xref: /linux/mm/filemap.c (revision f358afc52c3066f4e8cd7b3a2d75b31e822519e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_mutex
80  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->lock_page		(access_process_vm)
89  *
90  *  ->i_mutex			(generic_perform_write)
91  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
92  *
93  *  bdi->wb.list_lock
94  *    sb_lock			(fs/fs-writeback.c)
95  *    ->i_pages lock		(__sync_single_inode)
96  *
97  *  ->i_mmap_rwsem
98  *    ->anon_vma.lock		(vma_adjust)
99  *
100  *  ->anon_vma.lock
101  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
102  *
103  *  ->page_table_lock or pte_lock
104  *    ->swap_lock		(try_to_unmap_one)
105  *    ->private_lock		(try_to_unmap_one)
106  *    ->i_pages lock		(try_to_unmap_one)
107  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
108  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
109  *    ->private_lock		(page_remove_rmap->set_page_dirty)
110  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
116  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
117  *
118  * ->i_mmap_rwsem
119  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
120  */
121 
122 static void page_cache_delete(struct address_space *mapping,
123 				   struct page *page, void *shadow)
124 {
125 	XA_STATE(xas, &mapping->i_pages, page->index);
126 	unsigned int nr = 1;
127 
128 	mapping_set_update(&xas, mapping);
129 
130 	/* hugetlb pages are represented by a single entry in the xarray */
131 	if (!PageHuge(page)) {
132 		xas_set_order(&xas, page->index, compound_order(page));
133 		nr = compound_nr(page);
134 	}
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageTail(page), page);
138 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	page->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void unaccount_page_cache_page(struct address_space *mapping,
149 				      struct page *page)
150 {
151 	int nr;
152 
153 	/*
154 	 * if we're uptodate, flush out into the cleancache, otherwise
155 	 * invalidate any existing cleancache entries.  We can't leave
156 	 * stale data around in the cleancache once our page is gone
157 	 */
158 	if (PageUptodate(page) && PageMappedToDisk(page))
159 		cleancache_put_page(page);
160 	else
161 		cleancache_invalidate_page(mapping, page);
162 
163 	VM_BUG_ON_PAGE(PageTail(page), page);
164 	VM_BUG_ON_PAGE(page_mapped(page), page);
165 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
166 		int mapcount;
167 
168 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
169 			 current->comm, page_to_pfn(page));
170 		dump_page(page, "still mapped when deleted");
171 		dump_stack();
172 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
173 
174 		mapcount = page_mapcount(page);
175 		if (mapping_exiting(mapping) &&
176 		    page_count(page) >= mapcount + 2) {
177 			/*
178 			 * All vmas have already been torn down, so it's
179 			 * a good bet that actually the page is unmapped,
180 			 * and we'd prefer not to leak it: if we're wrong,
181 			 * some other bad page check should catch it later.
182 			 */
183 			page_mapcount_reset(page);
184 			page_ref_sub(page, mapcount);
185 		}
186 	}
187 
188 	/* hugetlb pages do not participate in page cache accounting. */
189 	if (PageHuge(page))
190 		return;
191 
192 	nr = thp_nr_pages(page);
193 
194 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
195 	if (PageSwapBacked(page)) {
196 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
197 		if (PageTransHuge(page))
198 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
199 	} else if (PageTransHuge(page)) {
200 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
201 		filemap_nr_thps_dec(mapping);
202 	}
203 
204 	/*
205 	 * At this point page must be either written or cleaned by
206 	 * truncate.  Dirty page here signals a bug and loss of
207 	 * unwritten data.
208 	 *
209 	 * This fixes dirty accounting after removing the page entirely
210 	 * but leaves PageDirty set: it has no effect for truncated
211 	 * page and anyway will be cleared before returning page into
212 	 * buddy allocator.
213 	 */
214 	if (WARN_ON_ONCE(PageDirty(page)))
215 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
216 }
217 
218 /*
219  * Delete a page from the page cache and free it. Caller has to make
220  * sure the page is locked and that nobody else uses it - or that usage
221  * is safe.  The caller must hold the i_pages lock.
222  */
223 void __delete_from_page_cache(struct page *page, void *shadow)
224 {
225 	struct address_space *mapping = page->mapping;
226 
227 	trace_mm_filemap_delete_from_page_cache(page);
228 
229 	unaccount_page_cache_page(mapping, page);
230 	page_cache_delete(mapping, page, shadow);
231 }
232 
233 static void page_cache_free_page(struct address_space *mapping,
234 				struct page *page)
235 {
236 	void (*freepage)(struct page *);
237 
238 	freepage = mapping->a_ops->freepage;
239 	if (freepage)
240 		freepage(page);
241 
242 	if (PageTransHuge(page) && !PageHuge(page)) {
243 		page_ref_sub(page, thp_nr_pages(page));
244 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
245 	} else {
246 		put_page(page);
247 	}
248 }
249 
250 /**
251  * delete_from_page_cache - delete page from page cache
252  * @page: the page which the kernel is trying to remove from page cache
253  *
254  * This must be called only on pages that have been verified to be in the page
255  * cache and locked.  It will never put the page into the free list, the caller
256  * has a reference on the page.
257  */
258 void delete_from_page_cache(struct page *page)
259 {
260 	struct address_space *mapping = page_mapping(page);
261 
262 	BUG_ON(!PageLocked(page));
263 	xa_lock_irq(&mapping->i_pages);
264 	__delete_from_page_cache(page, NULL);
265 	xa_unlock_irq(&mapping->i_pages);
266 
267 	page_cache_free_page(mapping, page);
268 }
269 EXPORT_SYMBOL(delete_from_page_cache);
270 
271 /*
272  * page_cache_delete_batch - delete several pages from page cache
273  * @mapping: the mapping to which pages belong
274  * @pvec: pagevec with pages to delete
275  *
276  * The function walks over mapping->i_pages and removes pages passed in @pvec
277  * from the mapping. The function expects @pvec to be sorted by page index
278  * and is optimised for it to be dense.
279  * It tolerates holes in @pvec (mapping entries at those indices are not
280  * modified). The function expects only THP head pages to be present in the
281  * @pvec.
282  *
283  * The function expects the i_pages lock to be held.
284  */
285 static void page_cache_delete_batch(struct address_space *mapping,
286 			     struct pagevec *pvec)
287 {
288 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
289 	int total_pages = 0;
290 	int i = 0;
291 	struct page *page;
292 
293 	mapping_set_update(&xas, mapping);
294 	xas_for_each(&xas, page, ULONG_MAX) {
295 		if (i >= pagevec_count(pvec))
296 			break;
297 
298 		/* A swap/dax/shadow entry got inserted? Skip it. */
299 		if (xa_is_value(page))
300 			continue;
301 		/*
302 		 * A page got inserted in our range? Skip it. We have our
303 		 * pages locked so they are protected from being removed.
304 		 * If we see a page whose index is higher than ours, it
305 		 * means our page has been removed, which shouldn't be
306 		 * possible because we're holding the PageLock.
307 		 */
308 		if (page != pvec->pages[i]) {
309 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
310 					page);
311 			continue;
312 		}
313 
314 		WARN_ON_ONCE(!PageLocked(page));
315 
316 		if (page->index == xas.xa_index)
317 			page->mapping = NULL;
318 		/* Leave page->index set: truncation lookup relies on it */
319 
320 		/*
321 		 * Move to the next page in the vector if this is a regular
322 		 * page or the index is of the last sub-page of this compound
323 		 * page.
324 		 */
325 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
326 			i++;
327 		xas_store(&xas, NULL);
328 		total_pages++;
329 	}
330 	mapping->nrpages -= total_pages;
331 }
332 
333 void delete_from_page_cache_batch(struct address_space *mapping,
334 				  struct pagevec *pvec)
335 {
336 	int i;
337 
338 	if (!pagevec_count(pvec))
339 		return;
340 
341 	xa_lock_irq(&mapping->i_pages);
342 	for (i = 0; i < pagevec_count(pvec); i++) {
343 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
344 
345 		unaccount_page_cache_page(mapping, pvec->pages[i]);
346 	}
347 	page_cache_delete_batch(mapping, pvec);
348 	xa_unlock_irq(&mapping->i_pages);
349 
350 	for (i = 0; i < pagevec_count(pvec); i++)
351 		page_cache_free_page(mapping, pvec->pages[i]);
352 }
353 
354 int filemap_check_errors(struct address_space *mapping)
355 {
356 	int ret = 0;
357 	/* Check for outstanding write errors */
358 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
359 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
360 		ret = -ENOSPC;
361 	if (test_bit(AS_EIO, &mapping->flags) &&
362 	    test_and_clear_bit(AS_EIO, &mapping->flags))
363 		ret = -EIO;
364 	return ret;
365 }
366 EXPORT_SYMBOL(filemap_check_errors);
367 
368 static int filemap_check_and_keep_errors(struct address_space *mapping)
369 {
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_EIO, &mapping->flags))
372 		return -EIO;
373 	if (test_bit(AS_ENOSPC, &mapping->flags))
374 		return -ENOSPC;
375 	return 0;
376 }
377 
378 /**
379  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
380  * @mapping:	address space structure to write
381  * @start:	offset in bytes where the range starts
382  * @end:	offset in bytes where the range ends (inclusive)
383  * @sync_mode:	enable synchronous operation
384  *
385  * Start writeback against all of a mapping's dirty pages that lie
386  * within the byte offsets <start, end> inclusive.
387  *
388  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
389  * opposed to a regular memory cleansing writeback.  The difference between
390  * these two operations is that if a dirty page/buffer is encountered, it must
391  * be waited upon, and not just skipped over.
392  *
393  * Return: %0 on success, negative error code otherwise.
394  */
395 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
396 				loff_t end, int sync_mode)
397 {
398 	int ret;
399 	struct writeback_control wbc = {
400 		.sync_mode = sync_mode,
401 		.nr_to_write = LONG_MAX,
402 		.range_start = start,
403 		.range_end = end,
404 	};
405 
406 	if (!mapping_can_writeback(mapping) ||
407 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
408 		return 0;
409 
410 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
411 	ret = do_writepages(mapping, &wbc);
412 	wbc_detach_inode(&wbc);
413 	return ret;
414 }
415 
416 static inline int __filemap_fdatawrite(struct address_space *mapping,
417 	int sync_mode)
418 {
419 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
420 }
421 
422 int filemap_fdatawrite(struct address_space *mapping)
423 {
424 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
425 }
426 EXPORT_SYMBOL(filemap_fdatawrite);
427 
428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429 				loff_t end)
430 {
431 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite_range);
434 
435 /**
436  * filemap_flush - mostly a non-blocking flush
437  * @mapping:	target address_space
438  *
439  * This is a mostly non-blocking flush.  Not suitable for data-integrity
440  * purposes - I/O may not be started against all dirty pages.
441  *
442  * Return: %0 on success, negative error code otherwise.
443  */
444 int filemap_flush(struct address_space *mapping)
445 {
446 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
447 }
448 EXPORT_SYMBOL(filemap_flush);
449 
450 /**
451  * filemap_range_has_page - check if a page exists in range.
452  * @mapping:           address space within which to check
453  * @start_byte:        offset in bytes where the range starts
454  * @end_byte:          offset in bytes where the range ends (inclusive)
455  *
456  * Find at least one page in the range supplied, usually used to check if
457  * direct writing in this range will trigger a writeback.
458  *
459  * Return: %true if at least one page exists in the specified range,
460  * %false otherwise.
461  */
462 bool filemap_range_has_page(struct address_space *mapping,
463 			   loff_t start_byte, loff_t end_byte)
464 {
465 	struct page *page;
466 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
467 	pgoff_t max = end_byte >> PAGE_SHIFT;
468 
469 	if (end_byte < start_byte)
470 		return false;
471 
472 	rcu_read_lock();
473 	for (;;) {
474 		page = xas_find(&xas, max);
475 		if (xas_retry(&xas, page))
476 			continue;
477 		/* Shadow entries don't count */
478 		if (xa_is_value(page))
479 			continue;
480 		/*
481 		 * We don't need to try to pin this page; we're about to
482 		 * release the RCU lock anyway.  It is enough to know that
483 		 * there was a page here recently.
484 		 */
485 		break;
486 	}
487 	rcu_read_unlock();
488 
489 	return page != NULL;
490 }
491 EXPORT_SYMBOL(filemap_range_has_page);
492 
493 static void __filemap_fdatawait_range(struct address_space *mapping,
494 				     loff_t start_byte, loff_t end_byte)
495 {
496 	pgoff_t index = start_byte >> PAGE_SHIFT;
497 	pgoff_t end = end_byte >> PAGE_SHIFT;
498 	struct pagevec pvec;
499 	int nr_pages;
500 
501 	if (end_byte < start_byte)
502 		return;
503 
504 	pagevec_init(&pvec);
505 	while (index <= end) {
506 		unsigned i;
507 
508 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
509 				end, PAGECACHE_TAG_WRITEBACK);
510 		if (!nr_pages)
511 			break;
512 
513 		for (i = 0; i < nr_pages; i++) {
514 			struct page *page = pvec.pages[i];
515 
516 			wait_on_page_writeback(page);
517 			ClearPageError(page);
518 		}
519 		pagevec_release(&pvec);
520 		cond_resched();
521 	}
522 }
523 
524 /**
525  * filemap_fdatawait_range - wait for writeback to complete
526  * @mapping:		address space structure to wait for
527  * @start_byte:		offset in bytes where the range starts
528  * @end_byte:		offset in bytes where the range ends (inclusive)
529  *
530  * Walk the list of under-writeback pages of the given address space
531  * in the given range and wait for all of them.  Check error status of
532  * the address space and return it.
533  *
534  * Since the error status of the address space is cleared by this function,
535  * callers are responsible for checking the return value and handling and/or
536  * reporting the error.
537  *
538  * Return: error status of the address space.
539  */
540 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
541 			    loff_t end_byte)
542 {
543 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
544 	return filemap_check_errors(mapping);
545 }
546 EXPORT_SYMBOL(filemap_fdatawait_range);
547 
548 /**
549  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
550  * @mapping:		address space structure to wait for
551  * @start_byte:		offset in bytes where the range starts
552  * @end_byte:		offset in bytes where the range ends (inclusive)
553  *
554  * Walk the list of under-writeback pages of the given address space in the
555  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
556  * this function does not clear error status of the address space.
557  *
558  * Use this function if callers don't handle errors themselves.  Expected
559  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
560  * fsfreeze(8)
561  */
562 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
563 		loff_t start_byte, loff_t end_byte)
564 {
565 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
566 	return filemap_check_and_keep_errors(mapping);
567 }
568 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
569 
570 /**
571  * file_fdatawait_range - wait for writeback to complete
572  * @file:		file pointing to address space structure to wait for
573  * @start_byte:		offset in bytes where the range starts
574  * @end_byte:		offset in bytes where the range ends (inclusive)
575  *
576  * Walk the list of under-writeback pages of the address space that file
577  * refers to, in the given range and wait for all of them.  Check error
578  * status of the address space vs. the file->f_wb_err cursor and return it.
579  *
580  * Since the error status of the file is advanced by this function,
581  * callers are responsible for checking the return value and handling and/or
582  * reporting the error.
583  *
584  * Return: error status of the address space vs. the file->f_wb_err cursor.
585  */
586 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
587 {
588 	struct address_space *mapping = file->f_mapping;
589 
590 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
591 	return file_check_and_advance_wb_err(file);
592 }
593 EXPORT_SYMBOL(file_fdatawait_range);
594 
595 /**
596  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
597  * @mapping: address space structure to wait for
598  *
599  * Walk the list of under-writeback pages of the given address space
600  * and wait for all of them.  Unlike filemap_fdatawait(), this function
601  * does not clear error status of the address space.
602  *
603  * Use this function if callers don't handle errors themselves.  Expected
604  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
605  * fsfreeze(8)
606  *
607  * Return: error status of the address space.
608  */
609 int filemap_fdatawait_keep_errors(struct address_space *mapping)
610 {
611 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
612 	return filemap_check_and_keep_errors(mapping);
613 }
614 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
615 
616 /* Returns true if writeback might be needed or already in progress. */
617 static bool mapping_needs_writeback(struct address_space *mapping)
618 {
619 	return mapping->nrpages;
620 }
621 
622 /**
623  * filemap_range_needs_writeback - check if range potentially needs writeback
624  * @mapping:           address space within which to check
625  * @start_byte:        offset in bytes where the range starts
626  * @end_byte:          offset in bytes where the range ends (inclusive)
627  *
628  * Find at least one page in the range supplied, usually used to check if
629  * direct writing in this range will trigger a writeback. Used by O_DIRECT
630  * read/write with IOCB_NOWAIT, to see if the caller needs to do
631  * filemap_write_and_wait_range() before proceeding.
632  *
633  * Return: %true if the caller should do filemap_write_and_wait_range() before
634  * doing O_DIRECT to a page in this range, %false otherwise.
635  */
636 bool filemap_range_needs_writeback(struct address_space *mapping,
637 				   loff_t start_byte, loff_t end_byte)
638 {
639 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
640 	pgoff_t max = end_byte >> PAGE_SHIFT;
641 	struct page *page;
642 
643 	if (!mapping_needs_writeback(mapping))
644 		return false;
645 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
646 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
647 		return false;
648 	if (end_byte < start_byte)
649 		return false;
650 
651 	rcu_read_lock();
652 	xas_for_each(&xas, page, max) {
653 		if (xas_retry(&xas, page))
654 			continue;
655 		if (xa_is_value(page))
656 			continue;
657 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
658 			break;
659 	}
660 	rcu_read_unlock();
661 	return page != NULL;
662 }
663 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
664 
665 /**
666  * filemap_write_and_wait_range - write out & wait on a file range
667  * @mapping:	the address_space for the pages
668  * @lstart:	offset in bytes where the range starts
669  * @lend:	offset in bytes where the range ends (inclusive)
670  *
671  * Write out and wait upon file offsets lstart->lend, inclusive.
672  *
673  * Note that @lend is inclusive (describes the last byte to be written) so
674  * that this function can be used to write to the very end-of-file (end = -1).
675  *
676  * Return: error status of the address space.
677  */
678 int filemap_write_and_wait_range(struct address_space *mapping,
679 				 loff_t lstart, loff_t lend)
680 {
681 	int err = 0;
682 
683 	if (mapping_needs_writeback(mapping)) {
684 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
685 						 WB_SYNC_ALL);
686 		/*
687 		 * Even if the above returned error, the pages may be
688 		 * written partially (e.g. -ENOSPC), so we wait for it.
689 		 * But the -EIO is special case, it may indicate the worst
690 		 * thing (e.g. bug) happened, so we avoid waiting for it.
691 		 */
692 		if (err != -EIO) {
693 			int err2 = filemap_fdatawait_range(mapping,
694 						lstart, lend);
695 			if (!err)
696 				err = err2;
697 		} else {
698 			/* Clear any previously stored errors */
699 			filemap_check_errors(mapping);
700 		}
701 	} else {
702 		err = filemap_check_errors(mapping);
703 	}
704 	return err;
705 }
706 EXPORT_SYMBOL(filemap_write_and_wait_range);
707 
708 void __filemap_set_wb_err(struct address_space *mapping, int err)
709 {
710 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
711 
712 	trace_filemap_set_wb_err(mapping, eseq);
713 }
714 EXPORT_SYMBOL(__filemap_set_wb_err);
715 
716 /**
717  * file_check_and_advance_wb_err - report wb error (if any) that was previously
718  * 				   and advance wb_err to current one
719  * @file: struct file on which the error is being reported
720  *
721  * When userland calls fsync (or something like nfsd does the equivalent), we
722  * want to report any writeback errors that occurred since the last fsync (or
723  * since the file was opened if there haven't been any).
724  *
725  * Grab the wb_err from the mapping. If it matches what we have in the file,
726  * then just quickly return 0. The file is all caught up.
727  *
728  * If it doesn't match, then take the mapping value, set the "seen" flag in
729  * it and try to swap it into place. If it works, or another task beat us
730  * to it with the new value, then update the f_wb_err and return the error
731  * portion. The error at this point must be reported via proper channels
732  * (a'la fsync, or NFS COMMIT operation, etc.).
733  *
734  * While we handle mapping->wb_err with atomic operations, the f_wb_err
735  * value is protected by the f_lock since we must ensure that it reflects
736  * the latest value swapped in for this file descriptor.
737  *
738  * Return: %0 on success, negative error code otherwise.
739  */
740 int file_check_and_advance_wb_err(struct file *file)
741 {
742 	int err = 0;
743 	errseq_t old = READ_ONCE(file->f_wb_err);
744 	struct address_space *mapping = file->f_mapping;
745 
746 	/* Locklessly handle the common case where nothing has changed */
747 	if (errseq_check(&mapping->wb_err, old)) {
748 		/* Something changed, must use slow path */
749 		spin_lock(&file->f_lock);
750 		old = file->f_wb_err;
751 		err = errseq_check_and_advance(&mapping->wb_err,
752 						&file->f_wb_err);
753 		trace_file_check_and_advance_wb_err(file, old);
754 		spin_unlock(&file->f_lock);
755 	}
756 
757 	/*
758 	 * We're mostly using this function as a drop in replacement for
759 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
760 	 * that the legacy code would have had on these flags.
761 	 */
762 	clear_bit(AS_EIO, &mapping->flags);
763 	clear_bit(AS_ENOSPC, &mapping->flags);
764 	return err;
765 }
766 EXPORT_SYMBOL(file_check_and_advance_wb_err);
767 
768 /**
769  * file_write_and_wait_range - write out & wait on a file range
770  * @file:	file pointing to address_space with pages
771  * @lstart:	offset in bytes where the range starts
772  * @lend:	offset in bytes where the range ends (inclusive)
773  *
774  * Write out and wait upon file offsets lstart->lend, inclusive.
775  *
776  * Note that @lend is inclusive (describes the last byte to be written) so
777  * that this function can be used to write to the very end-of-file (end = -1).
778  *
779  * After writing out and waiting on the data, we check and advance the
780  * f_wb_err cursor to the latest value, and return any errors detected there.
781  *
782  * Return: %0 on success, negative error code otherwise.
783  */
784 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
785 {
786 	int err = 0, err2;
787 	struct address_space *mapping = file->f_mapping;
788 
789 	if (mapping_needs_writeback(mapping)) {
790 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
791 						 WB_SYNC_ALL);
792 		/* See comment of filemap_write_and_wait() */
793 		if (err != -EIO)
794 			__filemap_fdatawait_range(mapping, lstart, lend);
795 	}
796 	err2 = file_check_and_advance_wb_err(file);
797 	if (!err)
798 		err = err2;
799 	return err;
800 }
801 EXPORT_SYMBOL(file_write_and_wait_range);
802 
803 /**
804  * replace_page_cache_page - replace a pagecache page with a new one
805  * @old:	page to be replaced
806  * @new:	page to replace with
807  *
808  * This function replaces a page in the pagecache with a new one.  On
809  * success it acquires the pagecache reference for the new page and
810  * drops it for the old page.  Both the old and new pages must be
811  * locked.  This function does not add the new page to the LRU, the
812  * caller must do that.
813  *
814  * The remove + add is atomic.  This function cannot fail.
815  */
816 void replace_page_cache_page(struct page *old, struct page *new)
817 {
818 	struct address_space *mapping = old->mapping;
819 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
820 	pgoff_t offset = old->index;
821 	XA_STATE(xas, &mapping->i_pages, offset);
822 
823 	VM_BUG_ON_PAGE(!PageLocked(old), old);
824 	VM_BUG_ON_PAGE(!PageLocked(new), new);
825 	VM_BUG_ON_PAGE(new->mapping, new);
826 
827 	get_page(new);
828 	new->mapping = mapping;
829 	new->index = offset;
830 
831 	mem_cgroup_migrate(old, new);
832 
833 	xas_lock_irq(&xas);
834 	xas_store(&xas, new);
835 
836 	old->mapping = NULL;
837 	/* hugetlb pages do not participate in page cache accounting. */
838 	if (!PageHuge(old))
839 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
840 	if (!PageHuge(new))
841 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
842 	if (PageSwapBacked(old))
843 		__dec_lruvec_page_state(old, NR_SHMEM);
844 	if (PageSwapBacked(new))
845 		__inc_lruvec_page_state(new, NR_SHMEM);
846 	xas_unlock_irq(&xas);
847 	if (freepage)
848 		freepage(old);
849 	put_page(old);
850 }
851 EXPORT_SYMBOL_GPL(replace_page_cache_page);
852 
853 noinline int __add_to_page_cache_locked(struct page *page,
854 					struct address_space *mapping,
855 					pgoff_t offset, gfp_t gfp,
856 					void **shadowp)
857 {
858 	XA_STATE(xas, &mapping->i_pages, offset);
859 	int huge = PageHuge(page);
860 	int error;
861 	bool charged = false;
862 
863 	VM_BUG_ON_PAGE(!PageLocked(page), page);
864 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
865 	mapping_set_update(&xas, mapping);
866 
867 	get_page(page);
868 	page->mapping = mapping;
869 	page->index = offset;
870 
871 	if (!huge) {
872 		error = mem_cgroup_charge(page, NULL, gfp);
873 		if (error)
874 			goto error;
875 		charged = true;
876 	}
877 
878 	gfp &= GFP_RECLAIM_MASK;
879 
880 	do {
881 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
882 		void *entry, *old = NULL;
883 
884 		if (order > thp_order(page))
885 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
886 					order, gfp);
887 		xas_lock_irq(&xas);
888 		xas_for_each_conflict(&xas, entry) {
889 			old = entry;
890 			if (!xa_is_value(entry)) {
891 				xas_set_err(&xas, -EEXIST);
892 				goto unlock;
893 			}
894 		}
895 
896 		if (old) {
897 			if (shadowp)
898 				*shadowp = old;
899 			/* entry may have been split before we acquired lock */
900 			order = xa_get_order(xas.xa, xas.xa_index);
901 			if (order > thp_order(page)) {
902 				xas_split(&xas, old, order);
903 				xas_reset(&xas);
904 			}
905 		}
906 
907 		xas_store(&xas, page);
908 		if (xas_error(&xas))
909 			goto unlock;
910 
911 		mapping->nrpages++;
912 
913 		/* hugetlb pages do not participate in page cache accounting */
914 		if (!huge)
915 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
916 unlock:
917 		xas_unlock_irq(&xas);
918 	} while (xas_nomem(&xas, gfp));
919 
920 	if (xas_error(&xas)) {
921 		error = xas_error(&xas);
922 		if (charged)
923 			mem_cgroup_uncharge(page);
924 		goto error;
925 	}
926 
927 	trace_mm_filemap_add_to_page_cache(page);
928 	return 0;
929 error:
930 	page->mapping = NULL;
931 	/* Leave page->index set: truncation relies upon it */
932 	put_page(page);
933 	return error;
934 }
935 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
936 
937 /**
938  * add_to_page_cache_locked - add a locked page to the pagecache
939  * @page:	page to add
940  * @mapping:	the page's address_space
941  * @offset:	page index
942  * @gfp_mask:	page allocation mode
943  *
944  * This function is used to add a page to the pagecache. It must be locked.
945  * This function does not add the page to the LRU.  The caller must do that.
946  *
947  * Return: %0 on success, negative error code otherwise.
948  */
949 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
950 		pgoff_t offset, gfp_t gfp_mask)
951 {
952 	return __add_to_page_cache_locked(page, mapping, offset,
953 					  gfp_mask, NULL);
954 }
955 EXPORT_SYMBOL(add_to_page_cache_locked);
956 
957 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
958 				pgoff_t offset, gfp_t gfp_mask)
959 {
960 	void *shadow = NULL;
961 	int ret;
962 
963 	__SetPageLocked(page);
964 	ret = __add_to_page_cache_locked(page, mapping, offset,
965 					 gfp_mask, &shadow);
966 	if (unlikely(ret))
967 		__ClearPageLocked(page);
968 	else {
969 		/*
970 		 * The page might have been evicted from cache only
971 		 * recently, in which case it should be activated like
972 		 * any other repeatedly accessed page.
973 		 * The exception is pages getting rewritten; evicting other
974 		 * data from the working set, only to cache data that will
975 		 * get overwritten with something else, is a waste of memory.
976 		 */
977 		WARN_ON_ONCE(PageActive(page));
978 		if (!(gfp_mask & __GFP_WRITE) && shadow)
979 			workingset_refault(page, shadow);
980 		lru_cache_add(page);
981 	}
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
985 
986 #ifdef CONFIG_NUMA
987 struct page *__page_cache_alloc(gfp_t gfp)
988 {
989 	int n;
990 	struct page *page;
991 
992 	if (cpuset_do_page_mem_spread()) {
993 		unsigned int cpuset_mems_cookie;
994 		do {
995 			cpuset_mems_cookie = read_mems_allowed_begin();
996 			n = cpuset_mem_spread_node();
997 			page = __alloc_pages_node(n, gfp, 0);
998 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
999 
1000 		return page;
1001 	}
1002 	return alloc_pages(gfp, 0);
1003 }
1004 EXPORT_SYMBOL(__page_cache_alloc);
1005 #endif
1006 
1007 /*
1008  * In order to wait for pages to become available there must be
1009  * waitqueues associated with pages. By using a hash table of
1010  * waitqueues where the bucket discipline is to maintain all
1011  * waiters on the same queue and wake all when any of the pages
1012  * become available, and for the woken contexts to check to be
1013  * sure the appropriate page became available, this saves space
1014  * at a cost of "thundering herd" phenomena during rare hash
1015  * collisions.
1016  */
1017 #define PAGE_WAIT_TABLE_BITS 8
1018 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1019 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1020 
1021 static wait_queue_head_t *page_waitqueue(struct page *page)
1022 {
1023 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1024 }
1025 
1026 void __init pagecache_init(void)
1027 {
1028 	int i;
1029 
1030 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1031 		init_waitqueue_head(&page_wait_table[i]);
1032 
1033 	page_writeback_init();
1034 }
1035 
1036 /*
1037  * The page wait code treats the "wait->flags" somewhat unusually, because
1038  * we have multiple different kinds of waits, not just the usual "exclusive"
1039  * one.
1040  *
1041  * We have:
1042  *
1043  *  (a) no special bits set:
1044  *
1045  *	We're just waiting for the bit to be released, and when a waker
1046  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1047  *	and remove it from the wait queue.
1048  *
1049  *	Simple and straightforward.
1050  *
1051  *  (b) WQ_FLAG_EXCLUSIVE:
1052  *
1053  *	The waiter is waiting to get the lock, and only one waiter should
1054  *	be woken up to avoid any thundering herd behavior. We'll set the
1055  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1056  *
1057  *	This is the traditional exclusive wait.
1058  *
1059  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1060  *
1061  *	The waiter is waiting to get the bit, and additionally wants the
1062  *	lock to be transferred to it for fair lock behavior. If the lock
1063  *	cannot be taken, we stop walking the wait queue without waking
1064  *	the waiter.
1065  *
1066  *	This is the "fair lock handoff" case, and in addition to setting
1067  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1068  *	that it now has the lock.
1069  */
1070 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1071 {
1072 	unsigned int flags;
1073 	struct wait_page_key *key = arg;
1074 	struct wait_page_queue *wait_page
1075 		= container_of(wait, struct wait_page_queue, wait);
1076 
1077 	if (!wake_page_match(wait_page, key))
1078 		return 0;
1079 
1080 	/*
1081 	 * If it's a lock handoff wait, we get the bit for it, and
1082 	 * stop walking (and do not wake it up) if we can't.
1083 	 */
1084 	flags = wait->flags;
1085 	if (flags & WQ_FLAG_EXCLUSIVE) {
1086 		if (test_bit(key->bit_nr, &key->page->flags))
1087 			return -1;
1088 		if (flags & WQ_FLAG_CUSTOM) {
1089 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1090 				return -1;
1091 			flags |= WQ_FLAG_DONE;
1092 		}
1093 	}
1094 
1095 	/*
1096 	 * We are holding the wait-queue lock, but the waiter that
1097 	 * is waiting for this will be checking the flags without
1098 	 * any locking.
1099 	 *
1100 	 * So update the flags atomically, and wake up the waiter
1101 	 * afterwards to avoid any races. This store-release pairs
1102 	 * with the load-acquire in wait_on_page_bit_common().
1103 	 */
1104 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1105 	wake_up_state(wait->private, mode);
1106 
1107 	/*
1108 	 * Ok, we have successfully done what we're waiting for,
1109 	 * and we can unconditionally remove the wait entry.
1110 	 *
1111 	 * Note that this pairs with the "finish_wait()" in the
1112 	 * waiter, and has to be the absolute last thing we do.
1113 	 * After this list_del_init(&wait->entry) the wait entry
1114 	 * might be de-allocated and the process might even have
1115 	 * exited.
1116 	 */
1117 	list_del_init_careful(&wait->entry);
1118 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1119 }
1120 
1121 static void wake_up_page_bit(struct page *page, int bit_nr)
1122 {
1123 	wait_queue_head_t *q = page_waitqueue(page);
1124 	struct wait_page_key key;
1125 	unsigned long flags;
1126 	wait_queue_entry_t bookmark;
1127 
1128 	key.page = page;
1129 	key.bit_nr = bit_nr;
1130 	key.page_match = 0;
1131 
1132 	bookmark.flags = 0;
1133 	bookmark.private = NULL;
1134 	bookmark.func = NULL;
1135 	INIT_LIST_HEAD(&bookmark.entry);
1136 
1137 	spin_lock_irqsave(&q->lock, flags);
1138 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1139 
1140 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1141 		/*
1142 		 * Take a breather from holding the lock,
1143 		 * allow pages that finish wake up asynchronously
1144 		 * to acquire the lock and remove themselves
1145 		 * from wait queue
1146 		 */
1147 		spin_unlock_irqrestore(&q->lock, flags);
1148 		cpu_relax();
1149 		spin_lock_irqsave(&q->lock, flags);
1150 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151 	}
1152 
1153 	/*
1154 	 * It is possible for other pages to have collided on the waitqueue
1155 	 * hash, so in that case check for a page match. That prevents a long-
1156 	 * term waiter
1157 	 *
1158 	 * It is still possible to miss a case here, when we woke page waiters
1159 	 * and removed them from the waitqueue, but there are still other
1160 	 * page waiters.
1161 	 */
1162 	if (!waitqueue_active(q) || !key.page_match) {
1163 		ClearPageWaiters(page);
1164 		/*
1165 		 * It's possible to miss clearing Waiters here, when we woke
1166 		 * our page waiters, but the hashed waitqueue has waiters for
1167 		 * other pages on it.
1168 		 *
1169 		 * That's okay, it's a rare case. The next waker will clear it.
1170 		 */
1171 	}
1172 	spin_unlock_irqrestore(&q->lock, flags);
1173 }
1174 
1175 static void wake_up_page(struct page *page, int bit)
1176 {
1177 	if (!PageWaiters(page))
1178 		return;
1179 	wake_up_page_bit(page, bit);
1180 }
1181 
1182 /*
1183  * A choice of three behaviors for wait_on_page_bit_common():
1184  */
1185 enum behavior {
1186 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1187 			 * __lock_page() waiting on then setting PG_locked.
1188 			 */
1189 	SHARED,		/* Hold ref to page and check the bit when woken, like
1190 			 * wait_on_page_writeback() waiting on PG_writeback.
1191 			 */
1192 	DROP,		/* Drop ref to page before wait, no check when woken,
1193 			 * like put_and_wait_on_page_locked() on PG_locked.
1194 			 */
1195 };
1196 
1197 /*
1198  * Attempt to check (or get) the page bit, and mark us done
1199  * if successful.
1200  */
1201 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1202 					struct wait_queue_entry *wait)
1203 {
1204 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1205 		if (test_and_set_bit(bit_nr, &page->flags))
1206 			return false;
1207 	} else if (test_bit(bit_nr, &page->flags))
1208 		return false;
1209 
1210 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1211 	return true;
1212 }
1213 
1214 /* How many times do we accept lock stealing from under a waiter? */
1215 int sysctl_page_lock_unfairness = 5;
1216 
1217 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1218 	struct page *page, int bit_nr, int state, enum behavior behavior)
1219 {
1220 	int unfairness = sysctl_page_lock_unfairness;
1221 	struct wait_page_queue wait_page;
1222 	wait_queue_entry_t *wait = &wait_page.wait;
1223 	bool thrashing = false;
1224 	bool delayacct = false;
1225 	unsigned long pflags;
1226 
1227 	if (bit_nr == PG_locked &&
1228 	    !PageUptodate(page) && PageWorkingset(page)) {
1229 		if (!PageSwapBacked(page)) {
1230 			delayacct_thrashing_start();
1231 			delayacct = true;
1232 		}
1233 		psi_memstall_enter(&pflags);
1234 		thrashing = true;
1235 	}
1236 
1237 	init_wait(wait);
1238 	wait->func = wake_page_function;
1239 	wait_page.page = page;
1240 	wait_page.bit_nr = bit_nr;
1241 
1242 repeat:
1243 	wait->flags = 0;
1244 	if (behavior == EXCLUSIVE) {
1245 		wait->flags = WQ_FLAG_EXCLUSIVE;
1246 		if (--unfairness < 0)
1247 			wait->flags |= WQ_FLAG_CUSTOM;
1248 	}
1249 
1250 	/*
1251 	 * Do one last check whether we can get the
1252 	 * page bit synchronously.
1253 	 *
1254 	 * Do the SetPageWaiters() marking before that
1255 	 * to let any waker we _just_ missed know they
1256 	 * need to wake us up (otherwise they'll never
1257 	 * even go to the slow case that looks at the
1258 	 * page queue), and add ourselves to the wait
1259 	 * queue if we need to sleep.
1260 	 *
1261 	 * This part needs to be done under the queue
1262 	 * lock to avoid races.
1263 	 */
1264 	spin_lock_irq(&q->lock);
1265 	SetPageWaiters(page);
1266 	if (!trylock_page_bit_common(page, bit_nr, wait))
1267 		__add_wait_queue_entry_tail(q, wait);
1268 	spin_unlock_irq(&q->lock);
1269 
1270 	/*
1271 	 * From now on, all the logic will be based on
1272 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1273 	 * see whether the page bit testing has already
1274 	 * been done by the wake function.
1275 	 *
1276 	 * We can drop our reference to the page.
1277 	 */
1278 	if (behavior == DROP)
1279 		put_page(page);
1280 
1281 	/*
1282 	 * Note that until the "finish_wait()", or until
1283 	 * we see the WQ_FLAG_WOKEN flag, we need to
1284 	 * be very careful with the 'wait->flags', because
1285 	 * we may race with a waker that sets them.
1286 	 */
1287 	for (;;) {
1288 		unsigned int flags;
1289 
1290 		set_current_state(state);
1291 
1292 		/* Loop until we've been woken or interrupted */
1293 		flags = smp_load_acquire(&wait->flags);
1294 		if (!(flags & WQ_FLAG_WOKEN)) {
1295 			if (signal_pending_state(state, current))
1296 				break;
1297 
1298 			io_schedule();
1299 			continue;
1300 		}
1301 
1302 		/* If we were non-exclusive, we're done */
1303 		if (behavior != EXCLUSIVE)
1304 			break;
1305 
1306 		/* If the waker got the lock for us, we're done */
1307 		if (flags & WQ_FLAG_DONE)
1308 			break;
1309 
1310 		/*
1311 		 * Otherwise, if we're getting the lock, we need to
1312 		 * try to get it ourselves.
1313 		 *
1314 		 * And if that fails, we'll have to retry this all.
1315 		 */
1316 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1317 			goto repeat;
1318 
1319 		wait->flags |= WQ_FLAG_DONE;
1320 		break;
1321 	}
1322 
1323 	/*
1324 	 * If a signal happened, this 'finish_wait()' may remove the last
1325 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1326 	 * set. That's ok. The next wakeup will take care of it, and trying
1327 	 * to do it here would be difficult and prone to races.
1328 	 */
1329 	finish_wait(q, wait);
1330 
1331 	if (thrashing) {
1332 		if (delayacct)
1333 			delayacct_thrashing_end();
1334 		psi_memstall_leave(&pflags);
1335 	}
1336 
1337 	/*
1338 	 * NOTE! The wait->flags weren't stable until we've done the
1339 	 * 'finish_wait()', and we could have exited the loop above due
1340 	 * to a signal, and had a wakeup event happen after the signal
1341 	 * test but before the 'finish_wait()'.
1342 	 *
1343 	 * So only after the finish_wait() can we reliably determine
1344 	 * if we got woken up or not, so we can now figure out the final
1345 	 * return value based on that state without races.
1346 	 *
1347 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1348 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1349 	 */
1350 	if (behavior == EXCLUSIVE)
1351 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1352 
1353 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1354 }
1355 
1356 void wait_on_page_bit(struct page *page, int bit_nr)
1357 {
1358 	wait_queue_head_t *q = page_waitqueue(page);
1359 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1360 }
1361 EXPORT_SYMBOL(wait_on_page_bit);
1362 
1363 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1364 {
1365 	wait_queue_head_t *q = page_waitqueue(page);
1366 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1367 }
1368 EXPORT_SYMBOL(wait_on_page_bit_killable);
1369 
1370 /**
1371  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1372  * @page: The page to wait for.
1373  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1374  *
1375  * The caller should hold a reference on @page.  They expect the page to
1376  * become unlocked relatively soon, but do not wish to hold up migration
1377  * (for example) by holding the reference while waiting for the page to
1378  * come unlocked.  After this function returns, the caller should not
1379  * dereference @page.
1380  *
1381  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1382  */
1383 int put_and_wait_on_page_locked(struct page *page, int state)
1384 {
1385 	wait_queue_head_t *q;
1386 
1387 	page = compound_head(page);
1388 	q = page_waitqueue(page);
1389 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1390 }
1391 
1392 /**
1393  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1394  * @page: Page defining the wait queue of interest
1395  * @waiter: Waiter to add to the queue
1396  *
1397  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1398  */
1399 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1400 {
1401 	wait_queue_head_t *q = page_waitqueue(page);
1402 	unsigned long flags;
1403 
1404 	spin_lock_irqsave(&q->lock, flags);
1405 	__add_wait_queue_entry_tail(q, waiter);
1406 	SetPageWaiters(page);
1407 	spin_unlock_irqrestore(&q->lock, flags);
1408 }
1409 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1410 
1411 #ifndef clear_bit_unlock_is_negative_byte
1412 
1413 /*
1414  * PG_waiters is the high bit in the same byte as PG_lock.
1415  *
1416  * On x86 (and on many other architectures), we can clear PG_lock and
1417  * test the sign bit at the same time. But if the architecture does
1418  * not support that special operation, we just do this all by hand
1419  * instead.
1420  *
1421  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1422  * being cleared, but a memory barrier should be unnecessary since it is
1423  * in the same byte as PG_locked.
1424  */
1425 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1426 {
1427 	clear_bit_unlock(nr, mem);
1428 	/* smp_mb__after_atomic(); */
1429 	return test_bit(PG_waiters, mem);
1430 }
1431 
1432 #endif
1433 
1434 /**
1435  * unlock_page - unlock a locked page
1436  * @page: the page
1437  *
1438  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1439  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1440  * mechanism between PageLocked pages and PageWriteback pages is shared.
1441  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1442  *
1443  * Note that this depends on PG_waiters being the sign bit in the byte
1444  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1445  * clear the PG_locked bit and test PG_waiters at the same time fairly
1446  * portably (architectures that do LL/SC can test any bit, while x86 can
1447  * test the sign bit).
1448  */
1449 void unlock_page(struct page *page)
1450 {
1451 	BUILD_BUG_ON(PG_waiters != 7);
1452 	page = compound_head(page);
1453 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1454 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1455 		wake_up_page_bit(page, PG_locked);
1456 }
1457 EXPORT_SYMBOL(unlock_page);
1458 
1459 /**
1460  * end_page_private_2 - Clear PG_private_2 and release any waiters
1461  * @page: The page
1462  *
1463  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1464  * this.  The page ref held for PG_private_2 being set is released.
1465  *
1466  * This is, for example, used when a netfs page is being written to a local
1467  * disk cache, thereby allowing writes to the cache for the same page to be
1468  * serialised.
1469  */
1470 void end_page_private_2(struct page *page)
1471 {
1472 	page = compound_head(page);
1473 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1474 	clear_bit_unlock(PG_private_2, &page->flags);
1475 	wake_up_page_bit(page, PG_private_2);
1476 	put_page(page);
1477 }
1478 EXPORT_SYMBOL(end_page_private_2);
1479 
1480 /**
1481  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1482  * @page: The page to wait on
1483  *
1484  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1485  */
1486 void wait_on_page_private_2(struct page *page)
1487 {
1488 	page = compound_head(page);
1489 	while (PagePrivate2(page))
1490 		wait_on_page_bit(page, PG_private_2);
1491 }
1492 EXPORT_SYMBOL(wait_on_page_private_2);
1493 
1494 /**
1495  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1496  * @page: The page to wait on
1497  *
1498  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1499  * fatal signal is received by the calling task.
1500  *
1501  * Return:
1502  * - 0 if successful.
1503  * - -EINTR if a fatal signal was encountered.
1504  */
1505 int wait_on_page_private_2_killable(struct page *page)
1506 {
1507 	int ret = 0;
1508 
1509 	page = compound_head(page);
1510 	while (PagePrivate2(page)) {
1511 		ret = wait_on_page_bit_killable(page, PG_private_2);
1512 		if (ret < 0)
1513 			break;
1514 	}
1515 
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1519 
1520 /**
1521  * end_page_writeback - end writeback against a page
1522  * @page: the page
1523  */
1524 void end_page_writeback(struct page *page)
1525 {
1526 	/*
1527 	 * TestClearPageReclaim could be used here but it is an atomic
1528 	 * operation and overkill in this particular case. Failing to
1529 	 * shuffle a page marked for immediate reclaim is too mild to
1530 	 * justify taking an atomic operation penalty at the end of
1531 	 * ever page writeback.
1532 	 */
1533 	if (PageReclaim(page)) {
1534 		ClearPageReclaim(page);
1535 		rotate_reclaimable_page(page);
1536 	}
1537 
1538 	/*
1539 	 * Writeback does not hold a page reference of its own, relying
1540 	 * on truncation to wait for the clearing of PG_writeback.
1541 	 * But here we must make sure that the page is not freed and
1542 	 * reused before the wake_up_page().
1543 	 */
1544 	get_page(page);
1545 	if (!test_clear_page_writeback(page))
1546 		BUG();
1547 
1548 	smp_mb__after_atomic();
1549 	wake_up_page(page, PG_writeback);
1550 	put_page(page);
1551 }
1552 EXPORT_SYMBOL(end_page_writeback);
1553 
1554 /*
1555  * After completing I/O on a page, call this routine to update the page
1556  * flags appropriately
1557  */
1558 void page_endio(struct page *page, bool is_write, int err)
1559 {
1560 	if (!is_write) {
1561 		if (!err) {
1562 			SetPageUptodate(page);
1563 		} else {
1564 			ClearPageUptodate(page);
1565 			SetPageError(page);
1566 		}
1567 		unlock_page(page);
1568 	} else {
1569 		if (err) {
1570 			struct address_space *mapping;
1571 
1572 			SetPageError(page);
1573 			mapping = page_mapping(page);
1574 			if (mapping)
1575 				mapping_set_error(mapping, err);
1576 		}
1577 		end_page_writeback(page);
1578 	}
1579 }
1580 EXPORT_SYMBOL_GPL(page_endio);
1581 
1582 /**
1583  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1584  * @__page: the page to lock
1585  */
1586 void __lock_page(struct page *__page)
1587 {
1588 	struct page *page = compound_head(__page);
1589 	wait_queue_head_t *q = page_waitqueue(page);
1590 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1591 				EXCLUSIVE);
1592 }
1593 EXPORT_SYMBOL(__lock_page);
1594 
1595 int __lock_page_killable(struct page *__page)
1596 {
1597 	struct page *page = compound_head(__page);
1598 	wait_queue_head_t *q = page_waitqueue(page);
1599 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1600 					EXCLUSIVE);
1601 }
1602 EXPORT_SYMBOL_GPL(__lock_page_killable);
1603 
1604 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1605 {
1606 	struct wait_queue_head *q = page_waitqueue(page);
1607 	int ret = 0;
1608 
1609 	wait->page = page;
1610 	wait->bit_nr = PG_locked;
1611 
1612 	spin_lock_irq(&q->lock);
1613 	__add_wait_queue_entry_tail(q, &wait->wait);
1614 	SetPageWaiters(page);
1615 	ret = !trylock_page(page);
1616 	/*
1617 	 * If we were successful now, we know we're still on the
1618 	 * waitqueue as we're still under the lock. This means it's
1619 	 * safe to remove and return success, we know the callback
1620 	 * isn't going to trigger.
1621 	 */
1622 	if (!ret)
1623 		__remove_wait_queue(q, &wait->wait);
1624 	else
1625 		ret = -EIOCBQUEUED;
1626 	spin_unlock_irq(&q->lock);
1627 	return ret;
1628 }
1629 
1630 /*
1631  * Return values:
1632  * 1 - page is locked; mmap_lock is still held.
1633  * 0 - page is not locked.
1634  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1635  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1636  *     which case mmap_lock is still held.
1637  *
1638  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1639  * with the page locked and the mmap_lock unperturbed.
1640  */
1641 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1642 			 unsigned int flags)
1643 {
1644 	if (fault_flag_allow_retry_first(flags)) {
1645 		/*
1646 		 * CAUTION! In this case, mmap_lock is not released
1647 		 * even though return 0.
1648 		 */
1649 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1650 			return 0;
1651 
1652 		mmap_read_unlock(mm);
1653 		if (flags & FAULT_FLAG_KILLABLE)
1654 			wait_on_page_locked_killable(page);
1655 		else
1656 			wait_on_page_locked(page);
1657 		return 0;
1658 	}
1659 	if (flags & FAULT_FLAG_KILLABLE) {
1660 		int ret;
1661 
1662 		ret = __lock_page_killable(page);
1663 		if (ret) {
1664 			mmap_read_unlock(mm);
1665 			return 0;
1666 		}
1667 	} else {
1668 		__lock_page(page);
1669 	}
1670 	return 1;
1671 
1672 }
1673 
1674 /**
1675  * page_cache_next_miss() - Find the next gap in the page cache.
1676  * @mapping: Mapping.
1677  * @index: Index.
1678  * @max_scan: Maximum range to search.
1679  *
1680  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1681  * gap with the lowest index.
1682  *
1683  * This function may be called under the rcu_read_lock.  However, this will
1684  * not atomically search a snapshot of the cache at a single point in time.
1685  * For example, if a gap is created at index 5, then subsequently a gap is
1686  * created at index 10, page_cache_next_miss covering both indices may
1687  * return 10 if called under the rcu_read_lock.
1688  *
1689  * Return: The index of the gap if found, otherwise an index outside the
1690  * range specified (in which case 'return - index >= max_scan' will be true).
1691  * In the rare case of index wrap-around, 0 will be returned.
1692  */
1693 pgoff_t page_cache_next_miss(struct address_space *mapping,
1694 			     pgoff_t index, unsigned long max_scan)
1695 {
1696 	XA_STATE(xas, &mapping->i_pages, index);
1697 
1698 	while (max_scan--) {
1699 		void *entry = xas_next(&xas);
1700 		if (!entry || xa_is_value(entry))
1701 			break;
1702 		if (xas.xa_index == 0)
1703 			break;
1704 	}
1705 
1706 	return xas.xa_index;
1707 }
1708 EXPORT_SYMBOL(page_cache_next_miss);
1709 
1710 /**
1711  * page_cache_prev_miss() - Find the previous gap in the page cache.
1712  * @mapping: Mapping.
1713  * @index: Index.
1714  * @max_scan: Maximum range to search.
1715  *
1716  * Search the range [max(index - max_scan + 1, 0), index] for the
1717  * gap with the highest index.
1718  *
1719  * This function may be called under the rcu_read_lock.  However, this will
1720  * not atomically search a snapshot of the cache at a single point in time.
1721  * For example, if a gap is created at index 10, then subsequently a gap is
1722  * created at index 5, page_cache_prev_miss() covering both indices may
1723  * return 5 if called under the rcu_read_lock.
1724  *
1725  * Return: The index of the gap if found, otherwise an index outside the
1726  * range specified (in which case 'index - return >= max_scan' will be true).
1727  * In the rare case of wrap-around, ULONG_MAX will be returned.
1728  */
1729 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1730 			     pgoff_t index, unsigned long max_scan)
1731 {
1732 	XA_STATE(xas, &mapping->i_pages, index);
1733 
1734 	while (max_scan--) {
1735 		void *entry = xas_prev(&xas);
1736 		if (!entry || xa_is_value(entry))
1737 			break;
1738 		if (xas.xa_index == ULONG_MAX)
1739 			break;
1740 	}
1741 
1742 	return xas.xa_index;
1743 }
1744 EXPORT_SYMBOL(page_cache_prev_miss);
1745 
1746 /*
1747  * mapping_get_entry - Get a page cache entry.
1748  * @mapping: the address_space to search
1749  * @index: The page cache index.
1750  *
1751  * Looks up the page cache slot at @mapping & @index.  If there is a
1752  * page cache page, the head page is returned with an increased refcount.
1753  *
1754  * If the slot holds a shadow entry of a previously evicted page, or a
1755  * swap entry from shmem/tmpfs, it is returned.
1756  *
1757  * Return: The head page or shadow entry, %NULL if nothing is found.
1758  */
1759 static struct page *mapping_get_entry(struct address_space *mapping,
1760 		pgoff_t index)
1761 {
1762 	XA_STATE(xas, &mapping->i_pages, index);
1763 	struct page *page;
1764 
1765 	rcu_read_lock();
1766 repeat:
1767 	xas_reset(&xas);
1768 	page = xas_load(&xas);
1769 	if (xas_retry(&xas, page))
1770 		goto repeat;
1771 	/*
1772 	 * A shadow entry of a recently evicted page, or a swap entry from
1773 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1774 	 */
1775 	if (!page || xa_is_value(page))
1776 		goto out;
1777 
1778 	if (!page_cache_get_speculative(page))
1779 		goto repeat;
1780 
1781 	/*
1782 	 * Has the page moved or been split?
1783 	 * This is part of the lockless pagecache protocol. See
1784 	 * include/linux/pagemap.h for details.
1785 	 */
1786 	if (unlikely(page != xas_reload(&xas))) {
1787 		put_page(page);
1788 		goto repeat;
1789 	}
1790 out:
1791 	rcu_read_unlock();
1792 
1793 	return page;
1794 }
1795 
1796 /**
1797  * pagecache_get_page - Find and get a reference to a page.
1798  * @mapping: The address_space to search.
1799  * @index: The page index.
1800  * @fgp_flags: %FGP flags modify how the page is returned.
1801  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1802  *
1803  * Looks up the page cache entry at @mapping & @index.
1804  *
1805  * @fgp_flags can be zero or more of these flags:
1806  *
1807  * * %FGP_ACCESSED - The page will be marked accessed.
1808  * * %FGP_LOCK - The page is returned locked.
1809  * * %FGP_HEAD - If the page is present and a THP, return the head page
1810  *   rather than the exact page specified by the index.
1811  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1812  *   instead of allocating a new page to replace it.
1813  * * %FGP_CREAT - If no page is present then a new page is allocated using
1814  *   @gfp_mask and added to the page cache and the VM's LRU list.
1815  *   The page is returned locked and with an increased refcount.
1816  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1817  *   page is already in cache.  If the page was allocated, unlock it before
1818  *   returning so the caller can do the same dance.
1819  * * %FGP_WRITE - The page will be written
1820  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1821  * * %FGP_NOWAIT - Don't get blocked by page lock
1822  *
1823  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1824  * if the %GFP flags specified for %FGP_CREAT are atomic.
1825  *
1826  * If there is a page cache page, it is returned with an increased refcount.
1827  *
1828  * Return: The found page or %NULL otherwise.
1829  */
1830 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1831 		int fgp_flags, gfp_t gfp_mask)
1832 {
1833 	struct page *page;
1834 
1835 repeat:
1836 	page = mapping_get_entry(mapping, index);
1837 	if (xa_is_value(page)) {
1838 		if (fgp_flags & FGP_ENTRY)
1839 			return page;
1840 		page = NULL;
1841 	}
1842 	if (!page)
1843 		goto no_page;
1844 
1845 	if (fgp_flags & FGP_LOCK) {
1846 		if (fgp_flags & FGP_NOWAIT) {
1847 			if (!trylock_page(page)) {
1848 				put_page(page);
1849 				return NULL;
1850 			}
1851 		} else {
1852 			lock_page(page);
1853 		}
1854 
1855 		/* Has the page been truncated? */
1856 		if (unlikely(page->mapping != mapping)) {
1857 			unlock_page(page);
1858 			put_page(page);
1859 			goto repeat;
1860 		}
1861 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1862 	}
1863 
1864 	if (fgp_flags & FGP_ACCESSED)
1865 		mark_page_accessed(page);
1866 	else if (fgp_flags & FGP_WRITE) {
1867 		/* Clear idle flag for buffer write */
1868 		if (page_is_idle(page))
1869 			clear_page_idle(page);
1870 	}
1871 	if (!(fgp_flags & FGP_HEAD))
1872 		page = find_subpage(page, index);
1873 
1874 no_page:
1875 	if (!page && (fgp_flags & FGP_CREAT)) {
1876 		int err;
1877 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1878 			gfp_mask |= __GFP_WRITE;
1879 		if (fgp_flags & FGP_NOFS)
1880 			gfp_mask &= ~__GFP_FS;
1881 
1882 		page = __page_cache_alloc(gfp_mask);
1883 		if (!page)
1884 			return NULL;
1885 
1886 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1887 			fgp_flags |= FGP_LOCK;
1888 
1889 		/* Init accessed so avoid atomic mark_page_accessed later */
1890 		if (fgp_flags & FGP_ACCESSED)
1891 			__SetPageReferenced(page);
1892 
1893 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1894 		if (unlikely(err)) {
1895 			put_page(page);
1896 			page = NULL;
1897 			if (err == -EEXIST)
1898 				goto repeat;
1899 		}
1900 
1901 		/*
1902 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1903 		 * an unlocked page.
1904 		 */
1905 		if (page && (fgp_flags & FGP_FOR_MMAP))
1906 			unlock_page(page);
1907 	}
1908 
1909 	return page;
1910 }
1911 EXPORT_SYMBOL(pagecache_get_page);
1912 
1913 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1914 		xa_mark_t mark)
1915 {
1916 	struct page *page;
1917 
1918 retry:
1919 	if (mark == XA_PRESENT)
1920 		page = xas_find(xas, max);
1921 	else
1922 		page = xas_find_marked(xas, max, mark);
1923 
1924 	if (xas_retry(xas, page))
1925 		goto retry;
1926 	/*
1927 	 * A shadow entry of a recently evicted page, a swap
1928 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1929 	 * without attempting to raise page count.
1930 	 */
1931 	if (!page || xa_is_value(page))
1932 		return page;
1933 
1934 	if (!page_cache_get_speculative(page))
1935 		goto reset;
1936 
1937 	/* Has the page moved or been split? */
1938 	if (unlikely(page != xas_reload(xas))) {
1939 		put_page(page);
1940 		goto reset;
1941 	}
1942 
1943 	return page;
1944 reset:
1945 	xas_reset(xas);
1946 	goto retry;
1947 }
1948 
1949 /**
1950  * find_get_entries - gang pagecache lookup
1951  * @mapping:	The address_space to search
1952  * @start:	The starting page cache index
1953  * @end:	The final page index (inclusive).
1954  * @pvec:	Where the resulting entries are placed.
1955  * @indices:	The cache indices corresponding to the entries in @entries
1956  *
1957  * find_get_entries() will search for and return a batch of entries in
1958  * the mapping.  The entries are placed in @pvec.  find_get_entries()
1959  * takes a reference on any actual pages it returns.
1960  *
1961  * The search returns a group of mapping-contiguous page cache entries
1962  * with ascending indexes.  There may be holes in the indices due to
1963  * not-present pages.
1964  *
1965  * Any shadow entries of evicted pages, or swap entries from
1966  * shmem/tmpfs, are included in the returned array.
1967  *
1968  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1969  * stops at that page: the caller is likely to have a better way to handle
1970  * the compound page as a whole, and then skip its extent, than repeatedly
1971  * calling find_get_entries() to return all its tails.
1972  *
1973  * Return: the number of pages and shadow entries which were found.
1974  */
1975 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1976 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1977 {
1978 	XA_STATE(xas, &mapping->i_pages, start);
1979 	struct page *page;
1980 	unsigned int ret = 0;
1981 	unsigned nr_entries = PAGEVEC_SIZE;
1982 
1983 	rcu_read_lock();
1984 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1985 		/*
1986 		 * Terminate early on finding a THP, to allow the caller to
1987 		 * handle it all at once; but continue if this is hugetlbfs.
1988 		 */
1989 		if (!xa_is_value(page) && PageTransHuge(page) &&
1990 				!PageHuge(page)) {
1991 			page = find_subpage(page, xas.xa_index);
1992 			nr_entries = ret + 1;
1993 		}
1994 
1995 		indices[ret] = xas.xa_index;
1996 		pvec->pages[ret] = page;
1997 		if (++ret == nr_entries)
1998 			break;
1999 	}
2000 	rcu_read_unlock();
2001 
2002 	pvec->nr = ret;
2003 	return ret;
2004 }
2005 
2006 /**
2007  * find_lock_entries - Find a batch of pagecache entries.
2008  * @mapping:	The address_space to search.
2009  * @start:	The starting page cache index.
2010  * @end:	The final page index (inclusive).
2011  * @pvec:	Where the resulting entries are placed.
2012  * @indices:	The cache indices of the entries in @pvec.
2013  *
2014  * find_lock_entries() will return a batch of entries from @mapping.
2015  * Swap, shadow and DAX entries are included.  Pages are returned
2016  * locked and with an incremented refcount.  Pages which are locked by
2017  * somebody else or under writeback are skipped.  Only the head page of
2018  * a THP is returned.  Pages which are partially outside the range are
2019  * not returned.
2020  *
2021  * The entries have ascending indexes.  The indices may not be consecutive
2022  * due to not-present entries, THP pages, pages which could not be locked
2023  * or pages under writeback.
2024  *
2025  * Return: The number of entries which were found.
2026  */
2027 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2028 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2029 {
2030 	XA_STATE(xas, &mapping->i_pages, start);
2031 	struct page *page;
2032 
2033 	rcu_read_lock();
2034 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2035 		if (!xa_is_value(page)) {
2036 			if (page->index < start)
2037 				goto put;
2038 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2039 			if (page->index + thp_nr_pages(page) - 1 > end)
2040 				goto put;
2041 			if (!trylock_page(page))
2042 				goto put;
2043 			if (page->mapping != mapping || PageWriteback(page))
2044 				goto unlock;
2045 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2046 					page);
2047 		}
2048 		indices[pvec->nr] = xas.xa_index;
2049 		if (!pagevec_add(pvec, page))
2050 			break;
2051 		goto next;
2052 unlock:
2053 		unlock_page(page);
2054 put:
2055 		put_page(page);
2056 next:
2057 		if (!xa_is_value(page) && PageTransHuge(page)) {
2058 			unsigned int nr_pages = thp_nr_pages(page);
2059 
2060 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2061 			xas_set(&xas, page->index + nr_pages);
2062 			if (xas.xa_index < nr_pages)
2063 				break;
2064 		}
2065 	}
2066 	rcu_read_unlock();
2067 
2068 	return pagevec_count(pvec);
2069 }
2070 
2071 /**
2072  * find_get_pages_range - gang pagecache lookup
2073  * @mapping:	The address_space to search
2074  * @start:	The starting page index
2075  * @end:	The final page index (inclusive)
2076  * @nr_pages:	The maximum number of pages
2077  * @pages:	Where the resulting pages are placed
2078  *
2079  * find_get_pages_range() will search for and return a group of up to @nr_pages
2080  * pages in the mapping starting at index @start and up to index @end
2081  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2082  * a reference against the returned pages.
2083  *
2084  * The search returns a group of mapping-contiguous pages with ascending
2085  * indexes.  There may be holes in the indices due to not-present pages.
2086  * We also update @start to index the next page for the traversal.
2087  *
2088  * Return: the number of pages which were found. If this number is
2089  * smaller than @nr_pages, the end of specified range has been
2090  * reached.
2091  */
2092 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2093 			      pgoff_t end, unsigned int nr_pages,
2094 			      struct page **pages)
2095 {
2096 	XA_STATE(xas, &mapping->i_pages, *start);
2097 	struct page *page;
2098 	unsigned ret = 0;
2099 
2100 	if (unlikely(!nr_pages))
2101 		return 0;
2102 
2103 	rcu_read_lock();
2104 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2105 		/* Skip over shadow, swap and DAX entries */
2106 		if (xa_is_value(page))
2107 			continue;
2108 
2109 		pages[ret] = find_subpage(page, xas.xa_index);
2110 		if (++ret == nr_pages) {
2111 			*start = xas.xa_index + 1;
2112 			goto out;
2113 		}
2114 	}
2115 
2116 	/*
2117 	 * We come here when there is no page beyond @end. We take care to not
2118 	 * overflow the index @start as it confuses some of the callers. This
2119 	 * breaks the iteration when there is a page at index -1 but that is
2120 	 * already broken anyway.
2121 	 */
2122 	if (end == (pgoff_t)-1)
2123 		*start = (pgoff_t)-1;
2124 	else
2125 		*start = end + 1;
2126 out:
2127 	rcu_read_unlock();
2128 
2129 	return ret;
2130 }
2131 
2132 /**
2133  * find_get_pages_contig - gang contiguous pagecache lookup
2134  * @mapping:	The address_space to search
2135  * @index:	The starting page index
2136  * @nr_pages:	The maximum number of pages
2137  * @pages:	Where the resulting pages are placed
2138  *
2139  * find_get_pages_contig() works exactly like find_get_pages(), except
2140  * that the returned number of pages are guaranteed to be contiguous.
2141  *
2142  * Return: the number of pages which were found.
2143  */
2144 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2145 			       unsigned int nr_pages, struct page **pages)
2146 {
2147 	XA_STATE(xas, &mapping->i_pages, index);
2148 	struct page *page;
2149 	unsigned int ret = 0;
2150 
2151 	if (unlikely(!nr_pages))
2152 		return 0;
2153 
2154 	rcu_read_lock();
2155 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2156 		if (xas_retry(&xas, page))
2157 			continue;
2158 		/*
2159 		 * If the entry has been swapped out, we can stop looking.
2160 		 * No current caller is looking for DAX entries.
2161 		 */
2162 		if (xa_is_value(page))
2163 			break;
2164 
2165 		if (!page_cache_get_speculative(page))
2166 			goto retry;
2167 
2168 		/* Has the page moved or been split? */
2169 		if (unlikely(page != xas_reload(&xas)))
2170 			goto put_page;
2171 
2172 		pages[ret] = find_subpage(page, xas.xa_index);
2173 		if (++ret == nr_pages)
2174 			break;
2175 		continue;
2176 put_page:
2177 		put_page(page);
2178 retry:
2179 		xas_reset(&xas);
2180 	}
2181 	rcu_read_unlock();
2182 	return ret;
2183 }
2184 EXPORT_SYMBOL(find_get_pages_contig);
2185 
2186 /**
2187  * find_get_pages_range_tag - Find and return head pages matching @tag.
2188  * @mapping:	the address_space to search
2189  * @index:	the starting page index
2190  * @end:	The final page index (inclusive)
2191  * @tag:	the tag index
2192  * @nr_pages:	the maximum number of pages
2193  * @pages:	where the resulting pages are placed
2194  *
2195  * Like find_get_pages(), except we only return head pages which are tagged
2196  * with @tag.  @index is updated to the index immediately after the last
2197  * page we return, ready for the next iteration.
2198  *
2199  * Return: the number of pages which were found.
2200  */
2201 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2202 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2203 			struct page **pages)
2204 {
2205 	XA_STATE(xas, &mapping->i_pages, *index);
2206 	struct page *page;
2207 	unsigned ret = 0;
2208 
2209 	if (unlikely(!nr_pages))
2210 		return 0;
2211 
2212 	rcu_read_lock();
2213 	while ((page = find_get_entry(&xas, end, tag))) {
2214 		/*
2215 		 * Shadow entries should never be tagged, but this iteration
2216 		 * is lockless so there is a window for page reclaim to evict
2217 		 * a page we saw tagged.  Skip over it.
2218 		 */
2219 		if (xa_is_value(page))
2220 			continue;
2221 
2222 		pages[ret] = page;
2223 		if (++ret == nr_pages) {
2224 			*index = page->index + thp_nr_pages(page);
2225 			goto out;
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * We come here when we got to @end. We take care to not overflow the
2231 	 * index @index as it confuses some of the callers. This breaks the
2232 	 * iteration when there is a page at index -1 but that is already
2233 	 * broken anyway.
2234 	 */
2235 	if (end == (pgoff_t)-1)
2236 		*index = (pgoff_t)-1;
2237 	else
2238 		*index = end + 1;
2239 out:
2240 	rcu_read_unlock();
2241 
2242 	return ret;
2243 }
2244 EXPORT_SYMBOL(find_get_pages_range_tag);
2245 
2246 /*
2247  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2248  * a _large_ part of the i/o request. Imagine the worst scenario:
2249  *
2250  *      ---R__________________________________________B__________
2251  *         ^ reading here                             ^ bad block(assume 4k)
2252  *
2253  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2254  * => failing the whole request => read(R) => read(R+1) =>
2255  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2256  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2257  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2258  *
2259  * It is going insane. Fix it by quickly scaling down the readahead size.
2260  */
2261 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2262 {
2263 	ra->ra_pages /= 4;
2264 }
2265 
2266 /*
2267  * filemap_get_read_batch - Get a batch of pages for read
2268  *
2269  * Get a batch of pages which represent a contiguous range of bytes
2270  * in the file.  No tail pages will be returned.  If @index is in the
2271  * middle of a THP, the entire THP will be returned.  The last page in
2272  * the batch may have Readahead set or be not Uptodate so that the
2273  * caller can take the appropriate action.
2274  */
2275 static void filemap_get_read_batch(struct address_space *mapping,
2276 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2277 {
2278 	XA_STATE(xas, &mapping->i_pages, index);
2279 	struct page *head;
2280 
2281 	rcu_read_lock();
2282 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2283 		if (xas_retry(&xas, head))
2284 			continue;
2285 		if (xas.xa_index > max || xa_is_value(head))
2286 			break;
2287 		if (!page_cache_get_speculative(head))
2288 			goto retry;
2289 
2290 		/* Has the page moved or been split? */
2291 		if (unlikely(head != xas_reload(&xas)))
2292 			goto put_page;
2293 
2294 		if (!pagevec_add(pvec, head))
2295 			break;
2296 		if (!PageUptodate(head))
2297 			break;
2298 		if (PageReadahead(head))
2299 			break;
2300 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2301 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2302 		continue;
2303 put_page:
2304 		put_page(head);
2305 retry:
2306 		xas_reset(&xas);
2307 	}
2308 	rcu_read_unlock();
2309 }
2310 
2311 static int filemap_read_page(struct file *file, struct address_space *mapping,
2312 		struct page *page)
2313 {
2314 	int error;
2315 
2316 	/*
2317 	 * A previous I/O error may have been due to temporary failures,
2318 	 * eg. multipath errors.  PG_error will be set again if readpage
2319 	 * fails.
2320 	 */
2321 	ClearPageError(page);
2322 	/* Start the actual read. The read will unlock the page. */
2323 	error = mapping->a_ops->readpage(file, page);
2324 	if (error)
2325 		return error;
2326 
2327 	error = wait_on_page_locked_killable(page);
2328 	if (error)
2329 		return error;
2330 	if (PageUptodate(page))
2331 		return 0;
2332 	shrink_readahead_size_eio(&file->f_ra);
2333 	return -EIO;
2334 }
2335 
2336 static bool filemap_range_uptodate(struct address_space *mapping,
2337 		loff_t pos, struct iov_iter *iter, struct page *page)
2338 {
2339 	int count;
2340 
2341 	if (PageUptodate(page))
2342 		return true;
2343 	/* pipes can't handle partially uptodate pages */
2344 	if (iov_iter_is_pipe(iter))
2345 		return false;
2346 	if (!mapping->a_ops->is_partially_uptodate)
2347 		return false;
2348 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2349 		return false;
2350 
2351 	count = iter->count;
2352 	if (page_offset(page) > pos) {
2353 		count -= page_offset(page) - pos;
2354 		pos = 0;
2355 	} else {
2356 		pos -= page_offset(page);
2357 	}
2358 
2359 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2360 }
2361 
2362 static int filemap_update_page(struct kiocb *iocb,
2363 		struct address_space *mapping, struct iov_iter *iter,
2364 		struct page *page)
2365 {
2366 	int error;
2367 
2368 	if (!trylock_page(page)) {
2369 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2370 			return -EAGAIN;
2371 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2372 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2373 			return AOP_TRUNCATED_PAGE;
2374 		}
2375 		error = __lock_page_async(page, iocb->ki_waitq);
2376 		if (error)
2377 			return error;
2378 	}
2379 
2380 	if (!page->mapping)
2381 		goto truncated;
2382 
2383 	error = 0;
2384 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2385 		goto unlock;
2386 
2387 	error = -EAGAIN;
2388 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2389 		goto unlock;
2390 
2391 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2392 	if (error == AOP_TRUNCATED_PAGE)
2393 		put_page(page);
2394 	return error;
2395 truncated:
2396 	unlock_page(page);
2397 	put_page(page);
2398 	return AOP_TRUNCATED_PAGE;
2399 unlock:
2400 	unlock_page(page);
2401 	return error;
2402 }
2403 
2404 static int filemap_create_page(struct file *file,
2405 		struct address_space *mapping, pgoff_t index,
2406 		struct pagevec *pvec)
2407 {
2408 	struct page *page;
2409 	int error;
2410 
2411 	page = page_cache_alloc(mapping);
2412 	if (!page)
2413 		return -ENOMEM;
2414 
2415 	error = add_to_page_cache_lru(page, mapping, index,
2416 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2417 	if (error == -EEXIST)
2418 		error = AOP_TRUNCATED_PAGE;
2419 	if (error)
2420 		goto error;
2421 
2422 	error = filemap_read_page(file, mapping, page);
2423 	if (error)
2424 		goto error;
2425 
2426 	pagevec_add(pvec, page);
2427 	return 0;
2428 error:
2429 	put_page(page);
2430 	return error;
2431 }
2432 
2433 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2434 		struct address_space *mapping, struct page *page,
2435 		pgoff_t last_index)
2436 {
2437 	if (iocb->ki_flags & IOCB_NOIO)
2438 		return -EAGAIN;
2439 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2440 			page->index, last_index - page->index);
2441 	return 0;
2442 }
2443 
2444 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2445 		struct pagevec *pvec)
2446 {
2447 	struct file *filp = iocb->ki_filp;
2448 	struct address_space *mapping = filp->f_mapping;
2449 	struct file_ra_state *ra = &filp->f_ra;
2450 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2451 	pgoff_t last_index;
2452 	struct page *page;
2453 	int err = 0;
2454 
2455 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2456 retry:
2457 	if (fatal_signal_pending(current))
2458 		return -EINTR;
2459 
2460 	filemap_get_read_batch(mapping, index, last_index, pvec);
2461 	if (!pagevec_count(pvec)) {
2462 		if (iocb->ki_flags & IOCB_NOIO)
2463 			return -EAGAIN;
2464 		page_cache_sync_readahead(mapping, ra, filp, index,
2465 				last_index - index);
2466 		filemap_get_read_batch(mapping, index, last_index, pvec);
2467 	}
2468 	if (!pagevec_count(pvec)) {
2469 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2470 			return -EAGAIN;
2471 		err = filemap_create_page(filp, mapping,
2472 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2473 		if (err == AOP_TRUNCATED_PAGE)
2474 			goto retry;
2475 		return err;
2476 	}
2477 
2478 	page = pvec->pages[pagevec_count(pvec) - 1];
2479 	if (PageReadahead(page)) {
2480 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2481 		if (err)
2482 			goto err;
2483 	}
2484 	if (!PageUptodate(page)) {
2485 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2486 			iocb->ki_flags |= IOCB_NOWAIT;
2487 		err = filemap_update_page(iocb, mapping, iter, page);
2488 		if (err)
2489 			goto err;
2490 	}
2491 
2492 	return 0;
2493 err:
2494 	if (err < 0)
2495 		put_page(page);
2496 	if (likely(--pvec->nr))
2497 		return 0;
2498 	if (err == AOP_TRUNCATED_PAGE)
2499 		goto retry;
2500 	return err;
2501 }
2502 
2503 /**
2504  * filemap_read - Read data from the page cache.
2505  * @iocb: The iocb to read.
2506  * @iter: Destination for the data.
2507  * @already_read: Number of bytes already read by the caller.
2508  *
2509  * Copies data from the page cache.  If the data is not currently present,
2510  * uses the readahead and readpage address_space operations to fetch it.
2511  *
2512  * Return: Total number of bytes copied, including those already read by
2513  * the caller.  If an error happens before any bytes are copied, returns
2514  * a negative error number.
2515  */
2516 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2517 		ssize_t already_read)
2518 {
2519 	struct file *filp = iocb->ki_filp;
2520 	struct file_ra_state *ra = &filp->f_ra;
2521 	struct address_space *mapping = filp->f_mapping;
2522 	struct inode *inode = mapping->host;
2523 	struct pagevec pvec;
2524 	int i, error = 0;
2525 	bool writably_mapped;
2526 	loff_t isize, end_offset;
2527 
2528 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2529 		return 0;
2530 	if (unlikely(!iov_iter_count(iter)))
2531 		return 0;
2532 
2533 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2534 	pagevec_init(&pvec);
2535 
2536 	do {
2537 		cond_resched();
2538 
2539 		/*
2540 		 * If we've already successfully copied some data, then we
2541 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2542 		 * an async read NOWAIT at that point.
2543 		 */
2544 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2545 			iocb->ki_flags |= IOCB_NOWAIT;
2546 
2547 		error = filemap_get_pages(iocb, iter, &pvec);
2548 		if (error < 0)
2549 			break;
2550 
2551 		/*
2552 		 * i_size must be checked after we know the pages are Uptodate.
2553 		 *
2554 		 * Checking i_size after the check allows us to calculate
2555 		 * the correct value for "nr", which means the zero-filled
2556 		 * part of the page is not copied back to userspace (unless
2557 		 * another truncate extends the file - this is desired though).
2558 		 */
2559 		isize = i_size_read(inode);
2560 		if (unlikely(iocb->ki_pos >= isize))
2561 			goto put_pages;
2562 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2563 
2564 		/*
2565 		 * Once we start copying data, we don't want to be touching any
2566 		 * cachelines that might be contended:
2567 		 */
2568 		writably_mapped = mapping_writably_mapped(mapping);
2569 
2570 		/*
2571 		 * When a sequential read accesses a page several times, only
2572 		 * mark it as accessed the first time.
2573 		 */
2574 		if (iocb->ki_pos >> PAGE_SHIFT !=
2575 		    ra->prev_pos >> PAGE_SHIFT)
2576 			mark_page_accessed(pvec.pages[0]);
2577 
2578 		for (i = 0; i < pagevec_count(&pvec); i++) {
2579 			struct page *page = pvec.pages[i];
2580 			size_t page_size = thp_size(page);
2581 			size_t offset = iocb->ki_pos & (page_size - 1);
2582 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2583 					     page_size - offset);
2584 			size_t copied;
2585 
2586 			if (end_offset < page_offset(page))
2587 				break;
2588 			if (i > 0)
2589 				mark_page_accessed(page);
2590 			/*
2591 			 * If users can be writing to this page using arbitrary
2592 			 * virtual addresses, take care about potential aliasing
2593 			 * before reading the page on the kernel side.
2594 			 */
2595 			if (writably_mapped) {
2596 				int j;
2597 
2598 				for (j = 0; j < thp_nr_pages(page); j++)
2599 					flush_dcache_page(page + j);
2600 			}
2601 
2602 			copied = copy_page_to_iter(page, offset, bytes, iter);
2603 
2604 			already_read += copied;
2605 			iocb->ki_pos += copied;
2606 			ra->prev_pos = iocb->ki_pos;
2607 
2608 			if (copied < bytes) {
2609 				error = -EFAULT;
2610 				break;
2611 			}
2612 		}
2613 put_pages:
2614 		for (i = 0; i < pagevec_count(&pvec); i++)
2615 			put_page(pvec.pages[i]);
2616 		pagevec_reinit(&pvec);
2617 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2618 
2619 	file_accessed(filp);
2620 
2621 	return already_read ? already_read : error;
2622 }
2623 EXPORT_SYMBOL_GPL(filemap_read);
2624 
2625 /**
2626  * generic_file_read_iter - generic filesystem read routine
2627  * @iocb:	kernel I/O control block
2628  * @iter:	destination for the data read
2629  *
2630  * This is the "read_iter()" routine for all filesystems
2631  * that can use the page cache directly.
2632  *
2633  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2634  * be returned when no data can be read without waiting for I/O requests
2635  * to complete; it doesn't prevent readahead.
2636  *
2637  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2638  * requests shall be made for the read or for readahead.  When no data
2639  * can be read, -EAGAIN shall be returned.  When readahead would be
2640  * triggered, a partial, possibly empty read shall be returned.
2641  *
2642  * Return:
2643  * * number of bytes copied, even for partial reads
2644  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2645  */
2646 ssize_t
2647 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2648 {
2649 	size_t count = iov_iter_count(iter);
2650 	ssize_t retval = 0;
2651 
2652 	if (!count)
2653 		return 0; /* skip atime */
2654 
2655 	if (iocb->ki_flags & IOCB_DIRECT) {
2656 		struct file *file = iocb->ki_filp;
2657 		struct address_space *mapping = file->f_mapping;
2658 		struct inode *inode = mapping->host;
2659 		loff_t size;
2660 
2661 		size = i_size_read(inode);
2662 		if (iocb->ki_flags & IOCB_NOWAIT) {
2663 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2664 						iocb->ki_pos + count - 1))
2665 				return -EAGAIN;
2666 		} else {
2667 			retval = filemap_write_and_wait_range(mapping,
2668 						iocb->ki_pos,
2669 					        iocb->ki_pos + count - 1);
2670 			if (retval < 0)
2671 				return retval;
2672 		}
2673 
2674 		file_accessed(file);
2675 
2676 		retval = mapping->a_ops->direct_IO(iocb, iter);
2677 		if (retval >= 0) {
2678 			iocb->ki_pos += retval;
2679 			count -= retval;
2680 		}
2681 		if (retval != -EIOCBQUEUED)
2682 			iov_iter_revert(iter, count - iov_iter_count(iter));
2683 
2684 		/*
2685 		 * Btrfs can have a short DIO read if we encounter
2686 		 * compressed extents, so if there was an error, or if
2687 		 * we've already read everything we wanted to, or if
2688 		 * there was a short read because we hit EOF, go ahead
2689 		 * and return.  Otherwise fallthrough to buffered io for
2690 		 * the rest of the read.  Buffered reads will not work for
2691 		 * DAX files, so don't bother trying.
2692 		 */
2693 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2694 		    IS_DAX(inode))
2695 			return retval;
2696 	}
2697 
2698 	return filemap_read(iocb, iter, retval);
2699 }
2700 EXPORT_SYMBOL(generic_file_read_iter);
2701 
2702 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2703 		struct address_space *mapping, struct page *page,
2704 		loff_t start, loff_t end, bool seek_data)
2705 {
2706 	const struct address_space_operations *ops = mapping->a_ops;
2707 	size_t offset, bsz = i_blocksize(mapping->host);
2708 
2709 	if (xa_is_value(page) || PageUptodate(page))
2710 		return seek_data ? start : end;
2711 	if (!ops->is_partially_uptodate)
2712 		return seek_data ? end : start;
2713 
2714 	xas_pause(xas);
2715 	rcu_read_unlock();
2716 	lock_page(page);
2717 	if (unlikely(page->mapping != mapping))
2718 		goto unlock;
2719 
2720 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2721 
2722 	do {
2723 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2724 			break;
2725 		start = (start + bsz) & ~(bsz - 1);
2726 		offset += bsz;
2727 	} while (offset < thp_size(page));
2728 unlock:
2729 	unlock_page(page);
2730 	rcu_read_lock();
2731 	return start;
2732 }
2733 
2734 static inline
2735 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2736 {
2737 	if (xa_is_value(page))
2738 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2739 	return thp_size(page);
2740 }
2741 
2742 /**
2743  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2744  * @mapping: Address space to search.
2745  * @start: First byte to consider.
2746  * @end: Limit of search (exclusive).
2747  * @whence: Either SEEK_HOLE or SEEK_DATA.
2748  *
2749  * If the page cache knows which blocks contain holes and which blocks
2750  * contain data, your filesystem can use this function to implement
2751  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2752  * entirely memory-based such as tmpfs, and filesystems which support
2753  * unwritten extents.
2754  *
2755  * Return: The requested offset on success, or -ENXIO if @whence specifies
2756  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2757  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2758  * and @end contain data.
2759  */
2760 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2761 		loff_t end, int whence)
2762 {
2763 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2764 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2765 	bool seek_data = (whence == SEEK_DATA);
2766 	struct page *page;
2767 
2768 	if (end <= start)
2769 		return -ENXIO;
2770 
2771 	rcu_read_lock();
2772 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2773 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2774 		unsigned int seek_size;
2775 
2776 		if (start < pos) {
2777 			if (!seek_data)
2778 				goto unlock;
2779 			start = pos;
2780 		}
2781 
2782 		seek_size = seek_page_size(&xas, page);
2783 		pos = round_up(pos + 1, seek_size);
2784 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2785 				seek_data);
2786 		if (start < pos)
2787 			goto unlock;
2788 		if (start >= end)
2789 			break;
2790 		if (seek_size > PAGE_SIZE)
2791 			xas_set(&xas, pos >> PAGE_SHIFT);
2792 		if (!xa_is_value(page))
2793 			put_page(page);
2794 	}
2795 	if (seek_data)
2796 		start = -ENXIO;
2797 unlock:
2798 	rcu_read_unlock();
2799 	if (page && !xa_is_value(page))
2800 		put_page(page);
2801 	if (start > end)
2802 		return end;
2803 	return start;
2804 }
2805 
2806 #ifdef CONFIG_MMU
2807 #define MMAP_LOTSAMISS  (100)
2808 /*
2809  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2810  * @vmf - the vm_fault for this fault.
2811  * @page - the page to lock.
2812  * @fpin - the pointer to the file we may pin (or is already pinned).
2813  *
2814  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2815  * It differs in that it actually returns the page locked if it returns 1 and 0
2816  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2817  * will point to the pinned file and needs to be fput()'ed at a later point.
2818  */
2819 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2820 				     struct file **fpin)
2821 {
2822 	if (trylock_page(page))
2823 		return 1;
2824 
2825 	/*
2826 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2827 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2828 	 * is supposed to work. We have way too many special cases..
2829 	 */
2830 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2831 		return 0;
2832 
2833 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2834 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2835 		if (__lock_page_killable(page)) {
2836 			/*
2837 			 * We didn't have the right flags to drop the mmap_lock,
2838 			 * but all fault_handlers only check for fatal signals
2839 			 * if we return VM_FAULT_RETRY, so we need to drop the
2840 			 * mmap_lock here and return 0 if we don't have a fpin.
2841 			 */
2842 			if (*fpin == NULL)
2843 				mmap_read_unlock(vmf->vma->vm_mm);
2844 			return 0;
2845 		}
2846 	} else
2847 		__lock_page(page);
2848 	return 1;
2849 }
2850 
2851 
2852 /*
2853  * Synchronous readahead happens when we don't even find a page in the page
2854  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2855  * to drop the mmap sem we return the file that was pinned in order for us to do
2856  * that.  If we didn't pin a file then we return NULL.  The file that is
2857  * returned needs to be fput()'ed when we're done with it.
2858  */
2859 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2860 {
2861 	struct file *file = vmf->vma->vm_file;
2862 	struct file_ra_state *ra = &file->f_ra;
2863 	struct address_space *mapping = file->f_mapping;
2864 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2865 	struct file *fpin = NULL;
2866 	unsigned int mmap_miss;
2867 
2868 	/* If we don't want any read-ahead, don't bother */
2869 	if (vmf->vma->vm_flags & VM_RAND_READ)
2870 		return fpin;
2871 	if (!ra->ra_pages)
2872 		return fpin;
2873 
2874 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2875 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2876 		page_cache_sync_ra(&ractl, ra->ra_pages);
2877 		return fpin;
2878 	}
2879 
2880 	/* Avoid banging the cache line if not needed */
2881 	mmap_miss = READ_ONCE(ra->mmap_miss);
2882 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2883 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2884 
2885 	/*
2886 	 * Do we miss much more than hit in this file? If so,
2887 	 * stop bothering with read-ahead. It will only hurt.
2888 	 */
2889 	if (mmap_miss > MMAP_LOTSAMISS)
2890 		return fpin;
2891 
2892 	/*
2893 	 * mmap read-around
2894 	 */
2895 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2896 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2897 	ra->size = ra->ra_pages;
2898 	ra->async_size = ra->ra_pages / 4;
2899 	ractl._index = ra->start;
2900 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2901 	return fpin;
2902 }
2903 
2904 /*
2905  * Asynchronous readahead happens when we find the page and PG_readahead,
2906  * so we want to possibly extend the readahead further.  We return the file that
2907  * was pinned if we have to drop the mmap_lock in order to do IO.
2908  */
2909 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2910 					    struct page *page)
2911 {
2912 	struct file *file = vmf->vma->vm_file;
2913 	struct file_ra_state *ra = &file->f_ra;
2914 	struct address_space *mapping = file->f_mapping;
2915 	struct file *fpin = NULL;
2916 	unsigned int mmap_miss;
2917 	pgoff_t offset = vmf->pgoff;
2918 
2919 	/* If we don't want any read-ahead, don't bother */
2920 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2921 		return fpin;
2922 	mmap_miss = READ_ONCE(ra->mmap_miss);
2923 	if (mmap_miss)
2924 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2925 	if (PageReadahead(page)) {
2926 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2927 		page_cache_async_readahead(mapping, ra, file,
2928 					   page, offset, ra->ra_pages);
2929 	}
2930 	return fpin;
2931 }
2932 
2933 /**
2934  * filemap_fault - read in file data for page fault handling
2935  * @vmf:	struct vm_fault containing details of the fault
2936  *
2937  * filemap_fault() is invoked via the vma operations vector for a
2938  * mapped memory region to read in file data during a page fault.
2939  *
2940  * The goto's are kind of ugly, but this streamlines the normal case of having
2941  * it in the page cache, and handles the special cases reasonably without
2942  * having a lot of duplicated code.
2943  *
2944  * vma->vm_mm->mmap_lock must be held on entry.
2945  *
2946  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2947  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2948  *
2949  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2950  * has not been released.
2951  *
2952  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2953  *
2954  * Return: bitwise-OR of %VM_FAULT_ codes.
2955  */
2956 vm_fault_t filemap_fault(struct vm_fault *vmf)
2957 {
2958 	int error;
2959 	struct file *file = vmf->vma->vm_file;
2960 	struct file *fpin = NULL;
2961 	struct address_space *mapping = file->f_mapping;
2962 	struct inode *inode = mapping->host;
2963 	pgoff_t offset = vmf->pgoff;
2964 	pgoff_t max_off;
2965 	struct page *page;
2966 	vm_fault_t ret = 0;
2967 
2968 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2969 	if (unlikely(offset >= max_off))
2970 		return VM_FAULT_SIGBUS;
2971 
2972 	/*
2973 	 * Do we have something in the page cache already?
2974 	 */
2975 	page = find_get_page(mapping, offset);
2976 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2977 		/*
2978 		 * We found the page, so try async readahead before
2979 		 * waiting for the lock.
2980 		 */
2981 		fpin = do_async_mmap_readahead(vmf, page);
2982 	} else if (!page) {
2983 		/* No page in the page cache at all */
2984 		count_vm_event(PGMAJFAULT);
2985 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2986 		ret = VM_FAULT_MAJOR;
2987 		fpin = do_sync_mmap_readahead(vmf);
2988 retry_find:
2989 		page = pagecache_get_page(mapping, offset,
2990 					  FGP_CREAT|FGP_FOR_MMAP,
2991 					  vmf->gfp_mask);
2992 		if (!page) {
2993 			if (fpin)
2994 				goto out_retry;
2995 			return VM_FAULT_OOM;
2996 		}
2997 	}
2998 
2999 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3000 		goto out_retry;
3001 
3002 	/* Did it get truncated? */
3003 	if (unlikely(compound_head(page)->mapping != mapping)) {
3004 		unlock_page(page);
3005 		put_page(page);
3006 		goto retry_find;
3007 	}
3008 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3009 
3010 	/*
3011 	 * We have a locked page in the page cache, now we need to check
3012 	 * that it's up-to-date. If not, it is going to be due to an error.
3013 	 */
3014 	if (unlikely(!PageUptodate(page)))
3015 		goto page_not_uptodate;
3016 
3017 	/*
3018 	 * We've made it this far and we had to drop our mmap_lock, now is the
3019 	 * time to return to the upper layer and have it re-find the vma and
3020 	 * redo the fault.
3021 	 */
3022 	if (fpin) {
3023 		unlock_page(page);
3024 		goto out_retry;
3025 	}
3026 
3027 	/*
3028 	 * Found the page and have a reference on it.
3029 	 * We must recheck i_size under page lock.
3030 	 */
3031 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3032 	if (unlikely(offset >= max_off)) {
3033 		unlock_page(page);
3034 		put_page(page);
3035 		return VM_FAULT_SIGBUS;
3036 	}
3037 
3038 	vmf->page = page;
3039 	return ret | VM_FAULT_LOCKED;
3040 
3041 page_not_uptodate:
3042 	/*
3043 	 * Umm, take care of errors if the page isn't up-to-date.
3044 	 * Try to re-read it _once_. We do this synchronously,
3045 	 * because there really aren't any performance issues here
3046 	 * and we need to check for errors.
3047 	 */
3048 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3049 	error = filemap_read_page(file, mapping, page);
3050 	if (fpin)
3051 		goto out_retry;
3052 	put_page(page);
3053 
3054 	if (!error || error == AOP_TRUNCATED_PAGE)
3055 		goto retry_find;
3056 
3057 	return VM_FAULT_SIGBUS;
3058 
3059 out_retry:
3060 	/*
3061 	 * We dropped the mmap_lock, we need to return to the fault handler to
3062 	 * re-find the vma and come back and find our hopefully still populated
3063 	 * page.
3064 	 */
3065 	if (page)
3066 		put_page(page);
3067 	if (fpin)
3068 		fput(fpin);
3069 	return ret | VM_FAULT_RETRY;
3070 }
3071 EXPORT_SYMBOL(filemap_fault);
3072 
3073 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3074 {
3075 	struct mm_struct *mm = vmf->vma->vm_mm;
3076 
3077 	/* Huge page is mapped? No need to proceed. */
3078 	if (pmd_trans_huge(*vmf->pmd)) {
3079 		unlock_page(page);
3080 		put_page(page);
3081 		return true;
3082 	}
3083 
3084 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3085 	    vm_fault_t ret = do_set_pmd(vmf, page);
3086 	    if (!ret) {
3087 		    /* The page is mapped successfully, reference consumed. */
3088 		    unlock_page(page);
3089 		    return true;
3090 	    }
3091 	}
3092 
3093 	if (pmd_none(*vmf->pmd)) {
3094 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3095 		if (likely(pmd_none(*vmf->pmd))) {
3096 			mm_inc_nr_ptes(mm);
3097 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3098 			vmf->prealloc_pte = NULL;
3099 		}
3100 		spin_unlock(vmf->ptl);
3101 	}
3102 
3103 	/* See comment in handle_pte_fault() */
3104 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3105 		unlock_page(page);
3106 		put_page(page);
3107 		return true;
3108 	}
3109 
3110 	return false;
3111 }
3112 
3113 static struct page *next_uptodate_page(struct page *page,
3114 				       struct address_space *mapping,
3115 				       struct xa_state *xas, pgoff_t end_pgoff)
3116 {
3117 	unsigned long max_idx;
3118 
3119 	do {
3120 		if (!page)
3121 			return NULL;
3122 		if (xas_retry(xas, page))
3123 			continue;
3124 		if (xa_is_value(page))
3125 			continue;
3126 		if (PageLocked(page))
3127 			continue;
3128 		if (!page_cache_get_speculative(page))
3129 			continue;
3130 		/* Has the page moved or been split? */
3131 		if (unlikely(page != xas_reload(xas)))
3132 			goto skip;
3133 		if (!PageUptodate(page) || PageReadahead(page))
3134 			goto skip;
3135 		if (PageHWPoison(page))
3136 			goto skip;
3137 		if (!trylock_page(page))
3138 			goto skip;
3139 		if (page->mapping != mapping)
3140 			goto unlock;
3141 		if (!PageUptodate(page))
3142 			goto unlock;
3143 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3144 		if (xas->xa_index >= max_idx)
3145 			goto unlock;
3146 		return page;
3147 unlock:
3148 		unlock_page(page);
3149 skip:
3150 		put_page(page);
3151 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3152 
3153 	return NULL;
3154 }
3155 
3156 static inline struct page *first_map_page(struct address_space *mapping,
3157 					  struct xa_state *xas,
3158 					  pgoff_t end_pgoff)
3159 {
3160 	return next_uptodate_page(xas_find(xas, end_pgoff),
3161 				  mapping, xas, end_pgoff);
3162 }
3163 
3164 static inline struct page *next_map_page(struct address_space *mapping,
3165 					 struct xa_state *xas,
3166 					 pgoff_t end_pgoff)
3167 {
3168 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3169 				  mapping, xas, end_pgoff);
3170 }
3171 
3172 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3173 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3174 {
3175 	struct vm_area_struct *vma = vmf->vma;
3176 	struct file *file = vma->vm_file;
3177 	struct address_space *mapping = file->f_mapping;
3178 	pgoff_t last_pgoff = start_pgoff;
3179 	unsigned long addr;
3180 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3181 	struct page *head, *page;
3182 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3183 	vm_fault_t ret = 0;
3184 
3185 	rcu_read_lock();
3186 	head = first_map_page(mapping, &xas, end_pgoff);
3187 	if (!head)
3188 		goto out;
3189 
3190 	if (filemap_map_pmd(vmf, head)) {
3191 		ret = VM_FAULT_NOPAGE;
3192 		goto out;
3193 	}
3194 
3195 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3196 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3197 	do {
3198 		page = find_subpage(head, xas.xa_index);
3199 		if (PageHWPoison(page))
3200 			goto unlock;
3201 
3202 		if (mmap_miss > 0)
3203 			mmap_miss--;
3204 
3205 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3206 		vmf->pte += xas.xa_index - last_pgoff;
3207 		last_pgoff = xas.xa_index;
3208 
3209 		if (!pte_none(*vmf->pte))
3210 			goto unlock;
3211 
3212 		/* We're about to handle the fault */
3213 		if (vmf->address == addr)
3214 			ret = VM_FAULT_NOPAGE;
3215 
3216 		do_set_pte(vmf, page, addr);
3217 		/* no need to invalidate: a not-present page won't be cached */
3218 		update_mmu_cache(vma, addr, vmf->pte);
3219 		unlock_page(head);
3220 		continue;
3221 unlock:
3222 		unlock_page(head);
3223 		put_page(head);
3224 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3225 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3226 out:
3227 	rcu_read_unlock();
3228 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3229 	return ret;
3230 }
3231 EXPORT_SYMBOL(filemap_map_pages);
3232 
3233 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3234 {
3235 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3236 	struct page *page = vmf->page;
3237 	vm_fault_t ret = VM_FAULT_LOCKED;
3238 
3239 	sb_start_pagefault(mapping->host->i_sb);
3240 	file_update_time(vmf->vma->vm_file);
3241 	lock_page(page);
3242 	if (page->mapping != mapping) {
3243 		unlock_page(page);
3244 		ret = VM_FAULT_NOPAGE;
3245 		goto out;
3246 	}
3247 	/*
3248 	 * We mark the page dirty already here so that when freeze is in
3249 	 * progress, we are guaranteed that writeback during freezing will
3250 	 * see the dirty page and writeprotect it again.
3251 	 */
3252 	set_page_dirty(page);
3253 	wait_for_stable_page(page);
3254 out:
3255 	sb_end_pagefault(mapping->host->i_sb);
3256 	return ret;
3257 }
3258 
3259 const struct vm_operations_struct generic_file_vm_ops = {
3260 	.fault		= filemap_fault,
3261 	.map_pages	= filemap_map_pages,
3262 	.page_mkwrite	= filemap_page_mkwrite,
3263 };
3264 
3265 /* This is used for a general mmap of a disk file */
3266 
3267 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3268 {
3269 	struct address_space *mapping = file->f_mapping;
3270 
3271 	if (!mapping->a_ops->readpage)
3272 		return -ENOEXEC;
3273 	file_accessed(file);
3274 	vma->vm_ops = &generic_file_vm_ops;
3275 	return 0;
3276 }
3277 
3278 /*
3279  * This is for filesystems which do not implement ->writepage.
3280  */
3281 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3282 {
3283 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3284 		return -EINVAL;
3285 	return generic_file_mmap(file, vma);
3286 }
3287 #else
3288 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3289 {
3290 	return VM_FAULT_SIGBUS;
3291 }
3292 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3293 {
3294 	return -ENOSYS;
3295 }
3296 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3297 {
3298 	return -ENOSYS;
3299 }
3300 #endif /* CONFIG_MMU */
3301 
3302 EXPORT_SYMBOL(filemap_page_mkwrite);
3303 EXPORT_SYMBOL(generic_file_mmap);
3304 EXPORT_SYMBOL(generic_file_readonly_mmap);
3305 
3306 static struct page *wait_on_page_read(struct page *page)
3307 {
3308 	if (!IS_ERR(page)) {
3309 		wait_on_page_locked(page);
3310 		if (!PageUptodate(page)) {
3311 			put_page(page);
3312 			page = ERR_PTR(-EIO);
3313 		}
3314 	}
3315 	return page;
3316 }
3317 
3318 static struct page *do_read_cache_page(struct address_space *mapping,
3319 				pgoff_t index,
3320 				int (*filler)(void *, struct page *),
3321 				void *data,
3322 				gfp_t gfp)
3323 {
3324 	struct page *page;
3325 	int err;
3326 repeat:
3327 	page = find_get_page(mapping, index);
3328 	if (!page) {
3329 		page = __page_cache_alloc(gfp);
3330 		if (!page)
3331 			return ERR_PTR(-ENOMEM);
3332 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3333 		if (unlikely(err)) {
3334 			put_page(page);
3335 			if (err == -EEXIST)
3336 				goto repeat;
3337 			/* Presumably ENOMEM for xarray node */
3338 			return ERR_PTR(err);
3339 		}
3340 
3341 filler:
3342 		if (filler)
3343 			err = filler(data, page);
3344 		else
3345 			err = mapping->a_ops->readpage(data, page);
3346 
3347 		if (err < 0) {
3348 			put_page(page);
3349 			return ERR_PTR(err);
3350 		}
3351 
3352 		page = wait_on_page_read(page);
3353 		if (IS_ERR(page))
3354 			return page;
3355 		goto out;
3356 	}
3357 	if (PageUptodate(page))
3358 		goto out;
3359 
3360 	/*
3361 	 * Page is not up to date and may be locked due to one of the following
3362 	 * case a: Page is being filled and the page lock is held
3363 	 * case b: Read/write error clearing the page uptodate status
3364 	 * case c: Truncation in progress (page locked)
3365 	 * case d: Reclaim in progress
3366 	 *
3367 	 * Case a, the page will be up to date when the page is unlocked.
3368 	 *    There is no need to serialise on the page lock here as the page
3369 	 *    is pinned so the lock gives no additional protection. Even if the
3370 	 *    page is truncated, the data is still valid if PageUptodate as
3371 	 *    it's a race vs truncate race.
3372 	 * Case b, the page will not be up to date
3373 	 * Case c, the page may be truncated but in itself, the data may still
3374 	 *    be valid after IO completes as it's a read vs truncate race. The
3375 	 *    operation must restart if the page is not uptodate on unlock but
3376 	 *    otherwise serialising on page lock to stabilise the mapping gives
3377 	 *    no additional guarantees to the caller as the page lock is
3378 	 *    released before return.
3379 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3380 	 *    will be a race with remove_mapping that determines if the mapping
3381 	 *    is valid on unlock but otherwise the data is valid and there is
3382 	 *    no need to serialise with page lock.
3383 	 *
3384 	 * As the page lock gives no additional guarantee, we optimistically
3385 	 * wait on the page to be unlocked and check if it's up to date and
3386 	 * use the page if it is. Otherwise, the page lock is required to
3387 	 * distinguish between the different cases. The motivation is that we
3388 	 * avoid spurious serialisations and wakeups when multiple processes
3389 	 * wait on the same page for IO to complete.
3390 	 */
3391 	wait_on_page_locked(page);
3392 	if (PageUptodate(page))
3393 		goto out;
3394 
3395 	/* Distinguish between all the cases under the safety of the lock */
3396 	lock_page(page);
3397 
3398 	/* Case c or d, restart the operation */
3399 	if (!page->mapping) {
3400 		unlock_page(page);
3401 		put_page(page);
3402 		goto repeat;
3403 	}
3404 
3405 	/* Someone else locked and filled the page in a very small window */
3406 	if (PageUptodate(page)) {
3407 		unlock_page(page);
3408 		goto out;
3409 	}
3410 
3411 	/*
3412 	 * A previous I/O error may have been due to temporary
3413 	 * failures.
3414 	 * Clear page error before actual read, PG_error will be
3415 	 * set again if read page fails.
3416 	 */
3417 	ClearPageError(page);
3418 	goto filler;
3419 
3420 out:
3421 	mark_page_accessed(page);
3422 	return page;
3423 }
3424 
3425 /**
3426  * read_cache_page - read into page cache, fill it if needed
3427  * @mapping:	the page's address_space
3428  * @index:	the page index
3429  * @filler:	function to perform the read
3430  * @data:	first arg to filler(data, page) function, often left as NULL
3431  *
3432  * Read into the page cache. If a page already exists, and PageUptodate() is
3433  * not set, try to fill the page and wait for it to become unlocked.
3434  *
3435  * If the page does not get brought uptodate, return -EIO.
3436  *
3437  * Return: up to date page on success, ERR_PTR() on failure.
3438  */
3439 struct page *read_cache_page(struct address_space *mapping,
3440 				pgoff_t index,
3441 				int (*filler)(void *, struct page *),
3442 				void *data)
3443 {
3444 	return do_read_cache_page(mapping, index, filler, data,
3445 			mapping_gfp_mask(mapping));
3446 }
3447 EXPORT_SYMBOL(read_cache_page);
3448 
3449 /**
3450  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3451  * @mapping:	the page's address_space
3452  * @index:	the page index
3453  * @gfp:	the page allocator flags to use if allocating
3454  *
3455  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3456  * any new page allocations done using the specified allocation flags.
3457  *
3458  * If the page does not get brought uptodate, return -EIO.
3459  *
3460  * Return: up to date page on success, ERR_PTR() on failure.
3461  */
3462 struct page *read_cache_page_gfp(struct address_space *mapping,
3463 				pgoff_t index,
3464 				gfp_t gfp)
3465 {
3466 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3467 }
3468 EXPORT_SYMBOL(read_cache_page_gfp);
3469 
3470 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3471 				loff_t pos, unsigned len, unsigned flags,
3472 				struct page **pagep, void **fsdata)
3473 {
3474 	const struct address_space_operations *aops = mapping->a_ops;
3475 
3476 	return aops->write_begin(file, mapping, pos, len, flags,
3477 							pagep, fsdata);
3478 }
3479 EXPORT_SYMBOL(pagecache_write_begin);
3480 
3481 int pagecache_write_end(struct file *file, struct address_space *mapping,
3482 				loff_t pos, unsigned len, unsigned copied,
3483 				struct page *page, void *fsdata)
3484 {
3485 	const struct address_space_operations *aops = mapping->a_ops;
3486 
3487 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3488 }
3489 EXPORT_SYMBOL(pagecache_write_end);
3490 
3491 /*
3492  * Warn about a page cache invalidation failure during a direct I/O write.
3493  */
3494 void dio_warn_stale_pagecache(struct file *filp)
3495 {
3496 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3497 	char pathname[128];
3498 	char *path;
3499 
3500 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3501 	if (__ratelimit(&_rs)) {
3502 		path = file_path(filp, pathname, sizeof(pathname));
3503 		if (IS_ERR(path))
3504 			path = "(unknown)";
3505 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3506 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3507 			current->comm);
3508 	}
3509 }
3510 
3511 ssize_t
3512 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3513 {
3514 	struct file	*file = iocb->ki_filp;
3515 	struct address_space *mapping = file->f_mapping;
3516 	struct inode	*inode = mapping->host;
3517 	loff_t		pos = iocb->ki_pos;
3518 	ssize_t		written;
3519 	size_t		write_len;
3520 	pgoff_t		end;
3521 
3522 	write_len = iov_iter_count(from);
3523 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3524 
3525 	if (iocb->ki_flags & IOCB_NOWAIT) {
3526 		/* If there are pages to writeback, return */
3527 		if (filemap_range_has_page(file->f_mapping, pos,
3528 					   pos + write_len - 1))
3529 			return -EAGAIN;
3530 	} else {
3531 		written = filemap_write_and_wait_range(mapping, pos,
3532 							pos + write_len - 1);
3533 		if (written)
3534 			goto out;
3535 	}
3536 
3537 	/*
3538 	 * After a write we want buffered reads to be sure to go to disk to get
3539 	 * the new data.  We invalidate clean cached page from the region we're
3540 	 * about to write.  We do this *before* the write so that we can return
3541 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3542 	 */
3543 	written = invalidate_inode_pages2_range(mapping,
3544 					pos >> PAGE_SHIFT, end);
3545 	/*
3546 	 * If a page can not be invalidated, return 0 to fall back
3547 	 * to buffered write.
3548 	 */
3549 	if (written) {
3550 		if (written == -EBUSY)
3551 			return 0;
3552 		goto out;
3553 	}
3554 
3555 	written = mapping->a_ops->direct_IO(iocb, from);
3556 
3557 	/*
3558 	 * Finally, try again to invalidate clean pages which might have been
3559 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3560 	 * if the source of the write was an mmap'ed region of the file
3561 	 * we're writing.  Either one is a pretty crazy thing to do,
3562 	 * so we don't support it 100%.  If this invalidation
3563 	 * fails, tough, the write still worked...
3564 	 *
3565 	 * Most of the time we do not need this since dio_complete() will do
3566 	 * the invalidation for us. However there are some file systems that
3567 	 * do not end up with dio_complete() being called, so let's not break
3568 	 * them by removing it completely.
3569 	 *
3570 	 * Noticeable example is a blkdev_direct_IO().
3571 	 *
3572 	 * Skip invalidation for async writes or if mapping has no pages.
3573 	 */
3574 	if (written > 0 && mapping->nrpages &&
3575 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3576 		dio_warn_stale_pagecache(file);
3577 
3578 	if (written > 0) {
3579 		pos += written;
3580 		write_len -= written;
3581 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3582 			i_size_write(inode, pos);
3583 			mark_inode_dirty(inode);
3584 		}
3585 		iocb->ki_pos = pos;
3586 	}
3587 	if (written != -EIOCBQUEUED)
3588 		iov_iter_revert(from, write_len - iov_iter_count(from));
3589 out:
3590 	return written;
3591 }
3592 EXPORT_SYMBOL(generic_file_direct_write);
3593 
3594 /*
3595  * Find or create a page at the given pagecache position. Return the locked
3596  * page. This function is specifically for buffered writes.
3597  */
3598 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3599 					pgoff_t index, unsigned flags)
3600 {
3601 	struct page *page;
3602 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3603 
3604 	if (flags & AOP_FLAG_NOFS)
3605 		fgp_flags |= FGP_NOFS;
3606 
3607 	page = pagecache_get_page(mapping, index, fgp_flags,
3608 			mapping_gfp_mask(mapping));
3609 	if (page)
3610 		wait_for_stable_page(page);
3611 
3612 	return page;
3613 }
3614 EXPORT_SYMBOL(grab_cache_page_write_begin);
3615 
3616 ssize_t generic_perform_write(struct file *file,
3617 				struct iov_iter *i, loff_t pos)
3618 {
3619 	struct address_space *mapping = file->f_mapping;
3620 	const struct address_space_operations *a_ops = mapping->a_ops;
3621 	long status = 0;
3622 	ssize_t written = 0;
3623 	unsigned int flags = 0;
3624 
3625 	do {
3626 		struct page *page;
3627 		unsigned long offset;	/* Offset into pagecache page */
3628 		unsigned long bytes;	/* Bytes to write to page */
3629 		size_t copied;		/* Bytes copied from user */
3630 		void *fsdata;
3631 
3632 		offset = (pos & (PAGE_SIZE - 1));
3633 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3634 						iov_iter_count(i));
3635 
3636 again:
3637 		/*
3638 		 * Bring in the user page that we will copy from _first_.
3639 		 * Otherwise there's a nasty deadlock on copying from the
3640 		 * same page as we're writing to, without it being marked
3641 		 * up-to-date.
3642 		 */
3643 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3644 			status = -EFAULT;
3645 			break;
3646 		}
3647 
3648 		if (fatal_signal_pending(current)) {
3649 			status = -EINTR;
3650 			break;
3651 		}
3652 
3653 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3654 						&page, &fsdata);
3655 		if (unlikely(status < 0))
3656 			break;
3657 
3658 		if (mapping_writably_mapped(mapping))
3659 			flush_dcache_page(page);
3660 
3661 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3662 		flush_dcache_page(page);
3663 
3664 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3665 						page, fsdata);
3666 		if (unlikely(status != copied)) {
3667 			iov_iter_revert(i, copied - max(status, 0L));
3668 			if (unlikely(status < 0))
3669 				break;
3670 		}
3671 		cond_resched();
3672 
3673 		if (unlikely(status == 0)) {
3674 			/*
3675 			 * A short copy made ->write_end() reject the
3676 			 * thing entirely.  Might be memory poisoning
3677 			 * halfway through, might be a race with munmap,
3678 			 * might be severe memory pressure.
3679 			 */
3680 			if (copied)
3681 				bytes = copied;
3682 			goto again;
3683 		}
3684 		pos += status;
3685 		written += status;
3686 
3687 		balance_dirty_pages_ratelimited(mapping);
3688 	} while (iov_iter_count(i));
3689 
3690 	return written ? written : status;
3691 }
3692 EXPORT_SYMBOL(generic_perform_write);
3693 
3694 /**
3695  * __generic_file_write_iter - write data to a file
3696  * @iocb:	IO state structure (file, offset, etc.)
3697  * @from:	iov_iter with data to write
3698  *
3699  * This function does all the work needed for actually writing data to a
3700  * file. It does all basic checks, removes SUID from the file, updates
3701  * modification times and calls proper subroutines depending on whether we
3702  * do direct IO or a standard buffered write.
3703  *
3704  * It expects i_mutex to be grabbed unless we work on a block device or similar
3705  * object which does not need locking at all.
3706  *
3707  * This function does *not* take care of syncing data in case of O_SYNC write.
3708  * A caller has to handle it. This is mainly due to the fact that we want to
3709  * avoid syncing under i_mutex.
3710  *
3711  * Return:
3712  * * number of bytes written, even for truncated writes
3713  * * negative error code if no data has been written at all
3714  */
3715 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3716 {
3717 	struct file *file = iocb->ki_filp;
3718 	struct address_space *mapping = file->f_mapping;
3719 	struct inode 	*inode = mapping->host;
3720 	ssize_t		written = 0;
3721 	ssize_t		err;
3722 	ssize_t		status;
3723 
3724 	/* We can write back this queue in page reclaim */
3725 	current->backing_dev_info = inode_to_bdi(inode);
3726 	err = file_remove_privs(file);
3727 	if (err)
3728 		goto out;
3729 
3730 	err = file_update_time(file);
3731 	if (err)
3732 		goto out;
3733 
3734 	if (iocb->ki_flags & IOCB_DIRECT) {
3735 		loff_t pos, endbyte;
3736 
3737 		written = generic_file_direct_write(iocb, from);
3738 		/*
3739 		 * If the write stopped short of completing, fall back to
3740 		 * buffered writes.  Some filesystems do this for writes to
3741 		 * holes, for example.  For DAX files, a buffered write will
3742 		 * not succeed (even if it did, DAX does not handle dirty
3743 		 * page-cache pages correctly).
3744 		 */
3745 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3746 			goto out;
3747 
3748 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3749 		/*
3750 		 * If generic_perform_write() returned a synchronous error
3751 		 * then we want to return the number of bytes which were
3752 		 * direct-written, or the error code if that was zero.  Note
3753 		 * that this differs from normal direct-io semantics, which
3754 		 * will return -EFOO even if some bytes were written.
3755 		 */
3756 		if (unlikely(status < 0)) {
3757 			err = status;
3758 			goto out;
3759 		}
3760 		/*
3761 		 * We need to ensure that the page cache pages are written to
3762 		 * disk and invalidated to preserve the expected O_DIRECT
3763 		 * semantics.
3764 		 */
3765 		endbyte = pos + status - 1;
3766 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3767 		if (err == 0) {
3768 			iocb->ki_pos = endbyte + 1;
3769 			written += status;
3770 			invalidate_mapping_pages(mapping,
3771 						 pos >> PAGE_SHIFT,
3772 						 endbyte >> PAGE_SHIFT);
3773 		} else {
3774 			/*
3775 			 * We don't know how much we wrote, so just return
3776 			 * the number of bytes which were direct-written
3777 			 */
3778 		}
3779 	} else {
3780 		written = generic_perform_write(file, from, iocb->ki_pos);
3781 		if (likely(written > 0))
3782 			iocb->ki_pos += written;
3783 	}
3784 out:
3785 	current->backing_dev_info = NULL;
3786 	return written ? written : err;
3787 }
3788 EXPORT_SYMBOL(__generic_file_write_iter);
3789 
3790 /**
3791  * generic_file_write_iter - write data to a file
3792  * @iocb:	IO state structure
3793  * @from:	iov_iter with data to write
3794  *
3795  * This is a wrapper around __generic_file_write_iter() to be used by most
3796  * filesystems. It takes care of syncing the file in case of O_SYNC file
3797  * and acquires i_mutex as needed.
3798  * Return:
3799  * * negative error code if no data has been written at all of
3800  *   vfs_fsync_range() failed for a synchronous write
3801  * * number of bytes written, even for truncated writes
3802  */
3803 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3804 {
3805 	struct file *file = iocb->ki_filp;
3806 	struct inode *inode = file->f_mapping->host;
3807 	ssize_t ret;
3808 
3809 	inode_lock(inode);
3810 	ret = generic_write_checks(iocb, from);
3811 	if (ret > 0)
3812 		ret = __generic_file_write_iter(iocb, from);
3813 	inode_unlock(inode);
3814 
3815 	if (ret > 0)
3816 		ret = generic_write_sync(iocb, ret);
3817 	return ret;
3818 }
3819 EXPORT_SYMBOL(generic_file_write_iter);
3820 
3821 /**
3822  * try_to_release_page() - release old fs-specific metadata on a page
3823  *
3824  * @page: the page which the kernel is trying to free
3825  * @gfp_mask: memory allocation flags (and I/O mode)
3826  *
3827  * The address_space is to try to release any data against the page
3828  * (presumably at page->private).
3829  *
3830  * This may also be called if PG_fscache is set on a page, indicating that the
3831  * page is known to the local caching routines.
3832  *
3833  * The @gfp_mask argument specifies whether I/O may be performed to release
3834  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3835  *
3836  * Return: %1 if the release was successful, otherwise return zero.
3837  */
3838 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3839 {
3840 	struct address_space * const mapping = page->mapping;
3841 
3842 	BUG_ON(!PageLocked(page));
3843 	if (PageWriteback(page))
3844 		return 0;
3845 
3846 	if (mapping && mapping->a_ops->releasepage)
3847 		return mapping->a_ops->releasepage(page, gfp_mask);
3848 	return try_to_free_buffers(page);
3849 }
3850 
3851 EXPORT_SYMBOL(try_to_release_page);
3852