1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/mman.h> 25 #include <linux/pagemap.h> 26 #include <linux/file.h> 27 #include <linux/uio.h> 28 #include <linux/error-injection.h> 29 #include <linux/hash.h> 30 #include <linux/writeback.h> 31 #include <linux/backing-dev.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/cleancache.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include "internal.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/filemap.h> 47 48 /* 49 * FIXME: remove all knowledge of the buffer layer from the core VM 50 */ 51 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 52 53 #include <asm/mman.h> 54 55 /* 56 * Shared mappings implemented 30.11.1994. It's not fully working yet, 57 * though. 58 * 59 * Shared mappings now work. 15.8.1995 Bruno. 60 * 61 * finished 'unifying' the page and buffer cache and SMP-threaded the 62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 63 * 64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 65 */ 66 67 /* 68 * Lock ordering: 69 * 70 * ->i_mmap_rwsem (truncate_pagecache) 71 * ->private_lock (__free_pte->__set_page_dirty_buffers) 72 * ->swap_lock (exclusive_swap_page, others) 73 * ->i_pages lock 74 * 75 * ->i_mutex 76 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 77 * 78 * ->mmap_sem 79 * ->i_mmap_rwsem 80 * ->page_table_lock or pte_lock (various, mainly in memory.c) 81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 82 * 83 * ->mmap_sem 84 * ->lock_page (access_process_vm) 85 * 86 * ->i_mutex (generic_perform_write) 87 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 88 * 89 * bdi->wb.list_lock 90 * sb_lock (fs/fs-writeback.c) 91 * ->i_pages lock (__sync_single_inode) 92 * 93 * ->i_mmap_rwsem 94 * ->anon_vma.lock (vma_adjust) 95 * 96 * ->anon_vma.lock 97 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 98 * 99 * ->page_table_lock or pte_lock 100 * ->swap_lock (try_to_unmap_one) 101 * ->private_lock (try_to_unmap_one) 102 * ->i_pages lock (try_to_unmap_one) 103 * ->pgdat->lru_lock (follow_page->mark_page_accessed) 104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) 105 * ->private_lock (page_remove_rmap->set_page_dirty) 106 * ->i_pages lock (page_remove_rmap->set_page_dirty) 107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 108 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 111 * ->inode->i_lock (zap_pte_range->set_page_dirty) 112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 113 * 114 * ->i_mmap_rwsem 115 * ->tasklist_lock (memory_failure, collect_procs_ao) 116 */ 117 118 static void page_cache_delete(struct address_space *mapping, 119 struct page *page, void *shadow) 120 { 121 XA_STATE(xas, &mapping->i_pages, page->index); 122 unsigned int nr = 1; 123 124 mapping_set_update(&xas, mapping); 125 126 /* hugetlb pages are represented by a single entry in the xarray */ 127 if (!PageHuge(page)) { 128 xas_set_order(&xas, page->index, compound_order(page)); 129 nr = 1U << compound_order(page); 130 } 131 132 VM_BUG_ON_PAGE(!PageLocked(page), page); 133 VM_BUG_ON_PAGE(PageTail(page), page); 134 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 135 136 xas_store(&xas, shadow); 137 xas_init_marks(&xas); 138 139 page->mapping = NULL; 140 /* Leave page->index set: truncation lookup relies upon it */ 141 142 if (shadow) { 143 mapping->nrexceptional += nr; 144 /* 145 * Make sure the nrexceptional update is committed before 146 * the nrpages update so that final truncate racing 147 * with reclaim does not see both counters 0 at the 148 * same time and miss a shadow entry. 149 */ 150 smp_wmb(); 151 } 152 mapping->nrpages -= nr; 153 } 154 155 static void unaccount_page_cache_page(struct address_space *mapping, 156 struct page *page) 157 { 158 int nr; 159 160 /* 161 * if we're uptodate, flush out into the cleancache, otherwise 162 * invalidate any existing cleancache entries. We can't leave 163 * stale data around in the cleancache once our page is gone 164 */ 165 if (PageUptodate(page) && PageMappedToDisk(page)) 166 cleancache_put_page(page); 167 else 168 cleancache_invalidate_page(mapping, page); 169 170 VM_BUG_ON_PAGE(PageTail(page), page); 171 VM_BUG_ON_PAGE(page_mapped(page), page); 172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 173 int mapcount; 174 175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 176 current->comm, page_to_pfn(page)); 177 dump_page(page, "still mapped when deleted"); 178 dump_stack(); 179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 180 181 mapcount = page_mapcount(page); 182 if (mapping_exiting(mapping) && 183 page_count(page) >= mapcount + 2) { 184 /* 185 * All vmas have already been torn down, so it's 186 * a good bet that actually the page is unmapped, 187 * and we'd prefer not to leak it: if we're wrong, 188 * some other bad page check should catch it later. 189 */ 190 page_mapcount_reset(page); 191 page_ref_sub(page, mapcount); 192 } 193 } 194 195 /* hugetlb pages do not participate in page cache accounting. */ 196 if (PageHuge(page)) 197 return; 198 199 nr = hpage_nr_pages(page); 200 201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 202 if (PageSwapBacked(page)) { 203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 204 if (PageTransHuge(page)) 205 __dec_node_page_state(page, NR_SHMEM_THPS); 206 } else { 207 VM_BUG_ON_PAGE(PageTransHuge(page), page); 208 } 209 210 /* 211 * At this point page must be either written or cleaned by 212 * truncate. Dirty page here signals a bug and loss of 213 * unwritten data. 214 * 215 * This fixes dirty accounting after removing the page entirely 216 * but leaves PageDirty set: it has no effect for truncated 217 * page and anyway will be cleared before returning page into 218 * buddy allocator. 219 */ 220 if (WARN_ON_ONCE(PageDirty(page))) 221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 222 } 223 224 /* 225 * Delete a page from the page cache and free it. Caller has to make 226 * sure the page is locked and that nobody else uses it - or that usage 227 * is safe. The caller must hold the i_pages lock. 228 */ 229 void __delete_from_page_cache(struct page *page, void *shadow) 230 { 231 struct address_space *mapping = page->mapping; 232 233 trace_mm_filemap_delete_from_page_cache(page); 234 235 unaccount_page_cache_page(mapping, page); 236 page_cache_delete(mapping, page, shadow); 237 } 238 239 static void page_cache_free_page(struct address_space *mapping, 240 struct page *page) 241 { 242 void (*freepage)(struct page *); 243 244 freepage = mapping->a_ops->freepage; 245 if (freepage) 246 freepage(page); 247 248 if (PageTransHuge(page) && !PageHuge(page)) { 249 page_ref_sub(page, HPAGE_PMD_NR); 250 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 251 } else { 252 put_page(page); 253 } 254 } 255 256 /** 257 * delete_from_page_cache - delete page from page cache 258 * @page: the page which the kernel is trying to remove from page cache 259 * 260 * This must be called only on pages that have been verified to be in the page 261 * cache and locked. It will never put the page into the free list, the caller 262 * has a reference on the page. 263 */ 264 void delete_from_page_cache(struct page *page) 265 { 266 struct address_space *mapping = page_mapping(page); 267 unsigned long flags; 268 269 BUG_ON(!PageLocked(page)); 270 xa_lock_irqsave(&mapping->i_pages, flags); 271 __delete_from_page_cache(page, NULL); 272 xa_unlock_irqrestore(&mapping->i_pages, flags); 273 274 page_cache_free_page(mapping, page); 275 } 276 EXPORT_SYMBOL(delete_from_page_cache); 277 278 /* 279 * page_cache_delete_batch - delete several pages from page cache 280 * @mapping: the mapping to which pages belong 281 * @pvec: pagevec with pages to delete 282 * 283 * The function walks over mapping->i_pages and removes pages passed in @pvec 284 * from the mapping. The function expects @pvec to be sorted by page index. 285 * It tolerates holes in @pvec (mapping entries at those indices are not 286 * modified). The function expects only THP head pages to be present in the 287 * @pvec and takes care to delete all corresponding tail pages from the 288 * mapping as well. 289 * 290 * The function expects the i_pages lock to be held. 291 */ 292 static void page_cache_delete_batch(struct address_space *mapping, 293 struct pagevec *pvec) 294 { 295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 296 int total_pages = 0; 297 int i = 0, tail_pages = 0; 298 struct page *page; 299 300 mapping_set_update(&xas, mapping); 301 xas_for_each(&xas, page, ULONG_MAX) { 302 if (i >= pagevec_count(pvec) && !tail_pages) 303 break; 304 if (xa_is_value(page)) 305 continue; 306 if (!tail_pages) { 307 /* 308 * Some page got inserted in our range? Skip it. We 309 * have our pages locked so they are protected from 310 * being removed. 311 */ 312 if (page != pvec->pages[i]) { 313 VM_BUG_ON_PAGE(page->index > 314 pvec->pages[i]->index, page); 315 continue; 316 } 317 WARN_ON_ONCE(!PageLocked(page)); 318 if (PageTransHuge(page) && !PageHuge(page)) 319 tail_pages = HPAGE_PMD_NR - 1; 320 page->mapping = NULL; 321 /* 322 * Leave page->index set: truncation lookup relies 323 * upon it 324 */ 325 i++; 326 } else { 327 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages 328 != pvec->pages[i]->index, page); 329 tail_pages--; 330 } 331 xas_store(&xas, NULL); 332 total_pages++; 333 } 334 mapping->nrpages -= total_pages; 335 } 336 337 void delete_from_page_cache_batch(struct address_space *mapping, 338 struct pagevec *pvec) 339 { 340 int i; 341 unsigned long flags; 342 343 if (!pagevec_count(pvec)) 344 return; 345 346 xa_lock_irqsave(&mapping->i_pages, flags); 347 for (i = 0; i < pagevec_count(pvec); i++) { 348 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 349 350 unaccount_page_cache_page(mapping, pvec->pages[i]); 351 } 352 page_cache_delete_batch(mapping, pvec); 353 xa_unlock_irqrestore(&mapping->i_pages, flags); 354 355 for (i = 0; i < pagevec_count(pvec); i++) 356 page_cache_free_page(mapping, pvec->pages[i]); 357 } 358 359 int filemap_check_errors(struct address_space *mapping) 360 { 361 int ret = 0; 362 /* Check for outstanding write errors */ 363 if (test_bit(AS_ENOSPC, &mapping->flags) && 364 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 365 ret = -ENOSPC; 366 if (test_bit(AS_EIO, &mapping->flags) && 367 test_and_clear_bit(AS_EIO, &mapping->flags)) 368 ret = -EIO; 369 return ret; 370 } 371 EXPORT_SYMBOL(filemap_check_errors); 372 373 static int filemap_check_and_keep_errors(struct address_space *mapping) 374 { 375 /* Check for outstanding write errors */ 376 if (test_bit(AS_EIO, &mapping->flags)) 377 return -EIO; 378 if (test_bit(AS_ENOSPC, &mapping->flags)) 379 return -ENOSPC; 380 return 0; 381 } 382 383 /** 384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 385 * @mapping: address space structure to write 386 * @start: offset in bytes where the range starts 387 * @end: offset in bytes where the range ends (inclusive) 388 * @sync_mode: enable synchronous operation 389 * 390 * Start writeback against all of a mapping's dirty pages that lie 391 * within the byte offsets <start, end> inclusive. 392 * 393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 394 * opposed to a regular memory cleansing writeback. The difference between 395 * these two operations is that if a dirty page/buffer is encountered, it must 396 * be waited upon, and not just skipped over. 397 * 398 * Return: %0 on success, negative error code otherwise. 399 */ 400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 401 loff_t end, int sync_mode) 402 { 403 int ret; 404 struct writeback_control wbc = { 405 .sync_mode = sync_mode, 406 .nr_to_write = LONG_MAX, 407 .range_start = start, 408 .range_end = end, 409 }; 410 411 if (!mapping_cap_writeback_dirty(mapping)) 412 return 0; 413 414 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 415 ret = do_writepages(mapping, &wbc); 416 wbc_detach_inode(&wbc); 417 return ret; 418 } 419 420 static inline int __filemap_fdatawrite(struct address_space *mapping, 421 int sync_mode) 422 { 423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 424 } 425 426 int filemap_fdatawrite(struct address_space *mapping) 427 { 428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 429 } 430 EXPORT_SYMBOL(filemap_fdatawrite); 431 432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 433 loff_t end) 434 { 435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite_range); 438 439 /** 440 * filemap_flush - mostly a non-blocking flush 441 * @mapping: target address_space 442 * 443 * This is a mostly non-blocking flush. Not suitable for data-integrity 444 * purposes - I/O may not be started against all dirty pages. 445 * 446 * Return: %0 on success, negative error code otherwise. 447 */ 448 int filemap_flush(struct address_space *mapping) 449 { 450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 451 } 452 EXPORT_SYMBOL(filemap_flush); 453 454 /** 455 * filemap_range_has_page - check if a page exists in range. 456 * @mapping: address space within which to check 457 * @start_byte: offset in bytes where the range starts 458 * @end_byte: offset in bytes where the range ends (inclusive) 459 * 460 * Find at least one page in the range supplied, usually used to check if 461 * direct writing in this range will trigger a writeback. 462 * 463 * Return: %true if at least one page exists in the specified range, 464 * %false otherwise. 465 */ 466 bool filemap_range_has_page(struct address_space *mapping, 467 loff_t start_byte, loff_t end_byte) 468 { 469 struct page *page; 470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 471 pgoff_t max = end_byte >> PAGE_SHIFT; 472 473 if (end_byte < start_byte) 474 return false; 475 476 rcu_read_lock(); 477 for (;;) { 478 page = xas_find(&xas, max); 479 if (xas_retry(&xas, page)) 480 continue; 481 /* Shadow entries don't count */ 482 if (xa_is_value(page)) 483 continue; 484 /* 485 * We don't need to try to pin this page; we're about to 486 * release the RCU lock anyway. It is enough to know that 487 * there was a page here recently. 488 */ 489 break; 490 } 491 rcu_read_unlock(); 492 493 return page != NULL; 494 } 495 EXPORT_SYMBOL(filemap_range_has_page); 496 497 static void __filemap_fdatawait_range(struct address_space *mapping, 498 loff_t start_byte, loff_t end_byte) 499 { 500 pgoff_t index = start_byte >> PAGE_SHIFT; 501 pgoff_t end = end_byte >> PAGE_SHIFT; 502 struct pagevec pvec; 503 int nr_pages; 504 505 if (end_byte < start_byte) 506 return; 507 508 pagevec_init(&pvec); 509 while (index <= end) { 510 unsigned i; 511 512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 513 end, PAGECACHE_TAG_WRITEBACK); 514 if (!nr_pages) 515 break; 516 517 for (i = 0; i < nr_pages; i++) { 518 struct page *page = pvec.pages[i]; 519 520 wait_on_page_writeback(page); 521 ClearPageError(page); 522 } 523 pagevec_release(&pvec); 524 cond_resched(); 525 } 526 } 527 528 /** 529 * filemap_fdatawait_range - wait for writeback to complete 530 * @mapping: address space structure to wait for 531 * @start_byte: offset in bytes where the range starts 532 * @end_byte: offset in bytes where the range ends (inclusive) 533 * 534 * Walk the list of under-writeback pages of the given address space 535 * in the given range and wait for all of them. Check error status of 536 * the address space and return it. 537 * 538 * Since the error status of the address space is cleared by this function, 539 * callers are responsible for checking the return value and handling and/or 540 * reporting the error. 541 * 542 * Return: error status of the address space. 543 */ 544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 545 loff_t end_byte) 546 { 547 __filemap_fdatawait_range(mapping, start_byte, end_byte); 548 return filemap_check_errors(mapping); 549 } 550 EXPORT_SYMBOL(filemap_fdatawait_range); 551 552 /** 553 * file_fdatawait_range - wait for writeback to complete 554 * @file: file pointing to address space structure to wait for 555 * @start_byte: offset in bytes where the range starts 556 * @end_byte: offset in bytes where the range ends (inclusive) 557 * 558 * Walk the list of under-writeback pages of the address space that file 559 * refers to, in the given range and wait for all of them. Check error 560 * status of the address space vs. the file->f_wb_err cursor and return it. 561 * 562 * Since the error status of the file is advanced by this function, 563 * callers are responsible for checking the return value and handling and/or 564 * reporting the error. 565 * 566 * Return: error status of the address space vs. the file->f_wb_err cursor. 567 */ 568 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 569 { 570 struct address_space *mapping = file->f_mapping; 571 572 __filemap_fdatawait_range(mapping, start_byte, end_byte); 573 return file_check_and_advance_wb_err(file); 574 } 575 EXPORT_SYMBOL(file_fdatawait_range); 576 577 /** 578 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 579 * @mapping: address space structure to wait for 580 * 581 * Walk the list of under-writeback pages of the given address space 582 * and wait for all of them. Unlike filemap_fdatawait(), this function 583 * does not clear error status of the address space. 584 * 585 * Use this function if callers don't handle errors themselves. Expected 586 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 587 * fsfreeze(8) 588 * 589 * Return: error status of the address space. 590 */ 591 int filemap_fdatawait_keep_errors(struct address_space *mapping) 592 { 593 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 594 return filemap_check_and_keep_errors(mapping); 595 } 596 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 597 598 static bool mapping_needs_writeback(struct address_space *mapping) 599 { 600 return (!dax_mapping(mapping) && mapping->nrpages) || 601 (dax_mapping(mapping) && mapping->nrexceptional); 602 } 603 604 int filemap_write_and_wait(struct address_space *mapping) 605 { 606 int err = 0; 607 608 if (mapping_needs_writeback(mapping)) { 609 err = filemap_fdatawrite(mapping); 610 /* 611 * Even if the above returned error, the pages may be 612 * written partially (e.g. -ENOSPC), so we wait for it. 613 * But the -EIO is special case, it may indicate the worst 614 * thing (e.g. bug) happened, so we avoid waiting for it. 615 */ 616 if (err != -EIO) { 617 int err2 = filemap_fdatawait(mapping); 618 if (!err) 619 err = err2; 620 } else { 621 /* Clear any previously stored errors */ 622 filemap_check_errors(mapping); 623 } 624 } else { 625 err = filemap_check_errors(mapping); 626 } 627 return err; 628 } 629 EXPORT_SYMBOL(filemap_write_and_wait); 630 631 /** 632 * filemap_write_and_wait_range - write out & wait on a file range 633 * @mapping: the address_space for the pages 634 * @lstart: offset in bytes where the range starts 635 * @lend: offset in bytes where the range ends (inclusive) 636 * 637 * Write out and wait upon file offsets lstart->lend, inclusive. 638 * 639 * Note that @lend is inclusive (describes the last byte to be written) so 640 * that this function can be used to write to the very end-of-file (end = -1). 641 * 642 * Return: error status of the address space. 643 */ 644 int filemap_write_and_wait_range(struct address_space *mapping, 645 loff_t lstart, loff_t lend) 646 { 647 int err = 0; 648 649 if (mapping_needs_writeback(mapping)) { 650 err = __filemap_fdatawrite_range(mapping, lstart, lend, 651 WB_SYNC_ALL); 652 /* See comment of filemap_write_and_wait() */ 653 if (err != -EIO) { 654 int err2 = filemap_fdatawait_range(mapping, 655 lstart, lend); 656 if (!err) 657 err = err2; 658 } else { 659 /* Clear any previously stored errors */ 660 filemap_check_errors(mapping); 661 } 662 } else { 663 err = filemap_check_errors(mapping); 664 } 665 return err; 666 } 667 EXPORT_SYMBOL(filemap_write_and_wait_range); 668 669 void __filemap_set_wb_err(struct address_space *mapping, int err) 670 { 671 errseq_t eseq = errseq_set(&mapping->wb_err, err); 672 673 trace_filemap_set_wb_err(mapping, eseq); 674 } 675 EXPORT_SYMBOL(__filemap_set_wb_err); 676 677 /** 678 * file_check_and_advance_wb_err - report wb error (if any) that was previously 679 * and advance wb_err to current one 680 * @file: struct file on which the error is being reported 681 * 682 * When userland calls fsync (or something like nfsd does the equivalent), we 683 * want to report any writeback errors that occurred since the last fsync (or 684 * since the file was opened if there haven't been any). 685 * 686 * Grab the wb_err from the mapping. If it matches what we have in the file, 687 * then just quickly return 0. The file is all caught up. 688 * 689 * If it doesn't match, then take the mapping value, set the "seen" flag in 690 * it and try to swap it into place. If it works, or another task beat us 691 * to it with the new value, then update the f_wb_err and return the error 692 * portion. The error at this point must be reported via proper channels 693 * (a'la fsync, or NFS COMMIT operation, etc.). 694 * 695 * While we handle mapping->wb_err with atomic operations, the f_wb_err 696 * value is protected by the f_lock since we must ensure that it reflects 697 * the latest value swapped in for this file descriptor. 698 * 699 * Return: %0 on success, negative error code otherwise. 700 */ 701 int file_check_and_advance_wb_err(struct file *file) 702 { 703 int err = 0; 704 errseq_t old = READ_ONCE(file->f_wb_err); 705 struct address_space *mapping = file->f_mapping; 706 707 /* Locklessly handle the common case where nothing has changed */ 708 if (errseq_check(&mapping->wb_err, old)) { 709 /* Something changed, must use slow path */ 710 spin_lock(&file->f_lock); 711 old = file->f_wb_err; 712 err = errseq_check_and_advance(&mapping->wb_err, 713 &file->f_wb_err); 714 trace_file_check_and_advance_wb_err(file, old); 715 spin_unlock(&file->f_lock); 716 } 717 718 /* 719 * We're mostly using this function as a drop in replacement for 720 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 721 * that the legacy code would have had on these flags. 722 */ 723 clear_bit(AS_EIO, &mapping->flags); 724 clear_bit(AS_ENOSPC, &mapping->flags); 725 return err; 726 } 727 EXPORT_SYMBOL(file_check_and_advance_wb_err); 728 729 /** 730 * file_write_and_wait_range - write out & wait on a file range 731 * @file: file pointing to address_space with pages 732 * @lstart: offset in bytes where the range starts 733 * @lend: offset in bytes where the range ends (inclusive) 734 * 735 * Write out and wait upon file offsets lstart->lend, inclusive. 736 * 737 * Note that @lend is inclusive (describes the last byte to be written) so 738 * that this function can be used to write to the very end-of-file (end = -1). 739 * 740 * After writing out and waiting on the data, we check and advance the 741 * f_wb_err cursor to the latest value, and return any errors detected there. 742 * 743 * Return: %0 on success, negative error code otherwise. 744 */ 745 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 746 { 747 int err = 0, err2; 748 struct address_space *mapping = file->f_mapping; 749 750 if (mapping_needs_writeback(mapping)) { 751 err = __filemap_fdatawrite_range(mapping, lstart, lend, 752 WB_SYNC_ALL); 753 /* See comment of filemap_write_and_wait() */ 754 if (err != -EIO) 755 __filemap_fdatawait_range(mapping, lstart, lend); 756 } 757 err2 = file_check_and_advance_wb_err(file); 758 if (!err) 759 err = err2; 760 return err; 761 } 762 EXPORT_SYMBOL(file_write_and_wait_range); 763 764 /** 765 * replace_page_cache_page - replace a pagecache page with a new one 766 * @old: page to be replaced 767 * @new: page to replace with 768 * @gfp_mask: allocation mode 769 * 770 * This function replaces a page in the pagecache with a new one. On 771 * success it acquires the pagecache reference for the new page and 772 * drops it for the old page. Both the old and new pages must be 773 * locked. This function does not add the new page to the LRU, the 774 * caller must do that. 775 * 776 * The remove + add is atomic. This function cannot fail. 777 * 778 * Return: %0 779 */ 780 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 781 { 782 struct address_space *mapping = old->mapping; 783 void (*freepage)(struct page *) = mapping->a_ops->freepage; 784 pgoff_t offset = old->index; 785 XA_STATE(xas, &mapping->i_pages, offset); 786 unsigned long flags; 787 788 VM_BUG_ON_PAGE(!PageLocked(old), old); 789 VM_BUG_ON_PAGE(!PageLocked(new), new); 790 VM_BUG_ON_PAGE(new->mapping, new); 791 792 get_page(new); 793 new->mapping = mapping; 794 new->index = offset; 795 796 xas_lock_irqsave(&xas, flags); 797 xas_store(&xas, new); 798 799 old->mapping = NULL; 800 /* hugetlb pages do not participate in page cache accounting. */ 801 if (!PageHuge(old)) 802 __dec_node_page_state(new, NR_FILE_PAGES); 803 if (!PageHuge(new)) 804 __inc_node_page_state(new, NR_FILE_PAGES); 805 if (PageSwapBacked(old)) 806 __dec_node_page_state(new, NR_SHMEM); 807 if (PageSwapBacked(new)) 808 __inc_node_page_state(new, NR_SHMEM); 809 xas_unlock_irqrestore(&xas, flags); 810 mem_cgroup_migrate(old, new); 811 if (freepage) 812 freepage(old); 813 put_page(old); 814 815 return 0; 816 } 817 EXPORT_SYMBOL_GPL(replace_page_cache_page); 818 819 static int __add_to_page_cache_locked(struct page *page, 820 struct address_space *mapping, 821 pgoff_t offset, gfp_t gfp_mask, 822 void **shadowp) 823 { 824 XA_STATE(xas, &mapping->i_pages, offset); 825 int huge = PageHuge(page); 826 struct mem_cgroup *memcg; 827 int error; 828 void *old; 829 830 VM_BUG_ON_PAGE(!PageLocked(page), page); 831 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 832 mapping_set_update(&xas, mapping); 833 834 if (!huge) { 835 error = mem_cgroup_try_charge(page, current->mm, 836 gfp_mask, &memcg, false); 837 if (error) 838 return error; 839 } 840 841 get_page(page); 842 page->mapping = mapping; 843 page->index = offset; 844 845 do { 846 xas_lock_irq(&xas); 847 old = xas_load(&xas); 848 if (old && !xa_is_value(old)) 849 xas_set_err(&xas, -EEXIST); 850 xas_store(&xas, page); 851 if (xas_error(&xas)) 852 goto unlock; 853 854 if (xa_is_value(old)) { 855 mapping->nrexceptional--; 856 if (shadowp) 857 *shadowp = old; 858 } 859 mapping->nrpages++; 860 861 /* hugetlb pages do not participate in page cache accounting */ 862 if (!huge) 863 __inc_node_page_state(page, NR_FILE_PAGES); 864 unlock: 865 xas_unlock_irq(&xas); 866 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 867 868 if (xas_error(&xas)) 869 goto error; 870 871 if (!huge) 872 mem_cgroup_commit_charge(page, memcg, false, false); 873 trace_mm_filemap_add_to_page_cache(page); 874 return 0; 875 error: 876 page->mapping = NULL; 877 /* Leave page->index set: truncation relies upon it */ 878 if (!huge) 879 mem_cgroup_cancel_charge(page, memcg, false); 880 put_page(page); 881 return xas_error(&xas); 882 } 883 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); 884 885 /** 886 * add_to_page_cache_locked - add a locked page to the pagecache 887 * @page: page to add 888 * @mapping: the page's address_space 889 * @offset: page index 890 * @gfp_mask: page allocation mode 891 * 892 * This function is used to add a page to the pagecache. It must be locked. 893 * This function does not add the page to the LRU. The caller must do that. 894 * 895 * Return: %0 on success, negative error code otherwise. 896 */ 897 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 898 pgoff_t offset, gfp_t gfp_mask) 899 { 900 return __add_to_page_cache_locked(page, mapping, offset, 901 gfp_mask, NULL); 902 } 903 EXPORT_SYMBOL(add_to_page_cache_locked); 904 905 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 906 pgoff_t offset, gfp_t gfp_mask) 907 { 908 void *shadow = NULL; 909 int ret; 910 911 __SetPageLocked(page); 912 ret = __add_to_page_cache_locked(page, mapping, offset, 913 gfp_mask, &shadow); 914 if (unlikely(ret)) 915 __ClearPageLocked(page); 916 else { 917 /* 918 * The page might have been evicted from cache only 919 * recently, in which case it should be activated like 920 * any other repeatedly accessed page. 921 * The exception is pages getting rewritten; evicting other 922 * data from the working set, only to cache data that will 923 * get overwritten with something else, is a waste of memory. 924 */ 925 WARN_ON_ONCE(PageActive(page)); 926 if (!(gfp_mask & __GFP_WRITE) && shadow) 927 workingset_refault(page, shadow); 928 lru_cache_add(page); 929 } 930 return ret; 931 } 932 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 933 934 #ifdef CONFIG_NUMA 935 struct page *__page_cache_alloc(gfp_t gfp) 936 { 937 int n; 938 struct page *page; 939 940 if (cpuset_do_page_mem_spread()) { 941 unsigned int cpuset_mems_cookie; 942 do { 943 cpuset_mems_cookie = read_mems_allowed_begin(); 944 n = cpuset_mem_spread_node(); 945 page = __alloc_pages_node(n, gfp, 0); 946 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 947 948 return page; 949 } 950 return alloc_pages(gfp, 0); 951 } 952 EXPORT_SYMBOL(__page_cache_alloc); 953 #endif 954 955 /* 956 * In order to wait for pages to become available there must be 957 * waitqueues associated with pages. By using a hash table of 958 * waitqueues where the bucket discipline is to maintain all 959 * waiters on the same queue and wake all when any of the pages 960 * become available, and for the woken contexts to check to be 961 * sure the appropriate page became available, this saves space 962 * at a cost of "thundering herd" phenomena during rare hash 963 * collisions. 964 */ 965 #define PAGE_WAIT_TABLE_BITS 8 966 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 967 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 968 969 static wait_queue_head_t *page_waitqueue(struct page *page) 970 { 971 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 972 } 973 974 void __init pagecache_init(void) 975 { 976 int i; 977 978 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 979 init_waitqueue_head(&page_wait_table[i]); 980 981 page_writeback_init(); 982 } 983 984 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 985 struct wait_page_key { 986 struct page *page; 987 int bit_nr; 988 int page_match; 989 }; 990 991 struct wait_page_queue { 992 struct page *page; 993 int bit_nr; 994 wait_queue_entry_t wait; 995 }; 996 997 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 998 { 999 struct wait_page_key *key = arg; 1000 struct wait_page_queue *wait_page 1001 = container_of(wait, struct wait_page_queue, wait); 1002 1003 if (wait_page->page != key->page) 1004 return 0; 1005 key->page_match = 1; 1006 1007 if (wait_page->bit_nr != key->bit_nr) 1008 return 0; 1009 1010 /* 1011 * Stop walking if it's locked. 1012 * Is this safe if put_and_wait_on_page_locked() is in use? 1013 * Yes: the waker must hold a reference to this page, and if PG_locked 1014 * has now already been set by another task, that task must also hold 1015 * a reference to the *same usage* of this page; so there is no need 1016 * to walk on to wake even the put_and_wait_on_page_locked() callers. 1017 */ 1018 if (test_bit(key->bit_nr, &key->page->flags)) 1019 return -1; 1020 1021 return autoremove_wake_function(wait, mode, sync, key); 1022 } 1023 1024 static void wake_up_page_bit(struct page *page, int bit_nr) 1025 { 1026 wait_queue_head_t *q = page_waitqueue(page); 1027 struct wait_page_key key; 1028 unsigned long flags; 1029 wait_queue_entry_t bookmark; 1030 1031 key.page = page; 1032 key.bit_nr = bit_nr; 1033 key.page_match = 0; 1034 1035 bookmark.flags = 0; 1036 bookmark.private = NULL; 1037 bookmark.func = NULL; 1038 INIT_LIST_HEAD(&bookmark.entry); 1039 1040 spin_lock_irqsave(&q->lock, flags); 1041 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1042 1043 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1044 /* 1045 * Take a breather from holding the lock, 1046 * allow pages that finish wake up asynchronously 1047 * to acquire the lock and remove themselves 1048 * from wait queue 1049 */ 1050 spin_unlock_irqrestore(&q->lock, flags); 1051 cpu_relax(); 1052 spin_lock_irqsave(&q->lock, flags); 1053 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1054 } 1055 1056 /* 1057 * It is possible for other pages to have collided on the waitqueue 1058 * hash, so in that case check for a page match. That prevents a long- 1059 * term waiter 1060 * 1061 * It is still possible to miss a case here, when we woke page waiters 1062 * and removed them from the waitqueue, but there are still other 1063 * page waiters. 1064 */ 1065 if (!waitqueue_active(q) || !key.page_match) { 1066 ClearPageWaiters(page); 1067 /* 1068 * It's possible to miss clearing Waiters here, when we woke 1069 * our page waiters, but the hashed waitqueue has waiters for 1070 * other pages on it. 1071 * 1072 * That's okay, it's a rare case. The next waker will clear it. 1073 */ 1074 } 1075 spin_unlock_irqrestore(&q->lock, flags); 1076 } 1077 1078 static void wake_up_page(struct page *page, int bit) 1079 { 1080 if (!PageWaiters(page)) 1081 return; 1082 wake_up_page_bit(page, bit); 1083 } 1084 1085 /* 1086 * A choice of three behaviors for wait_on_page_bit_common(): 1087 */ 1088 enum behavior { 1089 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1090 * __lock_page() waiting on then setting PG_locked. 1091 */ 1092 SHARED, /* Hold ref to page and check the bit when woken, like 1093 * wait_on_page_writeback() waiting on PG_writeback. 1094 */ 1095 DROP, /* Drop ref to page before wait, no check when woken, 1096 * like put_and_wait_on_page_locked() on PG_locked. 1097 */ 1098 }; 1099 1100 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1101 struct page *page, int bit_nr, int state, enum behavior behavior) 1102 { 1103 struct wait_page_queue wait_page; 1104 wait_queue_entry_t *wait = &wait_page.wait; 1105 bool bit_is_set; 1106 bool thrashing = false; 1107 bool delayacct = false; 1108 unsigned long pflags; 1109 int ret = 0; 1110 1111 if (bit_nr == PG_locked && 1112 !PageUptodate(page) && PageWorkingset(page)) { 1113 if (!PageSwapBacked(page)) { 1114 delayacct_thrashing_start(); 1115 delayacct = true; 1116 } 1117 psi_memstall_enter(&pflags); 1118 thrashing = true; 1119 } 1120 1121 init_wait(wait); 1122 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1123 wait->func = wake_page_function; 1124 wait_page.page = page; 1125 wait_page.bit_nr = bit_nr; 1126 1127 for (;;) { 1128 spin_lock_irq(&q->lock); 1129 1130 if (likely(list_empty(&wait->entry))) { 1131 __add_wait_queue_entry_tail(q, wait); 1132 SetPageWaiters(page); 1133 } 1134 1135 set_current_state(state); 1136 1137 spin_unlock_irq(&q->lock); 1138 1139 bit_is_set = test_bit(bit_nr, &page->flags); 1140 if (behavior == DROP) 1141 put_page(page); 1142 1143 if (likely(bit_is_set)) 1144 io_schedule(); 1145 1146 if (behavior == EXCLUSIVE) { 1147 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1148 break; 1149 } else if (behavior == SHARED) { 1150 if (!test_bit(bit_nr, &page->flags)) 1151 break; 1152 } 1153 1154 if (signal_pending_state(state, current)) { 1155 ret = -EINTR; 1156 break; 1157 } 1158 1159 if (behavior == DROP) { 1160 /* 1161 * We can no longer safely access page->flags: 1162 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1163 * there is a risk of waiting forever on a page reused 1164 * for something that keeps it locked indefinitely. 1165 * But best check for -EINTR above before breaking. 1166 */ 1167 break; 1168 } 1169 } 1170 1171 finish_wait(q, wait); 1172 1173 if (thrashing) { 1174 if (delayacct) 1175 delayacct_thrashing_end(); 1176 psi_memstall_leave(&pflags); 1177 } 1178 1179 /* 1180 * A signal could leave PageWaiters set. Clearing it here if 1181 * !waitqueue_active would be possible (by open-coding finish_wait), 1182 * but still fail to catch it in the case of wait hash collision. We 1183 * already can fail to clear wait hash collision cases, so don't 1184 * bother with signals either. 1185 */ 1186 1187 return ret; 1188 } 1189 1190 void wait_on_page_bit(struct page *page, int bit_nr) 1191 { 1192 wait_queue_head_t *q = page_waitqueue(page); 1193 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1194 } 1195 EXPORT_SYMBOL(wait_on_page_bit); 1196 1197 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1198 { 1199 wait_queue_head_t *q = page_waitqueue(page); 1200 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1201 } 1202 EXPORT_SYMBOL(wait_on_page_bit_killable); 1203 1204 /** 1205 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1206 * @page: The page to wait for. 1207 * 1208 * The caller should hold a reference on @page. They expect the page to 1209 * become unlocked relatively soon, but do not wish to hold up migration 1210 * (for example) by holding the reference while waiting for the page to 1211 * come unlocked. After this function returns, the caller should not 1212 * dereference @page. 1213 */ 1214 void put_and_wait_on_page_locked(struct page *page) 1215 { 1216 wait_queue_head_t *q; 1217 1218 page = compound_head(page); 1219 q = page_waitqueue(page); 1220 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1221 } 1222 1223 /** 1224 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1225 * @page: Page defining the wait queue of interest 1226 * @waiter: Waiter to add to the queue 1227 * 1228 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1229 */ 1230 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1231 { 1232 wait_queue_head_t *q = page_waitqueue(page); 1233 unsigned long flags; 1234 1235 spin_lock_irqsave(&q->lock, flags); 1236 __add_wait_queue_entry_tail(q, waiter); 1237 SetPageWaiters(page); 1238 spin_unlock_irqrestore(&q->lock, flags); 1239 } 1240 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1241 1242 #ifndef clear_bit_unlock_is_negative_byte 1243 1244 /* 1245 * PG_waiters is the high bit in the same byte as PG_lock. 1246 * 1247 * On x86 (and on many other architectures), we can clear PG_lock and 1248 * test the sign bit at the same time. But if the architecture does 1249 * not support that special operation, we just do this all by hand 1250 * instead. 1251 * 1252 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1253 * being cleared, but a memory barrier should be unneccssary since it is 1254 * in the same byte as PG_locked. 1255 */ 1256 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1257 { 1258 clear_bit_unlock(nr, mem); 1259 /* smp_mb__after_atomic(); */ 1260 return test_bit(PG_waiters, mem); 1261 } 1262 1263 #endif 1264 1265 /** 1266 * unlock_page - unlock a locked page 1267 * @page: the page 1268 * 1269 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1270 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1271 * mechanism between PageLocked pages and PageWriteback pages is shared. 1272 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1273 * 1274 * Note that this depends on PG_waiters being the sign bit in the byte 1275 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1276 * clear the PG_locked bit and test PG_waiters at the same time fairly 1277 * portably (architectures that do LL/SC can test any bit, while x86 can 1278 * test the sign bit). 1279 */ 1280 void unlock_page(struct page *page) 1281 { 1282 BUILD_BUG_ON(PG_waiters != 7); 1283 page = compound_head(page); 1284 VM_BUG_ON_PAGE(!PageLocked(page), page); 1285 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1286 wake_up_page_bit(page, PG_locked); 1287 } 1288 EXPORT_SYMBOL(unlock_page); 1289 1290 /** 1291 * end_page_writeback - end writeback against a page 1292 * @page: the page 1293 */ 1294 void end_page_writeback(struct page *page) 1295 { 1296 /* 1297 * TestClearPageReclaim could be used here but it is an atomic 1298 * operation and overkill in this particular case. Failing to 1299 * shuffle a page marked for immediate reclaim is too mild to 1300 * justify taking an atomic operation penalty at the end of 1301 * ever page writeback. 1302 */ 1303 if (PageReclaim(page)) { 1304 ClearPageReclaim(page); 1305 rotate_reclaimable_page(page); 1306 } 1307 1308 if (!test_clear_page_writeback(page)) 1309 BUG(); 1310 1311 smp_mb__after_atomic(); 1312 wake_up_page(page, PG_writeback); 1313 } 1314 EXPORT_SYMBOL(end_page_writeback); 1315 1316 /* 1317 * After completing I/O on a page, call this routine to update the page 1318 * flags appropriately 1319 */ 1320 void page_endio(struct page *page, bool is_write, int err) 1321 { 1322 if (!is_write) { 1323 if (!err) { 1324 SetPageUptodate(page); 1325 } else { 1326 ClearPageUptodate(page); 1327 SetPageError(page); 1328 } 1329 unlock_page(page); 1330 } else { 1331 if (err) { 1332 struct address_space *mapping; 1333 1334 SetPageError(page); 1335 mapping = page_mapping(page); 1336 if (mapping) 1337 mapping_set_error(mapping, err); 1338 } 1339 end_page_writeback(page); 1340 } 1341 } 1342 EXPORT_SYMBOL_GPL(page_endio); 1343 1344 /** 1345 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1346 * @__page: the page to lock 1347 */ 1348 void __lock_page(struct page *__page) 1349 { 1350 struct page *page = compound_head(__page); 1351 wait_queue_head_t *q = page_waitqueue(page); 1352 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1353 EXCLUSIVE); 1354 } 1355 EXPORT_SYMBOL(__lock_page); 1356 1357 int __lock_page_killable(struct page *__page) 1358 { 1359 struct page *page = compound_head(__page); 1360 wait_queue_head_t *q = page_waitqueue(page); 1361 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1362 EXCLUSIVE); 1363 } 1364 EXPORT_SYMBOL_GPL(__lock_page_killable); 1365 1366 /* 1367 * Return values: 1368 * 1 - page is locked; mmap_sem is still held. 1369 * 0 - page is not locked. 1370 * mmap_sem has been released (up_read()), unless flags had both 1371 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1372 * which case mmap_sem is still held. 1373 * 1374 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1375 * with the page locked and the mmap_sem unperturbed. 1376 */ 1377 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1378 unsigned int flags) 1379 { 1380 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1381 /* 1382 * CAUTION! In this case, mmap_sem is not released 1383 * even though return 0. 1384 */ 1385 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1386 return 0; 1387 1388 up_read(&mm->mmap_sem); 1389 if (flags & FAULT_FLAG_KILLABLE) 1390 wait_on_page_locked_killable(page); 1391 else 1392 wait_on_page_locked(page); 1393 return 0; 1394 } else { 1395 if (flags & FAULT_FLAG_KILLABLE) { 1396 int ret; 1397 1398 ret = __lock_page_killable(page); 1399 if (ret) { 1400 up_read(&mm->mmap_sem); 1401 return 0; 1402 } 1403 } else 1404 __lock_page(page); 1405 return 1; 1406 } 1407 } 1408 1409 /** 1410 * page_cache_next_miss() - Find the next gap in the page cache. 1411 * @mapping: Mapping. 1412 * @index: Index. 1413 * @max_scan: Maximum range to search. 1414 * 1415 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1416 * gap with the lowest index. 1417 * 1418 * This function may be called under the rcu_read_lock. However, this will 1419 * not atomically search a snapshot of the cache at a single point in time. 1420 * For example, if a gap is created at index 5, then subsequently a gap is 1421 * created at index 10, page_cache_next_miss covering both indices may 1422 * return 10 if called under the rcu_read_lock. 1423 * 1424 * Return: The index of the gap if found, otherwise an index outside the 1425 * range specified (in which case 'return - index >= max_scan' will be true). 1426 * In the rare case of index wrap-around, 0 will be returned. 1427 */ 1428 pgoff_t page_cache_next_miss(struct address_space *mapping, 1429 pgoff_t index, unsigned long max_scan) 1430 { 1431 XA_STATE(xas, &mapping->i_pages, index); 1432 1433 while (max_scan--) { 1434 void *entry = xas_next(&xas); 1435 if (!entry || xa_is_value(entry)) 1436 break; 1437 if (xas.xa_index == 0) 1438 break; 1439 } 1440 1441 return xas.xa_index; 1442 } 1443 EXPORT_SYMBOL(page_cache_next_miss); 1444 1445 /** 1446 * page_cache_prev_miss() - Find the previous gap in the page cache. 1447 * @mapping: Mapping. 1448 * @index: Index. 1449 * @max_scan: Maximum range to search. 1450 * 1451 * Search the range [max(index - max_scan + 1, 0), index] for the 1452 * gap with the highest index. 1453 * 1454 * This function may be called under the rcu_read_lock. However, this will 1455 * not atomically search a snapshot of the cache at a single point in time. 1456 * For example, if a gap is created at index 10, then subsequently a gap is 1457 * created at index 5, page_cache_prev_miss() covering both indices may 1458 * return 5 if called under the rcu_read_lock. 1459 * 1460 * Return: The index of the gap if found, otherwise an index outside the 1461 * range specified (in which case 'index - return >= max_scan' will be true). 1462 * In the rare case of wrap-around, ULONG_MAX will be returned. 1463 */ 1464 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1465 pgoff_t index, unsigned long max_scan) 1466 { 1467 XA_STATE(xas, &mapping->i_pages, index); 1468 1469 while (max_scan--) { 1470 void *entry = xas_prev(&xas); 1471 if (!entry || xa_is_value(entry)) 1472 break; 1473 if (xas.xa_index == ULONG_MAX) 1474 break; 1475 } 1476 1477 return xas.xa_index; 1478 } 1479 EXPORT_SYMBOL(page_cache_prev_miss); 1480 1481 /** 1482 * find_get_entry - find and get a page cache entry 1483 * @mapping: the address_space to search 1484 * @offset: the page cache index 1485 * 1486 * Looks up the page cache slot at @mapping & @offset. If there is a 1487 * page cache page, it is returned with an increased refcount. 1488 * 1489 * If the slot holds a shadow entry of a previously evicted page, or a 1490 * swap entry from shmem/tmpfs, it is returned. 1491 * 1492 * Return: the found page or shadow entry, %NULL if nothing is found. 1493 */ 1494 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1495 { 1496 XA_STATE(xas, &mapping->i_pages, offset); 1497 struct page *head, *page; 1498 1499 rcu_read_lock(); 1500 repeat: 1501 xas_reset(&xas); 1502 page = xas_load(&xas); 1503 if (xas_retry(&xas, page)) 1504 goto repeat; 1505 /* 1506 * A shadow entry of a recently evicted page, or a swap entry from 1507 * shmem/tmpfs. Return it without attempting to raise page count. 1508 */ 1509 if (!page || xa_is_value(page)) 1510 goto out; 1511 1512 head = compound_head(page); 1513 if (!page_cache_get_speculative(head)) 1514 goto repeat; 1515 1516 /* The page was split under us? */ 1517 if (compound_head(page) != head) { 1518 put_page(head); 1519 goto repeat; 1520 } 1521 1522 /* 1523 * Has the page moved? 1524 * This is part of the lockless pagecache protocol. See 1525 * include/linux/pagemap.h for details. 1526 */ 1527 if (unlikely(page != xas_reload(&xas))) { 1528 put_page(head); 1529 goto repeat; 1530 } 1531 out: 1532 rcu_read_unlock(); 1533 1534 return page; 1535 } 1536 EXPORT_SYMBOL(find_get_entry); 1537 1538 /** 1539 * find_lock_entry - locate, pin and lock a page cache entry 1540 * @mapping: the address_space to search 1541 * @offset: the page cache index 1542 * 1543 * Looks up the page cache slot at @mapping & @offset. If there is a 1544 * page cache page, it is returned locked and with an increased 1545 * refcount. 1546 * 1547 * If the slot holds a shadow entry of a previously evicted page, or a 1548 * swap entry from shmem/tmpfs, it is returned. 1549 * 1550 * find_lock_entry() may sleep. 1551 * 1552 * Return: the found page or shadow entry, %NULL if nothing is found. 1553 */ 1554 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1555 { 1556 struct page *page; 1557 1558 repeat: 1559 page = find_get_entry(mapping, offset); 1560 if (page && !xa_is_value(page)) { 1561 lock_page(page); 1562 /* Has the page been truncated? */ 1563 if (unlikely(page_mapping(page) != mapping)) { 1564 unlock_page(page); 1565 put_page(page); 1566 goto repeat; 1567 } 1568 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1569 } 1570 return page; 1571 } 1572 EXPORT_SYMBOL(find_lock_entry); 1573 1574 /** 1575 * pagecache_get_page - find and get a page reference 1576 * @mapping: the address_space to search 1577 * @offset: the page index 1578 * @fgp_flags: PCG flags 1579 * @gfp_mask: gfp mask to use for the page cache data page allocation 1580 * 1581 * Looks up the page cache slot at @mapping & @offset. 1582 * 1583 * PCG flags modify how the page is returned. 1584 * 1585 * @fgp_flags can be: 1586 * 1587 * - FGP_ACCESSED: the page will be marked accessed 1588 * - FGP_LOCK: Page is return locked 1589 * - FGP_CREAT: If page is not present then a new page is allocated using 1590 * @gfp_mask and added to the page cache and the VM's LRU 1591 * list. The page is returned locked and with an increased 1592 * refcount. 1593 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do 1594 * its own locking dance if the page is already in cache, or unlock the page 1595 * before returning if we had to add the page to pagecache. 1596 * 1597 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1598 * if the GFP flags specified for FGP_CREAT are atomic. 1599 * 1600 * If there is a page cache page, it is returned with an increased refcount. 1601 * 1602 * Return: the found page or %NULL otherwise. 1603 */ 1604 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1605 int fgp_flags, gfp_t gfp_mask) 1606 { 1607 struct page *page; 1608 1609 repeat: 1610 page = find_get_entry(mapping, offset); 1611 if (xa_is_value(page)) 1612 page = NULL; 1613 if (!page) 1614 goto no_page; 1615 1616 if (fgp_flags & FGP_LOCK) { 1617 if (fgp_flags & FGP_NOWAIT) { 1618 if (!trylock_page(page)) { 1619 put_page(page); 1620 return NULL; 1621 } 1622 } else { 1623 lock_page(page); 1624 } 1625 1626 /* Has the page been truncated? */ 1627 if (unlikely(page->mapping != mapping)) { 1628 unlock_page(page); 1629 put_page(page); 1630 goto repeat; 1631 } 1632 VM_BUG_ON_PAGE(page->index != offset, page); 1633 } 1634 1635 if (fgp_flags & FGP_ACCESSED) 1636 mark_page_accessed(page); 1637 1638 no_page: 1639 if (!page && (fgp_flags & FGP_CREAT)) { 1640 int err; 1641 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1642 gfp_mask |= __GFP_WRITE; 1643 if (fgp_flags & FGP_NOFS) 1644 gfp_mask &= ~__GFP_FS; 1645 1646 page = __page_cache_alloc(gfp_mask); 1647 if (!page) 1648 return NULL; 1649 1650 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1651 fgp_flags |= FGP_LOCK; 1652 1653 /* Init accessed so avoid atomic mark_page_accessed later */ 1654 if (fgp_flags & FGP_ACCESSED) 1655 __SetPageReferenced(page); 1656 1657 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1658 if (unlikely(err)) { 1659 put_page(page); 1660 page = NULL; 1661 if (err == -EEXIST) 1662 goto repeat; 1663 } 1664 1665 /* 1666 * add_to_page_cache_lru locks the page, and for mmap we expect 1667 * an unlocked page. 1668 */ 1669 if (page && (fgp_flags & FGP_FOR_MMAP)) 1670 unlock_page(page); 1671 } 1672 1673 return page; 1674 } 1675 EXPORT_SYMBOL(pagecache_get_page); 1676 1677 /** 1678 * find_get_entries - gang pagecache lookup 1679 * @mapping: The address_space to search 1680 * @start: The starting page cache index 1681 * @nr_entries: The maximum number of entries 1682 * @entries: Where the resulting entries are placed 1683 * @indices: The cache indices corresponding to the entries in @entries 1684 * 1685 * find_get_entries() will search for and return a group of up to 1686 * @nr_entries entries in the mapping. The entries are placed at 1687 * @entries. find_get_entries() takes a reference against any actual 1688 * pages it returns. 1689 * 1690 * The search returns a group of mapping-contiguous page cache entries 1691 * with ascending indexes. There may be holes in the indices due to 1692 * not-present pages. 1693 * 1694 * Any shadow entries of evicted pages, or swap entries from 1695 * shmem/tmpfs, are included in the returned array. 1696 * 1697 * Return: the number of pages and shadow entries which were found. 1698 */ 1699 unsigned find_get_entries(struct address_space *mapping, 1700 pgoff_t start, unsigned int nr_entries, 1701 struct page **entries, pgoff_t *indices) 1702 { 1703 XA_STATE(xas, &mapping->i_pages, start); 1704 struct page *page; 1705 unsigned int ret = 0; 1706 1707 if (!nr_entries) 1708 return 0; 1709 1710 rcu_read_lock(); 1711 xas_for_each(&xas, page, ULONG_MAX) { 1712 struct page *head; 1713 if (xas_retry(&xas, page)) 1714 continue; 1715 /* 1716 * A shadow entry of a recently evicted page, a swap 1717 * entry from shmem/tmpfs or a DAX entry. Return it 1718 * without attempting to raise page count. 1719 */ 1720 if (xa_is_value(page)) 1721 goto export; 1722 1723 head = compound_head(page); 1724 if (!page_cache_get_speculative(head)) 1725 goto retry; 1726 1727 /* The page was split under us? */ 1728 if (compound_head(page) != head) 1729 goto put_page; 1730 1731 /* Has the page moved? */ 1732 if (unlikely(page != xas_reload(&xas))) 1733 goto put_page; 1734 1735 export: 1736 indices[ret] = xas.xa_index; 1737 entries[ret] = page; 1738 if (++ret == nr_entries) 1739 break; 1740 continue; 1741 put_page: 1742 put_page(head); 1743 retry: 1744 xas_reset(&xas); 1745 } 1746 rcu_read_unlock(); 1747 return ret; 1748 } 1749 1750 /** 1751 * find_get_pages_range - gang pagecache lookup 1752 * @mapping: The address_space to search 1753 * @start: The starting page index 1754 * @end: The final page index (inclusive) 1755 * @nr_pages: The maximum number of pages 1756 * @pages: Where the resulting pages are placed 1757 * 1758 * find_get_pages_range() will search for and return a group of up to @nr_pages 1759 * pages in the mapping starting at index @start and up to index @end 1760 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1761 * a reference against the returned pages. 1762 * 1763 * The search returns a group of mapping-contiguous pages with ascending 1764 * indexes. There may be holes in the indices due to not-present pages. 1765 * We also update @start to index the next page for the traversal. 1766 * 1767 * Return: the number of pages which were found. If this number is 1768 * smaller than @nr_pages, the end of specified range has been 1769 * reached. 1770 */ 1771 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1772 pgoff_t end, unsigned int nr_pages, 1773 struct page **pages) 1774 { 1775 XA_STATE(xas, &mapping->i_pages, *start); 1776 struct page *page; 1777 unsigned ret = 0; 1778 1779 if (unlikely(!nr_pages)) 1780 return 0; 1781 1782 rcu_read_lock(); 1783 xas_for_each(&xas, page, end) { 1784 struct page *head; 1785 if (xas_retry(&xas, page)) 1786 continue; 1787 /* Skip over shadow, swap and DAX entries */ 1788 if (xa_is_value(page)) 1789 continue; 1790 1791 head = compound_head(page); 1792 if (!page_cache_get_speculative(head)) 1793 goto retry; 1794 1795 /* The page was split under us? */ 1796 if (compound_head(page) != head) 1797 goto put_page; 1798 1799 /* Has the page moved? */ 1800 if (unlikely(page != xas_reload(&xas))) 1801 goto put_page; 1802 1803 pages[ret] = page; 1804 if (++ret == nr_pages) { 1805 *start = xas.xa_index + 1; 1806 goto out; 1807 } 1808 continue; 1809 put_page: 1810 put_page(head); 1811 retry: 1812 xas_reset(&xas); 1813 } 1814 1815 /* 1816 * We come here when there is no page beyond @end. We take care to not 1817 * overflow the index @start as it confuses some of the callers. This 1818 * breaks the iteration when there is a page at index -1 but that is 1819 * already broken anyway. 1820 */ 1821 if (end == (pgoff_t)-1) 1822 *start = (pgoff_t)-1; 1823 else 1824 *start = end + 1; 1825 out: 1826 rcu_read_unlock(); 1827 1828 return ret; 1829 } 1830 1831 /** 1832 * find_get_pages_contig - gang contiguous pagecache lookup 1833 * @mapping: The address_space to search 1834 * @index: The starting page index 1835 * @nr_pages: The maximum number of pages 1836 * @pages: Where the resulting pages are placed 1837 * 1838 * find_get_pages_contig() works exactly like find_get_pages(), except 1839 * that the returned number of pages are guaranteed to be contiguous. 1840 * 1841 * Return: the number of pages which were found. 1842 */ 1843 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1844 unsigned int nr_pages, struct page **pages) 1845 { 1846 XA_STATE(xas, &mapping->i_pages, index); 1847 struct page *page; 1848 unsigned int ret = 0; 1849 1850 if (unlikely(!nr_pages)) 1851 return 0; 1852 1853 rcu_read_lock(); 1854 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1855 struct page *head; 1856 if (xas_retry(&xas, page)) 1857 continue; 1858 /* 1859 * If the entry has been swapped out, we can stop looking. 1860 * No current caller is looking for DAX entries. 1861 */ 1862 if (xa_is_value(page)) 1863 break; 1864 1865 head = compound_head(page); 1866 if (!page_cache_get_speculative(head)) 1867 goto retry; 1868 1869 /* The page was split under us? */ 1870 if (compound_head(page) != head) 1871 goto put_page; 1872 1873 /* Has the page moved? */ 1874 if (unlikely(page != xas_reload(&xas))) 1875 goto put_page; 1876 1877 pages[ret] = page; 1878 if (++ret == nr_pages) 1879 break; 1880 continue; 1881 put_page: 1882 put_page(head); 1883 retry: 1884 xas_reset(&xas); 1885 } 1886 rcu_read_unlock(); 1887 return ret; 1888 } 1889 EXPORT_SYMBOL(find_get_pages_contig); 1890 1891 /** 1892 * find_get_pages_range_tag - find and return pages in given range matching @tag 1893 * @mapping: the address_space to search 1894 * @index: the starting page index 1895 * @end: The final page index (inclusive) 1896 * @tag: the tag index 1897 * @nr_pages: the maximum number of pages 1898 * @pages: where the resulting pages are placed 1899 * 1900 * Like find_get_pages, except we only return pages which are tagged with 1901 * @tag. We update @index to index the next page for the traversal. 1902 * 1903 * Return: the number of pages which were found. 1904 */ 1905 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1906 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1907 struct page **pages) 1908 { 1909 XA_STATE(xas, &mapping->i_pages, *index); 1910 struct page *page; 1911 unsigned ret = 0; 1912 1913 if (unlikely(!nr_pages)) 1914 return 0; 1915 1916 rcu_read_lock(); 1917 xas_for_each_marked(&xas, page, end, tag) { 1918 struct page *head; 1919 if (xas_retry(&xas, page)) 1920 continue; 1921 /* 1922 * Shadow entries should never be tagged, but this iteration 1923 * is lockless so there is a window for page reclaim to evict 1924 * a page we saw tagged. Skip over it. 1925 */ 1926 if (xa_is_value(page)) 1927 continue; 1928 1929 head = compound_head(page); 1930 if (!page_cache_get_speculative(head)) 1931 goto retry; 1932 1933 /* The page was split under us? */ 1934 if (compound_head(page) != head) 1935 goto put_page; 1936 1937 /* Has the page moved? */ 1938 if (unlikely(page != xas_reload(&xas))) 1939 goto put_page; 1940 1941 pages[ret] = page; 1942 if (++ret == nr_pages) { 1943 *index = xas.xa_index + 1; 1944 goto out; 1945 } 1946 continue; 1947 put_page: 1948 put_page(head); 1949 retry: 1950 xas_reset(&xas); 1951 } 1952 1953 /* 1954 * We come here when we got to @end. We take care to not overflow the 1955 * index @index as it confuses some of the callers. This breaks the 1956 * iteration when there is a page at index -1 but that is already 1957 * broken anyway. 1958 */ 1959 if (end == (pgoff_t)-1) 1960 *index = (pgoff_t)-1; 1961 else 1962 *index = end + 1; 1963 out: 1964 rcu_read_unlock(); 1965 1966 return ret; 1967 } 1968 EXPORT_SYMBOL(find_get_pages_range_tag); 1969 1970 /* 1971 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1972 * a _large_ part of the i/o request. Imagine the worst scenario: 1973 * 1974 * ---R__________________________________________B__________ 1975 * ^ reading here ^ bad block(assume 4k) 1976 * 1977 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1978 * => failing the whole request => read(R) => read(R+1) => 1979 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1980 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1981 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1982 * 1983 * It is going insane. Fix it by quickly scaling down the readahead size. 1984 */ 1985 static void shrink_readahead_size_eio(struct file *filp, 1986 struct file_ra_state *ra) 1987 { 1988 ra->ra_pages /= 4; 1989 } 1990 1991 /** 1992 * generic_file_buffered_read - generic file read routine 1993 * @iocb: the iocb to read 1994 * @iter: data destination 1995 * @written: already copied 1996 * 1997 * This is a generic file read routine, and uses the 1998 * mapping->a_ops->readpage() function for the actual low-level stuff. 1999 * 2000 * This is really ugly. But the goto's actually try to clarify some 2001 * of the logic when it comes to error handling etc. 2002 * 2003 * Return: 2004 * * total number of bytes copied, including those the were already @written 2005 * * negative error code if nothing was copied 2006 */ 2007 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2008 struct iov_iter *iter, ssize_t written) 2009 { 2010 struct file *filp = iocb->ki_filp; 2011 struct address_space *mapping = filp->f_mapping; 2012 struct inode *inode = mapping->host; 2013 struct file_ra_state *ra = &filp->f_ra; 2014 loff_t *ppos = &iocb->ki_pos; 2015 pgoff_t index; 2016 pgoff_t last_index; 2017 pgoff_t prev_index; 2018 unsigned long offset; /* offset into pagecache page */ 2019 unsigned int prev_offset; 2020 int error = 0; 2021 2022 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2023 return 0; 2024 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2025 2026 index = *ppos >> PAGE_SHIFT; 2027 prev_index = ra->prev_pos >> PAGE_SHIFT; 2028 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2029 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2030 offset = *ppos & ~PAGE_MASK; 2031 2032 for (;;) { 2033 struct page *page; 2034 pgoff_t end_index; 2035 loff_t isize; 2036 unsigned long nr, ret; 2037 2038 cond_resched(); 2039 find_page: 2040 if (fatal_signal_pending(current)) { 2041 error = -EINTR; 2042 goto out; 2043 } 2044 2045 page = find_get_page(mapping, index); 2046 if (!page) { 2047 if (iocb->ki_flags & IOCB_NOWAIT) 2048 goto would_block; 2049 page_cache_sync_readahead(mapping, 2050 ra, filp, 2051 index, last_index - index); 2052 page = find_get_page(mapping, index); 2053 if (unlikely(page == NULL)) 2054 goto no_cached_page; 2055 } 2056 if (PageReadahead(page)) { 2057 page_cache_async_readahead(mapping, 2058 ra, filp, page, 2059 index, last_index - index); 2060 } 2061 if (!PageUptodate(page)) { 2062 if (iocb->ki_flags & IOCB_NOWAIT) { 2063 put_page(page); 2064 goto would_block; 2065 } 2066 2067 /* 2068 * See comment in do_read_cache_page on why 2069 * wait_on_page_locked is used to avoid unnecessarily 2070 * serialisations and why it's safe. 2071 */ 2072 error = wait_on_page_locked_killable(page); 2073 if (unlikely(error)) 2074 goto readpage_error; 2075 if (PageUptodate(page)) 2076 goto page_ok; 2077 2078 if (inode->i_blkbits == PAGE_SHIFT || 2079 !mapping->a_ops->is_partially_uptodate) 2080 goto page_not_up_to_date; 2081 /* pipes can't handle partially uptodate pages */ 2082 if (unlikely(iov_iter_is_pipe(iter))) 2083 goto page_not_up_to_date; 2084 if (!trylock_page(page)) 2085 goto page_not_up_to_date; 2086 /* Did it get truncated before we got the lock? */ 2087 if (!page->mapping) 2088 goto page_not_up_to_date_locked; 2089 if (!mapping->a_ops->is_partially_uptodate(page, 2090 offset, iter->count)) 2091 goto page_not_up_to_date_locked; 2092 unlock_page(page); 2093 } 2094 page_ok: 2095 /* 2096 * i_size must be checked after we know the page is Uptodate. 2097 * 2098 * Checking i_size after the check allows us to calculate 2099 * the correct value for "nr", which means the zero-filled 2100 * part of the page is not copied back to userspace (unless 2101 * another truncate extends the file - this is desired though). 2102 */ 2103 2104 isize = i_size_read(inode); 2105 end_index = (isize - 1) >> PAGE_SHIFT; 2106 if (unlikely(!isize || index > end_index)) { 2107 put_page(page); 2108 goto out; 2109 } 2110 2111 /* nr is the maximum number of bytes to copy from this page */ 2112 nr = PAGE_SIZE; 2113 if (index == end_index) { 2114 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2115 if (nr <= offset) { 2116 put_page(page); 2117 goto out; 2118 } 2119 } 2120 nr = nr - offset; 2121 2122 /* If users can be writing to this page using arbitrary 2123 * virtual addresses, take care about potential aliasing 2124 * before reading the page on the kernel side. 2125 */ 2126 if (mapping_writably_mapped(mapping)) 2127 flush_dcache_page(page); 2128 2129 /* 2130 * When a sequential read accesses a page several times, 2131 * only mark it as accessed the first time. 2132 */ 2133 if (prev_index != index || offset != prev_offset) 2134 mark_page_accessed(page); 2135 prev_index = index; 2136 2137 /* 2138 * Ok, we have the page, and it's up-to-date, so 2139 * now we can copy it to user space... 2140 */ 2141 2142 ret = copy_page_to_iter(page, offset, nr, iter); 2143 offset += ret; 2144 index += offset >> PAGE_SHIFT; 2145 offset &= ~PAGE_MASK; 2146 prev_offset = offset; 2147 2148 put_page(page); 2149 written += ret; 2150 if (!iov_iter_count(iter)) 2151 goto out; 2152 if (ret < nr) { 2153 error = -EFAULT; 2154 goto out; 2155 } 2156 continue; 2157 2158 page_not_up_to_date: 2159 /* Get exclusive access to the page ... */ 2160 error = lock_page_killable(page); 2161 if (unlikely(error)) 2162 goto readpage_error; 2163 2164 page_not_up_to_date_locked: 2165 /* Did it get truncated before we got the lock? */ 2166 if (!page->mapping) { 2167 unlock_page(page); 2168 put_page(page); 2169 continue; 2170 } 2171 2172 /* Did somebody else fill it already? */ 2173 if (PageUptodate(page)) { 2174 unlock_page(page); 2175 goto page_ok; 2176 } 2177 2178 readpage: 2179 /* 2180 * A previous I/O error may have been due to temporary 2181 * failures, eg. multipath errors. 2182 * PG_error will be set again if readpage fails. 2183 */ 2184 ClearPageError(page); 2185 /* Start the actual read. The read will unlock the page. */ 2186 error = mapping->a_ops->readpage(filp, page); 2187 2188 if (unlikely(error)) { 2189 if (error == AOP_TRUNCATED_PAGE) { 2190 put_page(page); 2191 error = 0; 2192 goto find_page; 2193 } 2194 goto readpage_error; 2195 } 2196 2197 if (!PageUptodate(page)) { 2198 error = lock_page_killable(page); 2199 if (unlikely(error)) 2200 goto readpage_error; 2201 if (!PageUptodate(page)) { 2202 if (page->mapping == NULL) { 2203 /* 2204 * invalidate_mapping_pages got it 2205 */ 2206 unlock_page(page); 2207 put_page(page); 2208 goto find_page; 2209 } 2210 unlock_page(page); 2211 shrink_readahead_size_eio(filp, ra); 2212 error = -EIO; 2213 goto readpage_error; 2214 } 2215 unlock_page(page); 2216 } 2217 2218 goto page_ok; 2219 2220 readpage_error: 2221 /* UHHUH! A synchronous read error occurred. Report it */ 2222 put_page(page); 2223 goto out; 2224 2225 no_cached_page: 2226 /* 2227 * Ok, it wasn't cached, so we need to create a new 2228 * page.. 2229 */ 2230 page = page_cache_alloc(mapping); 2231 if (!page) { 2232 error = -ENOMEM; 2233 goto out; 2234 } 2235 error = add_to_page_cache_lru(page, mapping, index, 2236 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2237 if (error) { 2238 put_page(page); 2239 if (error == -EEXIST) { 2240 error = 0; 2241 goto find_page; 2242 } 2243 goto out; 2244 } 2245 goto readpage; 2246 } 2247 2248 would_block: 2249 error = -EAGAIN; 2250 out: 2251 ra->prev_pos = prev_index; 2252 ra->prev_pos <<= PAGE_SHIFT; 2253 ra->prev_pos |= prev_offset; 2254 2255 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2256 file_accessed(filp); 2257 return written ? written : error; 2258 } 2259 2260 /** 2261 * generic_file_read_iter - generic filesystem read routine 2262 * @iocb: kernel I/O control block 2263 * @iter: destination for the data read 2264 * 2265 * This is the "read_iter()" routine for all filesystems 2266 * that can use the page cache directly. 2267 * Return: 2268 * * number of bytes copied, even for partial reads 2269 * * negative error code if nothing was read 2270 */ 2271 ssize_t 2272 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2273 { 2274 size_t count = iov_iter_count(iter); 2275 ssize_t retval = 0; 2276 2277 if (!count) 2278 goto out; /* skip atime */ 2279 2280 if (iocb->ki_flags & IOCB_DIRECT) { 2281 struct file *file = iocb->ki_filp; 2282 struct address_space *mapping = file->f_mapping; 2283 struct inode *inode = mapping->host; 2284 loff_t size; 2285 2286 size = i_size_read(inode); 2287 if (iocb->ki_flags & IOCB_NOWAIT) { 2288 if (filemap_range_has_page(mapping, iocb->ki_pos, 2289 iocb->ki_pos + count - 1)) 2290 return -EAGAIN; 2291 } else { 2292 retval = filemap_write_and_wait_range(mapping, 2293 iocb->ki_pos, 2294 iocb->ki_pos + count - 1); 2295 if (retval < 0) 2296 goto out; 2297 } 2298 2299 file_accessed(file); 2300 2301 retval = mapping->a_ops->direct_IO(iocb, iter); 2302 if (retval >= 0) { 2303 iocb->ki_pos += retval; 2304 count -= retval; 2305 } 2306 iov_iter_revert(iter, count - iov_iter_count(iter)); 2307 2308 /* 2309 * Btrfs can have a short DIO read if we encounter 2310 * compressed extents, so if there was an error, or if 2311 * we've already read everything we wanted to, or if 2312 * there was a short read because we hit EOF, go ahead 2313 * and return. Otherwise fallthrough to buffered io for 2314 * the rest of the read. Buffered reads will not work for 2315 * DAX files, so don't bother trying. 2316 */ 2317 if (retval < 0 || !count || iocb->ki_pos >= size || 2318 IS_DAX(inode)) 2319 goto out; 2320 } 2321 2322 retval = generic_file_buffered_read(iocb, iter, retval); 2323 out: 2324 return retval; 2325 } 2326 EXPORT_SYMBOL(generic_file_read_iter); 2327 2328 #ifdef CONFIG_MMU 2329 #define MMAP_LOTSAMISS (100) 2330 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 2331 struct file *fpin) 2332 { 2333 int flags = vmf->flags; 2334 2335 if (fpin) 2336 return fpin; 2337 2338 /* 2339 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 2340 * anything, so we only pin the file and drop the mmap_sem if only 2341 * FAULT_FLAG_ALLOW_RETRY is set. 2342 */ 2343 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == 2344 FAULT_FLAG_ALLOW_RETRY) { 2345 fpin = get_file(vmf->vma->vm_file); 2346 up_read(&vmf->vma->vm_mm->mmap_sem); 2347 } 2348 return fpin; 2349 } 2350 2351 /* 2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem 2353 * @vmf - the vm_fault for this fault. 2354 * @page - the page to lock. 2355 * @fpin - the pointer to the file we may pin (or is already pinned). 2356 * 2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem. 2358 * It differs in that it actually returns the page locked if it returns 1 and 0 2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin 2360 * will point to the pinned file and needs to be fput()'ed at a later point. 2361 */ 2362 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, 2363 struct file **fpin) 2364 { 2365 if (trylock_page(page)) 2366 return 1; 2367 2368 /* 2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT 2371 * is supposed to work. We have way too many special cases.. 2372 */ 2373 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2374 return 0; 2375 2376 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2377 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2378 if (__lock_page_killable(page)) { 2379 /* 2380 * We didn't have the right flags to drop the mmap_sem, 2381 * but all fault_handlers only check for fatal signals 2382 * if we return VM_FAULT_RETRY, so we need to drop the 2383 * mmap_sem here and return 0 if we don't have a fpin. 2384 */ 2385 if (*fpin == NULL) 2386 up_read(&vmf->vma->vm_mm->mmap_sem); 2387 return 0; 2388 } 2389 } else 2390 __lock_page(page); 2391 return 1; 2392 } 2393 2394 2395 /* 2396 * Synchronous readahead happens when we don't even find a page in the page 2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2398 * to drop the mmap sem we return the file that was pinned in order for us to do 2399 * that. If we didn't pin a file then we return NULL. The file that is 2400 * returned needs to be fput()'ed when we're done with it. 2401 */ 2402 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2403 { 2404 struct file *file = vmf->vma->vm_file; 2405 struct file_ra_state *ra = &file->f_ra; 2406 struct address_space *mapping = file->f_mapping; 2407 struct file *fpin = NULL; 2408 pgoff_t offset = vmf->pgoff; 2409 2410 /* If we don't want any read-ahead, don't bother */ 2411 if (vmf->vma->vm_flags & VM_RAND_READ) 2412 return fpin; 2413 if (!ra->ra_pages) 2414 return fpin; 2415 2416 if (vmf->vma->vm_flags & VM_SEQ_READ) { 2417 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2418 page_cache_sync_readahead(mapping, ra, file, offset, 2419 ra->ra_pages); 2420 return fpin; 2421 } 2422 2423 /* Avoid banging the cache line if not needed */ 2424 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2425 ra->mmap_miss++; 2426 2427 /* 2428 * Do we miss much more than hit in this file? If so, 2429 * stop bothering with read-ahead. It will only hurt. 2430 */ 2431 if (ra->mmap_miss > MMAP_LOTSAMISS) 2432 return fpin; 2433 2434 /* 2435 * mmap read-around 2436 */ 2437 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2439 ra->size = ra->ra_pages; 2440 ra->async_size = ra->ra_pages / 4; 2441 ra_submit(ra, mapping, file); 2442 return fpin; 2443 } 2444 2445 /* 2446 * Asynchronous readahead happens when we find the page and PG_readahead, 2447 * so we want to possibly extend the readahead further. We return the file that 2448 * was pinned if we have to drop the mmap_sem in order to do IO. 2449 */ 2450 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 2451 struct page *page) 2452 { 2453 struct file *file = vmf->vma->vm_file; 2454 struct file_ra_state *ra = &file->f_ra; 2455 struct address_space *mapping = file->f_mapping; 2456 struct file *fpin = NULL; 2457 pgoff_t offset = vmf->pgoff; 2458 2459 /* If we don't want any read-ahead, don't bother */ 2460 if (vmf->vma->vm_flags & VM_RAND_READ) 2461 return fpin; 2462 if (ra->mmap_miss > 0) 2463 ra->mmap_miss--; 2464 if (PageReadahead(page)) { 2465 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2466 page_cache_async_readahead(mapping, ra, file, 2467 page, offset, ra->ra_pages); 2468 } 2469 return fpin; 2470 } 2471 2472 /** 2473 * filemap_fault - read in file data for page fault handling 2474 * @vmf: struct vm_fault containing details of the fault 2475 * 2476 * filemap_fault() is invoked via the vma operations vector for a 2477 * mapped memory region to read in file data during a page fault. 2478 * 2479 * The goto's are kind of ugly, but this streamlines the normal case of having 2480 * it in the page cache, and handles the special cases reasonably without 2481 * having a lot of duplicated code. 2482 * 2483 * vma->vm_mm->mmap_sem must be held on entry. 2484 * 2485 * If our return value has VM_FAULT_RETRY set, it's because 2486 * lock_page_or_retry() returned 0. 2487 * The mmap_sem has usually been released in this case. 2488 * See __lock_page_or_retry() for the exception. 2489 * 2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2491 * has not been released. 2492 * 2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2494 * 2495 * Return: bitwise-OR of %VM_FAULT_ codes. 2496 */ 2497 vm_fault_t filemap_fault(struct vm_fault *vmf) 2498 { 2499 int error; 2500 struct file *file = vmf->vma->vm_file; 2501 struct file *fpin = NULL; 2502 struct address_space *mapping = file->f_mapping; 2503 struct file_ra_state *ra = &file->f_ra; 2504 struct inode *inode = mapping->host; 2505 pgoff_t offset = vmf->pgoff; 2506 pgoff_t max_off; 2507 struct page *page; 2508 vm_fault_t ret = 0; 2509 2510 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2511 if (unlikely(offset >= max_off)) 2512 return VM_FAULT_SIGBUS; 2513 2514 /* 2515 * Do we have something in the page cache already? 2516 */ 2517 page = find_get_page(mapping, offset); 2518 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2519 /* 2520 * We found the page, so try async readahead before 2521 * waiting for the lock. 2522 */ 2523 fpin = do_async_mmap_readahead(vmf, page); 2524 } else if (!page) { 2525 /* No page in the page cache at all */ 2526 count_vm_event(PGMAJFAULT); 2527 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2528 ret = VM_FAULT_MAJOR; 2529 fpin = do_sync_mmap_readahead(vmf); 2530 retry_find: 2531 page = pagecache_get_page(mapping, offset, 2532 FGP_CREAT|FGP_FOR_MMAP, 2533 vmf->gfp_mask); 2534 if (!page) { 2535 if (fpin) 2536 goto out_retry; 2537 return vmf_error(-ENOMEM); 2538 } 2539 } 2540 2541 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) 2542 goto out_retry; 2543 2544 /* Did it get truncated? */ 2545 if (unlikely(page->mapping != mapping)) { 2546 unlock_page(page); 2547 put_page(page); 2548 goto retry_find; 2549 } 2550 VM_BUG_ON_PAGE(page->index != offset, page); 2551 2552 /* 2553 * We have a locked page in the page cache, now we need to check 2554 * that it's up-to-date. If not, it is going to be due to an error. 2555 */ 2556 if (unlikely(!PageUptodate(page))) 2557 goto page_not_uptodate; 2558 2559 /* 2560 * We've made it this far and we had to drop our mmap_sem, now is the 2561 * time to return to the upper layer and have it re-find the vma and 2562 * redo the fault. 2563 */ 2564 if (fpin) { 2565 unlock_page(page); 2566 goto out_retry; 2567 } 2568 2569 /* 2570 * Found the page and have a reference on it. 2571 * We must recheck i_size under page lock. 2572 */ 2573 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2574 if (unlikely(offset >= max_off)) { 2575 unlock_page(page); 2576 put_page(page); 2577 return VM_FAULT_SIGBUS; 2578 } 2579 2580 vmf->page = page; 2581 return ret | VM_FAULT_LOCKED; 2582 2583 page_not_uptodate: 2584 /* 2585 * Umm, take care of errors if the page isn't up-to-date. 2586 * Try to re-read it _once_. We do this synchronously, 2587 * because there really aren't any performance issues here 2588 * and we need to check for errors. 2589 */ 2590 ClearPageError(page); 2591 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 2592 error = mapping->a_ops->readpage(file, page); 2593 if (!error) { 2594 wait_on_page_locked(page); 2595 if (!PageUptodate(page)) 2596 error = -EIO; 2597 } 2598 if (fpin) 2599 goto out_retry; 2600 put_page(page); 2601 2602 if (!error || error == AOP_TRUNCATED_PAGE) 2603 goto retry_find; 2604 2605 /* Things didn't work out. Return zero to tell the mm layer so. */ 2606 shrink_readahead_size_eio(file, ra); 2607 return VM_FAULT_SIGBUS; 2608 2609 out_retry: 2610 /* 2611 * We dropped the mmap_sem, we need to return to the fault handler to 2612 * re-find the vma and come back and find our hopefully still populated 2613 * page. 2614 */ 2615 if (page) 2616 put_page(page); 2617 if (fpin) 2618 fput(fpin); 2619 return ret | VM_FAULT_RETRY; 2620 } 2621 EXPORT_SYMBOL(filemap_fault); 2622 2623 void filemap_map_pages(struct vm_fault *vmf, 2624 pgoff_t start_pgoff, pgoff_t end_pgoff) 2625 { 2626 struct file *file = vmf->vma->vm_file; 2627 struct address_space *mapping = file->f_mapping; 2628 pgoff_t last_pgoff = start_pgoff; 2629 unsigned long max_idx; 2630 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2631 struct page *head, *page; 2632 2633 rcu_read_lock(); 2634 xas_for_each(&xas, page, end_pgoff) { 2635 if (xas_retry(&xas, page)) 2636 continue; 2637 if (xa_is_value(page)) 2638 goto next; 2639 2640 head = compound_head(page); 2641 2642 /* 2643 * Check for a locked page first, as a speculative 2644 * reference may adversely influence page migration. 2645 */ 2646 if (PageLocked(head)) 2647 goto next; 2648 if (!page_cache_get_speculative(head)) 2649 goto next; 2650 2651 /* The page was split under us? */ 2652 if (compound_head(page) != head) 2653 goto skip; 2654 2655 /* Has the page moved? */ 2656 if (unlikely(page != xas_reload(&xas))) 2657 goto skip; 2658 2659 if (!PageUptodate(page) || 2660 PageReadahead(page) || 2661 PageHWPoison(page)) 2662 goto skip; 2663 if (!trylock_page(page)) 2664 goto skip; 2665 2666 if (page->mapping != mapping || !PageUptodate(page)) 2667 goto unlock; 2668 2669 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2670 if (page->index >= max_idx) 2671 goto unlock; 2672 2673 if (file->f_ra.mmap_miss > 0) 2674 file->f_ra.mmap_miss--; 2675 2676 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2677 if (vmf->pte) 2678 vmf->pte += xas.xa_index - last_pgoff; 2679 last_pgoff = xas.xa_index; 2680 if (alloc_set_pte(vmf, NULL, page)) 2681 goto unlock; 2682 unlock_page(page); 2683 goto next; 2684 unlock: 2685 unlock_page(page); 2686 skip: 2687 put_page(page); 2688 next: 2689 /* Huge page is mapped? No need to proceed. */ 2690 if (pmd_trans_huge(*vmf->pmd)) 2691 break; 2692 } 2693 rcu_read_unlock(); 2694 } 2695 EXPORT_SYMBOL(filemap_map_pages); 2696 2697 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2698 { 2699 struct page *page = vmf->page; 2700 struct inode *inode = file_inode(vmf->vma->vm_file); 2701 vm_fault_t ret = VM_FAULT_LOCKED; 2702 2703 sb_start_pagefault(inode->i_sb); 2704 file_update_time(vmf->vma->vm_file); 2705 lock_page(page); 2706 if (page->mapping != inode->i_mapping) { 2707 unlock_page(page); 2708 ret = VM_FAULT_NOPAGE; 2709 goto out; 2710 } 2711 /* 2712 * We mark the page dirty already here so that when freeze is in 2713 * progress, we are guaranteed that writeback during freezing will 2714 * see the dirty page and writeprotect it again. 2715 */ 2716 set_page_dirty(page); 2717 wait_for_stable_page(page); 2718 out: 2719 sb_end_pagefault(inode->i_sb); 2720 return ret; 2721 } 2722 2723 const struct vm_operations_struct generic_file_vm_ops = { 2724 .fault = filemap_fault, 2725 .map_pages = filemap_map_pages, 2726 .page_mkwrite = filemap_page_mkwrite, 2727 }; 2728 2729 /* This is used for a general mmap of a disk file */ 2730 2731 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2732 { 2733 struct address_space *mapping = file->f_mapping; 2734 2735 if (!mapping->a_ops->readpage) 2736 return -ENOEXEC; 2737 file_accessed(file); 2738 vma->vm_ops = &generic_file_vm_ops; 2739 return 0; 2740 } 2741 2742 /* 2743 * This is for filesystems which do not implement ->writepage. 2744 */ 2745 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2746 { 2747 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2748 return -EINVAL; 2749 return generic_file_mmap(file, vma); 2750 } 2751 #else 2752 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2753 { 2754 return VM_FAULT_SIGBUS; 2755 } 2756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2757 { 2758 return -ENOSYS; 2759 } 2760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2761 { 2762 return -ENOSYS; 2763 } 2764 #endif /* CONFIG_MMU */ 2765 2766 EXPORT_SYMBOL(filemap_page_mkwrite); 2767 EXPORT_SYMBOL(generic_file_mmap); 2768 EXPORT_SYMBOL(generic_file_readonly_mmap); 2769 2770 static struct page *wait_on_page_read(struct page *page) 2771 { 2772 if (!IS_ERR(page)) { 2773 wait_on_page_locked(page); 2774 if (!PageUptodate(page)) { 2775 put_page(page); 2776 page = ERR_PTR(-EIO); 2777 } 2778 } 2779 return page; 2780 } 2781 2782 static struct page *do_read_cache_page(struct address_space *mapping, 2783 pgoff_t index, 2784 int (*filler)(void *, struct page *), 2785 void *data, 2786 gfp_t gfp) 2787 { 2788 struct page *page; 2789 int err; 2790 repeat: 2791 page = find_get_page(mapping, index); 2792 if (!page) { 2793 page = __page_cache_alloc(gfp); 2794 if (!page) 2795 return ERR_PTR(-ENOMEM); 2796 err = add_to_page_cache_lru(page, mapping, index, gfp); 2797 if (unlikely(err)) { 2798 put_page(page); 2799 if (err == -EEXIST) 2800 goto repeat; 2801 /* Presumably ENOMEM for xarray node */ 2802 return ERR_PTR(err); 2803 } 2804 2805 filler: 2806 err = filler(data, page); 2807 if (err < 0) { 2808 put_page(page); 2809 return ERR_PTR(err); 2810 } 2811 2812 page = wait_on_page_read(page); 2813 if (IS_ERR(page)) 2814 return page; 2815 goto out; 2816 } 2817 if (PageUptodate(page)) 2818 goto out; 2819 2820 /* 2821 * Page is not up to date and may be locked due one of the following 2822 * case a: Page is being filled and the page lock is held 2823 * case b: Read/write error clearing the page uptodate status 2824 * case c: Truncation in progress (page locked) 2825 * case d: Reclaim in progress 2826 * 2827 * Case a, the page will be up to date when the page is unlocked. 2828 * There is no need to serialise on the page lock here as the page 2829 * is pinned so the lock gives no additional protection. Even if the 2830 * the page is truncated, the data is still valid if PageUptodate as 2831 * it's a race vs truncate race. 2832 * Case b, the page will not be up to date 2833 * Case c, the page may be truncated but in itself, the data may still 2834 * be valid after IO completes as it's a read vs truncate race. The 2835 * operation must restart if the page is not uptodate on unlock but 2836 * otherwise serialising on page lock to stabilise the mapping gives 2837 * no additional guarantees to the caller as the page lock is 2838 * released before return. 2839 * Case d, similar to truncation. If reclaim holds the page lock, it 2840 * will be a race with remove_mapping that determines if the mapping 2841 * is valid on unlock but otherwise the data is valid and there is 2842 * no need to serialise with page lock. 2843 * 2844 * As the page lock gives no additional guarantee, we optimistically 2845 * wait on the page to be unlocked and check if it's up to date and 2846 * use the page if it is. Otherwise, the page lock is required to 2847 * distinguish between the different cases. The motivation is that we 2848 * avoid spurious serialisations and wakeups when multiple processes 2849 * wait on the same page for IO to complete. 2850 */ 2851 wait_on_page_locked(page); 2852 if (PageUptodate(page)) 2853 goto out; 2854 2855 /* Distinguish between all the cases under the safety of the lock */ 2856 lock_page(page); 2857 2858 /* Case c or d, restart the operation */ 2859 if (!page->mapping) { 2860 unlock_page(page); 2861 put_page(page); 2862 goto repeat; 2863 } 2864 2865 /* Someone else locked and filled the page in a very small window */ 2866 if (PageUptodate(page)) { 2867 unlock_page(page); 2868 goto out; 2869 } 2870 goto filler; 2871 2872 out: 2873 mark_page_accessed(page); 2874 return page; 2875 } 2876 2877 /** 2878 * read_cache_page - read into page cache, fill it if needed 2879 * @mapping: the page's address_space 2880 * @index: the page index 2881 * @filler: function to perform the read 2882 * @data: first arg to filler(data, page) function, often left as NULL 2883 * 2884 * Read into the page cache. If a page already exists, and PageUptodate() is 2885 * not set, try to fill the page and wait for it to become unlocked. 2886 * 2887 * If the page does not get brought uptodate, return -EIO. 2888 * 2889 * Return: up to date page on success, ERR_PTR() on failure. 2890 */ 2891 struct page *read_cache_page(struct address_space *mapping, 2892 pgoff_t index, 2893 int (*filler)(void *, struct page *), 2894 void *data) 2895 { 2896 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2897 } 2898 EXPORT_SYMBOL(read_cache_page); 2899 2900 /** 2901 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2902 * @mapping: the page's address_space 2903 * @index: the page index 2904 * @gfp: the page allocator flags to use if allocating 2905 * 2906 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2907 * any new page allocations done using the specified allocation flags. 2908 * 2909 * If the page does not get brought uptodate, return -EIO. 2910 * 2911 * Return: up to date page on success, ERR_PTR() on failure. 2912 */ 2913 struct page *read_cache_page_gfp(struct address_space *mapping, 2914 pgoff_t index, 2915 gfp_t gfp) 2916 { 2917 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2918 2919 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2920 } 2921 EXPORT_SYMBOL(read_cache_page_gfp); 2922 2923 /* 2924 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2925 * LFS limits. If pos is under the limit it becomes a short access. If it 2926 * exceeds the limit we return -EFBIG. 2927 */ 2928 static int generic_access_check_limits(struct file *file, loff_t pos, 2929 loff_t *count) 2930 { 2931 struct inode *inode = file->f_mapping->host; 2932 loff_t max_size = inode->i_sb->s_maxbytes; 2933 2934 if (!(file->f_flags & O_LARGEFILE)) 2935 max_size = MAX_NON_LFS; 2936 2937 if (unlikely(pos >= max_size)) 2938 return -EFBIG; 2939 *count = min(*count, max_size - pos); 2940 return 0; 2941 } 2942 2943 static int generic_write_check_limits(struct file *file, loff_t pos, 2944 loff_t *count) 2945 { 2946 loff_t limit = rlimit(RLIMIT_FSIZE); 2947 2948 if (limit != RLIM_INFINITY) { 2949 if (pos >= limit) { 2950 send_sig(SIGXFSZ, current, 0); 2951 return -EFBIG; 2952 } 2953 *count = min(*count, limit - pos); 2954 } 2955 2956 return generic_access_check_limits(file, pos, count); 2957 } 2958 2959 /* 2960 * Performs necessary checks before doing a write 2961 * 2962 * Can adjust writing position or amount of bytes to write. 2963 * Returns appropriate error code that caller should return or 2964 * zero in case that write should be allowed. 2965 */ 2966 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2967 { 2968 struct file *file = iocb->ki_filp; 2969 struct inode *inode = file->f_mapping->host; 2970 loff_t count; 2971 int ret; 2972 2973 if (!iov_iter_count(from)) 2974 return 0; 2975 2976 /* FIXME: this is for backwards compatibility with 2.4 */ 2977 if (iocb->ki_flags & IOCB_APPEND) 2978 iocb->ki_pos = i_size_read(inode); 2979 2980 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2981 return -EINVAL; 2982 2983 count = iov_iter_count(from); 2984 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2985 if (ret) 2986 return ret; 2987 2988 iov_iter_truncate(from, count); 2989 return iov_iter_count(from); 2990 } 2991 EXPORT_SYMBOL(generic_write_checks); 2992 2993 /* 2994 * Performs necessary checks before doing a clone. 2995 * 2996 * Can adjust amount of bytes to clone. 2997 * Returns appropriate error code that caller should return or 2998 * zero in case the clone should be allowed. 2999 */ 3000 int generic_remap_checks(struct file *file_in, loff_t pos_in, 3001 struct file *file_out, loff_t pos_out, 3002 loff_t *req_count, unsigned int remap_flags) 3003 { 3004 struct inode *inode_in = file_in->f_mapping->host; 3005 struct inode *inode_out = file_out->f_mapping->host; 3006 uint64_t count = *req_count; 3007 uint64_t bcount; 3008 loff_t size_in, size_out; 3009 loff_t bs = inode_out->i_sb->s_blocksize; 3010 int ret; 3011 3012 /* The start of both ranges must be aligned to an fs block. */ 3013 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 3014 return -EINVAL; 3015 3016 /* Ensure offsets don't wrap. */ 3017 if (pos_in + count < pos_in || pos_out + count < pos_out) 3018 return -EINVAL; 3019 3020 size_in = i_size_read(inode_in); 3021 size_out = i_size_read(inode_out); 3022 3023 /* Dedupe requires both ranges to be within EOF. */ 3024 if ((remap_flags & REMAP_FILE_DEDUP) && 3025 (pos_in >= size_in || pos_in + count > size_in || 3026 pos_out >= size_out || pos_out + count > size_out)) 3027 return -EINVAL; 3028 3029 /* Ensure the infile range is within the infile. */ 3030 if (pos_in >= size_in) 3031 return -EINVAL; 3032 count = min(count, size_in - (uint64_t)pos_in); 3033 3034 ret = generic_access_check_limits(file_in, pos_in, &count); 3035 if (ret) 3036 return ret; 3037 3038 ret = generic_write_check_limits(file_out, pos_out, &count); 3039 if (ret) 3040 return ret; 3041 3042 /* 3043 * If the user wanted us to link to the infile's EOF, round up to the 3044 * next block boundary for this check. 3045 * 3046 * Otherwise, make sure the count is also block-aligned, having 3047 * already confirmed the starting offsets' block alignment. 3048 */ 3049 if (pos_in + count == size_in) { 3050 bcount = ALIGN(size_in, bs) - pos_in; 3051 } else { 3052 if (!IS_ALIGNED(count, bs)) 3053 count = ALIGN_DOWN(count, bs); 3054 bcount = count; 3055 } 3056 3057 /* Don't allow overlapped cloning within the same file. */ 3058 if (inode_in == inode_out && 3059 pos_out + bcount > pos_in && 3060 pos_out < pos_in + bcount) 3061 return -EINVAL; 3062 3063 /* 3064 * We shortened the request but the caller can't deal with that, so 3065 * bounce the request back to userspace. 3066 */ 3067 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3068 return -EINVAL; 3069 3070 *req_count = count; 3071 return 0; 3072 } 3073 3074 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3075 loff_t pos, unsigned len, unsigned flags, 3076 struct page **pagep, void **fsdata) 3077 { 3078 const struct address_space_operations *aops = mapping->a_ops; 3079 3080 return aops->write_begin(file, mapping, pos, len, flags, 3081 pagep, fsdata); 3082 } 3083 EXPORT_SYMBOL(pagecache_write_begin); 3084 3085 int pagecache_write_end(struct file *file, struct address_space *mapping, 3086 loff_t pos, unsigned len, unsigned copied, 3087 struct page *page, void *fsdata) 3088 { 3089 const struct address_space_operations *aops = mapping->a_ops; 3090 3091 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3092 } 3093 EXPORT_SYMBOL(pagecache_write_end); 3094 3095 ssize_t 3096 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3097 { 3098 struct file *file = iocb->ki_filp; 3099 struct address_space *mapping = file->f_mapping; 3100 struct inode *inode = mapping->host; 3101 loff_t pos = iocb->ki_pos; 3102 ssize_t written; 3103 size_t write_len; 3104 pgoff_t end; 3105 3106 write_len = iov_iter_count(from); 3107 end = (pos + write_len - 1) >> PAGE_SHIFT; 3108 3109 if (iocb->ki_flags & IOCB_NOWAIT) { 3110 /* If there are pages to writeback, return */ 3111 if (filemap_range_has_page(inode->i_mapping, pos, 3112 pos + write_len - 1)) 3113 return -EAGAIN; 3114 } else { 3115 written = filemap_write_and_wait_range(mapping, pos, 3116 pos + write_len - 1); 3117 if (written) 3118 goto out; 3119 } 3120 3121 /* 3122 * After a write we want buffered reads to be sure to go to disk to get 3123 * the new data. We invalidate clean cached page from the region we're 3124 * about to write. We do this *before* the write so that we can return 3125 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3126 */ 3127 written = invalidate_inode_pages2_range(mapping, 3128 pos >> PAGE_SHIFT, end); 3129 /* 3130 * If a page can not be invalidated, return 0 to fall back 3131 * to buffered write. 3132 */ 3133 if (written) { 3134 if (written == -EBUSY) 3135 return 0; 3136 goto out; 3137 } 3138 3139 written = mapping->a_ops->direct_IO(iocb, from); 3140 3141 /* 3142 * Finally, try again to invalidate clean pages which might have been 3143 * cached by non-direct readahead, or faulted in by get_user_pages() 3144 * if the source of the write was an mmap'ed region of the file 3145 * we're writing. Either one is a pretty crazy thing to do, 3146 * so we don't support it 100%. If this invalidation 3147 * fails, tough, the write still worked... 3148 * 3149 * Most of the time we do not need this since dio_complete() will do 3150 * the invalidation for us. However there are some file systems that 3151 * do not end up with dio_complete() being called, so let's not break 3152 * them by removing it completely 3153 */ 3154 if (mapping->nrpages) 3155 invalidate_inode_pages2_range(mapping, 3156 pos >> PAGE_SHIFT, end); 3157 3158 if (written > 0) { 3159 pos += written; 3160 write_len -= written; 3161 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3162 i_size_write(inode, pos); 3163 mark_inode_dirty(inode); 3164 } 3165 iocb->ki_pos = pos; 3166 } 3167 iov_iter_revert(from, write_len - iov_iter_count(from)); 3168 out: 3169 return written; 3170 } 3171 EXPORT_SYMBOL(generic_file_direct_write); 3172 3173 /* 3174 * Find or create a page at the given pagecache position. Return the locked 3175 * page. This function is specifically for buffered writes. 3176 */ 3177 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3178 pgoff_t index, unsigned flags) 3179 { 3180 struct page *page; 3181 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3182 3183 if (flags & AOP_FLAG_NOFS) 3184 fgp_flags |= FGP_NOFS; 3185 3186 page = pagecache_get_page(mapping, index, fgp_flags, 3187 mapping_gfp_mask(mapping)); 3188 if (page) 3189 wait_for_stable_page(page); 3190 3191 return page; 3192 } 3193 EXPORT_SYMBOL(grab_cache_page_write_begin); 3194 3195 ssize_t generic_perform_write(struct file *file, 3196 struct iov_iter *i, loff_t pos) 3197 { 3198 struct address_space *mapping = file->f_mapping; 3199 const struct address_space_operations *a_ops = mapping->a_ops; 3200 long status = 0; 3201 ssize_t written = 0; 3202 unsigned int flags = 0; 3203 3204 do { 3205 struct page *page; 3206 unsigned long offset; /* Offset into pagecache page */ 3207 unsigned long bytes; /* Bytes to write to page */ 3208 size_t copied; /* Bytes copied from user */ 3209 void *fsdata; 3210 3211 offset = (pos & (PAGE_SIZE - 1)); 3212 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3213 iov_iter_count(i)); 3214 3215 again: 3216 /* 3217 * Bring in the user page that we will copy from _first_. 3218 * Otherwise there's a nasty deadlock on copying from the 3219 * same page as we're writing to, without it being marked 3220 * up-to-date. 3221 * 3222 * Not only is this an optimisation, but it is also required 3223 * to check that the address is actually valid, when atomic 3224 * usercopies are used, below. 3225 */ 3226 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3227 status = -EFAULT; 3228 break; 3229 } 3230 3231 if (fatal_signal_pending(current)) { 3232 status = -EINTR; 3233 break; 3234 } 3235 3236 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3237 &page, &fsdata); 3238 if (unlikely(status < 0)) 3239 break; 3240 3241 if (mapping_writably_mapped(mapping)) 3242 flush_dcache_page(page); 3243 3244 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3245 flush_dcache_page(page); 3246 3247 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3248 page, fsdata); 3249 if (unlikely(status < 0)) 3250 break; 3251 copied = status; 3252 3253 cond_resched(); 3254 3255 iov_iter_advance(i, copied); 3256 if (unlikely(copied == 0)) { 3257 /* 3258 * If we were unable to copy any data at all, we must 3259 * fall back to a single segment length write. 3260 * 3261 * If we didn't fallback here, we could livelock 3262 * because not all segments in the iov can be copied at 3263 * once without a pagefault. 3264 */ 3265 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3266 iov_iter_single_seg_count(i)); 3267 goto again; 3268 } 3269 pos += copied; 3270 written += copied; 3271 3272 balance_dirty_pages_ratelimited(mapping); 3273 } while (iov_iter_count(i)); 3274 3275 return written ? written : status; 3276 } 3277 EXPORT_SYMBOL(generic_perform_write); 3278 3279 /** 3280 * __generic_file_write_iter - write data to a file 3281 * @iocb: IO state structure (file, offset, etc.) 3282 * @from: iov_iter with data to write 3283 * 3284 * This function does all the work needed for actually writing data to a 3285 * file. It does all basic checks, removes SUID from the file, updates 3286 * modification times and calls proper subroutines depending on whether we 3287 * do direct IO or a standard buffered write. 3288 * 3289 * It expects i_mutex to be grabbed unless we work on a block device or similar 3290 * object which does not need locking at all. 3291 * 3292 * This function does *not* take care of syncing data in case of O_SYNC write. 3293 * A caller has to handle it. This is mainly due to the fact that we want to 3294 * avoid syncing under i_mutex. 3295 * 3296 * Return: 3297 * * number of bytes written, even for truncated writes 3298 * * negative error code if no data has been written at all 3299 */ 3300 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3301 { 3302 struct file *file = iocb->ki_filp; 3303 struct address_space * mapping = file->f_mapping; 3304 struct inode *inode = mapping->host; 3305 ssize_t written = 0; 3306 ssize_t err; 3307 ssize_t status; 3308 3309 /* We can write back this queue in page reclaim */ 3310 current->backing_dev_info = inode_to_bdi(inode); 3311 err = file_remove_privs(file); 3312 if (err) 3313 goto out; 3314 3315 err = file_update_time(file); 3316 if (err) 3317 goto out; 3318 3319 if (iocb->ki_flags & IOCB_DIRECT) { 3320 loff_t pos, endbyte; 3321 3322 written = generic_file_direct_write(iocb, from); 3323 /* 3324 * If the write stopped short of completing, fall back to 3325 * buffered writes. Some filesystems do this for writes to 3326 * holes, for example. For DAX files, a buffered write will 3327 * not succeed (even if it did, DAX does not handle dirty 3328 * page-cache pages correctly). 3329 */ 3330 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3331 goto out; 3332 3333 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3334 /* 3335 * If generic_perform_write() returned a synchronous error 3336 * then we want to return the number of bytes which were 3337 * direct-written, or the error code if that was zero. Note 3338 * that this differs from normal direct-io semantics, which 3339 * will return -EFOO even if some bytes were written. 3340 */ 3341 if (unlikely(status < 0)) { 3342 err = status; 3343 goto out; 3344 } 3345 /* 3346 * We need to ensure that the page cache pages are written to 3347 * disk and invalidated to preserve the expected O_DIRECT 3348 * semantics. 3349 */ 3350 endbyte = pos + status - 1; 3351 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3352 if (err == 0) { 3353 iocb->ki_pos = endbyte + 1; 3354 written += status; 3355 invalidate_mapping_pages(mapping, 3356 pos >> PAGE_SHIFT, 3357 endbyte >> PAGE_SHIFT); 3358 } else { 3359 /* 3360 * We don't know how much we wrote, so just return 3361 * the number of bytes which were direct-written 3362 */ 3363 } 3364 } else { 3365 written = generic_perform_write(file, from, iocb->ki_pos); 3366 if (likely(written > 0)) 3367 iocb->ki_pos += written; 3368 } 3369 out: 3370 current->backing_dev_info = NULL; 3371 return written ? written : err; 3372 } 3373 EXPORT_SYMBOL(__generic_file_write_iter); 3374 3375 /** 3376 * generic_file_write_iter - write data to a file 3377 * @iocb: IO state structure 3378 * @from: iov_iter with data to write 3379 * 3380 * This is a wrapper around __generic_file_write_iter() to be used by most 3381 * filesystems. It takes care of syncing the file in case of O_SYNC file 3382 * and acquires i_mutex as needed. 3383 * Return: 3384 * * negative error code if no data has been written at all of 3385 * vfs_fsync_range() failed for a synchronous write 3386 * * number of bytes written, even for truncated writes 3387 */ 3388 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3389 { 3390 struct file *file = iocb->ki_filp; 3391 struct inode *inode = file->f_mapping->host; 3392 ssize_t ret; 3393 3394 inode_lock(inode); 3395 ret = generic_write_checks(iocb, from); 3396 if (ret > 0) 3397 ret = __generic_file_write_iter(iocb, from); 3398 inode_unlock(inode); 3399 3400 if (ret > 0) 3401 ret = generic_write_sync(iocb, ret); 3402 return ret; 3403 } 3404 EXPORT_SYMBOL(generic_file_write_iter); 3405 3406 /** 3407 * try_to_release_page() - release old fs-specific metadata on a page 3408 * 3409 * @page: the page which the kernel is trying to free 3410 * @gfp_mask: memory allocation flags (and I/O mode) 3411 * 3412 * The address_space is to try to release any data against the page 3413 * (presumably at page->private). 3414 * 3415 * This may also be called if PG_fscache is set on a page, indicating that the 3416 * page is known to the local caching routines. 3417 * 3418 * The @gfp_mask argument specifies whether I/O may be performed to release 3419 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3420 * 3421 * Return: %1 if the release was successful, otherwise return zero. 3422 */ 3423 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3424 { 3425 struct address_space * const mapping = page->mapping; 3426 3427 BUG_ON(!PageLocked(page)); 3428 if (PageWriteback(page)) 3429 return 0; 3430 3431 if (mapping && mapping->a_ops->releasepage) 3432 return mapping->a_ops->releasepage(page, gfp_mask); 3433 return try_to_free_buffers(page); 3434 } 3435 3436 EXPORT_SYMBOL(try_to_release_page); 3437