xref: /linux/mm/filemap.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
47 
48 /*
49  * FIXME: remove all knowledge of the buffer layer from the core VM
50  */
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
52 
53 #include <asm/mman.h>
54 
55 /*
56  * Shared mappings implemented 30.11.1994. It's not fully working yet,
57  * though.
58  *
59  * Shared mappings now work. 15.8.1995  Bruno.
60  *
61  * finished 'unifying' the page and buffer cache and SMP-threaded the
62  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
63  *
64  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65  */
66 
67 /*
68  * Lock ordering:
69  *
70  *  ->i_mmap_rwsem		(truncate_pagecache)
71  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
72  *      ->swap_lock		(exclusive_swap_page, others)
73  *        ->i_pages lock
74  *
75  *  ->i_mutex
76  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
77  *
78  *  ->mmap_sem
79  *    ->i_mmap_rwsem
80  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
81  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
82  *
83  *  ->mmap_sem
84  *    ->lock_page		(access_process_vm)
85  *
86  *  ->i_mutex			(generic_perform_write)
87  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
88  *
89  *  bdi->wb.list_lock
90  *    sb_lock			(fs/fs-writeback.c)
91  *    ->i_pages lock		(__sync_single_inode)
92  *
93  *  ->i_mmap_rwsem
94  *    ->anon_vma.lock		(vma_adjust)
95  *
96  *  ->anon_vma.lock
97  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
98  *
99  *  ->page_table_lock or pte_lock
100  *    ->swap_lock		(try_to_unmap_one)
101  *    ->private_lock		(try_to_unmap_one)
102  *    ->i_pages lock		(try_to_unmap_one)
103  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
104  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
105  *    ->private_lock		(page_remove_rmap->set_page_dirty)
106  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
107  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
108  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
109  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
110  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
111  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
112  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
113  *
114  * ->i_mmap_rwsem
115  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
116  */
117 
118 static void page_cache_delete(struct address_space *mapping,
119 				   struct page *page, void *shadow)
120 {
121 	XA_STATE(xas, &mapping->i_pages, page->index);
122 	unsigned int nr = 1;
123 
124 	mapping_set_update(&xas, mapping);
125 
126 	/* hugetlb pages are represented by a single entry in the xarray */
127 	if (!PageHuge(page)) {
128 		xas_set_order(&xas, page->index, compound_order(page));
129 		nr = 1U << compound_order(page);
130 	}
131 
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE(PageTail(page), page);
134 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
135 
136 	xas_store(&xas, shadow);
137 	xas_init_marks(&xas);
138 
139 	page->mapping = NULL;
140 	/* Leave page->index set: truncation lookup relies upon it */
141 
142 	if (shadow) {
143 		mapping->nrexceptional += nr;
144 		/*
145 		 * Make sure the nrexceptional update is committed before
146 		 * the nrpages update so that final truncate racing
147 		 * with reclaim does not see both counters 0 at the
148 		 * same time and miss a shadow entry.
149 		 */
150 		smp_wmb();
151 	}
152 	mapping->nrpages -= nr;
153 }
154 
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 				      struct page *page)
157 {
158 	int nr;
159 
160 	/*
161 	 * if we're uptodate, flush out into the cleancache, otherwise
162 	 * invalidate any existing cleancache entries.  We can't leave
163 	 * stale data around in the cleancache once our page is gone
164 	 */
165 	if (PageUptodate(page) && PageMappedToDisk(page))
166 		cleancache_put_page(page);
167 	else
168 		cleancache_invalidate_page(mapping, page);
169 
170 	VM_BUG_ON_PAGE(PageTail(page), page);
171 	VM_BUG_ON_PAGE(page_mapped(page), page);
172 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 		int mapcount;
174 
175 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
176 			 current->comm, page_to_pfn(page));
177 		dump_page(page, "still mapped when deleted");
178 		dump_stack();
179 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
180 
181 		mapcount = page_mapcount(page);
182 		if (mapping_exiting(mapping) &&
183 		    page_count(page) >= mapcount + 2) {
184 			/*
185 			 * All vmas have already been torn down, so it's
186 			 * a good bet that actually the page is unmapped,
187 			 * and we'd prefer not to leak it: if we're wrong,
188 			 * some other bad page check should catch it later.
189 			 */
190 			page_mapcount_reset(page);
191 			page_ref_sub(page, mapcount);
192 		}
193 	}
194 
195 	/* hugetlb pages do not participate in page cache accounting. */
196 	if (PageHuge(page))
197 		return;
198 
199 	nr = hpage_nr_pages(page);
200 
201 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 	if (PageSwapBacked(page)) {
203 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 		if (PageTransHuge(page))
205 			__dec_node_page_state(page, NR_SHMEM_THPS);
206 	} else {
207 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
208 	}
209 
210 	/*
211 	 * At this point page must be either written or cleaned by
212 	 * truncate.  Dirty page here signals a bug and loss of
213 	 * unwritten data.
214 	 *
215 	 * This fixes dirty accounting after removing the page entirely
216 	 * but leaves PageDirty set: it has no effect for truncated
217 	 * page and anyway will be cleared before returning page into
218 	 * buddy allocator.
219 	 */
220 	if (WARN_ON_ONCE(PageDirty(page)))
221 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
222 }
223 
224 /*
225  * Delete a page from the page cache and free it. Caller has to make
226  * sure the page is locked and that nobody else uses it - or that usage
227  * is safe.  The caller must hold the i_pages lock.
228  */
229 void __delete_from_page_cache(struct page *page, void *shadow)
230 {
231 	struct address_space *mapping = page->mapping;
232 
233 	trace_mm_filemap_delete_from_page_cache(page);
234 
235 	unaccount_page_cache_page(mapping, page);
236 	page_cache_delete(mapping, page, shadow);
237 }
238 
239 static void page_cache_free_page(struct address_space *mapping,
240 				struct page *page)
241 {
242 	void (*freepage)(struct page *);
243 
244 	freepage = mapping->a_ops->freepage;
245 	if (freepage)
246 		freepage(page);
247 
248 	if (PageTransHuge(page) && !PageHuge(page)) {
249 		page_ref_sub(page, HPAGE_PMD_NR);
250 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 	} else {
252 		put_page(page);
253 	}
254 }
255 
256 /**
257  * delete_from_page_cache - delete page from page cache
258  * @page: the page which the kernel is trying to remove from page cache
259  *
260  * This must be called only on pages that have been verified to be in the page
261  * cache and locked.  It will never put the page into the free list, the caller
262  * has a reference on the page.
263  */
264 void delete_from_page_cache(struct page *page)
265 {
266 	struct address_space *mapping = page_mapping(page);
267 	unsigned long flags;
268 
269 	BUG_ON(!PageLocked(page));
270 	xa_lock_irqsave(&mapping->i_pages, flags);
271 	__delete_from_page_cache(page, NULL);
272 	xa_unlock_irqrestore(&mapping->i_pages, flags);
273 
274 	page_cache_free_page(mapping, page);
275 }
276 EXPORT_SYMBOL(delete_from_page_cache);
277 
278 /*
279  * page_cache_delete_batch - delete several pages from page cache
280  * @mapping: the mapping to which pages belong
281  * @pvec: pagevec with pages to delete
282  *
283  * The function walks over mapping->i_pages and removes pages passed in @pvec
284  * from the mapping. The function expects @pvec to be sorted by page index.
285  * It tolerates holes in @pvec (mapping entries at those indices are not
286  * modified). The function expects only THP head pages to be present in the
287  * @pvec and takes care to delete all corresponding tail pages from the
288  * mapping as well.
289  *
290  * The function expects the i_pages lock to be held.
291  */
292 static void page_cache_delete_batch(struct address_space *mapping,
293 			     struct pagevec *pvec)
294 {
295 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296 	int total_pages = 0;
297 	int i = 0, tail_pages = 0;
298 	struct page *page;
299 
300 	mapping_set_update(&xas, mapping);
301 	xas_for_each(&xas, page, ULONG_MAX) {
302 		if (i >= pagevec_count(pvec) && !tail_pages)
303 			break;
304 		if (xa_is_value(page))
305 			continue;
306 		if (!tail_pages) {
307 			/*
308 			 * Some page got inserted in our range? Skip it. We
309 			 * have our pages locked so they are protected from
310 			 * being removed.
311 			 */
312 			if (page != pvec->pages[i]) {
313 				VM_BUG_ON_PAGE(page->index >
314 						pvec->pages[i]->index, page);
315 				continue;
316 			}
317 			WARN_ON_ONCE(!PageLocked(page));
318 			if (PageTransHuge(page) && !PageHuge(page))
319 				tail_pages = HPAGE_PMD_NR - 1;
320 			page->mapping = NULL;
321 			/*
322 			 * Leave page->index set: truncation lookup relies
323 			 * upon it
324 			 */
325 			i++;
326 		} else {
327 			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
328 					!= pvec->pages[i]->index, page);
329 			tail_pages--;
330 		}
331 		xas_store(&xas, NULL);
332 		total_pages++;
333 	}
334 	mapping->nrpages -= total_pages;
335 }
336 
337 void delete_from_page_cache_batch(struct address_space *mapping,
338 				  struct pagevec *pvec)
339 {
340 	int i;
341 	unsigned long flags;
342 
343 	if (!pagevec_count(pvec))
344 		return;
345 
346 	xa_lock_irqsave(&mapping->i_pages, flags);
347 	for (i = 0; i < pagevec_count(pvec); i++) {
348 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
349 
350 		unaccount_page_cache_page(mapping, pvec->pages[i]);
351 	}
352 	page_cache_delete_batch(mapping, pvec);
353 	xa_unlock_irqrestore(&mapping->i_pages, flags);
354 
355 	for (i = 0; i < pagevec_count(pvec); i++)
356 		page_cache_free_page(mapping, pvec->pages[i]);
357 }
358 
359 int filemap_check_errors(struct address_space *mapping)
360 {
361 	int ret = 0;
362 	/* Check for outstanding write errors */
363 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
364 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
365 		ret = -ENOSPC;
366 	if (test_bit(AS_EIO, &mapping->flags) &&
367 	    test_and_clear_bit(AS_EIO, &mapping->flags))
368 		ret = -EIO;
369 	return ret;
370 }
371 EXPORT_SYMBOL(filemap_check_errors);
372 
373 static int filemap_check_and_keep_errors(struct address_space *mapping)
374 {
375 	/* Check for outstanding write errors */
376 	if (test_bit(AS_EIO, &mapping->flags))
377 		return -EIO;
378 	if (test_bit(AS_ENOSPC, &mapping->flags))
379 		return -ENOSPC;
380 	return 0;
381 }
382 
383 /**
384  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
385  * @mapping:	address space structure to write
386  * @start:	offset in bytes where the range starts
387  * @end:	offset in bytes where the range ends (inclusive)
388  * @sync_mode:	enable synchronous operation
389  *
390  * Start writeback against all of a mapping's dirty pages that lie
391  * within the byte offsets <start, end> inclusive.
392  *
393  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
394  * opposed to a regular memory cleansing writeback.  The difference between
395  * these two operations is that if a dirty page/buffer is encountered, it must
396  * be waited upon, and not just skipped over.
397  *
398  * Return: %0 on success, negative error code otherwise.
399  */
400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
401 				loff_t end, int sync_mode)
402 {
403 	int ret;
404 	struct writeback_control wbc = {
405 		.sync_mode = sync_mode,
406 		.nr_to_write = LONG_MAX,
407 		.range_start = start,
408 		.range_end = end,
409 	};
410 
411 	if (!mapping_cap_writeback_dirty(mapping))
412 		return 0;
413 
414 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
415 	ret = do_writepages(mapping, &wbc);
416 	wbc_detach_inode(&wbc);
417 	return ret;
418 }
419 
420 static inline int __filemap_fdatawrite(struct address_space *mapping,
421 	int sync_mode)
422 {
423 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
424 }
425 
426 int filemap_fdatawrite(struct address_space *mapping)
427 {
428 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
429 }
430 EXPORT_SYMBOL(filemap_fdatawrite);
431 
432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 				loff_t end)
434 {
435 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite_range);
438 
439 /**
440  * filemap_flush - mostly a non-blocking flush
441  * @mapping:	target address_space
442  *
443  * This is a mostly non-blocking flush.  Not suitable for data-integrity
444  * purposes - I/O may not be started against all dirty pages.
445  *
446  * Return: %0 on success, negative error code otherwise.
447  */
448 int filemap_flush(struct address_space *mapping)
449 {
450 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
451 }
452 EXPORT_SYMBOL(filemap_flush);
453 
454 /**
455  * filemap_range_has_page - check if a page exists in range.
456  * @mapping:           address space within which to check
457  * @start_byte:        offset in bytes where the range starts
458  * @end_byte:          offset in bytes where the range ends (inclusive)
459  *
460  * Find at least one page in the range supplied, usually used to check if
461  * direct writing in this range will trigger a writeback.
462  *
463  * Return: %true if at least one page exists in the specified range,
464  * %false otherwise.
465  */
466 bool filemap_range_has_page(struct address_space *mapping,
467 			   loff_t start_byte, loff_t end_byte)
468 {
469 	struct page *page;
470 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 	pgoff_t max = end_byte >> PAGE_SHIFT;
472 
473 	if (end_byte < start_byte)
474 		return false;
475 
476 	rcu_read_lock();
477 	for (;;) {
478 		page = xas_find(&xas, max);
479 		if (xas_retry(&xas, page))
480 			continue;
481 		/* Shadow entries don't count */
482 		if (xa_is_value(page))
483 			continue;
484 		/*
485 		 * We don't need to try to pin this page; we're about to
486 		 * release the RCU lock anyway.  It is enough to know that
487 		 * there was a page here recently.
488 		 */
489 		break;
490 	}
491 	rcu_read_unlock();
492 
493 	return page != NULL;
494 }
495 EXPORT_SYMBOL(filemap_range_has_page);
496 
497 static void __filemap_fdatawait_range(struct address_space *mapping,
498 				     loff_t start_byte, loff_t end_byte)
499 {
500 	pgoff_t index = start_byte >> PAGE_SHIFT;
501 	pgoff_t end = end_byte >> PAGE_SHIFT;
502 	struct pagevec pvec;
503 	int nr_pages;
504 
505 	if (end_byte < start_byte)
506 		return;
507 
508 	pagevec_init(&pvec);
509 	while (index <= end) {
510 		unsigned i;
511 
512 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 				end, PAGECACHE_TAG_WRITEBACK);
514 		if (!nr_pages)
515 			break;
516 
517 		for (i = 0; i < nr_pages; i++) {
518 			struct page *page = pvec.pages[i];
519 
520 			wait_on_page_writeback(page);
521 			ClearPageError(page);
522 		}
523 		pagevec_release(&pvec);
524 		cond_resched();
525 	}
526 }
527 
528 /**
529  * filemap_fdatawait_range - wait for writeback to complete
530  * @mapping:		address space structure to wait for
531  * @start_byte:		offset in bytes where the range starts
532  * @end_byte:		offset in bytes where the range ends (inclusive)
533  *
534  * Walk the list of under-writeback pages of the given address space
535  * in the given range and wait for all of them.  Check error status of
536  * the address space and return it.
537  *
538  * Since the error status of the address space is cleared by this function,
539  * callers are responsible for checking the return value and handling and/or
540  * reporting the error.
541  *
542  * Return: error status of the address space.
543  */
544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 			    loff_t end_byte)
546 {
547 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
548 	return filemap_check_errors(mapping);
549 }
550 EXPORT_SYMBOL(filemap_fdatawait_range);
551 
552 /**
553  * file_fdatawait_range - wait for writeback to complete
554  * @file:		file pointing to address space structure to wait for
555  * @start_byte:		offset in bytes where the range starts
556  * @end_byte:		offset in bytes where the range ends (inclusive)
557  *
558  * Walk the list of under-writeback pages of the address space that file
559  * refers to, in the given range and wait for all of them.  Check error
560  * status of the address space vs. the file->f_wb_err cursor and return it.
561  *
562  * Since the error status of the file is advanced by this function,
563  * callers are responsible for checking the return value and handling and/or
564  * reporting the error.
565  *
566  * Return: error status of the address space vs. the file->f_wb_err cursor.
567  */
568 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
569 {
570 	struct address_space *mapping = file->f_mapping;
571 
572 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
573 	return file_check_and_advance_wb_err(file);
574 }
575 EXPORT_SYMBOL(file_fdatawait_range);
576 
577 /**
578  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
579  * @mapping: address space structure to wait for
580  *
581  * Walk the list of under-writeback pages of the given address space
582  * and wait for all of them.  Unlike filemap_fdatawait(), this function
583  * does not clear error status of the address space.
584  *
585  * Use this function if callers don't handle errors themselves.  Expected
586  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
587  * fsfreeze(8)
588  *
589  * Return: error status of the address space.
590  */
591 int filemap_fdatawait_keep_errors(struct address_space *mapping)
592 {
593 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
594 	return filemap_check_and_keep_errors(mapping);
595 }
596 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
597 
598 static bool mapping_needs_writeback(struct address_space *mapping)
599 {
600 	return (!dax_mapping(mapping) && mapping->nrpages) ||
601 	    (dax_mapping(mapping) && mapping->nrexceptional);
602 }
603 
604 int filemap_write_and_wait(struct address_space *mapping)
605 {
606 	int err = 0;
607 
608 	if (mapping_needs_writeback(mapping)) {
609 		err = filemap_fdatawrite(mapping);
610 		/*
611 		 * Even if the above returned error, the pages may be
612 		 * written partially (e.g. -ENOSPC), so we wait for it.
613 		 * But the -EIO is special case, it may indicate the worst
614 		 * thing (e.g. bug) happened, so we avoid waiting for it.
615 		 */
616 		if (err != -EIO) {
617 			int err2 = filemap_fdatawait(mapping);
618 			if (!err)
619 				err = err2;
620 		} else {
621 			/* Clear any previously stored errors */
622 			filemap_check_errors(mapping);
623 		}
624 	} else {
625 		err = filemap_check_errors(mapping);
626 	}
627 	return err;
628 }
629 EXPORT_SYMBOL(filemap_write_and_wait);
630 
631 /**
632  * filemap_write_and_wait_range - write out & wait on a file range
633  * @mapping:	the address_space for the pages
634  * @lstart:	offset in bytes where the range starts
635  * @lend:	offset in bytes where the range ends (inclusive)
636  *
637  * Write out and wait upon file offsets lstart->lend, inclusive.
638  *
639  * Note that @lend is inclusive (describes the last byte to be written) so
640  * that this function can be used to write to the very end-of-file (end = -1).
641  *
642  * Return: error status of the address space.
643  */
644 int filemap_write_and_wait_range(struct address_space *mapping,
645 				 loff_t lstart, loff_t lend)
646 {
647 	int err = 0;
648 
649 	if (mapping_needs_writeback(mapping)) {
650 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
651 						 WB_SYNC_ALL);
652 		/* See comment of filemap_write_and_wait() */
653 		if (err != -EIO) {
654 			int err2 = filemap_fdatawait_range(mapping,
655 						lstart, lend);
656 			if (!err)
657 				err = err2;
658 		} else {
659 			/* Clear any previously stored errors */
660 			filemap_check_errors(mapping);
661 		}
662 	} else {
663 		err = filemap_check_errors(mapping);
664 	}
665 	return err;
666 }
667 EXPORT_SYMBOL(filemap_write_and_wait_range);
668 
669 void __filemap_set_wb_err(struct address_space *mapping, int err)
670 {
671 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
672 
673 	trace_filemap_set_wb_err(mapping, eseq);
674 }
675 EXPORT_SYMBOL(__filemap_set_wb_err);
676 
677 /**
678  * file_check_and_advance_wb_err - report wb error (if any) that was previously
679  * 				   and advance wb_err to current one
680  * @file: struct file on which the error is being reported
681  *
682  * When userland calls fsync (or something like nfsd does the equivalent), we
683  * want to report any writeback errors that occurred since the last fsync (or
684  * since the file was opened if there haven't been any).
685  *
686  * Grab the wb_err from the mapping. If it matches what we have in the file,
687  * then just quickly return 0. The file is all caught up.
688  *
689  * If it doesn't match, then take the mapping value, set the "seen" flag in
690  * it and try to swap it into place. If it works, or another task beat us
691  * to it with the new value, then update the f_wb_err and return the error
692  * portion. The error at this point must be reported via proper channels
693  * (a'la fsync, or NFS COMMIT operation, etc.).
694  *
695  * While we handle mapping->wb_err with atomic operations, the f_wb_err
696  * value is protected by the f_lock since we must ensure that it reflects
697  * the latest value swapped in for this file descriptor.
698  *
699  * Return: %0 on success, negative error code otherwise.
700  */
701 int file_check_and_advance_wb_err(struct file *file)
702 {
703 	int err = 0;
704 	errseq_t old = READ_ONCE(file->f_wb_err);
705 	struct address_space *mapping = file->f_mapping;
706 
707 	/* Locklessly handle the common case where nothing has changed */
708 	if (errseq_check(&mapping->wb_err, old)) {
709 		/* Something changed, must use slow path */
710 		spin_lock(&file->f_lock);
711 		old = file->f_wb_err;
712 		err = errseq_check_and_advance(&mapping->wb_err,
713 						&file->f_wb_err);
714 		trace_file_check_and_advance_wb_err(file, old);
715 		spin_unlock(&file->f_lock);
716 	}
717 
718 	/*
719 	 * We're mostly using this function as a drop in replacement for
720 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
721 	 * that the legacy code would have had on these flags.
722 	 */
723 	clear_bit(AS_EIO, &mapping->flags);
724 	clear_bit(AS_ENOSPC, &mapping->flags);
725 	return err;
726 }
727 EXPORT_SYMBOL(file_check_and_advance_wb_err);
728 
729 /**
730  * file_write_and_wait_range - write out & wait on a file range
731  * @file:	file pointing to address_space with pages
732  * @lstart:	offset in bytes where the range starts
733  * @lend:	offset in bytes where the range ends (inclusive)
734  *
735  * Write out and wait upon file offsets lstart->lend, inclusive.
736  *
737  * Note that @lend is inclusive (describes the last byte to be written) so
738  * that this function can be used to write to the very end-of-file (end = -1).
739  *
740  * After writing out and waiting on the data, we check and advance the
741  * f_wb_err cursor to the latest value, and return any errors detected there.
742  *
743  * Return: %0 on success, negative error code otherwise.
744  */
745 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
746 {
747 	int err = 0, err2;
748 	struct address_space *mapping = file->f_mapping;
749 
750 	if (mapping_needs_writeback(mapping)) {
751 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
752 						 WB_SYNC_ALL);
753 		/* See comment of filemap_write_and_wait() */
754 		if (err != -EIO)
755 			__filemap_fdatawait_range(mapping, lstart, lend);
756 	}
757 	err2 = file_check_and_advance_wb_err(file);
758 	if (!err)
759 		err = err2;
760 	return err;
761 }
762 EXPORT_SYMBOL(file_write_and_wait_range);
763 
764 /**
765  * replace_page_cache_page - replace a pagecache page with a new one
766  * @old:	page to be replaced
767  * @new:	page to replace with
768  * @gfp_mask:	allocation mode
769  *
770  * This function replaces a page in the pagecache with a new one.  On
771  * success it acquires the pagecache reference for the new page and
772  * drops it for the old page.  Both the old and new pages must be
773  * locked.  This function does not add the new page to the LRU, the
774  * caller must do that.
775  *
776  * The remove + add is atomic.  This function cannot fail.
777  *
778  * Return: %0
779  */
780 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
781 {
782 	struct address_space *mapping = old->mapping;
783 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
784 	pgoff_t offset = old->index;
785 	XA_STATE(xas, &mapping->i_pages, offset);
786 	unsigned long flags;
787 
788 	VM_BUG_ON_PAGE(!PageLocked(old), old);
789 	VM_BUG_ON_PAGE(!PageLocked(new), new);
790 	VM_BUG_ON_PAGE(new->mapping, new);
791 
792 	get_page(new);
793 	new->mapping = mapping;
794 	new->index = offset;
795 
796 	xas_lock_irqsave(&xas, flags);
797 	xas_store(&xas, new);
798 
799 	old->mapping = NULL;
800 	/* hugetlb pages do not participate in page cache accounting. */
801 	if (!PageHuge(old))
802 		__dec_node_page_state(new, NR_FILE_PAGES);
803 	if (!PageHuge(new))
804 		__inc_node_page_state(new, NR_FILE_PAGES);
805 	if (PageSwapBacked(old))
806 		__dec_node_page_state(new, NR_SHMEM);
807 	if (PageSwapBacked(new))
808 		__inc_node_page_state(new, NR_SHMEM);
809 	xas_unlock_irqrestore(&xas, flags);
810 	mem_cgroup_migrate(old, new);
811 	if (freepage)
812 		freepage(old);
813 	put_page(old);
814 
815 	return 0;
816 }
817 EXPORT_SYMBOL_GPL(replace_page_cache_page);
818 
819 static int __add_to_page_cache_locked(struct page *page,
820 				      struct address_space *mapping,
821 				      pgoff_t offset, gfp_t gfp_mask,
822 				      void **shadowp)
823 {
824 	XA_STATE(xas, &mapping->i_pages, offset);
825 	int huge = PageHuge(page);
826 	struct mem_cgroup *memcg;
827 	int error;
828 	void *old;
829 
830 	VM_BUG_ON_PAGE(!PageLocked(page), page);
831 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
832 	mapping_set_update(&xas, mapping);
833 
834 	if (!huge) {
835 		error = mem_cgroup_try_charge(page, current->mm,
836 					      gfp_mask, &memcg, false);
837 		if (error)
838 			return error;
839 	}
840 
841 	get_page(page);
842 	page->mapping = mapping;
843 	page->index = offset;
844 
845 	do {
846 		xas_lock_irq(&xas);
847 		old = xas_load(&xas);
848 		if (old && !xa_is_value(old))
849 			xas_set_err(&xas, -EEXIST);
850 		xas_store(&xas, page);
851 		if (xas_error(&xas))
852 			goto unlock;
853 
854 		if (xa_is_value(old)) {
855 			mapping->nrexceptional--;
856 			if (shadowp)
857 				*shadowp = old;
858 		}
859 		mapping->nrpages++;
860 
861 		/* hugetlb pages do not participate in page cache accounting */
862 		if (!huge)
863 			__inc_node_page_state(page, NR_FILE_PAGES);
864 unlock:
865 		xas_unlock_irq(&xas);
866 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
867 
868 	if (xas_error(&xas))
869 		goto error;
870 
871 	if (!huge)
872 		mem_cgroup_commit_charge(page, memcg, false, false);
873 	trace_mm_filemap_add_to_page_cache(page);
874 	return 0;
875 error:
876 	page->mapping = NULL;
877 	/* Leave page->index set: truncation relies upon it */
878 	if (!huge)
879 		mem_cgroup_cancel_charge(page, memcg, false);
880 	put_page(page);
881 	return xas_error(&xas);
882 }
883 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
884 
885 /**
886  * add_to_page_cache_locked - add a locked page to the pagecache
887  * @page:	page to add
888  * @mapping:	the page's address_space
889  * @offset:	page index
890  * @gfp_mask:	page allocation mode
891  *
892  * This function is used to add a page to the pagecache. It must be locked.
893  * This function does not add the page to the LRU.  The caller must do that.
894  *
895  * Return: %0 on success, negative error code otherwise.
896  */
897 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
898 		pgoff_t offset, gfp_t gfp_mask)
899 {
900 	return __add_to_page_cache_locked(page, mapping, offset,
901 					  gfp_mask, NULL);
902 }
903 EXPORT_SYMBOL(add_to_page_cache_locked);
904 
905 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
906 				pgoff_t offset, gfp_t gfp_mask)
907 {
908 	void *shadow = NULL;
909 	int ret;
910 
911 	__SetPageLocked(page);
912 	ret = __add_to_page_cache_locked(page, mapping, offset,
913 					 gfp_mask, &shadow);
914 	if (unlikely(ret))
915 		__ClearPageLocked(page);
916 	else {
917 		/*
918 		 * The page might have been evicted from cache only
919 		 * recently, in which case it should be activated like
920 		 * any other repeatedly accessed page.
921 		 * The exception is pages getting rewritten; evicting other
922 		 * data from the working set, only to cache data that will
923 		 * get overwritten with something else, is a waste of memory.
924 		 */
925 		WARN_ON_ONCE(PageActive(page));
926 		if (!(gfp_mask & __GFP_WRITE) && shadow)
927 			workingset_refault(page, shadow);
928 		lru_cache_add(page);
929 	}
930 	return ret;
931 }
932 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
933 
934 #ifdef CONFIG_NUMA
935 struct page *__page_cache_alloc(gfp_t gfp)
936 {
937 	int n;
938 	struct page *page;
939 
940 	if (cpuset_do_page_mem_spread()) {
941 		unsigned int cpuset_mems_cookie;
942 		do {
943 			cpuset_mems_cookie = read_mems_allowed_begin();
944 			n = cpuset_mem_spread_node();
945 			page = __alloc_pages_node(n, gfp, 0);
946 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
947 
948 		return page;
949 	}
950 	return alloc_pages(gfp, 0);
951 }
952 EXPORT_SYMBOL(__page_cache_alloc);
953 #endif
954 
955 /*
956  * In order to wait for pages to become available there must be
957  * waitqueues associated with pages. By using a hash table of
958  * waitqueues where the bucket discipline is to maintain all
959  * waiters on the same queue and wake all when any of the pages
960  * become available, and for the woken contexts to check to be
961  * sure the appropriate page became available, this saves space
962  * at a cost of "thundering herd" phenomena during rare hash
963  * collisions.
964  */
965 #define PAGE_WAIT_TABLE_BITS 8
966 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
967 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
968 
969 static wait_queue_head_t *page_waitqueue(struct page *page)
970 {
971 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
972 }
973 
974 void __init pagecache_init(void)
975 {
976 	int i;
977 
978 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
979 		init_waitqueue_head(&page_wait_table[i]);
980 
981 	page_writeback_init();
982 }
983 
984 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
985 struct wait_page_key {
986 	struct page *page;
987 	int bit_nr;
988 	int page_match;
989 };
990 
991 struct wait_page_queue {
992 	struct page *page;
993 	int bit_nr;
994 	wait_queue_entry_t wait;
995 };
996 
997 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
998 {
999 	struct wait_page_key *key = arg;
1000 	struct wait_page_queue *wait_page
1001 		= container_of(wait, struct wait_page_queue, wait);
1002 
1003 	if (wait_page->page != key->page)
1004 	       return 0;
1005 	key->page_match = 1;
1006 
1007 	if (wait_page->bit_nr != key->bit_nr)
1008 		return 0;
1009 
1010 	/*
1011 	 * Stop walking if it's locked.
1012 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1013 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1014 	 * has now already been set by another task, that task must also hold
1015 	 * a reference to the *same usage* of this page; so there is no need
1016 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1017 	 */
1018 	if (test_bit(key->bit_nr, &key->page->flags))
1019 		return -1;
1020 
1021 	return autoremove_wake_function(wait, mode, sync, key);
1022 }
1023 
1024 static void wake_up_page_bit(struct page *page, int bit_nr)
1025 {
1026 	wait_queue_head_t *q = page_waitqueue(page);
1027 	struct wait_page_key key;
1028 	unsigned long flags;
1029 	wait_queue_entry_t bookmark;
1030 
1031 	key.page = page;
1032 	key.bit_nr = bit_nr;
1033 	key.page_match = 0;
1034 
1035 	bookmark.flags = 0;
1036 	bookmark.private = NULL;
1037 	bookmark.func = NULL;
1038 	INIT_LIST_HEAD(&bookmark.entry);
1039 
1040 	spin_lock_irqsave(&q->lock, flags);
1041 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1042 
1043 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1044 		/*
1045 		 * Take a breather from holding the lock,
1046 		 * allow pages that finish wake up asynchronously
1047 		 * to acquire the lock and remove themselves
1048 		 * from wait queue
1049 		 */
1050 		spin_unlock_irqrestore(&q->lock, flags);
1051 		cpu_relax();
1052 		spin_lock_irqsave(&q->lock, flags);
1053 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1054 	}
1055 
1056 	/*
1057 	 * It is possible for other pages to have collided on the waitqueue
1058 	 * hash, so in that case check for a page match. That prevents a long-
1059 	 * term waiter
1060 	 *
1061 	 * It is still possible to miss a case here, when we woke page waiters
1062 	 * and removed them from the waitqueue, but there are still other
1063 	 * page waiters.
1064 	 */
1065 	if (!waitqueue_active(q) || !key.page_match) {
1066 		ClearPageWaiters(page);
1067 		/*
1068 		 * It's possible to miss clearing Waiters here, when we woke
1069 		 * our page waiters, but the hashed waitqueue has waiters for
1070 		 * other pages on it.
1071 		 *
1072 		 * That's okay, it's a rare case. The next waker will clear it.
1073 		 */
1074 	}
1075 	spin_unlock_irqrestore(&q->lock, flags);
1076 }
1077 
1078 static void wake_up_page(struct page *page, int bit)
1079 {
1080 	if (!PageWaiters(page))
1081 		return;
1082 	wake_up_page_bit(page, bit);
1083 }
1084 
1085 /*
1086  * A choice of three behaviors for wait_on_page_bit_common():
1087  */
1088 enum behavior {
1089 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1090 			 * __lock_page() waiting on then setting PG_locked.
1091 			 */
1092 	SHARED,		/* Hold ref to page and check the bit when woken, like
1093 			 * wait_on_page_writeback() waiting on PG_writeback.
1094 			 */
1095 	DROP,		/* Drop ref to page before wait, no check when woken,
1096 			 * like put_and_wait_on_page_locked() on PG_locked.
1097 			 */
1098 };
1099 
1100 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1101 	struct page *page, int bit_nr, int state, enum behavior behavior)
1102 {
1103 	struct wait_page_queue wait_page;
1104 	wait_queue_entry_t *wait = &wait_page.wait;
1105 	bool bit_is_set;
1106 	bool thrashing = false;
1107 	bool delayacct = false;
1108 	unsigned long pflags;
1109 	int ret = 0;
1110 
1111 	if (bit_nr == PG_locked &&
1112 	    !PageUptodate(page) && PageWorkingset(page)) {
1113 		if (!PageSwapBacked(page)) {
1114 			delayacct_thrashing_start();
1115 			delayacct = true;
1116 		}
1117 		psi_memstall_enter(&pflags);
1118 		thrashing = true;
1119 	}
1120 
1121 	init_wait(wait);
1122 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1123 	wait->func = wake_page_function;
1124 	wait_page.page = page;
1125 	wait_page.bit_nr = bit_nr;
1126 
1127 	for (;;) {
1128 		spin_lock_irq(&q->lock);
1129 
1130 		if (likely(list_empty(&wait->entry))) {
1131 			__add_wait_queue_entry_tail(q, wait);
1132 			SetPageWaiters(page);
1133 		}
1134 
1135 		set_current_state(state);
1136 
1137 		spin_unlock_irq(&q->lock);
1138 
1139 		bit_is_set = test_bit(bit_nr, &page->flags);
1140 		if (behavior == DROP)
1141 			put_page(page);
1142 
1143 		if (likely(bit_is_set))
1144 			io_schedule();
1145 
1146 		if (behavior == EXCLUSIVE) {
1147 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1148 				break;
1149 		} else if (behavior == SHARED) {
1150 			if (!test_bit(bit_nr, &page->flags))
1151 				break;
1152 		}
1153 
1154 		if (signal_pending_state(state, current)) {
1155 			ret = -EINTR;
1156 			break;
1157 		}
1158 
1159 		if (behavior == DROP) {
1160 			/*
1161 			 * We can no longer safely access page->flags:
1162 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1163 			 * there is a risk of waiting forever on a page reused
1164 			 * for something that keeps it locked indefinitely.
1165 			 * But best check for -EINTR above before breaking.
1166 			 */
1167 			break;
1168 		}
1169 	}
1170 
1171 	finish_wait(q, wait);
1172 
1173 	if (thrashing) {
1174 		if (delayacct)
1175 			delayacct_thrashing_end();
1176 		psi_memstall_leave(&pflags);
1177 	}
1178 
1179 	/*
1180 	 * A signal could leave PageWaiters set. Clearing it here if
1181 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1182 	 * but still fail to catch it in the case of wait hash collision. We
1183 	 * already can fail to clear wait hash collision cases, so don't
1184 	 * bother with signals either.
1185 	 */
1186 
1187 	return ret;
1188 }
1189 
1190 void wait_on_page_bit(struct page *page, int bit_nr)
1191 {
1192 	wait_queue_head_t *q = page_waitqueue(page);
1193 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1194 }
1195 EXPORT_SYMBOL(wait_on_page_bit);
1196 
1197 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1198 {
1199 	wait_queue_head_t *q = page_waitqueue(page);
1200 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1201 }
1202 EXPORT_SYMBOL(wait_on_page_bit_killable);
1203 
1204 /**
1205  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1206  * @page: The page to wait for.
1207  *
1208  * The caller should hold a reference on @page.  They expect the page to
1209  * become unlocked relatively soon, but do not wish to hold up migration
1210  * (for example) by holding the reference while waiting for the page to
1211  * come unlocked.  After this function returns, the caller should not
1212  * dereference @page.
1213  */
1214 void put_and_wait_on_page_locked(struct page *page)
1215 {
1216 	wait_queue_head_t *q;
1217 
1218 	page = compound_head(page);
1219 	q = page_waitqueue(page);
1220 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1221 }
1222 
1223 /**
1224  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1225  * @page: Page defining the wait queue of interest
1226  * @waiter: Waiter to add to the queue
1227  *
1228  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1229  */
1230 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1231 {
1232 	wait_queue_head_t *q = page_waitqueue(page);
1233 	unsigned long flags;
1234 
1235 	spin_lock_irqsave(&q->lock, flags);
1236 	__add_wait_queue_entry_tail(q, waiter);
1237 	SetPageWaiters(page);
1238 	spin_unlock_irqrestore(&q->lock, flags);
1239 }
1240 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1241 
1242 #ifndef clear_bit_unlock_is_negative_byte
1243 
1244 /*
1245  * PG_waiters is the high bit in the same byte as PG_lock.
1246  *
1247  * On x86 (and on many other architectures), we can clear PG_lock and
1248  * test the sign bit at the same time. But if the architecture does
1249  * not support that special operation, we just do this all by hand
1250  * instead.
1251  *
1252  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1253  * being cleared, but a memory barrier should be unneccssary since it is
1254  * in the same byte as PG_locked.
1255  */
1256 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1257 {
1258 	clear_bit_unlock(nr, mem);
1259 	/* smp_mb__after_atomic(); */
1260 	return test_bit(PG_waiters, mem);
1261 }
1262 
1263 #endif
1264 
1265 /**
1266  * unlock_page - unlock a locked page
1267  * @page: the page
1268  *
1269  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1270  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1271  * mechanism between PageLocked pages and PageWriteback pages is shared.
1272  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1273  *
1274  * Note that this depends on PG_waiters being the sign bit in the byte
1275  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1276  * clear the PG_locked bit and test PG_waiters at the same time fairly
1277  * portably (architectures that do LL/SC can test any bit, while x86 can
1278  * test the sign bit).
1279  */
1280 void unlock_page(struct page *page)
1281 {
1282 	BUILD_BUG_ON(PG_waiters != 7);
1283 	page = compound_head(page);
1284 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1285 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1286 		wake_up_page_bit(page, PG_locked);
1287 }
1288 EXPORT_SYMBOL(unlock_page);
1289 
1290 /**
1291  * end_page_writeback - end writeback against a page
1292  * @page: the page
1293  */
1294 void end_page_writeback(struct page *page)
1295 {
1296 	/*
1297 	 * TestClearPageReclaim could be used here but it is an atomic
1298 	 * operation and overkill in this particular case. Failing to
1299 	 * shuffle a page marked for immediate reclaim is too mild to
1300 	 * justify taking an atomic operation penalty at the end of
1301 	 * ever page writeback.
1302 	 */
1303 	if (PageReclaim(page)) {
1304 		ClearPageReclaim(page);
1305 		rotate_reclaimable_page(page);
1306 	}
1307 
1308 	if (!test_clear_page_writeback(page))
1309 		BUG();
1310 
1311 	smp_mb__after_atomic();
1312 	wake_up_page(page, PG_writeback);
1313 }
1314 EXPORT_SYMBOL(end_page_writeback);
1315 
1316 /*
1317  * After completing I/O on a page, call this routine to update the page
1318  * flags appropriately
1319  */
1320 void page_endio(struct page *page, bool is_write, int err)
1321 {
1322 	if (!is_write) {
1323 		if (!err) {
1324 			SetPageUptodate(page);
1325 		} else {
1326 			ClearPageUptodate(page);
1327 			SetPageError(page);
1328 		}
1329 		unlock_page(page);
1330 	} else {
1331 		if (err) {
1332 			struct address_space *mapping;
1333 
1334 			SetPageError(page);
1335 			mapping = page_mapping(page);
1336 			if (mapping)
1337 				mapping_set_error(mapping, err);
1338 		}
1339 		end_page_writeback(page);
1340 	}
1341 }
1342 EXPORT_SYMBOL_GPL(page_endio);
1343 
1344 /**
1345  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1346  * @__page: the page to lock
1347  */
1348 void __lock_page(struct page *__page)
1349 {
1350 	struct page *page = compound_head(__page);
1351 	wait_queue_head_t *q = page_waitqueue(page);
1352 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1353 				EXCLUSIVE);
1354 }
1355 EXPORT_SYMBOL(__lock_page);
1356 
1357 int __lock_page_killable(struct page *__page)
1358 {
1359 	struct page *page = compound_head(__page);
1360 	wait_queue_head_t *q = page_waitqueue(page);
1361 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1362 					EXCLUSIVE);
1363 }
1364 EXPORT_SYMBOL_GPL(__lock_page_killable);
1365 
1366 /*
1367  * Return values:
1368  * 1 - page is locked; mmap_sem is still held.
1369  * 0 - page is not locked.
1370  *     mmap_sem has been released (up_read()), unless flags had both
1371  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1372  *     which case mmap_sem is still held.
1373  *
1374  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1375  * with the page locked and the mmap_sem unperturbed.
1376  */
1377 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1378 			 unsigned int flags)
1379 {
1380 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1381 		/*
1382 		 * CAUTION! In this case, mmap_sem is not released
1383 		 * even though return 0.
1384 		 */
1385 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1386 			return 0;
1387 
1388 		up_read(&mm->mmap_sem);
1389 		if (flags & FAULT_FLAG_KILLABLE)
1390 			wait_on_page_locked_killable(page);
1391 		else
1392 			wait_on_page_locked(page);
1393 		return 0;
1394 	} else {
1395 		if (flags & FAULT_FLAG_KILLABLE) {
1396 			int ret;
1397 
1398 			ret = __lock_page_killable(page);
1399 			if (ret) {
1400 				up_read(&mm->mmap_sem);
1401 				return 0;
1402 			}
1403 		} else
1404 			__lock_page(page);
1405 		return 1;
1406 	}
1407 }
1408 
1409 /**
1410  * page_cache_next_miss() - Find the next gap in the page cache.
1411  * @mapping: Mapping.
1412  * @index: Index.
1413  * @max_scan: Maximum range to search.
1414  *
1415  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1416  * gap with the lowest index.
1417  *
1418  * This function may be called under the rcu_read_lock.  However, this will
1419  * not atomically search a snapshot of the cache at a single point in time.
1420  * For example, if a gap is created at index 5, then subsequently a gap is
1421  * created at index 10, page_cache_next_miss covering both indices may
1422  * return 10 if called under the rcu_read_lock.
1423  *
1424  * Return: The index of the gap if found, otherwise an index outside the
1425  * range specified (in which case 'return - index >= max_scan' will be true).
1426  * In the rare case of index wrap-around, 0 will be returned.
1427  */
1428 pgoff_t page_cache_next_miss(struct address_space *mapping,
1429 			     pgoff_t index, unsigned long max_scan)
1430 {
1431 	XA_STATE(xas, &mapping->i_pages, index);
1432 
1433 	while (max_scan--) {
1434 		void *entry = xas_next(&xas);
1435 		if (!entry || xa_is_value(entry))
1436 			break;
1437 		if (xas.xa_index == 0)
1438 			break;
1439 	}
1440 
1441 	return xas.xa_index;
1442 }
1443 EXPORT_SYMBOL(page_cache_next_miss);
1444 
1445 /**
1446  * page_cache_prev_miss() - Find the previous gap in the page cache.
1447  * @mapping: Mapping.
1448  * @index: Index.
1449  * @max_scan: Maximum range to search.
1450  *
1451  * Search the range [max(index - max_scan + 1, 0), index] for the
1452  * gap with the highest index.
1453  *
1454  * This function may be called under the rcu_read_lock.  However, this will
1455  * not atomically search a snapshot of the cache at a single point in time.
1456  * For example, if a gap is created at index 10, then subsequently a gap is
1457  * created at index 5, page_cache_prev_miss() covering both indices may
1458  * return 5 if called under the rcu_read_lock.
1459  *
1460  * Return: The index of the gap if found, otherwise an index outside the
1461  * range specified (in which case 'index - return >= max_scan' will be true).
1462  * In the rare case of wrap-around, ULONG_MAX will be returned.
1463  */
1464 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1465 			     pgoff_t index, unsigned long max_scan)
1466 {
1467 	XA_STATE(xas, &mapping->i_pages, index);
1468 
1469 	while (max_scan--) {
1470 		void *entry = xas_prev(&xas);
1471 		if (!entry || xa_is_value(entry))
1472 			break;
1473 		if (xas.xa_index == ULONG_MAX)
1474 			break;
1475 	}
1476 
1477 	return xas.xa_index;
1478 }
1479 EXPORT_SYMBOL(page_cache_prev_miss);
1480 
1481 /**
1482  * find_get_entry - find and get a page cache entry
1483  * @mapping: the address_space to search
1484  * @offset: the page cache index
1485  *
1486  * Looks up the page cache slot at @mapping & @offset.  If there is a
1487  * page cache page, it is returned with an increased refcount.
1488  *
1489  * If the slot holds a shadow entry of a previously evicted page, or a
1490  * swap entry from shmem/tmpfs, it is returned.
1491  *
1492  * Return: the found page or shadow entry, %NULL if nothing is found.
1493  */
1494 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1495 {
1496 	XA_STATE(xas, &mapping->i_pages, offset);
1497 	struct page *head, *page;
1498 
1499 	rcu_read_lock();
1500 repeat:
1501 	xas_reset(&xas);
1502 	page = xas_load(&xas);
1503 	if (xas_retry(&xas, page))
1504 		goto repeat;
1505 	/*
1506 	 * A shadow entry of a recently evicted page, or a swap entry from
1507 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1508 	 */
1509 	if (!page || xa_is_value(page))
1510 		goto out;
1511 
1512 	head = compound_head(page);
1513 	if (!page_cache_get_speculative(head))
1514 		goto repeat;
1515 
1516 	/* The page was split under us? */
1517 	if (compound_head(page) != head) {
1518 		put_page(head);
1519 		goto repeat;
1520 	}
1521 
1522 	/*
1523 	 * Has the page moved?
1524 	 * This is part of the lockless pagecache protocol. See
1525 	 * include/linux/pagemap.h for details.
1526 	 */
1527 	if (unlikely(page != xas_reload(&xas))) {
1528 		put_page(head);
1529 		goto repeat;
1530 	}
1531 out:
1532 	rcu_read_unlock();
1533 
1534 	return page;
1535 }
1536 EXPORT_SYMBOL(find_get_entry);
1537 
1538 /**
1539  * find_lock_entry - locate, pin and lock a page cache entry
1540  * @mapping: the address_space to search
1541  * @offset: the page cache index
1542  *
1543  * Looks up the page cache slot at @mapping & @offset.  If there is a
1544  * page cache page, it is returned locked and with an increased
1545  * refcount.
1546  *
1547  * If the slot holds a shadow entry of a previously evicted page, or a
1548  * swap entry from shmem/tmpfs, it is returned.
1549  *
1550  * find_lock_entry() may sleep.
1551  *
1552  * Return: the found page or shadow entry, %NULL if nothing is found.
1553  */
1554 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1555 {
1556 	struct page *page;
1557 
1558 repeat:
1559 	page = find_get_entry(mapping, offset);
1560 	if (page && !xa_is_value(page)) {
1561 		lock_page(page);
1562 		/* Has the page been truncated? */
1563 		if (unlikely(page_mapping(page) != mapping)) {
1564 			unlock_page(page);
1565 			put_page(page);
1566 			goto repeat;
1567 		}
1568 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1569 	}
1570 	return page;
1571 }
1572 EXPORT_SYMBOL(find_lock_entry);
1573 
1574 /**
1575  * pagecache_get_page - find and get a page reference
1576  * @mapping: the address_space to search
1577  * @offset: the page index
1578  * @fgp_flags: PCG flags
1579  * @gfp_mask: gfp mask to use for the page cache data page allocation
1580  *
1581  * Looks up the page cache slot at @mapping & @offset.
1582  *
1583  * PCG flags modify how the page is returned.
1584  *
1585  * @fgp_flags can be:
1586  *
1587  * - FGP_ACCESSED: the page will be marked accessed
1588  * - FGP_LOCK: Page is return locked
1589  * - FGP_CREAT: If page is not present then a new page is allocated using
1590  *   @gfp_mask and added to the page cache and the VM's LRU
1591  *   list. The page is returned locked and with an increased
1592  *   refcount.
1593  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1594  *   its own locking dance if the page is already in cache, or unlock the page
1595  *   before returning if we had to add the page to pagecache.
1596  *
1597  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1598  * if the GFP flags specified for FGP_CREAT are atomic.
1599  *
1600  * If there is a page cache page, it is returned with an increased refcount.
1601  *
1602  * Return: the found page or %NULL otherwise.
1603  */
1604 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1605 	int fgp_flags, gfp_t gfp_mask)
1606 {
1607 	struct page *page;
1608 
1609 repeat:
1610 	page = find_get_entry(mapping, offset);
1611 	if (xa_is_value(page))
1612 		page = NULL;
1613 	if (!page)
1614 		goto no_page;
1615 
1616 	if (fgp_flags & FGP_LOCK) {
1617 		if (fgp_flags & FGP_NOWAIT) {
1618 			if (!trylock_page(page)) {
1619 				put_page(page);
1620 				return NULL;
1621 			}
1622 		} else {
1623 			lock_page(page);
1624 		}
1625 
1626 		/* Has the page been truncated? */
1627 		if (unlikely(page->mapping != mapping)) {
1628 			unlock_page(page);
1629 			put_page(page);
1630 			goto repeat;
1631 		}
1632 		VM_BUG_ON_PAGE(page->index != offset, page);
1633 	}
1634 
1635 	if (fgp_flags & FGP_ACCESSED)
1636 		mark_page_accessed(page);
1637 
1638 no_page:
1639 	if (!page && (fgp_flags & FGP_CREAT)) {
1640 		int err;
1641 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1642 			gfp_mask |= __GFP_WRITE;
1643 		if (fgp_flags & FGP_NOFS)
1644 			gfp_mask &= ~__GFP_FS;
1645 
1646 		page = __page_cache_alloc(gfp_mask);
1647 		if (!page)
1648 			return NULL;
1649 
1650 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1651 			fgp_flags |= FGP_LOCK;
1652 
1653 		/* Init accessed so avoid atomic mark_page_accessed later */
1654 		if (fgp_flags & FGP_ACCESSED)
1655 			__SetPageReferenced(page);
1656 
1657 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1658 		if (unlikely(err)) {
1659 			put_page(page);
1660 			page = NULL;
1661 			if (err == -EEXIST)
1662 				goto repeat;
1663 		}
1664 
1665 		/*
1666 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1667 		 * an unlocked page.
1668 		 */
1669 		if (page && (fgp_flags & FGP_FOR_MMAP))
1670 			unlock_page(page);
1671 	}
1672 
1673 	return page;
1674 }
1675 EXPORT_SYMBOL(pagecache_get_page);
1676 
1677 /**
1678  * find_get_entries - gang pagecache lookup
1679  * @mapping:	The address_space to search
1680  * @start:	The starting page cache index
1681  * @nr_entries:	The maximum number of entries
1682  * @entries:	Where the resulting entries are placed
1683  * @indices:	The cache indices corresponding to the entries in @entries
1684  *
1685  * find_get_entries() will search for and return a group of up to
1686  * @nr_entries entries in the mapping.  The entries are placed at
1687  * @entries.  find_get_entries() takes a reference against any actual
1688  * pages it returns.
1689  *
1690  * The search returns a group of mapping-contiguous page cache entries
1691  * with ascending indexes.  There may be holes in the indices due to
1692  * not-present pages.
1693  *
1694  * Any shadow entries of evicted pages, or swap entries from
1695  * shmem/tmpfs, are included in the returned array.
1696  *
1697  * Return: the number of pages and shadow entries which were found.
1698  */
1699 unsigned find_get_entries(struct address_space *mapping,
1700 			  pgoff_t start, unsigned int nr_entries,
1701 			  struct page **entries, pgoff_t *indices)
1702 {
1703 	XA_STATE(xas, &mapping->i_pages, start);
1704 	struct page *page;
1705 	unsigned int ret = 0;
1706 
1707 	if (!nr_entries)
1708 		return 0;
1709 
1710 	rcu_read_lock();
1711 	xas_for_each(&xas, page, ULONG_MAX) {
1712 		struct page *head;
1713 		if (xas_retry(&xas, page))
1714 			continue;
1715 		/*
1716 		 * A shadow entry of a recently evicted page, a swap
1717 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1718 		 * without attempting to raise page count.
1719 		 */
1720 		if (xa_is_value(page))
1721 			goto export;
1722 
1723 		head = compound_head(page);
1724 		if (!page_cache_get_speculative(head))
1725 			goto retry;
1726 
1727 		/* The page was split under us? */
1728 		if (compound_head(page) != head)
1729 			goto put_page;
1730 
1731 		/* Has the page moved? */
1732 		if (unlikely(page != xas_reload(&xas)))
1733 			goto put_page;
1734 
1735 export:
1736 		indices[ret] = xas.xa_index;
1737 		entries[ret] = page;
1738 		if (++ret == nr_entries)
1739 			break;
1740 		continue;
1741 put_page:
1742 		put_page(head);
1743 retry:
1744 		xas_reset(&xas);
1745 	}
1746 	rcu_read_unlock();
1747 	return ret;
1748 }
1749 
1750 /**
1751  * find_get_pages_range - gang pagecache lookup
1752  * @mapping:	The address_space to search
1753  * @start:	The starting page index
1754  * @end:	The final page index (inclusive)
1755  * @nr_pages:	The maximum number of pages
1756  * @pages:	Where the resulting pages are placed
1757  *
1758  * find_get_pages_range() will search for and return a group of up to @nr_pages
1759  * pages in the mapping starting at index @start and up to index @end
1760  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1761  * a reference against the returned pages.
1762  *
1763  * The search returns a group of mapping-contiguous pages with ascending
1764  * indexes.  There may be holes in the indices due to not-present pages.
1765  * We also update @start to index the next page for the traversal.
1766  *
1767  * Return: the number of pages which were found. If this number is
1768  * smaller than @nr_pages, the end of specified range has been
1769  * reached.
1770  */
1771 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1772 			      pgoff_t end, unsigned int nr_pages,
1773 			      struct page **pages)
1774 {
1775 	XA_STATE(xas, &mapping->i_pages, *start);
1776 	struct page *page;
1777 	unsigned ret = 0;
1778 
1779 	if (unlikely(!nr_pages))
1780 		return 0;
1781 
1782 	rcu_read_lock();
1783 	xas_for_each(&xas, page, end) {
1784 		struct page *head;
1785 		if (xas_retry(&xas, page))
1786 			continue;
1787 		/* Skip over shadow, swap and DAX entries */
1788 		if (xa_is_value(page))
1789 			continue;
1790 
1791 		head = compound_head(page);
1792 		if (!page_cache_get_speculative(head))
1793 			goto retry;
1794 
1795 		/* The page was split under us? */
1796 		if (compound_head(page) != head)
1797 			goto put_page;
1798 
1799 		/* Has the page moved? */
1800 		if (unlikely(page != xas_reload(&xas)))
1801 			goto put_page;
1802 
1803 		pages[ret] = page;
1804 		if (++ret == nr_pages) {
1805 			*start = xas.xa_index + 1;
1806 			goto out;
1807 		}
1808 		continue;
1809 put_page:
1810 		put_page(head);
1811 retry:
1812 		xas_reset(&xas);
1813 	}
1814 
1815 	/*
1816 	 * We come here when there is no page beyond @end. We take care to not
1817 	 * overflow the index @start as it confuses some of the callers. This
1818 	 * breaks the iteration when there is a page at index -1 but that is
1819 	 * already broken anyway.
1820 	 */
1821 	if (end == (pgoff_t)-1)
1822 		*start = (pgoff_t)-1;
1823 	else
1824 		*start = end + 1;
1825 out:
1826 	rcu_read_unlock();
1827 
1828 	return ret;
1829 }
1830 
1831 /**
1832  * find_get_pages_contig - gang contiguous pagecache lookup
1833  * @mapping:	The address_space to search
1834  * @index:	The starting page index
1835  * @nr_pages:	The maximum number of pages
1836  * @pages:	Where the resulting pages are placed
1837  *
1838  * find_get_pages_contig() works exactly like find_get_pages(), except
1839  * that the returned number of pages are guaranteed to be contiguous.
1840  *
1841  * Return: the number of pages which were found.
1842  */
1843 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1844 			       unsigned int nr_pages, struct page **pages)
1845 {
1846 	XA_STATE(xas, &mapping->i_pages, index);
1847 	struct page *page;
1848 	unsigned int ret = 0;
1849 
1850 	if (unlikely(!nr_pages))
1851 		return 0;
1852 
1853 	rcu_read_lock();
1854 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1855 		struct page *head;
1856 		if (xas_retry(&xas, page))
1857 			continue;
1858 		/*
1859 		 * If the entry has been swapped out, we can stop looking.
1860 		 * No current caller is looking for DAX entries.
1861 		 */
1862 		if (xa_is_value(page))
1863 			break;
1864 
1865 		head = compound_head(page);
1866 		if (!page_cache_get_speculative(head))
1867 			goto retry;
1868 
1869 		/* The page was split under us? */
1870 		if (compound_head(page) != head)
1871 			goto put_page;
1872 
1873 		/* Has the page moved? */
1874 		if (unlikely(page != xas_reload(&xas)))
1875 			goto put_page;
1876 
1877 		pages[ret] = page;
1878 		if (++ret == nr_pages)
1879 			break;
1880 		continue;
1881 put_page:
1882 		put_page(head);
1883 retry:
1884 		xas_reset(&xas);
1885 	}
1886 	rcu_read_unlock();
1887 	return ret;
1888 }
1889 EXPORT_SYMBOL(find_get_pages_contig);
1890 
1891 /**
1892  * find_get_pages_range_tag - find and return pages in given range matching @tag
1893  * @mapping:	the address_space to search
1894  * @index:	the starting page index
1895  * @end:	The final page index (inclusive)
1896  * @tag:	the tag index
1897  * @nr_pages:	the maximum number of pages
1898  * @pages:	where the resulting pages are placed
1899  *
1900  * Like find_get_pages, except we only return pages which are tagged with
1901  * @tag.   We update @index to index the next page for the traversal.
1902  *
1903  * Return: the number of pages which were found.
1904  */
1905 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1906 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1907 			struct page **pages)
1908 {
1909 	XA_STATE(xas, &mapping->i_pages, *index);
1910 	struct page *page;
1911 	unsigned ret = 0;
1912 
1913 	if (unlikely(!nr_pages))
1914 		return 0;
1915 
1916 	rcu_read_lock();
1917 	xas_for_each_marked(&xas, page, end, tag) {
1918 		struct page *head;
1919 		if (xas_retry(&xas, page))
1920 			continue;
1921 		/*
1922 		 * Shadow entries should never be tagged, but this iteration
1923 		 * is lockless so there is a window for page reclaim to evict
1924 		 * a page we saw tagged.  Skip over it.
1925 		 */
1926 		if (xa_is_value(page))
1927 			continue;
1928 
1929 		head = compound_head(page);
1930 		if (!page_cache_get_speculative(head))
1931 			goto retry;
1932 
1933 		/* The page was split under us? */
1934 		if (compound_head(page) != head)
1935 			goto put_page;
1936 
1937 		/* Has the page moved? */
1938 		if (unlikely(page != xas_reload(&xas)))
1939 			goto put_page;
1940 
1941 		pages[ret] = page;
1942 		if (++ret == nr_pages) {
1943 			*index = xas.xa_index + 1;
1944 			goto out;
1945 		}
1946 		continue;
1947 put_page:
1948 		put_page(head);
1949 retry:
1950 		xas_reset(&xas);
1951 	}
1952 
1953 	/*
1954 	 * We come here when we got to @end. We take care to not overflow the
1955 	 * index @index as it confuses some of the callers. This breaks the
1956 	 * iteration when there is a page at index -1 but that is already
1957 	 * broken anyway.
1958 	 */
1959 	if (end == (pgoff_t)-1)
1960 		*index = (pgoff_t)-1;
1961 	else
1962 		*index = end + 1;
1963 out:
1964 	rcu_read_unlock();
1965 
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1969 
1970 /*
1971  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1972  * a _large_ part of the i/o request. Imagine the worst scenario:
1973  *
1974  *      ---R__________________________________________B__________
1975  *         ^ reading here                             ^ bad block(assume 4k)
1976  *
1977  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1978  * => failing the whole request => read(R) => read(R+1) =>
1979  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1980  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1981  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1982  *
1983  * It is going insane. Fix it by quickly scaling down the readahead size.
1984  */
1985 static void shrink_readahead_size_eio(struct file *filp,
1986 					struct file_ra_state *ra)
1987 {
1988 	ra->ra_pages /= 4;
1989 }
1990 
1991 /**
1992  * generic_file_buffered_read - generic file read routine
1993  * @iocb:	the iocb to read
1994  * @iter:	data destination
1995  * @written:	already copied
1996  *
1997  * This is a generic file read routine, and uses the
1998  * mapping->a_ops->readpage() function for the actual low-level stuff.
1999  *
2000  * This is really ugly. But the goto's actually try to clarify some
2001  * of the logic when it comes to error handling etc.
2002  *
2003  * Return:
2004  * * total number of bytes copied, including those the were already @written
2005  * * negative error code if nothing was copied
2006  */
2007 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2008 		struct iov_iter *iter, ssize_t written)
2009 {
2010 	struct file *filp = iocb->ki_filp;
2011 	struct address_space *mapping = filp->f_mapping;
2012 	struct inode *inode = mapping->host;
2013 	struct file_ra_state *ra = &filp->f_ra;
2014 	loff_t *ppos = &iocb->ki_pos;
2015 	pgoff_t index;
2016 	pgoff_t last_index;
2017 	pgoff_t prev_index;
2018 	unsigned long offset;      /* offset into pagecache page */
2019 	unsigned int prev_offset;
2020 	int error = 0;
2021 
2022 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2023 		return 0;
2024 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2025 
2026 	index = *ppos >> PAGE_SHIFT;
2027 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2028 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2029 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2030 	offset = *ppos & ~PAGE_MASK;
2031 
2032 	for (;;) {
2033 		struct page *page;
2034 		pgoff_t end_index;
2035 		loff_t isize;
2036 		unsigned long nr, ret;
2037 
2038 		cond_resched();
2039 find_page:
2040 		if (fatal_signal_pending(current)) {
2041 			error = -EINTR;
2042 			goto out;
2043 		}
2044 
2045 		page = find_get_page(mapping, index);
2046 		if (!page) {
2047 			if (iocb->ki_flags & IOCB_NOWAIT)
2048 				goto would_block;
2049 			page_cache_sync_readahead(mapping,
2050 					ra, filp,
2051 					index, last_index - index);
2052 			page = find_get_page(mapping, index);
2053 			if (unlikely(page == NULL))
2054 				goto no_cached_page;
2055 		}
2056 		if (PageReadahead(page)) {
2057 			page_cache_async_readahead(mapping,
2058 					ra, filp, page,
2059 					index, last_index - index);
2060 		}
2061 		if (!PageUptodate(page)) {
2062 			if (iocb->ki_flags & IOCB_NOWAIT) {
2063 				put_page(page);
2064 				goto would_block;
2065 			}
2066 
2067 			/*
2068 			 * See comment in do_read_cache_page on why
2069 			 * wait_on_page_locked is used to avoid unnecessarily
2070 			 * serialisations and why it's safe.
2071 			 */
2072 			error = wait_on_page_locked_killable(page);
2073 			if (unlikely(error))
2074 				goto readpage_error;
2075 			if (PageUptodate(page))
2076 				goto page_ok;
2077 
2078 			if (inode->i_blkbits == PAGE_SHIFT ||
2079 					!mapping->a_ops->is_partially_uptodate)
2080 				goto page_not_up_to_date;
2081 			/* pipes can't handle partially uptodate pages */
2082 			if (unlikely(iov_iter_is_pipe(iter)))
2083 				goto page_not_up_to_date;
2084 			if (!trylock_page(page))
2085 				goto page_not_up_to_date;
2086 			/* Did it get truncated before we got the lock? */
2087 			if (!page->mapping)
2088 				goto page_not_up_to_date_locked;
2089 			if (!mapping->a_ops->is_partially_uptodate(page,
2090 							offset, iter->count))
2091 				goto page_not_up_to_date_locked;
2092 			unlock_page(page);
2093 		}
2094 page_ok:
2095 		/*
2096 		 * i_size must be checked after we know the page is Uptodate.
2097 		 *
2098 		 * Checking i_size after the check allows us to calculate
2099 		 * the correct value for "nr", which means the zero-filled
2100 		 * part of the page is not copied back to userspace (unless
2101 		 * another truncate extends the file - this is desired though).
2102 		 */
2103 
2104 		isize = i_size_read(inode);
2105 		end_index = (isize - 1) >> PAGE_SHIFT;
2106 		if (unlikely(!isize || index > end_index)) {
2107 			put_page(page);
2108 			goto out;
2109 		}
2110 
2111 		/* nr is the maximum number of bytes to copy from this page */
2112 		nr = PAGE_SIZE;
2113 		if (index == end_index) {
2114 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2115 			if (nr <= offset) {
2116 				put_page(page);
2117 				goto out;
2118 			}
2119 		}
2120 		nr = nr - offset;
2121 
2122 		/* If users can be writing to this page using arbitrary
2123 		 * virtual addresses, take care about potential aliasing
2124 		 * before reading the page on the kernel side.
2125 		 */
2126 		if (mapping_writably_mapped(mapping))
2127 			flush_dcache_page(page);
2128 
2129 		/*
2130 		 * When a sequential read accesses a page several times,
2131 		 * only mark it as accessed the first time.
2132 		 */
2133 		if (prev_index != index || offset != prev_offset)
2134 			mark_page_accessed(page);
2135 		prev_index = index;
2136 
2137 		/*
2138 		 * Ok, we have the page, and it's up-to-date, so
2139 		 * now we can copy it to user space...
2140 		 */
2141 
2142 		ret = copy_page_to_iter(page, offset, nr, iter);
2143 		offset += ret;
2144 		index += offset >> PAGE_SHIFT;
2145 		offset &= ~PAGE_MASK;
2146 		prev_offset = offset;
2147 
2148 		put_page(page);
2149 		written += ret;
2150 		if (!iov_iter_count(iter))
2151 			goto out;
2152 		if (ret < nr) {
2153 			error = -EFAULT;
2154 			goto out;
2155 		}
2156 		continue;
2157 
2158 page_not_up_to_date:
2159 		/* Get exclusive access to the page ... */
2160 		error = lock_page_killable(page);
2161 		if (unlikely(error))
2162 			goto readpage_error;
2163 
2164 page_not_up_to_date_locked:
2165 		/* Did it get truncated before we got the lock? */
2166 		if (!page->mapping) {
2167 			unlock_page(page);
2168 			put_page(page);
2169 			continue;
2170 		}
2171 
2172 		/* Did somebody else fill it already? */
2173 		if (PageUptodate(page)) {
2174 			unlock_page(page);
2175 			goto page_ok;
2176 		}
2177 
2178 readpage:
2179 		/*
2180 		 * A previous I/O error may have been due to temporary
2181 		 * failures, eg. multipath errors.
2182 		 * PG_error will be set again if readpage fails.
2183 		 */
2184 		ClearPageError(page);
2185 		/* Start the actual read. The read will unlock the page. */
2186 		error = mapping->a_ops->readpage(filp, page);
2187 
2188 		if (unlikely(error)) {
2189 			if (error == AOP_TRUNCATED_PAGE) {
2190 				put_page(page);
2191 				error = 0;
2192 				goto find_page;
2193 			}
2194 			goto readpage_error;
2195 		}
2196 
2197 		if (!PageUptodate(page)) {
2198 			error = lock_page_killable(page);
2199 			if (unlikely(error))
2200 				goto readpage_error;
2201 			if (!PageUptodate(page)) {
2202 				if (page->mapping == NULL) {
2203 					/*
2204 					 * invalidate_mapping_pages got it
2205 					 */
2206 					unlock_page(page);
2207 					put_page(page);
2208 					goto find_page;
2209 				}
2210 				unlock_page(page);
2211 				shrink_readahead_size_eio(filp, ra);
2212 				error = -EIO;
2213 				goto readpage_error;
2214 			}
2215 			unlock_page(page);
2216 		}
2217 
2218 		goto page_ok;
2219 
2220 readpage_error:
2221 		/* UHHUH! A synchronous read error occurred. Report it */
2222 		put_page(page);
2223 		goto out;
2224 
2225 no_cached_page:
2226 		/*
2227 		 * Ok, it wasn't cached, so we need to create a new
2228 		 * page..
2229 		 */
2230 		page = page_cache_alloc(mapping);
2231 		if (!page) {
2232 			error = -ENOMEM;
2233 			goto out;
2234 		}
2235 		error = add_to_page_cache_lru(page, mapping, index,
2236 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2237 		if (error) {
2238 			put_page(page);
2239 			if (error == -EEXIST) {
2240 				error = 0;
2241 				goto find_page;
2242 			}
2243 			goto out;
2244 		}
2245 		goto readpage;
2246 	}
2247 
2248 would_block:
2249 	error = -EAGAIN;
2250 out:
2251 	ra->prev_pos = prev_index;
2252 	ra->prev_pos <<= PAGE_SHIFT;
2253 	ra->prev_pos |= prev_offset;
2254 
2255 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2256 	file_accessed(filp);
2257 	return written ? written : error;
2258 }
2259 
2260 /**
2261  * generic_file_read_iter - generic filesystem read routine
2262  * @iocb:	kernel I/O control block
2263  * @iter:	destination for the data read
2264  *
2265  * This is the "read_iter()" routine for all filesystems
2266  * that can use the page cache directly.
2267  * Return:
2268  * * number of bytes copied, even for partial reads
2269  * * negative error code if nothing was read
2270  */
2271 ssize_t
2272 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2273 {
2274 	size_t count = iov_iter_count(iter);
2275 	ssize_t retval = 0;
2276 
2277 	if (!count)
2278 		goto out; /* skip atime */
2279 
2280 	if (iocb->ki_flags & IOCB_DIRECT) {
2281 		struct file *file = iocb->ki_filp;
2282 		struct address_space *mapping = file->f_mapping;
2283 		struct inode *inode = mapping->host;
2284 		loff_t size;
2285 
2286 		size = i_size_read(inode);
2287 		if (iocb->ki_flags & IOCB_NOWAIT) {
2288 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2289 						   iocb->ki_pos + count - 1))
2290 				return -EAGAIN;
2291 		} else {
2292 			retval = filemap_write_and_wait_range(mapping,
2293 						iocb->ki_pos,
2294 					        iocb->ki_pos + count - 1);
2295 			if (retval < 0)
2296 				goto out;
2297 		}
2298 
2299 		file_accessed(file);
2300 
2301 		retval = mapping->a_ops->direct_IO(iocb, iter);
2302 		if (retval >= 0) {
2303 			iocb->ki_pos += retval;
2304 			count -= retval;
2305 		}
2306 		iov_iter_revert(iter, count - iov_iter_count(iter));
2307 
2308 		/*
2309 		 * Btrfs can have a short DIO read if we encounter
2310 		 * compressed extents, so if there was an error, or if
2311 		 * we've already read everything we wanted to, or if
2312 		 * there was a short read because we hit EOF, go ahead
2313 		 * and return.  Otherwise fallthrough to buffered io for
2314 		 * the rest of the read.  Buffered reads will not work for
2315 		 * DAX files, so don't bother trying.
2316 		 */
2317 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2318 		    IS_DAX(inode))
2319 			goto out;
2320 	}
2321 
2322 	retval = generic_file_buffered_read(iocb, iter, retval);
2323 out:
2324 	return retval;
2325 }
2326 EXPORT_SYMBOL(generic_file_read_iter);
2327 
2328 #ifdef CONFIG_MMU
2329 #define MMAP_LOTSAMISS  (100)
2330 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2331 					     struct file *fpin)
2332 {
2333 	int flags = vmf->flags;
2334 
2335 	if (fpin)
2336 		return fpin;
2337 
2338 	/*
2339 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2340 	 * anything, so we only pin the file and drop the mmap_sem if only
2341 	 * FAULT_FLAG_ALLOW_RETRY is set.
2342 	 */
2343 	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2344 	    FAULT_FLAG_ALLOW_RETRY) {
2345 		fpin = get_file(vmf->vma->vm_file);
2346 		up_read(&vmf->vma->vm_mm->mmap_sem);
2347 	}
2348 	return fpin;
2349 }
2350 
2351 /*
2352  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353  * @vmf - the vm_fault for this fault.
2354  * @page - the page to lock.
2355  * @fpin - the pointer to the file we may pin (or is already pinned).
2356  *
2357  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358  * It differs in that it actually returns the page locked if it returns 1 and 0
2359  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2360  * will point to the pinned file and needs to be fput()'ed at a later point.
2361  */
2362 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2363 				     struct file **fpin)
2364 {
2365 	if (trylock_page(page))
2366 		return 1;
2367 
2368 	/*
2369 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 	 * is supposed to work. We have way too many special cases..
2372 	 */
2373 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2374 		return 0;
2375 
2376 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2377 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2378 		if (__lock_page_killable(page)) {
2379 			/*
2380 			 * We didn't have the right flags to drop the mmap_sem,
2381 			 * but all fault_handlers only check for fatal signals
2382 			 * if we return VM_FAULT_RETRY, so we need to drop the
2383 			 * mmap_sem here and return 0 if we don't have a fpin.
2384 			 */
2385 			if (*fpin == NULL)
2386 				up_read(&vmf->vma->vm_mm->mmap_sem);
2387 			return 0;
2388 		}
2389 	} else
2390 		__lock_page(page);
2391 	return 1;
2392 }
2393 
2394 
2395 /*
2396  * Synchronous readahead happens when we don't even find a page in the page
2397  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2398  * to drop the mmap sem we return the file that was pinned in order for us to do
2399  * that.  If we didn't pin a file then we return NULL.  The file that is
2400  * returned needs to be fput()'ed when we're done with it.
2401  */
2402 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2403 {
2404 	struct file *file = vmf->vma->vm_file;
2405 	struct file_ra_state *ra = &file->f_ra;
2406 	struct address_space *mapping = file->f_mapping;
2407 	struct file *fpin = NULL;
2408 	pgoff_t offset = vmf->pgoff;
2409 
2410 	/* If we don't want any read-ahead, don't bother */
2411 	if (vmf->vma->vm_flags & VM_RAND_READ)
2412 		return fpin;
2413 	if (!ra->ra_pages)
2414 		return fpin;
2415 
2416 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2417 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2418 		page_cache_sync_readahead(mapping, ra, file, offset,
2419 					  ra->ra_pages);
2420 		return fpin;
2421 	}
2422 
2423 	/* Avoid banging the cache line if not needed */
2424 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2425 		ra->mmap_miss++;
2426 
2427 	/*
2428 	 * Do we miss much more than hit in this file? If so,
2429 	 * stop bothering with read-ahead. It will only hurt.
2430 	 */
2431 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2432 		return fpin;
2433 
2434 	/*
2435 	 * mmap read-around
2436 	 */
2437 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2438 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 	ra->size = ra->ra_pages;
2440 	ra->async_size = ra->ra_pages / 4;
2441 	ra_submit(ra, mapping, file);
2442 	return fpin;
2443 }
2444 
2445 /*
2446  * Asynchronous readahead happens when we find the page and PG_readahead,
2447  * so we want to possibly extend the readahead further.  We return the file that
2448  * was pinned if we have to drop the mmap_sem in order to do IO.
2449  */
2450 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2451 					    struct page *page)
2452 {
2453 	struct file *file = vmf->vma->vm_file;
2454 	struct file_ra_state *ra = &file->f_ra;
2455 	struct address_space *mapping = file->f_mapping;
2456 	struct file *fpin = NULL;
2457 	pgoff_t offset = vmf->pgoff;
2458 
2459 	/* If we don't want any read-ahead, don't bother */
2460 	if (vmf->vma->vm_flags & VM_RAND_READ)
2461 		return fpin;
2462 	if (ra->mmap_miss > 0)
2463 		ra->mmap_miss--;
2464 	if (PageReadahead(page)) {
2465 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2466 		page_cache_async_readahead(mapping, ra, file,
2467 					   page, offset, ra->ra_pages);
2468 	}
2469 	return fpin;
2470 }
2471 
2472 /**
2473  * filemap_fault - read in file data for page fault handling
2474  * @vmf:	struct vm_fault containing details of the fault
2475  *
2476  * filemap_fault() is invoked via the vma operations vector for a
2477  * mapped memory region to read in file data during a page fault.
2478  *
2479  * The goto's are kind of ugly, but this streamlines the normal case of having
2480  * it in the page cache, and handles the special cases reasonably without
2481  * having a lot of duplicated code.
2482  *
2483  * vma->vm_mm->mmap_sem must be held on entry.
2484  *
2485  * If our return value has VM_FAULT_RETRY set, it's because
2486  * lock_page_or_retry() returned 0.
2487  * The mmap_sem has usually been released in this case.
2488  * See __lock_page_or_retry() for the exception.
2489  *
2490  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491  * has not been released.
2492  *
2493  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494  *
2495  * Return: bitwise-OR of %VM_FAULT_ codes.
2496  */
2497 vm_fault_t filemap_fault(struct vm_fault *vmf)
2498 {
2499 	int error;
2500 	struct file *file = vmf->vma->vm_file;
2501 	struct file *fpin = NULL;
2502 	struct address_space *mapping = file->f_mapping;
2503 	struct file_ra_state *ra = &file->f_ra;
2504 	struct inode *inode = mapping->host;
2505 	pgoff_t offset = vmf->pgoff;
2506 	pgoff_t max_off;
2507 	struct page *page;
2508 	vm_fault_t ret = 0;
2509 
2510 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2511 	if (unlikely(offset >= max_off))
2512 		return VM_FAULT_SIGBUS;
2513 
2514 	/*
2515 	 * Do we have something in the page cache already?
2516 	 */
2517 	page = find_get_page(mapping, offset);
2518 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2519 		/*
2520 		 * We found the page, so try async readahead before
2521 		 * waiting for the lock.
2522 		 */
2523 		fpin = do_async_mmap_readahead(vmf, page);
2524 	} else if (!page) {
2525 		/* No page in the page cache at all */
2526 		count_vm_event(PGMAJFAULT);
2527 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2528 		ret = VM_FAULT_MAJOR;
2529 		fpin = do_sync_mmap_readahead(vmf);
2530 retry_find:
2531 		page = pagecache_get_page(mapping, offset,
2532 					  FGP_CREAT|FGP_FOR_MMAP,
2533 					  vmf->gfp_mask);
2534 		if (!page) {
2535 			if (fpin)
2536 				goto out_retry;
2537 			return vmf_error(-ENOMEM);
2538 		}
2539 	}
2540 
2541 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2542 		goto out_retry;
2543 
2544 	/* Did it get truncated? */
2545 	if (unlikely(page->mapping != mapping)) {
2546 		unlock_page(page);
2547 		put_page(page);
2548 		goto retry_find;
2549 	}
2550 	VM_BUG_ON_PAGE(page->index != offset, page);
2551 
2552 	/*
2553 	 * We have a locked page in the page cache, now we need to check
2554 	 * that it's up-to-date. If not, it is going to be due to an error.
2555 	 */
2556 	if (unlikely(!PageUptodate(page)))
2557 		goto page_not_uptodate;
2558 
2559 	/*
2560 	 * We've made it this far and we had to drop our mmap_sem, now is the
2561 	 * time to return to the upper layer and have it re-find the vma and
2562 	 * redo the fault.
2563 	 */
2564 	if (fpin) {
2565 		unlock_page(page);
2566 		goto out_retry;
2567 	}
2568 
2569 	/*
2570 	 * Found the page and have a reference on it.
2571 	 * We must recheck i_size under page lock.
2572 	 */
2573 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2574 	if (unlikely(offset >= max_off)) {
2575 		unlock_page(page);
2576 		put_page(page);
2577 		return VM_FAULT_SIGBUS;
2578 	}
2579 
2580 	vmf->page = page;
2581 	return ret | VM_FAULT_LOCKED;
2582 
2583 page_not_uptodate:
2584 	/*
2585 	 * Umm, take care of errors if the page isn't up-to-date.
2586 	 * Try to re-read it _once_. We do this synchronously,
2587 	 * because there really aren't any performance issues here
2588 	 * and we need to check for errors.
2589 	 */
2590 	ClearPageError(page);
2591 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2592 	error = mapping->a_ops->readpage(file, page);
2593 	if (!error) {
2594 		wait_on_page_locked(page);
2595 		if (!PageUptodate(page))
2596 			error = -EIO;
2597 	}
2598 	if (fpin)
2599 		goto out_retry;
2600 	put_page(page);
2601 
2602 	if (!error || error == AOP_TRUNCATED_PAGE)
2603 		goto retry_find;
2604 
2605 	/* Things didn't work out. Return zero to tell the mm layer so. */
2606 	shrink_readahead_size_eio(file, ra);
2607 	return VM_FAULT_SIGBUS;
2608 
2609 out_retry:
2610 	/*
2611 	 * We dropped the mmap_sem, we need to return to the fault handler to
2612 	 * re-find the vma and come back and find our hopefully still populated
2613 	 * page.
2614 	 */
2615 	if (page)
2616 		put_page(page);
2617 	if (fpin)
2618 		fput(fpin);
2619 	return ret | VM_FAULT_RETRY;
2620 }
2621 EXPORT_SYMBOL(filemap_fault);
2622 
2623 void filemap_map_pages(struct vm_fault *vmf,
2624 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2625 {
2626 	struct file *file = vmf->vma->vm_file;
2627 	struct address_space *mapping = file->f_mapping;
2628 	pgoff_t last_pgoff = start_pgoff;
2629 	unsigned long max_idx;
2630 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2631 	struct page *head, *page;
2632 
2633 	rcu_read_lock();
2634 	xas_for_each(&xas, page, end_pgoff) {
2635 		if (xas_retry(&xas, page))
2636 			continue;
2637 		if (xa_is_value(page))
2638 			goto next;
2639 
2640 		head = compound_head(page);
2641 
2642 		/*
2643 		 * Check for a locked page first, as a speculative
2644 		 * reference may adversely influence page migration.
2645 		 */
2646 		if (PageLocked(head))
2647 			goto next;
2648 		if (!page_cache_get_speculative(head))
2649 			goto next;
2650 
2651 		/* The page was split under us? */
2652 		if (compound_head(page) != head)
2653 			goto skip;
2654 
2655 		/* Has the page moved? */
2656 		if (unlikely(page != xas_reload(&xas)))
2657 			goto skip;
2658 
2659 		if (!PageUptodate(page) ||
2660 				PageReadahead(page) ||
2661 				PageHWPoison(page))
2662 			goto skip;
2663 		if (!trylock_page(page))
2664 			goto skip;
2665 
2666 		if (page->mapping != mapping || !PageUptodate(page))
2667 			goto unlock;
2668 
2669 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2670 		if (page->index >= max_idx)
2671 			goto unlock;
2672 
2673 		if (file->f_ra.mmap_miss > 0)
2674 			file->f_ra.mmap_miss--;
2675 
2676 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2677 		if (vmf->pte)
2678 			vmf->pte += xas.xa_index - last_pgoff;
2679 		last_pgoff = xas.xa_index;
2680 		if (alloc_set_pte(vmf, NULL, page))
2681 			goto unlock;
2682 		unlock_page(page);
2683 		goto next;
2684 unlock:
2685 		unlock_page(page);
2686 skip:
2687 		put_page(page);
2688 next:
2689 		/* Huge page is mapped? No need to proceed. */
2690 		if (pmd_trans_huge(*vmf->pmd))
2691 			break;
2692 	}
2693 	rcu_read_unlock();
2694 }
2695 EXPORT_SYMBOL(filemap_map_pages);
2696 
2697 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2698 {
2699 	struct page *page = vmf->page;
2700 	struct inode *inode = file_inode(vmf->vma->vm_file);
2701 	vm_fault_t ret = VM_FAULT_LOCKED;
2702 
2703 	sb_start_pagefault(inode->i_sb);
2704 	file_update_time(vmf->vma->vm_file);
2705 	lock_page(page);
2706 	if (page->mapping != inode->i_mapping) {
2707 		unlock_page(page);
2708 		ret = VM_FAULT_NOPAGE;
2709 		goto out;
2710 	}
2711 	/*
2712 	 * We mark the page dirty already here so that when freeze is in
2713 	 * progress, we are guaranteed that writeback during freezing will
2714 	 * see the dirty page and writeprotect it again.
2715 	 */
2716 	set_page_dirty(page);
2717 	wait_for_stable_page(page);
2718 out:
2719 	sb_end_pagefault(inode->i_sb);
2720 	return ret;
2721 }
2722 
2723 const struct vm_operations_struct generic_file_vm_ops = {
2724 	.fault		= filemap_fault,
2725 	.map_pages	= filemap_map_pages,
2726 	.page_mkwrite	= filemap_page_mkwrite,
2727 };
2728 
2729 /* This is used for a general mmap of a disk file */
2730 
2731 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2732 {
2733 	struct address_space *mapping = file->f_mapping;
2734 
2735 	if (!mapping->a_ops->readpage)
2736 		return -ENOEXEC;
2737 	file_accessed(file);
2738 	vma->vm_ops = &generic_file_vm_ops;
2739 	return 0;
2740 }
2741 
2742 /*
2743  * This is for filesystems which do not implement ->writepage.
2744  */
2745 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2746 {
2747 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2748 		return -EINVAL;
2749 	return generic_file_mmap(file, vma);
2750 }
2751 #else
2752 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2753 {
2754 	return VM_FAULT_SIGBUS;
2755 }
2756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2757 {
2758 	return -ENOSYS;
2759 }
2760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2761 {
2762 	return -ENOSYS;
2763 }
2764 #endif /* CONFIG_MMU */
2765 
2766 EXPORT_SYMBOL(filemap_page_mkwrite);
2767 EXPORT_SYMBOL(generic_file_mmap);
2768 EXPORT_SYMBOL(generic_file_readonly_mmap);
2769 
2770 static struct page *wait_on_page_read(struct page *page)
2771 {
2772 	if (!IS_ERR(page)) {
2773 		wait_on_page_locked(page);
2774 		if (!PageUptodate(page)) {
2775 			put_page(page);
2776 			page = ERR_PTR(-EIO);
2777 		}
2778 	}
2779 	return page;
2780 }
2781 
2782 static struct page *do_read_cache_page(struct address_space *mapping,
2783 				pgoff_t index,
2784 				int (*filler)(void *, struct page *),
2785 				void *data,
2786 				gfp_t gfp)
2787 {
2788 	struct page *page;
2789 	int err;
2790 repeat:
2791 	page = find_get_page(mapping, index);
2792 	if (!page) {
2793 		page = __page_cache_alloc(gfp);
2794 		if (!page)
2795 			return ERR_PTR(-ENOMEM);
2796 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2797 		if (unlikely(err)) {
2798 			put_page(page);
2799 			if (err == -EEXIST)
2800 				goto repeat;
2801 			/* Presumably ENOMEM for xarray node */
2802 			return ERR_PTR(err);
2803 		}
2804 
2805 filler:
2806 		err = filler(data, page);
2807 		if (err < 0) {
2808 			put_page(page);
2809 			return ERR_PTR(err);
2810 		}
2811 
2812 		page = wait_on_page_read(page);
2813 		if (IS_ERR(page))
2814 			return page;
2815 		goto out;
2816 	}
2817 	if (PageUptodate(page))
2818 		goto out;
2819 
2820 	/*
2821 	 * Page is not up to date and may be locked due one of the following
2822 	 * case a: Page is being filled and the page lock is held
2823 	 * case b: Read/write error clearing the page uptodate status
2824 	 * case c: Truncation in progress (page locked)
2825 	 * case d: Reclaim in progress
2826 	 *
2827 	 * Case a, the page will be up to date when the page is unlocked.
2828 	 *    There is no need to serialise on the page lock here as the page
2829 	 *    is pinned so the lock gives no additional protection. Even if the
2830 	 *    the page is truncated, the data is still valid if PageUptodate as
2831 	 *    it's a race vs truncate race.
2832 	 * Case b, the page will not be up to date
2833 	 * Case c, the page may be truncated but in itself, the data may still
2834 	 *    be valid after IO completes as it's a read vs truncate race. The
2835 	 *    operation must restart if the page is not uptodate on unlock but
2836 	 *    otherwise serialising on page lock to stabilise the mapping gives
2837 	 *    no additional guarantees to the caller as the page lock is
2838 	 *    released before return.
2839 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2840 	 *    will be a race with remove_mapping that determines if the mapping
2841 	 *    is valid on unlock but otherwise the data is valid and there is
2842 	 *    no need to serialise with page lock.
2843 	 *
2844 	 * As the page lock gives no additional guarantee, we optimistically
2845 	 * wait on the page to be unlocked and check if it's up to date and
2846 	 * use the page if it is. Otherwise, the page lock is required to
2847 	 * distinguish between the different cases. The motivation is that we
2848 	 * avoid spurious serialisations and wakeups when multiple processes
2849 	 * wait on the same page for IO to complete.
2850 	 */
2851 	wait_on_page_locked(page);
2852 	if (PageUptodate(page))
2853 		goto out;
2854 
2855 	/* Distinguish between all the cases under the safety of the lock */
2856 	lock_page(page);
2857 
2858 	/* Case c or d, restart the operation */
2859 	if (!page->mapping) {
2860 		unlock_page(page);
2861 		put_page(page);
2862 		goto repeat;
2863 	}
2864 
2865 	/* Someone else locked and filled the page in a very small window */
2866 	if (PageUptodate(page)) {
2867 		unlock_page(page);
2868 		goto out;
2869 	}
2870 	goto filler;
2871 
2872 out:
2873 	mark_page_accessed(page);
2874 	return page;
2875 }
2876 
2877 /**
2878  * read_cache_page - read into page cache, fill it if needed
2879  * @mapping:	the page's address_space
2880  * @index:	the page index
2881  * @filler:	function to perform the read
2882  * @data:	first arg to filler(data, page) function, often left as NULL
2883  *
2884  * Read into the page cache. If a page already exists, and PageUptodate() is
2885  * not set, try to fill the page and wait for it to become unlocked.
2886  *
2887  * If the page does not get brought uptodate, return -EIO.
2888  *
2889  * Return: up to date page on success, ERR_PTR() on failure.
2890  */
2891 struct page *read_cache_page(struct address_space *mapping,
2892 				pgoff_t index,
2893 				int (*filler)(void *, struct page *),
2894 				void *data)
2895 {
2896 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2897 }
2898 EXPORT_SYMBOL(read_cache_page);
2899 
2900 /**
2901  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2902  * @mapping:	the page's address_space
2903  * @index:	the page index
2904  * @gfp:	the page allocator flags to use if allocating
2905  *
2906  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2907  * any new page allocations done using the specified allocation flags.
2908  *
2909  * If the page does not get brought uptodate, return -EIO.
2910  *
2911  * Return: up to date page on success, ERR_PTR() on failure.
2912  */
2913 struct page *read_cache_page_gfp(struct address_space *mapping,
2914 				pgoff_t index,
2915 				gfp_t gfp)
2916 {
2917 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2918 
2919 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2920 }
2921 EXPORT_SYMBOL(read_cache_page_gfp);
2922 
2923 /*
2924  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2925  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2926  * exceeds the limit we return -EFBIG.
2927  */
2928 static int generic_access_check_limits(struct file *file, loff_t pos,
2929 				       loff_t *count)
2930 {
2931 	struct inode *inode = file->f_mapping->host;
2932 	loff_t max_size = inode->i_sb->s_maxbytes;
2933 
2934 	if (!(file->f_flags & O_LARGEFILE))
2935 		max_size = MAX_NON_LFS;
2936 
2937 	if (unlikely(pos >= max_size))
2938 		return -EFBIG;
2939 	*count = min(*count, max_size - pos);
2940 	return 0;
2941 }
2942 
2943 static int generic_write_check_limits(struct file *file, loff_t pos,
2944 				      loff_t *count)
2945 {
2946 	loff_t limit = rlimit(RLIMIT_FSIZE);
2947 
2948 	if (limit != RLIM_INFINITY) {
2949 		if (pos >= limit) {
2950 			send_sig(SIGXFSZ, current, 0);
2951 			return -EFBIG;
2952 		}
2953 		*count = min(*count, limit - pos);
2954 	}
2955 
2956 	return generic_access_check_limits(file, pos, count);
2957 }
2958 
2959 /*
2960  * Performs necessary checks before doing a write
2961  *
2962  * Can adjust writing position or amount of bytes to write.
2963  * Returns appropriate error code that caller should return or
2964  * zero in case that write should be allowed.
2965  */
2966 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2967 {
2968 	struct file *file = iocb->ki_filp;
2969 	struct inode *inode = file->f_mapping->host;
2970 	loff_t count;
2971 	int ret;
2972 
2973 	if (!iov_iter_count(from))
2974 		return 0;
2975 
2976 	/* FIXME: this is for backwards compatibility with 2.4 */
2977 	if (iocb->ki_flags & IOCB_APPEND)
2978 		iocb->ki_pos = i_size_read(inode);
2979 
2980 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2981 		return -EINVAL;
2982 
2983 	count = iov_iter_count(from);
2984 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2985 	if (ret)
2986 		return ret;
2987 
2988 	iov_iter_truncate(from, count);
2989 	return iov_iter_count(from);
2990 }
2991 EXPORT_SYMBOL(generic_write_checks);
2992 
2993 /*
2994  * Performs necessary checks before doing a clone.
2995  *
2996  * Can adjust amount of bytes to clone.
2997  * Returns appropriate error code that caller should return or
2998  * zero in case the clone should be allowed.
2999  */
3000 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3001 			 struct file *file_out, loff_t pos_out,
3002 			 loff_t *req_count, unsigned int remap_flags)
3003 {
3004 	struct inode *inode_in = file_in->f_mapping->host;
3005 	struct inode *inode_out = file_out->f_mapping->host;
3006 	uint64_t count = *req_count;
3007 	uint64_t bcount;
3008 	loff_t size_in, size_out;
3009 	loff_t bs = inode_out->i_sb->s_blocksize;
3010 	int ret;
3011 
3012 	/* The start of both ranges must be aligned to an fs block. */
3013 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3014 		return -EINVAL;
3015 
3016 	/* Ensure offsets don't wrap. */
3017 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3018 		return -EINVAL;
3019 
3020 	size_in = i_size_read(inode_in);
3021 	size_out = i_size_read(inode_out);
3022 
3023 	/* Dedupe requires both ranges to be within EOF. */
3024 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3025 	    (pos_in >= size_in || pos_in + count > size_in ||
3026 	     pos_out >= size_out || pos_out + count > size_out))
3027 		return -EINVAL;
3028 
3029 	/* Ensure the infile range is within the infile. */
3030 	if (pos_in >= size_in)
3031 		return -EINVAL;
3032 	count = min(count, size_in - (uint64_t)pos_in);
3033 
3034 	ret = generic_access_check_limits(file_in, pos_in, &count);
3035 	if (ret)
3036 		return ret;
3037 
3038 	ret = generic_write_check_limits(file_out, pos_out, &count);
3039 	if (ret)
3040 		return ret;
3041 
3042 	/*
3043 	 * If the user wanted us to link to the infile's EOF, round up to the
3044 	 * next block boundary for this check.
3045 	 *
3046 	 * Otherwise, make sure the count is also block-aligned, having
3047 	 * already confirmed the starting offsets' block alignment.
3048 	 */
3049 	if (pos_in + count == size_in) {
3050 		bcount = ALIGN(size_in, bs) - pos_in;
3051 	} else {
3052 		if (!IS_ALIGNED(count, bs))
3053 			count = ALIGN_DOWN(count, bs);
3054 		bcount = count;
3055 	}
3056 
3057 	/* Don't allow overlapped cloning within the same file. */
3058 	if (inode_in == inode_out &&
3059 	    pos_out + bcount > pos_in &&
3060 	    pos_out < pos_in + bcount)
3061 		return -EINVAL;
3062 
3063 	/*
3064 	 * We shortened the request but the caller can't deal with that, so
3065 	 * bounce the request back to userspace.
3066 	 */
3067 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3068 		return -EINVAL;
3069 
3070 	*req_count = count;
3071 	return 0;
3072 }
3073 
3074 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3075 				loff_t pos, unsigned len, unsigned flags,
3076 				struct page **pagep, void **fsdata)
3077 {
3078 	const struct address_space_operations *aops = mapping->a_ops;
3079 
3080 	return aops->write_begin(file, mapping, pos, len, flags,
3081 							pagep, fsdata);
3082 }
3083 EXPORT_SYMBOL(pagecache_write_begin);
3084 
3085 int pagecache_write_end(struct file *file, struct address_space *mapping,
3086 				loff_t pos, unsigned len, unsigned copied,
3087 				struct page *page, void *fsdata)
3088 {
3089 	const struct address_space_operations *aops = mapping->a_ops;
3090 
3091 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3092 }
3093 EXPORT_SYMBOL(pagecache_write_end);
3094 
3095 ssize_t
3096 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3097 {
3098 	struct file	*file = iocb->ki_filp;
3099 	struct address_space *mapping = file->f_mapping;
3100 	struct inode	*inode = mapping->host;
3101 	loff_t		pos = iocb->ki_pos;
3102 	ssize_t		written;
3103 	size_t		write_len;
3104 	pgoff_t		end;
3105 
3106 	write_len = iov_iter_count(from);
3107 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3108 
3109 	if (iocb->ki_flags & IOCB_NOWAIT) {
3110 		/* If there are pages to writeback, return */
3111 		if (filemap_range_has_page(inode->i_mapping, pos,
3112 					   pos + write_len - 1))
3113 			return -EAGAIN;
3114 	} else {
3115 		written = filemap_write_and_wait_range(mapping, pos,
3116 							pos + write_len - 1);
3117 		if (written)
3118 			goto out;
3119 	}
3120 
3121 	/*
3122 	 * After a write we want buffered reads to be sure to go to disk to get
3123 	 * the new data.  We invalidate clean cached page from the region we're
3124 	 * about to write.  We do this *before* the write so that we can return
3125 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3126 	 */
3127 	written = invalidate_inode_pages2_range(mapping,
3128 					pos >> PAGE_SHIFT, end);
3129 	/*
3130 	 * If a page can not be invalidated, return 0 to fall back
3131 	 * to buffered write.
3132 	 */
3133 	if (written) {
3134 		if (written == -EBUSY)
3135 			return 0;
3136 		goto out;
3137 	}
3138 
3139 	written = mapping->a_ops->direct_IO(iocb, from);
3140 
3141 	/*
3142 	 * Finally, try again to invalidate clean pages which might have been
3143 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3144 	 * if the source of the write was an mmap'ed region of the file
3145 	 * we're writing.  Either one is a pretty crazy thing to do,
3146 	 * so we don't support it 100%.  If this invalidation
3147 	 * fails, tough, the write still worked...
3148 	 *
3149 	 * Most of the time we do not need this since dio_complete() will do
3150 	 * the invalidation for us. However there are some file systems that
3151 	 * do not end up with dio_complete() being called, so let's not break
3152 	 * them by removing it completely
3153 	 */
3154 	if (mapping->nrpages)
3155 		invalidate_inode_pages2_range(mapping,
3156 					pos >> PAGE_SHIFT, end);
3157 
3158 	if (written > 0) {
3159 		pos += written;
3160 		write_len -= written;
3161 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3162 			i_size_write(inode, pos);
3163 			mark_inode_dirty(inode);
3164 		}
3165 		iocb->ki_pos = pos;
3166 	}
3167 	iov_iter_revert(from, write_len - iov_iter_count(from));
3168 out:
3169 	return written;
3170 }
3171 EXPORT_SYMBOL(generic_file_direct_write);
3172 
3173 /*
3174  * Find or create a page at the given pagecache position. Return the locked
3175  * page. This function is specifically for buffered writes.
3176  */
3177 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3178 					pgoff_t index, unsigned flags)
3179 {
3180 	struct page *page;
3181 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3182 
3183 	if (flags & AOP_FLAG_NOFS)
3184 		fgp_flags |= FGP_NOFS;
3185 
3186 	page = pagecache_get_page(mapping, index, fgp_flags,
3187 			mapping_gfp_mask(mapping));
3188 	if (page)
3189 		wait_for_stable_page(page);
3190 
3191 	return page;
3192 }
3193 EXPORT_SYMBOL(grab_cache_page_write_begin);
3194 
3195 ssize_t generic_perform_write(struct file *file,
3196 				struct iov_iter *i, loff_t pos)
3197 {
3198 	struct address_space *mapping = file->f_mapping;
3199 	const struct address_space_operations *a_ops = mapping->a_ops;
3200 	long status = 0;
3201 	ssize_t written = 0;
3202 	unsigned int flags = 0;
3203 
3204 	do {
3205 		struct page *page;
3206 		unsigned long offset;	/* Offset into pagecache page */
3207 		unsigned long bytes;	/* Bytes to write to page */
3208 		size_t copied;		/* Bytes copied from user */
3209 		void *fsdata;
3210 
3211 		offset = (pos & (PAGE_SIZE - 1));
3212 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3213 						iov_iter_count(i));
3214 
3215 again:
3216 		/*
3217 		 * Bring in the user page that we will copy from _first_.
3218 		 * Otherwise there's a nasty deadlock on copying from the
3219 		 * same page as we're writing to, without it being marked
3220 		 * up-to-date.
3221 		 *
3222 		 * Not only is this an optimisation, but it is also required
3223 		 * to check that the address is actually valid, when atomic
3224 		 * usercopies are used, below.
3225 		 */
3226 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3227 			status = -EFAULT;
3228 			break;
3229 		}
3230 
3231 		if (fatal_signal_pending(current)) {
3232 			status = -EINTR;
3233 			break;
3234 		}
3235 
3236 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3237 						&page, &fsdata);
3238 		if (unlikely(status < 0))
3239 			break;
3240 
3241 		if (mapping_writably_mapped(mapping))
3242 			flush_dcache_page(page);
3243 
3244 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3245 		flush_dcache_page(page);
3246 
3247 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3248 						page, fsdata);
3249 		if (unlikely(status < 0))
3250 			break;
3251 		copied = status;
3252 
3253 		cond_resched();
3254 
3255 		iov_iter_advance(i, copied);
3256 		if (unlikely(copied == 0)) {
3257 			/*
3258 			 * If we were unable to copy any data at all, we must
3259 			 * fall back to a single segment length write.
3260 			 *
3261 			 * If we didn't fallback here, we could livelock
3262 			 * because not all segments in the iov can be copied at
3263 			 * once without a pagefault.
3264 			 */
3265 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3266 						iov_iter_single_seg_count(i));
3267 			goto again;
3268 		}
3269 		pos += copied;
3270 		written += copied;
3271 
3272 		balance_dirty_pages_ratelimited(mapping);
3273 	} while (iov_iter_count(i));
3274 
3275 	return written ? written : status;
3276 }
3277 EXPORT_SYMBOL(generic_perform_write);
3278 
3279 /**
3280  * __generic_file_write_iter - write data to a file
3281  * @iocb:	IO state structure (file, offset, etc.)
3282  * @from:	iov_iter with data to write
3283  *
3284  * This function does all the work needed for actually writing data to a
3285  * file. It does all basic checks, removes SUID from the file, updates
3286  * modification times and calls proper subroutines depending on whether we
3287  * do direct IO or a standard buffered write.
3288  *
3289  * It expects i_mutex to be grabbed unless we work on a block device or similar
3290  * object which does not need locking at all.
3291  *
3292  * This function does *not* take care of syncing data in case of O_SYNC write.
3293  * A caller has to handle it. This is mainly due to the fact that we want to
3294  * avoid syncing under i_mutex.
3295  *
3296  * Return:
3297  * * number of bytes written, even for truncated writes
3298  * * negative error code if no data has been written at all
3299  */
3300 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3301 {
3302 	struct file *file = iocb->ki_filp;
3303 	struct address_space * mapping = file->f_mapping;
3304 	struct inode 	*inode = mapping->host;
3305 	ssize_t		written = 0;
3306 	ssize_t		err;
3307 	ssize_t		status;
3308 
3309 	/* We can write back this queue in page reclaim */
3310 	current->backing_dev_info = inode_to_bdi(inode);
3311 	err = file_remove_privs(file);
3312 	if (err)
3313 		goto out;
3314 
3315 	err = file_update_time(file);
3316 	if (err)
3317 		goto out;
3318 
3319 	if (iocb->ki_flags & IOCB_DIRECT) {
3320 		loff_t pos, endbyte;
3321 
3322 		written = generic_file_direct_write(iocb, from);
3323 		/*
3324 		 * If the write stopped short of completing, fall back to
3325 		 * buffered writes.  Some filesystems do this for writes to
3326 		 * holes, for example.  For DAX files, a buffered write will
3327 		 * not succeed (even if it did, DAX does not handle dirty
3328 		 * page-cache pages correctly).
3329 		 */
3330 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3331 			goto out;
3332 
3333 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3334 		/*
3335 		 * If generic_perform_write() returned a synchronous error
3336 		 * then we want to return the number of bytes which were
3337 		 * direct-written, or the error code if that was zero.  Note
3338 		 * that this differs from normal direct-io semantics, which
3339 		 * will return -EFOO even if some bytes were written.
3340 		 */
3341 		if (unlikely(status < 0)) {
3342 			err = status;
3343 			goto out;
3344 		}
3345 		/*
3346 		 * We need to ensure that the page cache pages are written to
3347 		 * disk and invalidated to preserve the expected O_DIRECT
3348 		 * semantics.
3349 		 */
3350 		endbyte = pos + status - 1;
3351 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3352 		if (err == 0) {
3353 			iocb->ki_pos = endbyte + 1;
3354 			written += status;
3355 			invalidate_mapping_pages(mapping,
3356 						 pos >> PAGE_SHIFT,
3357 						 endbyte >> PAGE_SHIFT);
3358 		} else {
3359 			/*
3360 			 * We don't know how much we wrote, so just return
3361 			 * the number of bytes which were direct-written
3362 			 */
3363 		}
3364 	} else {
3365 		written = generic_perform_write(file, from, iocb->ki_pos);
3366 		if (likely(written > 0))
3367 			iocb->ki_pos += written;
3368 	}
3369 out:
3370 	current->backing_dev_info = NULL;
3371 	return written ? written : err;
3372 }
3373 EXPORT_SYMBOL(__generic_file_write_iter);
3374 
3375 /**
3376  * generic_file_write_iter - write data to a file
3377  * @iocb:	IO state structure
3378  * @from:	iov_iter with data to write
3379  *
3380  * This is a wrapper around __generic_file_write_iter() to be used by most
3381  * filesystems. It takes care of syncing the file in case of O_SYNC file
3382  * and acquires i_mutex as needed.
3383  * Return:
3384  * * negative error code if no data has been written at all of
3385  *   vfs_fsync_range() failed for a synchronous write
3386  * * number of bytes written, even for truncated writes
3387  */
3388 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3389 {
3390 	struct file *file = iocb->ki_filp;
3391 	struct inode *inode = file->f_mapping->host;
3392 	ssize_t ret;
3393 
3394 	inode_lock(inode);
3395 	ret = generic_write_checks(iocb, from);
3396 	if (ret > 0)
3397 		ret = __generic_file_write_iter(iocb, from);
3398 	inode_unlock(inode);
3399 
3400 	if (ret > 0)
3401 		ret = generic_write_sync(iocb, ret);
3402 	return ret;
3403 }
3404 EXPORT_SYMBOL(generic_file_write_iter);
3405 
3406 /**
3407  * try_to_release_page() - release old fs-specific metadata on a page
3408  *
3409  * @page: the page which the kernel is trying to free
3410  * @gfp_mask: memory allocation flags (and I/O mode)
3411  *
3412  * The address_space is to try to release any data against the page
3413  * (presumably at page->private).
3414  *
3415  * This may also be called if PG_fscache is set on a page, indicating that the
3416  * page is known to the local caching routines.
3417  *
3418  * The @gfp_mask argument specifies whether I/O may be performed to release
3419  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3420  *
3421  * Return: %1 if the release was successful, otherwise return zero.
3422  */
3423 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3424 {
3425 	struct address_space * const mapping = page->mapping;
3426 
3427 	BUG_ON(!PageLocked(page));
3428 	if (PageWriteback(page))
3429 		return 0;
3430 
3431 	if (mapping && mapping->a_ops->releasepage)
3432 		return mapping->a_ops->releasepage(page, gfp_mask);
3433 	return try_to_free_buffers(page);
3434 }
3435 
3436 EXPORT_SYMBOL(try_to_release_page);
3437