xref: /linux/mm/filemap.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/uaccess.h>
42 #include <asm/mman.h>
43 
44 static ssize_t
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 	loff_t offset, unsigned long nr_segs);
47 
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59 
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_lock		(vmtruncate)
64  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock		(exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_lock
73  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
74  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page		(access_process_vm)
78  *
79  *  ->mmap_sem
80  *    ->i_mutex			(msync)
81  *
82  *  ->i_mutex
83  *    ->i_alloc_sem             (various)
84  *
85  *  ->inode_lock
86  *    ->sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_lock
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
100  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  *  ->task->proc_lock
108  *    ->dcache_lock		(proc_pid_lookup)
109  */
110 
111 /*
112  * Remove a page from the page cache and free it. Caller has to make
113  * sure the page is locked and that nobody else uses it - or that usage
114  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
115  */
116 void __remove_from_page_cache(struct page *page)
117 {
118 	struct address_space *mapping = page->mapping;
119 
120 	radix_tree_delete(&mapping->page_tree, page->index);
121 	page->mapping = NULL;
122 	mapping->nrpages--;
123 	pagecache_acct(-1);
124 }
125 
126 void remove_from_page_cache(struct page *page)
127 {
128 	struct address_space *mapping = page->mapping;
129 
130 	BUG_ON(!PageLocked(page));
131 
132 	write_lock_irq(&mapping->tree_lock);
133 	__remove_from_page_cache(page);
134 	write_unlock_irq(&mapping->tree_lock);
135 }
136 
137 static int sync_page(void *word)
138 {
139 	struct address_space *mapping;
140 	struct page *page;
141 
142 	page = container_of((unsigned long *)word, struct page, flags);
143 
144 	/*
145 	 * page_mapping() is being called without PG_locked held.
146 	 * Some knowledge of the state and use of the page is used to
147 	 * reduce the requirements down to a memory barrier.
148 	 * The danger here is of a stale page_mapping() return value
149 	 * indicating a struct address_space different from the one it's
150 	 * associated with when it is associated with one.
151 	 * After smp_mb(), it's either the correct page_mapping() for
152 	 * the page, or an old page_mapping() and the page's own
153 	 * page_mapping() has gone NULL.
154 	 * The ->sync_page() address_space operation must tolerate
155 	 * page_mapping() going NULL. By an amazing coincidence,
156 	 * this comes about because none of the users of the page
157 	 * in the ->sync_page() methods make essential use of the
158 	 * page_mapping(), merely passing the page down to the backing
159 	 * device's unplug functions when it's non-NULL, which in turn
160 	 * ignore it for all cases but swap, where only page_private(page) is
161 	 * of interest. When page_mapping() does go NULL, the entire
162 	 * call stack gracefully ignores the page and returns.
163 	 * -- wli
164 	 */
165 	smp_mb();
166 	mapping = page_mapping(page);
167 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 		mapping->a_ops->sync_page(page);
169 	io_schedule();
170 	return 0;
171 }
172 
173 /**
174  * filemap_fdatawrite_range - start writeback against all of a mapping's
175  * dirty pages that lie within the byte offsets <start, end>
176  * @mapping:	address space structure to write
177  * @start:	offset in bytes where the range starts
178  * @end:	offset in bytes where the range ends (inclusive)
179  * @sync_mode:	enable synchronous operation
180  *
181  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
182  * opposed to a regular memory * cleansing writeback.  The difference between
183  * these two operations is that if a dirty page/buffer is encountered, it must
184  * be waited upon, and not just skipped over.
185  */
186 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
187 				loff_t end, int sync_mode)
188 {
189 	int ret;
190 	struct writeback_control wbc = {
191 		.sync_mode = sync_mode,
192 		.nr_to_write = mapping->nrpages * 2,
193 		.start = start,
194 		.end = end,
195 	};
196 
197 	if (!mapping_cap_writeback_dirty(mapping))
198 		return 0;
199 
200 	ret = do_writepages(mapping, &wbc);
201 	return ret;
202 }
203 
204 static inline int __filemap_fdatawrite(struct address_space *mapping,
205 	int sync_mode)
206 {
207 	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
208 }
209 
210 int filemap_fdatawrite(struct address_space *mapping)
211 {
212 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
213 }
214 EXPORT_SYMBOL(filemap_fdatawrite);
215 
216 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
217 				loff_t end)
218 {
219 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
220 }
221 
222 /*
223  * This is a mostly non-blocking flush.  Not suitable for data-integrity
224  * purposes - I/O may not be started against all dirty pages.
225  */
226 int filemap_flush(struct address_space *mapping)
227 {
228 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
229 }
230 EXPORT_SYMBOL(filemap_flush);
231 
232 /*
233  * Wait for writeback to complete against pages indexed by start->end
234  * inclusive
235  */
236 int wait_on_page_writeback_range(struct address_space *mapping,
237 				pgoff_t start, pgoff_t end)
238 {
239 	struct pagevec pvec;
240 	int nr_pages;
241 	int ret = 0;
242 	pgoff_t index;
243 
244 	if (end < start)
245 		return 0;
246 
247 	pagevec_init(&pvec, 0);
248 	index = start;
249 	while ((index <= end) &&
250 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
251 			PAGECACHE_TAG_WRITEBACK,
252 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
253 		unsigned i;
254 
255 		for (i = 0; i < nr_pages; i++) {
256 			struct page *page = pvec.pages[i];
257 
258 			/* until radix tree lookup accepts end_index */
259 			if (page->index > end)
260 				continue;
261 
262 			wait_on_page_writeback(page);
263 			if (PageError(page))
264 				ret = -EIO;
265 		}
266 		pagevec_release(&pvec);
267 		cond_resched();
268 	}
269 
270 	/* Check for outstanding write errors */
271 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
272 		ret = -ENOSPC;
273 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
274 		ret = -EIO;
275 
276 	return ret;
277 }
278 
279 /*
280  * Write and wait upon all the pages in the passed range.  This is a "data
281  * integrity" operation.  It waits upon in-flight writeout before starting and
282  * waiting upon new writeout.  If there was an IO error, return it.
283  *
284  * We need to re-take i_mutex during the generic_osync_inode list walk because
285  * it is otherwise livelockable.
286  */
287 int sync_page_range(struct inode *inode, struct address_space *mapping,
288 			loff_t pos, loff_t count)
289 {
290 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
291 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
292 	int ret;
293 
294 	if (!mapping_cap_writeback_dirty(mapping) || !count)
295 		return 0;
296 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
297 	if (ret == 0) {
298 		mutex_lock(&inode->i_mutex);
299 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
300 		mutex_unlock(&inode->i_mutex);
301 	}
302 	if (ret == 0)
303 		ret = wait_on_page_writeback_range(mapping, start, end);
304 	return ret;
305 }
306 EXPORT_SYMBOL(sync_page_range);
307 
308 /*
309  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
310  * as it forces O_SYNC writers to different parts of the same file
311  * to be serialised right until io completion.
312  */
313 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
314 			   loff_t pos, loff_t count)
315 {
316 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
317 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
318 	int ret;
319 
320 	if (!mapping_cap_writeback_dirty(mapping) || !count)
321 		return 0;
322 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
323 	if (ret == 0)
324 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
325 	if (ret == 0)
326 		ret = wait_on_page_writeback_range(mapping, start, end);
327 	return ret;
328 }
329 EXPORT_SYMBOL(sync_page_range_nolock);
330 
331 /**
332  * filemap_fdatawait - walk the list of under-writeback pages of the given
333  *     address space and wait for all of them.
334  *
335  * @mapping: address space structure to wait for
336  */
337 int filemap_fdatawait(struct address_space *mapping)
338 {
339 	loff_t i_size = i_size_read(mapping->host);
340 
341 	if (i_size == 0)
342 		return 0;
343 
344 	return wait_on_page_writeback_range(mapping, 0,
345 				(i_size - 1) >> PAGE_CACHE_SHIFT);
346 }
347 EXPORT_SYMBOL(filemap_fdatawait);
348 
349 int filemap_write_and_wait(struct address_space *mapping)
350 {
351 	int err = 0;
352 
353 	if (mapping->nrpages) {
354 		err = filemap_fdatawrite(mapping);
355 		/*
356 		 * Even if the above returned error, the pages may be
357 		 * written partially (e.g. -ENOSPC), so we wait for it.
358 		 * But the -EIO is special case, it may indicate the worst
359 		 * thing (e.g. bug) happened, so we avoid waiting for it.
360 		 */
361 		if (err != -EIO) {
362 			int err2 = filemap_fdatawait(mapping);
363 			if (!err)
364 				err = err2;
365 		}
366 	}
367 	return err;
368 }
369 EXPORT_SYMBOL(filemap_write_and_wait);
370 
371 /*
372  * Write out and wait upon file offsets lstart->lend, inclusive.
373  *
374  * Note that `lend' is inclusive (describes the last byte to be written) so
375  * that this function can be used to write to the very end-of-file (end = -1).
376  */
377 int filemap_write_and_wait_range(struct address_space *mapping,
378 				 loff_t lstart, loff_t lend)
379 {
380 	int err = 0;
381 
382 	if (mapping->nrpages) {
383 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
384 						 WB_SYNC_ALL);
385 		/* See comment of filemap_write_and_wait() */
386 		if (err != -EIO) {
387 			int err2 = wait_on_page_writeback_range(mapping,
388 						lstart >> PAGE_CACHE_SHIFT,
389 						lend >> PAGE_CACHE_SHIFT);
390 			if (!err)
391 				err = err2;
392 		}
393 	}
394 	return err;
395 }
396 
397 /*
398  * This function is used to add newly allocated pagecache pages:
399  * the page is new, so we can just run SetPageLocked() against it.
400  * The other page state flags were set by rmqueue().
401  *
402  * This function does not add the page to the LRU.  The caller must do that.
403  */
404 int add_to_page_cache(struct page *page, struct address_space *mapping,
405 		pgoff_t offset, gfp_t gfp_mask)
406 {
407 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
408 
409 	if (error == 0) {
410 		write_lock_irq(&mapping->tree_lock);
411 		error = radix_tree_insert(&mapping->page_tree, offset, page);
412 		if (!error) {
413 			page_cache_get(page);
414 			SetPageLocked(page);
415 			page->mapping = mapping;
416 			page->index = offset;
417 			mapping->nrpages++;
418 			pagecache_acct(1);
419 		}
420 		write_unlock_irq(&mapping->tree_lock);
421 		radix_tree_preload_end();
422 	}
423 	return error;
424 }
425 
426 EXPORT_SYMBOL(add_to_page_cache);
427 
428 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
429 				pgoff_t offset, gfp_t gfp_mask)
430 {
431 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
432 	if (ret == 0)
433 		lru_cache_add(page);
434 	return ret;
435 }
436 
437 #ifdef CONFIG_NUMA
438 struct page *page_cache_alloc(struct address_space *x)
439 {
440 	if (cpuset_do_page_mem_spread()) {
441 		int n = cpuset_mem_spread_node();
442 		return alloc_pages_node(n, mapping_gfp_mask(x), 0);
443 	}
444 	return alloc_pages(mapping_gfp_mask(x), 0);
445 }
446 EXPORT_SYMBOL(page_cache_alloc);
447 
448 struct page *page_cache_alloc_cold(struct address_space *x)
449 {
450 	if (cpuset_do_page_mem_spread()) {
451 		int n = cpuset_mem_spread_node();
452 		return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
453 	}
454 	return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
455 }
456 EXPORT_SYMBOL(page_cache_alloc_cold);
457 #endif
458 
459 /*
460  * In order to wait for pages to become available there must be
461  * waitqueues associated with pages. By using a hash table of
462  * waitqueues where the bucket discipline is to maintain all
463  * waiters on the same queue and wake all when any of the pages
464  * become available, and for the woken contexts to check to be
465  * sure the appropriate page became available, this saves space
466  * at a cost of "thundering herd" phenomena during rare hash
467  * collisions.
468  */
469 static wait_queue_head_t *page_waitqueue(struct page *page)
470 {
471 	const struct zone *zone = page_zone(page);
472 
473 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
474 }
475 
476 static inline void wake_up_page(struct page *page, int bit)
477 {
478 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
479 }
480 
481 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
482 {
483 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
484 
485 	if (test_bit(bit_nr, &page->flags))
486 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
487 							TASK_UNINTERRUPTIBLE);
488 }
489 EXPORT_SYMBOL(wait_on_page_bit);
490 
491 /**
492  * unlock_page() - unlock a locked page
493  *
494  * @page: the page
495  *
496  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
497  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
498  * mechananism between PageLocked pages and PageWriteback pages is shared.
499  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
500  *
501  * The first mb is necessary to safely close the critical section opened by the
502  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
503  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
504  * parallel wait_on_page_locked()).
505  */
506 void fastcall unlock_page(struct page *page)
507 {
508 	smp_mb__before_clear_bit();
509 	if (!TestClearPageLocked(page))
510 		BUG();
511 	smp_mb__after_clear_bit();
512 	wake_up_page(page, PG_locked);
513 }
514 EXPORT_SYMBOL(unlock_page);
515 
516 /*
517  * End writeback against a page.
518  */
519 void end_page_writeback(struct page *page)
520 {
521 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
522 		if (!test_clear_page_writeback(page))
523 			BUG();
524 	}
525 	smp_mb__after_clear_bit();
526 	wake_up_page(page, PG_writeback);
527 }
528 EXPORT_SYMBOL(end_page_writeback);
529 
530 /*
531  * Get a lock on the page, assuming we need to sleep to get it.
532  *
533  * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
534  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
535  * chances are that on the second loop, the block layer's plug list is empty,
536  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
537  */
538 void fastcall __lock_page(struct page *page)
539 {
540 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
541 
542 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
543 							TASK_UNINTERRUPTIBLE);
544 }
545 EXPORT_SYMBOL(__lock_page);
546 
547 /*
548  * a rather lightweight function, finding and getting a reference to a
549  * hashed page atomically.
550  */
551 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
552 {
553 	struct page *page;
554 
555 	read_lock_irq(&mapping->tree_lock);
556 	page = radix_tree_lookup(&mapping->page_tree, offset);
557 	if (page)
558 		page_cache_get(page);
559 	read_unlock_irq(&mapping->tree_lock);
560 	return page;
561 }
562 
563 EXPORT_SYMBOL(find_get_page);
564 
565 /*
566  * Same as above, but trylock it instead of incrementing the count.
567  */
568 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
569 {
570 	struct page *page;
571 
572 	read_lock_irq(&mapping->tree_lock);
573 	page = radix_tree_lookup(&mapping->page_tree, offset);
574 	if (page && TestSetPageLocked(page))
575 		page = NULL;
576 	read_unlock_irq(&mapping->tree_lock);
577 	return page;
578 }
579 
580 EXPORT_SYMBOL(find_trylock_page);
581 
582 /**
583  * find_lock_page - locate, pin and lock a pagecache page
584  *
585  * @mapping: the address_space to search
586  * @offset: the page index
587  *
588  * Locates the desired pagecache page, locks it, increments its reference
589  * count and returns its address.
590  *
591  * Returns zero if the page was not present. find_lock_page() may sleep.
592  */
593 struct page *find_lock_page(struct address_space *mapping,
594 				unsigned long offset)
595 {
596 	struct page *page;
597 
598 	read_lock_irq(&mapping->tree_lock);
599 repeat:
600 	page = radix_tree_lookup(&mapping->page_tree, offset);
601 	if (page) {
602 		page_cache_get(page);
603 		if (TestSetPageLocked(page)) {
604 			read_unlock_irq(&mapping->tree_lock);
605 			__lock_page(page);
606 			read_lock_irq(&mapping->tree_lock);
607 
608 			/* Has the page been truncated while we slept? */
609 			if (unlikely(page->mapping != mapping ||
610 				     page->index != offset)) {
611 				unlock_page(page);
612 				page_cache_release(page);
613 				goto repeat;
614 			}
615 		}
616 	}
617 	read_unlock_irq(&mapping->tree_lock);
618 	return page;
619 }
620 
621 EXPORT_SYMBOL(find_lock_page);
622 
623 /**
624  * find_or_create_page - locate or add a pagecache page
625  *
626  * @mapping: the page's address_space
627  * @index: the page's index into the mapping
628  * @gfp_mask: page allocation mode
629  *
630  * Locates a page in the pagecache.  If the page is not present, a new page
631  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
632  * LRU list.  The returned page is locked and has its reference count
633  * incremented.
634  *
635  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
636  * allocation!
637  *
638  * find_or_create_page() returns the desired page's address, or zero on
639  * memory exhaustion.
640  */
641 struct page *find_or_create_page(struct address_space *mapping,
642 		unsigned long index, gfp_t gfp_mask)
643 {
644 	struct page *page, *cached_page = NULL;
645 	int err;
646 repeat:
647 	page = find_lock_page(mapping, index);
648 	if (!page) {
649 		if (!cached_page) {
650 			cached_page = alloc_page(gfp_mask);
651 			if (!cached_page)
652 				return NULL;
653 		}
654 		err = add_to_page_cache_lru(cached_page, mapping,
655 					index, gfp_mask);
656 		if (!err) {
657 			page = cached_page;
658 			cached_page = NULL;
659 		} else if (err == -EEXIST)
660 			goto repeat;
661 	}
662 	if (cached_page)
663 		page_cache_release(cached_page);
664 	return page;
665 }
666 
667 EXPORT_SYMBOL(find_or_create_page);
668 
669 /**
670  * find_get_pages - gang pagecache lookup
671  * @mapping:	The address_space to search
672  * @start:	The starting page index
673  * @nr_pages:	The maximum number of pages
674  * @pages:	Where the resulting pages are placed
675  *
676  * find_get_pages() will search for and return a group of up to
677  * @nr_pages pages in the mapping.  The pages are placed at @pages.
678  * find_get_pages() takes a reference against the returned pages.
679  *
680  * The search returns a group of mapping-contiguous pages with ascending
681  * indexes.  There may be holes in the indices due to not-present pages.
682  *
683  * find_get_pages() returns the number of pages which were found.
684  */
685 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
686 			    unsigned int nr_pages, struct page **pages)
687 {
688 	unsigned int i;
689 	unsigned int ret;
690 
691 	read_lock_irq(&mapping->tree_lock);
692 	ret = radix_tree_gang_lookup(&mapping->page_tree,
693 				(void **)pages, start, nr_pages);
694 	for (i = 0; i < ret; i++)
695 		page_cache_get(pages[i]);
696 	read_unlock_irq(&mapping->tree_lock);
697 	return ret;
698 }
699 
700 /**
701  * find_get_pages_contig - gang contiguous pagecache lookup
702  * @mapping:	The address_space to search
703  * @index:	The starting page index
704  * @nr_pages:	The maximum number of pages
705  * @pages:	Where the resulting pages are placed
706  *
707  * find_get_pages_contig() works exactly like find_get_pages(), except
708  * that the returned number of pages are guaranteed to be contiguous.
709  *
710  * find_get_pages_contig() returns the number of pages which were found.
711  */
712 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
713 			       unsigned int nr_pages, struct page **pages)
714 {
715 	unsigned int i;
716 	unsigned int ret;
717 
718 	read_lock_irq(&mapping->tree_lock);
719 	ret = radix_tree_gang_lookup(&mapping->page_tree,
720 				(void **)pages, index, nr_pages);
721 	for (i = 0; i < ret; i++) {
722 		if (pages[i]->mapping == NULL || pages[i]->index != index)
723 			break;
724 
725 		page_cache_get(pages[i]);
726 		index++;
727 	}
728 	read_unlock_irq(&mapping->tree_lock);
729 	return i;
730 }
731 
732 /*
733  * Like find_get_pages, except we only return pages which are tagged with
734  * `tag'.   We update *index to index the next page for the traversal.
735  */
736 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
737 			int tag, unsigned int nr_pages, struct page **pages)
738 {
739 	unsigned int i;
740 	unsigned int ret;
741 
742 	read_lock_irq(&mapping->tree_lock);
743 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
744 				(void **)pages, *index, nr_pages, tag);
745 	for (i = 0; i < ret; i++)
746 		page_cache_get(pages[i]);
747 	if (ret)
748 		*index = pages[ret - 1]->index + 1;
749 	read_unlock_irq(&mapping->tree_lock);
750 	return ret;
751 }
752 
753 /*
754  * Same as grab_cache_page, but do not wait if the page is unavailable.
755  * This is intended for speculative data generators, where the data can
756  * be regenerated if the page couldn't be grabbed.  This routine should
757  * be safe to call while holding the lock for another page.
758  *
759  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
760  * and deadlock against the caller's locked page.
761  */
762 struct page *
763 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
764 {
765 	struct page *page = find_get_page(mapping, index);
766 	gfp_t gfp_mask;
767 
768 	if (page) {
769 		if (!TestSetPageLocked(page))
770 			return page;
771 		page_cache_release(page);
772 		return NULL;
773 	}
774 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
775 	page = alloc_pages(gfp_mask, 0);
776 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
777 		page_cache_release(page);
778 		page = NULL;
779 	}
780 	return page;
781 }
782 
783 EXPORT_SYMBOL(grab_cache_page_nowait);
784 
785 /*
786  * This is a generic file read routine, and uses the
787  * mapping->a_ops->readpage() function for the actual low-level
788  * stuff.
789  *
790  * This is really ugly. But the goto's actually try to clarify some
791  * of the logic when it comes to error handling etc.
792  *
793  * Note the struct file* is only passed for the use of readpage.  It may be
794  * NULL.
795  */
796 void do_generic_mapping_read(struct address_space *mapping,
797 			     struct file_ra_state *_ra,
798 			     struct file *filp,
799 			     loff_t *ppos,
800 			     read_descriptor_t *desc,
801 			     read_actor_t actor)
802 {
803 	struct inode *inode = mapping->host;
804 	unsigned long index;
805 	unsigned long end_index;
806 	unsigned long offset;
807 	unsigned long last_index;
808 	unsigned long next_index;
809 	unsigned long prev_index;
810 	loff_t isize;
811 	struct page *cached_page;
812 	int error;
813 	struct file_ra_state ra = *_ra;
814 
815 	cached_page = NULL;
816 	index = *ppos >> PAGE_CACHE_SHIFT;
817 	next_index = index;
818 	prev_index = ra.prev_page;
819 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
820 	offset = *ppos & ~PAGE_CACHE_MASK;
821 
822 	isize = i_size_read(inode);
823 	if (!isize)
824 		goto out;
825 
826 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
827 	for (;;) {
828 		struct page *page;
829 		unsigned long nr, ret;
830 
831 		/* nr is the maximum number of bytes to copy from this page */
832 		nr = PAGE_CACHE_SIZE;
833 		if (index >= end_index) {
834 			if (index > end_index)
835 				goto out;
836 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
837 			if (nr <= offset) {
838 				goto out;
839 			}
840 		}
841 		nr = nr - offset;
842 
843 		cond_resched();
844 		if (index == next_index)
845 			next_index = page_cache_readahead(mapping, &ra, filp,
846 					index, last_index - index);
847 
848 find_page:
849 		page = find_get_page(mapping, index);
850 		if (unlikely(page == NULL)) {
851 			handle_ra_miss(mapping, &ra, index);
852 			goto no_cached_page;
853 		}
854 		if (!PageUptodate(page))
855 			goto page_not_up_to_date;
856 page_ok:
857 
858 		/* If users can be writing to this page using arbitrary
859 		 * virtual addresses, take care about potential aliasing
860 		 * before reading the page on the kernel side.
861 		 */
862 		if (mapping_writably_mapped(mapping))
863 			flush_dcache_page(page);
864 
865 		/*
866 		 * When (part of) the same page is read multiple times
867 		 * in succession, only mark it as accessed the first time.
868 		 */
869 		if (prev_index != index)
870 			mark_page_accessed(page);
871 		prev_index = index;
872 
873 		/*
874 		 * Ok, we have the page, and it's up-to-date, so
875 		 * now we can copy it to user space...
876 		 *
877 		 * The actor routine returns how many bytes were actually used..
878 		 * NOTE! This may not be the same as how much of a user buffer
879 		 * we filled up (we may be padding etc), so we can only update
880 		 * "pos" here (the actor routine has to update the user buffer
881 		 * pointers and the remaining count).
882 		 */
883 		ret = actor(desc, page, offset, nr);
884 		offset += ret;
885 		index += offset >> PAGE_CACHE_SHIFT;
886 		offset &= ~PAGE_CACHE_MASK;
887 
888 		page_cache_release(page);
889 		if (ret == nr && desc->count)
890 			continue;
891 		goto out;
892 
893 page_not_up_to_date:
894 		/* Get exclusive access to the page ... */
895 		lock_page(page);
896 
897 		/* Did it get unhashed before we got the lock? */
898 		if (!page->mapping) {
899 			unlock_page(page);
900 			page_cache_release(page);
901 			continue;
902 		}
903 
904 		/* Did somebody else fill it already? */
905 		if (PageUptodate(page)) {
906 			unlock_page(page);
907 			goto page_ok;
908 		}
909 
910 readpage:
911 		/* Start the actual read. The read will unlock the page. */
912 		error = mapping->a_ops->readpage(filp, page);
913 
914 		if (unlikely(error)) {
915 			if (error == AOP_TRUNCATED_PAGE) {
916 				page_cache_release(page);
917 				goto find_page;
918 			}
919 			goto readpage_error;
920 		}
921 
922 		if (!PageUptodate(page)) {
923 			lock_page(page);
924 			if (!PageUptodate(page)) {
925 				if (page->mapping == NULL) {
926 					/*
927 					 * invalidate_inode_pages got it
928 					 */
929 					unlock_page(page);
930 					page_cache_release(page);
931 					goto find_page;
932 				}
933 				unlock_page(page);
934 				error = -EIO;
935 				goto readpage_error;
936 			}
937 			unlock_page(page);
938 		}
939 
940 		/*
941 		 * i_size must be checked after we have done ->readpage.
942 		 *
943 		 * Checking i_size after the readpage allows us to calculate
944 		 * the correct value for "nr", which means the zero-filled
945 		 * part of the page is not copied back to userspace (unless
946 		 * another truncate extends the file - this is desired though).
947 		 */
948 		isize = i_size_read(inode);
949 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
950 		if (unlikely(!isize || index > end_index)) {
951 			page_cache_release(page);
952 			goto out;
953 		}
954 
955 		/* nr is the maximum number of bytes to copy from this page */
956 		nr = PAGE_CACHE_SIZE;
957 		if (index == end_index) {
958 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
959 			if (nr <= offset) {
960 				page_cache_release(page);
961 				goto out;
962 			}
963 		}
964 		nr = nr - offset;
965 		goto page_ok;
966 
967 readpage_error:
968 		/* UHHUH! A synchronous read error occurred. Report it */
969 		desc->error = error;
970 		page_cache_release(page);
971 		goto out;
972 
973 no_cached_page:
974 		/*
975 		 * Ok, it wasn't cached, so we need to create a new
976 		 * page..
977 		 */
978 		if (!cached_page) {
979 			cached_page = page_cache_alloc_cold(mapping);
980 			if (!cached_page) {
981 				desc->error = -ENOMEM;
982 				goto out;
983 			}
984 		}
985 		error = add_to_page_cache_lru(cached_page, mapping,
986 						index, GFP_KERNEL);
987 		if (error) {
988 			if (error == -EEXIST)
989 				goto find_page;
990 			desc->error = error;
991 			goto out;
992 		}
993 		page = cached_page;
994 		cached_page = NULL;
995 		goto readpage;
996 	}
997 
998 out:
999 	*_ra = ra;
1000 
1001 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1002 	if (cached_page)
1003 		page_cache_release(cached_page);
1004 	if (filp)
1005 		file_accessed(filp);
1006 }
1007 
1008 EXPORT_SYMBOL(do_generic_mapping_read);
1009 
1010 int file_read_actor(read_descriptor_t *desc, struct page *page,
1011 			unsigned long offset, unsigned long size)
1012 {
1013 	char *kaddr;
1014 	unsigned long left, count = desc->count;
1015 
1016 	if (size > count)
1017 		size = count;
1018 
1019 	/*
1020 	 * Faults on the destination of a read are common, so do it before
1021 	 * taking the kmap.
1022 	 */
1023 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1024 		kaddr = kmap_atomic(page, KM_USER0);
1025 		left = __copy_to_user_inatomic(desc->arg.buf,
1026 						kaddr + offset, size);
1027 		kunmap_atomic(kaddr, KM_USER0);
1028 		if (left == 0)
1029 			goto success;
1030 	}
1031 
1032 	/* Do it the slow way */
1033 	kaddr = kmap(page);
1034 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1035 	kunmap(page);
1036 
1037 	if (left) {
1038 		size -= left;
1039 		desc->error = -EFAULT;
1040 	}
1041 success:
1042 	desc->count = count - size;
1043 	desc->written += size;
1044 	desc->arg.buf += size;
1045 	return size;
1046 }
1047 
1048 /*
1049  * This is the "read()" routine for all filesystems
1050  * that can use the page cache directly.
1051  */
1052 ssize_t
1053 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1054 		unsigned long nr_segs, loff_t *ppos)
1055 {
1056 	struct file *filp = iocb->ki_filp;
1057 	ssize_t retval;
1058 	unsigned long seg;
1059 	size_t count;
1060 
1061 	count = 0;
1062 	for (seg = 0; seg < nr_segs; seg++) {
1063 		const struct iovec *iv = &iov[seg];
1064 
1065 		/*
1066 		 * If any segment has a negative length, or the cumulative
1067 		 * length ever wraps negative then return -EINVAL.
1068 		 */
1069 		count += iv->iov_len;
1070 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1071 			return -EINVAL;
1072 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1073 			continue;
1074 		if (seg == 0)
1075 			return -EFAULT;
1076 		nr_segs = seg;
1077 		count -= iv->iov_len;	/* This segment is no good */
1078 		break;
1079 	}
1080 
1081 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1082 	if (filp->f_flags & O_DIRECT) {
1083 		loff_t pos = *ppos, size;
1084 		struct address_space *mapping;
1085 		struct inode *inode;
1086 
1087 		mapping = filp->f_mapping;
1088 		inode = mapping->host;
1089 		retval = 0;
1090 		if (!count)
1091 			goto out; /* skip atime */
1092 		size = i_size_read(inode);
1093 		if (pos < size) {
1094 			retval = generic_file_direct_IO(READ, iocb,
1095 						iov, pos, nr_segs);
1096 			if (retval > 0 && !is_sync_kiocb(iocb))
1097 				retval = -EIOCBQUEUED;
1098 			if (retval > 0)
1099 				*ppos = pos + retval;
1100 		}
1101 		file_accessed(filp);
1102 		goto out;
1103 	}
1104 
1105 	retval = 0;
1106 	if (count) {
1107 		for (seg = 0; seg < nr_segs; seg++) {
1108 			read_descriptor_t desc;
1109 
1110 			desc.written = 0;
1111 			desc.arg.buf = iov[seg].iov_base;
1112 			desc.count = iov[seg].iov_len;
1113 			if (desc.count == 0)
1114 				continue;
1115 			desc.error = 0;
1116 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1117 			retval += desc.written;
1118 			if (desc.error) {
1119 				retval = retval ?: desc.error;
1120 				break;
1121 			}
1122 		}
1123 	}
1124 out:
1125 	return retval;
1126 }
1127 
1128 EXPORT_SYMBOL(__generic_file_aio_read);
1129 
1130 ssize_t
1131 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1132 {
1133 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1134 
1135 	BUG_ON(iocb->ki_pos != pos);
1136 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1137 }
1138 
1139 EXPORT_SYMBOL(generic_file_aio_read);
1140 
1141 ssize_t
1142 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1143 {
1144 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1145 	struct kiocb kiocb;
1146 	ssize_t ret;
1147 
1148 	init_sync_kiocb(&kiocb, filp);
1149 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1150 	if (-EIOCBQUEUED == ret)
1151 		ret = wait_on_sync_kiocb(&kiocb);
1152 	return ret;
1153 }
1154 
1155 EXPORT_SYMBOL(generic_file_read);
1156 
1157 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1158 {
1159 	ssize_t written;
1160 	unsigned long count = desc->count;
1161 	struct file *file = desc->arg.data;
1162 
1163 	if (size > count)
1164 		size = count;
1165 
1166 	written = file->f_op->sendpage(file, page, offset,
1167 				       size, &file->f_pos, size<count);
1168 	if (written < 0) {
1169 		desc->error = written;
1170 		written = 0;
1171 	}
1172 	desc->count = count - written;
1173 	desc->written += written;
1174 	return written;
1175 }
1176 
1177 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1178 			 size_t count, read_actor_t actor, void *target)
1179 {
1180 	read_descriptor_t desc;
1181 
1182 	if (!count)
1183 		return 0;
1184 
1185 	desc.written = 0;
1186 	desc.count = count;
1187 	desc.arg.data = target;
1188 	desc.error = 0;
1189 
1190 	do_generic_file_read(in_file, ppos, &desc, actor);
1191 	if (desc.written)
1192 		return desc.written;
1193 	return desc.error;
1194 }
1195 
1196 EXPORT_SYMBOL(generic_file_sendfile);
1197 
1198 static ssize_t
1199 do_readahead(struct address_space *mapping, struct file *filp,
1200 	     unsigned long index, unsigned long nr)
1201 {
1202 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1203 		return -EINVAL;
1204 
1205 	force_page_cache_readahead(mapping, filp, index,
1206 					max_sane_readahead(nr));
1207 	return 0;
1208 }
1209 
1210 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1211 {
1212 	ssize_t ret;
1213 	struct file *file;
1214 
1215 	ret = -EBADF;
1216 	file = fget(fd);
1217 	if (file) {
1218 		if (file->f_mode & FMODE_READ) {
1219 			struct address_space *mapping = file->f_mapping;
1220 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1221 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1222 			unsigned long len = end - start + 1;
1223 			ret = do_readahead(mapping, file, start, len);
1224 		}
1225 		fput(file);
1226 	}
1227 	return ret;
1228 }
1229 
1230 #ifdef CONFIG_MMU
1231 /*
1232  * This adds the requested page to the page cache if it isn't already there,
1233  * and schedules an I/O to read in its contents from disk.
1234  */
1235 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1236 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1237 {
1238 	struct address_space *mapping = file->f_mapping;
1239 	struct page *page;
1240 	int ret;
1241 
1242 	do {
1243 		page = page_cache_alloc_cold(mapping);
1244 		if (!page)
1245 			return -ENOMEM;
1246 
1247 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1248 		if (ret == 0)
1249 			ret = mapping->a_ops->readpage(file, page);
1250 		else if (ret == -EEXIST)
1251 			ret = 0; /* losing race to add is OK */
1252 
1253 		page_cache_release(page);
1254 
1255 	} while (ret == AOP_TRUNCATED_PAGE);
1256 
1257 	return ret;
1258 }
1259 
1260 #define MMAP_LOTSAMISS  (100)
1261 
1262 /*
1263  * filemap_nopage() is invoked via the vma operations vector for a
1264  * mapped memory region to read in file data during a page fault.
1265  *
1266  * The goto's are kind of ugly, but this streamlines the normal case of having
1267  * it in the page cache, and handles the special cases reasonably without
1268  * having a lot of duplicated code.
1269  */
1270 struct page *filemap_nopage(struct vm_area_struct *area,
1271 				unsigned long address, int *type)
1272 {
1273 	int error;
1274 	struct file *file = area->vm_file;
1275 	struct address_space *mapping = file->f_mapping;
1276 	struct file_ra_state *ra = &file->f_ra;
1277 	struct inode *inode = mapping->host;
1278 	struct page *page;
1279 	unsigned long size, pgoff;
1280 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1281 
1282 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1283 
1284 retry_all:
1285 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1286 	if (pgoff >= size)
1287 		goto outside_data_content;
1288 
1289 	/* If we don't want any read-ahead, don't bother */
1290 	if (VM_RandomReadHint(area))
1291 		goto no_cached_page;
1292 
1293 	/*
1294 	 * The readahead code wants to be told about each and every page
1295 	 * so it can build and shrink its windows appropriately
1296 	 *
1297 	 * For sequential accesses, we use the generic readahead logic.
1298 	 */
1299 	if (VM_SequentialReadHint(area))
1300 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1301 
1302 	/*
1303 	 * Do we have something in the page cache already?
1304 	 */
1305 retry_find:
1306 	page = find_get_page(mapping, pgoff);
1307 	if (!page) {
1308 		unsigned long ra_pages;
1309 
1310 		if (VM_SequentialReadHint(area)) {
1311 			handle_ra_miss(mapping, ra, pgoff);
1312 			goto no_cached_page;
1313 		}
1314 		ra->mmap_miss++;
1315 
1316 		/*
1317 		 * Do we miss much more than hit in this file? If so,
1318 		 * stop bothering with read-ahead. It will only hurt.
1319 		 */
1320 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1321 			goto no_cached_page;
1322 
1323 		/*
1324 		 * To keep the pgmajfault counter straight, we need to
1325 		 * check did_readaround, as this is an inner loop.
1326 		 */
1327 		if (!did_readaround) {
1328 			majmin = VM_FAULT_MAJOR;
1329 			inc_page_state(pgmajfault);
1330 		}
1331 		did_readaround = 1;
1332 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1333 		if (ra_pages) {
1334 			pgoff_t start = 0;
1335 
1336 			if (pgoff > ra_pages / 2)
1337 				start = pgoff - ra_pages / 2;
1338 			do_page_cache_readahead(mapping, file, start, ra_pages);
1339 		}
1340 		page = find_get_page(mapping, pgoff);
1341 		if (!page)
1342 			goto no_cached_page;
1343 	}
1344 
1345 	if (!did_readaround)
1346 		ra->mmap_hit++;
1347 
1348 	/*
1349 	 * Ok, found a page in the page cache, now we need to check
1350 	 * that it's up-to-date.
1351 	 */
1352 	if (!PageUptodate(page))
1353 		goto page_not_uptodate;
1354 
1355 success:
1356 	/*
1357 	 * Found the page and have a reference on it.
1358 	 */
1359 	mark_page_accessed(page);
1360 	if (type)
1361 		*type = majmin;
1362 	return page;
1363 
1364 outside_data_content:
1365 	/*
1366 	 * An external ptracer can access pages that normally aren't
1367 	 * accessible..
1368 	 */
1369 	if (area->vm_mm == current->mm)
1370 		return NULL;
1371 	/* Fall through to the non-read-ahead case */
1372 no_cached_page:
1373 	/*
1374 	 * We're only likely to ever get here if MADV_RANDOM is in
1375 	 * effect.
1376 	 */
1377 	error = page_cache_read(file, pgoff);
1378 	grab_swap_token();
1379 
1380 	/*
1381 	 * The page we want has now been added to the page cache.
1382 	 * In the unlikely event that someone removed it in the
1383 	 * meantime, we'll just come back here and read it again.
1384 	 */
1385 	if (error >= 0)
1386 		goto retry_find;
1387 
1388 	/*
1389 	 * An error return from page_cache_read can result if the
1390 	 * system is low on memory, or a problem occurs while trying
1391 	 * to schedule I/O.
1392 	 */
1393 	if (error == -ENOMEM)
1394 		return NOPAGE_OOM;
1395 	return NULL;
1396 
1397 page_not_uptodate:
1398 	if (!did_readaround) {
1399 		majmin = VM_FAULT_MAJOR;
1400 		inc_page_state(pgmajfault);
1401 	}
1402 	lock_page(page);
1403 
1404 	/* Did it get unhashed while we waited for it? */
1405 	if (!page->mapping) {
1406 		unlock_page(page);
1407 		page_cache_release(page);
1408 		goto retry_all;
1409 	}
1410 
1411 	/* Did somebody else get it up-to-date? */
1412 	if (PageUptodate(page)) {
1413 		unlock_page(page);
1414 		goto success;
1415 	}
1416 
1417 	error = mapping->a_ops->readpage(file, page);
1418 	if (!error) {
1419 		wait_on_page_locked(page);
1420 		if (PageUptodate(page))
1421 			goto success;
1422 	} else if (error == AOP_TRUNCATED_PAGE) {
1423 		page_cache_release(page);
1424 		goto retry_find;
1425 	}
1426 
1427 	/*
1428 	 * Umm, take care of errors if the page isn't up-to-date.
1429 	 * Try to re-read it _once_. We do this synchronously,
1430 	 * because there really aren't any performance issues here
1431 	 * and we need to check for errors.
1432 	 */
1433 	lock_page(page);
1434 
1435 	/* Somebody truncated the page on us? */
1436 	if (!page->mapping) {
1437 		unlock_page(page);
1438 		page_cache_release(page);
1439 		goto retry_all;
1440 	}
1441 
1442 	/* Somebody else successfully read it in? */
1443 	if (PageUptodate(page)) {
1444 		unlock_page(page);
1445 		goto success;
1446 	}
1447 	ClearPageError(page);
1448 	error = mapping->a_ops->readpage(file, page);
1449 	if (!error) {
1450 		wait_on_page_locked(page);
1451 		if (PageUptodate(page))
1452 			goto success;
1453 	} else if (error == AOP_TRUNCATED_PAGE) {
1454 		page_cache_release(page);
1455 		goto retry_find;
1456 	}
1457 
1458 	/*
1459 	 * Things didn't work out. Return zero to tell the
1460 	 * mm layer so, possibly freeing the page cache page first.
1461 	 */
1462 	page_cache_release(page);
1463 	return NULL;
1464 }
1465 
1466 EXPORT_SYMBOL(filemap_nopage);
1467 
1468 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1469 					int nonblock)
1470 {
1471 	struct address_space *mapping = file->f_mapping;
1472 	struct page *page;
1473 	int error;
1474 
1475 	/*
1476 	 * Do we have something in the page cache already?
1477 	 */
1478 retry_find:
1479 	page = find_get_page(mapping, pgoff);
1480 	if (!page) {
1481 		if (nonblock)
1482 			return NULL;
1483 		goto no_cached_page;
1484 	}
1485 
1486 	/*
1487 	 * Ok, found a page in the page cache, now we need to check
1488 	 * that it's up-to-date.
1489 	 */
1490 	if (!PageUptodate(page)) {
1491 		if (nonblock) {
1492 			page_cache_release(page);
1493 			return NULL;
1494 		}
1495 		goto page_not_uptodate;
1496 	}
1497 
1498 success:
1499 	/*
1500 	 * Found the page and have a reference on it.
1501 	 */
1502 	mark_page_accessed(page);
1503 	return page;
1504 
1505 no_cached_page:
1506 	error = page_cache_read(file, pgoff);
1507 
1508 	/*
1509 	 * The page we want has now been added to the page cache.
1510 	 * In the unlikely event that someone removed it in the
1511 	 * meantime, we'll just come back here and read it again.
1512 	 */
1513 	if (error >= 0)
1514 		goto retry_find;
1515 
1516 	/*
1517 	 * An error return from page_cache_read can result if the
1518 	 * system is low on memory, or a problem occurs while trying
1519 	 * to schedule I/O.
1520 	 */
1521 	return NULL;
1522 
1523 page_not_uptodate:
1524 	lock_page(page);
1525 
1526 	/* Did it get unhashed while we waited for it? */
1527 	if (!page->mapping) {
1528 		unlock_page(page);
1529 		goto err;
1530 	}
1531 
1532 	/* Did somebody else get it up-to-date? */
1533 	if (PageUptodate(page)) {
1534 		unlock_page(page);
1535 		goto success;
1536 	}
1537 
1538 	error = mapping->a_ops->readpage(file, page);
1539 	if (!error) {
1540 		wait_on_page_locked(page);
1541 		if (PageUptodate(page))
1542 			goto success;
1543 	} else if (error == AOP_TRUNCATED_PAGE) {
1544 		page_cache_release(page);
1545 		goto retry_find;
1546 	}
1547 
1548 	/*
1549 	 * Umm, take care of errors if the page isn't up-to-date.
1550 	 * Try to re-read it _once_. We do this synchronously,
1551 	 * because there really aren't any performance issues here
1552 	 * and we need to check for errors.
1553 	 */
1554 	lock_page(page);
1555 
1556 	/* Somebody truncated the page on us? */
1557 	if (!page->mapping) {
1558 		unlock_page(page);
1559 		goto err;
1560 	}
1561 	/* Somebody else successfully read it in? */
1562 	if (PageUptodate(page)) {
1563 		unlock_page(page);
1564 		goto success;
1565 	}
1566 
1567 	ClearPageError(page);
1568 	error = mapping->a_ops->readpage(file, page);
1569 	if (!error) {
1570 		wait_on_page_locked(page);
1571 		if (PageUptodate(page))
1572 			goto success;
1573 	} else if (error == AOP_TRUNCATED_PAGE) {
1574 		page_cache_release(page);
1575 		goto retry_find;
1576 	}
1577 
1578 	/*
1579 	 * Things didn't work out. Return zero to tell the
1580 	 * mm layer so, possibly freeing the page cache page first.
1581 	 */
1582 err:
1583 	page_cache_release(page);
1584 
1585 	return NULL;
1586 }
1587 
1588 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1589 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1590 		int nonblock)
1591 {
1592 	struct file *file = vma->vm_file;
1593 	struct address_space *mapping = file->f_mapping;
1594 	struct inode *inode = mapping->host;
1595 	unsigned long size;
1596 	struct mm_struct *mm = vma->vm_mm;
1597 	struct page *page;
1598 	int err;
1599 
1600 	if (!nonblock)
1601 		force_page_cache_readahead(mapping, vma->vm_file,
1602 					pgoff, len >> PAGE_CACHE_SHIFT);
1603 
1604 repeat:
1605 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1606 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1607 		return -EINVAL;
1608 
1609 	page = filemap_getpage(file, pgoff, nonblock);
1610 
1611 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1612 	 * done in shmem_populate calling shmem_getpage */
1613 	if (!page && !nonblock)
1614 		return -ENOMEM;
1615 
1616 	if (page) {
1617 		err = install_page(mm, vma, addr, page, prot);
1618 		if (err) {
1619 			page_cache_release(page);
1620 			return err;
1621 		}
1622 	} else if (vma->vm_flags & VM_NONLINEAR) {
1623 		/* No page was found just because we can't read it in now (being
1624 		 * here implies nonblock != 0), but the page may exist, so set
1625 		 * the PTE to fault it in later. */
1626 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1627 		if (err)
1628 			return err;
1629 	}
1630 
1631 	len -= PAGE_SIZE;
1632 	addr += PAGE_SIZE;
1633 	pgoff++;
1634 	if (len)
1635 		goto repeat;
1636 
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(filemap_populate);
1640 
1641 struct vm_operations_struct generic_file_vm_ops = {
1642 	.nopage		= filemap_nopage,
1643 	.populate	= filemap_populate,
1644 };
1645 
1646 /* This is used for a general mmap of a disk file */
1647 
1648 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1649 {
1650 	struct address_space *mapping = file->f_mapping;
1651 
1652 	if (!mapping->a_ops->readpage)
1653 		return -ENOEXEC;
1654 	file_accessed(file);
1655 	vma->vm_ops = &generic_file_vm_ops;
1656 	return 0;
1657 }
1658 
1659 /*
1660  * This is for filesystems which do not implement ->writepage.
1661  */
1662 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1663 {
1664 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1665 		return -EINVAL;
1666 	return generic_file_mmap(file, vma);
1667 }
1668 #else
1669 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1670 {
1671 	return -ENOSYS;
1672 }
1673 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1674 {
1675 	return -ENOSYS;
1676 }
1677 #endif /* CONFIG_MMU */
1678 
1679 EXPORT_SYMBOL(generic_file_mmap);
1680 EXPORT_SYMBOL(generic_file_readonly_mmap);
1681 
1682 static inline struct page *__read_cache_page(struct address_space *mapping,
1683 				unsigned long index,
1684 				int (*filler)(void *,struct page*),
1685 				void *data)
1686 {
1687 	struct page *page, *cached_page = NULL;
1688 	int err;
1689 repeat:
1690 	page = find_get_page(mapping, index);
1691 	if (!page) {
1692 		if (!cached_page) {
1693 			cached_page = page_cache_alloc_cold(mapping);
1694 			if (!cached_page)
1695 				return ERR_PTR(-ENOMEM);
1696 		}
1697 		err = add_to_page_cache_lru(cached_page, mapping,
1698 					index, GFP_KERNEL);
1699 		if (err == -EEXIST)
1700 			goto repeat;
1701 		if (err < 0) {
1702 			/* Presumably ENOMEM for radix tree node */
1703 			page_cache_release(cached_page);
1704 			return ERR_PTR(err);
1705 		}
1706 		page = cached_page;
1707 		cached_page = NULL;
1708 		err = filler(data, page);
1709 		if (err < 0) {
1710 			page_cache_release(page);
1711 			page = ERR_PTR(err);
1712 		}
1713 	}
1714 	if (cached_page)
1715 		page_cache_release(cached_page);
1716 	return page;
1717 }
1718 
1719 /*
1720  * Read into the page cache. If a page already exists,
1721  * and PageUptodate() is not set, try to fill the page.
1722  */
1723 struct page *read_cache_page(struct address_space *mapping,
1724 				unsigned long index,
1725 				int (*filler)(void *,struct page*),
1726 				void *data)
1727 {
1728 	struct page *page;
1729 	int err;
1730 
1731 retry:
1732 	page = __read_cache_page(mapping, index, filler, data);
1733 	if (IS_ERR(page))
1734 		goto out;
1735 	mark_page_accessed(page);
1736 	if (PageUptodate(page))
1737 		goto out;
1738 
1739 	lock_page(page);
1740 	if (!page->mapping) {
1741 		unlock_page(page);
1742 		page_cache_release(page);
1743 		goto retry;
1744 	}
1745 	if (PageUptodate(page)) {
1746 		unlock_page(page);
1747 		goto out;
1748 	}
1749 	err = filler(data, page);
1750 	if (err < 0) {
1751 		page_cache_release(page);
1752 		page = ERR_PTR(err);
1753 	}
1754  out:
1755 	return page;
1756 }
1757 
1758 EXPORT_SYMBOL(read_cache_page);
1759 
1760 /*
1761  * If the page was newly created, increment its refcount and add it to the
1762  * caller's lru-buffering pagevec.  This function is specifically for
1763  * generic_file_write().
1764  */
1765 static inline struct page *
1766 __grab_cache_page(struct address_space *mapping, unsigned long index,
1767 			struct page **cached_page, struct pagevec *lru_pvec)
1768 {
1769 	int err;
1770 	struct page *page;
1771 repeat:
1772 	page = find_lock_page(mapping, index);
1773 	if (!page) {
1774 		if (!*cached_page) {
1775 			*cached_page = page_cache_alloc(mapping);
1776 			if (!*cached_page)
1777 				return NULL;
1778 		}
1779 		err = add_to_page_cache(*cached_page, mapping,
1780 					index, GFP_KERNEL);
1781 		if (err == -EEXIST)
1782 			goto repeat;
1783 		if (err == 0) {
1784 			page = *cached_page;
1785 			page_cache_get(page);
1786 			if (!pagevec_add(lru_pvec, page))
1787 				__pagevec_lru_add(lru_pvec);
1788 			*cached_page = NULL;
1789 		}
1790 	}
1791 	return page;
1792 }
1793 
1794 /*
1795  * The logic we want is
1796  *
1797  *	if suid or (sgid and xgrp)
1798  *		remove privs
1799  */
1800 int remove_suid(struct dentry *dentry)
1801 {
1802 	mode_t mode = dentry->d_inode->i_mode;
1803 	int kill = 0;
1804 	int result = 0;
1805 
1806 	/* suid always must be killed */
1807 	if (unlikely(mode & S_ISUID))
1808 		kill = ATTR_KILL_SUID;
1809 
1810 	/*
1811 	 * sgid without any exec bits is just a mandatory locking mark; leave
1812 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1813 	 */
1814 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1815 		kill |= ATTR_KILL_SGID;
1816 
1817 	if (unlikely(kill && !capable(CAP_FSETID))) {
1818 		struct iattr newattrs;
1819 
1820 		newattrs.ia_valid = ATTR_FORCE | kill;
1821 		result = notify_change(dentry, &newattrs);
1822 	}
1823 	return result;
1824 }
1825 EXPORT_SYMBOL(remove_suid);
1826 
1827 size_t
1828 __filemap_copy_from_user_iovec(char *vaddr,
1829 			const struct iovec *iov, size_t base, size_t bytes)
1830 {
1831 	size_t copied = 0, left = 0;
1832 
1833 	while (bytes) {
1834 		char __user *buf = iov->iov_base + base;
1835 		int copy = min(bytes, iov->iov_len - base);
1836 
1837 		base = 0;
1838 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1839 		copied += copy;
1840 		bytes -= copy;
1841 		vaddr += copy;
1842 		iov++;
1843 
1844 		if (unlikely(left)) {
1845 			/* zero the rest of the target like __copy_from_user */
1846 			if (bytes)
1847 				memset(vaddr, 0, bytes);
1848 			break;
1849 		}
1850 	}
1851 	return copied - left;
1852 }
1853 
1854 /*
1855  * Performs necessary checks before doing a write
1856  *
1857  * Can adjust writing position aor amount of bytes to write.
1858  * Returns appropriate error code that caller should return or
1859  * zero in case that write should be allowed.
1860  */
1861 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1862 {
1863 	struct inode *inode = file->f_mapping->host;
1864 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1865 
1866         if (unlikely(*pos < 0))
1867                 return -EINVAL;
1868 
1869 	if (!isblk) {
1870 		/* FIXME: this is for backwards compatibility with 2.4 */
1871 		if (file->f_flags & O_APPEND)
1872                         *pos = i_size_read(inode);
1873 
1874 		if (limit != RLIM_INFINITY) {
1875 			if (*pos >= limit) {
1876 				send_sig(SIGXFSZ, current, 0);
1877 				return -EFBIG;
1878 			}
1879 			if (*count > limit - (typeof(limit))*pos) {
1880 				*count = limit - (typeof(limit))*pos;
1881 			}
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * LFS rule
1887 	 */
1888 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1889 				!(file->f_flags & O_LARGEFILE))) {
1890 		if (*pos >= MAX_NON_LFS) {
1891 			send_sig(SIGXFSZ, current, 0);
1892 			return -EFBIG;
1893 		}
1894 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1895 			*count = MAX_NON_LFS - (unsigned long)*pos;
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * Are we about to exceed the fs block limit ?
1901 	 *
1902 	 * If we have written data it becomes a short write.  If we have
1903 	 * exceeded without writing data we send a signal and return EFBIG.
1904 	 * Linus frestrict idea will clean these up nicely..
1905 	 */
1906 	if (likely(!isblk)) {
1907 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1908 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1909 				send_sig(SIGXFSZ, current, 0);
1910 				return -EFBIG;
1911 			}
1912 			/* zero-length writes at ->s_maxbytes are OK */
1913 		}
1914 
1915 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1916 			*count = inode->i_sb->s_maxbytes - *pos;
1917 	} else {
1918 		loff_t isize;
1919 		if (bdev_read_only(I_BDEV(inode)))
1920 			return -EPERM;
1921 		isize = i_size_read(inode);
1922 		if (*pos >= isize) {
1923 			if (*count || *pos > isize)
1924 				return -ENOSPC;
1925 		}
1926 
1927 		if (*pos + *count > isize)
1928 			*count = isize - *pos;
1929 	}
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL(generic_write_checks);
1933 
1934 ssize_t
1935 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1936 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1937 		size_t count, size_t ocount)
1938 {
1939 	struct file	*file = iocb->ki_filp;
1940 	struct address_space *mapping = file->f_mapping;
1941 	struct inode	*inode = mapping->host;
1942 	ssize_t		written;
1943 
1944 	if (count != ocount)
1945 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1946 
1947 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1948 	if (written > 0) {
1949 		loff_t end = pos + written;
1950 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1951 			i_size_write(inode,  end);
1952 			mark_inode_dirty(inode);
1953 		}
1954 		*ppos = end;
1955 	}
1956 
1957 	/*
1958 	 * Sync the fs metadata but not the minor inode changes and
1959 	 * of course not the data as we did direct DMA for the IO.
1960 	 * i_mutex is held, which protects generic_osync_inode() from
1961 	 * livelocking.
1962 	 */
1963 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1964 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1965 		if (err < 0)
1966 			written = err;
1967 	}
1968 	if (written == count && !is_sync_kiocb(iocb))
1969 		written = -EIOCBQUEUED;
1970 	return written;
1971 }
1972 EXPORT_SYMBOL(generic_file_direct_write);
1973 
1974 ssize_t
1975 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1976 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1977 		size_t count, ssize_t written)
1978 {
1979 	struct file *file = iocb->ki_filp;
1980 	struct address_space * mapping = file->f_mapping;
1981 	struct address_space_operations *a_ops = mapping->a_ops;
1982 	struct inode 	*inode = mapping->host;
1983 	long		status = 0;
1984 	struct page	*page;
1985 	struct page	*cached_page = NULL;
1986 	size_t		bytes;
1987 	struct pagevec	lru_pvec;
1988 	const struct iovec *cur_iov = iov; /* current iovec */
1989 	size_t		iov_base = 0;	   /* offset in the current iovec */
1990 	char __user	*buf;
1991 
1992 	pagevec_init(&lru_pvec, 0);
1993 
1994 	/*
1995 	 * handle partial DIO write.  Adjust cur_iov if needed.
1996 	 */
1997 	if (likely(nr_segs == 1))
1998 		buf = iov->iov_base + written;
1999 	else {
2000 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2001 		buf = cur_iov->iov_base + iov_base;
2002 	}
2003 
2004 	do {
2005 		unsigned long index;
2006 		unsigned long offset;
2007 		unsigned long maxlen;
2008 		size_t copied;
2009 
2010 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2011 		index = pos >> PAGE_CACHE_SHIFT;
2012 		bytes = PAGE_CACHE_SIZE - offset;
2013 		if (bytes > count)
2014 			bytes = count;
2015 
2016 		/*
2017 		 * Bring in the user page that we will copy from _first_.
2018 		 * Otherwise there's a nasty deadlock on copying from the
2019 		 * same page as we're writing to, without it being marked
2020 		 * up-to-date.
2021 		 */
2022 		maxlen = cur_iov->iov_len - iov_base;
2023 		if (maxlen > bytes)
2024 			maxlen = bytes;
2025 		fault_in_pages_readable(buf, maxlen);
2026 
2027 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2028 		if (!page) {
2029 			status = -ENOMEM;
2030 			break;
2031 		}
2032 
2033 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2034 		if (unlikely(status)) {
2035 			loff_t isize = i_size_read(inode);
2036 
2037 			if (status != AOP_TRUNCATED_PAGE)
2038 				unlock_page(page);
2039 			page_cache_release(page);
2040 			if (status == AOP_TRUNCATED_PAGE)
2041 				continue;
2042 			/*
2043 			 * prepare_write() may have instantiated a few blocks
2044 			 * outside i_size.  Trim these off again.
2045 			 */
2046 			if (pos + bytes > isize)
2047 				vmtruncate(inode, isize);
2048 			break;
2049 		}
2050 		if (likely(nr_segs == 1))
2051 			copied = filemap_copy_from_user(page, offset,
2052 							buf, bytes);
2053 		else
2054 			copied = filemap_copy_from_user_iovec(page, offset,
2055 						cur_iov, iov_base, bytes);
2056 		flush_dcache_page(page);
2057 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2058 		if (status == AOP_TRUNCATED_PAGE) {
2059 			page_cache_release(page);
2060 			continue;
2061 		}
2062 		if (likely(copied > 0)) {
2063 			if (!status)
2064 				status = copied;
2065 
2066 			if (status >= 0) {
2067 				written += status;
2068 				count -= status;
2069 				pos += status;
2070 				buf += status;
2071 				if (unlikely(nr_segs > 1)) {
2072 					filemap_set_next_iovec(&cur_iov,
2073 							&iov_base, status);
2074 					if (count)
2075 						buf = cur_iov->iov_base +
2076 							iov_base;
2077 				} else {
2078 					iov_base += status;
2079 				}
2080 			}
2081 		}
2082 		if (unlikely(copied != bytes))
2083 			if (status >= 0)
2084 				status = -EFAULT;
2085 		unlock_page(page);
2086 		mark_page_accessed(page);
2087 		page_cache_release(page);
2088 		if (status < 0)
2089 			break;
2090 		balance_dirty_pages_ratelimited(mapping);
2091 		cond_resched();
2092 	} while (count);
2093 	*ppos = pos;
2094 
2095 	if (cached_page)
2096 		page_cache_release(cached_page);
2097 
2098 	/*
2099 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2100 	 */
2101 	if (likely(status >= 0)) {
2102 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2103 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2104 				status = generic_osync_inode(inode, mapping,
2105 						OSYNC_METADATA|OSYNC_DATA);
2106 		}
2107   	}
2108 
2109 	/*
2110 	 * If we get here for O_DIRECT writes then we must have fallen through
2111 	 * to buffered writes (block instantiation inside i_size).  So we sync
2112 	 * the file data here, to try to honour O_DIRECT expectations.
2113 	 */
2114 	if (unlikely(file->f_flags & O_DIRECT) && written)
2115 		status = filemap_write_and_wait(mapping);
2116 
2117 	pagevec_lru_add(&lru_pvec);
2118 	return written ? written : status;
2119 }
2120 EXPORT_SYMBOL(generic_file_buffered_write);
2121 
2122 static ssize_t
2123 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2124 				unsigned long nr_segs, loff_t *ppos)
2125 {
2126 	struct file *file = iocb->ki_filp;
2127 	struct address_space * mapping = file->f_mapping;
2128 	size_t ocount;		/* original count */
2129 	size_t count;		/* after file limit checks */
2130 	struct inode 	*inode = mapping->host;
2131 	unsigned long	seg;
2132 	loff_t		pos;
2133 	ssize_t		written;
2134 	ssize_t		err;
2135 
2136 	ocount = 0;
2137 	for (seg = 0; seg < nr_segs; seg++) {
2138 		const struct iovec *iv = &iov[seg];
2139 
2140 		/*
2141 		 * If any segment has a negative length, or the cumulative
2142 		 * length ever wraps negative then return -EINVAL.
2143 		 */
2144 		ocount += iv->iov_len;
2145 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2146 			return -EINVAL;
2147 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2148 			continue;
2149 		if (seg == 0)
2150 			return -EFAULT;
2151 		nr_segs = seg;
2152 		ocount -= iv->iov_len;	/* This segment is no good */
2153 		break;
2154 	}
2155 
2156 	count = ocount;
2157 	pos = *ppos;
2158 
2159 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2160 
2161 	/* We can write back this queue in page reclaim */
2162 	current->backing_dev_info = mapping->backing_dev_info;
2163 	written = 0;
2164 
2165 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2166 	if (err)
2167 		goto out;
2168 
2169 	if (count == 0)
2170 		goto out;
2171 
2172 	err = remove_suid(file->f_dentry);
2173 	if (err)
2174 		goto out;
2175 
2176 	file_update_time(file);
2177 
2178 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2179 	if (unlikely(file->f_flags & O_DIRECT)) {
2180 		written = generic_file_direct_write(iocb, iov,
2181 				&nr_segs, pos, ppos, count, ocount);
2182 		if (written < 0 || written == count)
2183 			goto out;
2184 		/*
2185 		 * direct-io write to a hole: fall through to buffered I/O
2186 		 * for completing the rest of the request.
2187 		 */
2188 		pos += written;
2189 		count -= written;
2190 	}
2191 
2192 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2193 			pos, ppos, count, written);
2194 out:
2195 	current->backing_dev_info = NULL;
2196 	return written ? written : err;
2197 }
2198 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2199 
2200 ssize_t
2201 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2202 				unsigned long nr_segs, loff_t *ppos)
2203 {
2204 	struct file *file = iocb->ki_filp;
2205 	struct address_space *mapping = file->f_mapping;
2206 	struct inode *inode = mapping->host;
2207 	ssize_t ret;
2208 	loff_t pos = *ppos;
2209 
2210 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2211 
2212 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2213 		int err;
2214 
2215 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2216 		if (err < 0)
2217 			ret = err;
2218 	}
2219 	return ret;
2220 }
2221 
2222 static ssize_t
2223 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2224 				unsigned long nr_segs, loff_t *ppos)
2225 {
2226 	struct kiocb kiocb;
2227 	ssize_t ret;
2228 
2229 	init_sync_kiocb(&kiocb, file);
2230 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2231 	if (ret == -EIOCBQUEUED)
2232 		ret = wait_on_sync_kiocb(&kiocb);
2233 	return ret;
2234 }
2235 
2236 ssize_t
2237 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2238 				unsigned long nr_segs, loff_t *ppos)
2239 {
2240 	struct kiocb kiocb;
2241 	ssize_t ret;
2242 
2243 	init_sync_kiocb(&kiocb, file);
2244 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2245 	if (-EIOCBQUEUED == ret)
2246 		ret = wait_on_sync_kiocb(&kiocb);
2247 	return ret;
2248 }
2249 EXPORT_SYMBOL(generic_file_write_nolock);
2250 
2251 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2252 			       size_t count, loff_t pos)
2253 {
2254 	struct file *file = iocb->ki_filp;
2255 	struct address_space *mapping = file->f_mapping;
2256 	struct inode *inode = mapping->host;
2257 	ssize_t ret;
2258 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2259 					.iov_len = count };
2260 
2261 	BUG_ON(iocb->ki_pos != pos);
2262 
2263 	mutex_lock(&inode->i_mutex);
2264 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2265 						&iocb->ki_pos);
2266 	mutex_unlock(&inode->i_mutex);
2267 
2268 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2269 		ssize_t err;
2270 
2271 		err = sync_page_range(inode, mapping, pos, ret);
2272 		if (err < 0)
2273 			ret = err;
2274 	}
2275 	return ret;
2276 }
2277 EXPORT_SYMBOL(generic_file_aio_write);
2278 
2279 ssize_t generic_file_write(struct file *file, const char __user *buf,
2280 			   size_t count, loff_t *ppos)
2281 {
2282 	struct address_space *mapping = file->f_mapping;
2283 	struct inode *inode = mapping->host;
2284 	ssize_t	ret;
2285 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2286 					.iov_len = count };
2287 
2288 	mutex_lock(&inode->i_mutex);
2289 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2290 	mutex_unlock(&inode->i_mutex);
2291 
2292 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2293 		ssize_t err;
2294 
2295 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2296 		if (err < 0)
2297 			ret = err;
2298 	}
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL(generic_file_write);
2302 
2303 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2304 			unsigned long nr_segs, loff_t *ppos)
2305 {
2306 	struct kiocb kiocb;
2307 	ssize_t ret;
2308 
2309 	init_sync_kiocb(&kiocb, filp);
2310 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2311 	if (-EIOCBQUEUED == ret)
2312 		ret = wait_on_sync_kiocb(&kiocb);
2313 	return ret;
2314 }
2315 EXPORT_SYMBOL(generic_file_readv);
2316 
2317 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2318 			unsigned long nr_segs, loff_t *ppos)
2319 {
2320 	struct address_space *mapping = file->f_mapping;
2321 	struct inode *inode = mapping->host;
2322 	ssize_t ret;
2323 
2324 	mutex_lock(&inode->i_mutex);
2325 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2326 	mutex_unlock(&inode->i_mutex);
2327 
2328 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2329 		int err;
2330 
2331 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2332 		if (err < 0)
2333 			ret = err;
2334 	}
2335 	return ret;
2336 }
2337 EXPORT_SYMBOL(generic_file_writev);
2338 
2339 /*
2340  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2341  * went wrong during pagecache shootdown.
2342  */
2343 static ssize_t
2344 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2345 	loff_t offset, unsigned long nr_segs)
2346 {
2347 	struct file *file = iocb->ki_filp;
2348 	struct address_space *mapping = file->f_mapping;
2349 	ssize_t retval;
2350 	size_t write_len = 0;
2351 
2352 	/*
2353 	 * If it's a write, unmap all mmappings of the file up-front.  This
2354 	 * will cause any pte dirty bits to be propagated into the pageframes
2355 	 * for the subsequent filemap_write_and_wait().
2356 	 */
2357 	if (rw == WRITE) {
2358 		write_len = iov_length(iov, nr_segs);
2359 	       	if (mapping_mapped(mapping))
2360 			unmap_mapping_range(mapping, offset, write_len, 0);
2361 	}
2362 
2363 	retval = filemap_write_and_wait(mapping);
2364 	if (retval == 0) {
2365 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2366 						offset, nr_segs);
2367 		if (rw == WRITE && mapping->nrpages) {
2368 			pgoff_t end = (offset + write_len - 1)
2369 						>> PAGE_CACHE_SHIFT;
2370 			int err = invalidate_inode_pages2_range(mapping,
2371 					offset >> PAGE_CACHE_SHIFT, end);
2372 			if (err)
2373 				retval = err;
2374 		}
2375 	}
2376 	return retval;
2377 }
2378