xref: /linux/mm/filemap.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include <linux/memcontrol.h>
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 
44 #include <asm/mman.h>
45 
46 static ssize_t
47 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
48 	loff_t offset, unsigned long nr_segs);
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_lock		(vmtruncate)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_lock
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_file_buffered_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  ->i_mutex
85  *    ->i_alloc_sem             (various)
86  *
87  *  ->inode_lock
88  *    ->sb_lock			(fs/fs-writeback.c)
89  *    ->mapping->tree_lock	(__sync_single_inode)
90  *
91  *  ->i_mmap_lock
92  *    ->anon_vma.lock		(vma_adjust)
93  *
94  *  ->anon_vma.lock
95  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96  *
97  *  ->page_table_lock or pte_lock
98  *    ->swap_lock		(try_to_unmap_one)
99  *    ->private_lock		(try_to_unmap_one)
100  *    ->tree_lock		(try_to_unmap_one)
101  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
102  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
103  *    ->private_lock		(page_remove_rmap->set_page_dirty)
104  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
106  *    ->inode_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  *  ->task->proc_lock
110  *    ->dcache_lock		(proc_pid_lookup)
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	mem_cgroup_uncharge_page(page);
123 	radix_tree_delete(&mapping->page_tree, page->index);
124 	page->mapping = NULL;
125 	mapping->nrpages--;
126 	__dec_zone_page_state(page, NR_FILE_PAGES);
127 	BUG_ON(page_mapped(page));
128 
129 	/*
130 	 * Some filesystems seem to re-dirty the page even after
131 	 * the VM has canceled the dirty bit (eg ext3 journaling).
132 	 *
133 	 * Fix it up by doing a final dirty accounting check after
134 	 * having removed the page entirely.
135 	 */
136 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137 		dec_zone_page_state(page, NR_FILE_DIRTY);
138 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 	}
140 }
141 
142 void remove_from_page_cache(struct page *page)
143 {
144 	struct address_space *mapping = page->mapping;
145 
146 	BUG_ON(!PageLocked(page));
147 
148 	write_lock_irq(&mapping->tree_lock);
149 	__remove_from_page_cache(page);
150 	write_unlock_irq(&mapping->tree_lock);
151 }
152 
153 static int sync_page(void *word)
154 {
155 	struct address_space *mapping;
156 	struct page *page;
157 
158 	page = container_of((unsigned long *)word, struct page, flags);
159 
160 	/*
161 	 * page_mapping() is being called without PG_locked held.
162 	 * Some knowledge of the state and use of the page is used to
163 	 * reduce the requirements down to a memory barrier.
164 	 * The danger here is of a stale page_mapping() return value
165 	 * indicating a struct address_space different from the one it's
166 	 * associated with when it is associated with one.
167 	 * After smp_mb(), it's either the correct page_mapping() for
168 	 * the page, or an old page_mapping() and the page's own
169 	 * page_mapping() has gone NULL.
170 	 * The ->sync_page() address_space operation must tolerate
171 	 * page_mapping() going NULL. By an amazing coincidence,
172 	 * this comes about because none of the users of the page
173 	 * in the ->sync_page() methods make essential use of the
174 	 * page_mapping(), merely passing the page down to the backing
175 	 * device's unplug functions when it's non-NULL, which in turn
176 	 * ignore it for all cases but swap, where only page_private(page) is
177 	 * of interest. When page_mapping() does go NULL, the entire
178 	 * call stack gracefully ignores the page and returns.
179 	 * -- wli
180 	 */
181 	smp_mb();
182 	mapping = page_mapping(page);
183 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
184 		mapping->a_ops->sync_page(page);
185 	io_schedule();
186 	return 0;
187 }
188 
189 static int sync_page_killable(void *word)
190 {
191 	sync_page(word);
192 	return fatal_signal_pending(current) ? -EINTR : 0;
193 }
194 
195 /**
196  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
197  * @mapping:	address space structure to write
198  * @start:	offset in bytes where the range starts
199  * @end:	offset in bytes where the range ends (inclusive)
200  * @sync_mode:	enable synchronous operation
201  *
202  * Start writeback against all of a mapping's dirty pages that lie
203  * within the byte offsets <start, end> inclusive.
204  *
205  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
206  * opposed to a regular memory cleansing writeback.  The difference between
207  * these two operations is that if a dirty page/buffer is encountered, it must
208  * be waited upon, and not just skipped over.
209  */
210 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
211 				loff_t end, int sync_mode)
212 {
213 	int ret;
214 	struct writeback_control wbc = {
215 		.sync_mode = sync_mode,
216 		.nr_to_write = mapping->nrpages * 2,
217 		.range_start = start,
218 		.range_end = end,
219 	};
220 
221 	if (!mapping_cap_writeback_dirty(mapping))
222 		return 0;
223 
224 	ret = do_writepages(mapping, &wbc);
225 	return ret;
226 }
227 
228 static inline int __filemap_fdatawrite(struct address_space *mapping,
229 	int sync_mode)
230 {
231 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232 }
233 
234 int filemap_fdatawrite(struct address_space *mapping)
235 {
236 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
237 }
238 EXPORT_SYMBOL(filemap_fdatawrite);
239 
240 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
241 				loff_t end)
242 {
243 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
244 }
245 
246 /**
247  * filemap_flush - mostly a non-blocking flush
248  * @mapping:	target address_space
249  *
250  * This is a mostly non-blocking flush.  Not suitable for data-integrity
251  * purposes - I/O may not be started against all dirty pages.
252  */
253 int filemap_flush(struct address_space *mapping)
254 {
255 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 }
257 EXPORT_SYMBOL(filemap_flush);
258 
259 /**
260  * wait_on_page_writeback_range - wait for writeback to complete
261  * @mapping:	target address_space
262  * @start:	beginning page index
263  * @end:	ending page index
264  *
265  * Wait for writeback to complete against pages indexed by start->end
266  * inclusive
267  */
268 int wait_on_page_writeback_range(struct address_space *mapping,
269 				pgoff_t start, pgoff_t end)
270 {
271 	struct pagevec pvec;
272 	int nr_pages;
273 	int ret = 0;
274 	pgoff_t index;
275 
276 	if (end < start)
277 		return 0;
278 
279 	pagevec_init(&pvec, 0);
280 	index = start;
281 	while ((index <= end) &&
282 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
283 			PAGECACHE_TAG_WRITEBACK,
284 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
285 		unsigned i;
286 
287 		for (i = 0; i < nr_pages; i++) {
288 			struct page *page = pvec.pages[i];
289 
290 			/* until radix tree lookup accepts end_index */
291 			if (page->index > end)
292 				continue;
293 
294 			wait_on_page_writeback(page);
295 			if (PageError(page))
296 				ret = -EIO;
297 		}
298 		pagevec_release(&pvec);
299 		cond_resched();
300 	}
301 
302 	/* Check for outstanding write errors */
303 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 		ret = -ENOSPC;
305 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
306 		ret = -EIO;
307 
308 	return ret;
309 }
310 
311 /**
312  * sync_page_range - write and wait on all pages in the passed range
313  * @inode:	target inode
314  * @mapping:	target address_space
315  * @pos:	beginning offset in pages to write
316  * @count:	number of bytes to write
317  *
318  * Write and wait upon all the pages in the passed range.  This is a "data
319  * integrity" operation.  It waits upon in-flight writeout before starting and
320  * waiting upon new writeout.  If there was an IO error, return it.
321  *
322  * We need to re-take i_mutex during the generic_osync_inode list walk because
323  * it is otherwise livelockable.
324  */
325 int sync_page_range(struct inode *inode, struct address_space *mapping,
326 			loff_t pos, loff_t count)
327 {
328 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
329 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
330 	int ret;
331 
332 	if (!mapping_cap_writeback_dirty(mapping) || !count)
333 		return 0;
334 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
335 	if (ret == 0) {
336 		mutex_lock(&inode->i_mutex);
337 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
338 		mutex_unlock(&inode->i_mutex);
339 	}
340 	if (ret == 0)
341 		ret = wait_on_page_writeback_range(mapping, start, end);
342 	return ret;
343 }
344 EXPORT_SYMBOL(sync_page_range);
345 
346 /**
347  * sync_page_range_nolock
348  * @inode:	target inode
349  * @mapping:	target address_space
350  * @pos:	beginning offset in pages to write
351  * @count:	number of bytes to write
352  *
353  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
354  * as it forces O_SYNC writers to different parts of the same file
355  * to be serialised right until io completion.
356  */
357 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
358 			   loff_t pos, loff_t count)
359 {
360 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
361 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
362 	int ret;
363 
364 	if (!mapping_cap_writeback_dirty(mapping) || !count)
365 		return 0;
366 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
367 	if (ret == 0)
368 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
369 	if (ret == 0)
370 		ret = wait_on_page_writeback_range(mapping, start, end);
371 	return ret;
372 }
373 EXPORT_SYMBOL(sync_page_range_nolock);
374 
375 /**
376  * filemap_fdatawait - wait for all under-writeback pages to complete
377  * @mapping: address space structure to wait for
378  *
379  * Walk the list of under-writeback pages of the given address space
380  * and wait for all of them.
381  */
382 int filemap_fdatawait(struct address_space *mapping)
383 {
384 	loff_t i_size = i_size_read(mapping->host);
385 
386 	if (i_size == 0)
387 		return 0;
388 
389 	return wait_on_page_writeback_range(mapping, 0,
390 				(i_size - 1) >> PAGE_CACHE_SHIFT);
391 }
392 EXPORT_SYMBOL(filemap_fdatawait);
393 
394 int filemap_write_and_wait(struct address_space *mapping)
395 {
396 	int err = 0;
397 
398 	if (mapping->nrpages) {
399 		err = filemap_fdatawrite(mapping);
400 		/*
401 		 * Even if the above returned error, the pages may be
402 		 * written partially (e.g. -ENOSPC), so we wait for it.
403 		 * But the -EIO is special case, it may indicate the worst
404 		 * thing (e.g. bug) happened, so we avoid waiting for it.
405 		 */
406 		if (err != -EIO) {
407 			int err2 = filemap_fdatawait(mapping);
408 			if (!err)
409 				err = err2;
410 		}
411 	}
412 	return err;
413 }
414 EXPORT_SYMBOL(filemap_write_and_wait);
415 
416 /**
417  * filemap_write_and_wait_range - write out & wait on a file range
418  * @mapping:	the address_space for the pages
419  * @lstart:	offset in bytes where the range starts
420  * @lend:	offset in bytes where the range ends (inclusive)
421  *
422  * Write out and wait upon file offsets lstart->lend, inclusive.
423  *
424  * Note that `lend' is inclusive (describes the last byte to be written) so
425  * that this function can be used to write to the very end-of-file (end = -1).
426  */
427 int filemap_write_and_wait_range(struct address_space *mapping,
428 				 loff_t lstart, loff_t lend)
429 {
430 	int err = 0;
431 
432 	if (mapping->nrpages) {
433 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
434 						 WB_SYNC_ALL);
435 		/* See comment of filemap_write_and_wait() */
436 		if (err != -EIO) {
437 			int err2 = wait_on_page_writeback_range(mapping,
438 						lstart >> PAGE_CACHE_SHIFT,
439 						lend >> PAGE_CACHE_SHIFT);
440 			if (!err)
441 				err = err2;
442 		}
443 	}
444 	return err;
445 }
446 
447 /**
448  * add_to_page_cache - add newly allocated pagecache pages
449  * @page:	page to add
450  * @mapping:	the page's address_space
451  * @offset:	page index
452  * @gfp_mask:	page allocation mode
453  *
454  * This function is used to add newly allocated pagecache pages;
455  * the page is new, so we can just run SetPageLocked() against it.
456  * The other page state flags were set by rmqueue().
457  *
458  * This function does not add the page to the LRU.  The caller must do that.
459  */
460 int add_to_page_cache(struct page *page, struct address_space *mapping,
461 		pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int error = mem_cgroup_cache_charge(page, current->mm,
464 					gfp_mask & ~__GFP_HIGHMEM);
465 	if (error)
466 		goto out;
467 
468 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469 	if (error == 0) {
470 		write_lock_irq(&mapping->tree_lock);
471 		error = radix_tree_insert(&mapping->page_tree, offset, page);
472 		if (!error) {
473 			page_cache_get(page);
474 			SetPageLocked(page);
475 			page->mapping = mapping;
476 			page->index = offset;
477 			mapping->nrpages++;
478 			__inc_zone_page_state(page, NR_FILE_PAGES);
479 		} else
480 			mem_cgroup_uncharge_page(page);
481 
482 		write_unlock_irq(&mapping->tree_lock);
483 		radix_tree_preload_end();
484 	} else
485 		mem_cgroup_uncharge_page(page);
486 out:
487 	return error;
488 }
489 EXPORT_SYMBOL(add_to_page_cache);
490 
491 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
492 				pgoff_t offset, gfp_t gfp_mask)
493 {
494 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
495 	if (ret == 0)
496 		lru_cache_add(page);
497 	return ret;
498 }
499 
500 #ifdef CONFIG_NUMA
501 struct page *__page_cache_alloc(gfp_t gfp)
502 {
503 	if (cpuset_do_page_mem_spread()) {
504 		int n = cpuset_mem_spread_node();
505 		return alloc_pages_node(n, gfp, 0);
506 	}
507 	return alloc_pages(gfp, 0);
508 }
509 EXPORT_SYMBOL(__page_cache_alloc);
510 #endif
511 
512 static int __sleep_on_page_lock(void *word)
513 {
514 	io_schedule();
515 	return 0;
516 }
517 
518 /*
519  * In order to wait for pages to become available there must be
520  * waitqueues associated with pages. By using a hash table of
521  * waitqueues where the bucket discipline is to maintain all
522  * waiters on the same queue and wake all when any of the pages
523  * become available, and for the woken contexts to check to be
524  * sure the appropriate page became available, this saves space
525  * at a cost of "thundering herd" phenomena during rare hash
526  * collisions.
527  */
528 static wait_queue_head_t *page_waitqueue(struct page *page)
529 {
530 	const struct zone *zone = page_zone(page);
531 
532 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
533 }
534 
535 static inline void wake_up_page(struct page *page, int bit)
536 {
537 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
538 }
539 
540 void wait_on_page_bit(struct page *page, int bit_nr)
541 {
542 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
543 
544 	if (test_bit(bit_nr, &page->flags))
545 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
546 							TASK_UNINTERRUPTIBLE);
547 }
548 EXPORT_SYMBOL(wait_on_page_bit);
549 
550 /**
551  * unlock_page - unlock a locked page
552  * @page: the page
553  *
554  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
555  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
556  * mechananism between PageLocked pages and PageWriteback pages is shared.
557  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558  *
559  * The first mb is necessary to safely close the critical section opened by the
560  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
561  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
562  * parallel wait_on_page_locked()).
563  */
564 void unlock_page(struct page *page)
565 {
566 	smp_mb__before_clear_bit();
567 	if (!TestClearPageLocked(page))
568 		BUG();
569 	smp_mb__after_clear_bit();
570 	wake_up_page(page, PG_locked);
571 }
572 EXPORT_SYMBOL(unlock_page);
573 
574 /**
575  * end_page_writeback - end writeback against a page
576  * @page: the page
577  */
578 void end_page_writeback(struct page *page)
579 {
580 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
581 		if (!test_clear_page_writeback(page))
582 			BUG();
583 	}
584 	smp_mb__after_clear_bit();
585 	wake_up_page(page, PG_writeback);
586 }
587 EXPORT_SYMBOL(end_page_writeback);
588 
589 /**
590  * __lock_page - get a lock on the page, assuming we need to sleep to get it
591  * @page: the page to lock
592  *
593  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
594  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
595  * chances are that on the second loop, the block layer's plug list is empty,
596  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
597  */
598 void __lock_page(struct page *page)
599 {
600 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 
602 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
603 							TASK_UNINTERRUPTIBLE);
604 }
605 EXPORT_SYMBOL(__lock_page);
606 
607 int fastcall __lock_page_killable(struct page *page)
608 {
609 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610 
611 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
612 					sync_page_killable, TASK_KILLABLE);
613 }
614 
615 /*
616  * Variant of lock_page that does not require the caller to hold a reference
617  * on the page's mapping.
618  */
619 void __lock_page_nosync(struct page *page)
620 {
621 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
623 							TASK_UNINTERRUPTIBLE);
624 }
625 
626 /**
627  * find_get_page - find and get a page reference
628  * @mapping: the address_space to search
629  * @offset: the page index
630  *
631  * Is there a pagecache struct page at the given (mapping, offset) tuple?
632  * If yes, increment its refcount and return it; if no, return NULL.
633  */
634 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
635 {
636 	struct page *page;
637 
638 	read_lock_irq(&mapping->tree_lock);
639 	page = radix_tree_lookup(&mapping->page_tree, offset);
640 	if (page)
641 		page_cache_get(page);
642 	read_unlock_irq(&mapping->tree_lock);
643 	return page;
644 }
645 EXPORT_SYMBOL(find_get_page);
646 
647 /**
648  * find_lock_page - locate, pin and lock a pagecache page
649  * @mapping: the address_space to search
650  * @offset: the page index
651  *
652  * Locates the desired pagecache page, locks it, increments its reference
653  * count and returns its address.
654  *
655  * Returns zero if the page was not present. find_lock_page() may sleep.
656  */
657 struct page *find_lock_page(struct address_space *mapping,
658 				pgoff_t offset)
659 {
660 	struct page *page;
661 
662 repeat:
663 	read_lock_irq(&mapping->tree_lock);
664 	page = radix_tree_lookup(&mapping->page_tree, offset);
665 	if (page) {
666 		page_cache_get(page);
667 		if (TestSetPageLocked(page)) {
668 			read_unlock_irq(&mapping->tree_lock);
669 			__lock_page(page);
670 
671 			/* Has the page been truncated while we slept? */
672 			if (unlikely(page->mapping != mapping)) {
673 				unlock_page(page);
674 				page_cache_release(page);
675 				goto repeat;
676 			}
677 			VM_BUG_ON(page->index != offset);
678 			goto out;
679 		}
680 	}
681 	read_unlock_irq(&mapping->tree_lock);
682 out:
683 	return page;
684 }
685 EXPORT_SYMBOL(find_lock_page);
686 
687 /**
688  * find_or_create_page - locate or add a pagecache page
689  * @mapping: the page's address_space
690  * @index: the page's index into the mapping
691  * @gfp_mask: page allocation mode
692  *
693  * Locates a page in the pagecache.  If the page is not present, a new page
694  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
695  * LRU list.  The returned page is locked and has its reference count
696  * incremented.
697  *
698  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
699  * allocation!
700  *
701  * find_or_create_page() returns the desired page's address, or zero on
702  * memory exhaustion.
703  */
704 struct page *find_or_create_page(struct address_space *mapping,
705 		pgoff_t index, gfp_t gfp_mask)
706 {
707 	struct page *page;
708 	int err;
709 repeat:
710 	page = find_lock_page(mapping, index);
711 	if (!page) {
712 		page = __page_cache_alloc(gfp_mask);
713 		if (!page)
714 			return NULL;
715 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
716 		if (unlikely(err)) {
717 			page_cache_release(page);
718 			page = NULL;
719 			if (err == -EEXIST)
720 				goto repeat;
721 		}
722 	}
723 	return page;
724 }
725 EXPORT_SYMBOL(find_or_create_page);
726 
727 /**
728  * find_get_pages - gang pagecache lookup
729  * @mapping:	The address_space to search
730  * @start:	The starting page index
731  * @nr_pages:	The maximum number of pages
732  * @pages:	Where the resulting pages are placed
733  *
734  * find_get_pages() will search for and return a group of up to
735  * @nr_pages pages in the mapping.  The pages are placed at @pages.
736  * find_get_pages() takes a reference against the returned pages.
737  *
738  * The search returns a group of mapping-contiguous pages with ascending
739  * indexes.  There may be holes in the indices due to not-present pages.
740  *
741  * find_get_pages() returns the number of pages which were found.
742  */
743 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
744 			    unsigned int nr_pages, struct page **pages)
745 {
746 	unsigned int i;
747 	unsigned int ret;
748 
749 	read_lock_irq(&mapping->tree_lock);
750 	ret = radix_tree_gang_lookup(&mapping->page_tree,
751 				(void **)pages, start, nr_pages);
752 	for (i = 0; i < ret; i++)
753 		page_cache_get(pages[i]);
754 	read_unlock_irq(&mapping->tree_lock);
755 	return ret;
756 }
757 
758 /**
759  * find_get_pages_contig - gang contiguous pagecache lookup
760  * @mapping:	The address_space to search
761  * @index:	The starting page index
762  * @nr_pages:	The maximum number of pages
763  * @pages:	Where the resulting pages are placed
764  *
765  * find_get_pages_contig() works exactly like find_get_pages(), except
766  * that the returned number of pages are guaranteed to be contiguous.
767  *
768  * find_get_pages_contig() returns the number of pages which were found.
769  */
770 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
771 			       unsigned int nr_pages, struct page **pages)
772 {
773 	unsigned int i;
774 	unsigned int ret;
775 
776 	read_lock_irq(&mapping->tree_lock);
777 	ret = radix_tree_gang_lookup(&mapping->page_tree,
778 				(void **)pages, index, nr_pages);
779 	for (i = 0; i < ret; i++) {
780 		if (pages[i]->mapping == NULL || pages[i]->index != index)
781 			break;
782 
783 		page_cache_get(pages[i]);
784 		index++;
785 	}
786 	read_unlock_irq(&mapping->tree_lock);
787 	return i;
788 }
789 EXPORT_SYMBOL(find_get_pages_contig);
790 
791 /**
792  * find_get_pages_tag - find and return pages that match @tag
793  * @mapping:	the address_space to search
794  * @index:	the starting page index
795  * @tag:	the tag index
796  * @nr_pages:	the maximum number of pages
797  * @pages:	where the resulting pages are placed
798  *
799  * Like find_get_pages, except we only return pages which are tagged with
800  * @tag.   We update @index to index the next page for the traversal.
801  */
802 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
803 			int tag, unsigned int nr_pages, struct page **pages)
804 {
805 	unsigned int i;
806 	unsigned int ret;
807 
808 	read_lock_irq(&mapping->tree_lock);
809 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
810 				(void **)pages, *index, nr_pages, tag);
811 	for (i = 0; i < ret; i++)
812 		page_cache_get(pages[i]);
813 	if (ret)
814 		*index = pages[ret - 1]->index + 1;
815 	read_unlock_irq(&mapping->tree_lock);
816 	return ret;
817 }
818 EXPORT_SYMBOL(find_get_pages_tag);
819 
820 /**
821  * grab_cache_page_nowait - returns locked page at given index in given cache
822  * @mapping: target address_space
823  * @index: the page index
824  *
825  * Same as grab_cache_page(), but do not wait if the page is unavailable.
826  * This is intended for speculative data generators, where the data can
827  * be regenerated if the page couldn't be grabbed.  This routine should
828  * be safe to call while holding the lock for another page.
829  *
830  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
831  * and deadlock against the caller's locked page.
832  */
833 struct page *
834 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
835 {
836 	struct page *page = find_get_page(mapping, index);
837 
838 	if (page) {
839 		if (!TestSetPageLocked(page))
840 			return page;
841 		page_cache_release(page);
842 		return NULL;
843 	}
844 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
845 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
846 		page_cache_release(page);
847 		page = NULL;
848 	}
849 	return page;
850 }
851 EXPORT_SYMBOL(grab_cache_page_nowait);
852 
853 /*
854  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
855  * a _large_ part of the i/o request. Imagine the worst scenario:
856  *
857  *      ---R__________________________________________B__________
858  *         ^ reading here                             ^ bad block(assume 4k)
859  *
860  * read(R) => miss => readahead(R...B) => media error => frustrating retries
861  * => failing the whole request => read(R) => read(R+1) =>
862  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
863  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
864  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
865  *
866  * It is going insane. Fix it by quickly scaling down the readahead size.
867  */
868 static void shrink_readahead_size_eio(struct file *filp,
869 					struct file_ra_state *ra)
870 {
871 	if (!ra->ra_pages)
872 		return;
873 
874 	ra->ra_pages /= 4;
875 }
876 
877 /**
878  * do_generic_file_read - generic file read routine
879  * @filp:	the file to read
880  * @ppos:	current file position
881  * @desc:	read_descriptor
882  * @actor:	read method
883  *
884  * This is a generic file read routine, and uses the
885  * mapping->a_ops->readpage() function for the actual low-level stuff.
886  *
887  * This is really ugly. But the goto's actually try to clarify some
888  * of the logic when it comes to error handling etc.
889  */
890 static void do_generic_file_read(struct file *filp, loff_t *ppos,
891 		read_descriptor_t *desc, read_actor_t actor)
892 {
893 	struct address_space *mapping = filp->f_mapping;
894 	struct inode *inode = mapping->host;
895 	struct file_ra_state *ra = &filp->f_ra;
896 	pgoff_t index;
897 	pgoff_t last_index;
898 	pgoff_t prev_index;
899 	unsigned long offset;      /* offset into pagecache page */
900 	unsigned int prev_offset;
901 	int error;
902 
903 	index = *ppos >> PAGE_CACHE_SHIFT;
904 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
905 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
906 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
907 	offset = *ppos & ~PAGE_CACHE_MASK;
908 
909 	for (;;) {
910 		struct page *page;
911 		pgoff_t end_index;
912 		loff_t isize;
913 		unsigned long nr, ret;
914 
915 		cond_resched();
916 find_page:
917 		page = find_get_page(mapping, index);
918 		if (!page) {
919 			page_cache_sync_readahead(mapping,
920 					ra, filp,
921 					index, last_index - index);
922 			page = find_get_page(mapping, index);
923 			if (unlikely(page == NULL))
924 				goto no_cached_page;
925 		}
926 		if (PageReadahead(page)) {
927 			page_cache_async_readahead(mapping,
928 					ra, filp, page,
929 					index, last_index - index);
930 		}
931 		if (!PageUptodate(page))
932 			goto page_not_up_to_date;
933 page_ok:
934 		/*
935 		 * i_size must be checked after we know the page is Uptodate.
936 		 *
937 		 * Checking i_size after the check allows us to calculate
938 		 * the correct value for "nr", which means the zero-filled
939 		 * part of the page is not copied back to userspace (unless
940 		 * another truncate extends the file - this is desired though).
941 		 */
942 
943 		isize = i_size_read(inode);
944 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
945 		if (unlikely(!isize || index > end_index)) {
946 			page_cache_release(page);
947 			goto out;
948 		}
949 
950 		/* nr is the maximum number of bytes to copy from this page */
951 		nr = PAGE_CACHE_SIZE;
952 		if (index == end_index) {
953 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
954 			if (nr <= offset) {
955 				page_cache_release(page);
956 				goto out;
957 			}
958 		}
959 		nr = nr - offset;
960 
961 		/* If users can be writing to this page using arbitrary
962 		 * virtual addresses, take care about potential aliasing
963 		 * before reading the page on the kernel side.
964 		 */
965 		if (mapping_writably_mapped(mapping))
966 			flush_dcache_page(page);
967 
968 		/*
969 		 * When a sequential read accesses a page several times,
970 		 * only mark it as accessed the first time.
971 		 */
972 		if (prev_index != index || offset != prev_offset)
973 			mark_page_accessed(page);
974 		prev_index = index;
975 
976 		/*
977 		 * Ok, we have the page, and it's up-to-date, so
978 		 * now we can copy it to user space...
979 		 *
980 		 * The actor routine returns how many bytes were actually used..
981 		 * NOTE! This may not be the same as how much of a user buffer
982 		 * we filled up (we may be padding etc), so we can only update
983 		 * "pos" here (the actor routine has to update the user buffer
984 		 * pointers and the remaining count).
985 		 */
986 		ret = actor(desc, page, offset, nr);
987 		offset += ret;
988 		index += offset >> PAGE_CACHE_SHIFT;
989 		offset &= ~PAGE_CACHE_MASK;
990 		prev_offset = offset;
991 
992 		page_cache_release(page);
993 		if (ret == nr && desc->count)
994 			continue;
995 		goto out;
996 
997 page_not_up_to_date:
998 		/* Get exclusive access to the page ... */
999 		if (lock_page_killable(page))
1000 			goto readpage_eio;
1001 
1002 		/* Did it get truncated before we got the lock? */
1003 		if (!page->mapping) {
1004 			unlock_page(page);
1005 			page_cache_release(page);
1006 			continue;
1007 		}
1008 
1009 		/* Did somebody else fill it already? */
1010 		if (PageUptodate(page)) {
1011 			unlock_page(page);
1012 			goto page_ok;
1013 		}
1014 
1015 readpage:
1016 		/* Start the actual read. The read will unlock the page. */
1017 		error = mapping->a_ops->readpage(filp, page);
1018 
1019 		if (unlikely(error)) {
1020 			if (error == AOP_TRUNCATED_PAGE) {
1021 				page_cache_release(page);
1022 				goto find_page;
1023 			}
1024 			goto readpage_error;
1025 		}
1026 
1027 		if (!PageUptodate(page)) {
1028 			if (lock_page_killable(page))
1029 				goto readpage_eio;
1030 			if (!PageUptodate(page)) {
1031 				if (page->mapping == NULL) {
1032 					/*
1033 					 * invalidate_inode_pages got it
1034 					 */
1035 					unlock_page(page);
1036 					page_cache_release(page);
1037 					goto find_page;
1038 				}
1039 				unlock_page(page);
1040 				shrink_readahead_size_eio(filp, ra);
1041 				goto readpage_eio;
1042 			}
1043 			unlock_page(page);
1044 		}
1045 
1046 		goto page_ok;
1047 
1048 readpage_eio:
1049 		error = -EIO;
1050 readpage_error:
1051 		/* UHHUH! A synchronous read error occurred. Report it */
1052 		desc->error = error;
1053 		page_cache_release(page);
1054 		goto out;
1055 
1056 no_cached_page:
1057 		/*
1058 		 * Ok, it wasn't cached, so we need to create a new
1059 		 * page..
1060 		 */
1061 		page = page_cache_alloc_cold(mapping);
1062 		if (!page) {
1063 			desc->error = -ENOMEM;
1064 			goto out;
1065 		}
1066 		error = add_to_page_cache_lru(page, mapping,
1067 						index, GFP_KERNEL);
1068 		if (error) {
1069 			page_cache_release(page);
1070 			if (error == -EEXIST)
1071 				goto find_page;
1072 			desc->error = error;
1073 			goto out;
1074 		}
1075 		goto readpage;
1076 	}
1077 
1078 out:
1079 	ra->prev_pos = prev_index;
1080 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1081 	ra->prev_pos |= prev_offset;
1082 
1083 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1084 	if (filp)
1085 		file_accessed(filp);
1086 }
1087 
1088 int file_read_actor(read_descriptor_t *desc, struct page *page,
1089 			unsigned long offset, unsigned long size)
1090 {
1091 	char *kaddr;
1092 	unsigned long left, count = desc->count;
1093 
1094 	if (size > count)
1095 		size = count;
1096 
1097 	/*
1098 	 * Faults on the destination of a read are common, so do it before
1099 	 * taking the kmap.
1100 	 */
1101 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1102 		kaddr = kmap_atomic(page, KM_USER0);
1103 		left = __copy_to_user_inatomic(desc->arg.buf,
1104 						kaddr + offset, size);
1105 		kunmap_atomic(kaddr, KM_USER0);
1106 		if (left == 0)
1107 			goto success;
1108 	}
1109 
1110 	/* Do it the slow way */
1111 	kaddr = kmap(page);
1112 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1113 	kunmap(page);
1114 
1115 	if (left) {
1116 		size -= left;
1117 		desc->error = -EFAULT;
1118 	}
1119 success:
1120 	desc->count = count - size;
1121 	desc->written += size;
1122 	desc->arg.buf += size;
1123 	return size;
1124 }
1125 
1126 /*
1127  * Performs necessary checks before doing a write
1128  * @iov:	io vector request
1129  * @nr_segs:	number of segments in the iovec
1130  * @count:	number of bytes to write
1131  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1132  *
1133  * Adjust number of segments and amount of bytes to write (nr_segs should be
1134  * properly initialized first). Returns appropriate error code that caller
1135  * should return or zero in case that write should be allowed.
1136  */
1137 int generic_segment_checks(const struct iovec *iov,
1138 			unsigned long *nr_segs, size_t *count, int access_flags)
1139 {
1140 	unsigned long   seg;
1141 	size_t cnt = 0;
1142 	for (seg = 0; seg < *nr_segs; seg++) {
1143 		const struct iovec *iv = &iov[seg];
1144 
1145 		/*
1146 		 * If any segment has a negative length, or the cumulative
1147 		 * length ever wraps negative then return -EINVAL.
1148 		 */
1149 		cnt += iv->iov_len;
1150 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1151 			return -EINVAL;
1152 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1153 			continue;
1154 		if (seg == 0)
1155 			return -EFAULT;
1156 		*nr_segs = seg;
1157 		cnt -= iv->iov_len;	/* This segment is no good */
1158 		break;
1159 	}
1160 	*count = cnt;
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(generic_segment_checks);
1164 
1165 /**
1166  * generic_file_aio_read - generic filesystem read routine
1167  * @iocb:	kernel I/O control block
1168  * @iov:	io vector request
1169  * @nr_segs:	number of segments in the iovec
1170  * @pos:	current file position
1171  *
1172  * This is the "read()" routine for all filesystems
1173  * that can use the page cache directly.
1174  */
1175 ssize_t
1176 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1177 		unsigned long nr_segs, loff_t pos)
1178 {
1179 	struct file *filp = iocb->ki_filp;
1180 	ssize_t retval;
1181 	unsigned long seg;
1182 	size_t count;
1183 	loff_t *ppos = &iocb->ki_pos;
1184 
1185 	count = 0;
1186 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1187 	if (retval)
1188 		return retval;
1189 
1190 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1191 	if (filp->f_flags & O_DIRECT) {
1192 		loff_t size;
1193 		struct address_space *mapping;
1194 		struct inode *inode;
1195 
1196 		mapping = filp->f_mapping;
1197 		inode = mapping->host;
1198 		retval = 0;
1199 		if (!count)
1200 			goto out; /* skip atime */
1201 		size = i_size_read(inode);
1202 		if (pos < size) {
1203 			retval = generic_file_direct_IO(READ, iocb,
1204 						iov, pos, nr_segs);
1205 			if (retval > 0)
1206 				*ppos = pos + retval;
1207 		}
1208 		if (likely(retval != 0)) {
1209 			file_accessed(filp);
1210 			goto out;
1211 		}
1212 	}
1213 
1214 	retval = 0;
1215 	if (count) {
1216 		for (seg = 0; seg < nr_segs; seg++) {
1217 			read_descriptor_t desc;
1218 
1219 			desc.written = 0;
1220 			desc.arg.buf = iov[seg].iov_base;
1221 			desc.count = iov[seg].iov_len;
1222 			if (desc.count == 0)
1223 				continue;
1224 			desc.error = 0;
1225 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1226 			retval += desc.written;
1227 			if (desc.error) {
1228 				retval = retval ?: desc.error;
1229 				break;
1230 			}
1231 			if (desc.count > 0)
1232 				break;
1233 		}
1234 	}
1235 out:
1236 	return retval;
1237 }
1238 EXPORT_SYMBOL(generic_file_aio_read);
1239 
1240 static ssize_t
1241 do_readahead(struct address_space *mapping, struct file *filp,
1242 	     pgoff_t index, unsigned long nr)
1243 {
1244 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1245 		return -EINVAL;
1246 
1247 	force_page_cache_readahead(mapping, filp, index,
1248 					max_sane_readahead(nr));
1249 	return 0;
1250 }
1251 
1252 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1253 {
1254 	ssize_t ret;
1255 	struct file *file;
1256 
1257 	ret = -EBADF;
1258 	file = fget(fd);
1259 	if (file) {
1260 		if (file->f_mode & FMODE_READ) {
1261 			struct address_space *mapping = file->f_mapping;
1262 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1263 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1264 			unsigned long len = end - start + 1;
1265 			ret = do_readahead(mapping, file, start, len);
1266 		}
1267 		fput(file);
1268 	}
1269 	return ret;
1270 }
1271 
1272 #ifdef CONFIG_MMU
1273 /**
1274  * page_cache_read - adds requested page to the page cache if not already there
1275  * @file:	file to read
1276  * @offset:	page index
1277  *
1278  * This adds the requested page to the page cache if it isn't already there,
1279  * and schedules an I/O to read in its contents from disk.
1280  */
1281 static int page_cache_read(struct file *file, pgoff_t offset)
1282 {
1283 	struct address_space *mapping = file->f_mapping;
1284 	struct page *page;
1285 	int ret;
1286 
1287 	do {
1288 		page = page_cache_alloc_cold(mapping);
1289 		if (!page)
1290 			return -ENOMEM;
1291 
1292 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1293 		if (ret == 0)
1294 			ret = mapping->a_ops->readpage(file, page);
1295 		else if (ret == -EEXIST)
1296 			ret = 0; /* losing race to add is OK */
1297 
1298 		page_cache_release(page);
1299 
1300 	} while (ret == AOP_TRUNCATED_PAGE);
1301 
1302 	return ret;
1303 }
1304 
1305 #define MMAP_LOTSAMISS  (100)
1306 
1307 /**
1308  * filemap_fault - read in file data for page fault handling
1309  * @vma:	vma in which the fault was taken
1310  * @vmf:	struct vm_fault containing details of the fault
1311  *
1312  * filemap_fault() is invoked via the vma operations vector for a
1313  * mapped memory region to read in file data during a page fault.
1314  *
1315  * The goto's are kind of ugly, but this streamlines the normal case of having
1316  * it in the page cache, and handles the special cases reasonably without
1317  * having a lot of duplicated code.
1318  */
1319 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1320 {
1321 	int error;
1322 	struct file *file = vma->vm_file;
1323 	struct address_space *mapping = file->f_mapping;
1324 	struct file_ra_state *ra = &file->f_ra;
1325 	struct inode *inode = mapping->host;
1326 	struct page *page;
1327 	pgoff_t size;
1328 	int did_readaround = 0;
1329 	int ret = 0;
1330 
1331 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1332 	if (vmf->pgoff >= size)
1333 		return VM_FAULT_SIGBUS;
1334 
1335 	/* If we don't want any read-ahead, don't bother */
1336 	if (VM_RandomReadHint(vma))
1337 		goto no_cached_page;
1338 
1339 	/*
1340 	 * Do we have something in the page cache already?
1341 	 */
1342 retry_find:
1343 	page = find_lock_page(mapping, vmf->pgoff);
1344 	/*
1345 	 * For sequential accesses, we use the generic readahead logic.
1346 	 */
1347 	if (VM_SequentialReadHint(vma)) {
1348 		if (!page) {
1349 			page_cache_sync_readahead(mapping, ra, file,
1350 							   vmf->pgoff, 1);
1351 			page = find_lock_page(mapping, vmf->pgoff);
1352 			if (!page)
1353 				goto no_cached_page;
1354 		}
1355 		if (PageReadahead(page)) {
1356 			page_cache_async_readahead(mapping, ra, file, page,
1357 							   vmf->pgoff, 1);
1358 		}
1359 	}
1360 
1361 	if (!page) {
1362 		unsigned long ra_pages;
1363 
1364 		ra->mmap_miss++;
1365 
1366 		/*
1367 		 * Do we miss much more than hit in this file? If so,
1368 		 * stop bothering with read-ahead. It will only hurt.
1369 		 */
1370 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1371 			goto no_cached_page;
1372 
1373 		/*
1374 		 * To keep the pgmajfault counter straight, we need to
1375 		 * check did_readaround, as this is an inner loop.
1376 		 */
1377 		if (!did_readaround) {
1378 			ret = VM_FAULT_MAJOR;
1379 			count_vm_event(PGMAJFAULT);
1380 		}
1381 		did_readaround = 1;
1382 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1383 		if (ra_pages) {
1384 			pgoff_t start = 0;
1385 
1386 			if (vmf->pgoff > ra_pages / 2)
1387 				start = vmf->pgoff - ra_pages / 2;
1388 			do_page_cache_readahead(mapping, file, start, ra_pages);
1389 		}
1390 		page = find_lock_page(mapping, vmf->pgoff);
1391 		if (!page)
1392 			goto no_cached_page;
1393 	}
1394 
1395 	if (!did_readaround)
1396 		ra->mmap_miss--;
1397 
1398 	/*
1399 	 * We have a locked page in the page cache, now we need to check
1400 	 * that it's up-to-date. If not, it is going to be due to an error.
1401 	 */
1402 	if (unlikely(!PageUptodate(page)))
1403 		goto page_not_uptodate;
1404 
1405 	/* Must recheck i_size under page lock */
1406 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1407 	if (unlikely(vmf->pgoff >= size)) {
1408 		unlock_page(page);
1409 		page_cache_release(page);
1410 		return VM_FAULT_SIGBUS;
1411 	}
1412 
1413 	/*
1414 	 * Found the page and have a reference on it.
1415 	 */
1416 	mark_page_accessed(page);
1417 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1418 	vmf->page = page;
1419 	return ret | VM_FAULT_LOCKED;
1420 
1421 no_cached_page:
1422 	/*
1423 	 * We're only likely to ever get here if MADV_RANDOM is in
1424 	 * effect.
1425 	 */
1426 	error = page_cache_read(file, vmf->pgoff);
1427 
1428 	/*
1429 	 * The page we want has now been added to the page cache.
1430 	 * In the unlikely event that someone removed it in the
1431 	 * meantime, we'll just come back here and read it again.
1432 	 */
1433 	if (error >= 0)
1434 		goto retry_find;
1435 
1436 	/*
1437 	 * An error return from page_cache_read can result if the
1438 	 * system is low on memory, or a problem occurs while trying
1439 	 * to schedule I/O.
1440 	 */
1441 	if (error == -ENOMEM)
1442 		return VM_FAULT_OOM;
1443 	return VM_FAULT_SIGBUS;
1444 
1445 page_not_uptodate:
1446 	/* IO error path */
1447 	if (!did_readaround) {
1448 		ret = VM_FAULT_MAJOR;
1449 		count_vm_event(PGMAJFAULT);
1450 	}
1451 
1452 	/*
1453 	 * Umm, take care of errors if the page isn't up-to-date.
1454 	 * Try to re-read it _once_. We do this synchronously,
1455 	 * because there really aren't any performance issues here
1456 	 * and we need to check for errors.
1457 	 */
1458 	ClearPageError(page);
1459 	error = mapping->a_ops->readpage(file, page);
1460 	page_cache_release(page);
1461 
1462 	if (!error || error == AOP_TRUNCATED_PAGE)
1463 		goto retry_find;
1464 
1465 	/* Things didn't work out. Return zero to tell the mm layer so. */
1466 	shrink_readahead_size_eio(file, ra);
1467 	return VM_FAULT_SIGBUS;
1468 }
1469 EXPORT_SYMBOL(filemap_fault);
1470 
1471 struct vm_operations_struct generic_file_vm_ops = {
1472 	.fault		= filemap_fault,
1473 };
1474 
1475 /* This is used for a general mmap of a disk file */
1476 
1477 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1478 {
1479 	struct address_space *mapping = file->f_mapping;
1480 
1481 	if (!mapping->a_ops->readpage)
1482 		return -ENOEXEC;
1483 	file_accessed(file);
1484 	vma->vm_ops = &generic_file_vm_ops;
1485 	vma->vm_flags |= VM_CAN_NONLINEAR;
1486 	return 0;
1487 }
1488 
1489 /*
1490  * This is for filesystems which do not implement ->writepage.
1491  */
1492 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1493 {
1494 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1495 		return -EINVAL;
1496 	return generic_file_mmap(file, vma);
1497 }
1498 #else
1499 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1500 {
1501 	return -ENOSYS;
1502 }
1503 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1504 {
1505 	return -ENOSYS;
1506 }
1507 #endif /* CONFIG_MMU */
1508 
1509 EXPORT_SYMBOL(generic_file_mmap);
1510 EXPORT_SYMBOL(generic_file_readonly_mmap);
1511 
1512 static struct page *__read_cache_page(struct address_space *mapping,
1513 				pgoff_t index,
1514 				int (*filler)(void *,struct page*),
1515 				void *data)
1516 {
1517 	struct page *page;
1518 	int err;
1519 repeat:
1520 	page = find_get_page(mapping, index);
1521 	if (!page) {
1522 		page = page_cache_alloc_cold(mapping);
1523 		if (!page)
1524 			return ERR_PTR(-ENOMEM);
1525 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1526 		if (unlikely(err)) {
1527 			page_cache_release(page);
1528 			if (err == -EEXIST)
1529 				goto repeat;
1530 			/* Presumably ENOMEM for radix tree node */
1531 			return ERR_PTR(err);
1532 		}
1533 		err = filler(data, page);
1534 		if (err < 0) {
1535 			page_cache_release(page);
1536 			page = ERR_PTR(err);
1537 		}
1538 	}
1539 	return page;
1540 }
1541 
1542 /*
1543  * Same as read_cache_page, but don't wait for page to become unlocked
1544  * after submitting it to the filler.
1545  */
1546 struct page *read_cache_page_async(struct address_space *mapping,
1547 				pgoff_t index,
1548 				int (*filler)(void *,struct page*),
1549 				void *data)
1550 {
1551 	struct page *page;
1552 	int err;
1553 
1554 retry:
1555 	page = __read_cache_page(mapping, index, filler, data);
1556 	if (IS_ERR(page))
1557 		return page;
1558 	if (PageUptodate(page))
1559 		goto out;
1560 
1561 	lock_page(page);
1562 	if (!page->mapping) {
1563 		unlock_page(page);
1564 		page_cache_release(page);
1565 		goto retry;
1566 	}
1567 	if (PageUptodate(page)) {
1568 		unlock_page(page);
1569 		goto out;
1570 	}
1571 	err = filler(data, page);
1572 	if (err < 0) {
1573 		page_cache_release(page);
1574 		return ERR_PTR(err);
1575 	}
1576 out:
1577 	mark_page_accessed(page);
1578 	return page;
1579 }
1580 EXPORT_SYMBOL(read_cache_page_async);
1581 
1582 /**
1583  * read_cache_page - read into page cache, fill it if needed
1584  * @mapping:	the page's address_space
1585  * @index:	the page index
1586  * @filler:	function to perform the read
1587  * @data:	destination for read data
1588  *
1589  * Read into the page cache. If a page already exists, and PageUptodate() is
1590  * not set, try to fill the page then wait for it to become unlocked.
1591  *
1592  * If the page does not get brought uptodate, return -EIO.
1593  */
1594 struct page *read_cache_page(struct address_space *mapping,
1595 				pgoff_t index,
1596 				int (*filler)(void *,struct page*),
1597 				void *data)
1598 {
1599 	struct page *page;
1600 
1601 	page = read_cache_page_async(mapping, index, filler, data);
1602 	if (IS_ERR(page))
1603 		goto out;
1604 	wait_on_page_locked(page);
1605 	if (!PageUptodate(page)) {
1606 		page_cache_release(page);
1607 		page = ERR_PTR(-EIO);
1608 	}
1609  out:
1610 	return page;
1611 }
1612 EXPORT_SYMBOL(read_cache_page);
1613 
1614 /*
1615  * The logic we want is
1616  *
1617  *	if suid or (sgid and xgrp)
1618  *		remove privs
1619  */
1620 int should_remove_suid(struct dentry *dentry)
1621 {
1622 	mode_t mode = dentry->d_inode->i_mode;
1623 	int kill = 0;
1624 
1625 	/* suid always must be killed */
1626 	if (unlikely(mode & S_ISUID))
1627 		kill = ATTR_KILL_SUID;
1628 
1629 	/*
1630 	 * sgid without any exec bits is just a mandatory locking mark; leave
1631 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1632 	 */
1633 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1634 		kill |= ATTR_KILL_SGID;
1635 
1636 	if (unlikely(kill && !capable(CAP_FSETID)))
1637 		return kill;
1638 
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL(should_remove_suid);
1642 
1643 int __remove_suid(struct dentry *dentry, int kill)
1644 {
1645 	struct iattr newattrs;
1646 
1647 	newattrs.ia_valid = ATTR_FORCE | kill;
1648 	return notify_change(dentry, &newattrs);
1649 }
1650 
1651 int remove_suid(struct dentry *dentry)
1652 {
1653 	int killsuid = should_remove_suid(dentry);
1654 	int killpriv = security_inode_need_killpriv(dentry);
1655 	int error = 0;
1656 
1657 	if (killpriv < 0)
1658 		return killpriv;
1659 	if (killpriv)
1660 		error = security_inode_killpriv(dentry);
1661 	if (!error && killsuid)
1662 		error = __remove_suid(dentry, killsuid);
1663 
1664 	return error;
1665 }
1666 EXPORT_SYMBOL(remove_suid);
1667 
1668 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1669 			const struct iovec *iov, size_t base, size_t bytes)
1670 {
1671 	size_t copied = 0, left = 0;
1672 
1673 	while (bytes) {
1674 		char __user *buf = iov->iov_base + base;
1675 		int copy = min(bytes, iov->iov_len - base);
1676 
1677 		base = 0;
1678 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1679 		copied += copy;
1680 		bytes -= copy;
1681 		vaddr += copy;
1682 		iov++;
1683 
1684 		if (unlikely(left))
1685 			break;
1686 	}
1687 	return copied - left;
1688 }
1689 
1690 /*
1691  * Copy as much as we can into the page and return the number of bytes which
1692  * were sucessfully copied.  If a fault is encountered then return the number of
1693  * bytes which were copied.
1694  */
1695 size_t iov_iter_copy_from_user_atomic(struct page *page,
1696 		struct iov_iter *i, unsigned long offset, size_t bytes)
1697 {
1698 	char *kaddr;
1699 	size_t copied;
1700 
1701 	BUG_ON(!in_atomic());
1702 	kaddr = kmap_atomic(page, KM_USER0);
1703 	if (likely(i->nr_segs == 1)) {
1704 		int left;
1705 		char __user *buf = i->iov->iov_base + i->iov_offset;
1706 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1707 							buf, bytes);
1708 		copied = bytes - left;
1709 	} else {
1710 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1711 						i->iov, i->iov_offset, bytes);
1712 	}
1713 	kunmap_atomic(kaddr, KM_USER0);
1714 
1715 	return copied;
1716 }
1717 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1718 
1719 /*
1720  * This has the same sideeffects and return value as
1721  * iov_iter_copy_from_user_atomic().
1722  * The difference is that it attempts to resolve faults.
1723  * Page must not be locked.
1724  */
1725 size_t iov_iter_copy_from_user(struct page *page,
1726 		struct iov_iter *i, unsigned long offset, size_t bytes)
1727 {
1728 	char *kaddr;
1729 	size_t copied;
1730 
1731 	kaddr = kmap(page);
1732 	if (likely(i->nr_segs == 1)) {
1733 		int left;
1734 		char __user *buf = i->iov->iov_base + i->iov_offset;
1735 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1736 		copied = bytes - left;
1737 	} else {
1738 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1739 						i->iov, i->iov_offset, bytes);
1740 	}
1741 	kunmap(page);
1742 	return copied;
1743 }
1744 EXPORT_SYMBOL(iov_iter_copy_from_user);
1745 
1746 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1747 {
1748 	if (likely(i->nr_segs == 1)) {
1749 		i->iov_offset += bytes;
1750 	} else {
1751 		const struct iovec *iov = i->iov;
1752 		size_t base = i->iov_offset;
1753 
1754 		/*
1755 		 * The !iov->iov_len check ensures we skip over unlikely
1756 		 * zero-length segments.
1757 		 */
1758 		while (bytes || !iov->iov_len) {
1759 			int copy = min(bytes, iov->iov_len - base);
1760 
1761 			bytes -= copy;
1762 			base += copy;
1763 			if (iov->iov_len == base) {
1764 				iov++;
1765 				base = 0;
1766 			}
1767 		}
1768 		i->iov = iov;
1769 		i->iov_offset = base;
1770 	}
1771 }
1772 
1773 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1774 {
1775 	BUG_ON(i->count < bytes);
1776 
1777 	__iov_iter_advance_iov(i, bytes);
1778 	i->count -= bytes;
1779 }
1780 EXPORT_SYMBOL(iov_iter_advance);
1781 
1782 /*
1783  * Fault in the first iovec of the given iov_iter, to a maximum length
1784  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1785  * accessed (ie. because it is an invalid address).
1786  *
1787  * writev-intensive code may want this to prefault several iovecs -- that
1788  * would be possible (callers must not rely on the fact that _only_ the
1789  * first iovec will be faulted with the current implementation).
1790  */
1791 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1792 {
1793 	char __user *buf = i->iov->iov_base + i->iov_offset;
1794 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1795 	return fault_in_pages_readable(buf, bytes);
1796 }
1797 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1798 
1799 /*
1800  * Return the count of just the current iov_iter segment.
1801  */
1802 size_t iov_iter_single_seg_count(struct iov_iter *i)
1803 {
1804 	const struct iovec *iov = i->iov;
1805 	if (i->nr_segs == 1)
1806 		return i->count;
1807 	else
1808 		return min(i->count, iov->iov_len - i->iov_offset);
1809 }
1810 EXPORT_SYMBOL(iov_iter_single_seg_count);
1811 
1812 /*
1813  * Performs necessary checks before doing a write
1814  *
1815  * Can adjust writing position or amount of bytes to write.
1816  * Returns appropriate error code that caller should return or
1817  * zero in case that write should be allowed.
1818  */
1819 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1820 {
1821 	struct inode *inode = file->f_mapping->host;
1822 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1823 
1824         if (unlikely(*pos < 0))
1825                 return -EINVAL;
1826 
1827 	if (!isblk) {
1828 		/* FIXME: this is for backwards compatibility with 2.4 */
1829 		if (file->f_flags & O_APPEND)
1830                         *pos = i_size_read(inode);
1831 
1832 		if (limit != RLIM_INFINITY) {
1833 			if (*pos >= limit) {
1834 				send_sig(SIGXFSZ, current, 0);
1835 				return -EFBIG;
1836 			}
1837 			if (*count > limit - (typeof(limit))*pos) {
1838 				*count = limit - (typeof(limit))*pos;
1839 			}
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * LFS rule
1845 	 */
1846 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1847 				!(file->f_flags & O_LARGEFILE))) {
1848 		if (*pos >= MAX_NON_LFS) {
1849 			return -EFBIG;
1850 		}
1851 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1852 			*count = MAX_NON_LFS - (unsigned long)*pos;
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * Are we about to exceed the fs block limit ?
1858 	 *
1859 	 * If we have written data it becomes a short write.  If we have
1860 	 * exceeded without writing data we send a signal and return EFBIG.
1861 	 * Linus frestrict idea will clean these up nicely..
1862 	 */
1863 	if (likely(!isblk)) {
1864 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1865 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1866 				return -EFBIG;
1867 			}
1868 			/* zero-length writes at ->s_maxbytes are OK */
1869 		}
1870 
1871 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1872 			*count = inode->i_sb->s_maxbytes - *pos;
1873 	} else {
1874 #ifdef CONFIG_BLOCK
1875 		loff_t isize;
1876 		if (bdev_read_only(I_BDEV(inode)))
1877 			return -EPERM;
1878 		isize = i_size_read(inode);
1879 		if (*pos >= isize) {
1880 			if (*count || *pos > isize)
1881 				return -ENOSPC;
1882 		}
1883 
1884 		if (*pos + *count > isize)
1885 			*count = isize - *pos;
1886 #else
1887 		return -EPERM;
1888 #endif
1889 	}
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL(generic_write_checks);
1893 
1894 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1895 				loff_t pos, unsigned len, unsigned flags,
1896 				struct page **pagep, void **fsdata)
1897 {
1898 	const struct address_space_operations *aops = mapping->a_ops;
1899 
1900 	if (aops->write_begin) {
1901 		return aops->write_begin(file, mapping, pos, len, flags,
1902 							pagep, fsdata);
1903 	} else {
1904 		int ret;
1905 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1906 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1907 		struct inode *inode = mapping->host;
1908 		struct page *page;
1909 again:
1910 		page = __grab_cache_page(mapping, index);
1911 		*pagep = page;
1912 		if (!page)
1913 			return -ENOMEM;
1914 
1915 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1916 			/*
1917 			 * There is no way to resolve a short write situation
1918 			 * for a !Uptodate page (except by double copying in
1919 			 * the caller done by generic_perform_write_2copy).
1920 			 *
1921 			 * Instead, we have to bring it uptodate here.
1922 			 */
1923 			ret = aops->readpage(file, page);
1924 			page_cache_release(page);
1925 			if (ret) {
1926 				if (ret == AOP_TRUNCATED_PAGE)
1927 					goto again;
1928 				return ret;
1929 			}
1930 			goto again;
1931 		}
1932 
1933 		ret = aops->prepare_write(file, page, offset, offset+len);
1934 		if (ret) {
1935 			unlock_page(page);
1936 			page_cache_release(page);
1937 			if (pos + len > inode->i_size)
1938 				vmtruncate(inode, inode->i_size);
1939 		}
1940 		return ret;
1941 	}
1942 }
1943 EXPORT_SYMBOL(pagecache_write_begin);
1944 
1945 int pagecache_write_end(struct file *file, struct address_space *mapping,
1946 				loff_t pos, unsigned len, unsigned copied,
1947 				struct page *page, void *fsdata)
1948 {
1949 	const struct address_space_operations *aops = mapping->a_ops;
1950 	int ret;
1951 
1952 	if (aops->write_end) {
1953 		mark_page_accessed(page);
1954 		ret = aops->write_end(file, mapping, pos, len, copied,
1955 							page, fsdata);
1956 	} else {
1957 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1958 		struct inode *inode = mapping->host;
1959 
1960 		flush_dcache_page(page);
1961 		ret = aops->commit_write(file, page, offset, offset+len);
1962 		unlock_page(page);
1963 		mark_page_accessed(page);
1964 		page_cache_release(page);
1965 
1966 		if (ret < 0) {
1967 			if (pos + len > inode->i_size)
1968 				vmtruncate(inode, inode->i_size);
1969 		} else if (ret > 0)
1970 			ret = min_t(size_t, copied, ret);
1971 		else
1972 			ret = copied;
1973 	}
1974 
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL(pagecache_write_end);
1978 
1979 ssize_t
1980 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1981 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1982 		size_t count, size_t ocount)
1983 {
1984 	struct file	*file = iocb->ki_filp;
1985 	struct address_space *mapping = file->f_mapping;
1986 	struct inode	*inode = mapping->host;
1987 	ssize_t		written;
1988 
1989 	if (count != ocount)
1990 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1991 
1992 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1993 	if (written > 0) {
1994 		loff_t end = pos + written;
1995 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1996 			i_size_write(inode,  end);
1997 			mark_inode_dirty(inode);
1998 		}
1999 		*ppos = end;
2000 	}
2001 
2002 	/*
2003 	 * Sync the fs metadata but not the minor inode changes and
2004 	 * of course not the data as we did direct DMA for the IO.
2005 	 * i_mutex is held, which protects generic_osync_inode() from
2006 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2007 	 */
2008 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2009 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2010 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2011 		if (err < 0)
2012 			written = err;
2013 	}
2014 	return written;
2015 }
2016 EXPORT_SYMBOL(generic_file_direct_write);
2017 
2018 /*
2019  * Find or create a page at the given pagecache position. Return the locked
2020  * page. This function is specifically for buffered writes.
2021  */
2022 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2023 {
2024 	int status;
2025 	struct page *page;
2026 repeat:
2027 	page = find_lock_page(mapping, index);
2028 	if (likely(page))
2029 		return page;
2030 
2031 	page = page_cache_alloc(mapping);
2032 	if (!page)
2033 		return NULL;
2034 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2035 	if (unlikely(status)) {
2036 		page_cache_release(page);
2037 		if (status == -EEXIST)
2038 			goto repeat;
2039 		return NULL;
2040 	}
2041 	return page;
2042 }
2043 EXPORT_SYMBOL(__grab_cache_page);
2044 
2045 static ssize_t generic_perform_write_2copy(struct file *file,
2046 				struct iov_iter *i, loff_t pos)
2047 {
2048 	struct address_space *mapping = file->f_mapping;
2049 	const struct address_space_operations *a_ops = mapping->a_ops;
2050 	struct inode *inode = mapping->host;
2051 	long status = 0;
2052 	ssize_t written = 0;
2053 
2054 	do {
2055 		struct page *src_page;
2056 		struct page *page;
2057 		pgoff_t index;		/* Pagecache index for current page */
2058 		unsigned long offset;	/* Offset into pagecache page */
2059 		unsigned long bytes;	/* Bytes to write to page */
2060 		size_t copied;		/* Bytes copied from user */
2061 
2062 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2063 		index = pos >> PAGE_CACHE_SHIFT;
2064 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2065 						iov_iter_count(i));
2066 
2067 		/*
2068 		 * a non-NULL src_page indicates that we're doing the
2069 		 * copy via get_user_pages and kmap.
2070 		 */
2071 		src_page = NULL;
2072 
2073 		/*
2074 		 * Bring in the user page that we will copy from _first_.
2075 		 * Otherwise there's a nasty deadlock on copying from the
2076 		 * same page as we're writing to, without it being marked
2077 		 * up-to-date.
2078 		 *
2079 		 * Not only is this an optimisation, but it is also required
2080 		 * to check that the address is actually valid, when atomic
2081 		 * usercopies are used, below.
2082 		 */
2083 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2084 			status = -EFAULT;
2085 			break;
2086 		}
2087 
2088 		page = __grab_cache_page(mapping, index);
2089 		if (!page) {
2090 			status = -ENOMEM;
2091 			break;
2092 		}
2093 
2094 		/*
2095 		 * non-uptodate pages cannot cope with short copies, and we
2096 		 * cannot take a pagefault with the destination page locked.
2097 		 * So pin the source page to copy it.
2098 		 */
2099 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2100 			unlock_page(page);
2101 
2102 			src_page = alloc_page(GFP_KERNEL);
2103 			if (!src_page) {
2104 				page_cache_release(page);
2105 				status = -ENOMEM;
2106 				break;
2107 			}
2108 
2109 			/*
2110 			 * Cannot get_user_pages with a page locked for the
2111 			 * same reason as we can't take a page fault with a
2112 			 * page locked (as explained below).
2113 			 */
2114 			copied = iov_iter_copy_from_user(src_page, i,
2115 								offset, bytes);
2116 			if (unlikely(copied == 0)) {
2117 				status = -EFAULT;
2118 				page_cache_release(page);
2119 				page_cache_release(src_page);
2120 				break;
2121 			}
2122 			bytes = copied;
2123 
2124 			lock_page(page);
2125 			/*
2126 			 * Can't handle the page going uptodate here, because
2127 			 * that means we would use non-atomic usercopies, which
2128 			 * zero out the tail of the page, which can cause
2129 			 * zeroes to become transiently visible. We could just
2130 			 * use a non-zeroing copy, but the APIs aren't too
2131 			 * consistent.
2132 			 */
2133 			if (unlikely(!page->mapping || PageUptodate(page))) {
2134 				unlock_page(page);
2135 				page_cache_release(page);
2136 				page_cache_release(src_page);
2137 				continue;
2138 			}
2139 		}
2140 
2141 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2142 		if (unlikely(status))
2143 			goto fs_write_aop_error;
2144 
2145 		if (!src_page) {
2146 			/*
2147 			 * Must not enter the pagefault handler here, because
2148 			 * we hold the page lock, so we might recursively
2149 			 * deadlock on the same lock, or get an ABBA deadlock
2150 			 * against a different lock, or against the mmap_sem
2151 			 * (which nests outside the page lock).  So increment
2152 			 * preempt count, and use _atomic usercopies.
2153 			 *
2154 			 * The page is uptodate so we are OK to encounter a
2155 			 * short copy: if unmodified parts of the page are
2156 			 * marked dirty and written out to disk, it doesn't
2157 			 * really matter.
2158 			 */
2159 			pagefault_disable();
2160 			copied = iov_iter_copy_from_user_atomic(page, i,
2161 								offset, bytes);
2162 			pagefault_enable();
2163 		} else {
2164 			void *src, *dst;
2165 			src = kmap_atomic(src_page, KM_USER0);
2166 			dst = kmap_atomic(page, KM_USER1);
2167 			memcpy(dst + offset, src + offset, bytes);
2168 			kunmap_atomic(dst, KM_USER1);
2169 			kunmap_atomic(src, KM_USER0);
2170 			copied = bytes;
2171 		}
2172 		flush_dcache_page(page);
2173 
2174 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2175 		if (unlikely(status < 0))
2176 			goto fs_write_aop_error;
2177 		if (unlikely(status > 0)) /* filesystem did partial write */
2178 			copied = min_t(size_t, copied, status);
2179 
2180 		unlock_page(page);
2181 		mark_page_accessed(page);
2182 		page_cache_release(page);
2183 		if (src_page)
2184 			page_cache_release(src_page);
2185 
2186 		iov_iter_advance(i, copied);
2187 		pos += copied;
2188 		written += copied;
2189 
2190 		balance_dirty_pages_ratelimited(mapping);
2191 		cond_resched();
2192 		continue;
2193 
2194 fs_write_aop_error:
2195 		unlock_page(page);
2196 		page_cache_release(page);
2197 		if (src_page)
2198 			page_cache_release(src_page);
2199 
2200 		/*
2201 		 * prepare_write() may have instantiated a few blocks
2202 		 * outside i_size.  Trim these off again. Don't need
2203 		 * i_size_read because we hold i_mutex.
2204 		 */
2205 		if (pos + bytes > inode->i_size)
2206 			vmtruncate(inode, inode->i_size);
2207 		break;
2208 	} while (iov_iter_count(i));
2209 
2210 	return written ? written : status;
2211 }
2212 
2213 static ssize_t generic_perform_write(struct file *file,
2214 				struct iov_iter *i, loff_t pos)
2215 {
2216 	struct address_space *mapping = file->f_mapping;
2217 	const struct address_space_operations *a_ops = mapping->a_ops;
2218 	long status = 0;
2219 	ssize_t written = 0;
2220 	unsigned int flags = 0;
2221 
2222 	/*
2223 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2224 	 */
2225 	if (segment_eq(get_fs(), KERNEL_DS))
2226 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2227 
2228 	do {
2229 		struct page *page;
2230 		pgoff_t index;		/* Pagecache index for current page */
2231 		unsigned long offset;	/* Offset into pagecache page */
2232 		unsigned long bytes;	/* Bytes to write to page */
2233 		size_t copied;		/* Bytes copied from user */
2234 		void *fsdata;
2235 
2236 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2237 		index = pos >> PAGE_CACHE_SHIFT;
2238 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2239 						iov_iter_count(i));
2240 
2241 again:
2242 
2243 		/*
2244 		 * Bring in the user page that we will copy from _first_.
2245 		 * Otherwise there's a nasty deadlock on copying from the
2246 		 * same page as we're writing to, without it being marked
2247 		 * up-to-date.
2248 		 *
2249 		 * Not only is this an optimisation, but it is also required
2250 		 * to check that the address is actually valid, when atomic
2251 		 * usercopies are used, below.
2252 		 */
2253 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2254 			status = -EFAULT;
2255 			break;
2256 		}
2257 
2258 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2259 						&page, &fsdata);
2260 		if (unlikely(status))
2261 			break;
2262 
2263 		pagefault_disable();
2264 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2265 		pagefault_enable();
2266 		flush_dcache_page(page);
2267 
2268 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2269 						page, fsdata);
2270 		if (unlikely(status < 0))
2271 			break;
2272 		copied = status;
2273 
2274 		cond_resched();
2275 
2276 		iov_iter_advance(i, copied);
2277 		if (unlikely(copied == 0)) {
2278 			/*
2279 			 * If we were unable to copy any data at all, we must
2280 			 * fall back to a single segment length write.
2281 			 *
2282 			 * If we didn't fallback here, we could livelock
2283 			 * because not all segments in the iov can be copied at
2284 			 * once without a pagefault.
2285 			 */
2286 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2287 						iov_iter_single_seg_count(i));
2288 			goto again;
2289 		}
2290 		pos += copied;
2291 		written += copied;
2292 
2293 		balance_dirty_pages_ratelimited(mapping);
2294 
2295 	} while (iov_iter_count(i));
2296 
2297 	return written ? written : status;
2298 }
2299 
2300 ssize_t
2301 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2302 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2303 		size_t count, ssize_t written)
2304 {
2305 	struct file *file = iocb->ki_filp;
2306 	struct address_space *mapping = file->f_mapping;
2307 	const struct address_space_operations *a_ops = mapping->a_ops;
2308 	struct inode *inode = mapping->host;
2309 	ssize_t status;
2310 	struct iov_iter i;
2311 
2312 	iov_iter_init(&i, iov, nr_segs, count, written);
2313 	if (a_ops->write_begin)
2314 		status = generic_perform_write(file, &i, pos);
2315 	else
2316 		status = generic_perform_write_2copy(file, &i, pos);
2317 
2318 	if (likely(status >= 0)) {
2319 		written += status;
2320 		*ppos = pos + status;
2321 
2322 		/*
2323 		 * For now, when the user asks for O_SYNC, we'll actually give
2324 		 * O_DSYNC
2325 		 */
2326 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2327 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2328 				status = generic_osync_inode(inode, mapping,
2329 						OSYNC_METADATA|OSYNC_DATA);
2330 		}
2331   	}
2332 
2333 	/*
2334 	 * If we get here for O_DIRECT writes then we must have fallen through
2335 	 * to buffered writes (block instantiation inside i_size).  So we sync
2336 	 * the file data here, to try to honour O_DIRECT expectations.
2337 	 */
2338 	if (unlikely(file->f_flags & O_DIRECT) && written)
2339 		status = filemap_write_and_wait(mapping);
2340 
2341 	return written ? written : status;
2342 }
2343 EXPORT_SYMBOL(generic_file_buffered_write);
2344 
2345 static ssize_t
2346 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2347 				unsigned long nr_segs, loff_t *ppos)
2348 {
2349 	struct file *file = iocb->ki_filp;
2350 	struct address_space * mapping = file->f_mapping;
2351 	size_t ocount;		/* original count */
2352 	size_t count;		/* after file limit checks */
2353 	struct inode 	*inode = mapping->host;
2354 	loff_t		pos;
2355 	ssize_t		written;
2356 	ssize_t		err;
2357 
2358 	ocount = 0;
2359 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2360 	if (err)
2361 		return err;
2362 
2363 	count = ocount;
2364 	pos = *ppos;
2365 
2366 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2367 
2368 	/* We can write back this queue in page reclaim */
2369 	current->backing_dev_info = mapping->backing_dev_info;
2370 	written = 0;
2371 
2372 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2373 	if (err)
2374 		goto out;
2375 
2376 	if (count == 0)
2377 		goto out;
2378 
2379 	err = remove_suid(file->f_path.dentry);
2380 	if (err)
2381 		goto out;
2382 
2383 	file_update_time(file);
2384 
2385 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2386 	if (unlikely(file->f_flags & O_DIRECT)) {
2387 		loff_t endbyte;
2388 		ssize_t written_buffered;
2389 
2390 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2391 							ppos, count, ocount);
2392 		if (written < 0 || written == count)
2393 			goto out;
2394 		/*
2395 		 * direct-io write to a hole: fall through to buffered I/O
2396 		 * for completing the rest of the request.
2397 		 */
2398 		pos += written;
2399 		count -= written;
2400 		written_buffered = generic_file_buffered_write(iocb, iov,
2401 						nr_segs, pos, ppos, count,
2402 						written);
2403 		/*
2404 		 * If generic_file_buffered_write() retuned a synchronous error
2405 		 * then we want to return the number of bytes which were
2406 		 * direct-written, or the error code if that was zero.  Note
2407 		 * that this differs from normal direct-io semantics, which
2408 		 * will return -EFOO even if some bytes were written.
2409 		 */
2410 		if (written_buffered < 0) {
2411 			err = written_buffered;
2412 			goto out;
2413 		}
2414 
2415 		/*
2416 		 * We need to ensure that the page cache pages are written to
2417 		 * disk and invalidated to preserve the expected O_DIRECT
2418 		 * semantics.
2419 		 */
2420 		endbyte = pos + written_buffered - written - 1;
2421 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2422 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2423 					    SYNC_FILE_RANGE_WRITE|
2424 					    SYNC_FILE_RANGE_WAIT_AFTER);
2425 		if (err == 0) {
2426 			written = written_buffered;
2427 			invalidate_mapping_pages(mapping,
2428 						 pos >> PAGE_CACHE_SHIFT,
2429 						 endbyte >> PAGE_CACHE_SHIFT);
2430 		} else {
2431 			/*
2432 			 * We don't know how much we wrote, so just return
2433 			 * the number of bytes which were direct-written
2434 			 */
2435 		}
2436 	} else {
2437 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2438 				pos, ppos, count, written);
2439 	}
2440 out:
2441 	current->backing_dev_info = NULL;
2442 	return written ? written : err;
2443 }
2444 
2445 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2446 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2447 {
2448 	struct file *file = iocb->ki_filp;
2449 	struct address_space *mapping = file->f_mapping;
2450 	struct inode *inode = mapping->host;
2451 	ssize_t ret;
2452 
2453 	BUG_ON(iocb->ki_pos != pos);
2454 
2455 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2456 			&iocb->ki_pos);
2457 
2458 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2459 		ssize_t err;
2460 
2461 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2462 		if (err < 0)
2463 			ret = err;
2464 	}
2465 	return ret;
2466 }
2467 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2468 
2469 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2470 		unsigned long nr_segs, loff_t pos)
2471 {
2472 	struct file *file = iocb->ki_filp;
2473 	struct address_space *mapping = file->f_mapping;
2474 	struct inode *inode = mapping->host;
2475 	ssize_t ret;
2476 
2477 	BUG_ON(iocb->ki_pos != pos);
2478 
2479 	mutex_lock(&inode->i_mutex);
2480 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2481 			&iocb->ki_pos);
2482 	mutex_unlock(&inode->i_mutex);
2483 
2484 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2485 		ssize_t err;
2486 
2487 		err = sync_page_range(inode, mapping, pos, ret);
2488 		if (err < 0)
2489 			ret = err;
2490 	}
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL(generic_file_aio_write);
2494 
2495 /*
2496  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2497  * went wrong during pagecache shootdown.
2498  */
2499 static ssize_t
2500 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2501 	loff_t offset, unsigned long nr_segs)
2502 {
2503 	struct file *file = iocb->ki_filp;
2504 	struct address_space *mapping = file->f_mapping;
2505 	ssize_t retval;
2506 	size_t write_len;
2507 	pgoff_t end = 0; /* silence gcc */
2508 
2509 	/*
2510 	 * If it's a write, unmap all mmappings of the file up-front.  This
2511 	 * will cause any pte dirty bits to be propagated into the pageframes
2512 	 * for the subsequent filemap_write_and_wait().
2513 	 */
2514 	if (rw == WRITE) {
2515 		write_len = iov_length(iov, nr_segs);
2516 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2517 	       	if (mapping_mapped(mapping))
2518 			unmap_mapping_range(mapping, offset, write_len, 0);
2519 	}
2520 
2521 	retval = filemap_write_and_wait(mapping);
2522 	if (retval)
2523 		goto out;
2524 
2525 	/*
2526 	 * After a write we want buffered reads to be sure to go to disk to get
2527 	 * the new data.  We invalidate clean cached page from the region we're
2528 	 * about to write.  We do this *before* the write so that we can return
2529 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2530 	 */
2531 	if (rw == WRITE && mapping->nrpages) {
2532 		retval = invalidate_inode_pages2_range(mapping,
2533 					offset >> PAGE_CACHE_SHIFT, end);
2534 		if (retval)
2535 			goto out;
2536 	}
2537 
2538 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2539 
2540 	/*
2541 	 * Finally, try again to invalidate clean pages which might have been
2542 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2543 	 * if the source of the write was an mmap'ed region of the file
2544 	 * we're writing.  Either one is a pretty crazy thing to do,
2545 	 * so we don't support it 100%.  If this invalidation
2546 	 * fails, tough, the write still worked...
2547 	 */
2548 	if (rw == WRITE && mapping->nrpages) {
2549 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2550 	}
2551 out:
2552 	return retval;
2553 }
2554 
2555 /**
2556  * try_to_release_page() - release old fs-specific metadata on a page
2557  *
2558  * @page: the page which the kernel is trying to free
2559  * @gfp_mask: memory allocation flags (and I/O mode)
2560  *
2561  * The address_space is to try to release any data against the page
2562  * (presumably at page->private).  If the release was successful, return `1'.
2563  * Otherwise return zero.
2564  *
2565  * The @gfp_mask argument specifies whether I/O may be performed to release
2566  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2567  *
2568  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2569  */
2570 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2571 {
2572 	struct address_space * const mapping = page->mapping;
2573 
2574 	BUG_ON(!PageLocked(page));
2575 	if (PageWriteback(page))
2576 		return 0;
2577 
2578 	if (mapping && mapping->a_ops->releasepage)
2579 		return mapping->a_ops->releasepage(page, gfp_mask);
2580 	return try_to_free_buffers(page);
2581 }
2582 
2583 EXPORT_SYMBOL(try_to_release_page);
2584