1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 pagevec_init(&pvec); 510 while (index <= end) { 511 unsigned i; 512 513 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 514 end, PAGECACHE_TAG_WRITEBACK); 515 if (!nr_pages) 516 break; 517 518 for (i = 0; i < nr_pages; i++) { 519 struct page *page = pvec.pages[i]; 520 521 wait_on_page_writeback(page); 522 ClearPageError(page); 523 } 524 pagevec_release(&pvec); 525 cond_resched(); 526 } 527 } 528 529 /** 530 * filemap_fdatawait_range - wait for writeback to complete 531 * @mapping: address space structure to wait for 532 * @start_byte: offset in bytes where the range starts 533 * @end_byte: offset in bytes where the range ends (inclusive) 534 * 535 * Walk the list of under-writeback pages of the given address space 536 * in the given range and wait for all of them. Check error status of 537 * the address space and return it. 538 * 539 * Since the error status of the address space is cleared by this function, 540 * callers are responsible for checking the return value and handling and/or 541 * reporting the error. 542 * 543 * Return: error status of the address space. 544 */ 545 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 546 loff_t end_byte) 547 { 548 __filemap_fdatawait_range(mapping, start_byte, end_byte); 549 return filemap_check_errors(mapping); 550 } 551 EXPORT_SYMBOL(filemap_fdatawait_range); 552 553 /** 554 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 555 * @mapping: address space structure to wait for 556 * @start_byte: offset in bytes where the range starts 557 * @end_byte: offset in bytes where the range ends (inclusive) 558 * 559 * Walk the list of under-writeback pages of the given address space in the 560 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 561 * this function does not clear error status of the address space. 562 * 563 * Use this function if callers don't handle errors themselves. Expected 564 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 565 * fsfreeze(8) 566 */ 567 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 568 loff_t start_byte, loff_t end_byte) 569 { 570 __filemap_fdatawait_range(mapping, start_byte, end_byte); 571 return filemap_check_and_keep_errors(mapping); 572 } 573 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 574 575 /** 576 * file_fdatawait_range - wait for writeback to complete 577 * @file: file pointing to address space structure to wait for 578 * @start_byte: offset in bytes where the range starts 579 * @end_byte: offset in bytes where the range ends (inclusive) 580 * 581 * Walk the list of under-writeback pages of the address space that file 582 * refers to, in the given range and wait for all of them. Check error 583 * status of the address space vs. the file->f_wb_err cursor and return it. 584 * 585 * Since the error status of the file is advanced by this function, 586 * callers are responsible for checking the return value and handling and/or 587 * reporting the error. 588 * 589 * Return: error status of the address space vs. the file->f_wb_err cursor. 590 */ 591 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 592 { 593 struct address_space *mapping = file->f_mapping; 594 595 __filemap_fdatawait_range(mapping, start_byte, end_byte); 596 return file_check_and_advance_wb_err(file); 597 } 598 EXPORT_SYMBOL(file_fdatawait_range); 599 600 /** 601 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 602 * @mapping: address space structure to wait for 603 * 604 * Walk the list of under-writeback pages of the given address space 605 * and wait for all of them. Unlike filemap_fdatawait(), this function 606 * does not clear error status of the address space. 607 * 608 * Use this function if callers don't handle errors themselves. Expected 609 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 610 * fsfreeze(8) 611 * 612 * Return: error status of the address space. 613 */ 614 int filemap_fdatawait_keep_errors(struct address_space *mapping) 615 { 616 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 617 return filemap_check_and_keep_errors(mapping); 618 } 619 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 620 621 /* Returns true if writeback might be needed or already in progress. */ 622 static bool mapping_needs_writeback(struct address_space *mapping) 623 { 624 return mapping->nrpages; 625 } 626 627 bool filemap_range_has_writeback(struct address_space *mapping, 628 loff_t start_byte, loff_t end_byte) 629 { 630 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 631 pgoff_t max = end_byte >> PAGE_SHIFT; 632 struct folio *folio; 633 634 if (end_byte < start_byte) 635 return false; 636 637 rcu_read_lock(); 638 xas_for_each(&xas, folio, max) { 639 if (xas_retry(&xas, folio)) 640 continue; 641 if (xa_is_value(folio)) 642 continue; 643 if (folio_test_dirty(folio) || folio_test_locked(folio) || 644 folio_test_writeback(folio)) 645 break; 646 } 647 rcu_read_unlock(); 648 return folio != NULL; 649 } 650 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 651 652 /** 653 * filemap_write_and_wait_range - write out & wait on a file range 654 * @mapping: the address_space for the pages 655 * @lstart: offset in bytes where the range starts 656 * @lend: offset in bytes where the range ends (inclusive) 657 * 658 * Write out and wait upon file offsets lstart->lend, inclusive. 659 * 660 * Note that @lend is inclusive (describes the last byte to be written) so 661 * that this function can be used to write to the very end-of-file (end = -1). 662 * 663 * Return: error status of the address space. 664 */ 665 int filemap_write_and_wait_range(struct address_space *mapping, 666 loff_t lstart, loff_t lend) 667 { 668 int err = 0, err2; 669 670 if (lend < lstart) 671 return 0; 672 673 if (mapping_needs_writeback(mapping)) { 674 err = __filemap_fdatawrite_range(mapping, lstart, lend, 675 WB_SYNC_ALL); 676 /* 677 * Even if the above returned error, the pages may be 678 * written partially (e.g. -ENOSPC), so we wait for it. 679 * But the -EIO is special case, it may indicate the worst 680 * thing (e.g. bug) happened, so we avoid waiting for it. 681 */ 682 if (err != -EIO) 683 __filemap_fdatawait_range(mapping, lstart, lend); 684 } 685 err2 = filemap_check_errors(mapping); 686 if (!err) 687 err = err2; 688 return err; 689 } 690 EXPORT_SYMBOL(filemap_write_and_wait_range); 691 692 void __filemap_set_wb_err(struct address_space *mapping, int err) 693 { 694 errseq_t eseq = errseq_set(&mapping->wb_err, err); 695 696 trace_filemap_set_wb_err(mapping, eseq); 697 } 698 EXPORT_SYMBOL(__filemap_set_wb_err); 699 700 /** 701 * file_check_and_advance_wb_err - report wb error (if any) that was previously 702 * and advance wb_err to current one 703 * @file: struct file on which the error is being reported 704 * 705 * When userland calls fsync (or something like nfsd does the equivalent), we 706 * want to report any writeback errors that occurred since the last fsync (or 707 * since the file was opened if there haven't been any). 708 * 709 * Grab the wb_err from the mapping. If it matches what we have in the file, 710 * then just quickly return 0. The file is all caught up. 711 * 712 * If it doesn't match, then take the mapping value, set the "seen" flag in 713 * it and try to swap it into place. If it works, or another task beat us 714 * to it with the new value, then update the f_wb_err and return the error 715 * portion. The error at this point must be reported via proper channels 716 * (a'la fsync, or NFS COMMIT operation, etc.). 717 * 718 * While we handle mapping->wb_err with atomic operations, the f_wb_err 719 * value is protected by the f_lock since we must ensure that it reflects 720 * the latest value swapped in for this file descriptor. 721 * 722 * Return: %0 on success, negative error code otherwise. 723 */ 724 int file_check_and_advance_wb_err(struct file *file) 725 { 726 int err = 0; 727 errseq_t old = READ_ONCE(file->f_wb_err); 728 struct address_space *mapping = file->f_mapping; 729 730 /* Locklessly handle the common case where nothing has changed */ 731 if (errseq_check(&mapping->wb_err, old)) { 732 /* Something changed, must use slow path */ 733 spin_lock(&file->f_lock); 734 old = file->f_wb_err; 735 err = errseq_check_and_advance(&mapping->wb_err, 736 &file->f_wb_err); 737 trace_file_check_and_advance_wb_err(file, old); 738 spin_unlock(&file->f_lock); 739 } 740 741 /* 742 * We're mostly using this function as a drop in replacement for 743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 744 * that the legacy code would have had on these flags. 745 */ 746 clear_bit(AS_EIO, &mapping->flags); 747 clear_bit(AS_ENOSPC, &mapping->flags); 748 return err; 749 } 750 EXPORT_SYMBOL(file_check_and_advance_wb_err); 751 752 /** 753 * file_write_and_wait_range - write out & wait on a file range 754 * @file: file pointing to address_space with pages 755 * @lstart: offset in bytes where the range starts 756 * @lend: offset in bytes where the range ends (inclusive) 757 * 758 * Write out and wait upon file offsets lstart->lend, inclusive. 759 * 760 * Note that @lend is inclusive (describes the last byte to be written) so 761 * that this function can be used to write to the very end-of-file (end = -1). 762 * 763 * After writing out and waiting on the data, we check and advance the 764 * f_wb_err cursor to the latest value, and return any errors detected there. 765 * 766 * Return: %0 on success, negative error code otherwise. 767 */ 768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 769 { 770 int err = 0, err2; 771 struct address_space *mapping = file->f_mapping; 772 773 if (lend < lstart) 774 return 0; 775 776 if (mapping_needs_writeback(mapping)) { 777 err = __filemap_fdatawrite_range(mapping, lstart, lend, 778 WB_SYNC_ALL); 779 /* See comment of filemap_write_and_wait() */ 780 if (err != -EIO) 781 __filemap_fdatawait_range(mapping, lstart, lend); 782 } 783 err2 = file_check_and_advance_wb_err(file); 784 if (!err) 785 err = err2; 786 return err; 787 } 788 EXPORT_SYMBOL(file_write_and_wait_range); 789 790 /** 791 * replace_page_cache_folio - replace a pagecache folio with a new one 792 * @old: folio to be replaced 793 * @new: folio to replace with 794 * 795 * This function replaces a folio in the pagecache with a new one. On 796 * success it acquires the pagecache reference for the new folio and 797 * drops it for the old folio. Both the old and new folios must be 798 * locked. This function does not add the new folio to the LRU, the 799 * caller must do that. 800 * 801 * The remove + add is atomic. This function cannot fail. 802 */ 803 void replace_page_cache_folio(struct folio *old, struct folio *new) 804 { 805 struct address_space *mapping = old->mapping; 806 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 807 pgoff_t offset = old->index; 808 XA_STATE(xas, &mapping->i_pages, offset); 809 810 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 811 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 812 VM_BUG_ON_FOLIO(new->mapping, new); 813 814 folio_get(new); 815 new->mapping = mapping; 816 new->index = offset; 817 818 mem_cgroup_migrate(old, new); 819 820 xas_lock_irq(&xas); 821 xas_store(&xas, new); 822 823 old->mapping = NULL; 824 /* hugetlb pages do not participate in page cache accounting. */ 825 if (!folio_test_hugetlb(old)) 826 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 827 if (!folio_test_hugetlb(new)) 828 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 829 if (folio_test_swapbacked(old)) 830 __lruvec_stat_sub_folio(old, NR_SHMEM); 831 if (folio_test_swapbacked(new)) 832 __lruvec_stat_add_folio(new, NR_SHMEM); 833 xas_unlock_irq(&xas); 834 if (free_folio) 835 free_folio(old); 836 folio_put(old); 837 } 838 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 839 840 noinline int __filemap_add_folio(struct address_space *mapping, 841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 842 { 843 XA_STATE(xas, &mapping->i_pages, index); 844 int huge = folio_test_hugetlb(folio); 845 bool charged = false; 846 long nr = 1; 847 848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 850 mapping_set_update(&xas, mapping); 851 852 if (!huge) { 853 int error = mem_cgroup_charge(folio, NULL, gfp); 854 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 855 if (error) 856 return error; 857 charged = true; 858 xas_set_order(&xas, index, folio_order(folio)); 859 nr = folio_nr_pages(folio); 860 } 861 862 gfp &= GFP_RECLAIM_MASK; 863 folio_ref_add(folio, nr); 864 folio->mapping = mapping; 865 folio->index = xas.xa_index; 866 867 do { 868 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 869 void *entry, *old = NULL; 870 871 if (order > folio_order(folio)) 872 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 873 order, gfp); 874 xas_lock_irq(&xas); 875 xas_for_each_conflict(&xas, entry) { 876 old = entry; 877 if (!xa_is_value(entry)) { 878 xas_set_err(&xas, -EEXIST); 879 goto unlock; 880 } 881 } 882 883 if (old) { 884 if (shadowp) 885 *shadowp = old; 886 /* entry may have been split before we acquired lock */ 887 order = xa_get_order(xas.xa, xas.xa_index); 888 if (order > folio_order(folio)) { 889 /* How to handle large swap entries? */ 890 BUG_ON(shmem_mapping(mapping)); 891 xas_split(&xas, old, order); 892 xas_reset(&xas); 893 } 894 } 895 896 xas_store(&xas, folio); 897 if (xas_error(&xas)) 898 goto unlock; 899 900 mapping->nrpages += nr; 901 902 /* hugetlb pages do not participate in page cache accounting */ 903 if (!huge) { 904 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 905 if (folio_test_pmd_mappable(folio)) 906 __lruvec_stat_mod_folio(folio, 907 NR_FILE_THPS, nr); 908 } 909 unlock: 910 xas_unlock_irq(&xas); 911 } while (xas_nomem(&xas, gfp)); 912 913 if (xas_error(&xas)) 914 goto error; 915 916 trace_mm_filemap_add_to_page_cache(folio); 917 return 0; 918 error: 919 if (charged) 920 mem_cgroup_uncharge(folio); 921 folio->mapping = NULL; 922 /* Leave page->index set: truncation relies upon it */ 923 folio_put_refs(folio, nr); 924 return xas_error(&xas); 925 } 926 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 927 928 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 929 pgoff_t index, gfp_t gfp) 930 { 931 void *shadow = NULL; 932 int ret; 933 934 __folio_set_locked(folio); 935 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 936 if (unlikely(ret)) 937 __folio_clear_locked(folio); 938 else { 939 /* 940 * The folio might have been evicted from cache only 941 * recently, in which case it should be activated like 942 * any other repeatedly accessed folio. 943 * The exception is folios getting rewritten; evicting other 944 * data from the working set, only to cache data that will 945 * get overwritten with something else, is a waste of memory. 946 */ 947 WARN_ON_ONCE(folio_test_active(folio)); 948 if (!(gfp & __GFP_WRITE) && shadow) 949 workingset_refault(folio, shadow); 950 folio_add_lru(folio); 951 } 952 return ret; 953 } 954 EXPORT_SYMBOL_GPL(filemap_add_folio); 955 956 #ifdef CONFIG_NUMA 957 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 958 { 959 int n; 960 struct folio *folio; 961 962 if (cpuset_do_page_mem_spread()) { 963 unsigned int cpuset_mems_cookie; 964 do { 965 cpuset_mems_cookie = read_mems_allowed_begin(); 966 n = cpuset_mem_spread_node(); 967 folio = __folio_alloc_node(gfp, order, n); 968 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 969 970 return folio; 971 } 972 return folio_alloc(gfp, order); 973 } 974 EXPORT_SYMBOL(filemap_alloc_folio); 975 #endif 976 977 /* 978 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 979 * 980 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 981 * 982 * @mapping1: the first mapping to lock 983 * @mapping2: the second mapping to lock 984 */ 985 void filemap_invalidate_lock_two(struct address_space *mapping1, 986 struct address_space *mapping2) 987 { 988 if (mapping1 > mapping2) 989 swap(mapping1, mapping2); 990 if (mapping1) 991 down_write(&mapping1->invalidate_lock); 992 if (mapping2 && mapping1 != mapping2) 993 down_write_nested(&mapping2->invalidate_lock, 1); 994 } 995 EXPORT_SYMBOL(filemap_invalidate_lock_two); 996 997 /* 998 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 999 * 1000 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1001 * 1002 * @mapping1: the first mapping to unlock 1003 * @mapping2: the second mapping to unlock 1004 */ 1005 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1006 struct address_space *mapping2) 1007 { 1008 if (mapping1) 1009 up_write(&mapping1->invalidate_lock); 1010 if (mapping2 && mapping1 != mapping2) 1011 up_write(&mapping2->invalidate_lock); 1012 } 1013 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1014 1015 /* 1016 * In order to wait for pages to become available there must be 1017 * waitqueues associated with pages. By using a hash table of 1018 * waitqueues where the bucket discipline is to maintain all 1019 * waiters on the same queue and wake all when any of the pages 1020 * become available, and for the woken contexts to check to be 1021 * sure the appropriate page became available, this saves space 1022 * at a cost of "thundering herd" phenomena during rare hash 1023 * collisions. 1024 */ 1025 #define PAGE_WAIT_TABLE_BITS 8 1026 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1027 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1028 1029 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1030 { 1031 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1032 } 1033 1034 void __init pagecache_init(void) 1035 { 1036 int i; 1037 1038 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1039 init_waitqueue_head(&folio_wait_table[i]); 1040 1041 page_writeback_init(); 1042 } 1043 1044 /* 1045 * The page wait code treats the "wait->flags" somewhat unusually, because 1046 * we have multiple different kinds of waits, not just the usual "exclusive" 1047 * one. 1048 * 1049 * We have: 1050 * 1051 * (a) no special bits set: 1052 * 1053 * We're just waiting for the bit to be released, and when a waker 1054 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1055 * and remove it from the wait queue. 1056 * 1057 * Simple and straightforward. 1058 * 1059 * (b) WQ_FLAG_EXCLUSIVE: 1060 * 1061 * The waiter is waiting to get the lock, and only one waiter should 1062 * be woken up to avoid any thundering herd behavior. We'll set the 1063 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1064 * 1065 * This is the traditional exclusive wait. 1066 * 1067 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1068 * 1069 * The waiter is waiting to get the bit, and additionally wants the 1070 * lock to be transferred to it for fair lock behavior. If the lock 1071 * cannot be taken, we stop walking the wait queue without waking 1072 * the waiter. 1073 * 1074 * This is the "fair lock handoff" case, and in addition to setting 1075 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1076 * that it now has the lock. 1077 */ 1078 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1079 { 1080 unsigned int flags; 1081 struct wait_page_key *key = arg; 1082 struct wait_page_queue *wait_page 1083 = container_of(wait, struct wait_page_queue, wait); 1084 1085 if (!wake_page_match(wait_page, key)) 1086 return 0; 1087 1088 /* 1089 * If it's a lock handoff wait, we get the bit for it, and 1090 * stop walking (and do not wake it up) if we can't. 1091 */ 1092 flags = wait->flags; 1093 if (flags & WQ_FLAG_EXCLUSIVE) { 1094 if (test_bit(key->bit_nr, &key->folio->flags)) 1095 return -1; 1096 if (flags & WQ_FLAG_CUSTOM) { 1097 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1098 return -1; 1099 flags |= WQ_FLAG_DONE; 1100 } 1101 } 1102 1103 /* 1104 * We are holding the wait-queue lock, but the waiter that 1105 * is waiting for this will be checking the flags without 1106 * any locking. 1107 * 1108 * So update the flags atomically, and wake up the waiter 1109 * afterwards to avoid any races. This store-release pairs 1110 * with the load-acquire in folio_wait_bit_common(). 1111 */ 1112 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1113 wake_up_state(wait->private, mode); 1114 1115 /* 1116 * Ok, we have successfully done what we're waiting for, 1117 * and we can unconditionally remove the wait entry. 1118 * 1119 * Note that this pairs with the "finish_wait()" in the 1120 * waiter, and has to be the absolute last thing we do. 1121 * After this list_del_init(&wait->entry) the wait entry 1122 * might be de-allocated and the process might even have 1123 * exited. 1124 */ 1125 list_del_init_careful(&wait->entry); 1126 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1127 } 1128 1129 static void folio_wake_bit(struct folio *folio, int bit_nr) 1130 { 1131 wait_queue_head_t *q = folio_waitqueue(folio); 1132 struct wait_page_key key; 1133 unsigned long flags; 1134 wait_queue_entry_t bookmark; 1135 1136 key.folio = folio; 1137 key.bit_nr = bit_nr; 1138 key.page_match = 0; 1139 1140 bookmark.flags = 0; 1141 bookmark.private = NULL; 1142 bookmark.func = NULL; 1143 INIT_LIST_HEAD(&bookmark.entry); 1144 1145 spin_lock_irqsave(&q->lock, flags); 1146 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1147 1148 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1149 /* 1150 * Take a breather from holding the lock, 1151 * allow pages that finish wake up asynchronously 1152 * to acquire the lock and remove themselves 1153 * from wait queue 1154 */ 1155 spin_unlock_irqrestore(&q->lock, flags); 1156 cpu_relax(); 1157 spin_lock_irqsave(&q->lock, flags); 1158 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1159 } 1160 1161 /* 1162 * It's possible to miss clearing waiters here, when we woke our page 1163 * waiters, but the hashed waitqueue has waiters for other pages on it. 1164 * That's okay, it's a rare case. The next waker will clear it. 1165 * 1166 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1167 * other), the flag may be cleared in the course of freeing the page; 1168 * but that is not required for correctness. 1169 */ 1170 if (!waitqueue_active(q) || !key.page_match) 1171 folio_clear_waiters(folio); 1172 1173 spin_unlock_irqrestore(&q->lock, flags); 1174 } 1175 1176 static void folio_wake(struct folio *folio, int bit) 1177 { 1178 if (!folio_test_waiters(folio)) 1179 return; 1180 folio_wake_bit(folio, bit); 1181 } 1182 1183 /* 1184 * A choice of three behaviors for folio_wait_bit_common(): 1185 */ 1186 enum behavior { 1187 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1188 * __folio_lock() waiting on then setting PG_locked. 1189 */ 1190 SHARED, /* Hold ref to page and check the bit when woken, like 1191 * folio_wait_writeback() waiting on PG_writeback. 1192 */ 1193 DROP, /* Drop ref to page before wait, no check when woken, 1194 * like folio_put_wait_locked() on PG_locked. 1195 */ 1196 }; 1197 1198 /* 1199 * Attempt to check (or get) the folio flag, and mark us done 1200 * if successful. 1201 */ 1202 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1203 struct wait_queue_entry *wait) 1204 { 1205 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1206 if (test_and_set_bit(bit_nr, &folio->flags)) 1207 return false; 1208 } else if (test_bit(bit_nr, &folio->flags)) 1209 return false; 1210 1211 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1212 return true; 1213 } 1214 1215 /* How many times do we accept lock stealing from under a waiter? */ 1216 int sysctl_page_lock_unfairness = 5; 1217 1218 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1219 int state, enum behavior behavior) 1220 { 1221 wait_queue_head_t *q = folio_waitqueue(folio); 1222 int unfairness = sysctl_page_lock_unfairness; 1223 struct wait_page_queue wait_page; 1224 wait_queue_entry_t *wait = &wait_page.wait; 1225 bool thrashing = false; 1226 unsigned long pflags; 1227 bool in_thrashing; 1228 1229 if (bit_nr == PG_locked && 1230 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1231 delayacct_thrashing_start(&in_thrashing); 1232 psi_memstall_enter(&pflags); 1233 thrashing = true; 1234 } 1235 1236 init_wait(wait); 1237 wait->func = wake_page_function; 1238 wait_page.folio = folio; 1239 wait_page.bit_nr = bit_nr; 1240 1241 repeat: 1242 wait->flags = 0; 1243 if (behavior == EXCLUSIVE) { 1244 wait->flags = WQ_FLAG_EXCLUSIVE; 1245 if (--unfairness < 0) 1246 wait->flags |= WQ_FLAG_CUSTOM; 1247 } 1248 1249 /* 1250 * Do one last check whether we can get the 1251 * page bit synchronously. 1252 * 1253 * Do the folio_set_waiters() marking before that 1254 * to let any waker we _just_ missed know they 1255 * need to wake us up (otherwise they'll never 1256 * even go to the slow case that looks at the 1257 * page queue), and add ourselves to the wait 1258 * queue if we need to sleep. 1259 * 1260 * This part needs to be done under the queue 1261 * lock to avoid races. 1262 */ 1263 spin_lock_irq(&q->lock); 1264 folio_set_waiters(folio); 1265 if (!folio_trylock_flag(folio, bit_nr, wait)) 1266 __add_wait_queue_entry_tail(q, wait); 1267 spin_unlock_irq(&q->lock); 1268 1269 /* 1270 * From now on, all the logic will be based on 1271 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1272 * see whether the page bit testing has already 1273 * been done by the wake function. 1274 * 1275 * We can drop our reference to the folio. 1276 */ 1277 if (behavior == DROP) 1278 folio_put(folio); 1279 1280 /* 1281 * Note that until the "finish_wait()", or until 1282 * we see the WQ_FLAG_WOKEN flag, we need to 1283 * be very careful with the 'wait->flags', because 1284 * we may race with a waker that sets them. 1285 */ 1286 for (;;) { 1287 unsigned int flags; 1288 1289 set_current_state(state); 1290 1291 /* Loop until we've been woken or interrupted */ 1292 flags = smp_load_acquire(&wait->flags); 1293 if (!(flags & WQ_FLAG_WOKEN)) { 1294 if (signal_pending_state(state, current)) 1295 break; 1296 1297 io_schedule(); 1298 continue; 1299 } 1300 1301 /* If we were non-exclusive, we're done */ 1302 if (behavior != EXCLUSIVE) 1303 break; 1304 1305 /* If the waker got the lock for us, we're done */ 1306 if (flags & WQ_FLAG_DONE) 1307 break; 1308 1309 /* 1310 * Otherwise, if we're getting the lock, we need to 1311 * try to get it ourselves. 1312 * 1313 * And if that fails, we'll have to retry this all. 1314 */ 1315 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1316 goto repeat; 1317 1318 wait->flags |= WQ_FLAG_DONE; 1319 break; 1320 } 1321 1322 /* 1323 * If a signal happened, this 'finish_wait()' may remove the last 1324 * waiter from the wait-queues, but the folio waiters bit will remain 1325 * set. That's ok. The next wakeup will take care of it, and trying 1326 * to do it here would be difficult and prone to races. 1327 */ 1328 finish_wait(q, wait); 1329 1330 if (thrashing) { 1331 delayacct_thrashing_end(&in_thrashing); 1332 psi_memstall_leave(&pflags); 1333 } 1334 1335 /* 1336 * NOTE! The wait->flags weren't stable until we've done the 1337 * 'finish_wait()', and we could have exited the loop above due 1338 * to a signal, and had a wakeup event happen after the signal 1339 * test but before the 'finish_wait()'. 1340 * 1341 * So only after the finish_wait() can we reliably determine 1342 * if we got woken up or not, so we can now figure out the final 1343 * return value based on that state without races. 1344 * 1345 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1346 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1347 */ 1348 if (behavior == EXCLUSIVE) 1349 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1350 1351 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1352 } 1353 1354 #ifdef CONFIG_MIGRATION 1355 /** 1356 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1357 * @entry: migration swap entry. 1358 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1359 * for pte entries, pass NULL for pmd entries. 1360 * @ptl: already locked ptl. This function will drop the lock. 1361 * 1362 * Wait for a migration entry referencing the given page to be removed. This is 1363 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1364 * this can be called without taking a reference on the page. Instead this 1365 * should be called while holding the ptl for the migration entry referencing 1366 * the page. 1367 * 1368 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1369 * 1370 * This follows the same logic as folio_wait_bit_common() so see the comments 1371 * there. 1372 */ 1373 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1374 spinlock_t *ptl) 1375 { 1376 struct wait_page_queue wait_page; 1377 wait_queue_entry_t *wait = &wait_page.wait; 1378 bool thrashing = false; 1379 unsigned long pflags; 1380 bool in_thrashing; 1381 wait_queue_head_t *q; 1382 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1383 1384 q = folio_waitqueue(folio); 1385 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1386 delayacct_thrashing_start(&in_thrashing); 1387 psi_memstall_enter(&pflags); 1388 thrashing = true; 1389 } 1390 1391 init_wait(wait); 1392 wait->func = wake_page_function; 1393 wait_page.folio = folio; 1394 wait_page.bit_nr = PG_locked; 1395 wait->flags = 0; 1396 1397 spin_lock_irq(&q->lock); 1398 folio_set_waiters(folio); 1399 if (!folio_trylock_flag(folio, PG_locked, wait)) 1400 __add_wait_queue_entry_tail(q, wait); 1401 spin_unlock_irq(&q->lock); 1402 1403 /* 1404 * If a migration entry exists for the page the migration path must hold 1405 * a valid reference to the page, and it must take the ptl to remove the 1406 * migration entry. So the page is valid until the ptl is dropped. 1407 */ 1408 if (ptep) 1409 pte_unmap_unlock(ptep, ptl); 1410 else 1411 spin_unlock(ptl); 1412 1413 for (;;) { 1414 unsigned int flags; 1415 1416 set_current_state(TASK_UNINTERRUPTIBLE); 1417 1418 /* Loop until we've been woken or interrupted */ 1419 flags = smp_load_acquire(&wait->flags); 1420 if (!(flags & WQ_FLAG_WOKEN)) { 1421 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1422 break; 1423 1424 io_schedule(); 1425 continue; 1426 } 1427 break; 1428 } 1429 1430 finish_wait(q, wait); 1431 1432 if (thrashing) { 1433 delayacct_thrashing_end(&in_thrashing); 1434 psi_memstall_leave(&pflags); 1435 } 1436 } 1437 #endif 1438 1439 void folio_wait_bit(struct folio *folio, int bit_nr) 1440 { 1441 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1442 } 1443 EXPORT_SYMBOL(folio_wait_bit); 1444 1445 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1446 { 1447 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1448 } 1449 EXPORT_SYMBOL(folio_wait_bit_killable); 1450 1451 /** 1452 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1453 * @folio: The folio to wait for. 1454 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1455 * 1456 * The caller should hold a reference on @folio. They expect the page to 1457 * become unlocked relatively soon, but do not wish to hold up migration 1458 * (for example) by holding the reference while waiting for the folio to 1459 * come unlocked. After this function returns, the caller should not 1460 * dereference @folio. 1461 * 1462 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1463 */ 1464 static int folio_put_wait_locked(struct folio *folio, int state) 1465 { 1466 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1467 } 1468 1469 /** 1470 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1471 * @folio: Folio defining the wait queue of interest 1472 * @waiter: Waiter to add to the queue 1473 * 1474 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1475 */ 1476 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1477 { 1478 wait_queue_head_t *q = folio_waitqueue(folio); 1479 unsigned long flags; 1480 1481 spin_lock_irqsave(&q->lock, flags); 1482 __add_wait_queue_entry_tail(q, waiter); 1483 folio_set_waiters(folio); 1484 spin_unlock_irqrestore(&q->lock, flags); 1485 } 1486 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1487 1488 #ifndef clear_bit_unlock_is_negative_byte 1489 1490 /* 1491 * PG_waiters is the high bit in the same byte as PG_lock. 1492 * 1493 * On x86 (and on many other architectures), we can clear PG_lock and 1494 * test the sign bit at the same time. But if the architecture does 1495 * not support that special operation, we just do this all by hand 1496 * instead. 1497 * 1498 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1499 * being cleared, but a memory barrier should be unnecessary since it is 1500 * in the same byte as PG_locked. 1501 */ 1502 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1503 { 1504 clear_bit_unlock(nr, mem); 1505 /* smp_mb__after_atomic(); */ 1506 return test_bit(PG_waiters, mem); 1507 } 1508 1509 #endif 1510 1511 /** 1512 * folio_unlock - Unlock a locked folio. 1513 * @folio: The folio. 1514 * 1515 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1516 * 1517 * Context: May be called from interrupt or process context. May not be 1518 * called from NMI context. 1519 */ 1520 void folio_unlock(struct folio *folio) 1521 { 1522 /* Bit 7 allows x86 to check the byte's sign bit */ 1523 BUILD_BUG_ON(PG_waiters != 7); 1524 BUILD_BUG_ON(PG_locked > 7); 1525 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1526 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1527 folio_wake_bit(folio, PG_locked); 1528 } 1529 EXPORT_SYMBOL(folio_unlock); 1530 1531 /** 1532 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1533 * @folio: The folio. 1534 * 1535 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1536 * it. The folio reference held for PG_private_2 being set is released. 1537 * 1538 * This is, for example, used when a netfs folio is being written to a local 1539 * disk cache, thereby allowing writes to the cache for the same folio to be 1540 * serialised. 1541 */ 1542 void folio_end_private_2(struct folio *folio) 1543 { 1544 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1545 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1546 folio_wake_bit(folio, PG_private_2); 1547 folio_put(folio); 1548 } 1549 EXPORT_SYMBOL(folio_end_private_2); 1550 1551 /** 1552 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1553 * @folio: The folio to wait on. 1554 * 1555 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1556 */ 1557 void folio_wait_private_2(struct folio *folio) 1558 { 1559 while (folio_test_private_2(folio)) 1560 folio_wait_bit(folio, PG_private_2); 1561 } 1562 EXPORT_SYMBOL(folio_wait_private_2); 1563 1564 /** 1565 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1566 * @folio: The folio to wait on. 1567 * 1568 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1569 * fatal signal is received by the calling task. 1570 * 1571 * Return: 1572 * - 0 if successful. 1573 * - -EINTR if a fatal signal was encountered. 1574 */ 1575 int folio_wait_private_2_killable(struct folio *folio) 1576 { 1577 int ret = 0; 1578 1579 while (folio_test_private_2(folio)) { 1580 ret = folio_wait_bit_killable(folio, PG_private_2); 1581 if (ret < 0) 1582 break; 1583 } 1584 1585 return ret; 1586 } 1587 EXPORT_SYMBOL(folio_wait_private_2_killable); 1588 1589 /** 1590 * folio_end_writeback - End writeback against a folio. 1591 * @folio: The folio. 1592 */ 1593 void folio_end_writeback(struct folio *folio) 1594 { 1595 /* 1596 * folio_test_clear_reclaim() could be used here but it is an 1597 * atomic operation and overkill in this particular case. Failing 1598 * to shuffle a folio marked for immediate reclaim is too mild 1599 * a gain to justify taking an atomic operation penalty at the 1600 * end of every folio writeback. 1601 */ 1602 if (folio_test_reclaim(folio)) { 1603 folio_clear_reclaim(folio); 1604 folio_rotate_reclaimable(folio); 1605 } 1606 1607 /* 1608 * Writeback does not hold a folio reference of its own, relying 1609 * on truncation to wait for the clearing of PG_writeback. 1610 * But here we must make sure that the folio is not freed and 1611 * reused before the folio_wake(). 1612 */ 1613 folio_get(folio); 1614 if (!__folio_end_writeback(folio)) 1615 BUG(); 1616 1617 smp_mb__after_atomic(); 1618 folio_wake(folio, PG_writeback); 1619 acct_reclaim_writeback(folio); 1620 folio_put(folio); 1621 } 1622 EXPORT_SYMBOL(folio_end_writeback); 1623 1624 /* 1625 * After completing I/O on a page, call this routine to update the page 1626 * flags appropriately 1627 */ 1628 void page_endio(struct page *page, bool is_write, int err) 1629 { 1630 struct folio *folio = page_folio(page); 1631 1632 if (!is_write) { 1633 if (!err) { 1634 folio_mark_uptodate(folio); 1635 } else { 1636 folio_clear_uptodate(folio); 1637 folio_set_error(folio); 1638 } 1639 folio_unlock(folio); 1640 } else { 1641 if (err) { 1642 struct address_space *mapping; 1643 1644 folio_set_error(folio); 1645 mapping = folio_mapping(folio); 1646 if (mapping) 1647 mapping_set_error(mapping, err); 1648 } 1649 folio_end_writeback(folio); 1650 } 1651 } 1652 EXPORT_SYMBOL_GPL(page_endio); 1653 1654 /** 1655 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1656 * @folio: The folio to lock 1657 */ 1658 void __folio_lock(struct folio *folio) 1659 { 1660 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1661 EXCLUSIVE); 1662 } 1663 EXPORT_SYMBOL(__folio_lock); 1664 1665 int __folio_lock_killable(struct folio *folio) 1666 { 1667 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1668 EXCLUSIVE); 1669 } 1670 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1671 1672 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1673 { 1674 struct wait_queue_head *q = folio_waitqueue(folio); 1675 int ret = 0; 1676 1677 wait->folio = folio; 1678 wait->bit_nr = PG_locked; 1679 1680 spin_lock_irq(&q->lock); 1681 __add_wait_queue_entry_tail(q, &wait->wait); 1682 folio_set_waiters(folio); 1683 ret = !folio_trylock(folio); 1684 /* 1685 * If we were successful now, we know we're still on the 1686 * waitqueue as we're still under the lock. This means it's 1687 * safe to remove and return success, we know the callback 1688 * isn't going to trigger. 1689 */ 1690 if (!ret) 1691 __remove_wait_queue(q, &wait->wait); 1692 else 1693 ret = -EIOCBQUEUED; 1694 spin_unlock_irq(&q->lock); 1695 return ret; 1696 } 1697 1698 /* 1699 * Return values: 1700 * true - folio is locked; mmap_lock is still held. 1701 * false - folio is not locked. 1702 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1703 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1704 * which case mmap_lock is still held. 1705 * 1706 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1707 * with the folio locked and the mmap_lock unperturbed. 1708 */ 1709 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1710 unsigned int flags) 1711 { 1712 if (fault_flag_allow_retry_first(flags)) { 1713 /* 1714 * CAUTION! In this case, mmap_lock is not released 1715 * even though return 0. 1716 */ 1717 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1718 return false; 1719 1720 mmap_read_unlock(mm); 1721 if (flags & FAULT_FLAG_KILLABLE) 1722 folio_wait_locked_killable(folio); 1723 else 1724 folio_wait_locked(folio); 1725 return false; 1726 } 1727 if (flags & FAULT_FLAG_KILLABLE) { 1728 bool ret; 1729 1730 ret = __folio_lock_killable(folio); 1731 if (ret) { 1732 mmap_read_unlock(mm); 1733 return false; 1734 } 1735 } else { 1736 __folio_lock(folio); 1737 } 1738 1739 return true; 1740 } 1741 1742 /** 1743 * page_cache_next_miss() - Find the next gap in the page cache. 1744 * @mapping: Mapping. 1745 * @index: Index. 1746 * @max_scan: Maximum range to search. 1747 * 1748 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1749 * gap with the lowest index. 1750 * 1751 * This function may be called under the rcu_read_lock. However, this will 1752 * not atomically search a snapshot of the cache at a single point in time. 1753 * For example, if a gap is created at index 5, then subsequently a gap is 1754 * created at index 10, page_cache_next_miss covering both indices may 1755 * return 10 if called under the rcu_read_lock. 1756 * 1757 * Return: The index of the gap if found, otherwise an index outside the 1758 * range specified (in which case 'return - index >= max_scan' will be true). 1759 * In the rare case of index wrap-around, 0 will be returned. 1760 */ 1761 pgoff_t page_cache_next_miss(struct address_space *mapping, 1762 pgoff_t index, unsigned long max_scan) 1763 { 1764 XA_STATE(xas, &mapping->i_pages, index); 1765 1766 while (max_scan--) { 1767 void *entry = xas_next(&xas); 1768 if (!entry || xa_is_value(entry)) 1769 break; 1770 if (xas.xa_index == 0) 1771 break; 1772 } 1773 1774 return xas.xa_index; 1775 } 1776 EXPORT_SYMBOL(page_cache_next_miss); 1777 1778 /** 1779 * page_cache_prev_miss() - Find the previous gap in the page cache. 1780 * @mapping: Mapping. 1781 * @index: Index. 1782 * @max_scan: Maximum range to search. 1783 * 1784 * Search the range [max(index - max_scan + 1, 0), index] for the 1785 * gap with the highest index. 1786 * 1787 * This function may be called under the rcu_read_lock. However, this will 1788 * not atomically search a snapshot of the cache at a single point in time. 1789 * For example, if a gap is created at index 10, then subsequently a gap is 1790 * created at index 5, page_cache_prev_miss() covering both indices may 1791 * return 5 if called under the rcu_read_lock. 1792 * 1793 * Return: The index of the gap if found, otherwise an index outside the 1794 * range specified (in which case 'index - return >= max_scan' will be true). 1795 * In the rare case of wrap-around, ULONG_MAX will be returned. 1796 */ 1797 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1798 pgoff_t index, unsigned long max_scan) 1799 { 1800 XA_STATE(xas, &mapping->i_pages, index); 1801 1802 while (max_scan--) { 1803 void *entry = xas_prev(&xas); 1804 if (!entry || xa_is_value(entry)) 1805 break; 1806 if (xas.xa_index == ULONG_MAX) 1807 break; 1808 } 1809 1810 return xas.xa_index; 1811 } 1812 EXPORT_SYMBOL(page_cache_prev_miss); 1813 1814 /* 1815 * Lockless page cache protocol: 1816 * On the lookup side: 1817 * 1. Load the folio from i_pages 1818 * 2. Increment the refcount if it's not zero 1819 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1820 * 1821 * On the removal side: 1822 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1823 * B. Remove the page from i_pages 1824 * C. Return the page to the page allocator 1825 * 1826 * This means that any page may have its reference count temporarily 1827 * increased by a speculative page cache (or fast GUP) lookup as it can 1828 * be allocated by another user before the RCU grace period expires. 1829 * Because the refcount temporarily acquired here may end up being the 1830 * last refcount on the page, any page allocation must be freeable by 1831 * folio_put(). 1832 */ 1833 1834 /* 1835 * mapping_get_entry - Get a page cache entry. 1836 * @mapping: the address_space to search 1837 * @index: The page cache index. 1838 * 1839 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1840 * it is returned with an increased refcount. If it is a shadow entry 1841 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1842 * it is returned without further action. 1843 * 1844 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1845 */ 1846 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1847 { 1848 XA_STATE(xas, &mapping->i_pages, index); 1849 struct folio *folio; 1850 1851 rcu_read_lock(); 1852 repeat: 1853 xas_reset(&xas); 1854 folio = xas_load(&xas); 1855 if (xas_retry(&xas, folio)) 1856 goto repeat; 1857 /* 1858 * A shadow entry of a recently evicted page, or a swap entry from 1859 * shmem/tmpfs. Return it without attempting to raise page count. 1860 */ 1861 if (!folio || xa_is_value(folio)) 1862 goto out; 1863 1864 if (!folio_try_get_rcu(folio)) 1865 goto repeat; 1866 1867 if (unlikely(folio != xas_reload(&xas))) { 1868 folio_put(folio); 1869 goto repeat; 1870 } 1871 out: 1872 rcu_read_unlock(); 1873 1874 return folio; 1875 } 1876 1877 /** 1878 * __filemap_get_folio - Find and get a reference to a folio. 1879 * @mapping: The address_space to search. 1880 * @index: The page index. 1881 * @fgp_flags: %FGP flags modify how the folio is returned. 1882 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1883 * 1884 * Looks up the page cache entry at @mapping & @index. 1885 * 1886 * @fgp_flags can be zero or more of these flags: 1887 * 1888 * * %FGP_ACCESSED - The folio will be marked accessed. 1889 * * %FGP_LOCK - The folio is returned locked. 1890 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1891 * instead of allocating a new folio to replace it. 1892 * * %FGP_CREAT - If no page is present then a new page is allocated using 1893 * @gfp and added to the page cache and the VM's LRU list. 1894 * The page is returned locked and with an increased refcount. 1895 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1896 * page is already in cache. If the page was allocated, unlock it before 1897 * returning so the caller can do the same dance. 1898 * * %FGP_WRITE - The page will be written to by the caller. 1899 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1900 * * %FGP_NOWAIT - Don't get blocked by page lock. 1901 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1902 * 1903 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1904 * if the %GFP flags specified for %FGP_CREAT are atomic. 1905 * 1906 * If there is a page cache page, it is returned with an increased refcount. 1907 * 1908 * Return: The found folio or %NULL otherwise. 1909 */ 1910 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1911 int fgp_flags, gfp_t gfp) 1912 { 1913 struct folio *folio; 1914 1915 repeat: 1916 folio = mapping_get_entry(mapping, index); 1917 if (xa_is_value(folio)) { 1918 if (fgp_flags & FGP_ENTRY) 1919 return folio; 1920 folio = NULL; 1921 } 1922 if (!folio) 1923 goto no_page; 1924 1925 if (fgp_flags & FGP_LOCK) { 1926 if (fgp_flags & FGP_NOWAIT) { 1927 if (!folio_trylock(folio)) { 1928 folio_put(folio); 1929 return NULL; 1930 } 1931 } else { 1932 folio_lock(folio); 1933 } 1934 1935 /* Has the page been truncated? */ 1936 if (unlikely(folio->mapping != mapping)) { 1937 folio_unlock(folio); 1938 folio_put(folio); 1939 goto repeat; 1940 } 1941 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1942 } 1943 1944 if (fgp_flags & FGP_ACCESSED) 1945 folio_mark_accessed(folio); 1946 else if (fgp_flags & FGP_WRITE) { 1947 /* Clear idle flag for buffer write */ 1948 if (folio_test_idle(folio)) 1949 folio_clear_idle(folio); 1950 } 1951 1952 if (fgp_flags & FGP_STABLE) 1953 folio_wait_stable(folio); 1954 no_page: 1955 if (!folio && (fgp_flags & FGP_CREAT)) { 1956 int err; 1957 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1958 gfp |= __GFP_WRITE; 1959 if (fgp_flags & FGP_NOFS) 1960 gfp &= ~__GFP_FS; 1961 if (fgp_flags & FGP_NOWAIT) { 1962 gfp &= ~GFP_KERNEL; 1963 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1964 } 1965 1966 folio = filemap_alloc_folio(gfp, 0); 1967 if (!folio) 1968 return NULL; 1969 1970 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1971 fgp_flags |= FGP_LOCK; 1972 1973 /* Init accessed so avoid atomic mark_page_accessed later */ 1974 if (fgp_flags & FGP_ACCESSED) 1975 __folio_set_referenced(folio); 1976 1977 err = filemap_add_folio(mapping, folio, index, gfp); 1978 if (unlikely(err)) { 1979 folio_put(folio); 1980 folio = NULL; 1981 if (err == -EEXIST) 1982 goto repeat; 1983 } 1984 1985 /* 1986 * filemap_add_folio locks the page, and for mmap 1987 * we expect an unlocked page. 1988 */ 1989 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1990 folio_unlock(folio); 1991 } 1992 1993 return folio; 1994 } 1995 EXPORT_SYMBOL(__filemap_get_folio); 1996 1997 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1998 xa_mark_t mark) 1999 { 2000 struct folio *folio; 2001 2002 retry: 2003 if (mark == XA_PRESENT) 2004 folio = xas_find(xas, max); 2005 else 2006 folio = xas_find_marked(xas, max, mark); 2007 2008 if (xas_retry(xas, folio)) 2009 goto retry; 2010 /* 2011 * A shadow entry of a recently evicted page, a swap 2012 * entry from shmem/tmpfs or a DAX entry. Return it 2013 * without attempting to raise page count. 2014 */ 2015 if (!folio || xa_is_value(folio)) 2016 return folio; 2017 2018 if (!folio_try_get_rcu(folio)) 2019 goto reset; 2020 2021 if (unlikely(folio != xas_reload(xas))) { 2022 folio_put(folio); 2023 goto reset; 2024 } 2025 2026 return folio; 2027 reset: 2028 xas_reset(xas); 2029 goto retry; 2030 } 2031 2032 /** 2033 * find_get_entries - gang pagecache lookup 2034 * @mapping: The address_space to search 2035 * @start: The starting page cache index 2036 * @end: The final page index (inclusive). 2037 * @fbatch: Where the resulting entries are placed. 2038 * @indices: The cache indices corresponding to the entries in @entries 2039 * 2040 * find_get_entries() will search for and return a batch of entries in 2041 * the mapping. The entries are placed in @fbatch. find_get_entries() 2042 * takes a reference on any actual folios it returns. 2043 * 2044 * The entries have ascending indexes. The indices may not be consecutive 2045 * due to not-present entries or large folios. 2046 * 2047 * Any shadow entries of evicted folios, or swap entries from 2048 * shmem/tmpfs, are included in the returned array. 2049 * 2050 * Return: The number of entries which were found. 2051 */ 2052 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2053 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2054 { 2055 XA_STATE(xas, &mapping->i_pages, *start); 2056 struct folio *folio; 2057 2058 rcu_read_lock(); 2059 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2060 indices[fbatch->nr] = xas.xa_index; 2061 if (!folio_batch_add(fbatch, folio)) 2062 break; 2063 } 2064 rcu_read_unlock(); 2065 2066 if (folio_batch_count(fbatch)) { 2067 unsigned long nr = 1; 2068 int idx = folio_batch_count(fbatch) - 1; 2069 2070 folio = fbatch->folios[idx]; 2071 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2072 nr = folio_nr_pages(folio); 2073 *start = indices[idx] + nr; 2074 } 2075 return folio_batch_count(fbatch); 2076 } 2077 2078 /** 2079 * find_lock_entries - Find a batch of pagecache entries. 2080 * @mapping: The address_space to search. 2081 * @start: The starting page cache index. 2082 * @end: The final page index (inclusive). 2083 * @fbatch: Where the resulting entries are placed. 2084 * @indices: The cache indices of the entries in @fbatch. 2085 * 2086 * find_lock_entries() will return a batch of entries from @mapping. 2087 * Swap, shadow and DAX entries are included. Folios are returned 2088 * locked and with an incremented refcount. Folios which are locked 2089 * by somebody else or under writeback are skipped. Folios which are 2090 * partially outside the range are not returned. 2091 * 2092 * The entries have ascending indexes. The indices may not be consecutive 2093 * due to not-present entries, large folios, folios which could not be 2094 * locked or folios under writeback. 2095 * 2096 * Return: The number of entries which were found. 2097 */ 2098 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2099 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2100 { 2101 XA_STATE(xas, &mapping->i_pages, *start); 2102 struct folio *folio; 2103 2104 rcu_read_lock(); 2105 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2106 if (!xa_is_value(folio)) { 2107 if (folio->index < *start) 2108 goto put; 2109 if (folio->index + folio_nr_pages(folio) - 1 > end) 2110 goto put; 2111 if (!folio_trylock(folio)) 2112 goto put; 2113 if (folio->mapping != mapping || 2114 folio_test_writeback(folio)) 2115 goto unlock; 2116 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2117 folio); 2118 } 2119 indices[fbatch->nr] = xas.xa_index; 2120 if (!folio_batch_add(fbatch, folio)) 2121 break; 2122 continue; 2123 unlock: 2124 folio_unlock(folio); 2125 put: 2126 folio_put(folio); 2127 } 2128 rcu_read_unlock(); 2129 2130 if (folio_batch_count(fbatch)) { 2131 unsigned long nr = 1; 2132 int idx = folio_batch_count(fbatch) - 1; 2133 2134 folio = fbatch->folios[idx]; 2135 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2136 nr = folio_nr_pages(folio); 2137 *start = indices[idx] + nr; 2138 } 2139 return folio_batch_count(fbatch); 2140 } 2141 2142 /** 2143 * filemap_get_folios - Get a batch of folios 2144 * @mapping: The address_space to search 2145 * @start: The starting page index 2146 * @end: The final page index (inclusive) 2147 * @fbatch: The batch to fill. 2148 * 2149 * Search for and return a batch of folios in the mapping starting at 2150 * index @start and up to index @end (inclusive). The folios are returned 2151 * in @fbatch with an elevated reference count. 2152 * 2153 * The first folio may start before @start; if it does, it will contain 2154 * @start. The final folio may extend beyond @end; if it does, it will 2155 * contain @end. The folios have ascending indices. There may be gaps 2156 * between the folios if there are indices which have no folio in the 2157 * page cache. If folios are added to or removed from the page cache 2158 * while this is running, they may or may not be found by this call. 2159 * 2160 * Return: The number of folios which were found. 2161 * We also update @start to index the next folio for the traversal. 2162 */ 2163 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2164 pgoff_t end, struct folio_batch *fbatch) 2165 { 2166 XA_STATE(xas, &mapping->i_pages, *start); 2167 struct folio *folio; 2168 2169 rcu_read_lock(); 2170 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2171 /* Skip over shadow, swap and DAX entries */ 2172 if (xa_is_value(folio)) 2173 continue; 2174 if (!folio_batch_add(fbatch, folio)) { 2175 unsigned long nr = folio_nr_pages(folio); 2176 2177 if (folio_test_hugetlb(folio)) 2178 nr = 1; 2179 *start = folio->index + nr; 2180 goto out; 2181 } 2182 } 2183 2184 /* 2185 * We come here when there is no page beyond @end. We take care to not 2186 * overflow the index @start as it confuses some of the callers. This 2187 * breaks the iteration when there is a page at index -1 but that is 2188 * already broken anyway. 2189 */ 2190 if (end == (pgoff_t)-1) 2191 *start = (pgoff_t)-1; 2192 else 2193 *start = end + 1; 2194 out: 2195 rcu_read_unlock(); 2196 2197 return folio_batch_count(fbatch); 2198 } 2199 EXPORT_SYMBOL(filemap_get_folios); 2200 2201 static inline 2202 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2203 { 2204 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2205 return false; 2206 if (index >= max) 2207 return false; 2208 return index < folio->index + folio_nr_pages(folio) - 1; 2209 } 2210 2211 /** 2212 * filemap_get_folios_contig - Get a batch of contiguous folios 2213 * @mapping: The address_space to search 2214 * @start: The starting page index 2215 * @end: The final page index (inclusive) 2216 * @fbatch: The batch to fill 2217 * 2218 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2219 * except the returned folios are guaranteed to be contiguous. This may 2220 * not return all contiguous folios if the batch gets filled up. 2221 * 2222 * Return: The number of folios found. 2223 * Also update @start to be positioned for traversal of the next folio. 2224 */ 2225 2226 unsigned filemap_get_folios_contig(struct address_space *mapping, 2227 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2228 { 2229 XA_STATE(xas, &mapping->i_pages, *start); 2230 unsigned long nr; 2231 struct folio *folio; 2232 2233 rcu_read_lock(); 2234 2235 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2236 folio = xas_next(&xas)) { 2237 if (xas_retry(&xas, folio)) 2238 continue; 2239 /* 2240 * If the entry has been swapped out, we can stop looking. 2241 * No current caller is looking for DAX entries. 2242 */ 2243 if (xa_is_value(folio)) 2244 goto update_start; 2245 2246 if (!folio_try_get_rcu(folio)) 2247 goto retry; 2248 2249 if (unlikely(folio != xas_reload(&xas))) 2250 goto put_folio; 2251 2252 if (!folio_batch_add(fbatch, folio)) { 2253 nr = folio_nr_pages(folio); 2254 2255 if (folio_test_hugetlb(folio)) 2256 nr = 1; 2257 *start = folio->index + nr; 2258 goto out; 2259 } 2260 continue; 2261 put_folio: 2262 folio_put(folio); 2263 2264 retry: 2265 xas_reset(&xas); 2266 } 2267 2268 update_start: 2269 nr = folio_batch_count(fbatch); 2270 2271 if (nr) { 2272 folio = fbatch->folios[nr - 1]; 2273 if (folio_test_hugetlb(folio)) 2274 *start = folio->index + 1; 2275 else 2276 *start = folio->index + folio_nr_pages(folio); 2277 } 2278 out: 2279 rcu_read_unlock(); 2280 return folio_batch_count(fbatch); 2281 } 2282 EXPORT_SYMBOL(filemap_get_folios_contig); 2283 2284 /** 2285 * find_get_pages_range_tag - Find and return head pages matching @tag. 2286 * @mapping: the address_space to search 2287 * @index: the starting page index 2288 * @end: The final page index (inclusive) 2289 * @tag: the tag index 2290 * @nr_pages: the maximum number of pages 2291 * @pages: where the resulting pages are placed 2292 * 2293 * Like find_get_pages_range(), except we only return head pages which are 2294 * tagged with @tag. @index is updated to the index immediately after the 2295 * last page we return, ready for the next iteration. 2296 * 2297 * Return: the number of pages which were found. 2298 */ 2299 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2300 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2301 struct page **pages) 2302 { 2303 XA_STATE(xas, &mapping->i_pages, *index); 2304 struct folio *folio; 2305 unsigned ret = 0; 2306 2307 if (unlikely(!nr_pages)) 2308 return 0; 2309 2310 rcu_read_lock(); 2311 while ((folio = find_get_entry(&xas, end, tag))) { 2312 /* 2313 * Shadow entries should never be tagged, but this iteration 2314 * is lockless so there is a window for page reclaim to evict 2315 * a page we saw tagged. Skip over it. 2316 */ 2317 if (xa_is_value(folio)) 2318 continue; 2319 2320 pages[ret] = &folio->page; 2321 if (++ret == nr_pages) { 2322 *index = folio->index + folio_nr_pages(folio); 2323 goto out; 2324 } 2325 } 2326 2327 /* 2328 * We come here when we got to @end. We take care to not overflow the 2329 * index @index as it confuses some of the callers. This breaks the 2330 * iteration when there is a page at index -1 but that is already 2331 * broken anyway. 2332 */ 2333 if (end == (pgoff_t)-1) 2334 *index = (pgoff_t)-1; 2335 else 2336 *index = end + 1; 2337 out: 2338 rcu_read_unlock(); 2339 2340 return ret; 2341 } 2342 EXPORT_SYMBOL(find_get_pages_range_tag); 2343 2344 /* 2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2346 * a _large_ part of the i/o request. Imagine the worst scenario: 2347 * 2348 * ---R__________________________________________B__________ 2349 * ^ reading here ^ bad block(assume 4k) 2350 * 2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2352 * => failing the whole request => read(R) => read(R+1) => 2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2356 * 2357 * It is going insane. Fix it by quickly scaling down the readahead size. 2358 */ 2359 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2360 { 2361 ra->ra_pages /= 4; 2362 } 2363 2364 /* 2365 * filemap_get_read_batch - Get a batch of folios for read 2366 * 2367 * Get a batch of folios which represent a contiguous range of bytes in 2368 * the file. No exceptional entries will be returned. If @index is in 2369 * the middle of a folio, the entire folio will be returned. The last 2370 * folio in the batch may have the readahead flag set or the uptodate flag 2371 * clear so that the caller can take the appropriate action. 2372 */ 2373 static void filemap_get_read_batch(struct address_space *mapping, 2374 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2375 { 2376 XA_STATE(xas, &mapping->i_pages, index); 2377 struct folio *folio; 2378 2379 rcu_read_lock(); 2380 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2381 if (xas_retry(&xas, folio)) 2382 continue; 2383 if (xas.xa_index > max || xa_is_value(folio)) 2384 break; 2385 if (xa_is_sibling(folio)) 2386 break; 2387 if (!folio_try_get_rcu(folio)) 2388 goto retry; 2389 2390 if (unlikely(folio != xas_reload(&xas))) 2391 goto put_folio; 2392 2393 if (!folio_batch_add(fbatch, folio)) 2394 break; 2395 if (!folio_test_uptodate(folio)) 2396 break; 2397 if (folio_test_readahead(folio)) 2398 break; 2399 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2400 continue; 2401 put_folio: 2402 folio_put(folio); 2403 retry: 2404 xas_reset(&xas); 2405 } 2406 rcu_read_unlock(); 2407 } 2408 2409 static int filemap_read_folio(struct file *file, filler_t filler, 2410 struct folio *folio) 2411 { 2412 bool workingset = folio_test_workingset(folio); 2413 unsigned long pflags; 2414 int error; 2415 2416 /* 2417 * A previous I/O error may have been due to temporary failures, 2418 * eg. multipath errors. PG_error will be set again if read_folio 2419 * fails. 2420 */ 2421 folio_clear_error(folio); 2422 2423 /* Start the actual read. The read will unlock the page. */ 2424 if (unlikely(workingset)) 2425 psi_memstall_enter(&pflags); 2426 error = filler(file, folio); 2427 if (unlikely(workingset)) 2428 psi_memstall_leave(&pflags); 2429 if (error) 2430 return error; 2431 2432 error = folio_wait_locked_killable(folio); 2433 if (error) 2434 return error; 2435 if (folio_test_uptodate(folio)) 2436 return 0; 2437 if (file) 2438 shrink_readahead_size_eio(&file->f_ra); 2439 return -EIO; 2440 } 2441 2442 static bool filemap_range_uptodate(struct address_space *mapping, 2443 loff_t pos, struct iov_iter *iter, struct folio *folio) 2444 { 2445 int count; 2446 2447 if (folio_test_uptodate(folio)) 2448 return true; 2449 /* pipes can't handle partially uptodate pages */ 2450 if (iov_iter_is_pipe(iter)) 2451 return false; 2452 if (!mapping->a_ops->is_partially_uptodate) 2453 return false; 2454 if (mapping->host->i_blkbits >= folio_shift(folio)) 2455 return false; 2456 2457 count = iter->count; 2458 if (folio_pos(folio) > pos) { 2459 count -= folio_pos(folio) - pos; 2460 pos = 0; 2461 } else { 2462 pos -= folio_pos(folio); 2463 } 2464 2465 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2466 } 2467 2468 static int filemap_update_page(struct kiocb *iocb, 2469 struct address_space *mapping, struct iov_iter *iter, 2470 struct folio *folio) 2471 { 2472 int error; 2473 2474 if (iocb->ki_flags & IOCB_NOWAIT) { 2475 if (!filemap_invalidate_trylock_shared(mapping)) 2476 return -EAGAIN; 2477 } else { 2478 filemap_invalidate_lock_shared(mapping); 2479 } 2480 2481 if (!folio_trylock(folio)) { 2482 error = -EAGAIN; 2483 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2484 goto unlock_mapping; 2485 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2486 filemap_invalidate_unlock_shared(mapping); 2487 /* 2488 * This is where we usually end up waiting for a 2489 * previously submitted readahead to finish. 2490 */ 2491 folio_put_wait_locked(folio, TASK_KILLABLE); 2492 return AOP_TRUNCATED_PAGE; 2493 } 2494 error = __folio_lock_async(folio, iocb->ki_waitq); 2495 if (error) 2496 goto unlock_mapping; 2497 } 2498 2499 error = AOP_TRUNCATED_PAGE; 2500 if (!folio->mapping) 2501 goto unlock; 2502 2503 error = 0; 2504 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2505 goto unlock; 2506 2507 error = -EAGAIN; 2508 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2509 goto unlock; 2510 2511 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2512 folio); 2513 goto unlock_mapping; 2514 unlock: 2515 folio_unlock(folio); 2516 unlock_mapping: 2517 filemap_invalidate_unlock_shared(mapping); 2518 if (error == AOP_TRUNCATED_PAGE) 2519 folio_put(folio); 2520 return error; 2521 } 2522 2523 static int filemap_create_folio(struct file *file, 2524 struct address_space *mapping, pgoff_t index, 2525 struct folio_batch *fbatch) 2526 { 2527 struct folio *folio; 2528 int error; 2529 2530 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2531 if (!folio) 2532 return -ENOMEM; 2533 2534 /* 2535 * Protect against truncate / hole punch. Grabbing invalidate_lock 2536 * here assures we cannot instantiate and bring uptodate new 2537 * pagecache folios after evicting page cache during truncate 2538 * and before actually freeing blocks. Note that we could 2539 * release invalidate_lock after inserting the folio into 2540 * the page cache as the locked folio would then be enough to 2541 * synchronize with hole punching. But there are code paths 2542 * such as filemap_update_page() filling in partially uptodate 2543 * pages or ->readahead() that need to hold invalidate_lock 2544 * while mapping blocks for IO so let's hold the lock here as 2545 * well to keep locking rules simple. 2546 */ 2547 filemap_invalidate_lock_shared(mapping); 2548 error = filemap_add_folio(mapping, folio, index, 2549 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2550 if (error == -EEXIST) 2551 error = AOP_TRUNCATED_PAGE; 2552 if (error) 2553 goto error; 2554 2555 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2556 if (error) 2557 goto error; 2558 2559 filemap_invalidate_unlock_shared(mapping); 2560 folio_batch_add(fbatch, folio); 2561 return 0; 2562 error: 2563 filemap_invalidate_unlock_shared(mapping); 2564 folio_put(folio); 2565 return error; 2566 } 2567 2568 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2569 struct address_space *mapping, struct folio *folio, 2570 pgoff_t last_index) 2571 { 2572 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2573 2574 if (iocb->ki_flags & IOCB_NOIO) 2575 return -EAGAIN; 2576 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2577 return 0; 2578 } 2579 2580 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2581 struct folio_batch *fbatch) 2582 { 2583 struct file *filp = iocb->ki_filp; 2584 struct address_space *mapping = filp->f_mapping; 2585 struct file_ra_state *ra = &filp->f_ra; 2586 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2587 pgoff_t last_index; 2588 struct folio *folio; 2589 int err = 0; 2590 2591 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2592 retry: 2593 if (fatal_signal_pending(current)) 2594 return -EINTR; 2595 2596 filemap_get_read_batch(mapping, index, last_index, fbatch); 2597 if (!folio_batch_count(fbatch)) { 2598 if (iocb->ki_flags & IOCB_NOIO) 2599 return -EAGAIN; 2600 page_cache_sync_readahead(mapping, ra, filp, index, 2601 last_index - index); 2602 filemap_get_read_batch(mapping, index, last_index, fbatch); 2603 } 2604 if (!folio_batch_count(fbatch)) { 2605 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2606 return -EAGAIN; 2607 err = filemap_create_folio(filp, mapping, 2608 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2609 if (err == AOP_TRUNCATED_PAGE) 2610 goto retry; 2611 return err; 2612 } 2613 2614 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2615 if (folio_test_readahead(folio)) { 2616 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2617 if (err) 2618 goto err; 2619 } 2620 if (!folio_test_uptodate(folio)) { 2621 if ((iocb->ki_flags & IOCB_WAITQ) && 2622 folio_batch_count(fbatch) > 1) 2623 iocb->ki_flags |= IOCB_NOWAIT; 2624 err = filemap_update_page(iocb, mapping, iter, folio); 2625 if (err) 2626 goto err; 2627 } 2628 2629 return 0; 2630 err: 2631 if (err < 0) 2632 folio_put(folio); 2633 if (likely(--fbatch->nr)) 2634 return 0; 2635 if (err == AOP_TRUNCATED_PAGE) 2636 goto retry; 2637 return err; 2638 } 2639 2640 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2641 { 2642 unsigned int shift = folio_shift(folio); 2643 2644 return (pos1 >> shift == pos2 >> shift); 2645 } 2646 2647 /** 2648 * filemap_read - Read data from the page cache. 2649 * @iocb: The iocb to read. 2650 * @iter: Destination for the data. 2651 * @already_read: Number of bytes already read by the caller. 2652 * 2653 * Copies data from the page cache. If the data is not currently present, 2654 * uses the readahead and read_folio address_space operations to fetch it. 2655 * 2656 * Return: Total number of bytes copied, including those already read by 2657 * the caller. If an error happens before any bytes are copied, returns 2658 * a negative error number. 2659 */ 2660 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2661 ssize_t already_read) 2662 { 2663 struct file *filp = iocb->ki_filp; 2664 struct file_ra_state *ra = &filp->f_ra; 2665 struct address_space *mapping = filp->f_mapping; 2666 struct inode *inode = mapping->host; 2667 struct folio_batch fbatch; 2668 int i, error = 0; 2669 bool writably_mapped; 2670 loff_t isize, end_offset; 2671 2672 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2673 return 0; 2674 if (unlikely(!iov_iter_count(iter))) 2675 return 0; 2676 2677 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2678 folio_batch_init(&fbatch); 2679 2680 do { 2681 cond_resched(); 2682 2683 /* 2684 * If we've already successfully copied some data, then we 2685 * can no longer safely return -EIOCBQUEUED. Hence mark 2686 * an async read NOWAIT at that point. 2687 */ 2688 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2689 iocb->ki_flags |= IOCB_NOWAIT; 2690 2691 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2692 break; 2693 2694 error = filemap_get_pages(iocb, iter, &fbatch); 2695 if (error < 0) 2696 break; 2697 2698 /* 2699 * i_size must be checked after we know the pages are Uptodate. 2700 * 2701 * Checking i_size after the check allows us to calculate 2702 * the correct value for "nr", which means the zero-filled 2703 * part of the page is not copied back to userspace (unless 2704 * another truncate extends the file - this is desired though). 2705 */ 2706 isize = i_size_read(inode); 2707 if (unlikely(iocb->ki_pos >= isize)) 2708 goto put_folios; 2709 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2710 2711 /* 2712 * Once we start copying data, we don't want to be touching any 2713 * cachelines that might be contended: 2714 */ 2715 writably_mapped = mapping_writably_mapped(mapping); 2716 2717 /* 2718 * When a read accesses the same folio several times, only 2719 * mark it as accessed the first time. 2720 */ 2721 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2722 fbatch.folios[0])) 2723 folio_mark_accessed(fbatch.folios[0]); 2724 2725 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2726 struct folio *folio = fbatch.folios[i]; 2727 size_t fsize = folio_size(folio); 2728 size_t offset = iocb->ki_pos & (fsize - 1); 2729 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2730 fsize - offset); 2731 size_t copied; 2732 2733 if (end_offset < folio_pos(folio)) 2734 break; 2735 if (i > 0) 2736 folio_mark_accessed(folio); 2737 /* 2738 * If users can be writing to this folio using arbitrary 2739 * virtual addresses, take care of potential aliasing 2740 * before reading the folio on the kernel side. 2741 */ 2742 if (writably_mapped) 2743 flush_dcache_folio(folio); 2744 2745 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2746 2747 already_read += copied; 2748 iocb->ki_pos += copied; 2749 ra->prev_pos = iocb->ki_pos; 2750 2751 if (copied < bytes) { 2752 error = -EFAULT; 2753 break; 2754 } 2755 } 2756 put_folios: 2757 for (i = 0; i < folio_batch_count(&fbatch); i++) 2758 folio_put(fbatch.folios[i]); 2759 folio_batch_init(&fbatch); 2760 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2761 2762 file_accessed(filp); 2763 2764 return already_read ? already_read : error; 2765 } 2766 EXPORT_SYMBOL_GPL(filemap_read); 2767 2768 /** 2769 * generic_file_read_iter - generic filesystem read routine 2770 * @iocb: kernel I/O control block 2771 * @iter: destination for the data read 2772 * 2773 * This is the "read_iter()" routine for all filesystems 2774 * that can use the page cache directly. 2775 * 2776 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2777 * be returned when no data can be read without waiting for I/O requests 2778 * to complete; it doesn't prevent readahead. 2779 * 2780 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2781 * requests shall be made for the read or for readahead. When no data 2782 * can be read, -EAGAIN shall be returned. When readahead would be 2783 * triggered, a partial, possibly empty read shall be returned. 2784 * 2785 * Return: 2786 * * number of bytes copied, even for partial reads 2787 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2788 */ 2789 ssize_t 2790 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2791 { 2792 size_t count = iov_iter_count(iter); 2793 ssize_t retval = 0; 2794 2795 if (!count) 2796 return 0; /* skip atime */ 2797 2798 if (iocb->ki_flags & IOCB_DIRECT) { 2799 struct file *file = iocb->ki_filp; 2800 struct address_space *mapping = file->f_mapping; 2801 struct inode *inode = mapping->host; 2802 2803 if (iocb->ki_flags & IOCB_NOWAIT) { 2804 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2805 iocb->ki_pos + count - 1)) 2806 return -EAGAIN; 2807 } else { 2808 retval = filemap_write_and_wait_range(mapping, 2809 iocb->ki_pos, 2810 iocb->ki_pos + count - 1); 2811 if (retval < 0) 2812 return retval; 2813 } 2814 2815 file_accessed(file); 2816 2817 retval = mapping->a_ops->direct_IO(iocb, iter); 2818 if (retval >= 0) { 2819 iocb->ki_pos += retval; 2820 count -= retval; 2821 } 2822 if (retval != -EIOCBQUEUED) 2823 iov_iter_revert(iter, count - iov_iter_count(iter)); 2824 2825 /* 2826 * Btrfs can have a short DIO read if we encounter 2827 * compressed extents, so if there was an error, or if 2828 * we've already read everything we wanted to, or if 2829 * there was a short read because we hit EOF, go ahead 2830 * and return. Otherwise fallthrough to buffered io for 2831 * the rest of the read. Buffered reads will not work for 2832 * DAX files, so don't bother trying. 2833 */ 2834 if (retval < 0 || !count || IS_DAX(inode)) 2835 return retval; 2836 if (iocb->ki_pos >= i_size_read(inode)) 2837 return retval; 2838 } 2839 2840 return filemap_read(iocb, iter, retval); 2841 } 2842 EXPORT_SYMBOL(generic_file_read_iter); 2843 2844 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2845 struct address_space *mapping, struct folio *folio, 2846 loff_t start, loff_t end, bool seek_data) 2847 { 2848 const struct address_space_operations *ops = mapping->a_ops; 2849 size_t offset, bsz = i_blocksize(mapping->host); 2850 2851 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2852 return seek_data ? start : end; 2853 if (!ops->is_partially_uptodate) 2854 return seek_data ? end : start; 2855 2856 xas_pause(xas); 2857 rcu_read_unlock(); 2858 folio_lock(folio); 2859 if (unlikely(folio->mapping != mapping)) 2860 goto unlock; 2861 2862 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2863 2864 do { 2865 if (ops->is_partially_uptodate(folio, offset, bsz) == 2866 seek_data) 2867 break; 2868 start = (start + bsz) & ~(bsz - 1); 2869 offset += bsz; 2870 } while (offset < folio_size(folio)); 2871 unlock: 2872 folio_unlock(folio); 2873 rcu_read_lock(); 2874 return start; 2875 } 2876 2877 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2878 { 2879 if (xa_is_value(folio)) 2880 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2881 return folio_size(folio); 2882 } 2883 2884 /** 2885 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2886 * @mapping: Address space to search. 2887 * @start: First byte to consider. 2888 * @end: Limit of search (exclusive). 2889 * @whence: Either SEEK_HOLE or SEEK_DATA. 2890 * 2891 * If the page cache knows which blocks contain holes and which blocks 2892 * contain data, your filesystem can use this function to implement 2893 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2894 * entirely memory-based such as tmpfs, and filesystems which support 2895 * unwritten extents. 2896 * 2897 * Return: The requested offset on success, or -ENXIO if @whence specifies 2898 * SEEK_DATA and there is no data after @start. There is an implicit hole 2899 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2900 * and @end contain data. 2901 */ 2902 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2903 loff_t end, int whence) 2904 { 2905 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2906 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2907 bool seek_data = (whence == SEEK_DATA); 2908 struct folio *folio; 2909 2910 if (end <= start) 2911 return -ENXIO; 2912 2913 rcu_read_lock(); 2914 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2915 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2916 size_t seek_size; 2917 2918 if (start < pos) { 2919 if (!seek_data) 2920 goto unlock; 2921 start = pos; 2922 } 2923 2924 seek_size = seek_folio_size(&xas, folio); 2925 pos = round_up((u64)pos + 1, seek_size); 2926 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2927 seek_data); 2928 if (start < pos) 2929 goto unlock; 2930 if (start >= end) 2931 break; 2932 if (seek_size > PAGE_SIZE) 2933 xas_set(&xas, pos >> PAGE_SHIFT); 2934 if (!xa_is_value(folio)) 2935 folio_put(folio); 2936 } 2937 if (seek_data) 2938 start = -ENXIO; 2939 unlock: 2940 rcu_read_unlock(); 2941 if (folio && !xa_is_value(folio)) 2942 folio_put(folio); 2943 if (start > end) 2944 return end; 2945 return start; 2946 } 2947 2948 #ifdef CONFIG_MMU 2949 #define MMAP_LOTSAMISS (100) 2950 /* 2951 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2952 * @vmf - the vm_fault for this fault. 2953 * @folio - the folio to lock. 2954 * @fpin - the pointer to the file we may pin (or is already pinned). 2955 * 2956 * This works similar to lock_folio_or_retry in that it can drop the 2957 * mmap_lock. It differs in that it actually returns the folio locked 2958 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2959 * to drop the mmap_lock then fpin will point to the pinned file and 2960 * needs to be fput()'ed at a later point. 2961 */ 2962 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2963 struct file **fpin) 2964 { 2965 if (folio_trylock(folio)) 2966 return 1; 2967 2968 /* 2969 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2970 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2971 * is supposed to work. We have way too many special cases.. 2972 */ 2973 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2974 return 0; 2975 2976 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2977 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2978 if (__folio_lock_killable(folio)) { 2979 /* 2980 * We didn't have the right flags to drop the mmap_lock, 2981 * but all fault_handlers only check for fatal signals 2982 * if we return VM_FAULT_RETRY, so we need to drop the 2983 * mmap_lock here and return 0 if we don't have a fpin. 2984 */ 2985 if (*fpin == NULL) 2986 mmap_read_unlock(vmf->vma->vm_mm); 2987 return 0; 2988 } 2989 } else 2990 __folio_lock(folio); 2991 2992 return 1; 2993 } 2994 2995 /* 2996 * Synchronous readahead happens when we don't even find a page in the page 2997 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2998 * to drop the mmap sem we return the file that was pinned in order for us to do 2999 * that. If we didn't pin a file then we return NULL. The file that is 3000 * returned needs to be fput()'ed when we're done with it. 3001 */ 3002 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3003 { 3004 struct file *file = vmf->vma->vm_file; 3005 struct file_ra_state *ra = &file->f_ra; 3006 struct address_space *mapping = file->f_mapping; 3007 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3008 struct file *fpin = NULL; 3009 unsigned long vm_flags = vmf->vma->vm_flags; 3010 unsigned int mmap_miss; 3011 3012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3013 /* Use the readahead code, even if readahead is disabled */ 3014 if (vm_flags & VM_HUGEPAGE) { 3015 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3016 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3017 ra->size = HPAGE_PMD_NR; 3018 /* 3019 * Fetch two PMD folios, so we get the chance to actually 3020 * readahead, unless we've been told not to. 3021 */ 3022 if (!(vm_flags & VM_RAND_READ)) 3023 ra->size *= 2; 3024 ra->async_size = HPAGE_PMD_NR; 3025 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3026 return fpin; 3027 } 3028 #endif 3029 3030 /* If we don't want any read-ahead, don't bother */ 3031 if (vm_flags & VM_RAND_READ) 3032 return fpin; 3033 if (!ra->ra_pages) 3034 return fpin; 3035 3036 if (vm_flags & VM_SEQ_READ) { 3037 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3038 page_cache_sync_ra(&ractl, ra->ra_pages); 3039 return fpin; 3040 } 3041 3042 /* Avoid banging the cache line if not needed */ 3043 mmap_miss = READ_ONCE(ra->mmap_miss); 3044 if (mmap_miss < MMAP_LOTSAMISS * 10) 3045 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3046 3047 /* 3048 * Do we miss much more than hit in this file? If so, 3049 * stop bothering with read-ahead. It will only hurt. 3050 */ 3051 if (mmap_miss > MMAP_LOTSAMISS) 3052 return fpin; 3053 3054 /* 3055 * mmap read-around 3056 */ 3057 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3058 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3059 ra->size = ra->ra_pages; 3060 ra->async_size = ra->ra_pages / 4; 3061 ractl._index = ra->start; 3062 page_cache_ra_order(&ractl, ra, 0); 3063 return fpin; 3064 } 3065 3066 /* 3067 * Asynchronous readahead happens when we find the page and PG_readahead, 3068 * so we want to possibly extend the readahead further. We return the file that 3069 * was pinned if we have to drop the mmap_lock in order to do IO. 3070 */ 3071 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3072 struct folio *folio) 3073 { 3074 struct file *file = vmf->vma->vm_file; 3075 struct file_ra_state *ra = &file->f_ra; 3076 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3077 struct file *fpin = NULL; 3078 unsigned int mmap_miss; 3079 3080 /* If we don't want any read-ahead, don't bother */ 3081 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3082 return fpin; 3083 3084 mmap_miss = READ_ONCE(ra->mmap_miss); 3085 if (mmap_miss) 3086 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3087 3088 if (folio_test_readahead(folio)) { 3089 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3090 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3091 } 3092 return fpin; 3093 } 3094 3095 /** 3096 * filemap_fault - read in file data for page fault handling 3097 * @vmf: struct vm_fault containing details of the fault 3098 * 3099 * filemap_fault() is invoked via the vma operations vector for a 3100 * mapped memory region to read in file data during a page fault. 3101 * 3102 * The goto's are kind of ugly, but this streamlines the normal case of having 3103 * it in the page cache, and handles the special cases reasonably without 3104 * having a lot of duplicated code. 3105 * 3106 * vma->vm_mm->mmap_lock must be held on entry. 3107 * 3108 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3109 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3110 * 3111 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3112 * has not been released. 3113 * 3114 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3115 * 3116 * Return: bitwise-OR of %VM_FAULT_ codes. 3117 */ 3118 vm_fault_t filemap_fault(struct vm_fault *vmf) 3119 { 3120 int error; 3121 struct file *file = vmf->vma->vm_file; 3122 struct file *fpin = NULL; 3123 struct address_space *mapping = file->f_mapping; 3124 struct inode *inode = mapping->host; 3125 pgoff_t max_idx, index = vmf->pgoff; 3126 struct folio *folio; 3127 vm_fault_t ret = 0; 3128 bool mapping_locked = false; 3129 3130 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3131 if (unlikely(index >= max_idx)) 3132 return VM_FAULT_SIGBUS; 3133 3134 /* 3135 * Do we have something in the page cache already? 3136 */ 3137 folio = filemap_get_folio(mapping, index); 3138 if (likely(folio)) { 3139 /* 3140 * We found the page, so try async readahead before waiting for 3141 * the lock. 3142 */ 3143 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3144 fpin = do_async_mmap_readahead(vmf, folio); 3145 if (unlikely(!folio_test_uptodate(folio))) { 3146 filemap_invalidate_lock_shared(mapping); 3147 mapping_locked = true; 3148 } 3149 } else { 3150 /* No page in the page cache at all */ 3151 count_vm_event(PGMAJFAULT); 3152 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3153 ret = VM_FAULT_MAJOR; 3154 fpin = do_sync_mmap_readahead(vmf); 3155 retry_find: 3156 /* 3157 * See comment in filemap_create_folio() why we need 3158 * invalidate_lock 3159 */ 3160 if (!mapping_locked) { 3161 filemap_invalidate_lock_shared(mapping); 3162 mapping_locked = true; 3163 } 3164 folio = __filemap_get_folio(mapping, index, 3165 FGP_CREAT|FGP_FOR_MMAP, 3166 vmf->gfp_mask); 3167 if (!folio) { 3168 if (fpin) 3169 goto out_retry; 3170 filemap_invalidate_unlock_shared(mapping); 3171 return VM_FAULT_OOM; 3172 } 3173 } 3174 3175 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3176 goto out_retry; 3177 3178 /* Did it get truncated? */ 3179 if (unlikely(folio->mapping != mapping)) { 3180 folio_unlock(folio); 3181 folio_put(folio); 3182 goto retry_find; 3183 } 3184 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3185 3186 /* 3187 * We have a locked page in the page cache, now we need to check 3188 * that it's up-to-date. If not, it is going to be due to an error. 3189 */ 3190 if (unlikely(!folio_test_uptodate(folio))) { 3191 /* 3192 * The page was in cache and uptodate and now it is not. 3193 * Strange but possible since we didn't hold the page lock all 3194 * the time. Let's drop everything get the invalidate lock and 3195 * try again. 3196 */ 3197 if (!mapping_locked) { 3198 folio_unlock(folio); 3199 folio_put(folio); 3200 goto retry_find; 3201 } 3202 goto page_not_uptodate; 3203 } 3204 3205 /* 3206 * We've made it this far and we had to drop our mmap_lock, now is the 3207 * time to return to the upper layer and have it re-find the vma and 3208 * redo the fault. 3209 */ 3210 if (fpin) { 3211 folio_unlock(folio); 3212 goto out_retry; 3213 } 3214 if (mapping_locked) 3215 filemap_invalidate_unlock_shared(mapping); 3216 3217 /* 3218 * Found the page and have a reference on it. 3219 * We must recheck i_size under page lock. 3220 */ 3221 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3222 if (unlikely(index >= max_idx)) { 3223 folio_unlock(folio); 3224 folio_put(folio); 3225 return VM_FAULT_SIGBUS; 3226 } 3227 3228 vmf->page = folio_file_page(folio, index); 3229 return ret | VM_FAULT_LOCKED; 3230 3231 page_not_uptodate: 3232 /* 3233 * Umm, take care of errors if the page isn't up-to-date. 3234 * Try to re-read it _once_. We do this synchronously, 3235 * because there really aren't any performance issues here 3236 * and we need to check for errors. 3237 */ 3238 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3239 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3240 if (fpin) 3241 goto out_retry; 3242 folio_put(folio); 3243 3244 if (!error || error == AOP_TRUNCATED_PAGE) 3245 goto retry_find; 3246 filemap_invalidate_unlock_shared(mapping); 3247 3248 return VM_FAULT_SIGBUS; 3249 3250 out_retry: 3251 /* 3252 * We dropped the mmap_lock, we need to return to the fault handler to 3253 * re-find the vma and come back and find our hopefully still populated 3254 * page. 3255 */ 3256 if (folio) 3257 folio_put(folio); 3258 if (mapping_locked) 3259 filemap_invalidate_unlock_shared(mapping); 3260 if (fpin) 3261 fput(fpin); 3262 return ret | VM_FAULT_RETRY; 3263 } 3264 EXPORT_SYMBOL(filemap_fault); 3265 3266 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3267 { 3268 struct mm_struct *mm = vmf->vma->vm_mm; 3269 3270 /* Huge page is mapped? No need to proceed. */ 3271 if (pmd_trans_huge(*vmf->pmd)) { 3272 unlock_page(page); 3273 put_page(page); 3274 return true; 3275 } 3276 3277 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3278 vm_fault_t ret = do_set_pmd(vmf, page); 3279 if (!ret) { 3280 /* The page is mapped successfully, reference consumed. */ 3281 unlock_page(page); 3282 return true; 3283 } 3284 } 3285 3286 if (pmd_none(*vmf->pmd)) 3287 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3288 3289 /* See comment in handle_pte_fault() */ 3290 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3291 unlock_page(page); 3292 put_page(page); 3293 return true; 3294 } 3295 3296 return false; 3297 } 3298 3299 static struct folio *next_uptodate_page(struct folio *folio, 3300 struct address_space *mapping, 3301 struct xa_state *xas, pgoff_t end_pgoff) 3302 { 3303 unsigned long max_idx; 3304 3305 do { 3306 if (!folio) 3307 return NULL; 3308 if (xas_retry(xas, folio)) 3309 continue; 3310 if (xa_is_value(folio)) 3311 continue; 3312 if (folio_test_locked(folio)) 3313 continue; 3314 if (!folio_try_get_rcu(folio)) 3315 continue; 3316 /* Has the page moved or been split? */ 3317 if (unlikely(folio != xas_reload(xas))) 3318 goto skip; 3319 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3320 goto skip; 3321 if (!folio_trylock(folio)) 3322 goto skip; 3323 if (folio->mapping != mapping) 3324 goto unlock; 3325 if (!folio_test_uptodate(folio)) 3326 goto unlock; 3327 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3328 if (xas->xa_index >= max_idx) 3329 goto unlock; 3330 return folio; 3331 unlock: 3332 folio_unlock(folio); 3333 skip: 3334 folio_put(folio); 3335 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3336 3337 return NULL; 3338 } 3339 3340 static inline struct folio *first_map_page(struct address_space *mapping, 3341 struct xa_state *xas, 3342 pgoff_t end_pgoff) 3343 { 3344 return next_uptodate_page(xas_find(xas, end_pgoff), 3345 mapping, xas, end_pgoff); 3346 } 3347 3348 static inline struct folio *next_map_page(struct address_space *mapping, 3349 struct xa_state *xas, 3350 pgoff_t end_pgoff) 3351 { 3352 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3353 mapping, xas, end_pgoff); 3354 } 3355 3356 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3357 pgoff_t start_pgoff, pgoff_t end_pgoff) 3358 { 3359 struct vm_area_struct *vma = vmf->vma; 3360 struct file *file = vma->vm_file; 3361 struct address_space *mapping = file->f_mapping; 3362 pgoff_t last_pgoff = start_pgoff; 3363 unsigned long addr; 3364 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3365 struct folio *folio; 3366 struct page *page; 3367 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3368 vm_fault_t ret = 0; 3369 3370 rcu_read_lock(); 3371 folio = first_map_page(mapping, &xas, end_pgoff); 3372 if (!folio) 3373 goto out; 3374 3375 if (filemap_map_pmd(vmf, &folio->page)) { 3376 ret = VM_FAULT_NOPAGE; 3377 goto out; 3378 } 3379 3380 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3381 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3382 do { 3383 again: 3384 page = folio_file_page(folio, xas.xa_index); 3385 if (PageHWPoison(page)) 3386 goto unlock; 3387 3388 if (mmap_miss > 0) 3389 mmap_miss--; 3390 3391 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3392 vmf->pte += xas.xa_index - last_pgoff; 3393 last_pgoff = xas.xa_index; 3394 3395 /* 3396 * NOTE: If there're PTE markers, we'll leave them to be 3397 * handled in the specific fault path, and it'll prohibit the 3398 * fault-around logic. 3399 */ 3400 if (!pte_none(*vmf->pte)) 3401 goto unlock; 3402 3403 /* We're about to handle the fault */ 3404 if (vmf->address == addr) 3405 ret = VM_FAULT_NOPAGE; 3406 3407 do_set_pte(vmf, page, addr); 3408 /* no need to invalidate: a not-present page won't be cached */ 3409 update_mmu_cache(vma, addr, vmf->pte); 3410 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3411 xas.xa_index++; 3412 folio_ref_inc(folio); 3413 goto again; 3414 } 3415 folio_unlock(folio); 3416 continue; 3417 unlock: 3418 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3419 xas.xa_index++; 3420 goto again; 3421 } 3422 folio_unlock(folio); 3423 folio_put(folio); 3424 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3425 pte_unmap_unlock(vmf->pte, vmf->ptl); 3426 out: 3427 rcu_read_unlock(); 3428 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3429 return ret; 3430 } 3431 EXPORT_SYMBOL(filemap_map_pages); 3432 3433 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3434 { 3435 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3436 struct folio *folio = page_folio(vmf->page); 3437 vm_fault_t ret = VM_FAULT_LOCKED; 3438 3439 sb_start_pagefault(mapping->host->i_sb); 3440 file_update_time(vmf->vma->vm_file); 3441 folio_lock(folio); 3442 if (folio->mapping != mapping) { 3443 folio_unlock(folio); 3444 ret = VM_FAULT_NOPAGE; 3445 goto out; 3446 } 3447 /* 3448 * We mark the folio dirty already here so that when freeze is in 3449 * progress, we are guaranteed that writeback during freezing will 3450 * see the dirty folio and writeprotect it again. 3451 */ 3452 folio_mark_dirty(folio); 3453 folio_wait_stable(folio); 3454 out: 3455 sb_end_pagefault(mapping->host->i_sb); 3456 return ret; 3457 } 3458 3459 const struct vm_operations_struct generic_file_vm_ops = { 3460 .fault = filemap_fault, 3461 .map_pages = filemap_map_pages, 3462 .page_mkwrite = filemap_page_mkwrite, 3463 }; 3464 3465 /* This is used for a general mmap of a disk file */ 3466 3467 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3468 { 3469 struct address_space *mapping = file->f_mapping; 3470 3471 if (!mapping->a_ops->read_folio) 3472 return -ENOEXEC; 3473 file_accessed(file); 3474 vma->vm_ops = &generic_file_vm_ops; 3475 return 0; 3476 } 3477 3478 /* 3479 * This is for filesystems which do not implement ->writepage. 3480 */ 3481 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3482 { 3483 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3484 return -EINVAL; 3485 return generic_file_mmap(file, vma); 3486 } 3487 #else 3488 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3489 { 3490 return VM_FAULT_SIGBUS; 3491 } 3492 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3493 { 3494 return -ENOSYS; 3495 } 3496 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3497 { 3498 return -ENOSYS; 3499 } 3500 #endif /* CONFIG_MMU */ 3501 3502 EXPORT_SYMBOL(filemap_page_mkwrite); 3503 EXPORT_SYMBOL(generic_file_mmap); 3504 EXPORT_SYMBOL(generic_file_readonly_mmap); 3505 3506 static struct folio *do_read_cache_folio(struct address_space *mapping, 3507 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3508 { 3509 struct folio *folio; 3510 int err; 3511 3512 if (!filler) 3513 filler = mapping->a_ops->read_folio; 3514 repeat: 3515 folio = filemap_get_folio(mapping, index); 3516 if (!folio) { 3517 folio = filemap_alloc_folio(gfp, 0); 3518 if (!folio) 3519 return ERR_PTR(-ENOMEM); 3520 err = filemap_add_folio(mapping, folio, index, gfp); 3521 if (unlikely(err)) { 3522 folio_put(folio); 3523 if (err == -EEXIST) 3524 goto repeat; 3525 /* Presumably ENOMEM for xarray node */ 3526 return ERR_PTR(err); 3527 } 3528 3529 goto filler; 3530 } 3531 if (folio_test_uptodate(folio)) 3532 goto out; 3533 3534 if (!folio_trylock(folio)) { 3535 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3536 goto repeat; 3537 } 3538 3539 /* Folio was truncated from mapping */ 3540 if (!folio->mapping) { 3541 folio_unlock(folio); 3542 folio_put(folio); 3543 goto repeat; 3544 } 3545 3546 /* Someone else locked and filled the page in a very small window */ 3547 if (folio_test_uptodate(folio)) { 3548 folio_unlock(folio); 3549 goto out; 3550 } 3551 3552 filler: 3553 err = filemap_read_folio(file, filler, folio); 3554 if (err) { 3555 folio_put(folio); 3556 if (err == AOP_TRUNCATED_PAGE) 3557 goto repeat; 3558 return ERR_PTR(err); 3559 } 3560 3561 out: 3562 folio_mark_accessed(folio); 3563 return folio; 3564 } 3565 3566 /** 3567 * read_cache_folio - Read into page cache, fill it if needed. 3568 * @mapping: The address_space to read from. 3569 * @index: The index to read. 3570 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3571 * @file: Passed to filler function, may be NULL if not required. 3572 * 3573 * Read one page into the page cache. If it succeeds, the folio returned 3574 * will contain @index, but it may not be the first page of the folio. 3575 * 3576 * If the filler function returns an error, it will be returned to the 3577 * caller. 3578 * 3579 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3580 * Return: An uptodate folio on success, ERR_PTR() on failure. 3581 */ 3582 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3583 filler_t filler, struct file *file) 3584 { 3585 return do_read_cache_folio(mapping, index, filler, file, 3586 mapping_gfp_mask(mapping)); 3587 } 3588 EXPORT_SYMBOL(read_cache_folio); 3589 3590 static struct page *do_read_cache_page(struct address_space *mapping, 3591 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3592 { 3593 struct folio *folio; 3594 3595 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3596 if (IS_ERR(folio)) 3597 return &folio->page; 3598 return folio_file_page(folio, index); 3599 } 3600 3601 struct page *read_cache_page(struct address_space *mapping, 3602 pgoff_t index, filler_t *filler, struct file *file) 3603 { 3604 return do_read_cache_page(mapping, index, filler, file, 3605 mapping_gfp_mask(mapping)); 3606 } 3607 EXPORT_SYMBOL(read_cache_page); 3608 3609 /** 3610 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3611 * @mapping: the page's address_space 3612 * @index: the page index 3613 * @gfp: the page allocator flags to use if allocating 3614 * 3615 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3616 * any new page allocations done using the specified allocation flags. 3617 * 3618 * If the page does not get brought uptodate, return -EIO. 3619 * 3620 * The function expects mapping->invalidate_lock to be already held. 3621 * 3622 * Return: up to date page on success, ERR_PTR() on failure. 3623 */ 3624 struct page *read_cache_page_gfp(struct address_space *mapping, 3625 pgoff_t index, 3626 gfp_t gfp) 3627 { 3628 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3629 } 3630 EXPORT_SYMBOL(read_cache_page_gfp); 3631 3632 /* 3633 * Warn about a page cache invalidation failure during a direct I/O write. 3634 */ 3635 void dio_warn_stale_pagecache(struct file *filp) 3636 { 3637 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3638 char pathname[128]; 3639 char *path; 3640 3641 errseq_set(&filp->f_mapping->wb_err, -EIO); 3642 if (__ratelimit(&_rs)) { 3643 path = file_path(filp, pathname, sizeof(pathname)); 3644 if (IS_ERR(path)) 3645 path = "(unknown)"; 3646 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3647 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3648 current->comm); 3649 } 3650 } 3651 3652 ssize_t 3653 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3654 { 3655 struct file *file = iocb->ki_filp; 3656 struct address_space *mapping = file->f_mapping; 3657 struct inode *inode = mapping->host; 3658 loff_t pos = iocb->ki_pos; 3659 ssize_t written; 3660 size_t write_len; 3661 pgoff_t end; 3662 3663 write_len = iov_iter_count(from); 3664 end = (pos + write_len - 1) >> PAGE_SHIFT; 3665 3666 if (iocb->ki_flags & IOCB_NOWAIT) { 3667 /* If there are pages to writeback, return */ 3668 if (filemap_range_has_page(file->f_mapping, pos, 3669 pos + write_len - 1)) 3670 return -EAGAIN; 3671 } else { 3672 written = filemap_write_and_wait_range(mapping, pos, 3673 pos + write_len - 1); 3674 if (written) 3675 goto out; 3676 } 3677 3678 /* 3679 * After a write we want buffered reads to be sure to go to disk to get 3680 * the new data. We invalidate clean cached page from the region we're 3681 * about to write. We do this *before* the write so that we can return 3682 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3683 */ 3684 written = invalidate_inode_pages2_range(mapping, 3685 pos >> PAGE_SHIFT, end); 3686 /* 3687 * If a page can not be invalidated, return 0 to fall back 3688 * to buffered write. 3689 */ 3690 if (written) { 3691 if (written == -EBUSY) 3692 return 0; 3693 goto out; 3694 } 3695 3696 written = mapping->a_ops->direct_IO(iocb, from); 3697 3698 /* 3699 * Finally, try again to invalidate clean pages which might have been 3700 * cached by non-direct readahead, or faulted in by get_user_pages() 3701 * if the source of the write was an mmap'ed region of the file 3702 * we're writing. Either one is a pretty crazy thing to do, 3703 * so we don't support it 100%. If this invalidation 3704 * fails, tough, the write still worked... 3705 * 3706 * Most of the time we do not need this since dio_complete() will do 3707 * the invalidation for us. However there are some file systems that 3708 * do not end up with dio_complete() being called, so let's not break 3709 * them by removing it completely. 3710 * 3711 * Noticeable example is a blkdev_direct_IO(). 3712 * 3713 * Skip invalidation for async writes or if mapping has no pages. 3714 */ 3715 if (written > 0 && mapping->nrpages && 3716 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3717 dio_warn_stale_pagecache(file); 3718 3719 if (written > 0) { 3720 pos += written; 3721 write_len -= written; 3722 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3723 i_size_write(inode, pos); 3724 mark_inode_dirty(inode); 3725 } 3726 iocb->ki_pos = pos; 3727 } 3728 if (written != -EIOCBQUEUED) 3729 iov_iter_revert(from, write_len - iov_iter_count(from)); 3730 out: 3731 return written; 3732 } 3733 EXPORT_SYMBOL(generic_file_direct_write); 3734 3735 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3736 { 3737 struct file *file = iocb->ki_filp; 3738 loff_t pos = iocb->ki_pos; 3739 struct address_space *mapping = file->f_mapping; 3740 const struct address_space_operations *a_ops = mapping->a_ops; 3741 long status = 0; 3742 ssize_t written = 0; 3743 3744 do { 3745 struct page *page; 3746 unsigned long offset; /* Offset into pagecache page */ 3747 unsigned long bytes; /* Bytes to write to page */ 3748 size_t copied; /* Bytes copied from user */ 3749 void *fsdata = NULL; 3750 3751 offset = (pos & (PAGE_SIZE - 1)); 3752 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3753 iov_iter_count(i)); 3754 3755 again: 3756 /* 3757 * Bring in the user page that we will copy from _first_. 3758 * Otherwise there's a nasty deadlock on copying from the 3759 * same page as we're writing to, without it being marked 3760 * up-to-date. 3761 */ 3762 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3763 status = -EFAULT; 3764 break; 3765 } 3766 3767 if (fatal_signal_pending(current)) { 3768 status = -EINTR; 3769 break; 3770 } 3771 3772 status = a_ops->write_begin(file, mapping, pos, bytes, 3773 &page, &fsdata); 3774 if (unlikely(status < 0)) 3775 break; 3776 3777 if (mapping_writably_mapped(mapping)) 3778 flush_dcache_page(page); 3779 3780 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3781 flush_dcache_page(page); 3782 3783 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3784 page, fsdata); 3785 if (unlikely(status != copied)) { 3786 iov_iter_revert(i, copied - max(status, 0L)); 3787 if (unlikely(status < 0)) 3788 break; 3789 } 3790 cond_resched(); 3791 3792 if (unlikely(status == 0)) { 3793 /* 3794 * A short copy made ->write_end() reject the 3795 * thing entirely. Might be memory poisoning 3796 * halfway through, might be a race with munmap, 3797 * might be severe memory pressure. 3798 */ 3799 if (copied) 3800 bytes = copied; 3801 goto again; 3802 } 3803 pos += status; 3804 written += status; 3805 3806 balance_dirty_pages_ratelimited(mapping); 3807 } while (iov_iter_count(i)); 3808 3809 return written ? written : status; 3810 } 3811 EXPORT_SYMBOL(generic_perform_write); 3812 3813 /** 3814 * __generic_file_write_iter - write data to a file 3815 * @iocb: IO state structure (file, offset, etc.) 3816 * @from: iov_iter with data to write 3817 * 3818 * This function does all the work needed for actually writing data to a 3819 * file. It does all basic checks, removes SUID from the file, updates 3820 * modification times and calls proper subroutines depending on whether we 3821 * do direct IO or a standard buffered write. 3822 * 3823 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3824 * object which does not need locking at all. 3825 * 3826 * This function does *not* take care of syncing data in case of O_SYNC write. 3827 * A caller has to handle it. This is mainly due to the fact that we want to 3828 * avoid syncing under i_rwsem. 3829 * 3830 * Return: 3831 * * number of bytes written, even for truncated writes 3832 * * negative error code if no data has been written at all 3833 */ 3834 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3835 { 3836 struct file *file = iocb->ki_filp; 3837 struct address_space *mapping = file->f_mapping; 3838 struct inode *inode = mapping->host; 3839 ssize_t written = 0; 3840 ssize_t err; 3841 ssize_t status; 3842 3843 /* We can write back this queue in page reclaim */ 3844 current->backing_dev_info = inode_to_bdi(inode); 3845 err = file_remove_privs(file); 3846 if (err) 3847 goto out; 3848 3849 err = file_update_time(file); 3850 if (err) 3851 goto out; 3852 3853 if (iocb->ki_flags & IOCB_DIRECT) { 3854 loff_t pos, endbyte; 3855 3856 written = generic_file_direct_write(iocb, from); 3857 /* 3858 * If the write stopped short of completing, fall back to 3859 * buffered writes. Some filesystems do this for writes to 3860 * holes, for example. For DAX files, a buffered write will 3861 * not succeed (even if it did, DAX does not handle dirty 3862 * page-cache pages correctly). 3863 */ 3864 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3865 goto out; 3866 3867 pos = iocb->ki_pos; 3868 status = generic_perform_write(iocb, from); 3869 /* 3870 * If generic_perform_write() returned a synchronous error 3871 * then we want to return the number of bytes which were 3872 * direct-written, or the error code if that was zero. Note 3873 * that this differs from normal direct-io semantics, which 3874 * will return -EFOO even if some bytes were written. 3875 */ 3876 if (unlikely(status < 0)) { 3877 err = status; 3878 goto out; 3879 } 3880 /* 3881 * We need to ensure that the page cache pages are written to 3882 * disk and invalidated to preserve the expected O_DIRECT 3883 * semantics. 3884 */ 3885 endbyte = pos + status - 1; 3886 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3887 if (err == 0) { 3888 iocb->ki_pos = endbyte + 1; 3889 written += status; 3890 invalidate_mapping_pages(mapping, 3891 pos >> PAGE_SHIFT, 3892 endbyte >> PAGE_SHIFT); 3893 } else { 3894 /* 3895 * We don't know how much we wrote, so just return 3896 * the number of bytes which were direct-written 3897 */ 3898 } 3899 } else { 3900 written = generic_perform_write(iocb, from); 3901 if (likely(written > 0)) 3902 iocb->ki_pos += written; 3903 } 3904 out: 3905 current->backing_dev_info = NULL; 3906 return written ? written : err; 3907 } 3908 EXPORT_SYMBOL(__generic_file_write_iter); 3909 3910 /** 3911 * generic_file_write_iter - write data to a file 3912 * @iocb: IO state structure 3913 * @from: iov_iter with data to write 3914 * 3915 * This is a wrapper around __generic_file_write_iter() to be used by most 3916 * filesystems. It takes care of syncing the file in case of O_SYNC file 3917 * and acquires i_rwsem as needed. 3918 * Return: 3919 * * negative error code if no data has been written at all of 3920 * vfs_fsync_range() failed for a synchronous write 3921 * * number of bytes written, even for truncated writes 3922 */ 3923 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3924 { 3925 struct file *file = iocb->ki_filp; 3926 struct inode *inode = file->f_mapping->host; 3927 ssize_t ret; 3928 3929 inode_lock(inode); 3930 ret = generic_write_checks(iocb, from); 3931 if (ret > 0) 3932 ret = __generic_file_write_iter(iocb, from); 3933 inode_unlock(inode); 3934 3935 if (ret > 0) 3936 ret = generic_write_sync(iocb, ret); 3937 return ret; 3938 } 3939 EXPORT_SYMBOL(generic_file_write_iter); 3940 3941 /** 3942 * filemap_release_folio() - Release fs-specific metadata on a folio. 3943 * @folio: The folio which the kernel is trying to free. 3944 * @gfp: Memory allocation flags (and I/O mode). 3945 * 3946 * The address_space is trying to release any data attached to a folio 3947 * (presumably at folio->private). 3948 * 3949 * This will also be called if the private_2 flag is set on a page, 3950 * indicating that the folio has other metadata associated with it. 3951 * 3952 * The @gfp argument specifies whether I/O may be performed to release 3953 * this page (__GFP_IO), and whether the call may block 3954 * (__GFP_RECLAIM & __GFP_FS). 3955 * 3956 * Return: %true if the release was successful, otherwise %false. 3957 */ 3958 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3959 { 3960 struct address_space * const mapping = folio->mapping; 3961 3962 BUG_ON(!folio_test_locked(folio)); 3963 if (folio_test_writeback(folio)) 3964 return false; 3965 3966 if (mapping && mapping->a_ops->release_folio) 3967 return mapping->a_ops->release_folio(folio, gfp); 3968 return try_to_free_buffers(folio); 3969 } 3970 EXPORT_SYMBOL(filemap_release_folio); 3971