
1360 			page_cache_async_readahead(mapping, ra, file, page,
1361 							   vmf->pgoff, 1);
1362 		}
1363 	}
1364 
1365 	if (!page) {
1366 		unsigned long ra_pages;
1367 
1368 		ra->mmap_miss++;
1369 
1370 		/*
1371 		 * Do we miss much more than hit in this file? If so,
1372 		 * stop bothering with read-ahead. It will only hurt.
1373 		 */
1374 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1375 			goto no_cached_page;
1376 
1377 		/*
1378 		 * To keep the pgmajfault counter straight, we need to
1379 		 * check did_readaround, as this is an inner loop.
1380 		 */
1381 		if (!did_readaround) {
1382 			ret = VM_FAULT_MAJOR;
1383 			count_vm_event(PGMAJFAULT);
1384 		}
1385 		did_readaround = 1;
1386 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1387 		if (ra_pages) {
1388 			pgoff_t start = 0;
1389 
1390 			if (vmf->pgoff > ra_pages / 2)
1391 				start = vmf->pgoff - ra_pages / 2;
1392 			do_page_cache_readahead(mapping, file, start, ra_pages);
1393 		}
1394 		page = find_lock_page(mapping, vmf->pgoff);
1395 		if (!page)
1396 			goto no_cached_page;
1397 	}
1398 
1399 	if (!did_readaround)
1400 		ra->mmap_miss--;
1401 
1402 	/*
1403 	 * We have a locked page in the page cache, now we need to check
1404 	 * that it's up-to-date. If not, it is going to be due to an error.
1405 	 */
1406 	if (unlikely(!PageUptodate(page)))
1407 		goto page_not_uptodate;
1408 
1409 	/* Must recheck i_size under page lock */
1410 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1411 	if (unlikely(vmf->pgoff >= size)) {
1412 		unlock_page(page);
1413 		page_cache_release(page);
1414 		return VM_FAULT_SIGBUS;
1415 	}
1416 
1417 	/*
1418 	 * Found the page and have a reference on it.
1419 	 */
1420 	mark_page_accessed(page);
1421 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1422 	vmf->page = page;
1423 	return ret | VM_FAULT_LOCKED;
1424 
1425 no_cached_page:
1426 	/*
1427 	 * We're only likely to ever get here if MADV_RANDOM is in
1428 	 * effect.
1429 	 */
1430 	error = page_cache_read(file, vmf->pgoff);
1431 
1432 	/*
1433 	 * The page we want has now been added to the page cache.
1434 	 * In the unlikely event that someone removed it in the
1435 	 * meantime, we'll just come back here and read it again.
1436 	 */
1437 	if (error >= 0)
1438 		goto retry_find;
1439 
1440 	/*
1441 	 * An error return from page_cache_read can result if the
1442 	 * system is low on memory, or a problem occurs while trying
1443 	 * to schedule I/O.
1444 	 */
1445 	if (error == -ENOMEM)
1446 		return VM_FAULT_OOM;
1447 	return VM_FAULT_SIGBUS;
1448 
1449 page_not_uptodate:
1450 	/* IO error path */
1451 	if (!did_readaround) {
1452 		ret = VM_FAULT_MAJOR;
1453 		count_vm_event(PGMAJFAULT);
1454 	}
1455 
1456 	/*
1457 	 * Umm, take care of errors if the page isn't up-to-date.
1458 	 * Try to re-read it _once_. We do this synchronously,
1459 	 * because there really aren't any performance issues here
1460 	 * and we need to check for errors.
1461 	 */
1462 	ClearPageError(page);
1463 	error = mapping->a_ops->readpage(file, page);
1464 	page_cache_release(page);
1465 
1466 	if (!error || error == AOP_TRUNCATED_PAGE)
1467 		goto retry_find;
1468 
1469 	/* Things didn't work out. Return zero to tell the mm layer so. */
1470 	shrink_readahead_size_eio(file, ra);
1471 	return VM_FAULT_SIGBUS;
1472 }
1473 EXPORT_SYMBOL(filemap_fault);
1474 
1475 struct vm_operations_struct generic_file_vm_ops = {
1476 	.fault		= filemap_fault,
1477 };
1478 
1479 /* This is used for a general mmap of a disk file */
1480 
1481 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1482 {
1483 	struct address_space *mapping = file->f_mapping;
1484 
1485 	if (!mapping->a_ops->readpage)
1486 		return -ENOEXEC;
1487 	file_accessed(file);
1488 	vma->vm_ops = &generic_file_vm_ops;
1489 	vma->vm_flags |= VM_CAN_NONLINEAR;
1490 	return 0;
1491 }
1492 
1493 /*
1494  * This is for filesystems which do not implement ->writepage.
1495  */
1496 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1497 {
1498 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1499 		return -EINVAL;
1500 	return generic_file_mmap(file, vma);
1501 }
1502 #else
1503 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1504 {
1505 	return -ENOSYS;
1506 }
1507 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1508 {
1509 	return -ENOSYS;
1510 }
1511 #endif /* CONFIG_MMU */
1512 
1513 EXPORT_SYMBOL(generic_file_mmap);
1514 EXPORT_SYMBOL(generic_file_readonly_mmap);
1515 
1516 static struct page *__read_cache_page(struct address_space *mapping,
1517 				pgoff_t index,
1518 				int (*filler)(void *,struct page*),
1519 				void *data)
1520 {
1521 	struct page *page;
1522 	int err;
1523 repeat:
1524 	page = find_get_page(mapping, index);
1525 	if (!page) {
1526 		page = page_cache_alloc_cold(mapping);
1527 		if (!page)
1528 			return ERR_PTR(-ENOMEM);
1529 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1530 		if (unlikely(err)) {
1531 			page_cache_release(page);
1532 			if (err == -EEXIST)
1533 				goto repeat;
1534 			/* Presumably ENOMEM for radix tree node */
1535 			return ERR_PTR(err);
1536 		}
1537 		err = filler(data, page);
1538 		if (err < 0) {
1539 			page_cache_release(page);
1540 			page = ERR_PTR(err);
1541 		}
1542 	}
1543 	return page;
1544 }
1545 
1546 /**
1547  * read_cache_page_async - read into page cache, fill it if needed
1548  * @mapping:	the page's address_space
1549  * @index:	the page index
1550  * @filler:	function to perform the read
1551  * @data:	destination for read data
1552  *
1553  * Same as read_cache_page, but don't wait for page to become unlocked
1554  * after submitting it to the filler.
1555  *
1556  * Read into the page cache. If a page already exists, and PageUptodate() is
1557  * not set, try to fill the page but don't wait for it to become unlocked.
1558  *
1559  * If the page does not get brought uptodate, return -EIO.
1560  */
1561 struct page *read_cache_page_async(struct address_space *mapping,
1562 				pgoff_t index,
1563 				int (*filler)(void *,struct page*),
1564 				void *data)
1565 {
1566 	struct page *page;
1567 	int err;
1568 
1569 retry:
1570 	page = __read_cache_page(mapping, index, filler, data);
1571 	if (IS_ERR(page))
1572 		return page;
1573 	if (PageUptodate(page))
1574 		goto out;
1575 
1576 	lock_page(page);
1577 	if (!page->mapping) {
1578 		unlock_page(page);
1579 		page_cache_release(page);
1580 		goto retry;
1581 	}
1582 	if (PageUptodate(page)) {
1583 		unlock_page(page);
1584 		goto out;
1585 	}
1586 	err = filler(data, page);
1587 	if (err < 0) {
1588 		page_cache_release(page);
1589 		return ERR_PTR(err);
1590 	}
1591 out:
1592 	mark_page_accessed(page);
1593 	return page;
1594 }
1595 EXPORT_SYMBOL(read_cache_page_async);
1596 
1597 /**
1598  * read_cache_page - read into page cache, fill it if needed
1599  * @mapping:	the page's address_space
1600  * @index:	the page index
1601  * @filler:	function to perform the read
1602  * @data:	destination for read data
1603  *
1604  * Read into the page cache. If a page already exists, and PageUptodate() is
1605  * not set, try to fill the page then wait for it to become unlocked.
1606  *
1607  * If the page does not get brought uptodate, return -EIO.
1608  */
1609 struct page *read_cache_page(struct address_space *mapping,
1610 				pgoff_t index,
1611 				int (*filler)(void *,struct page*),
1612 				void *data)
1613 {
1614 	struct page *page;
1615 
1616 	page = read_cache_page_async(mapping, index, filler, data);
1617 	if (IS_ERR(page))
1618 		goto out;
1619 	wait_on_page_locked(page);
1620 	if (!PageUptodate(page)) {
1621 		page_cache_release(page);
1622 		page = ERR_PTR(-EIO);
1623 	}
1624  out:
1625 	return page;
1626 }
1627 EXPORT_SYMBOL(read_cache_page);
1628 
1629 /*
1630  * The logic we want is
1631  *
1632  *	if suid or (sgid and xgrp)
1633  *		remove privs
1634  */
1635 int should_remove_suid(struct dentry *dentry)
1636 {
1637 	mode_t mode = dentry->d_inode->i_mode;
1638 	int kill = 0;
1639 
1640 	/* suid always must be killed */
1641 	if (unlikely(mode & S_ISUID))
1642 		kill = ATTR_KILL_SUID;
1643 
1644 	/*
1645 	 * sgid without any exec bits is just a mandatory locking mark; leave
1646 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1647 	 */
1648 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1649 		kill |= ATTR_KILL_SGID;
1650 
1651 	if (unlikely(kill && !capable(CAP_FSETID)))
1652 		return kill;
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(should_remove_suid);
1657 
1658 int __remove_suid(struct dentry *dentry, int kill)
1659 {
1660 	struct iattr newattrs;
1661 
1662 	newattrs.ia_valid = ATTR_FORCE | kill;
1663 	return notify_change(dentry, &newattrs);
1664 }
1665 
1666 int remove_suid(struct dentry *dentry)
1667 {
1668 	int killsuid = should_remove_suid(dentry);
1669 	int killpriv = security_inode_need_killpriv(dentry);
1670 	int error = 0;
1671 
1672 	if (killpriv < 0)
1673 		return killpriv;
1674 	if (killpriv)
1675 		error = security_inode_killpriv(dentry);
1676 	if (!error && killsuid)
1677 		error = __remove_suid(dentry, killsuid);
1678 
1679 	return error;
1680 }
1681 EXPORT_SYMBOL(remove_suid);
1682 
1683 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1684 			const struct iovec *iov, size_t base, size_t bytes)
1685 {
1686 	size_t copied = 0, left = 0;
1687 
1688 	while (bytes) {
1689 		char __user *buf = iov->iov_base + base;
1690 		int copy = min(bytes, iov->iov_len - base);
1691 
1692 		base = 0;
1693 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1694 		copied += copy;
1695 		bytes -= copy;
1696 		vaddr += copy;
1697 		iov++;
1698 
1699 		if (unlikely(left))
1700 			break;
1701 	}
1702 	return copied - left;
1703 }
1704 
1705 /*
1706  * Copy as much as we can into the page and return the number of bytes which
1707  * were sucessfully copied.  If a fault is encountered then return the number of
1708  * bytes which were copied.
1709  */
1710 size_t iov_iter_copy_from_user_atomic(struct page *page,
1711 		struct iov_iter *i, unsigned long offset, size_t bytes)
1712 {
1713 	char *kaddr;
1714 	size_t copied;
1715 
1716 	BUG_ON(!in_atomic());
1717 	kaddr = kmap_atomic(page, KM_USER0);
1718 	if (likely(i->nr_segs == 1)) {
1719 		int left;
1720 		char __user *buf = i->iov->iov_base + i->iov_offset;
1721 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1722 							buf, bytes);
1723 		copied = bytes - left;
1724 	} else {
1725 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1726 						i->iov, i->iov_offset, bytes);
1727 	}
1728 	kunmap_atomic(kaddr, KM_USER0);
1729 
1730 	return copied;
1731 }
1732 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1733 
1734 /*
1735  * This has the same sideeffects and return value as
1736  * iov_iter_copy_from_user_atomic().
1737  * The difference is that it attempts to resolve faults.
1738  * Page must not be locked.
1739  */
1740 size_t iov_iter_copy_from_user(struct page *page,
1741 		struct iov_iter *i, unsigned long offset, size_t bytes)
1742 {
1743 	char *kaddr;
1744 	size_t copied;
1745 
1746 	kaddr = kmap(page);
1747 	if (likely(i->nr_segs == 1)) {
1748 		int left;
1749 		char __user *buf = i->iov->iov_base + i->iov_offset;
1750 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1751 		copied = bytes - left;
1752 	} else {
1753 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1754 						i->iov, i->iov_offset, bytes);
1755 	}
1756 	kunmap(page);
1757 	return copied;
1758 }
1759 EXPORT_SYMBOL(iov_iter_copy_from_user);
1760 
1761 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1762 {
1763 	BUG_ON(i->count < bytes);
1764 
1765 	if (likely(i->nr_segs == 1)) {
1766 		i->iov_offset += bytes;
1767 		i->count -= bytes;
1768 	} else {
1769 		const struct iovec *iov = i->iov;
1770 		size_t base = i->iov_offset;
1771 
1772 		/*
1773 		 * The !iov->iov_len check ensures we skip over unlikely
1774 		 * zero-length segments (without overruning the iovec).
1775 		 */
1776 		while (bytes || unlikely(!iov->iov_len && i->count)) {
1777 			int copy;
1778 
1779 			copy = min(bytes, iov->iov_len - base);
1780 			BUG_ON(!i->count || i->count < copy);
1781 			i->count -= copy;
1782 			bytes -= copy;
1783 			base += copy;
1784 			if (iov->iov_len == base) {
1785 				iov++;
1786 				base = 0;
1787 			}
1788 		}
1789 		i->iov = iov;
1790 		i->iov_offset = base;
1791 	}
1792 }
1793 EXPORT_SYMBOL(iov_iter_advance);
1794 
1795 /*
1796  * Fault in the first iovec of the given iov_iter, to a maximum length
1797  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1798  * accessed (ie. because it is an invalid address).
1799  *
1800  * writev-intensive code may want this to prefault several iovecs -- that
1801  * would be possible (callers must not rely on the fact that _only_ the
1802  * first iovec will be faulted with the current implementation).
1803  */
1804 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1805 {
1806 	char __user *buf = i->iov->iov_base + i->iov_offset;
1807 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1808 	return fault_in_pages_readable(buf, bytes);
1809 }
1810 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1811 
1812 /*
1813  * Return the count of just the current iov_iter segment.
1814  */
1815 size_t iov_iter_single_seg_count(struct iov_iter *i)
1816 {
1817 	const struct iovec *iov = i->iov;
1818 	if (i->nr_segs == 1)
1819 		return i->count;
1820 	else
1821 		return min(i->count, iov->iov_len - i->iov_offset);
1822 }
1823 EXPORT_SYMBOL(iov_iter_single_seg_count);
1824 
1825 /*
1826  * Performs necessary checks before doing a write
1827  *
1828  * Can adjust writing position or amount of bytes to write.
1829  * Returns appropriate error code that caller should return or
1830  * zero in case that write should be allowed.
1831  */
1832 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1833 {
1834 	struct inode *inode = file->f_mapping->host;
1835 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1836 
1837         if (unlikely(*pos < 0))
1838                 return -EINVAL;
1839 
1840 	if (!isblk) {
1841 		/* FIXME: this is for backwards compatibility with 2.4 */
1842 		if (file->f_flags & O_APPEND)
1843                         *pos = i_size_read(inode);
1844 
1845 		if (limit != RLIM_INFINITY) {
1846 			if (*pos >= limit) {
1847 				send_sig(SIGXFSZ, current, 0);
1848 				return -EFBIG;
1849 			}
1850 			if (*count > limit - (typeof(limit))*pos) {
1851 				*count = limit - (typeof(limit))*pos;
1852 			}
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * LFS rule
1858 	 */
1859 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1860 				!(file->f_flags & O_LARGEFILE))) {
1861 		if (*pos >= MAX_NON_LFS) {
1862 			return -EFBIG;
1863 		}
1864 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1865 			*count = MAX_NON_LFS - (unsigned long)*pos;
1866 		}
1867 	}
1868 
1869 	/*
1870 	 * Are we about to exceed the fs block limit ?
1871 	 *
1872 	 * If we have written data it becomes a short write.  If we have
1873 	 * exceeded without writing data we send a signal and return EFBIG.
1874 	 * Linus frestrict idea will clean these up nicely..
1875 	 */
1876 	if (likely(!isblk)) {
1877 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1878 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1879 				return -EFBIG;
1880 			}
1881 			/* zero-length writes at ->s_maxbytes are OK */
1882 		}
1883 
1884 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1885 			*count = inode->i_sb->s_maxbytes - *pos;
1886 	} else {
1887 #ifdef CONFIG_BLOCK
1888 		loff_t isize;
1889 		if (bdev_read_only(I_BDEV(inode)))
1890 			return -EPERM;
1891 		isize = i_size_read(inode);
1892 		if (*pos >= isize) {
1893 			if (*count || *pos > isize)
1894 				return -ENOSPC;
1895 		}
1896 
1897 		if (*pos + *count > isize)
1898 			*count = isize - *pos;
1899 #else
1900 		return -EPERM;
1901 #endif
1902 	}
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL(generic_write_checks);
1906 
1907 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1908 				loff_t pos, unsigned len, unsigned flags,
1909 				struct page **pagep, void **fsdata)
1910 {
1911 	const struct address_space_operations *aops = mapping->a_ops;
1912 
1913 	if (aops->write_begin) {
1914 		return aops->write_begin(file, mapping, pos, len, flags,
1915 							pagep, fsdata);
1916 	} else {
1917 		int ret;
1918 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1919 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1920 		struct inode *inode = mapping->host;
1921 		struct page *page;
1922 again:
1923 		page = __grab_cache_page(mapping, index);
1924 		*pagep = page;
1925 		if (!page)
1926 			return -ENOMEM;
1927 
1928 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1929 			/*
1930 			 * There is no way to resolve a short write situation
1931 			 * for a !Uptodate page (except by double copying in
1932 			 * the caller done by generic_perform_write_2copy).
1933 			 *
1934 			 * Instead, we have to bring it uptodate here.
1935 			 */
1936 			ret = aops->readpage(file, page);
1937 			page_cache_release(page);
1938 			if (ret) {
1939 				if (ret == AOP_TRUNCATED_PAGE)
1940 					goto again;
1941 				return ret;
1942 			}
1943 			goto again;
1944 		}
1945 
1946 		ret = aops->prepare_write(file, page, offset, offset+len);
1947 		if (ret) {
1948 			unlock_page(page);
1949 			page_cache_release(page);
1950 			if (pos + len > inode->i_size)
1951 				vmtruncate(inode, inode->i_size);
1952 		}
1953 		return ret;
1954 	}
1955 }
1956 EXPORT_SYMBOL(pagecache_write_begin);
1957 
1958 int pagecache_write_end(struct file *file, struct address_space *mapping,
1959 				loff_t pos, unsigned len, unsigned copied,
1960 				struct page *page, void *fsdata)
1961 {
1962 	const struct address_space_operations *aops = mapping->a_ops;
1963 	int ret;
1964 
1965 	if (aops->write_end) {
1966 		mark_page_accessed(page);
1967 		ret = aops->write_end(file, mapping, pos, len, copied,
1968 							page, fsdata);
1969 	} else {
1970 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1971 		struct inode *inode = mapping->host;
1972 
1973 		flush_dcache_page(page);
1974 		ret = aops->commit_write(file, page, offset, offset+len);
1975 		unlock_page(page);
1976 		mark_page_accessed(page);
1977 		page_cache_release(page);
1978 
1979 		if (ret < 0) {
1980 			if (pos + len > inode->i_size)
1981 				vmtruncate(inode, inode->i_size);
1982 		} else if (ret > 0)
1983 			ret = min_t(size_t, copied, ret);
1984 		else
1985 			ret = copied;
1986 	}
1987 
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL(pagecache_write_end);
1991 
1992 ssize_t
1993 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1994 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1995 		size_t count, size_t ocount)
1996 {
1997 	struct file	*file = iocb->ki_filp;
1998 	struct address_space *mapping = file->f_mapping;
1999 	struct inode	*inode = mapping->host;
2000 	ssize_t		written;
2001 
2002 	if (count != ocount)
2003 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2004 
2005 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2006 	if (written > 0) {
2007 		loff_t end = pos + written;
2008 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2009 			i_size_write(inode,  end);
2010 			mark_inode_dirty(inode);
2011 		}
2012 		*ppos = end;
2013 	}
2014 
2015 	/*
2016 	 * Sync the fs metadata but not the minor inode changes and
2017 	 * of course not the data as we did direct DMA for the IO.
2018 	 * i_mutex is held, which protects generic_osync_inode() from
2019 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2020 	 */
2021 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2022 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2023 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2024 		if (err < 0)
2025 			written = err;
2026 	}
2027 	return written;
2028 }
2029 EXPORT_SYMBOL(generic_file_direct_write);
2030 
2031 /*
2032  * Find or create a page at the given pagecache position. Return the locked
2033  * page. This function is specifically for buffered writes.
2034  */
2035 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2036 {
2037 	int status;
2038 	struct page *page;
2039 repeat:
2040 	page = find_lock_page(mapping, index);
2041 	if (likely(page))
2042 		return page;
2043 
2044 	page = page_cache_alloc(mapping);
2045 	if (!page)
2046 		return NULL;
2047 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2048 	if (unlikely(status)) {
2049 		page_cache_release(page);
2050 		if (status == -EEXIST)
2051 			goto repeat;
2052 		return NULL;
2053 	}
2054 	return page;
2055 }
2056 EXPORT_SYMBOL(__grab_cache_page);
2057 
2058 static ssize_t generic_perform_write_2copy(struct file *file,
2059 				struct iov_iter *i, loff_t pos)
2060 {
2061 	struct address_space *mapping = file->f_mapping;
2062 	const struct address_space_operations *a_ops = mapping->a_ops;
2063 	struct inode *inode = mapping->host;
2064 	long status = 0;
2065 	ssize_t written = 0;
2066 
2067 	do {
2068 		struct page *src_page;
2069 		struct page *page;
2070 		pgoff_t index;		/* Pagecache index for current page */
2071 		unsigned long offset;	/* Offset into pagecache page */
2072 		unsigned long bytes;	/* Bytes to write to page */
2073 		size_t copied;		/* Bytes copied from user */
2074 
2075 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2076 		index = pos >> PAGE_CACHE_SHIFT;
2077 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2078 						iov_iter_count(i));
2079 
2080 		/*
2081 		 * a non-NULL src_page indicates that we're doing the
2082 		 * copy via get_user_pages and kmap.
2083 		 */
2084 		src_page = NULL;
2085 
2086 		/*
2087 		 * Bring in the user page that we will copy from _first_.
2088 		 * Otherwise there's a nasty deadlock on copying from the
2089 		 * same page as we're writing to, without it being marked
2090 		 * up-to-date.
2091 		 *
2092 		 * Not only is this an optimisation, but it is also required
2093 		 * to check that the address is actually valid, when atomic
2094 		 * usercopies are used, below.
2095 		 */
2096 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2097 			status = -EFAULT;
2098 			break;
2099 		}
2100 
2101 		page = __grab_cache_page(mapping, index);
2102 		if (!page) {
2103 			status = -ENOMEM;
2104 			break;
2105 		}
2106 
2107 		/*
2108 		 * non-uptodate pages cannot cope with short copies, and we
2109 		 * cannot take a pagefault with the destination page locked.
2110 		 * So pin the source page to copy it.
2111 		 */
2112 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2113 			unlock_page(page);
2114 
2115 			src_page = alloc_page(GFP_KERNEL);
2116 			if (!src_page) {
2117 				page_cache_release(page);
2118 				status = -ENOMEM;
2119 				break;
2120 			}
2121 
2122 			/*
2123 			 * Cannot get_user_pages with a page locked for the
2124 			 * same reason as we can't take a page fault with a
2125 			 * page locked (as explained below).
2126 			 */
2127 			copied = iov_iter_copy_from_user(src_page, i,
2128 								offset, bytes);
2129 			if (unlikely(copied == 0)) {
2130 				status = -EFAULT;
2131 				page_cache_release(page);
2132 				page_cache_release(src_page);
2133 				break;
2134 			}
2135 			bytes = copied;
2136 
2137 			lock_page(page);
2138 			/*
2139 			 * Can't handle the page going uptodate here, because
2140 			 * that means we would use non-atomic usercopies, which
2141 			 * zero out the tail of the page, which can cause
2142 			 * zeroes to become transiently visible. We could just
2143 			 * use a non-zeroing copy, but the APIs aren't too
2144 			 * consistent.
2145 			 */
2146 			if (unlikely(!page->mapping || PageUptodate(page))) {
2147 				unlock_page(page);
2148 				page_cache_release(page);
2149 				page_cache_release(src_page);
2150 				continue;
2151 			}
2152 		}
2153 
2154 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2155 		if (unlikely(status))
2156 			goto fs_write_aop_error;
2157 
2158 		if (!src_page) {
2159 			/*
2160 			 * Must not enter the pagefault handler here, because
2161 			 * we hold the page lock, so we might recursively
2162 			 * deadlock on the same lock, or get an ABBA deadlock
2163 			 * against a different lock, or against the mmap_sem
2164 			 * (which nests outside the page lock).  So increment
2165 			 * preempt count, and use _atomic usercopies.
2166 			 *
2167 			 * The page is uptodate so we are OK to encounter a
2168 			 * short copy: if unmodified parts of the page are
2169 			 * marked dirty and written out to disk, it doesn't
2170 			 * really matter.
2171 			 */
2172 			pagefault_disable();
2173 			copied = iov_iter_copy_from_user_atomic(page, i,
2174 								offset, bytes);
2175 			pagefault_enable();
2176 		} else {
2177 			void *src, *dst;
2178 			src = kmap_atomic(src_page, KM_USER0);
2179 			dst = kmap_atomic(page, KM_USER1);
2180 			memcpy(dst + offset, src + offset, bytes);
2181 			kunmap_atomic(dst, KM_USER1);
2182 			kunmap_atomic(src, KM_USER0);
2183 			copied = bytes;
2184 		}
2185 		flush_dcache_page(page);
2186 
2187 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2188 		if (unlikely(status < 0))
2189 			goto fs_write_aop_error;
2190 		if (unlikely(status > 0)) /* filesystem did partial write */
2191 			copied = min_t(size_t, copied, status);
2192 
2193 		unlock_page(page);
2194 		mark_page_accessed(page);
2195 		page_cache_release(page);
2196 		if (src_page)
2197 			page_cache_release(src_page);
2198 
2199 		iov_iter_advance(i, copied);
2200 		pos += copied;
2201 		written += copied;
2202 
2203 		balance_dirty_pages_ratelimited(mapping);
2204 		cond_resched();
2205 		continue;
2206 
2207 fs_write_aop_error:
2208 		unlock_page(page);
2209 		page_cache_release(page);
2210 		if (src_page)
2211 			page_cache_release(src_page);
2212 
2213 		/*
2214 		 * prepare_write() may have instantiated a few blocks
2215 		 * outside i_size.  Trim these off again. Don't need
2216 		 * i_size_read because we hold i_mutex.
2217 		 */
2218 		if (pos + bytes > inode->i_size)
2219 			vmtruncate(inode, inode->i_size);
2220 		break;
2221 	} while (iov_iter_count(i));
2222 
2223 	return written ? written : status;
2224 }
2225 
2226 static ssize_t generic_perform_write(struct file *file,
2227 				struct iov_iter *i, loff_t pos)
2228 {
2229 	struct address_space *mapping = file->f_mapping;
2230 	const struct address_space_operations *a_ops = mapping->a_ops;
2231 	long status = 0;
2232 	ssize_t written = 0;
2233 	unsigned int flags = 0;
2234 
2235 	/*
2236 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2237 	 */
2238 	if (segment_eq(get_fs(), KERNEL_DS))
2239 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2240 
2241 	do {
2242 		struct page *page;
2243 		pgoff_t index;		/* Pagecache index for current page */
2244 		unsigned long offset;	/* Offset into pagecache page */
2245 		unsigned long bytes;	/* Bytes to write to page */
2246 		size_t copied;		/* Bytes copied from user */
2247 		void *fsdata;
2248 
2249 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2250 		index = pos >> PAGE_CACHE_SHIFT;
2251 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252 						iov_iter_count(i));
2253 
2254 again:
2255 
2256 		/*
2257 		 * Bring in the user page that we will copy from _first_.
2258 		 * Otherwise there's a nasty deadlock on copying from the
2259 		 * same page as we're writing to, without it being marked
2260 		 * up-to-date.
2261 		 *
2262 		 * Not only is this an optimisation, but it is also required
2263 		 * to check that the address is actually valid, when atomic
2264 		 * usercopies are used, below.
2265 		 */
2266 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2267 			status = -EFAULT;
2268 			break;
2269 		}
2270 
2271 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2272 						&page, &fsdata);
2273 		if (unlikely(status))
2274 			break;
2275 
2276 		pagefault_disable();
2277 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2278 		pagefault_enable();
2279 		flush_dcache_page(page);
2280 
2281 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2282 						page, fsdata);
2283 		if (unlikely(status < 0))
2284 			break;
2285 		copied = status;
2286 
2287 		cond_resched();
2288 
2289 		iov_iter_advance(i, copied);
2290 		if (unlikely(copied == 0)) {
2291 			/*
2292 			 * If we were unable to copy any data at all, we must
2293 			 * fall back to a single segment length write.
2294 			 *
2295 			 * If we didn't fallback here, we could livelock
2296 			 * because not all segments in the iov can be copied at
2297 			 * once without a pagefault.
2298 			 */
2299 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2300 						iov_iter_single_seg_count(i));
2301 			goto again;
2302 		}
2303 		pos += copied;
2304 		written += copied;
2305 
2306 		balance_dirty_pages_ratelimited(mapping);
2307 
2308 	} while (iov_iter_count(i));
2309 
2310 	return written ? written : status;
2311 }
2312 
2313 ssize_t
2314 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2315 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2316 		size_t count, ssize_t written)
2317 {
2318 	struct file *file = iocb->ki_filp;
2319 	struct address_space *mapping = file->f_mapping;
2320 	const struct address_space_operations *a_ops = mapping->a_ops;
2321 	struct inode *inode = mapping->host;
2322 	ssize_t status;
2323 	struct iov_iter i;
2324 
2325 	iov_iter_init(&i, iov, nr_segs, count, written);
2326 	if (a_ops->write_begin)
2327 		status = generic_perform_write(file, &i, pos);
2328 	else
2329 		status = generic_perform_write_2copy(file, &i, pos);
2330 
2331 	if (likely(status >= 0)) {
2332 		written += status;
2333 		*ppos = pos + status;
2334 
2335 		/*
2336 		 * For now, when the user asks for O_SYNC, we'll actually give
2337 		 * O_DSYNC
2338 		 */
2339 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2340 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2341 				status = generic_osync_inode(inode, mapping,
2342 						OSYNC_METADATA|OSYNC_DATA);
2343 		}
2344   	}
2345 
2346 	/*
2347 	 * If we get here for O_DIRECT writes then we must have fallen through
2348 	 * to buffered writes (block instantiation inside i_size).  So we sync
2349 	 * the file data here, to try to honour O_DIRECT expectations.
2350 	 */
2351 	if (unlikely(file->f_flags & O_DIRECT) && written)
2352 		status = filemap_write_and_wait(mapping);
2353 
2354 	return written ? written : status;
2355 }
2356 EXPORT_SYMBOL(generic_file_buffered_write);
2357 
2358 static ssize_t
2359 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2360 				unsigned long nr_segs, loff_t *ppos)
2361 {
2362 	struct file *file = iocb->ki_filp;
2363 	struct address_space * mapping = file->f_mapping;
2364 	size_t ocount;		/* original count */
2365 	size_t count;		/* after file limit checks */
2366 	struct inode 	*inode = mapping->host;
2367 	loff_t		pos;
2368 	ssize_t		written;
2369 	ssize_t		err;
2370 
2371 	ocount = 0;
2372 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2373 	if (err)
2374 		return err;
2375 
2376 	count = ocount;
2377 	pos = *ppos;
2378 
2379 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2380 
2381 	/* We can write back this queue in page reclaim */
2382 	current->backing_dev_info = mapping->backing_dev_info;
2383 	written = 0;
2384 
2385 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2386 	if (err)
2387 		goto out;
2388 
2389 	if (count == 0)
2390 		goto out;
2391 
2392 	err = remove_suid(file->f_path.dentry);
2393 	if (err)
2394 		goto out;
2395 
2396 	file_update_time(file);
2397 
2398 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2399 	if (unlikely(file->f_flags & O_DIRECT)) {
2400 		loff_t endbyte;
2401 		ssize_t written_buffered;
2402 
2403 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2404 							ppos, count, ocount);
2405 		if (written < 0 || written == count)
2406 			goto out;
2407 		/*
2408 		 * direct-io write to a hole: fall through to buffered I/O
2409 		 * for completing the rest of the request.
2410 		 */
2411 		pos += written;
2412 		count -= written;
2413 		written_buffered = generic_file_buffered_write(iocb, iov,
2414 						nr_segs, pos, ppos, count,
2415 						written);
2416 		/*
2417 		 * If generic_file_buffered_write() retuned a synchronous error
2418 		 * then we want to return the number of bytes which were
2419 		 * direct-written, or the error code if that was zero.  Note
2420 		 * that this differs from normal direct-io semantics, which
2421 		 * will return -EFOO even if some bytes were written.
2422 		 */
2423 		if (written_buffered < 0) {
2424 			err = written_buffered;
2425 			goto out;
2426 		}
2427 
2428 		/*
2429 		 * We need to ensure that the page cache pages are written to
2430 		 * disk and invalidated to preserve the expected O_DIRECT
2431 		 * semantics.
2432 		 */
2433 		endbyte = pos + written_buffered - written - 1;
2434 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2435 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2436 					    SYNC_FILE_RANGE_WRITE|
2437 					    SYNC_FILE_RANGE_WAIT_AFTER);
2438 		if (err == 0) {
2439 			written = written_buffered;
2440 			invalidate_mapping_pages(mapping,
2441 						 pos >> PAGE_CACHE_SHIFT,
2442 						 endbyte >> PAGE_CACHE_SHIFT);
2443 		} else {
2444 			/*
2445 			 * We don't know how much we wrote, so just return
2446 			 * the number of bytes which were direct-written
2447 			 */
2448 		}
2449 	} else {
2450 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2451 				pos, ppos, count, written);
2452 	}
2453 out:
2454 	current->backing_dev_info = NULL;
2455 	return written ? written : err;
2456 }
2457 
2458 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2459 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2460 {
2461 	struct file *file = iocb->ki_filp;
2462 	struct address_space *mapping = file->f_mapping;
2463 	struct inode *inode = mapping->host;
2464 	ssize_t ret;
2465 
2466 	BUG_ON(iocb->ki_pos != pos);
2467 
2468 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2469 			&iocb->ki_pos);
2470 
2471 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2472 		ssize_t err;
2473 
2474 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2475 		if (err < 0)
2476 			ret = err;
2477 	}
2478 	return ret;
2479 }
2480 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2481 
2482 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2483 		unsigned long nr_segs, loff_t pos)
2484 {
2485 	struct file *file = iocb->ki_filp;
2486 	struct address_space *mapping = file->f_mapping;
2487 	struct inode *inode = mapping->host;
2488 	ssize_t ret;
2489 
2490 	BUG_ON(iocb->ki_pos != pos);
2491 
2492 	mutex_lock(&inode->i_mutex);
2493 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2494 			&iocb->ki_pos);
2495 	mutex_unlock(&inode->i_mutex);
2496 
2497 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2498 		ssize_t err;
2499 
2500 		err = sync_page_range(inode, mapping, pos, ret);
2501 		if (err < 0)
2502 			ret = err;
2503 	}
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL(generic_file_aio_write);
2507 
2508 /*
2509  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2510  * went wrong during pagecache shootdown.
2511  */
2512 static ssize_t
2513 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2514 	loff_t offset, unsigned long nr_segs)
2515 {
2516 	struct file *file = iocb->ki_filp;
2517 	struct address_space *mapping = file->f_mapping;
2518 	ssize_t retval;
2519 	size_t write_len;
2520 	pgoff_t end = 0; /* silence gcc */
2521 
2522 	/*
2523 	 * If it's a write, unmap all mmappings of the file up-front.  This
2524 	 * will cause any pte dirty bits to be propagated into the pageframes
2525 	 * for the subsequent filemap_write_and_wait().
2526 	 */
2527 	if (rw == WRITE) {
2528 		write_len = iov_length(iov, nr_segs);
2529 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2530 	       	if (mapping_mapped(mapping))
2531 			unmap_mapping_range(mapping, offset, write_len, 0);
2532 	}
2533 
2534 	retval = filemap_write_and_wait(mapping);
2535 	if (retval)
2536 		goto out;
2537 
2538 	/*
2539 	 * After a write we want buffered reads to be sure to go to disk to get
2540 	 * the new data.  We invalidate clean cached page from the region we're
2541 	 * about to write.  We do this *before* the write so that we can return
2542 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2543 	 */
2544 	if (rw == WRITE && mapping->nrpages) {
2545 		retval = invalidate_inode_pages2_range(mapping,
2546 					offset >> PAGE_CACHE_SHIFT, end);
2547 		if (retval)
2548 			goto out;
2549 	}
2550 
2551 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2552 
2553 	/*
2554 	 * Finally, try again to invalidate clean pages which might have been
2555 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2556 	 * if the source of the write was an mmap'ed region of the file
2557 	 * we're writing.  Either one is a pretty crazy thing to do,
2558 	 * so we don't support it 100%.  If this invalidation
2559 	 * fails, tough, the write still worked...
2560 	 */
2561 	if (rw == WRITE && mapping->nrpages) {
2562 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2563 	}
2564 out:
2565 	return retval;
2566 }
2567 
2568 /**
2569  * try_to_release_page() - release old fs-specific metadata on a page
2570  *
2571  * @page: the page which the kernel is trying to free
2572  * @gfp_mask: memory allocation flags (and I/O mode)
2573  *
2574  * The address_space is to try to release any data against the page
2575  * (presumably at page->private).  If the release was successful, return `1'.
2576  * Otherwise return zero.
2577  *
2578  * The @gfp_mask argument specifies whether I/O may be performed to release
2579  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2580  *
2581  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2582  */
2583 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2584 {
2585 	struct address_space * const mapping = page->mapping;
2586 
2587 	BUG_ON(!PageLocked(page));
2588 	if (PageWriteback(page))
2589 		return 0;
2590 
2591 	if (mapping && mapping->a_ops->releasepage)
2592 		return mapping->a_ops->releasepage(page, gfp_mask);
2593 	return try_to_free_buffers(page);
2594 }
2595 
2596 EXPORT_SYMBOL(try_to_release_page);
2597