1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_mutex 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 81 * 82 * ->mmap_lock 83 * ->i_mmap_rwsem 84 * ->page_table_lock or pte_lock (various, mainly in memory.c) 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 86 * 87 * ->mmap_lock 88 * ->lock_page (access_process_vm) 89 * 90 * ->i_mutex (generic_perform_write) 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault) 92 * 93 * bdi->wb.list_lock 94 * sb_lock (fs/fs-writeback.c) 95 * ->i_pages lock (__sync_single_inode) 96 * 97 * ->i_mmap_rwsem 98 * ->anon_vma.lock (vma_adjust) 99 * 100 * ->anon_vma.lock 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 102 * 103 * ->page_table_lock or pte_lock 104 * ->swap_lock (try_to_unmap_one) 105 * ->private_lock (try_to_unmap_one) 106 * ->i_pages lock (try_to_unmap_one) 107 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 109 * ->private_lock (page_remove_rmap->set_page_dirty) 110 * ->i_pages lock (page_remove_rmap->set_page_dirty) 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 115 * ->inode->i_lock (zap_pte_range->set_page_dirty) 116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 117 * 118 * ->i_mmap_rwsem 119 * ->tasklist_lock (memory_failure, collect_procs_ao) 120 */ 121 122 static void page_cache_delete(struct address_space *mapping, 123 struct page *page, void *shadow) 124 { 125 XA_STATE(xas, &mapping->i_pages, page->index); 126 unsigned int nr = 1; 127 128 mapping_set_update(&xas, mapping); 129 130 /* hugetlb pages are represented by a single entry in the xarray */ 131 if (!PageHuge(page)) { 132 xas_set_order(&xas, page->index, compound_order(page)); 133 nr = compound_nr(page); 134 } 135 136 VM_BUG_ON_PAGE(!PageLocked(page), page); 137 VM_BUG_ON_PAGE(PageTail(page), page); 138 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 page->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void unaccount_page_cache_page(struct address_space *mapping, 149 struct page *page) 150 { 151 int nr; 152 153 /* 154 * if we're uptodate, flush out into the cleancache, otherwise 155 * invalidate any existing cleancache entries. We can't leave 156 * stale data around in the cleancache once our page is gone 157 */ 158 if (PageUptodate(page) && PageMappedToDisk(page)) 159 cleancache_put_page(page); 160 else 161 cleancache_invalidate_page(mapping, page); 162 163 VM_BUG_ON_PAGE(PageTail(page), page); 164 VM_BUG_ON_PAGE(page_mapped(page), page); 165 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 166 int mapcount; 167 168 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 169 current->comm, page_to_pfn(page)); 170 dump_page(page, "still mapped when deleted"); 171 dump_stack(); 172 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 173 174 mapcount = page_mapcount(page); 175 if (mapping_exiting(mapping) && 176 page_count(page) >= mapcount + 2) { 177 /* 178 * All vmas have already been torn down, so it's 179 * a good bet that actually the page is unmapped, 180 * and we'd prefer not to leak it: if we're wrong, 181 * some other bad page check should catch it later. 182 */ 183 page_mapcount_reset(page); 184 page_ref_sub(page, mapcount); 185 } 186 } 187 188 /* hugetlb pages do not participate in page cache accounting. */ 189 if (PageHuge(page)) 190 return; 191 192 nr = thp_nr_pages(page); 193 194 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr); 195 if (PageSwapBacked(page)) { 196 __mod_lruvec_page_state(page, NR_SHMEM, -nr); 197 if (PageTransHuge(page)) 198 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); 199 } else if (PageTransHuge(page)) { 200 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); 201 filemap_nr_thps_dec(mapping); 202 } 203 204 /* 205 * At this point page must be either written or cleaned by 206 * truncate. Dirty page here signals a bug and loss of 207 * unwritten data. 208 * 209 * This fixes dirty accounting after removing the page entirely 210 * but leaves PageDirty set: it has no effect for truncated 211 * page and anyway will be cleared before returning page into 212 * buddy allocator. 213 */ 214 if (WARN_ON_ONCE(PageDirty(page))) 215 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 216 } 217 218 /* 219 * Delete a page from the page cache and free it. Caller has to make 220 * sure the page is locked and that nobody else uses it - or that usage 221 * is safe. The caller must hold the i_pages lock. 222 */ 223 void __delete_from_page_cache(struct page *page, void *shadow) 224 { 225 struct address_space *mapping = page->mapping; 226 227 trace_mm_filemap_delete_from_page_cache(page); 228 229 unaccount_page_cache_page(mapping, page); 230 page_cache_delete(mapping, page, shadow); 231 } 232 233 static void page_cache_free_page(struct address_space *mapping, 234 struct page *page) 235 { 236 void (*freepage)(struct page *); 237 238 freepage = mapping->a_ops->freepage; 239 if (freepage) 240 freepage(page); 241 242 if (PageTransHuge(page) && !PageHuge(page)) { 243 page_ref_sub(page, thp_nr_pages(page)); 244 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 245 } else { 246 put_page(page); 247 } 248 } 249 250 /** 251 * delete_from_page_cache - delete page from page cache 252 * @page: the page which the kernel is trying to remove from page cache 253 * 254 * This must be called only on pages that have been verified to be in the page 255 * cache and locked. It will never put the page into the free list, the caller 256 * has a reference on the page. 257 */ 258 void delete_from_page_cache(struct page *page) 259 { 260 struct address_space *mapping = page_mapping(page); 261 262 BUG_ON(!PageLocked(page)); 263 xa_lock_irq(&mapping->i_pages); 264 __delete_from_page_cache(page, NULL); 265 xa_unlock_irq(&mapping->i_pages); 266 267 page_cache_free_page(mapping, page); 268 } 269 EXPORT_SYMBOL(delete_from_page_cache); 270 271 /* 272 * page_cache_delete_batch - delete several pages from page cache 273 * @mapping: the mapping to which pages belong 274 * @pvec: pagevec with pages to delete 275 * 276 * The function walks over mapping->i_pages and removes pages passed in @pvec 277 * from the mapping. The function expects @pvec to be sorted by page index 278 * and is optimised for it to be dense. 279 * It tolerates holes in @pvec (mapping entries at those indices are not 280 * modified). The function expects only THP head pages to be present in the 281 * @pvec. 282 * 283 * The function expects the i_pages lock to be held. 284 */ 285 static void page_cache_delete_batch(struct address_space *mapping, 286 struct pagevec *pvec) 287 { 288 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 289 int total_pages = 0; 290 int i = 0; 291 struct page *page; 292 293 mapping_set_update(&xas, mapping); 294 xas_for_each(&xas, page, ULONG_MAX) { 295 if (i >= pagevec_count(pvec)) 296 break; 297 298 /* A swap/dax/shadow entry got inserted? Skip it. */ 299 if (xa_is_value(page)) 300 continue; 301 /* 302 * A page got inserted in our range? Skip it. We have our 303 * pages locked so they are protected from being removed. 304 * If we see a page whose index is higher than ours, it 305 * means our page has been removed, which shouldn't be 306 * possible because we're holding the PageLock. 307 */ 308 if (page != pvec->pages[i]) { 309 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, 310 page); 311 continue; 312 } 313 314 WARN_ON_ONCE(!PageLocked(page)); 315 316 if (page->index == xas.xa_index) 317 page->mapping = NULL; 318 /* Leave page->index set: truncation lookup relies on it */ 319 320 /* 321 * Move to the next page in the vector if this is a regular 322 * page or the index is of the last sub-page of this compound 323 * page. 324 */ 325 if (page->index + compound_nr(page) - 1 == xas.xa_index) 326 i++; 327 xas_store(&xas, NULL); 328 total_pages++; 329 } 330 mapping->nrpages -= total_pages; 331 } 332 333 void delete_from_page_cache_batch(struct address_space *mapping, 334 struct pagevec *pvec) 335 { 336 int i; 337 338 if (!pagevec_count(pvec)) 339 return; 340 341 xa_lock_irq(&mapping->i_pages); 342 for (i = 0; i < pagevec_count(pvec); i++) { 343 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 344 345 unaccount_page_cache_page(mapping, pvec->pages[i]); 346 } 347 page_cache_delete_batch(mapping, pvec); 348 xa_unlock_irq(&mapping->i_pages); 349 350 for (i = 0; i < pagevec_count(pvec); i++) 351 page_cache_free_page(mapping, pvec->pages[i]); 352 } 353 354 int filemap_check_errors(struct address_space *mapping) 355 { 356 int ret = 0; 357 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 364 return ret; 365 } 366 EXPORT_SYMBOL(filemap_check_errors); 367 368 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 375 return 0; 376 } 377 378 /** 379 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 380 * @mapping: address space structure to write 381 * @start: offset in bytes where the range starts 382 * @end: offset in bytes where the range ends (inclusive) 383 * @sync_mode: enable synchronous operation 384 * 385 * Start writeback against all of a mapping's dirty pages that lie 386 * within the byte offsets <start, end> inclusive. 387 * 388 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 389 * opposed to a regular memory cleansing writeback. The difference between 390 * these two operations is that if a dirty page/buffer is encountered, it must 391 * be waited upon, and not just skipped over. 392 * 393 * Return: %0 on success, negative error code otherwise. 394 */ 395 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 396 loff_t end, int sync_mode) 397 { 398 int ret; 399 struct writeback_control wbc = { 400 .sync_mode = sync_mode, 401 .nr_to_write = LONG_MAX, 402 .range_start = start, 403 .range_end = end, 404 }; 405 406 if (!mapping_can_writeback(mapping) || 407 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 408 return 0; 409 410 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 411 ret = do_writepages(mapping, &wbc); 412 wbc_detach_inode(&wbc); 413 return ret; 414 } 415 416 static inline int __filemap_fdatawrite(struct address_space *mapping, 417 int sync_mode) 418 { 419 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 420 } 421 422 int filemap_fdatawrite(struct address_space *mapping) 423 { 424 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 425 } 426 EXPORT_SYMBOL(filemap_fdatawrite); 427 428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 429 loff_t end) 430 { 431 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 432 } 433 EXPORT_SYMBOL(filemap_fdatawrite_range); 434 435 /** 436 * filemap_flush - mostly a non-blocking flush 437 * @mapping: target address_space 438 * 439 * This is a mostly non-blocking flush. Not suitable for data-integrity 440 * purposes - I/O may not be started against all dirty pages. 441 * 442 * Return: %0 on success, negative error code otherwise. 443 */ 444 int filemap_flush(struct address_space *mapping) 445 { 446 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 447 } 448 EXPORT_SYMBOL(filemap_flush); 449 450 /** 451 * filemap_range_has_page - check if a page exists in range. 452 * @mapping: address space within which to check 453 * @start_byte: offset in bytes where the range starts 454 * @end_byte: offset in bytes where the range ends (inclusive) 455 * 456 * Find at least one page in the range supplied, usually used to check if 457 * direct writing in this range will trigger a writeback. 458 * 459 * Return: %true if at least one page exists in the specified range, 460 * %false otherwise. 461 */ 462 bool filemap_range_has_page(struct address_space *mapping, 463 loff_t start_byte, loff_t end_byte) 464 { 465 struct page *page; 466 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 467 pgoff_t max = end_byte >> PAGE_SHIFT; 468 469 if (end_byte < start_byte) 470 return false; 471 472 rcu_read_lock(); 473 for (;;) { 474 page = xas_find(&xas, max); 475 if (xas_retry(&xas, page)) 476 continue; 477 /* Shadow entries don't count */ 478 if (xa_is_value(page)) 479 continue; 480 /* 481 * We don't need to try to pin this page; we're about to 482 * release the RCU lock anyway. It is enough to know that 483 * there was a page here recently. 484 */ 485 break; 486 } 487 rcu_read_unlock(); 488 489 return page != NULL; 490 } 491 EXPORT_SYMBOL(filemap_range_has_page); 492 493 static void __filemap_fdatawait_range(struct address_space *mapping, 494 loff_t start_byte, loff_t end_byte) 495 { 496 pgoff_t index = start_byte >> PAGE_SHIFT; 497 pgoff_t end = end_byte >> PAGE_SHIFT; 498 struct pagevec pvec; 499 int nr_pages; 500 501 if (end_byte < start_byte) 502 return; 503 504 pagevec_init(&pvec); 505 while (index <= end) { 506 unsigned i; 507 508 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 509 end, PAGECACHE_TAG_WRITEBACK); 510 if (!nr_pages) 511 break; 512 513 for (i = 0; i < nr_pages; i++) { 514 struct page *page = pvec.pages[i]; 515 516 wait_on_page_writeback(page); 517 ClearPageError(page); 518 } 519 pagevec_release(&pvec); 520 cond_resched(); 521 } 522 } 523 524 /** 525 * filemap_fdatawait_range - wait for writeback to complete 526 * @mapping: address space structure to wait for 527 * @start_byte: offset in bytes where the range starts 528 * @end_byte: offset in bytes where the range ends (inclusive) 529 * 530 * Walk the list of under-writeback pages of the given address space 531 * in the given range and wait for all of them. Check error status of 532 * the address space and return it. 533 * 534 * Since the error status of the address space is cleared by this function, 535 * callers are responsible for checking the return value and handling and/or 536 * reporting the error. 537 * 538 * Return: error status of the address space. 539 */ 540 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 541 loff_t end_byte) 542 { 543 __filemap_fdatawait_range(mapping, start_byte, end_byte); 544 return filemap_check_errors(mapping); 545 } 546 EXPORT_SYMBOL(filemap_fdatawait_range); 547 548 /** 549 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 550 * @mapping: address space structure to wait for 551 * @start_byte: offset in bytes where the range starts 552 * @end_byte: offset in bytes where the range ends (inclusive) 553 * 554 * Walk the list of under-writeback pages of the given address space in the 555 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 556 * this function does not clear error status of the address space. 557 * 558 * Use this function if callers don't handle errors themselves. Expected 559 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 560 * fsfreeze(8) 561 */ 562 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 563 loff_t start_byte, loff_t end_byte) 564 { 565 __filemap_fdatawait_range(mapping, start_byte, end_byte); 566 return filemap_check_and_keep_errors(mapping); 567 } 568 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 569 570 /** 571 * file_fdatawait_range - wait for writeback to complete 572 * @file: file pointing to address space structure to wait for 573 * @start_byte: offset in bytes where the range starts 574 * @end_byte: offset in bytes where the range ends (inclusive) 575 * 576 * Walk the list of under-writeback pages of the address space that file 577 * refers to, in the given range and wait for all of them. Check error 578 * status of the address space vs. the file->f_wb_err cursor and return it. 579 * 580 * Since the error status of the file is advanced by this function, 581 * callers are responsible for checking the return value and handling and/or 582 * reporting the error. 583 * 584 * Return: error status of the address space vs. the file->f_wb_err cursor. 585 */ 586 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 587 { 588 struct address_space *mapping = file->f_mapping; 589 590 __filemap_fdatawait_range(mapping, start_byte, end_byte); 591 return file_check_and_advance_wb_err(file); 592 } 593 EXPORT_SYMBOL(file_fdatawait_range); 594 595 /** 596 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 597 * @mapping: address space structure to wait for 598 * 599 * Walk the list of under-writeback pages of the given address space 600 * and wait for all of them. Unlike filemap_fdatawait(), this function 601 * does not clear error status of the address space. 602 * 603 * Use this function if callers don't handle errors themselves. Expected 604 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 605 * fsfreeze(8) 606 * 607 * Return: error status of the address space. 608 */ 609 int filemap_fdatawait_keep_errors(struct address_space *mapping) 610 { 611 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 612 return filemap_check_and_keep_errors(mapping); 613 } 614 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 615 616 /* Returns true if writeback might be needed or already in progress. */ 617 static bool mapping_needs_writeback(struct address_space *mapping) 618 { 619 return mapping->nrpages; 620 } 621 622 /** 623 * filemap_range_needs_writeback - check if range potentially needs writeback 624 * @mapping: address space within which to check 625 * @start_byte: offset in bytes where the range starts 626 * @end_byte: offset in bytes where the range ends (inclusive) 627 * 628 * Find at least one page in the range supplied, usually used to check if 629 * direct writing in this range will trigger a writeback. Used by O_DIRECT 630 * read/write with IOCB_NOWAIT, to see if the caller needs to do 631 * filemap_write_and_wait_range() before proceeding. 632 * 633 * Return: %true if the caller should do filemap_write_and_wait_range() before 634 * doing O_DIRECT to a page in this range, %false otherwise. 635 */ 636 bool filemap_range_needs_writeback(struct address_space *mapping, 637 loff_t start_byte, loff_t end_byte) 638 { 639 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 640 pgoff_t max = end_byte >> PAGE_SHIFT; 641 struct page *page; 642 643 if (!mapping_needs_writeback(mapping)) 644 return false; 645 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 646 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 647 return false; 648 if (end_byte < start_byte) 649 return false; 650 651 rcu_read_lock(); 652 xas_for_each(&xas, page, max) { 653 if (xas_retry(&xas, page)) 654 continue; 655 if (xa_is_value(page)) 656 continue; 657 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 658 break; 659 } 660 rcu_read_unlock(); 661 return page != NULL; 662 } 663 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback); 664 665 /** 666 * filemap_write_and_wait_range - write out & wait on a file range 667 * @mapping: the address_space for the pages 668 * @lstart: offset in bytes where the range starts 669 * @lend: offset in bytes where the range ends (inclusive) 670 * 671 * Write out and wait upon file offsets lstart->lend, inclusive. 672 * 673 * Note that @lend is inclusive (describes the last byte to be written) so 674 * that this function can be used to write to the very end-of-file (end = -1). 675 * 676 * Return: error status of the address space. 677 */ 678 int filemap_write_and_wait_range(struct address_space *mapping, 679 loff_t lstart, loff_t lend) 680 { 681 int err = 0; 682 683 if (mapping_needs_writeback(mapping)) { 684 err = __filemap_fdatawrite_range(mapping, lstart, lend, 685 WB_SYNC_ALL); 686 /* 687 * Even if the above returned error, the pages may be 688 * written partially (e.g. -ENOSPC), so we wait for it. 689 * But the -EIO is special case, it may indicate the worst 690 * thing (e.g. bug) happened, so we avoid waiting for it. 691 */ 692 if (err != -EIO) { 693 int err2 = filemap_fdatawait_range(mapping, 694 lstart, lend); 695 if (!err) 696 err = err2; 697 } else { 698 /* Clear any previously stored errors */ 699 filemap_check_errors(mapping); 700 } 701 } else { 702 err = filemap_check_errors(mapping); 703 } 704 return err; 705 } 706 EXPORT_SYMBOL(filemap_write_and_wait_range); 707 708 void __filemap_set_wb_err(struct address_space *mapping, int err) 709 { 710 errseq_t eseq = errseq_set(&mapping->wb_err, err); 711 712 trace_filemap_set_wb_err(mapping, eseq); 713 } 714 EXPORT_SYMBOL(__filemap_set_wb_err); 715 716 /** 717 * file_check_and_advance_wb_err - report wb error (if any) that was previously 718 * and advance wb_err to current one 719 * @file: struct file on which the error is being reported 720 * 721 * When userland calls fsync (or something like nfsd does the equivalent), we 722 * want to report any writeback errors that occurred since the last fsync (or 723 * since the file was opened if there haven't been any). 724 * 725 * Grab the wb_err from the mapping. If it matches what we have in the file, 726 * then just quickly return 0. The file is all caught up. 727 * 728 * If it doesn't match, then take the mapping value, set the "seen" flag in 729 * it and try to swap it into place. If it works, or another task beat us 730 * to it with the new value, then update the f_wb_err and return the error 731 * portion. The error at this point must be reported via proper channels 732 * (a'la fsync, or NFS COMMIT operation, etc.). 733 * 734 * While we handle mapping->wb_err with atomic operations, the f_wb_err 735 * value is protected by the f_lock since we must ensure that it reflects 736 * the latest value swapped in for this file descriptor. 737 * 738 * Return: %0 on success, negative error code otherwise. 739 */ 740 int file_check_and_advance_wb_err(struct file *file) 741 { 742 int err = 0; 743 errseq_t old = READ_ONCE(file->f_wb_err); 744 struct address_space *mapping = file->f_mapping; 745 746 /* Locklessly handle the common case where nothing has changed */ 747 if (errseq_check(&mapping->wb_err, old)) { 748 /* Something changed, must use slow path */ 749 spin_lock(&file->f_lock); 750 old = file->f_wb_err; 751 err = errseq_check_and_advance(&mapping->wb_err, 752 &file->f_wb_err); 753 trace_file_check_and_advance_wb_err(file, old); 754 spin_unlock(&file->f_lock); 755 } 756 757 /* 758 * We're mostly using this function as a drop in replacement for 759 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 760 * that the legacy code would have had on these flags. 761 */ 762 clear_bit(AS_EIO, &mapping->flags); 763 clear_bit(AS_ENOSPC, &mapping->flags); 764 return err; 765 } 766 EXPORT_SYMBOL(file_check_and_advance_wb_err); 767 768 /** 769 * file_write_and_wait_range - write out & wait on a file range 770 * @file: file pointing to address_space with pages 771 * @lstart: offset in bytes where the range starts 772 * @lend: offset in bytes where the range ends (inclusive) 773 * 774 * Write out and wait upon file offsets lstart->lend, inclusive. 775 * 776 * Note that @lend is inclusive (describes the last byte to be written) so 777 * that this function can be used to write to the very end-of-file (end = -1). 778 * 779 * After writing out and waiting on the data, we check and advance the 780 * f_wb_err cursor to the latest value, and return any errors detected there. 781 * 782 * Return: %0 on success, negative error code otherwise. 783 */ 784 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 785 { 786 int err = 0, err2; 787 struct address_space *mapping = file->f_mapping; 788 789 if (mapping_needs_writeback(mapping)) { 790 err = __filemap_fdatawrite_range(mapping, lstart, lend, 791 WB_SYNC_ALL); 792 /* See comment of filemap_write_and_wait() */ 793 if (err != -EIO) 794 __filemap_fdatawait_range(mapping, lstart, lend); 795 } 796 err2 = file_check_and_advance_wb_err(file); 797 if (!err) 798 err = err2; 799 return err; 800 } 801 EXPORT_SYMBOL(file_write_and_wait_range); 802 803 /** 804 * replace_page_cache_page - replace a pagecache page with a new one 805 * @old: page to be replaced 806 * @new: page to replace with 807 * 808 * This function replaces a page in the pagecache with a new one. On 809 * success it acquires the pagecache reference for the new page and 810 * drops it for the old page. Both the old and new pages must be 811 * locked. This function does not add the new page to the LRU, the 812 * caller must do that. 813 * 814 * The remove + add is atomic. This function cannot fail. 815 */ 816 void replace_page_cache_page(struct page *old, struct page *new) 817 { 818 struct address_space *mapping = old->mapping; 819 void (*freepage)(struct page *) = mapping->a_ops->freepage; 820 pgoff_t offset = old->index; 821 XA_STATE(xas, &mapping->i_pages, offset); 822 823 VM_BUG_ON_PAGE(!PageLocked(old), old); 824 VM_BUG_ON_PAGE(!PageLocked(new), new); 825 VM_BUG_ON_PAGE(new->mapping, new); 826 827 get_page(new); 828 new->mapping = mapping; 829 new->index = offset; 830 831 mem_cgroup_migrate(old, new); 832 833 xas_lock_irq(&xas); 834 xas_store(&xas, new); 835 836 old->mapping = NULL; 837 /* hugetlb pages do not participate in page cache accounting. */ 838 if (!PageHuge(old)) 839 __dec_lruvec_page_state(old, NR_FILE_PAGES); 840 if (!PageHuge(new)) 841 __inc_lruvec_page_state(new, NR_FILE_PAGES); 842 if (PageSwapBacked(old)) 843 __dec_lruvec_page_state(old, NR_SHMEM); 844 if (PageSwapBacked(new)) 845 __inc_lruvec_page_state(new, NR_SHMEM); 846 xas_unlock_irq(&xas); 847 if (freepage) 848 freepage(old); 849 put_page(old); 850 } 851 EXPORT_SYMBOL_GPL(replace_page_cache_page); 852 853 noinline int __add_to_page_cache_locked(struct page *page, 854 struct address_space *mapping, 855 pgoff_t offset, gfp_t gfp, 856 void **shadowp) 857 { 858 XA_STATE(xas, &mapping->i_pages, offset); 859 int huge = PageHuge(page); 860 int error; 861 bool charged = false; 862 863 VM_BUG_ON_PAGE(!PageLocked(page), page); 864 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 865 mapping_set_update(&xas, mapping); 866 867 get_page(page); 868 page->mapping = mapping; 869 page->index = offset; 870 871 if (!huge) { 872 error = mem_cgroup_charge(page, NULL, gfp); 873 if (error) 874 goto error; 875 charged = true; 876 } 877 878 gfp &= GFP_RECLAIM_MASK; 879 880 do { 881 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 882 void *entry, *old = NULL; 883 884 if (order > thp_order(page)) 885 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 886 order, gfp); 887 xas_lock_irq(&xas); 888 xas_for_each_conflict(&xas, entry) { 889 old = entry; 890 if (!xa_is_value(entry)) { 891 xas_set_err(&xas, -EEXIST); 892 goto unlock; 893 } 894 } 895 896 if (old) { 897 if (shadowp) 898 *shadowp = old; 899 /* entry may have been split before we acquired lock */ 900 order = xa_get_order(xas.xa, xas.xa_index); 901 if (order > thp_order(page)) { 902 xas_split(&xas, old, order); 903 xas_reset(&xas); 904 } 905 } 906 907 xas_store(&xas, page); 908 if (xas_error(&xas)) 909 goto unlock; 910 911 mapping->nrpages++; 912 913 /* hugetlb pages do not participate in page cache accounting */ 914 if (!huge) 915 __inc_lruvec_page_state(page, NR_FILE_PAGES); 916 unlock: 917 xas_unlock_irq(&xas); 918 } while (xas_nomem(&xas, gfp)); 919 920 if (xas_error(&xas)) { 921 error = xas_error(&xas); 922 if (charged) 923 mem_cgroup_uncharge(page); 924 goto error; 925 } 926 927 trace_mm_filemap_add_to_page_cache(page); 928 return 0; 929 error: 930 page->mapping = NULL; 931 /* Leave page->index set: truncation relies upon it */ 932 put_page(page); 933 return error; 934 } 935 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 936 937 /** 938 * add_to_page_cache_locked - add a locked page to the pagecache 939 * @page: page to add 940 * @mapping: the page's address_space 941 * @offset: page index 942 * @gfp_mask: page allocation mode 943 * 944 * This function is used to add a page to the pagecache. It must be locked. 945 * This function does not add the page to the LRU. The caller must do that. 946 * 947 * Return: %0 on success, negative error code otherwise. 948 */ 949 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 950 pgoff_t offset, gfp_t gfp_mask) 951 { 952 return __add_to_page_cache_locked(page, mapping, offset, 953 gfp_mask, NULL); 954 } 955 EXPORT_SYMBOL(add_to_page_cache_locked); 956 957 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 958 pgoff_t offset, gfp_t gfp_mask) 959 { 960 void *shadow = NULL; 961 int ret; 962 963 __SetPageLocked(page); 964 ret = __add_to_page_cache_locked(page, mapping, offset, 965 gfp_mask, &shadow); 966 if (unlikely(ret)) 967 __ClearPageLocked(page); 968 else { 969 /* 970 * The page might have been evicted from cache only 971 * recently, in which case it should be activated like 972 * any other repeatedly accessed page. 973 * The exception is pages getting rewritten; evicting other 974 * data from the working set, only to cache data that will 975 * get overwritten with something else, is a waste of memory. 976 */ 977 WARN_ON_ONCE(PageActive(page)); 978 if (!(gfp_mask & __GFP_WRITE) && shadow) 979 workingset_refault(page, shadow); 980 lru_cache_add(page); 981 } 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 985 986 #ifdef CONFIG_NUMA 987 struct page *__page_cache_alloc(gfp_t gfp) 988 { 989 int n; 990 struct page *page; 991 992 if (cpuset_do_page_mem_spread()) { 993 unsigned int cpuset_mems_cookie; 994 do { 995 cpuset_mems_cookie = read_mems_allowed_begin(); 996 n = cpuset_mem_spread_node(); 997 page = __alloc_pages_node(n, gfp, 0); 998 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 999 1000 return page; 1001 } 1002 return alloc_pages(gfp, 0); 1003 } 1004 EXPORT_SYMBOL(__page_cache_alloc); 1005 #endif 1006 1007 /* 1008 * In order to wait for pages to become available there must be 1009 * waitqueues associated with pages. By using a hash table of 1010 * waitqueues where the bucket discipline is to maintain all 1011 * waiters on the same queue and wake all when any of the pages 1012 * become available, and for the woken contexts to check to be 1013 * sure the appropriate page became available, this saves space 1014 * at a cost of "thundering herd" phenomena during rare hash 1015 * collisions. 1016 */ 1017 #define PAGE_WAIT_TABLE_BITS 8 1018 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1019 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1020 1021 static wait_queue_head_t *page_waitqueue(struct page *page) 1022 { 1023 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 1024 } 1025 1026 void __init pagecache_init(void) 1027 { 1028 int i; 1029 1030 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1031 init_waitqueue_head(&page_wait_table[i]); 1032 1033 page_writeback_init(); 1034 } 1035 1036 /* 1037 * The page wait code treats the "wait->flags" somewhat unusually, because 1038 * we have multiple different kinds of waits, not just the usual "exclusive" 1039 * one. 1040 * 1041 * We have: 1042 * 1043 * (a) no special bits set: 1044 * 1045 * We're just waiting for the bit to be released, and when a waker 1046 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1047 * and remove it from the wait queue. 1048 * 1049 * Simple and straightforward. 1050 * 1051 * (b) WQ_FLAG_EXCLUSIVE: 1052 * 1053 * The waiter is waiting to get the lock, and only one waiter should 1054 * be woken up to avoid any thundering herd behavior. We'll set the 1055 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1056 * 1057 * This is the traditional exclusive wait. 1058 * 1059 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1060 * 1061 * The waiter is waiting to get the bit, and additionally wants the 1062 * lock to be transferred to it for fair lock behavior. If the lock 1063 * cannot be taken, we stop walking the wait queue without waking 1064 * the waiter. 1065 * 1066 * This is the "fair lock handoff" case, and in addition to setting 1067 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1068 * that it now has the lock. 1069 */ 1070 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1071 { 1072 unsigned int flags; 1073 struct wait_page_key *key = arg; 1074 struct wait_page_queue *wait_page 1075 = container_of(wait, struct wait_page_queue, wait); 1076 1077 if (!wake_page_match(wait_page, key)) 1078 return 0; 1079 1080 /* 1081 * If it's a lock handoff wait, we get the bit for it, and 1082 * stop walking (and do not wake it up) if we can't. 1083 */ 1084 flags = wait->flags; 1085 if (flags & WQ_FLAG_EXCLUSIVE) { 1086 if (test_bit(key->bit_nr, &key->page->flags)) 1087 return -1; 1088 if (flags & WQ_FLAG_CUSTOM) { 1089 if (test_and_set_bit(key->bit_nr, &key->page->flags)) 1090 return -1; 1091 flags |= WQ_FLAG_DONE; 1092 } 1093 } 1094 1095 /* 1096 * We are holding the wait-queue lock, but the waiter that 1097 * is waiting for this will be checking the flags without 1098 * any locking. 1099 * 1100 * So update the flags atomically, and wake up the waiter 1101 * afterwards to avoid any races. This store-release pairs 1102 * with the load-acquire in wait_on_page_bit_common(). 1103 */ 1104 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1105 wake_up_state(wait->private, mode); 1106 1107 /* 1108 * Ok, we have successfully done what we're waiting for, 1109 * and we can unconditionally remove the wait entry. 1110 * 1111 * Note that this pairs with the "finish_wait()" in the 1112 * waiter, and has to be the absolute last thing we do. 1113 * After this list_del_init(&wait->entry) the wait entry 1114 * might be de-allocated and the process might even have 1115 * exited. 1116 */ 1117 list_del_init_careful(&wait->entry); 1118 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1119 } 1120 1121 static void wake_up_page_bit(struct page *page, int bit_nr) 1122 { 1123 wait_queue_head_t *q = page_waitqueue(page); 1124 struct wait_page_key key; 1125 unsigned long flags; 1126 wait_queue_entry_t bookmark; 1127 1128 key.page = page; 1129 key.bit_nr = bit_nr; 1130 key.page_match = 0; 1131 1132 bookmark.flags = 0; 1133 bookmark.private = NULL; 1134 bookmark.func = NULL; 1135 INIT_LIST_HEAD(&bookmark.entry); 1136 1137 spin_lock_irqsave(&q->lock, flags); 1138 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1139 1140 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1141 /* 1142 * Take a breather from holding the lock, 1143 * allow pages that finish wake up asynchronously 1144 * to acquire the lock and remove themselves 1145 * from wait queue 1146 */ 1147 spin_unlock_irqrestore(&q->lock, flags); 1148 cpu_relax(); 1149 spin_lock_irqsave(&q->lock, flags); 1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1151 } 1152 1153 /* 1154 * It is possible for other pages to have collided on the waitqueue 1155 * hash, so in that case check for a page match. That prevents a long- 1156 * term waiter 1157 * 1158 * It is still possible to miss a case here, when we woke page waiters 1159 * and removed them from the waitqueue, but there are still other 1160 * page waiters. 1161 */ 1162 if (!waitqueue_active(q) || !key.page_match) { 1163 ClearPageWaiters(page); 1164 /* 1165 * It's possible to miss clearing Waiters here, when we woke 1166 * our page waiters, but the hashed waitqueue has waiters for 1167 * other pages on it. 1168 * 1169 * That's okay, it's a rare case. The next waker will clear it. 1170 */ 1171 } 1172 spin_unlock_irqrestore(&q->lock, flags); 1173 } 1174 1175 static void wake_up_page(struct page *page, int bit) 1176 { 1177 if (!PageWaiters(page)) 1178 return; 1179 wake_up_page_bit(page, bit); 1180 } 1181 1182 /* 1183 * A choice of three behaviors for wait_on_page_bit_common(): 1184 */ 1185 enum behavior { 1186 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1187 * __lock_page() waiting on then setting PG_locked. 1188 */ 1189 SHARED, /* Hold ref to page and check the bit when woken, like 1190 * wait_on_page_writeback() waiting on PG_writeback. 1191 */ 1192 DROP, /* Drop ref to page before wait, no check when woken, 1193 * like put_and_wait_on_page_locked() on PG_locked. 1194 */ 1195 }; 1196 1197 /* 1198 * Attempt to check (or get) the page bit, and mark us done 1199 * if successful. 1200 */ 1201 static inline bool trylock_page_bit_common(struct page *page, int bit_nr, 1202 struct wait_queue_entry *wait) 1203 { 1204 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1205 if (test_and_set_bit(bit_nr, &page->flags)) 1206 return false; 1207 } else if (test_bit(bit_nr, &page->flags)) 1208 return false; 1209 1210 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1211 return true; 1212 } 1213 1214 /* How many times do we accept lock stealing from under a waiter? */ 1215 int sysctl_page_lock_unfairness = 5; 1216 1217 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1218 struct page *page, int bit_nr, int state, enum behavior behavior) 1219 { 1220 int unfairness = sysctl_page_lock_unfairness; 1221 struct wait_page_queue wait_page; 1222 wait_queue_entry_t *wait = &wait_page.wait; 1223 bool thrashing = false; 1224 bool delayacct = false; 1225 unsigned long pflags; 1226 1227 if (bit_nr == PG_locked && 1228 !PageUptodate(page) && PageWorkingset(page)) { 1229 if (!PageSwapBacked(page)) { 1230 delayacct_thrashing_start(); 1231 delayacct = true; 1232 } 1233 psi_memstall_enter(&pflags); 1234 thrashing = true; 1235 } 1236 1237 init_wait(wait); 1238 wait->func = wake_page_function; 1239 wait_page.page = page; 1240 wait_page.bit_nr = bit_nr; 1241 1242 repeat: 1243 wait->flags = 0; 1244 if (behavior == EXCLUSIVE) { 1245 wait->flags = WQ_FLAG_EXCLUSIVE; 1246 if (--unfairness < 0) 1247 wait->flags |= WQ_FLAG_CUSTOM; 1248 } 1249 1250 /* 1251 * Do one last check whether we can get the 1252 * page bit synchronously. 1253 * 1254 * Do the SetPageWaiters() marking before that 1255 * to let any waker we _just_ missed know they 1256 * need to wake us up (otherwise they'll never 1257 * even go to the slow case that looks at the 1258 * page queue), and add ourselves to the wait 1259 * queue if we need to sleep. 1260 * 1261 * This part needs to be done under the queue 1262 * lock to avoid races. 1263 */ 1264 spin_lock_irq(&q->lock); 1265 SetPageWaiters(page); 1266 if (!trylock_page_bit_common(page, bit_nr, wait)) 1267 __add_wait_queue_entry_tail(q, wait); 1268 spin_unlock_irq(&q->lock); 1269 1270 /* 1271 * From now on, all the logic will be based on 1272 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1273 * see whether the page bit testing has already 1274 * been done by the wake function. 1275 * 1276 * We can drop our reference to the page. 1277 */ 1278 if (behavior == DROP) 1279 put_page(page); 1280 1281 /* 1282 * Note that until the "finish_wait()", or until 1283 * we see the WQ_FLAG_WOKEN flag, we need to 1284 * be very careful with the 'wait->flags', because 1285 * we may race with a waker that sets them. 1286 */ 1287 for (;;) { 1288 unsigned int flags; 1289 1290 set_current_state(state); 1291 1292 /* Loop until we've been woken or interrupted */ 1293 flags = smp_load_acquire(&wait->flags); 1294 if (!(flags & WQ_FLAG_WOKEN)) { 1295 if (signal_pending_state(state, current)) 1296 break; 1297 1298 io_schedule(); 1299 continue; 1300 } 1301 1302 /* If we were non-exclusive, we're done */ 1303 if (behavior != EXCLUSIVE) 1304 break; 1305 1306 /* If the waker got the lock for us, we're done */ 1307 if (flags & WQ_FLAG_DONE) 1308 break; 1309 1310 /* 1311 * Otherwise, if we're getting the lock, we need to 1312 * try to get it ourselves. 1313 * 1314 * And if that fails, we'll have to retry this all. 1315 */ 1316 if (unlikely(test_and_set_bit(bit_nr, &page->flags))) 1317 goto repeat; 1318 1319 wait->flags |= WQ_FLAG_DONE; 1320 break; 1321 } 1322 1323 /* 1324 * If a signal happened, this 'finish_wait()' may remove the last 1325 * waiter from the wait-queues, but the PageWaiters bit will remain 1326 * set. That's ok. The next wakeup will take care of it, and trying 1327 * to do it here would be difficult and prone to races. 1328 */ 1329 finish_wait(q, wait); 1330 1331 if (thrashing) { 1332 if (delayacct) 1333 delayacct_thrashing_end(); 1334 psi_memstall_leave(&pflags); 1335 } 1336 1337 /* 1338 * NOTE! The wait->flags weren't stable until we've done the 1339 * 'finish_wait()', and we could have exited the loop above due 1340 * to a signal, and had a wakeup event happen after the signal 1341 * test but before the 'finish_wait()'. 1342 * 1343 * So only after the finish_wait() can we reliably determine 1344 * if we got woken up or not, so we can now figure out the final 1345 * return value based on that state without races. 1346 * 1347 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1348 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1349 */ 1350 if (behavior == EXCLUSIVE) 1351 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1352 1353 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1354 } 1355 1356 void wait_on_page_bit(struct page *page, int bit_nr) 1357 { 1358 wait_queue_head_t *q = page_waitqueue(page); 1359 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1360 } 1361 EXPORT_SYMBOL(wait_on_page_bit); 1362 1363 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1364 { 1365 wait_queue_head_t *q = page_waitqueue(page); 1366 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1367 } 1368 EXPORT_SYMBOL(wait_on_page_bit_killable); 1369 1370 /** 1371 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1372 * @page: The page to wait for. 1373 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1374 * 1375 * The caller should hold a reference on @page. They expect the page to 1376 * become unlocked relatively soon, but do not wish to hold up migration 1377 * (for example) by holding the reference while waiting for the page to 1378 * come unlocked. After this function returns, the caller should not 1379 * dereference @page. 1380 * 1381 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. 1382 */ 1383 int put_and_wait_on_page_locked(struct page *page, int state) 1384 { 1385 wait_queue_head_t *q; 1386 1387 page = compound_head(page); 1388 q = page_waitqueue(page); 1389 return wait_on_page_bit_common(q, page, PG_locked, state, DROP); 1390 } 1391 1392 /** 1393 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1394 * @page: Page defining the wait queue of interest 1395 * @waiter: Waiter to add to the queue 1396 * 1397 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1398 */ 1399 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1400 { 1401 wait_queue_head_t *q = page_waitqueue(page); 1402 unsigned long flags; 1403 1404 spin_lock_irqsave(&q->lock, flags); 1405 __add_wait_queue_entry_tail(q, waiter); 1406 SetPageWaiters(page); 1407 spin_unlock_irqrestore(&q->lock, flags); 1408 } 1409 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1410 1411 #ifndef clear_bit_unlock_is_negative_byte 1412 1413 /* 1414 * PG_waiters is the high bit in the same byte as PG_lock. 1415 * 1416 * On x86 (and on many other architectures), we can clear PG_lock and 1417 * test the sign bit at the same time. But if the architecture does 1418 * not support that special operation, we just do this all by hand 1419 * instead. 1420 * 1421 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1422 * being cleared, but a memory barrier should be unnecessary since it is 1423 * in the same byte as PG_locked. 1424 */ 1425 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1426 { 1427 clear_bit_unlock(nr, mem); 1428 /* smp_mb__after_atomic(); */ 1429 return test_bit(PG_waiters, mem); 1430 } 1431 1432 #endif 1433 1434 /** 1435 * unlock_page - unlock a locked page 1436 * @page: the page 1437 * 1438 * Unlocks the page and wakes up sleepers in wait_on_page_locked(). 1439 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1440 * mechanism between PageLocked pages and PageWriteback pages is shared. 1441 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1442 * 1443 * Note that this depends on PG_waiters being the sign bit in the byte 1444 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1445 * clear the PG_locked bit and test PG_waiters at the same time fairly 1446 * portably (architectures that do LL/SC can test any bit, while x86 can 1447 * test the sign bit). 1448 */ 1449 void unlock_page(struct page *page) 1450 { 1451 BUILD_BUG_ON(PG_waiters != 7); 1452 page = compound_head(page); 1453 VM_BUG_ON_PAGE(!PageLocked(page), page); 1454 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1455 wake_up_page_bit(page, PG_locked); 1456 } 1457 EXPORT_SYMBOL(unlock_page); 1458 1459 /** 1460 * end_page_private_2 - Clear PG_private_2 and release any waiters 1461 * @page: The page 1462 * 1463 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for 1464 * this. The page ref held for PG_private_2 being set is released. 1465 * 1466 * This is, for example, used when a netfs page is being written to a local 1467 * disk cache, thereby allowing writes to the cache for the same page to be 1468 * serialised. 1469 */ 1470 void end_page_private_2(struct page *page) 1471 { 1472 page = compound_head(page); 1473 VM_BUG_ON_PAGE(!PagePrivate2(page), page); 1474 clear_bit_unlock(PG_private_2, &page->flags); 1475 wake_up_page_bit(page, PG_private_2); 1476 put_page(page); 1477 } 1478 EXPORT_SYMBOL(end_page_private_2); 1479 1480 /** 1481 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page 1482 * @page: The page to wait on 1483 * 1484 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page. 1485 */ 1486 void wait_on_page_private_2(struct page *page) 1487 { 1488 page = compound_head(page); 1489 while (PagePrivate2(page)) 1490 wait_on_page_bit(page, PG_private_2); 1491 } 1492 EXPORT_SYMBOL(wait_on_page_private_2); 1493 1494 /** 1495 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page 1496 * @page: The page to wait on 1497 * 1498 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a 1499 * fatal signal is received by the calling task. 1500 * 1501 * Return: 1502 * - 0 if successful. 1503 * - -EINTR if a fatal signal was encountered. 1504 */ 1505 int wait_on_page_private_2_killable(struct page *page) 1506 { 1507 int ret = 0; 1508 1509 page = compound_head(page); 1510 while (PagePrivate2(page)) { 1511 ret = wait_on_page_bit_killable(page, PG_private_2); 1512 if (ret < 0) 1513 break; 1514 } 1515 1516 return ret; 1517 } 1518 EXPORT_SYMBOL(wait_on_page_private_2_killable); 1519 1520 /** 1521 * end_page_writeback - end writeback against a page 1522 * @page: the page 1523 */ 1524 void end_page_writeback(struct page *page) 1525 { 1526 /* 1527 * TestClearPageReclaim could be used here but it is an atomic 1528 * operation and overkill in this particular case. Failing to 1529 * shuffle a page marked for immediate reclaim is too mild to 1530 * justify taking an atomic operation penalty at the end of 1531 * ever page writeback. 1532 */ 1533 if (PageReclaim(page)) { 1534 ClearPageReclaim(page); 1535 rotate_reclaimable_page(page); 1536 } 1537 1538 /* 1539 * Writeback does not hold a page reference of its own, relying 1540 * on truncation to wait for the clearing of PG_writeback. 1541 * But here we must make sure that the page is not freed and 1542 * reused before the wake_up_page(). 1543 */ 1544 get_page(page); 1545 if (!test_clear_page_writeback(page)) 1546 BUG(); 1547 1548 smp_mb__after_atomic(); 1549 wake_up_page(page, PG_writeback); 1550 put_page(page); 1551 } 1552 EXPORT_SYMBOL(end_page_writeback); 1553 1554 /* 1555 * After completing I/O on a page, call this routine to update the page 1556 * flags appropriately 1557 */ 1558 void page_endio(struct page *page, bool is_write, int err) 1559 { 1560 if (!is_write) { 1561 if (!err) { 1562 SetPageUptodate(page); 1563 } else { 1564 ClearPageUptodate(page); 1565 SetPageError(page); 1566 } 1567 unlock_page(page); 1568 } else { 1569 if (err) { 1570 struct address_space *mapping; 1571 1572 SetPageError(page); 1573 mapping = page_mapping(page); 1574 if (mapping) 1575 mapping_set_error(mapping, err); 1576 } 1577 end_page_writeback(page); 1578 } 1579 } 1580 EXPORT_SYMBOL_GPL(page_endio); 1581 1582 /** 1583 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1584 * @__page: the page to lock 1585 */ 1586 void __lock_page(struct page *__page) 1587 { 1588 struct page *page = compound_head(__page); 1589 wait_queue_head_t *q = page_waitqueue(page); 1590 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1591 EXCLUSIVE); 1592 } 1593 EXPORT_SYMBOL(__lock_page); 1594 1595 int __lock_page_killable(struct page *__page) 1596 { 1597 struct page *page = compound_head(__page); 1598 wait_queue_head_t *q = page_waitqueue(page); 1599 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1600 EXCLUSIVE); 1601 } 1602 EXPORT_SYMBOL_GPL(__lock_page_killable); 1603 1604 int __lock_page_async(struct page *page, struct wait_page_queue *wait) 1605 { 1606 struct wait_queue_head *q = page_waitqueue(page); 1607 int ret = 0; 1608 1609 wait->page = page; 1610 wait->bit_nr = PG_locked; 1611 1612 spin_lock_irq(&q->lock); 1613 __add_wait_queue_entry_tail(q, &wait->wait); 1614 SetPageWaiters(page); 1615 ret = !trylock_page(page); 1616 /* 1617 * If we were successful now, we know we're still on the 1618 * waitqueue as we're still under the lock. This means it's 1619 * safe to remove and return success, we know the callback 1620 * isn't going to trigger. 1621 */ 1622 if (!ret) 1623 __remove_wait_queue(q, &wait->wait); 1624 else 1625 ret = -EIOCBQUEUED; 1626 spin_unlock_irq(&q->lock); 1627 return ret; 1628 } 1629 1630 /* 1631 * Return values: 1632 * 1 - page is locked; mmap_lock is still held. 1633 * 0 - page is not locked. 1634 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1635 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1636 * which case mmap_lock is still held. 1637 * 1638 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1639 * with the page locked and the mmap_lock unperturbed. 1640 */ 1641 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1642 unsigned int flags) 1643 { 1644 if (fault_flag_allow_retry_first(flags)) { 1645 /* 1646 * CAUTION! In this case, mmap_lock is not released 1647 * even though return 0. 1648 */ 1649 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1650 return 0; 1651 1652 mmap_read_unlock(mm); 1653 if (flags & FAULT_FLAG_KILLABLE) 1654 wait_on_page_locked_killable(page); 1655 else 1656 wait_on_page_locked(page); 1657 return 0; 1658 } 1659 if (flags & FAULT_FLAG_KILLABLE) { 1660 int ret; 1661 1662 ret = __lock_page_killable(page); 1663 if (ret) { 1664 mmap_read_unlock(mm); 1665 return 0; 1666 } 1667 } else { 1668 __lock_page(page); 1669 } 1670 return 1; 1671 1672 } 1673 1674 /** 1675 * page_cache_next_miss() - Find the next gap in the page cache. 1676 * @mapping: Mapping. 1677 * @index: Index. 1678 * @max_scan: Maximum range to search. 1679 * 1680 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1681 * gap with the lowest index. 1682 * 1683 * This function may be called under the rcu_read_lock. However, this will 1684 * not atomically search a snapshot of the cache at a single point in time. 1685 * For example, if a gap is created at index 5, then subsequently a gap is 1686 * created at index 10, page_cache_next_miss covering both indices may 1687 * return 10 if called under the rcu_read_lock. 1688 * 1689 * Return: The index of the gap if found, otherwise an index outside the 1690 * range specified (in which case 'return - index >= max_scan' will be true). 1691 * In the rare case of index wrap-around, 0 will be returned. 1692 */ 1693 pgoff_t page_cache_next_miss(struct address_space *mapping, 1694 pgoff_t index, unsigned long max_scan) 1695 { 1696 XA_STATE(xas, &mapping->i_pages, index); 1697 1698 while (max_scan--) { 1699 void *entry = xas_next(&xas); 1700 if (!entry || xa_is_value(entry)) 1701 break; 1702 if (xas.xa_index == 0) 1703 break; 1704 } 1705 1706 return xas.xa_index; 1707 } 1708 EXPORT_SYMBOL(page_cache_next_miss); 1709 1710 /** 1711 * page_cache_prev_miss() - Find the previous gap in the page cache. 1712 * @mapping: Mapping. 1713 * @index: Index. 1714 * @max_scan: Maximum range to search. 1715 * 1716 * Search the range [max(index - max_scan + 1, 0), index] for the 1717 * gap with the highest index. 1718 * 1719 * This function may be called under the rcu_read_lock. However, this will 1720 * not atomically search a snapshot of the cache at a single point in time. 1721 * For example, if a gap is created at index 10, then subsequently a gap is 1722 * created at index 5, page_cache_prev_miss() covering both indices may 1723 * return 5 if called under the rcu_read_lock. 1724 * 1725 * Return: The index of the gap if found, otherwise an index outside the 1726 * range specified (in which case 'index - return >= max_scan' will be true). 1727 * In the rare case of wrap-around, ULONG_MAX will be returned. 1728 */ 1729 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1730 pgoff_t index, unsigned long max_scan) 1731 { 1732 XA_STATE(xas, &mapping->i_pages, index); 1733 1734 while (max_scan--) { 1735 void *entry = xas_prev(&xas); 1736 if (!entry || xa_is_value(entry)) 1737 break; 1738 if (xas.xa_index == ULONG_MAX) 1739 break; 1740 } 1741 1742 return xas.xa_index; 1743 } 1744 EXPORT_SYMBOL(page_cache_prev_miss); 1745 1746 /* 1747 * mapping_get_entry - Get a page cache entry. 1748 * @mapping: the address_space to search 1749 * @index: The page cache index. 1750 * 1751 * Looks up the page cache slot at @mapping & @index. If there is a 1752 * page cache page, the head page is returned with an increased refcount. 1753 * 1754 * If the slot holds a shadow entry of a previously evicted page, or a 1755 * swap entry from shmem/tmpfs, it is returned. 1756 * 1757 * Return: The head page or shadow entry, %NULL if nothing is found. 1758 */ 1759 static struct page *mapping_get_entry(struct address_space *mapping, 1760 pgoff_t index) 1761 { 1762 XA_STATE(xas, &mapping->i_pages, index); 1763 struct page *page; 1764 1765 rcu_read_lock(); 1766 repeat: 1767 xas_reset(&xas); 1768 page = xas_load(&xas); 1769 if (xas_retry(&xas, page)) 1770 goto repeat; 1771 /* 1772 * A shadow entry of a recently evicted page, or a swap entry from 1773 * shmem/tmpfs. Return it without attempting to raise page count. 1774 */ 1775 if (!page || xa_is_value(page)) 1776 goto out; 1777 1778 if (!page_cache_get_speculative(page)) 1779 goto repeat; 1780 1781 /* 1782 * Has the page moved or been split? 1783 * This is part of the lockless pagecache protocol. See 1784 * include/linux/pagemap.h for details. 1785 */ 1786 if (unlikely(page != xas_reload(&xas))) { 1787 put_page(page); 1788 goto repeat; 1789 } 1790 out: 1791 rcu_read_unlock(); 1792 1793 return page; 1794 } 1795 1796 /** 1797 * pagecache_get_page - Find and get a reference to a page. 1798 * @mapping: The address_space to search. 1799 * @index: The page index. 1800 * @fgp_flags: %FGP flags modify how the page is returned. 1801 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified. 1802 * 1803 * Looks up the page cache entry at @mapping & @index. 1804 * 1805 * @fgp_flags can be zero or more of these flags: 1806 * 1807 * * %FGP_ACCESSED - The page will be marked accessed. 1808 * * %FGP_LOCK - The page is returned locked. 1809 * * %FGP_HEAD - If the page is present and a THP, return the head page 1810 * rather than the exact page specified by the index. 1811 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1812 * instead of allocating a new page to replace it. 1813 * * %FGP_CREAT - If no page is present then a new page is allocated using 1814 * @gfp_mask and added to the page cache and the VM's LRU list. 1815 * The page is returned locked and with an increased refcount. 1816 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1817 * page is already in cache. If the page was allocated, unlock it before 1818 * returning so the caller can do the same dance. 1819 * * %FGP_WRITE - The page will be written 1820 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask 1821 * * %FGP_NOWAIT - Don't get blocked by page lock 1822 * 1823 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1824 * if the %GFP flags specified for %FGP_CREAT are atomic. 1825 * 1826 * If there is a page cache page, it is returned with an increased refcount. 1827 * 1828 * Return: The found page or %NULL otherwise. 1829 */ 1830 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 1831 int fgp_flags, gfp_t gfp_mask) 1832 { 1833 struct page *page; 1834 1835 repeat: 1836 page = mapping_get_entry(mapping, index); 1837 if (xa_is_value(page)) { 1838 if (fgp_flags & FGP_ENTRY) 1839 return page; 1840 page = NULL; 1841 } 1842 if (!page) 1843 goto no_page; 1844 1845 if (fgp_flags & FGP_LOCK) { 1846 if (fgp_flags & FGP_NOWAIT) { 1847 if (!trylock_page(page)) { 1848 put_page(page); 1849 return NULL; 1850 } 1851 } else { 1852 lock_page(page); 1853 } 1854 1855 /* Has the page been truncated? */ 1856 if (unlikely(page->mapping != mapping)) { 1857 unlock_page(page); 1858 put_page(page); 1859 goto repeat; 1860 } 1861 VM_BUG_ON_PAGE(!thp_contains(page, index), page); 1862 } 1863 1864 if (fgp_flags & FGP_ACCESSED) 1865 mark_page_accessed(page); 1866 else if (fgp_flags & FGP_WRITE) { 1867 /* Clear idle flag for buffer write */ 1868 if (page_is_idle(page)) 1869 clear_page_idle(page); 1870 } 1871 if (!(fgp_flags & FGP_HEAD)) 1872 page = find_subpage(page, index); 1873 1874 no_page: 1875 if (!page && (fgp_flags & FGP_CREAT)) { 1876 int err; 1877 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1878 gfp_mask |= __GFP_WRITE; 1879 if (fgp_flags & FGP_NOFS) 1880 gfp_mask &= ~__GFP_FS; 1881 1882 page = __page_cache_alloc(gfp_mask); 1883 if (!page) 1884 return NULL; 1885 1886 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1887 fgp_flags |= FGP_LOCK; 1888 1889 /* Init accessed so avoid atomic mark_page_accessed later */ 1890 if (fgp_flags & FGP_ACCESSED) 1891 __SetPageReferenced(page); 1892 1893 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 1894 if (unlikely(err)) { 1895 put_page(page); 1896 page = NULL; 1897 if (err == -EEXIST) 1898 goto repeat; 1899 } 1900 1901 /* 1902 * add_to_page_cache_lru locks the page, and for mmap we expect 1903 * an unlocked page. 1904 */ 1905 if (page && (fgp_flags & FGP_FOR_MMAP)) 1906 unlock_page(page); 1907 } 1908 1909 return page; 1910 } 1911 EXPORT_SYMBOL(pagecache_get_page); 1912 1913 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, 1914 xa_mark_t mark) 1915 { 1916 struct page *page; 1917 1918 retry: 1919 if (mark == XA_PRESENT) 1920 page = xas_find(xas, max); 1921 else 1922 page = xas_find_marked(xas, max, mark); 1923 1924 if (xas_retry(xas, page)) 1925 goto retry; 1926 /* 1927 * A shadow entry of a recently evicted page, a swap 1928 * entry from shmem/tmpfs or a DAX entry. Return it 1929 * without attempting to raise page count. 1930 */ 1931 if (!page || xa_is_value(page)) 1932 return page; 1933 1934 if (!page_cache_get_speculative(page)) 1935 goto reset; 1936 1937 /* Has the page moved or been split? */ 1938 if (unlikely(page != xas_reload(xas))) { 1939 put_page(page); 1940 goto reset; 1941 } 1942 1943 return page; 1944 reset: 1945 xas_reset(xas); 1946 goto retry; 1947 } 1948 1949 /** 1950 * find_get_entries - gang pagecache lookup 1951 * @mapping: The address_space to search 1952 * @start: The starting page cache index 1953 * @end: The final page index (inclusive). 1954 * @pvec: Where the resulting entries are placed. 1955 * @indices: The cache indices corresponding to the entries in @entries 1956 * 1957 * find_get_entries() will search for and return a batch of entries in 1958 * the mapping. The entries are placed in @pvec. find_get_entries() 1959 * takes a reference on any actual pages it returns. 1960 * 1961 * The search returns a group of mapping-contiguous page cache entries 1962 * with ascending indexes. There may be holes in the indices due to 1963 * not-present pages. 1964 * 1965 * Any shadow entries of evicted pages, or swap entries from 1966 * shmem/tmpfs, are included in the returned array. 1967 * 1968 * If it finds a Transparent Huge Page, head or tail, find_get_entries() 1969 * stops at that page: the caller is likely to have a better way to handle 1970 * the compound page as a whole, and then skip its extent, than repeatedly 1971 * calling find_get_entries() to return all its tails. 1972 * 1973 * Return: the number of pages and shadow entries which were found. 1974 */ 1975 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 1976 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 1977 { 1978 XA_STATE(xas, &mapping->i_pages, start); 1979 struct page *page; 1980 unsigned int ret = 0; 1981 unsigned nr_entries = PAGEVEC_SIZE; 1982 1983 rcu_read_lock(); 1984 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 1985 /* 1986 * Terminate early on finding a THP, to allow the caller to 1987 * handle it all at once; but continue if this is hugetlbfs. 1988 */ 1989 if (!xa_is_value(page) && PageTransHuge(page) && 1990 !PageHuge(page)) { 1991 page = find_subpage(page, xas.xa_index); 1992 nr_entries = ret + 1; 1993 } 1994 1995 indices[ret] = xas.xa_index; 1996 pvec->pages[ret] = page; 1997 if (++ret == nr_entries) 1998 break; 1999 } 2000 rcu_read_unlock(); 2001 2002 pvec->nr = ret; 2003 return ret; 2004 } 2005 2006 /** 2007 * find_lock_entries - Find a batch of pagecache entries. 2008 * @mapping: The address_space to search. 2009 * @start: The starting page cache index. 2010 * @end: The final page index (inclusive). 2011 * @pvec: Where the resulting entries are placed. 2012 * @indices: The cache indices of the entries in @pvec. 2013 * 2014 * find_lock_entries() will return a batch of entries from @mapping. 2015 * Swap, shadow and DAX entries are included. Pages are returned 2016 * locked and with an incremented refcount. Pages which are locked by 2017 * somebody else or under writeback are skipped. Only the head page of 2018 * a THP is returned. Pages which are partially outside the range are 2019 * not returned. 2020 * 2021 * The entries have ascending indexes. The indices may not be consecutive 2022 * due to not-present entries, THP pages, pages which could not be locked 2023 * or pages under writeback. 2024 * 2025 * Return: The number of entries which were found. 2026 */ 2027 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2028 pgoff_t end, struct pagevec *pvec, pgoff_t *indices) 2029 { 2030 XA_STATE(xas, &mapping->i_pages, start); 2031 struct page *page; 2032 2033 rcu_read_lock(); 2034 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2035 if (!xa_is_value(page)) { 2036 if (page->index < start) 2037 goto put; 2038 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2039 if (page->index + thp_nr_pages(page) - 1 > end) 2040 goto put; 2041 if (!trylock_page(page)) 2042 goto put; 2043 if (page->mapping != mapping || PageWriteback(page)) 2044 goto unlock; 2045 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), 2046 page); 2047 } 2048 indices[pvec->nr] = xas.xa_index; 2049 if (!pagevec_add(pvec, page)) 2050 break; 2051 goto next; 2052 unlock: 2053 unlock_page(page); 2054 put: 2055 put_page(page); 2056 next: 2057 if (!xa_is_value(page) && PageTransHuge(page)) { 2058 unsigned int nr_pages = thp_nr_pages(page); 2059 2060 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */ 2061 xas_set(&xas, page->index + nr_pages); 2062 if (xas.xa_index < nr_pages) 2063 break; 2064 } 2065 } 2066 rcu_read_unlock(); 2067 2068 return pagevec_count(pvec); 2069 } 2070 2071 /** 2072 * find_get_pages_range - gang pagecache lookup 2073 * @mapping: The address_space to search 2074 * @start: The starting page index 2075 * @end: The final page index (inclusive) 2076 * @nr_pages: The maximum number of pages 2077 * @pages: Where the resulting pages are placed 2078 * 2079 * find_get_pages_range() will search for and return a group of up to @nr_pages 2080 * pages in the mapping starting at index @start and up to index @end 2081 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2082 * a reference against the returned pages. 2083 * 2084 * The search returns a group of mapping-contiguous pages with ascending 2085 * indexes. There may be holes in the indices due to not-present pages. 2086 * We also update @start to index the next page for the traversal. 2087 * 2088 * Return: the number of pages which were found. If this number is 2089 * smaller than @nr_pages, the end of specified range has been 2090 * reached. 2091 */ 2092 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2093 pgoff_t end, unsigned int nr_pages, 2094 struct page **pages) 2095 { 2096 XA_STATE(xas, &mapping->i_pages, *start); 2097 struct page *page; 2098 unsigned ret = 0; 2099 2100 if (unlikely(!nr_pages)) 2101 return 0; 2102 2103 rcu_read_lock(); 2104 while ((page = find_get_entry(&xas, end, XA_PRESENT))) { 2105 /* Skip over shadow, swap and DAX entries */ 2106 if (xa_is_value(page)) 2107 continue; 2108 2109 pages[ret] = find_subpage(page, xas.xa_index); 2110 if (++ret == nr_pages) { 2111 *start = xas.xa_index + 1; 2112 goto out; 2113 } 2114 } 2115 2116 /* 2117 * We come here when there is no page beyond @end. We take care to not 2118 * overflow the index @start as it confuses some of the callers. This 2119 * breaks the iteration when there is a page at index -1 but that is 2120 * already broken anyway. 2121 */ 2122 if (end == (pgoff_t)-1) 2123 *start = (pgoff_t)-1; 2124 else 2125 *start = end + 1; 2126 out: 2127 rcu_read_unlock(); 2128 2129 return ret; 2130 } 2131 2132 /** 2133 * find_get_pages_contig - gang contiguous pagecache lookup 2134 * @mapping: The address_space to search 2135 * @index: The starting page index 2136 * @nr_pages: The maximum number of pages 2137 * @pages: Where the resulting pages are placed 2138 * 2139 * find_get_pages_contig() works exactly like find_get_pages(), except 2140 * that the returned number of pages are guaranteed to be contiguous. 2141 * 2142 * Return: the number of pages which were found. 2143 */ 2144 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2145 unsigned int nr_pages, struct page **pages) 2146 { 2147 XA_STATE(xas, &mapping->i_pages, index); 2148 struct page *page; 2149 unsigned int ret = 0; 2150 2151 if (unlikely(!nr_pages)) 2152 return 0; 2153 2154 rcu_read_lock(); 2155 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 2156 if (xas_retry(&xas, page)) 2157 continue; 2158 /* 2159 * If the entry has been swapped out, we can stop looking. 2160 * No current caller is looking for DAX entries. 2161 */ 2162 if (xa_is_value(page)) 2163 break; 2164 2165 if (!page_cache_get_speculative(page)) 2166 goto retry; 2167 2168 /* Has the page moved or been split? */ 2169 if (unlikely(page != xas_reload(&xas))) 2170 goto put_page; 2171 2172 pages[ret] = find_subpage(page, xas.xa_index); 2173 if (++ret == nr_pages) 2174 break; 2175 continue; 2176 put_page: 2177 put_page(page); 2178 retry: 2179 xas_reset(&xas); 2180 } 2181 rcu_read_unlock(); 2182 return ret; 2183 } 2184 EXPORT_SYMBOL(find_get_pages_contig); 2185 2186 /** 2187 * find_get_pages_range_tag - Find and return head pages matching @tag. 2188 * @mapping: the address_space to search 2189 * @index: the starting page index 2190 * @end: The final page index (inclusive) 2191 * @tag: the tag index 2192 * @nr_pages: the maximum number of pages 2193 * @pages: where the resulting pages are placed 2194 * 2195 * Like find_get_pages(), except we only return head pages which are tagged 2196 * with @tag. @index is updated to the index immediately after the last 2197 * page we return, ready for the next iteration. 2198 * 2199 * Return: the number of pages which were found. 2200 */ 2201 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2202 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2203 struct page **pages) 2204 { 2205 XA_STATE(xas, &mapping->i_pages, *index); 2206 struct page *page; 2207 unsigned ret = 0; 2208 2209 if (unlikely(!nr_pages)) 2210 return 0; 2211 2212 rcu_read_lock(); 2213 while ((page = find_get_entry(&xas, end, tag))) { 2214 /* 2215 * Shadow entries should never be tagged, but this iteration 2216 * is lockless so there is a window for page reclaim to evict 2217 * a page we saw tagged. Skip over it. 2218 */ 2219 if (xa_is_value(page)) 2220 continue; 2221 2222 pages[ret] = page; 2223 if (++ret == nr_pages) { 2224 *index = page->index + thp_nr_pages(page); 2225 goto out; 2226 } 2227 } 2228 2229 /* 2230 * We come here when we got to @end. We take care to not overflow the 2231 * index @index as it confuses some of the callers. This breaks the 2232 * iteration when there is a page at index -1 but that is already 2233 * broken anyway. 2234 */ 2235 if (end == (pgoff_t)-1) 2236 *index = (pgoff_t)-1; 2237 else 2238 *index = end + 1; 2239 out: 2240 rcu_read_unlock(); 2241 2242 return ret; 2243 } 2244 EXPORT_SYMBOL(find_get_pages_range_tag); 2245 2246 /* 2247 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2248 * a _large_ part of the i/o request. Imagine the worst scenario: 2249 * 2250 * ---R__________________________________________B__________ 2251 * ^ reading here ^ bad block(assume 4k) 2252 * 2253 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2254 * => failing the whole request => read(R) => read(R+1) => 2255 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2256 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2257 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2258 * 2259 * It is going insane. Fix it by quickly scaling down the readahead size. 2260 */ 2261 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2262 { 2263 ra->ra_pages /= 4; 2264 } 2265 2266 /* 2267 * filemap_get_read_batch - Get a batch of pages for read 2268 * 2269 * Get a batch of pages which represent a contiguous range of bytes 2270 * in the file. No tail pages will be returned. If @index is in the 2271 * middle of a THP, the entire THP will be returned. The last page in 2272 * the batch may have Readahead set or be not Uptodate so that the 2273 * caller can take the appropriate action. 2274 */ 2275 static void filemap_get_read_batch(struct address_space *mapping, 2276 pgoff_t index, pgoff_t max, struct pagevec *pvec) 2277 { 2278 XA_STATE(xas, &mapping->i_pages, index); 2279 struct page *head; 2280 2281 rcu_read_lock(); 2282 for (head = xas_load(&xas); head; head = xas_next(&xas)) { 2283 if (xas_retry(&xas, head)) 2284 continue; 2285 if (xas.xa_index > max || xa_is_value(head)) 2286 break; 2287 if (!page_cache_get_speculative(head)) 2288 goto retry; 2289 2290 /* Has the page moved or been split? */ 2291 if (unlikely(head != xas_reload(&xas))) 2292 goto put_page; 2293 2294 if (!pagevec_add(pvec, head)) 2295 break; 2296 if (!PageUptodate(head)) 2297 break; 2298 if (PageReadahead(head)) 2299 break; 2300 xas.xa_index = head->index + thp_nr_pages(head) - 1; 2301 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; 2302 continue; 2303 put_page: 2304 put_page(head); 2305 retry: 2306 xas_reset(&xas); 2307 } 2308 rcu_read_unlock(); 2309 } 2310 2311 static int filemap_read_page(struct file *file, struct address_space *mapping, 2312 struct page *page) 2313 { 2314 int error; 2315 2316 /* 2317 * A previous I/O error may have been due to temporary failures, 2318 * eg. multipath errors. PG_error will be set again if readpage 2319 * fails. 2320 */ 2321 ClearPageError(page); 2322 /* Start the actual read. The read will unlock the page. */ 2323 error = mapping->a_ops->readpage(file, page); 2324 if (error) 2325 return error; 2326 2327 error = wait_on_page_locked_killable(page); 2328 if (error) 2329 return error; 2330 if (PageUptodate(page)) 2331 return 0; 2332 shrink_readahead_size_eio(&file->f_ra); 2333 return -EIO; 2334 } 2335 2336 static bool filemap_range_uptodate(struct address_space *mapping, 2337 loff_t pos, struct iov_iter *iter, struct page *page) 2338 { 2339 int count; 2340 2341 if (PageUptodate(page)) 2342 return true; 2343 /* pipes can't handle partially uptodate pages */ 2344 if (iov_iter_is_pipe(iter)) 2345 return false; 2346 if (!mapping->a_ops->is_partially_uptodate) 2347 return false; 2348 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) 2349 return false; 2350 2351 count = iter->count; 2352 if (page_offset(page) > pos) { 2353 count -= page_offset(page) - pos; 2354 pos = 0; 2355 } else { 2356 pos -= page_offset(page); 2357 } 2358 2359 return mapping->a_ops->is_partially_uptodate(page, pos, count); 2360 } 2361 2362 static int filemap_update_page(struct kiocb *iocb, 2363 struct address_space *mapping, struct iov_iter *iter, 2364 struct page *page) 2365 { 2366 int error; 2367 2368 if (!trylock_page(page)) { 2369 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2370 return -EAGAIN; 2371 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2372 put_and_wait_on_page_locked(page, TASK_KILLABLE); 2373 return AOP_TRUNCATED_PAGE; 2374 } 2375 error = __lock_page_async(page, iocb->ki_waitq); 2376 if (error) 2377 return error; 2378 } 2379 2380 if (!page->mapping) 2381 goto truncated; 2382 2383 error = 0; 2384 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) 2385 goto unlock; 2386 2387 error = -EAGAIN; 2388 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2389 goto unlock; 2390 2391 error = filemap_read_page(iocb->ki_filp, mapping, page); 2392 if (error == AOP_TRUNCATED_PAGE) 2393 put_page(page); 2394 return error; 2395 truncated: 2396 unlock_page(page); 2397 put_page(page); 2398 return AOP_TRUNCATED_PAGE; 2399 unlock: 2400 unlock_page(page); 2401 return error; 2402 } 2403 2404 static int filemap_create_page(struct file *file, 2405 struct address_space *mapping, pgoff_t index, 2406 struct pagevec *pvec) 2407 { 2408 struct page *page; 2409 int error; 2410 2411 page = page_cache_alloc(mapping); 2412 if (!page) 2413 return -ENOMEM; 2414 2415 error = add_to_page_cache_lru(page, mapping, index, 2416 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2417 if (error == -EEXIST) 2418 error = AOP_TRUNCATED_PAGE; 2419 if (error) 2420 goto error; 2421 2422 error = filemap_read_page(file, mapping, page); 2423 if (error) 2424 goto error; 2425 2426 pagevec_add(pvec, page); 2427 return 0; 2428 error: 2429 put_page(page); 2430 return error; 2431 } 2432 2433 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2434 struct address_space *mapping, struct page *page, 2435 pgoff_t last_index) 2436 { 2437 if (iocb->ki_flags & IOCB_NOIO) 2438 return -EAGAIN; 2439 page_cache_async_readahead(mapping, &file->f_ra, file, page, 2440 page->index, last_index - page->index); 2441 return 0; 2442 } 2443 2444 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2445 struct pagevec *pvec) 2446 { 2447 struct file *filp = iocb->ki_filp; 2448 struct address_space *mapping = filp->f_mapping; 2449 struct file_ra_state *ra = &filp->f_ra; 2450 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2451 pgoff_t last_index; 2452 struct page *page; 2453 int err = 0; 2454 2455 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2456 retry: 2457 if (fatal_signal_pending(current)) 2458 return -EINTR; 2459 2460 filemap_get_read_batch(mapping, index, last_index, pvec); 2461 if (!pagevec_count(pvec)) { 2462 if (iocb->ki_flags & IOCB_NOIO) 2463 return -EAGAIN; 2464 page_cache_sync_readahead(mapping, ra, filp, index, 2465 last_index - index); 2466 filemap_get_read_batch(mapping, index, last_index, pvec); 2467 } 2468 if (!pagevec_count(pvec)) { 2469 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2470 return -EAGAIN; 2471 err = filemap_create_page(filp, mapping, 2472 iocb->ki_pos >> PAGE_SHIFT, pvec); 2473 if (err == AOP_TRUNCATED_PAGE) 2474 goto retry; 2475 return err; 2476 } 2477 2478 page = pvec->pages[pagevec_count(pvec) - 1]; 2479 if (PageReadahead(page)) { 2480 err = filemap_readahead(iocb, filp, mapping, page, last_index); 2481 if (err) 2482 goto err; 2483 } 2484 if (!PageUptodate(page)) { 2485 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) 2486 iocb->ki_flags |= IOCB_NOWAIT; 2487 err = filemap_update_page(iocb, mapping, iter, page); 2488 if (err) 2489 goto err; 2490 } 2491 2492 return 0; 2493 err: 2494 if (err < 0) 2495 put_page(page); 2496 if (likely(--pvec->nr)) 2497 return 0; 2498 if (err == AOP_TRUNCATED_PAGE) 2499 goto retry; 2500 return err; 2501 } 2502 2503 /** 2504 * filemap_read - Read data from the page cache. 2505 * @iocb: The iocb to read. 2506 * @iter: Destination for the data. 2507 * @already_read: Number of bytes already read by the caller. 2508 * 2509 * Copies data from the page cache. If the data is not currently present, 2510 * uses the readahead and readpage address_space operations to fetch it. 2511 * 2512 * Return: Total number of bytes copied, including those already read by 2513 * the caller. If an error happens before any bytes are copied, returns 2514 * a negative error number. 2515 */ 2516 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2517 ssize_t already_read) 2518 { 2519 struct file *filp = iocb->ki_filp; 2520 struct file_ra_state *ra = &filp->f_ra; 2521 struct address_space *mapping = filp->f_mapping; 2522 struct inode *inode = mapping->host; 2523 struct pagevec pvec; 2524 int i, error = 0; 2525 bool writably_mapped; 2526 loff_t isize, end_offset; 2527 2528 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2529 return 0; 2530 if (unlikely(!iov_iter_count(iter))) 2531 return 0; 2532 2533 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2534 pagevec_init(&pvec); 2535 2536 do { 2537 cond_resched(); 2538 2539 /* 2540 * If we've already successfully copied some data, then we 2541 * can no longer safely return -EIOCBQUEUED. Hence mark 2542 * an async read NOWAIT at that point. 2543 */ 2544 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2545 iocb->ki_flags |= IOCB_NOWAIT; 2546 2547 error = filemap_get_pages(iocb, iter, &pvec); 2548 if (error < 0) 2549 break; 2550 2551 /* 2552 * i_size must be checked after we know the pages are Uptodate. 2553 * 2554 * Checking i_size after the check allows us to calculate 2555 * the correct value for "nr", which means the zero-filled 2556 * part of the page is not copied back to userspace (unless 2557 * another truncate extends the file - this is desired though). 2558 */ 2559 isize = i_size_read(inode); 2560 if (unlikely(iocb->ki_pos >= isize)) 2561 goto put_pages; 2562 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2563 2564 /* 2565 * Once we start copying data, we don't want to be touching any 2566 * cachelines that might be contended: 2567 */ 2568 writably_mapped = mapping_writably_mapped(mapping); 2569 2570 /* 2571 * When a sequential read accesses a page several times, only 2572 * mark it as accessed the first time. 2573 */ 2574 if (iocb->ki_pos >> PAGE_SHIFT != 2575 ra->prev_pos >> PAGE_SHIFT) 2576 mark_page_accessed(pvec.pages[0]); 2577 2578 for (i = 0; i < pagevec_count(&pvec); i++) { 2579 struct page *page = pvec.pages[i]; 2580 size_t page_size = thp_size(page); 2581 size_t offset = iocb->ki_pos & (page_size - 1); 2582 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2583 page_size - offset); 2584 size_t copied; 2585 2586 if (end_offset < page_offset(page)) 2587 break; 2588 if (i > 0) 2589 mark_page_accessed(page); 2590 /* 2591 * If users can be writing to this page using arbitrary 2592 * virtual addresses, take care about potential aliasing 2593 * before reading the page on the kernel side. 2594 */ 2595 if (writably_mapped) { 2596 int j; 2597 2598 for (j = 0; j < thp_nr_pages(page); j++) 2599 flush_dcache_page(page + j); 2600 } 2601 2602 copied = copy_page_to_iter(page, offset, bytes, iter); 2603 2604 already_read += copied; 2605 iocb->ki_pos += copied; 2606 ra->prev_pos = iocb->ki_pos; 2607 2608 if (copied < bytes) { 2609 error = -EFAULT; 2610 break; 2611 } 2612 } 2613 put_pages: 2614 for (i = 0; i < pagevec_count(&pvec); i++) 2615 put_page(pvec.pages[i]); 2616 pagevec_reinit(&pvec); 2617 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2618 2619 file_accessed(filp); 2620 2621 return already_read ? already_read : error; 2622 } 2623 EXPORT_SYMBOL_GPL(filemap_read); 2624 2625 /** 2626 * generic_file_read_iter - generic filesystem read routine 2627 * @iocb: kernel I/O control block 2628 * @iter: destination for the data read 2629 * 2630 * This is the "read_iter()" routine for all filesystems 2631 * that can use the page cache directly. 2632 * 2633 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2634 * be returned when no data can be read without waiting for I/O requests 2635 * to complete; it doesn't prevent readahead. 2636 * 2637 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2638 * requests shall be made for the read or for readahead. When no data 2639 * can be read, -EAGAIN shall be returned. When readahead would be 2640 * triggered, a partial, possibly empty read shall be returned. 2641 * 2642 * Return: 2643 * * number of bytes copied, even for partial reads 2644 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2645 */ 2646 ssize_t 2647 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2648 { 2649 size_t count = iov_iter_count(iter); 2650 ssize_t retval = 0; 2651 2652 if (!count) 2653 return 0; /* skip atime */ 2654 2655 if (iocb->ki_flags & IOCB_DIRECT) { 2656 struct file *file = iocb->ki_filp; 2657 struct address_space *mapping = file->f_mapping; 2658 struct inode *inode = mapping->host; 2659 loff_t size; 2660 2661 size = i_size_read(inode); 2662 if (iocb->ki_flags & IOCB_NOWAIT) { 2663 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2664 iocb->ki_pos + count - 1)) 2665 return -EAGAIN; 2666 } else { 2667 retval = filemap_write_and_wait_range(mapping, 2668 iocb->ki_pos, 2669 iocb->ki_pos + count - 1); 2670 if (retval < 0) 2671 return retval; 2672 } 2673 2674 file_accessed(file); 2675 2676 retval = mapping->a_ops->direct_IO(iocb, iter); 2677 if (retval >= 0) { 2678 iocb->ki_pos += retval; 2679 count -= retval; 2680 } 2681 if (retval != -EIOCBQUEUED) 2682 iov_iter_revert(iter, count - iov_iter_count(iter)); 2683 2684 /* 2685 * Btrfs can have a short DIO read if we encounter 2686 * compressed extents, so if there was an error, or if 2687 * we've already read everything we wanted to, or if 2688 * there was a short read because we hit EOF, go ahead 2689 * and return. Otherwise fallthrough to buffered io for 2690 * the rest of the read. Buffered reads will not work for 2691 * DAX files, so don't bother trying. 2692 */ 2693 if (retval < 0 || !count || iocb->ki_pos >= size || 2694 IS_DAX(inode)) 2695 return retval; 2696 } 2697 2698 return filemap_read(iocb, iter, retval); 2699 } 2700 EXPORT_SYMBOL(generic_file_read_iter); 2701 2702 static inline loff_t page_seek_hole_data(struct xa_state *xas, 2703 struct address_space *mapping, struct page *page, 2704 loff_t start, loff_t end, bool seek_data) 2705 { 2706 const struct address_space_operations *ops = mapping->a_ops; 2707 size_t offset, bsz = i_blocksize(mapping->host); 2708 2709 if (xa_is_value(page) || PageUptodate(page)) 2710 return seek_data ? start : end; 2711 if (!ops->is_partially_uptodate) 2712 return seek_data ? end : start; 2713 2714 xas_pause(xas); 2715 rcu_read_unlock(); 2716 lock_page(page); 2717 if (unlikely(page->mapping != mapping)) 2718 goto unlock; 2719 2720 offset = offset_in_thp(page, start) & ~(bsz - 1); 2721 2722 do { 2723 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) 2724 break; 2725 start = (start + bsz) & ~(bsz - 1); 2726 offset += bsz; 2727 } while (offset < thp_size(page)); 2728 unlock: 2729 unlock_page(page); 2730 rcu_read_lock(); 2731 return start; 2732 } 2733 2734 static inline 2735 unsigned int seek_page_size(struct xa_state *xas, struct page *page) 2736 { 2737 if (xa_is_value(page)) 2738 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2739 return thp_size(page); 2740 } 2741 2742 /** 2743 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2744 * @mapping: Address space to search. 2745 * @start: First byte to consider. 2746 * @end: Limit of search (exclusive). 2747 * @whence: Either SEEK_HOLE or SEEK_DATA. 2748 * 2749 * If the page cache knows which blocks contain holes and which blocks 2750 * contain data, your filesystem can use this function to implement 2751 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2752 * entirely memory-based such as tmpfs, and filesystems which support 2753 * unwritten extents. 2754 * 2755 * Return: The requested offset on success, or -ENXIO if @whence specifies 2756 * SEEK_DATA and there is no data after @start. There is an implicit hole 2757 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2758 * and @end contain data. 2759 */ 2760 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2761 loff_t end, int whence) 2762 { 2763 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2764 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2765 bool seek_data = (whence == SEEK_DATA); 2766 struct page *page; 2767 2768 if (end <= start) 2769 return -ENXIO; 2770 2771 rcu_read_lock(); 2772 while ((page = find_get_entry(&xas, max, XA_PRESENT))) { 2773 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2774 unsigned int seek_size; 2775 2776 if (start < pos) { 2777 if (!seek_data) 2778 goto unlock; 2779 start = pos; 2780 } 2781 2782 seek_size = seek_page_size(&xas, page); 2783 pos = round_up(pos + 1, seek_size); 2784 start = page_seek_hole_data(&xas, mapping, page, start, pos, 2785 seek_data); 2786 if (start < pos) 2787 goto unlock; 2788 if (start >= end) 2789 break; 2790 if (seek_size > PAGE_SIZE) 2791 xas_set(&xas, pos >> PAGE_SHIFT); 2792 if (!xa_is_value(page)) 2793 put_page(page); 2794 } 2795 if (seek_data) 2796 start = -ENXIO; 2797 unlock: 2798 rcu_read_unlock(); 2799 if (page && !xa_is_value(page)) 2800 put_page(page); 2801 if (start > end) 2802 return end; 2803 return start; 2804 } 2805 2806 #ifdef CONFIG_MMU 2807 #define MMAP_LOTSAMISS (100) 2808 /* 2809 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2810 * @vmf - the vm_fault for this fault. 2811 * @page - the page to lock. 2812 * @fpin - the pointer to the file we may pin (or is already pinned). 2813 * 2814 * This works similar to lock_page_or_retry in that it can drop the mmap_lock. 2815 * It differs in that it actually returns the page locked if it returns 1 and 0 2816 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin 2817 * will point to the pinned file and needs to be fput()'ed at a later point. 2818 */ 2819 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2820 struct file **fpin) 2821 { 2822 if (trylock_page(page)) 2823 return 1; 2824 2825 /* 2826 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2827 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2828 * is supposed to work. We have way too many special cases.. 2829 */ 2830 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2831 return 0; 2832 2833 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2834 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2835 if (__lock_page_killable(page)) { 2836 /* 2837 * We didn't have the right flags to drop the mmap_lock, 2838 * but all fault_handlers only check for fatal signals 2839 * if we return VM_FAULT_RETRY, so we need to drop the 2840 * mmap_lock here and return 0 if we don't have a fpin. 2841 */ 2842 if (*fpin == NULL) 2843 mmap_read_unlock(vmf->vma->vm_mm); 2844 return 0; 2845 } 2846 } else 2847 __lock_page(page); 2848 return 1; 2849 } 2850 2851 2852 /* 2853 * Synchronous readahead happens when we don't even find a page in the page 2854 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2855 * to drop the mmap sem we return the file that was pinned in order for us to do 2856 * that. If we didn't pin a file then we return NULL. The file that is 2857 * returned needs to be fput()'ed when we're done with it. 2858 */ 2859 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2860 { 2861 struct file *file = vmf->vma->vm_file; 2862 struct file_ra_state *ra = &file->f_ra; 2863 struct address_space *mapping = file->f_mapping; 2864 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2865 struct file *fpin = NULL; 2866 unsigned int mmap_miss; 2867 2868 /* If we don't want any read-ahead, don't bother */ 2869 if (vmf->vma->vm_flags & VM_RAND_READ) 2870 return fpin; 2871 if (!ra->ra_pages) 2872 return fpin; 2873 2874 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2875 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2876 page_cache_sync_ra(&ractl, ra->ra_pages); 2877 return fpin; 2878 } 2879 2880 /* Avoid banging the cache line if not needed */ 2881 mmap_miss = READ_ONCE(ra->mmap_miss); 2882 if (mmap_miss < MMAP_LOTSAMISS * 10) 2883 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 2884 2885 /* 2886 * Do we miss much more than hit in this file? If so, 2887 * stop bothering with read-ahead. It will only hurt. 2888 */ 2889 if (mmap_miss > MMAP_LOTSAMISS) 2890 return fpin; 2891 2892 /* 2893 * mmap read-around 2894 */ 2895 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2896 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 2897 ra->size = ra->ra_pages; 2898 ra->async_size = ra->ra_pages / 4; 2899 ractl._index = ra->start; 2900 do_page_cache_ra(&ractl, ra->size, ra->async_size); 2901 return fpin; 2902 } 2903 2904 /* 2905 * Asynchronous readahead happens when we find the page and PG_readahead, 2906 * so we want to possibly extend the readahead further. We return the file that 2907 * was pinned if we have to drop the mmap_lock in order to do IO. 2908 */ 2909 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2910 struct page *page) 2911 { 2912 struct file *file = vmf->vma->vm_file; 2913 struct file_ra_state *ra = &file->f_ra; 2914 struct address_space *mapping = file->f_mapping; 2915 struct file *fpin = NULL; 2916 unsigned int mmap_miss; 2917 pgoff_t offset = vmf->pgoff; 2918 2919 /* If we don't want any read-ahead, don't bother */ 2920 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 2921 return fpin; 2922 mmap_miss = READ_ONCE(ra->mmap_miss); 2923 if (mmap_miss) 2924 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 2925 if (PageReadahead(page)) { 2926 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2927 page_cache_async_readahead(mapping, ra, file, 2928 page, offset, ra->ra_pages); 2929 } 2930 return fpin; 2931 } 2932 2933 /** 2934 * filemap_fault - read in file data for page fault handling 2935 * @vmf: struct vm_fault containing details of the fault 2936 * 2937 * filemap_fault() is invoked via the vma operations vector for a 2938 * mapped memory region to read in file data during a page fault. 2939 * 2940 * The goto's are kind of ugly, but this streamlines the normal case of having 2941 * it in the page cache, and handles the special cases reasonably without 2942 * having a lot of duplicated code. 2943 * 2944 * vma->vm_mm->mmap_lock must be held on entry. 2945 * 2946 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 2947 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). 2948 * 2949 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 2950 * has not been released. 2951 * 2952 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2953 * 2954 * Return: bitwise-OR of %VM_FAULT_ codes. 2955 */ 2956 vm_fault_t filemap_fault(struct vm_fault *vmf) 2957 { 2958 int error; 2959 struct file *file = vmf->vma->vm_file; 2960 struct file *fpin = NULL; 2961 struct address_space *mapping = file->f_mapping; 2962 struct inode *inode = mapping->host; 2963 pgoff_t offset = vmf->pgoff; 2964 pgoff_t max_off; 2965 struct page *page; 2966 vm_fault_t ret = 0; 2967 2968 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2969 if (unlikely(offset >= max_off)) 2970 return VM_FAULT_SIGBUS; 2971 2972 /* 2973 * Do we have something in the page cache already? 2974 */ 2975 page = find_get_page(mapping, offset); 2976 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2977 /* 2978 * We found the page, so try async readahead before 2979 * waiting for the lock. 2980 */ 2981 fpin = do_async_mmap_readahead(vmf, page); 2982 } else if (!page) { 2983 /* No page in the page cache at all */ 2984 count_vm_event(PGMAJFAULT); 2985 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2986 ret = VM_FAULT_MAJOR; 2987 fpin = do_sync_mmap_readahead(vmf); 2988 retry_find: 2989 page = pagecache_get_page(mapping, offset, 2990 FGP_CREAT|FGP_FOR_MMAP, 2991 vmf->gfp_mask); 2992 if (!page) { 2993 if (fpin) 2994 goto out_retry; 2995 return VM_FAULT_OOM; 2996 } 2997 } 2998 2999 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 3000 goto out_retry; 3001 3002 /* Did it get truncated? */ 3003 if (unlikely(compound_head(page)->mapping != mapping)) { 3004 unlock_page(page); 3005 put_page(page); 3006 goto retry_find; 3007 } 3008 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 3009 3010 /* 3011 * We have a locked page in the page cache, now we need to check 3012 * that it's up-to-date. If not, it is going to be due to an error. 3013 */ 3014 if (unlikely(!PageUptodate(page))) 3015 goto page_not_uptodate; 3016 3017 /* 3018 * We've made it this far and we had to drop our mmap_lock, now is the 3019 * time to return to the upper layer and have it re-find the vma and 3020 * redo the fault. 3021 */ 3022 if (fpin) { 3023 unlock_page(page); 3024 goto out_retry; 3025 } 3026 3027 /* 3028 * Found the page and have a reference on it. 3029 * We must recheck i_size under page lock. 3030 */ 3031 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3032 if (unlikely(offset >= max_off)) { 3033 unlock_page(page); 3034 put_page(page); 3035 return VM_FAULT_SIGBUS; 3036 } 3037 3038 vmf->page = page; 3039 return ret | VM_FAULT_LOCKED; 3040 3041 page_not_uptodate: 3042 /* 3043 * Umm, take care of errors if the page isn't up-to-date. 3044 * Try to re-read it _once_. We do this synchronously, 3045 * because there really aren't any performance issues here 3046 * and we need to check for errors. 3047 */ 3048 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3049 error = filemap_read_page(file, mapping, page); 3050 if (fpin) 3051 goto out_retry; 3052 put_page(page); 3053 3054 if (!error || error == AOP_TRUNCATED_PAGE) 3055 goto retry_find; 3056 3057 return VM_FAULT_SIGBUS; 3058 3059 out_retry: 3060 /* 3061 * We dropped the mmap_lock, we need to return to the fault handler to 3062 * re-find the vma and come back and find our hopefully still populated 3063 * page. 3064 */ 3065 if (page) 3066 put_page(page); 3067 if (fpin) 3068 fput(fpin); 3069 return ret | VM_FAULT_RETRY; 3070 } 3071 EXPORT_SYMBOL(filemap_fault); 3072 3073 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3074 { 3075 struct mm_struct *mm = vmf->vma->vm_mm; 3076 3077 /* Huge page is mapped? No need to proceed. */ 3078 if (pmd_trans_huge(*vmf->pmd)) { 3079 unlock_page(page); 3080 put_page(page); 3081 return true; 3082 } 3083 3084 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3085 vm_fault_t ret = do_set_pmd(vmf, page); 3086 if (!ret) { 3087 /* The page is mapped successfully, reference consumed. */ 3088 unlock_page(page); 3089 return true; 3090 } 3091 } 3092 3093 if (pmd_none(*vmf->pmd)) { 3094 vmf->ptl = pmd_lock(mm, vmf->pmd); 3095 if (likely(pmd_none(*vmf->pmd))) { 3096 mm_inc_nr_ptes(mm); 3097 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte); 3098 vmf->prealloc_pte = NULL; 3099 } 3100 spin_unlock(vmf->ptl); 3101 } 3102 3103 /* See comment in handle_pte_fault() */ 3104 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3105 unlock_page(page); 3106 put_page(page); 3107 return true; 3108 } 3109 3110 return false; 3111 } 3112 3113 static struct page *next_uptodate_page(struct page *page, 3114 struct address_space *mapping, 3115 struct xa_state *xas, pgoff_t end_pgoff) 3116 { 3117 unsigned long max_idx; 3118 3119 do { 3120 if (!page) 3121 return NULL; 3122 if (xas_retry(xas, page)) 3123 continue; 3124 if (xa_is_value(page)) 3125 continue; 3126 if (PageLocked(page)) 3127 continue; 3128 if (!page_cache_get_speculative(page)) 3129 continue; 3130 /* Has the page moved or been split? */ 3131 if (unlikely(page != xas_reload(xas))) 3132 goto skip; 3133 if (!PageUptodate(page) || PageReadahead(page)) 3134 goto skip; 3135 if (PageHWPoison(page)) 3136 goto skip; 3137 if (!trylock_page(page)) 3138 goto skip; 3139 if (page->mapping != mapping) 3140 goto unlock; 3141 if (!PageUptodate(page)) 3142 goto unlock; 3143 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3144 if (xas->xa_index >= max_idx) 3145 goto unlock; 3146 return page; 3147 unlock: 3148 unlock_page(page); 3149 skip: 3150 put_page(page); 3151 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL); 3152 3153 return NULL; 3154 } 3155 3156 static inline struct page *first_map_page(struct address_space *mapping, 3157 struct xa_state *xas, 3158 pgoff_t end_pgoff) 3159 { 3160 return next_uptodate_page(xas_find(xas, end_pgoff), 3161 mapping, xas, end_pgoff); 3162 } 3163 3164 static inline struct page *next_map_page(struct address_space *mapping, 3165 struct xa_state *xas, 3166 pgoff_t end_pgoff) 3167 { 3168 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3169 mapping, xas, end_pgoff); 3170 } 3171 3172 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3173 pgoff_t start_pgoff, pgoff_t end_pgoff) 3174 { 3175 struct vm_area_struct *vma = vmf->vma; 3176 struct file *file = vma->vm_file; 3177 struct address_space *mapping = file->f_mapping; 3178 pgoff_t last_pgoff = start_pgoff; 3179 unsigned long addr; 3180 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3181 struct page *head, *page; 3182 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3183 vm_fault_t ret = 0; 3184 3185 rcu_read_lock(); 3186 head = first_map_page(mapping, &xas, end_pgoff); 3187 if (!head) 3188 goto out; 3189 3190 if (filemap_map_pmd(vmf, head)) { 3191 ret = VM_FAULT_NOPAGE; 3192 goto out; 3193 } 3194 3195 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3196 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3197 do { 3198 page = find_subpage(head, xas.xa_index); 3199 if (PageHWPoison(page)) 3200 goto unlock; 3201 3202 if (mmap_miss > 0) 3203 mmap_miss--; 3204 3205 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3206 vmf->pte += xas.xa_index - last_pgoff; 3207 last_pgoff = xas.xa_index; 3208 3209 if (!pte_none(*vmf->pte)) 3210 goto unlock; 3211 3212 /* We're about to handle the fault */ 3213 if (vmf->address == addr) 3214 ret = VM_FAULT_NOPAGE; 3215 3216 do_set_pte(vmf, page, addr); 3217 /* no need to invalidate: a not-present page won't be cached */ 3218 update_mmu_cache(vma, addr, vmf->pte); 3219 unlock_page(head); 3220 continue; 3221 unlock: 3222 unlock_page(head); 3223 put_page(head); 3224 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3225 pte_unmap_unlock(vmf->pte, vmf->ptl); 3226 out: 3227 rcu_read_unlock(); 3228 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3229 return ret; 3230 } 3231 EXPORT_SYMBOL(filemap_map_pages); 3232 3233 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3234 { 3235 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3236 struct page *page = vmf->page; 3237 vm_fault_t ret = VM_FAULT_LOCKED; 3238 3239 sb_start_pagefault(mapping->host->i_sb); 3240 file_update_time(vmf->vma->vm_file); 3241 lock_page(page); 3242 if (page->mapping != mapping) { 3243 unlock_page(page); 3244 ret = VM_FAULT_NOPAGE; 3245 goto out; 3246 } 3247 /* 3248 * We mark the page dirty already here so that when freeze is in 3249 * progress, we are guaranteed that writeback during freezing will 3250 * see the dirty page and writeprotect it again. 3251 */ 3252 set_page_dirty(page); 3253 wait_for_stable_page(page); 3254 out: 3255 sb_end_pagefault(mapping->host->i_sb); 3256 return ret; 3257 } 3258 3259 const struct vm_operations_struct generic_file_vm_ops = { 3260 .fault = filemap_fault, 3261 .map_pages = filemap_map_pages, 3262 .page_mkwrite = filemap_page_mkwrite, 3263 }; 3264 3265 /* This is used for a general mmap of a disk file */ 3266 3267 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3268 { 3269 struct address_space *mapping = file->f_mapping; 3270 3271 if (!mapping->a_ops->readpage) 3272 return -ENOEXEC; 3273 file_accessed(file); 3274 vma->vm_ops = &generic_file_vm_ops; 3275 return 0; 3276 } 3277 3278 /* 3279 * This is for filesystems which do not implement ->writepage. 3280 */ 3281 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3282 { 3283 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3284 return -EINVAL; 3285 return generic_file_mmap(file, vma); 3286 } 3287 #else 3288 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3289 { 3290 return VM_FAULT_SIGBUS; 3291 } 3292 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3293 { 3294 return -ENOSYS; 3295 } 3296 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3297 { 3298 return -ENOSYS; 3299 } 3300 #endif /* CONFIG_MMU */ 3301 3302 EXPORT_SYMBOL(filemap_page_mkwrite); 3303 EXPORT_SYMBOL(generic_file_mmap); 3304 EXPORT_SYMBOL(generic_file_readonly_mmap); 3305 3306 static struct page *wait_on_page_read(struct page *page) 3307 { 3308 if (!IS_ERR(page)) { 3309 wait_on_page_locked(page); 3310 if (!PageUptodate(page)) { 3311 put_page(page); 3312 page = ERR_PTR(-EIO); 3313 } 3314 } 3315 return page; 3316 } 3317 3318 static struct page *do_read_cache_page(struct address_space *mapping, 3319 pgoff_t index, 3320 int (*filler)(void *, struct page *), 3321 void *data, 3322 gfp_t gfp) 3323 { 3324 struct page *page; 3325 int err; 3326 repeat: 3327 page = find_get_page(mapping, index); 3328 if (!page) { 3329 page = __page_cache_alloc(gfp); 3330 if (!page) 3331 return ERR_PTR(-ENOMEM); 3332 err = add_to_page_cache_lru(page, mapping, index, gfp); 3333 if (unlikely(err)) { 3334 put_page(page); 3335 if (err == -EEXIST) 3336 goto repeat; 3337 /* Presumably ENOMEM for xarray node */ 3338 return ERR_PTR(err); 3339 } 3340 3341 filler: 3342 if (filler) 3343 err = filler(data, page); 3344 else 3345 err = mapping->a_ops->readpage(data, page); 3346 3347 if (err < 0) { 3348 put_page(page); 3349 return ERR_PTR(err); 3350 } 3351 3352 page = wait_on_page_read(page); 3353 if (IS_ERR(page)) 3354 return page; 3355 goto out; 3356 } 3357 if (PageUptodate(page)) 3358 goto out; 3359 3360 /* 3361 * Page is not up to date and may be locked due to one of the following 3362 * case a: Page is being filled and the page lock is held 3363 * case b: Read/write error clearing the page uptodate status 3364 * case c: Truncation in progress (page locked) 3365 * case d: Reclaim in progress 3366 * 3367 * Case a, the page will be up to date when the page is unlocked. 3368 * There is no need to serialise on the page lock here as the page 3369 * is pinned so the lock gives no additional protection. Even if the 3370 * page is truncated, the data is still valid if PageUptodate as 3371 * it's a race vs truncate race. 3372 * Case b, the page will not be up to date 3373 * Case c, the page may be truncated but in itself, the data may still 3374 * be valid after IO completes as it's a read vs truncate race. The 3375 * operation must restart if the page is not uptodate on unlock but 3376 * otherwise serialising on page lock to stabilise the mapping gives 3377 * no additional guarantees to the caller as the page lock is 3378 * released before return. 3379 * Case d, similar to truncation. If reclaim holds the page lock, it 3380 * will be a race with remove_mapping that determines if the mapping 3381 * is valid on unlock but otherwise the data is valid and there is 3382 * no need to serialise with page lock. 3383 * 3384 * As the page lock gives no additional guarantee, we optimistically 3385 * wait on the page to be unlocked and check if it's up to date and 3386 * use the page if it is. Otherwise, the page lock is required to 3387 * distinguish between the different cases. The motivation is that we 3388 * avoid spurious serialisations and wakeups when multiple processes 3389 * wait on the same page for IO to complete. 3390 */ 3391 wait_on_page_locked(page); 3392 if (PageUptodate(page)) 3393 goto out; 3394 3395 /* Distinguish between all the cases under the safety of the lock */ 3396 lock_page(page); 3397 3398 /* Case c or d, restart the operation */ 3399 if (!page->mapping) { 3400 unlock_page(page); 3401 put_page(page); 3402 goto repeat; 3403 } 3404 3405 /* Someone else locked and filled the page in a very small window */ 3406 if (PageUptodate(page)) { 3407 unlock_page(page); 3408 goto out; 3409 } 3410 3411 /* 3412 * A previous I/O error may have been due to temporary 3413 * failures. 3414 * Clear page error before actual read, PG_error will be 3415 * set again if read page fails. 3416 */ 3417 ClearPageError(page); 3418 goto filler; 3419 3420 out: 3421 mark_page_accessed(page); 3422 return page; 3423 } 3424 3425 /** 3426 * read_cache_page - read into page cache, fill it if needed 3427 * @mapping: the page's address_space 3428 * @index: the page index 3429 * @filler: function to perform the read 3430 * @data: first arg to filler(data, page) function, often left as NULL 3431 * 3432 * Read into the page cache. If a page already exists, and PageUptodate() is 3433 * not set, try to fill the page and wait for it to become unlocked. 3434 * 3435 * If the page does not get brought uptodate, return -EIO. 3436 * 3437 * Return: up to date page on success, ERR_PTR() on failure. 3438 */ 3439 struct page *read_cache_page(struct address_space *mapping, 3440 pgoff_t index, 3441 int (*filler)(void *, struct page *), 3442 void *data) 3443 { 3444 return do_read_cache_page(mapping, index, filler, data, 3445 mapping_gfp_mask(mapping)); 3446 } 3447 EXPORT_SYMBOL(read_cache_page); 3448 3449 /** 3450 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3451 * @mapping: the page's address_space 3452 * @index: the page index 3453 * @gfp: the page allocator flags to use if allocating 3454 * 3455 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3456 * any new page allocations done using the specified allocation flags. 3457 * 3458 * If the page does not get brought uptodate, return -EIO. 3459 * 3460 * Return: up to date page on success, ERR_PTR() on failure. 3461 */ 3462 struct page *read_cache_page_gfp(struct address_space *mapping, 3463 pgoff_t index, 3464 gfp_t gfp) 3465 { 3466 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3467 } 3468 EXPORT_SYMBOL(read_cache_page_gfp); 3469 3470 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3471 loff_t pos, unsigned len, unsigned flags, 3472 struct page **pagep, void **fsdata) 3473 { 3474 const struct address_space_operations *aops = mapping->a_ops; 3475 3476 return aops->write_begin(file, mapping, pos, len, flags, 3477 pagep, fsdata); 3478 } 3479 EXPORT_SYMBOL(pagecache_write_begin); 3480 3481 int pagecache_write_end(struct file *file, struct address_space *mapping, 3482 loff_t pos, unsigned len, unsigned copied, 3483 struct page *page, void *fsdata) 3484 { 3485 const struct address_space_operations *aops = mapping->a_ops; 3486 3487 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3488 } 3489 EXPORT_SYMBOL(pagecache_write_end); 3490 3491 /* 3492 * Warn about a page cache invalidation failure during a direct I/O write. 3493 */ 3494 void dio_warn_stale_pagecache(struct file *filp) 3495 { 3496 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3497 char pathname[128]; 3498 char *path; 3499 3500 errseq_set(&filp->f_mapping->wb_err, -EIO); 3501 if (__ratelimit(&_rs)) { 3502 path = file_path(filp, pathname, sizeof(pathname)); 3503 if (IS_ERR(path)) 3504 path = "(unknown)"; 3505 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3506 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3507 current->comm); 3508 } 3509 } 3510 3511 ssize_t 3512 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3513 { 3514 struct file *file = iocb->ki_filp; 3515 struct address_space *mapping = file->f_mapping; 3516 struct inode *inode = mapping->host; 3517 loff_t pos = iocb->ki_pos; 3518 ssize_t written; 3519 size_t write_len; 3520 pgoff_t end; 3521 3522 write_len = iov_iter_count(from); 3523 end = (pos + write_len - 1) >> PAGE_SHIFT; 3524 3525 if (iocb->ki_flags & IOCB_NOWAIT) { 3526 /* If there are pages to writeback, return */ 3527 if (filemap_range_has_page(file->f_mapping, pos, 3528 pos + write_len - 1)) 3529 return -EAGAIN; 3530 } else { 3531 written = filemap_write_and_wait_range(mapping, pos, 3532 pos + write_len - 1); 3533 if (written) 3534 goto out; 3535 } 3536 3537 /* 3538 * After a write we want buffered reads to be sure to go to disk to get 3539 * the new data. We invalidate clean cached page from the region we're 3540 * about to write. We do this *before* the write so that we can return 3541 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3542 */ 3543 written = invalidate_inode_pages2_range(mapping, 3544 pos >> PAGE_SHIFT, end); 3545 /* 3546 * If a page can not be invalidated, return 0 to fall back 3547 * to buffered write. 3548 */ 3549 if (written) { 3550 if (written == -EBUSY) 3551 return 0; 3552 goto out; 3553 } 3554 3555 written = mapping->a_ops->direct_IO(iocb, from); 3556 3557 /* 3558 * Finally, try again to invalidate clean pages which might have been 3559 * cached by non-direct readahead, or faulted in by get_user_pages() 3560 * if the source of the write was an mmap'ed region of the file 3561 * we're writing. Either one is a pretty crazy thing to do, 3562 * so we don't support it 100%. If this invalidation 3563 * fails, tough, the write still worked... 3564 * 3565 * Most of the time we do not need this since dio_complete() will do 3566 * the invalidation for us. However there are some file systems that 3567 * do not end up with dio_complete() being called, so let's not break 3568 * them by removing it completely. 3569 * 3570 * Noticeable example is a blkdev_direct_IO(). 3571 * 3572 * Skip invalidation for async writes or if mapping has no pages. 3573 */ 3574 if (written > 0 && mapping->nrpages && 3575 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3576 dio_warn_stale_pagecache(file); 3577 3578 if (written > 0) { 3579 pos += written; 3580 write_len -= written; 3581 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3582 i_size_write(inode, pos); 3583 mark_inode_dirty(inode); 3584 } 3585 iocb->ki_pos = pos; 3586 } 3587 if (written != -EIOCBQUEUED) 3588 iov_iter_revert(from, write_len - iov_iter_count(from)); 3589 out: 3590 return written; 3591 } 3592 EXPORT_SYMBOL(generic_file_direct_write); 3593 3594 /* 3595 * Find or create a page at the given pagecache position. Return the locked 3596 * page. This function is specifically for buffered writes. 3597 */ 3598 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3599 pgoff_t index, unsigned flags) 3600 { 3601 struct page *page; 3602 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3603 3604 if (flags & AOP_FLAG_NOFS) 3605 fgp_flags |= FGP_NOFS; 3606 3607 page = pagecache_get_page(mapping, index, fgp_flags, 3608 mapping_gfp_mask(mapping)); 3609 if (page) 3610 wait_for_stable_page(page); 3611 3612 return page; 3613 } 3614 EXPORT_SYMBOL(grab_cache_page_write_begin); 3615 3616 ssize_t generic_perform_write(struct file *file, 3617 struct iov_iter *i, loff_t pos) 3618 { 3619 struct address_space *mapping = file->f_mapping; 3620 const struct address_space_operations *a_ops = mapping->a_ops; 3621 long status = 0; 3622 ssize_t written = 0; 3623 unsigned int flags = 0; 3624 3625 do { 3626 struct page *page; 3627 unsigned long offset; /* Offset into pagecache page */ 3628 unsigned long bytes; /* Bytes to write to page */ 3629 size_t copied; /* Bytes copied from user */ 3630 void *fsdata; 3631 3632 offset = (pos & (PAGE_SIZE - 1)); 3633 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3634 iov_iter_count(i)); 3635 3636 again: 3637 /* 3638 * Bring in the user page that we will copy from _first_. 3639 * Otherwise there's a nasty deadlock on copying from the 3640 * same page as we're writing to, without it being marked 3641 * up-to-date. 3642 */ 3643 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3644 status = -EFAULT; 3645 break; 3646 } 3647 3648 if (fatal_signal_pending(current)) { 3649 status = -EINTR; 3650 break; 3651 } 3652 3653 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3654 &page, &fsdata); 3655 if (unlikely(status < 0)) 3656 break; 3657 3658 if (mapping_writably_mapped(mapping)) 3659 flush_dcache_page(page); 3660 3661 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3662 flush_dcache_page(page); 3663 3664 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3665 page, fsdata); 3666 if (unlikely(status != copied)) { 3667 iov_iter_revert(i, copied - max(status, 0L)); 3668 if (unlikely(status < 0)) 3669 break; 3670 } 3671 cond_resched(); 3672 3673 if (unlikely(status == 0)) { 3674 /* 3675 * A short copy made ->write_end() reject the 3676 * thing entirely. Might be memory poisoning 3677 * halfway through, might be a race with munmap, 3678 * might be severe memory pressure. 3679 */ 3680 if (copied) 3681 bytes = copied; 3682 goto again; 3683 } 3684 pos += status; 3685 written += status; 3686 3687 balance_dirty_pages_ratelimited(mapping); 3688 } while (iov_iter_count(i)); 3689 3690 return written ? written : status; 3691 } 3692 EXPORT_SYMBOL(generic_perform_write); 3693 3694 /** 3695 * __generic_file_write_iter - write data to a file 3696 * @iocb: IO state structure (file, offset, etc.) 3697 * @from: iov_iter with data to write 3698 * 3699 * This function does all the work needed for actually writing data to a 3700 * file. It does all basic checks, removes SUID from the file, updates 3701 * modification times and calls proper subroutines depending on whether we 3702 * do direct IO or a standard buffered write. 3703 * 3704 * It expects i_mutex to be grabbed unless we work on a block device or similar 3705 * object which does not need locking at all. 3706 * 3707 * This function does *not* take care of syncing data in case of O_SYNC write. 3708 * A caller has to handle it. This is mainly due to the fact that we want to 3709 * avoid syncing under i_mutex. 3710 * 3711 * Return: 3712 * * number of bytes written, even for truncated writes 3713 * * negative error code if no data has been written at all 3714 */ 3715 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3716 { 3717 struct file *file = iocb->ki_filp; 3718 struct address_space *mapping = file->f_mapping; 3719 struct inode *inode = mapping->host; 3720 ssize_t written = 0; 3721 ssize_t err; 3722 ssize_t status; 3723 3724 /* We can write back this queue in page reclaim */ 3725 current->backing_dev_info = inode_to_bdi(inode); 3726 err = file_remove_privs(file); 3727 if (err) 3728 goto out; 3729 3730 err = file_update_time(file); 3731 if (err) 3732 goto out; 3733 3734 if (iocb->ki_flags & IOCB_DIRECT) { 3735 loff_t pos, endbyte; 3736 3737 written = generic_file_direct_write(iocb, from); 3738 /* 3739 * If the write stopped short of completing, fall back to 3740 * buffered writes. Some filesystems do this for writes to 3741 * holes, for example. For DAX files, a buffered write will 3742 * not succeed (even if it did, DAX does not handle dirty 3743 * page-cache pages correctly). 3744 */ 3745 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3746 goto out; 3747 3748 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3749 /* 3750 * If generic_perform_write() returned a synchronous error 3751 * then we want to return the number of bytes which were 3752 * direct-written, or the error code if that was zero. Note 3753 * that this differs from normal direct-io semantics, which 3754 * will return -EFOO even if some bytes were written. 3755 */ 3756 if (unlikely(status < 0)) { 3757 err = status; 3758 goto out; 3759 } 3760 /* 3761 * We need to ensure that the page cache pages are written to 3762 * disk and invalidated to preserve the expected O_DIRECT 3763 * semantics. 3764 */ 3765 endbyte = pos + status - 1; 3766 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3767 if (err == 0) { 3768 iocb->ki_pos = endbyte + 1; 3769 written += status; 3770 invalidate_mapping_pages(mapping, 3771 pos >> PAGE_SHIFT, 3772 endbyte >> PAGE_SHIFT); 3773 } else { 3774 /* 3775 * We don't know how much we wrote, so just return 3776 * the number of bytes which were direct-written 3777 */ 3778 } 3779 } else { 3780 written = generic_perform_write(file, from, iocb->ki_pos); 3781 if (likely(written > 0)) 3782 iocb->ki_pos += written; 3783 } 3784 out: 3785 current->backing_dev_info = NULL; 3786 return written ? written : err; 3787 } 3788 EXPORT_SYMBOL(__generic_file_write_iter); 3789 3790 /** 3791 * generic_file_write_iter - write data to a file 3792 * @iocb: IO state structure 3793 * @from: iov_iter with data to write 3794 * 3795 * This is a wrapper around __generic_file_write_iter() to be used by most 3796 * filesystems. It takes care of syncing the file in case of O_SYNC file 3797 * and acquires i_mutex as needed. 3798 * Return: 3799 * * negative error code if no data has been written at all of 3800 * vfs_fsync_range() failed for a synchronous write 3801 * * number of bytes written, even for truncated writes 3802 */ 3803 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3804 { 3805 struct file *file = iocb->ki_filp; 3806 struct inode *inode = file->f_mapping->host; 3807 ssize_t ret; 3808 3809 inode_lock(inode); 3810 ret = generic_write_checks(iocb, from); 3811 if (ret > 0) 3812 ret = __generic_file_write_iter(iocb, from); 3813 inode_unlock(inode); 3814 3815 if (ret > 0) 3816 ret = generic_write_sync(iocb, ret); 3817 return ret; 3818 } 3819 EXPORT_SYMBOL(generic_file_write_iter); 3820 3821 /** 3822 * try_to_release_page() - release old fs-specific metadata on a page 3823 * 3824 * @page: the page which the kernel is trying to free 3825 * @gfp_mask: memory allocation flags (and I/O mode) 3826 * 3827 * The address_space is to try to release any data against the page 3828 * (presumably at page->private). 3829 * 3830 * This may also be called if PG_fscache is set on a page, indicating that the 3831 * page is known to the local caching routines. 3832 * 3833 * The @gfp_mask argument specifies whether I/O may be performed to release 3834 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3835 * 3836 * Return: %1 if the release was successful, otherwise return zero. 3837 */ 3838 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3839 { 3840 struct address_space * const mapping = page->mapping; 3841 3842 BUG_ON(!PageLocked(page)); 3843 if (PageWriteback(page)) 3844 return 0; 3845 3846 if (mapping && mapping->a_ops->releasepage) 3847 return mapping->a_ops->releasepage(page, gfp_mask); 3848 return try_to_free_buffers(page); 3849 } 3850 3851 EXPORT_SYMBOL(try_to_release_page); 3852