1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/fsnotify.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 int refs = 1; 231 232 free_folio = mapping->a_ops->free_folio; 233 if (free_folio) 234 free_folio(folio); 235 236 if (folio_test_large(folio)) 237 refs = folio_nr_pages(folio); 238 folio_put_refs(folio, refs); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_add_lru(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_add_lru(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 /** 370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 371 * @mapping: address space structure to write 372 * @wbc: the writeback_control controlling the writeout 373 * 374 * Call writepages on the mapping using the provided wbc to control the 375 * writeout. 376 * 377 * Return: %0 on success, negative error code otherwise. 378 */ 379 int filemap_fdatawrite_wbc(struct address_space *mapping, 380 struct writeback_control *wbc) 381 { 382 int ret; 383 384 if (!mapping_can_writeback(mapping) || 385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 386 return 0; 387 388 wbc_attach_fdatawrite_inode(wbc, mapping->host); 389 ret = do_writepages(mapping, wbc); 390 wbc_detach_inode(wbc); 391 return ret; 392 } 393 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 394 395 /** 396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * @sync_mode: enable synchronous operation 401 * 402 * Start writeback against all of a mapping's dirty pages that lie 403 * within the byte offsets <start, end> inclusive. 404 * 405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 406 * opposed to a regular memory cleansing writeback. The difference between 407 * these two operations is that if a dirty page/buffer is encountered, it must 408 * be waited upon, and not just skipped over. 409 * 410 * Return: %0 on success, negative error code otherwise. 411 */ 412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 413 loff_t end, int sync_mode) 414 { 415 struct writeback_control wbc = { 416 .sync_mode = sync_mode, 417 .nr_to_write = LONG_MAX, 418 .range_start = start, 419 .range_end = end, 420 }; 421 422 return filemap_fdatawrite_wbc(mapping, &wbc); 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_flush - mostly a non-blocking flush 446 * @mapping: target address_space 447 * 448 * This is a mostly non-blocking flush. Not suitable for data-integrity 449 * purposes - I/O may not be started against all dirty pages. 450 * 451 * Return: %0 on success, negative error code otherwise. 452 */ 453 int filemap_flush(struct address_space *mapping) 454 { 455 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 456 } 457 EXPORT_SYMBOL(filemap_flush); 458 459 /** 460 * filemap_range_has_page - check if a page exists in range. 461 * @mapping: address space within which to check 462 * @start_byte: offset in bytes where the range starts 463 * @end_byte: offset in bytes where the range ends (inclusive) 464 * 465 * Find at least one page in the range supplied, usually used to check if 466 * direct writing in this range will trigger a writeback. 467 * 468 * Return: %true if at least one page exists in the specified range, 469 * %false otherwise. 470 */ 471 bool filemap_range_has_page(struct address_space *mapping, 472 loff_t start_byte, loff_t end_byte) 473 { 474 struct folio *folio; 475 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 476 pgoff_t max = end_byte >> PAGE_SHIFT; 477 478 if (end_byte < start_byte) 479 return false; 480 481 rcu_read_lock(); 482 for (;;) { 483 folio = xas_find(&xas, max); 484 if (xas_retry(&xas, folio)) 485 continue; 486 /* Shadow entries don't count */ 487 if (xa_is_value(folio)) 488 continue; 489 /* 490 * We don't need to try to pin this page; we're about to 491 * release the RCU lock anyway. It is enough to know that 492 * there was a page here recently. 493 */ 494 break; 495 } 496 rcu_read_unlock(); 497 498 return folio != NULL; 499 } 500 EXPORT_SYMBOL(filemap_range_has_page); 501 502 static void __filemap_fdatawait_range(struct address_space *mapping, 503 loff_t start_byte, loff_t end_byte) 504 { 505 pgoff_t index = start_byte >> PAGE_SHIFT; 506 pgoff_t end = end_byte >> PAGE_SHIFT; 507 struct folio_batch fbatch; 508 unsigned nr_folios; 509 510 folio_batch_init(&fbatch); 511 512 while (index <= end) { 513 unsigned i; 514 515 nr_folios = filemap_get_folios_tag(mapping, &index, end, 516 PAGECACHE_TAG_WRITEBACK, &fbatch); 517 518 if (!nr_folios) 519 break; 520 521 for (i = 0; i < nr_folios; i++) { 522 struct folio *folio = fbatch.folios[i]; 523 524 folio_wait_writeback(folio); 525 } 526 folio_batch_release(&fbatch); 527 cond_resched(); 528 } 529 } 530 531 /** 532 * filemap_fdatawait_range - wait for writeback to complete 533 * @mapping: address space structure to wait for 534 * @start_byte: offset in bytes where the range starts 535 * @end_byte: offset in bytes where the range ends (inclusive) 536 * 537 * Walk the list of under-writeback pages of the given address space 538 * in the given range and wait for all of them. Check error status of 539 * the address space and return it. 540 * 541 * Since the error status of the address space is cleared by this function, 542 * callers are responsible for checking the return value and handling and/or 543 * reporting the error. 544 * 545 * Return: error status of the address space. 546 */ 547 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 548 loff_t end_byte) 549 { 550 __filemap_fdatawait_range(mapping, start_byte, end_byte); 551 return filemap_check_errors(mapping); 552 } 553 EXPORT_SYMBOL(filemap_fdatawait_range); 554 555 /** 556 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 557 * @mapping: address space structure to wait for 558 * @start_byte: offset in bytes where the range starts 559 * @end_byte: offset in bytes where the range ends (inclusive) 560 * 561 * Walk the list of under-writeback pages of the given address space in the 562 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 563 * this function does not clear error status of the address space. 564 * 565 * Use this function if callers don't handle errors themselves. Expected 566 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 567 * fsfreeze(8) 568 */ 569 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 570 loff_t start_byte, loff_t end_byte) 571 { 572 __filemap_fdatawait_range(mapping, start_byte, end_byte); 573 return filemap_check_and_keep_errors(mapping); 574 } 575 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 576 577 /** 578 * file_fdatawait_range - wait for writeback to complete 579 * @file: file pointing to address space structure to wait for 580 * @start_byte: offset in bytes where the range starts 581 * @end_byte: offset in bytes where the range ends (inclusive) 582 * 583 * Walk the list of under-writeback pages of the address space that file 584 * refers to, in the given range and wait for all of them. Check error 585 * status of the address space vs. the file->f_wb_err cursor and return it. 586 * 587 * Since the error status of the file is advanced by this function, 588 * callers are responsible for checking the return value and handling and/or 589 * reporting the error. 590 * 591 * Return: error status of the address space vs. the file->f_wb_err cursor. 592 */ 593 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 594 { 595 struct address_space *mapping = file->f_mapping; 596 597 __filemap_fdatawait_range(mapping, start_byte, end_byte); 598 return file_check_and_advance_wb_err(file); 599 } 600 EXPORT_SYMBOL(file_fdatawait_range); 601 602 /** 603 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 604 * @mapping: address space structure to wait for 605 * 606 * Walk the list of under-writeback pages of the given address space 607 * and wait for all of them. Unlike filemap_fdatawait(), this function 608 * does not clear error status of the address space. 609 * 610 * Use this function if callers don't handle errors themselves. Expected 611 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 612 * fsfreeze(8) 613 * 614 * Return: error status of the address space. 615 */ 616 int filemap_fdatawait_keep_errors(struct address_space *mapping) 617 { 618 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 619 return filemap_check_and_keep_errors(mapping); 620 } 621 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 622 623 /* Returns true if writeback might be needed or already in progress. */ 624 static bool mapping_needs_writeback(struct address_space *mapping) 625 { 626 return mapping->nrpages; 627 } 628 629 bool filemap_range_has_writeback(struct address_space *mapping, 630 loff_t start_byte, loff_t end_byte) 631 { 632 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 633 pgoff_t max = end_byte >> PAGE_SHIFT; 634 struct folio *folio; 635 636 if (end_byte < start_byte) 637 return false; 638 639 rcu_read_lock(); 640 xas_for_each(&xas, folio, max) { 641 if (xas_retry(&xas, folio)) 642 continue; 643 if (xa_is_value(folio)) 644 continue; 645 if (folio_test_dirty(folio) || folio_test_locked(folio) || 646 folio_test_writeback(folio)) 647 break; 648 } 649 rcu_read_unlock(); 650 return folio != NULL; 651 } 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 653 654 /** 655 * filemap_write_and_wait_range - write out & wait on a file range 656 * @mapping: the address_space for the pages 657 * @lstart: offset in bytes where the range starts 658 * @lend: offset in bytes where the range ends (inclusive) 659 * 660 * Write out and wait upon file offsets lstart->lend, inclusive. 661 * 662 * Note that @lend is inclusive (describes the last byte to be written) so 663 * that this function can be used to write to the very end-of-file (end = -1). 664 * 665 * Return: error status of the address space. 666 */ 667 int filemap_write_and_wait_range(struct address_space *mapping, 668 loff_t lstart, loff_t lend) 669 { 670 int err = 0, err2; 671 672 if (lend < lstart) 673 return 0; 674 675 if (mapping_needs_writeback(mapping)) { 676 err = __filemap_fdatawrite_range(mapping, lstart, lend, 677 WB_SYNC_ALL); 678 /* 679 * Even if the above returned error, the pages may be 680 * written partially (e.g. -ENOSPC), so we wait for it. 681 * But the -EIO is special case, it may indicate the worst 682 * thing (e.g. bug) happened, so we avoid waiting for it. 683 */ 684 if (err != -EIO) 685 __filemap_fdatawait_range(mapping, lstart, lend); 686 } 687 err2 = filemap_check_errors(mapping); 688 if (!err) 689 err = err2; 690 return err; 691 } 692 EXPORT_SYMBOL(filemap_write_and_wait_range); 693 694 void __filemap_set_wb_err(struct address_space *mapping, int err) 695 { 696 errseq_t eseq = errseq_set(&mapping->wb_err, err); 697 698 trace_filemap_set_wb_err(mapping, eseq); 699 } 700 EXPORT_SYMBOL(__filemap_set_wb_err); 701 702 /** 703 * file_check_and_advance_wb_err - report wb error (if any) that was previously 704 * and advance wb_err to current one 705 * @file: struct file on which the error is being reported 706 * 707 * When userland calls fsync (or something like nfsd does the equivalent), we 708 * want to report any writeback errors that occurred since the last fsync (or 709 * since the file was opened if there haven't been any). 710 * 711 * Grab the wb_err from the mapping. If it matches what we have in the file, 712 * then just quickly return 0. The file is all caught up. 713 * 714 * If it doesn't match, then take the mapping value, set the "seen" flag in 715 * it and try to swap it into place. If it works, or another task beat us 716 * to it with the new value, then update the f_wb_err and return the error 717 * portion. The error at this point must be reported via proper channels 718 * (a'la fsync, or NFS COMMIT operation, etc.). 719 * 720 * While we handle mapping->wb_err with atomic operations, the f_wb_err 721 * value is protected by the f_lock since we must ensure that it reflects 722 * the latest value swapped in for this file descriptor. 723 * 724 * Return: %0 on success, negative error code otherwise. 725 */ 726 int file_check_and_advance_wb_err(struct file *file) 727 { 728 int err = 0; 729 errseq_t old = READ_ONCE(file->f_wb_err); 730 struct address_space *mapping = file->f_mapping; 731 732 /* Locklessly handle the common case where nothing has changed */ 733 if (errseq_check(&mapping->wb_err, old)) { 734 /* Something changed, must use slow path */ 735 spin_lock(&file->f_lock); 736 old = file->f_wb_err; 737 err = errseq_check_and_advance(&mapping->wb_err, 738 &file->f_wb_err); 739 trace_file_check_and_advance_wb_err(file, old); 740 spin_unlock(&file->f_lock); 741 } 742 743 /* 744 * We're mostly using this function as a drop in replacement for 745 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 746 * that the legacy code would have had on these flags. 747 */ 748 clear_bit(AS_EIO, &mapping->flags); 749 clear_bit(AS_ENOSPC, &mapping->flags); 750 return err; 751 } 752 EXPORT_SYMBOL(file_check_and_advance_wb_err); 753 754 /** 755 * file_write_and_wait_range - write out & wait on a file range 756 * @file: file pointing to address_space with pages 757 * @lstart: offset in bytes where the range starts 758 * @lend: offset in bytes where the range ends (inclusive) 759 * 760 * Write out and wait upon file offsets lstart->lend, inclusive. 761 * 762 * Note that @lend is inclusive (describes the last byte to be written) so 763 * that this function can be used to write to the very end-of-file (end = -1). 764 * 765 * After writing out and waiting on the data, we check and advance the 766 * f_wb_err cursor to the latest value, and return any errors detected there. 767 * 768 * Return: %0 on success, negative error code otherwise. 769 */ 770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 771 { 772 int err = 0, err2; 773 struct address_space *mapping = file->f_mapping; 774 775 if (lend < lstart) 776 return 0; 777 778 if (mapping_needs_writeback(mapping)) { 779 err = __filemap_fdatawrite_range(mapping, lstart, lend, 780 WB_SYNC_ALL); 781 /* See comment of filemap_write_and_wait() */ 782 if (err != -EIO) 783 __filemap_fdatawait_range(mapping, lstart, lend); 784 } 785 err2 = file_check_and_advance_wb_err(file); 786 if (!err) 787 err = err2; 788 return err; 789 } 790 EXPORT_SYMBOL(file_write_and_wait_range); 791 792 /** 793 * replace_page_cache_folio - replace a pagecache folio with a new one 794 * @old: folio to be replaced 795 * @new: folio to replace with 796 * 797 * This function replaces a folio in the pagecache with a new one. On 798 * success it acquires the pagecache reference for the new folio and 799 * drops it for the old folio. Both the old and new folios must be 800 * locked. This function does not add the new folio to the LRU, the 801 * caller must do that. 802 * 803 * The remove + add is atomic. This function cannot fail. 804 */ 805 void replace_page_cache_folio(struct folio *old, struct folio *new) 806 { 807 struct address_space *mapping = old->mapping; 808 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 809 pgoff_t offset = old->index; 810 XA_STATE(xas, &mapping->i_pages, offset); 811 812 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 813 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 814 VM_BUG_ON_FOLIO(new->mapping, new); 815 816 folio_get(new); 817 new->mapping = mapping; 818 new->index = offset; 819 820 mem_cgroup_replace_folio(old, new); 821 822 xas_lock_irq(&xas); 823 xas_store(&xas, new); 824 825 old->mapping = NULL; 826 /* hugetlb pages do not participate in page cache accounting. */ 827 if (!folio_test_hugetlb(old)) 828 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 829 if (!folio_test_hugetlb(new)) 830 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 831 if (folio_test_swapbacked(old)) 832 __lruvec_stat_sub_folio(old, NR_SHMEM); 833 if (folio_test_swapbacked(new)) 834 __lruvec_stat_add_folio(new, NR_SHMEM); 835 xas_unlock_irq(&xas); 836 if (free_folio) 837 free_folio(old); 838 folio_put(old); 839 } 840 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 841 842 noinline int __filemap_add_folio(struct address_space *mapping, 843 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 844 { 845 XA_STATE(xas, &mapping->i_pages, index); 846 void *alloced_shadow = NULL; 847 int alloced_order = 0; 848 bool huge; 849 long nr; 850 851 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 852 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 853 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 854 folio); 855 mapping_set_update(&xas, mapping); 856 857 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 858 xas_set_order(&xas, index, folio_order(folio)); 859 huge = folio_test_hugetlb(folio); 860 nr = folio_nr_pages(folio); 861 862 gfp &= GFP_RECLAIM_MASK; 863 folio_ref_add(folio, nr); 864 folio->mapping = mapping; 865 folio->index = xas.xa_index; 866 867 for (;;) { 868 int order = -1, split_order = 0; 869 void *entry, *old = NULL; 870 871 xas_lock_irq(&xas); 872 xas_for_each_conflict(&xas, entry) { 873 old = entry; 874 if (!xa_is_value(entry)) { 875 xas_set_err(&xas, -EEXIST); 876 goto unlock; 877 } 878 /* 879 * If a larger entry exists, 880 * it will be the first and only entry iterated. 881 */ 882 if (order == -1) 883 order = xas_get_order(&xas); 884 } 885 886 /* entry may have changed before we re-acquire the lock */ 887 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 888 xas_destroy(&xas); 889 alloced_order = 0; 890 } 891 892 if (old) { 893 if (order > 0 && order > folio_order(folio)) { 894 /* How to handle large swap entries? */ 895 BUG_ON(shmem_mapping(mapping)); 896 if (!alloced_order) { 897 split_order = order; 898 goto unlock; 899 } 900 xas_split(&xas, old, order); 901 xas_reset(&xas); 902 } 903 if (shadowp) 904 *shadowp = old; 905 } 906 907 xas_store(&xas, folio); 908 if (xas_error(&xas)) 909 goto unlock; 910 911 mapping->nrpages += nr; 912 913 /* hugetlb pages do not participate in page cache accounting */ 914 if (!huge) { 915 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 916 if (folio_test_pmd_mappable(folio)) 917 __lruvec_stat_mod_folio(folio, 918 NR_FILE_THPS, nr); 919 } 920 921 unlock: 922 xas_unlock_irq(&xas); 923 924 /* split needed, alloc here and retry. */ 925 if (split_order) { 926 xas_split_alloc(&xas, old, split_order, gfp); 927 if (xas_error(&xas)) 928 goto error; 929 alloced_shadow = old; 930 alloced_order = split_order; 931 xas_reset(&xas); 932 continue; 933 } 934 935 if (!xas_nomem(&xas, gfp)) 936 break; 937 } 938 939 if (xas_error(&xas)) 940 goto error; 941 942 trace_mm_filemap_add_to_page_cache(folio); 943 return 0; 944 error: 945 folio->mapping = NULL; 946 /* Leave page->index set: truncation relies upon it */ 947 folio_put_refs(folio, nr); 948 return xas_error(&xas); 949 } 950 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 951 952 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 953 pgoff_t index, gfp_t gfp) 954 { 955 void *shadow = NULL; 956 int ret; 957 958 ret = mem_cgroup_charge(folio, NULL, gfp); 959 if (ret) 960 return ret; 961 962 __folio_set_locked(folio); 963 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 964 if (unlikely(ret)) { 965 mem_cgroup_uncharge(folio); 966 __folio_clear_locked(folio); 967 } else { 968 /* 969 * The folio might have been evicted from cache only 970 * recently, in which case it should be activated like 971 * any other repeatedly accessed folio. 972 * The exception is folios getting rewritten; evicting other 973 * data from the working set, only to cache data that will 974 * get overwritten with something else, is a waste of memory. 975 */ 976 WARN_ON_ONCE(folio_test_active(folio)); 977 if (!(gfp & __GFP_WRITE) && shadow) 978 workingset_refault(folio, shadow); 979 folio_add_lru(folio); 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL_GPL(filemap_add_folio); 984 985 #ifdef CONFIG_NUMA 986 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 987 { 988 int n; 989 struct folio *folio; 990 991 if (cpuset_do_page_mem_spread()) { 992 unsigned int cpuset_mems_cookie; 993 do { 994 cpuset_mems_cookie = read_mems_allowed_begin(); 995 n = cpuset_mem_spread_node(); 996 folio = __folio_alloc_node_noprof(gfp, order, n); 997 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 998 999 return folio; 1000 } 1001 return folio_alloc_noprof(gfp, order); 1002 } 1003 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1004 #endif 1005 1006 /* 1007 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1008 * 1009 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1010 * 1011 * @mapping1: the first mapping to lock 1012 * @mapping2: the second mapping to lock 1013 */ 1014 void filemap_invalidate_lock_two(struct address_space *mapping1, 1015 struct address_space *mapping2) 1016 { 1017 if (mapping1 > mapping2) 1018 swap(mapping1, mapping2); 1019 if (mapping1) 1020 down_write(&mapping1->invalidate_lock); 1021 if (mapping2 && mapping1 != mapping2) 1022 down_write_nested(&mapping2->invalidate_lock, 1); 1023 } 1024 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1025 1026 /* 1027 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1028 * 1029 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1030 * 1031 * @mapping1: the first mapping to unlock 1032 * @mapping2: the second mapping to unlock 1033 */ 1034 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1035 struct address_space *mapping2) 1036 { 1037 if (mapping1) 1038 up_write(&mapping1->invalidate_lock); 1039 if (mapping2 && mapping1 != mapping2) 1040 up_write(&mapping2->invalidate_lock); 1041 } 1042 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1043 1044 /* 1045 * In order to wait for pages to become available there must be 1046 * waitqueues associated with pages. By using a hash table of 1047 * waitqueues where the bucket discipline is to maintain all 1048 * waiters on the same queue and wake all when any of the pages 1049 * become available, and for the woken contexts to check to be 1050 * sure the appropriate page became available, this saves space 1051 * at a cost of "thundering herd" phenomena during rare hash 1052 * collisions. 1053 */ 1054 #define PAGE_WAIT_TABLE_BITS 8 1055 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1056 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1057 1058 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1059 { 1060 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1061 } 1062 1063 void __init pagecache_init(void) 1064 { 1065 int i; 1066 1067 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1068 init_waitqueue_head(&folio_wait_table[i]); 1069 1070 page_writeback_init(); 1071 } 1072 1073 /* 1074 * The page wait code treats the "wait->flags" somewhat unusually, because 1075 * we have multiple different kinds of waits, not just the usual "exclusive" 1076 * one. 1077 * 1078 * We have: 1079 * 1080 * (a) no special bits set: 1081 * 1082 * We're just waiting for the bit to be released, and when a waker 1083 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1084 * and remove it from the wait queue. 1085 * 1086 * Simple and straightforward. 1087 * 1088 * (b) WQ_FLAG_EXCLUSIVE: 1089 * 1090 * The waiter is waiting to get the lock, and only one waiter should 1091 * be woken up to avoid any thundering herd behavior. We'll set the 1092 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1093 * 1094 * This is the traditional exclusive wait. 1095 * 1096 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1097 * 1098 * The waiter is waiting to get the bit, and additionally wants the 1099 * lock to be transferred to it for fair lock behavior. If the lock 1100 * cannot be taken, we stop walking the wait queue without waking 1101 * the waiter. 1102 * 1103 * This is the "fair lock handoff" case, and in addition to setting 1104 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1105 * that it now has the lock. 1106 */ 1107 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1108 { 1109 unsigned int flags; 1110 struct wait_page_key *key = arg; 1111 struct wait_page_queue *wait_page 1112 = container_of(wait, struct wait_page_queue, wait); 1113 1114 if (!wake_page_match(wait_page, key)) 1115 return 0; 1116 1117 /* 1118 * If it's a lock handoff wait, we get the bit for it, and 1119 * stop walking (and do not wake it up) if we can't. 1120 */ 1121 flags = wait->flags; 1122 if (flags & WQ_FLAG_EXCLUSIVE) { 1123 if (test_bit(key->bit_nr, &key->folio->flags)) 1124 return -1; 1125 if (flags & WQ_FLAG_CUSTOM) { 1126 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1127 return -1; 1128 flags |= WQ_FLAG_DONE; 1129 } 1130 } 1131 1132 /* 1133 * We are holding the wait-queue lock, but the waiter that 1134 * is waiting for this will be checking the flags without 1135 * any locking. 1136 * 1137 * So update the flags atomically, and wake up the waiter 1138 * afterwards to avoid any races. This store-release pairs 1139 * with the load-acquire in folio_wait_bit_common(). 1140 */ 1141 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1142 wake_up_state(wait->private, mode); 1143 1144 /* 1145 * Ok, we have successfully done what we're waiting for, 1146 * and we can unconditionally remove the wait entry. 1147 * 1148 * Note that this pairs with the "finish_wait()" in the 1149 * waiter, and has to be the absolute last thing we do. 1150 * After this list_del_init(&wait->entry) the wait entry 1151 * might be de-allocated and the process might even have 1152 * exited. 1153 */ 1154 list_del_init_careful(&wait->entry); 1155 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1156 } 1157 1158 static void folio_wake_bit(struct folio *folio, int bit_nr) 1159 { 1160 wait_queue_head_t *q = folio_waitqueue(folio); 1161 struct wait_page_key key; 1162 unsigned long flags; 1163 1164 key.folio = folio; 1165 key.bit_nr = bit_nr; 1166 key.page_match = 0; 1167 1168 spin_lock_irqsave(&q->lock, flags); 1169 __wake_up_locked_key(q, TASK_NORMAL, &key); 1170 1171 /* 1172 * It's possible to miss clearing waiters here, when we woke our page 1173 * waiters, but the hashed waitqueue has waiters for other pages on it. 1174 * That's okay, it's a rare case. The next waker will clear it. 1175 * 1176 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1177 * other), the flag may be cleared in the course of freeing the page; 1178 * but that is not required for correctness. 1179 */ 1180 if (!waitqueue_active(q) || !key.page_match) 1181 folio_clear_waiters(folio); 1182 1183 spin_unlock_irqrestore(&q->lock, flags); 1184 } 1185 1186 /* 1187 * A choice of three behaviors for folio_wait_bit_common(): 1188 */ 1189 enum behavior { 1190 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1191 * __folio_lock() waiting on then setting PG_locked. 1192 */ 1193 SHARED, /* Hold ref to page and check the bit when woken, like 1194 * folio_wait_writeback() waiting on PG_writeback. 1195 */ 1196 DROP, /* Drop ref to page before wait, no check when woken, 1197 * like folio_put_wait_locked() on PG_locked. 1198 */ 1199 }; 1200 1201 /* 1202 * Attempt to check (or get) the folio flag, and mark us done 1203 * if successful. 1204 */ 1205 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1206 struct wait_queue_entry *wait) 1207 { 1208 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1209 if (test_and_set_bit(bit_nr, &folio->flags)) 1210 return false; 1211 } else if (test_bit(bit_nr, &folio->flags)) 1212 return false; 1213 1214 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1215 return true; 1216 } 1217 1218 /* How many times do we accept lock stealing from under a waiter? */ 1219 int sysctl_page_lock_unfairness = 5; 1220 1221 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1222 int state, enum behavior behavior) 1223 { 1224 wait_queue_head_t *q = folio_waitqueue(folio); 1225 int unfairness = sysctl_page_lock_unfairness; 1226 struct wait_page_queue wait_page; 1227 wait_queue_entry_t *wait = &wait_page.wait; 1228 bool thrashing = false; 1229 unsigned long pflags; 1230 bool in_thrashing; 1231 1232 if (bit_nr == PG_locked && 1233 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1234 delayacct_thrashing_start(&in_thrashing); 1235 psi_memstall_enter(&pflags); 1236 thrashing = true; 1237 } 1238 1239 init_wait(wait); 1240 wait->func = wake_page_function; 1241 wait_page.folio = folio; 1242 wait_page.bit_nr = bit_nr; 1243 1244 repeat: 1245 wait->flags = 0; 1246 if (behavior == EXCLUSIVE) { 1247 wait->flags = WQ_FLAG_EXCLUSIVE; 1248 if (--unfairness < 0) 1249 wait->flags |= WQ_FLAG_CUSTOM; 1250 } 1251 1252 /* 1253 * Do one last check whether we can get the 1254 * page bit synchronously. 1255 * 1256 * Do the folio_set_waiters() marking before that 1257 * to let any waker we _just_ missed know they 1258 * need to wake us up (otherwise they'll never 1259 * even go to the slow case that looks at the 1260 * page queue), and add ourselves to the wait 1261 * queue if we need to sleep. 1262 * 1263 * This part needs to be done under the queue 1264 * lock to avoid races. 1265 */ 1266 spin_lock_irq(&q->lock); 1267 folio_set_waiters(folio); 1268 if (!folio_trylock_flag(folio, bit_nr, wait)) 1269 __add_wait_queue_entry_tail(q, wait); 1270 spin_unlock_irq(&q->lock); 1271 1272 /* 1273 * From now on, all the logic will be based on 1274 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1275 * see whether the page bit testing has already 1276 * been done by the wake function. 1277 * 1278 * We can drop our reference to the folio. 1279 */ 1280 if (behavior == DROP) 1281 folio_put(folio); 1282 1283 /* 1284 * Note that until the "finish_wait()", or until 1285 * we see the WQ_FLAG_WOKEN flag, we need to 1286 * be very careful with the 'wait->flags', because 1287 * we may race with a waker that sets them. 1288 */ 1289 for (;;) { 1290 unsigned int flags; 1291 1292 set_current_state(state); 1293 1294 /* Loop until we've been woken or interrupted */ 1295 flags = smp_load_acquire(&wait->flags); 1296 if (!(flags & WQ_FLAG_WOKEN)) { 1297 if (signal_pending_state(state, current)) 1298 break; 1299 1300 io_schedule(); 1301 continue; 1302 } 1303 1304 /* If we were non-exclusive, we're done */ 1305 if (behavior != EXCLUSIVE) 1306 break; 1307 1308 /* If the waker got the lock for us, we're done */ 1309 if (flags & WQ_FLAG_DONE) 1310 break; 1311 1312 /* 1313 * Otherwise, if we're getting the lock, we need to 1314 * try to get it ourselves. 1315 * 1316 * And if that fails, we'll have to retry this all. 1317 */ 1318 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1319 goto repeat; 1320 1321 wait->flags |= WQ_FLAG_DONE; 1322 break; 1323 } 1324 1325 /* 1326 * If a signal happened, this 'finish_wait()' may remove the last 1327 * waiter from the wait-queues, but the folio waiters bit will remain 1328 * set. That's ok. The next wakeup will take care of it, and trying 1329 * to do it here would be difficult and prone to races. 1330 */ 1331 finish_wait(q, wait); 1332 1333 if (thrashing) { 1334 delayacct_thrashing_end(&in_thrashing); 1335 psi_memstall_leave(&pflags); 1336 } 1337 1338 /* 1339 * NOTE! The wait->flags weren't stable until we've done the 1340 * 'finish_wait()', and we could have exited the loop above due 1341 * to a signal, and had a wakeup event happen after the signal 1342 * test but before the 'finish_wait()'. 1343 * 1344 * So only after the finish_wait() can we reliably determine 1345 * if we got woken up or not, so we can now figure out the final 1346 * return value based on that state without races. 1347 * 1348 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1349 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1350 */ 1351 if (behavior == EXCLUSIVE) 1352 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1353 1354 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1355 } 1356 1357 #ifdef CONFIG_MIGRATION 1358 /** 1359 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1360 * @entry: migration swap entry. 1361 * @ptl: already locked ptl. This function will drop the lock. 1362 * 1363 * Wait for a migration entry referencing the given page to be removed. This is 1364 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1365 * this can be called without taking a reference on the page. Instead this 1366 * should be called while holding the ptl for the migration entry referencing 1367 * the page. 1368 * 1369 * Returns after unlocking the ptl. 1370 * 1371 * This follows the same logic as folio_wait_bit_common() so see the comments 1372 * there. 1373 */ 1374 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1375 __releases(ptl) 1376 { 1377 struct wait_page_queue wait_page; 1378 wait_queue_entry_t *wait = &wait_page.wait; 1379 bool thrashing = false; 1380 unsigned long pflags; 1381 bool in_thrashing; 1382 wait_queue_head_t *q; 1383 struct folio *folio = pfn_swap_entry_folio(entry); 1384 1385 q = folio_waitqueue(folio); 1386 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1387 delayacct_thrashing_start(&in_thrashing); 1388 psi_memstall_enter(&pflags); 1389 thrashing = true; 1390 } 1391 1392 init_wait(wait); 1393 wait->func = wake_page_function; 1394 wait_page.folio = folio; 1395 wait_page.bit_nr = PG_locked; 1396 wait->flags = 0; 1397 1398 spin_lock_irq(&q->lock); 1399 folio_set_waiters(folio); 1400 if (!folio_trylock_flag(folio, PG_locked, wait)) 1401 __add_wait_queue_entry_tail(q, wait); 1402 spin_unlock_irq(&q->lock); 1403 1404 /* 1405 * If a migration entry exists for the page the migration path must hold 1406 * a valid reference to the page, and it must take the ptl to remove the 1407 * migration entry. So the page is valid until the ptl is dropped. 1408 */ 1409 spin_unlock(ptl); 1410 1411 for (;;) { 1412 unsigned int flags; 1413 1414 set_current_state(TASK_UNINTERRUPTIBLE); 1415 1416 /* Loop until we've been woken or interrupted */ 1417 flags = smp_load_acquire(&wait->flags); 1418 if (!(flags & WQ_FLAG_WOKEN)) { 1419 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1420 break; 1421 1422 io_schedule(); 1423 continue; 1424 } 1425 break; 1426 } 1427 1428 finish_wait(q, wait); 1429 1430 if (thrashing) { 1431 delayacct_thrashing_end(&in_thrashing); 1432 psi_memstall_leave(&pflags); 1433 } 1434 } 1435 #endif 1436 1437 void folio_wait_bit(struct folio *folio, int bit_nr) 1438 { 1439 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1440 } 1441 EXPORT_SYMBOL(folio_wait_bit); 1442 1443 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1444 { 1445 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1446 } 1447 EXPORT_SYMBOL(folio_wait_bit_killable); 1448 1449 /** 1450 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1451 * @folio: The folio to wait for. 1452 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1453 * 1454 * The caller should hold a reference on @folio. They expect the page to 1455 * become unlocked relatively soon, but do not wish to hold up migration 1456 * (for example) by holding the reference while waiting for the folio to 1457 * come unlocked. After this function returns, the caller should not 1458 * dereference @folio. 1459 * 1460 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1461 */ 1462 static int folio_put_wait_locked(struct folio *folio, int state) 1463 { 1464 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1465 } 1466 1467 /** 1468 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1469 * @folio: Folio defining the wait queue of interest 1470 * @waiter: Waiter to add to the queue 1471 * 1472 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1473 */ 1474 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1475 { 1476 wait_queue_head_t *q = folio_waitqueue(folio); 1477 unsigned long flags; 1478 1479 spin_lock_irqsave(&q->lock, flags); 1480 __add_wait_queue_entry_tail(q, waiter); 1481 folio_set_waiters(folio); 1482 spin_unlock_irqrestore(&q->lock, flags); 1483 } 1484 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1485 1486 /** 1487 * folio_unlock - Unlock a locked folio. 1488 * @folio: The folio. 1489 * 1490 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1491 * 1492 * Context: May be called from interrupt or process context. May not be 1493 * called from NMI context. 1494 */ 1495 void folio_unlock(struct folio *folio) 1496 { 1497 /* Bit 7 allows x86 to check the byte's sign bit */ 1498 BUILD_BUG_ON(PG_waiters != 7); 1499 BUILD_BUG_ON(PG_locked > 7); 1500 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1501 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1502 folio_wake_bit(folio, PG_locked); 1503 } 1504 EXPORT_SYMBOL(folio_unlock); 1505 1506 /** 1507 * folio_end_read - End read on a folio. 1508 * @folio: The folio. 1509 * @success: True if all reads completed successfully. 1510 * 1511 * When all reads against a folio have completed, filesystems should 1512 * call this function to let the pagecache know that no more reads 1513 * are outstanding. This will unlock the folio and wake up any thread 1514 * sleeping on the lock. The folio will also be marked uptodate if all 1515 * reads succeeded. 1516 * 1517 * Context: May be called from interrupt or process context. May not be 1518 * called from NMI context. 1519 */ 1520 void folio_end_read(struct folio *folio, bool success) 1521 { 1522 unsigned long mask = 1 << PG_locked; 1523 1524 /* Must be in bottom byte for x86 to work */ 1525 BUILD_BUG_ON(PG_uptodate > 7); 1526 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1527 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1528 1529 if (likely(success)) 1530 mask |= 1 << PG_uptodate; 1531 if (folio_xor_flags_has_waiters(folio, mask)) 1532 folio_wake_bit(folio, PG_locked); 1533 } 1534 EXPORT_SYMBOL(folio_end_read); 1535 1536 /** 1537 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1538 * @folio: The folio. 1539 * 1540 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1541 * it. The folio reference held for PG_private_2 being set is released. 1542 * 1543 * This is, for example, used when a netfs folio is being written to a local 1544 * disk cache, thereby allowing writes to the cache for the same folio to be 1545 * serialised. 1546 */ 1547 void folio_end_private_2(struct folio *folio) 1548 { 1549 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1550 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1551 folio_wake_bit(folio, PG_private_2); 1552 folio_put(folio); 1553 } 1554 EXPORT_SYMBOL(folio_end_private_2); 1555 1556 /** 1557 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1558 * @folio: The folio to wait on. 1559 * 1560 * Wait for PG_private_2 to be cleared on a folio. 1561 */ 1562 void folio_wait_private_2(struct folio *folio) 1563 { 1564 while (folio_test_private_2(folio)) 1565 folio_wait_bit(folio, PG_private_2); 1566 } 1567 EXPORT_SYMBOL(folio_wait_private_2); 1568 1569 /** 1570 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1571 * @folio: The folio to wait on. 1572 * 1573 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1574 * received by the calling task. 1575 * 1576 * Return: 1577 * - 0 if successful. 1578 * - -EINTR if a fatal signal was encountered. 1579 */ 1580 int folio_wait_private_2_killable(struct folio *folio) 1581 { 1582 int ret = 0; 1583 1584 while (folio_test_private_2(folio)) { 1585 ret = folio_wait_bit_killable(folio, PG_private_2); 1586 if (ret < 0) 1587 break; 1588 } 1589 1590 return ret; 1591 } 1592 EXPORT_SYMBOL(folio_wait_private_2_killable); 1593 1594 /** 1595 * folio_end_writeback - End writeback against a folio. 1596 * @folio: The folio. 1597 * 1598 * The folio must actually be under writeback. 1599 * 1600 * Context: May be called from process or interrupt context. 1601 */ 1602 void folio_end_writeback(struct folio *folio) 1603 { 1604 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1605 1606 /* 1607 * folio_test_clear_reclaim() could be used here but it is an 1608 * atomic operation and overkill in this particular case. Failing 1609 * to shuffle a folio marked for immediate reclaim is too mild 1610 * a gain to justify taking an atomic operation penalty at the 1611 * end of every folio writeback. 1612 */ 1613 if (folio_test_reclaim(folio)) { 1614 folio_clear_reclaim(folio); 1615 folio_rotate_reclaimable(folio); 1616 } 1617 1618 /* 1619 * Writeback does not hold a folio reference of its own, relying 1620 * on truncation to wait for the clearing of PG_writeback. 1621 * But here we must make sure that the folio is not freed and 1622 * reused before the folio_wake_bit(). 1623 */ 1624 folio_get(folio); 1625 if (__folio_end_writeback(folio)) 1626 folio_wake_bit(folio, PG_writeback); 1627 acct_reclaim_writeback(folio); 1628 folio_put(folio); 1629 } 1630 EXPORT_SYMBOL(folio_end_writeback); 1631 1632 /** 1633 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1634 * @folio: The folio to lock 1635 */ 1636 void __folio_lock(struct folio *folio) 1637 { 1638 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1639 EXCLUSIVE); 1640 } 1641 EXPORT_SYMBOL(__folio_lock); 1642 1643 int __folio_lock_killable(struct folio *folio) 1644 { 1645 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1646 EXCLUSIVE); 1647 } 1648 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1649 1650 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1651 { 1652 struct wait_queue_head *q = folio_waitqueue(folio); 1653 int ret; 1654 1655 wait->folio = folio; 1656 wait->bit_nr = PG_locked; 1657 1658 spin_lock_irq(&q->lock); 1659 __add_wait_queue_entry_tail(q, &wait->wait); 1660 folio_set_waiters(folio); 1661 ret = !folio_trylock(folio); 1662 /* 1663 * If we were successful now, we know we're still on the 1664 * waitqueue as we're still under the lock. This means it's 1665 * safe to remove and return success, we know the callback 1666 * isn't going to trigger. 1667 */ 1668 if (!ret) 1669 __remove_wait_queue(q, &wait->wait); 1670 else 1671 ret = -EIOCBQUEUED; 1672 spin_unlock_irq(&q->lock); 1673 return ret; 1674 } 1675 1676 /* 1677 * Return values: 1678 * 0 - folio is locked. 1679 * non-zero - folio is not locked. 1680 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1681 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1682 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1683 * 1684 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1685 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1686 */ 1687 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1688 { 1689 unsigned int flags = vmf->flags; 1690 1691 if (fault_flag_allow_retry_first(flags)) { 1692 /* 1693 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1694 * released even though returning VM_FAULT_RETRY. 1695 */ 1696 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1697 return VM_FAULT_RETRY; 1698 1699 release_fault_lock(vmf); 1700 if (flags & FAULT_FLAG_KILLABLE) 1701 folio_wait_locked_killable(folio); 1702 else 1703 folio_wait_locked(folio); 1704 return VM_FAULT_RETRY; 1705 } 1706 if (flags & FAULT_FLAG_KILLABLE) { 1707 bool ret; 1708 1709 ret = __folio_lock_killable(folio); 1710 if (ret) { 1711 release_fault_lock(vmf); 1712 return VM_FAULT_RETRY; 1713 } 1714 } else { 1715 __folio_lock(folio); 1716 } 1717 1718 return 0; 1719 } 1720 1721 /** 1722 * page_cache_next_miss() - Find the next gap in the page cache. 1723 * @mapping: Mapping. 1724 * @index: Index. 1725 * @max_scan: Maximum range to search. 1726 * 1727 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1728 * gap with the lowest index. 1729 * 1730 * This function may be called under the rcu_read_lock. However, this will 1731 * not atomically search a snapshot of the cache at a single point in time. 1732 * For example, if a gap is created at index 5, then subsequently a gap is 1733 * created at index 10, page_cache_next_miss covering both indices may 1734 * return 10 if called under the rcu_read_lock. 1735 * 1736 * Return: The index of the gap if found, otherwise an index outside the 1737 * range specified (in which case 'return - index >= max_scan' will be true). 1738 * In the rare case of index wrap-around, 0 will be returned. 1739 */ 1740 pgoff_t page_cache_next_miss(struct address_space *mapping, 1741 pgoff_t index, unsigned long max_scan) 1742 { 1743 XA_STATE(xas, &mapping->i_pages, index); 1744 1745 while (max_scan--) { 1746 void *entry = xas_next(&xas); 1747 if (!entry || xa_is_value(entry)) 1748 return xas.xa_index; 1749 if (xas.xa_index == 0) 1750 return 0; 1751 } 1752 1753 return index + max_scan; 1754 } 1755 EXPORT_SYMBOL(page_cache_next_miss); 1756 1757 /** 1758 * page_cache_prev_miss() - Find the previous gap in the page cache. 1759 * @mapping: Mapping. 1760 * @index: Index. 1761 * @max_scan: Maximum range to search. 1762 * 1763 * Search the range [max(index - max_scan + 1, 0), index] for the 1764 * gap with the highest index. 1765 * 1766 * This function may be called under the rcu_read_lock. However, this will 1767 * not atomically search a snapshot of the cache at a single point in time. 1768 * For example, if a gap is created at index 10, then subsequently a gap is 1769 * created at index 5, page_cache_prev_miss() covering both indices may 1770 * return 5 if called under the rcu_read_lock. 1771 * 1772 * Return: The index of the gap if found, otherwise an index outside the 1773 * range specified (in which case 'index - return >= max_scan' will be true). 1774 * In the rare case of wrap-around, ULONG_MAX will be returned. 1775 */ 1776 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1777 pgoff_t index, unsigned long max_scan) 1778 { 1779 XA_STATE(xas, &mapping->i_pages, index); 1780 1781 while (max_scan--) { 1782 void *entry = xas_prev(&xas); 1783 if (!entry || xa_is_value(entry)) 1784 break; 1785 if (xas.xa_index == ULONG_MAX) 1786 break; 1787 } 1788 1789 return xas.xa_index; 1790 } 1791 EXPORT_SYMBOL(page_cache_prev_miss); 1792 1793 /* 1794 * Lockless page cache protocol: 1795 * On the lookup side: 1796 * 1. Load the folio from i_pages 1797 * 2. Increment the refcount if it's not zero 1798 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1799 * 1800 * On the removal side: 1801 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1802 * B. Remove the page from i_pages 1803 * C. Return the page to the page allocator 1804 * 1805 * This means that any page may have its reference count temporarily 1806 * increased by a speculative page cache (or GUP-fast) lookup as it can 1807 * be allocated by another user before the RCU grace period expires. 1808 * Because the refcount temporarily acquired here may end up being the 1809 * last refcount on the page, any page allocation must be freeable by 1810 * folio_put(). 1811 */ 1812 1813 /* 1814 * filemap_get_entry - Get a page cache entry. 1815 * @mapping: the address_space to search 1816 * @index: The page cache index. 1817 * 1818 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1819 * it is returned with an increased refcount. If it is a shadow entry 1820 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1821 * it is returned without further action. 1822 * 1823 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1824 */ 1825 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1826 { 1827 XA_STATE(xas, &mapping->i_pages, index); 1828 struct folio *folio; 1829 1830 rcu_read_lock(); 1831 repeat: 1832 xas_reset(&xas); 1833 folio = xas_load(&xas); 1834 if (xas_retry(&xas, folio)) 1835 goto repeat; 1836 /* 1837 * A shadow entry of a recently evicted page, or a swap entry from 1838 * shmem/tmpfs. Return it without attempting to raise page count. 1839 */ 1840 if (!folio || xa_is_value(folio)) 1841 goto out; 1842 1843 if (!folio_try_get(folio)) 1844 goto repeat; 1845 1846 if (unlikely(folio != xas_reload(&xas))) { 1847 folio_put(folio); 1848 goto repeat; 1849 } 1850 out: 1851 rcu_read_unlock(); 1852 1853 return folio; 1854 } 1855 1856 /** 1857 * __filemap_get_folio - Find and get a reference to a folio. 1858 * @mapping: The address_space to search. 1859 * @index: The page index. 1860 * @fgp_flags: %FGP flags modify how the folio is returned. 1861 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1862 * 1863 * Looks up the page cache entry at @mapping & @index. 1864 * 1865 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1866 * if the %GFP flags specified for %FGP_CREAT are atomic. 1867 * 1868 * If this function returns a folio, it is returned with an increased refcount. 1869 * 1870 * Return: The found folio or an ERR_PTR() otherwise. 1871 */ 1872 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1873 fgf_t fgp_flags, gfp_t gfp) 1874 { 1875 struct folio *folio; 1876 1877 repeat: 1878 folio = filemap_get_entry(mapping, index); 1879 if (xa_is_value(folio)) 1880 folio = NULL; 1881 if (!folio) 1882 goto no_page; 1883 1884 if (fgp_flags & FGP_LOCK) { 1885 if (fgp_flags & FGP_NOWAIT) { 1886 if (!folio_trylock(folio)) { 1887 folio_put(folio); 1888 return ERR_PTR(-EAGAIN); 1889 } 1890 } else { 1891 folio_lock(folio); 1892 } 1893 1894 /* Has the page been truncated? */ 1895 if (unlikely(folio->mapping != mapping)) { 1896 folio_unlock(folio); 1897 folio_put(folio); 1898 goto repeat; 1899 } 1900 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1901 } 1902 1903 if (fgp_flags & FGP_ACCESSED) 1904 folio_mark_accessed(folio); 1905 else if (fgp_flags & FGP_WRITE) { 1906 /* Clear idle flag for buffer write */ 1907 if (folio_test_idle(folio)) 1908 folio_clear_idle(folio); 1909 } 1910 1911 if (fgp_flags & FGP_STABLE) 1912 folio_wait_stable(folio); 1913 no_page: 1914 if (!folio && (fgp_flags & FGP_CREAT)) { 1915 unsigned int min_order = mapping_min_folio_order(mapping); 1916 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1917 int err; 1918 index = mapping_align_index(mapping, index); 1919 1920 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1921 gfp |= __GFP_WRITE; 1922 if (fgp_flags & FGP_NOFS) 1923 gfp &= ~__GFP_FS; 1924 if (fgp_flags & FGP_NOWAIT) { 1925 gfp &= ~GFP_KERNEL; 1926 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1927 } 1928 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1929 fgp_flags |= FGP_LOCK; 1930 1931 if (order > mapping_max_folio_order(mapping)) 1932 order = mapping_max_folio_order(mapping); 1933 /* If we're not aligned, allocate a smaller folio */ 1934 if (index & ((1UL << order) - 1)) 1935 order = __ffs(index); 1936 1937 do { 1938 gfp_t alloc_gfp = gfp; 1939 1940 err = -ENOMEM; 1941 if (order > min_order) 1942 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1943 folio = filemap_alloc_folio(alloc_gfp, order); 1944 if (!folio) 1945 continue; 1946 1947 /* Init accessed so avoid atomic mark_page_accessed later */ 1948 if (fgp_flags & FGP_ACCESSED) 1949 __folio_set_referenced(folio); 1950 1951 err = filemap_add_folio(mapping, folio, index, gfp); 1952 if (!err) 1953 break; 1954 folio_put(folio); 1955 folio = NULL; 1956 } while (order-- > min_order); 1957 1958 if (err == -EEXIST) 1959 goto repeat; 1960 if (err) 1961 return ERR_PTR(err); 1962 /* 1963 * filemap_add_folio locks the page, and for mmap 1964 * we expect an unlocked page. 1965 */ 1966 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1967 folio_unlock(folio); 1968 } 1969 1970 if (!folio) 1971 return ERR_PTR(-ENOENT); 1972 return folio; 1973 } 1974 EXPORT_SYMBOL(__filemap_get_folio); 1975 1976 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1977 xa_mark_t mark) 1978 { 1979 struct folio *folio; 1980 1981 retry: 1982 if (mark == XA_PRESENT) 1983 folio = xas_find(xas, max); 1984 else 1985 folio = xas_find_marked(xas, max, mark); 1986 1987 if (xas_retry(xas, folio)) 1988 goto retry; 1989 /* 1990 * A shadow entry of a recently evicted page, a swap 1991 * entry from shmem/tmpfs or a DAX entry. Return it 1992 * without attempting to raise page count. 1993 */ 1994 if (!folio || xa_is_value(folio)) 1995 return folio; 1996 1997 if (!folio_try_get(folio)) 1998 goto reset; 1999 2000 if (unlikely(folio != xas_reload(xas))) { 2001 folio_put(folio); 2002 goto reset; 2003 } 2004 2005 return folio; 2006 reset: 2007 xas_reset(xas); 2008 goto retry; 2009 } 2010 2011 /** 2012 * find_get_entries - gang pagecache lookup 2013 * @mapping: The address_space to search 2014 * @start: The starting page cache index 2015 * @end: The final page index (inclusive). 2016 * @fbatch: Where the resulting entries are placed. 2017 * @indices: The cache indices corresponding to the entries in @entries 2018 * 2019 * find_get_entries() will search for and return a batch of entries in 2020 * the mapping. The entries are placed in @fbatch. find_get_entries() 2021 * takes a reference on any actual folios it returns. 2022 * 2023 * The entries have ascending indexes. The indices may not be consecutive 2024 * due to not-present entries or large folios. 2025 * 2026 * Any shadow entries of evicted folios, or swap entries from 2027 * shmem/tmpfs, are included in the returned array. 2028 * 2029 * Return: The number of entries which were found. 2030 */ 2031 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2032 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2033 { 2034 XA_STATE(xas, &mapping->i_pages, *start); 2035 struct folio *folio; 2036 2037 rcu_read_lock(); 2038 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2039 indices[fbatch->nr] = xas.xa_index; 2040 if (!folio_batch_add(fbatch, folio)) 2041 break; 2042 } 2043 2044 if (folio_batch_count(fbatch)) { 2045 unsigned long nr; 2046 int idx = folio_batch_count(fbatch) - 1; 2047 2048 folio = fbatch->folios[idx]; 2049 if (!xa_is_value(folio)) 2050 nr = folio_nr_pages(folio); 2051 else 2052 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2053 *start = round_down(indices[idx] + nr, nr); 2054 } 2055 rcu_read_unlock(); 2056 2057 return folio_batch_count(fbatch); 2058 } 2059 2060 /** 2061 * find_lock_entries - Find a batch of pagecache entries. 2062 * @mapping: The address_space to search. 2063 * @start: The starting page cache index. 2064 * @end: The final page index (inclusive). 2065 * @fbatch: Where the resulting entries are placed. 2066 * @indices: The cache indices of the entries in @fbatch. 2067 * 2068 * find_lock_entries() will return a batch of entries from @mapping. 2069 * Swap, shadow and DAX entries are included. Folios are returned 2070 * locked and with an incremented refcount. Folios which are locked 2071 * by somebody else or under writeback are skipped. Folios which are 2072 * partially outside the range are not returned. 2073 * 2074 * The entries have ascending indexes. The indices may not be consecutive 2075 * due to not-present entries, large folios, folios which could not be 2076 * locked or folios under writeback. 2077 * 2078 * Return: The number of entries which were found. 2079 */ 2080 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2081 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2082 { 2083 XA_STATE(xas, &mapping->i_pages, *start); 2084 struct folio *folio; 2085 2086 rcu_read_lock(); 2087 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2088 unsigned long base; 2089 unsigned long nr; 2090 2091 if (!xa_is_value(folio)) { 2092 nr = folio_nr_pages(folio); 2093 base = folio->index; 2094 /* Omit large folio which begins before the start */ 2095 if (base < *start) 2096 goto put; 2097 /* Omit large folio which extends beyond the end */ 2098 if (base + nr - 1 > end) 2099 goto put; 2100 if (!folio_trylock(folio)) 2101 goto put; 2102 if (folio->mapping != mapping || 2103 folio_test_writeback(folio)) 2104 goto unlock; 2105 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2106 folio); 2107 } else { 2108 nr = 1 << xas_get_order(&xas); 2109 base = xas.xa_index & ~(nr - 1); 2110 /* Omit order>0 value which begins before the start */ 2111 if (base < *start) 2112 continue; 2113 /* Omit order>0 value which extends beyond the end */ 2114 if (base + nr - 1 > end) 2115 break; 2116 } 2117 2118 /* Update start now so that last update is correct on return */ 2119 *start = base + nr; 2120 indices[fbatch->nr] = xas.xa_index; 2121 if (!folio_batch_add(fbatch, folio)) 2122 break; 2123 continue; 2124 unlock: 2125 folio_unlock(folio); 2126 put: 2127 folio_put(folio); 2128 } 2129 rcu_read_unlock(); 2130 2131 return folio_batch_count(fbatch); 2132 } 2133 2134 /** 2135 * filemap_get_folios - Get a batch of folios 2136 * @mapping: The address_space to search 2137 * @start: The starting page index 2138 * @end: The final page index (inclusive) 2139 * @fbatch: The batch to fill. 2140 * 2141 * Search for and return a batch of folios in the mapping starting at 2142 * index @start and up to index @end (inclusive). The folios are returned 2143 * in @fbatch with an elevated reference count. 2144 * 2145 * Return: The number of folios which were found. 2146 * We also update @start to index the next folio for the traversal. 2147 */ 2148 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2149 pgoff_t end, struct folio_batch *fbatch) 2150 { 2151 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2152 } 2153 EXPORT_SYMBOL(filemap_get_folios); 2154 2155 /** 2156 * filemap_get_folios_contig - Get a batch of contiguous folios 2157 * @mapping: The address_space to search 2158 * @start: The starting page index 2159 * @end: The final page index (inclusive) 2160 * @fbatch: The batch to fill 2161 * 2162 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2163 * except the returned folios are guaranteed to be contiguous. This may 2164 * not return all contiguous folios if the batch gets filled up. 2165 * 2166 * Return: The number of folios found. 2167 * Also update @start to be positioned for traversal of the next folio. 2168 */ 2169 2170 unsigned filemap_get_folios_contig(struct address_space *mapping, 2171 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2172 { 2173 XA_STATE(xas, &mapping->i_pages, *start); 2174 unsigned long nr; 2175 struct folio *folio; 2176 2177 rcu_read_lock(); 2178 2179 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2180 folio = xas_next(&xas)) { 2181 if (xas_retry(&xas, folio)) 2182 continue; 2183 /* 2184 * If the entry has been swapped out, we can stop looking. 2185 * No current caller is looking for DAX entries. 2186 */ 2187 if (xa_is_value(folio)) 2188 goto update_start; 2189 2190 /* If we landed in the middle of a THP, continue at its end. */ 2191 if (xa_is_sibling(folio)) 2192 goto update_start; 2193 2194 if (!folio_try_get(folio)) 2195 goto retry; 2196 2197 if (unlikely(folio != xas_reload(&xas))) 2198 goto put_folio; 2199 2200 if (!folio_batch_add(fbatch, folio)) { 2201 nr = folio_nr_pages(folio); 2202 *start = folio->index + nr; 2203 goto out; 2204 } 2205 continue; 2206 put_folio: 2207 folio_put(folio); 2208 2209 retry: 2210 xas_reset(&xas); 2211 } 2212 2213 update_start: 2214 nr = folio_batch_count(fbatch); 2215 2216 if (nr) { 2217 folio = fbatch->folios[nr - 1]; 2218 *start = folio_next_index(folio); 2219 } 2220 out: 2221 rcu_read_unlock(); 2222 return folio_batch_count(fbatch); 2223 } 2224 EXPORT_SYMBOL(filemap_get_folios_contig); 2225 2226 /** 2227 * filemap_get_folios_tag - Get a batch of folios matching @tag 2228 * @mapping: The address_space to search 2229 * @start: The starting page index 2230 * @end: The final page index (inclusive) 2231 * @tag: The tag index 2232 * @fbatch: The batch to fill 2233 * 2234 * The first folio may start before @start; if it does, it will contain 2235 * @start. The final folio may extend beyond @end; if it does, it will 2236 * contain @end. The folios have ascending indices. There may be gaps 2237 * between the folios if there are indices which have no folio in the 2238 * page cache. If folios are added to or removed from the page cache 2239 * while this is running, they may or may not be found by this call. 2240 * Only returns folios that are tagged with @tag. 2241 * 2242 * Return: The number of folios found. 2243 * Also update @start to index the next folio for traversal. 2244 */ 2245 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2246 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2247 { 2248 XA_STATE(xas, &mapping->i_pages, *start); 2249 struct folio *folio; 2250 2251 rcu_read_lock(); 2252 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2253 /* 2254 * Shadow entries should never be tagged, but this iteration 2255 * is lockless so there is a window for page reclaim to evict 2256 * a page we saw tagged. Skip over it. 2257 */ 2258 if (xa_is_value(folio)) 2259 continue; 2260 if (!folio_batch_add(fbatch, folio)) { 2261 unsigned long nr = folio_nr_pages(folio); 2262 *start = folio->index + nr; 2263 goto out; 2264 } 2265 } 2266 /* 2267 * We come here when there is no page beyond @end. We take care to not 2268 * overflow the index @start as it confuses some of the callers. This 2269 * breaks the iteration when there is a page at index -1 but that is 2270 * already broke anyway. 2271 */ 2272 if (end == (pgoff_t)-1) 2273 *start = (pgoff_t)-1; 2274 else 2275 *start = end + 1; 2276 out: 2277 rcu_read_unlock(); 2278 2279 return folio_batch_count(fbatch); 2280 } 2281 EXPORT_SYMBOL(filemap_get_folios_tag); 2282 2283 /* 2284 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2285 * a _large_ part of the i/o request. Imagine the worst scenario: 2286 * 2287 * ---R__________________________________________B__________ 2288 * ^ reading here ^ bad block(assume 4k) 2289 * 2290 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2291 * => failing the whole request => read(R) => read(R+1) => 2292 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2293 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2294 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2295 * 2296 * It is going insane. Fix it by quickly scaling down the readahead size. 2297 */ 2298 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2299 { 2300 ra->ra_pages /= 4; 2301 } 2302 2303 /* 2304 * filemap_get_read_batch - Get a batch of folios for read 2305 * 2306 * Get a batch of folios which represent a contiguous range of bytes in 2307 * the file. No exceptional entries will be returned. If @index is in 2308 * the middle of a folio, the entire folio will be returned. The last 2309 * folio in the batch may have the readahead flag set or the uptodate flag 2310 * clear so that the caller can take the appropriate action. 2311 */ 2312 static void filemap_get_read_batch(struct address_space *mapping, 2313 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2314 { 2315 XA_STATE(xas, &mapping->i_pages, index); 2316 struct folio *folio; 2317 2318 rcu_read_lock(); 2319 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2320 if (xas_retry(&xas, folio)) 2321 continue; 2322 if (xas.xa_index > max || xa_is_value(folio)) 2323 break; 2324 if (xa_is_sibling(folio)) 2325 break; 2326 if (!folio_try_get(folio)) 2327 goto retry; 2328 2329 if (unlikely(folio != xas_reload(&xas))) 2330 goto put_folio; 2331 2332 if (!folio_batch_add(fbatch, folio)) 2333 break; 2334 if (!folio_test_uptodate(folio)) 2335 break; 2336 if (folio_test_readahead(folio)) 2337 break; 2338 xas_advance(&xas, folio_next_index(folio) - 1); 2339 continue; 2340 put_folio: 2341 folio_put(folio); 2342 retry: 2343 xas_reset(&xas); 2344 } 2345 rcu_read_unlock(); 2346 } 2347 2348 static int filemap_read_folio(struct file *file, filler_t filler, 2349 struct folio *folio) 2350 { 2351 bool workingset = folio_test_workingset(folio); 2352 unsigned long pflags; 2353 int error; 2354 2355 /* Start the actual read. The read will unlock the page. */ 2356 if (unlikely(workingset)) 2357 psi_memstall_enter(&pflags); 2358 error = filler(file, folio); 2359 if (unlikely(workingset)) 2360 psi_memstall_leave(&pflags); 2361 if (error) 2362 return error; 2363 2364 error = folio_wait_locked_killable(folio); 2365 if (error) 2366 return error; 2367 if (folio_test_uptodate(folio)) 2368 return 0; 2369 if (file) 2370 shrink_readahead_size_eio(&file->f_ra); 2371 return -EIO; 2372 } 2373 2374 static bool filemap_range_uptodate(struct address_space *mapping, 2375 loff_t pos, size_t count, struct folio *folio, 2376 bool need_uptodate) 2377 { 2378 if (folio_test_uptodate(folio)) 2379 return true; 2380 /* pipes can't handle partially uptodate pages */ 2381 if (need_uptodate) 2382 return false; 2383 if (!mapping->a_ops->is_partially_uptodate) 2384 return false; 2385 if (mapping->host->i_blkbits >= folio_shift(folio)) 2386 return false; 2387 2388 if (folio_pos(folio) > pos) { 2389 count -= folio_pos(folio) - pos; 2390 pos = 0; 2391 } else { 2392 pos -= folio_pos(folio); 2393 } 2394 2395 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2396 } 2397 2398 static int filemap_update_page(struct kiocb *iocb, 2399 struct address_space *mapping, size_t count, 2400 struct folio *folio, bool need_uptodate) 2401 { 2402 int error; 2403 2404 if (iocb->ki_flags & IOCB_NOWAIT) { 2405 if (!filemap_invalidate_trylock_shared(mapping)) 2406 return -EAGAIN; 2407 } else { 2408 filemap_invalidate_lock_shared(mapping); 2409 } 2410 2411 if (!folio_trylock(folio)) { 2412 error = -EAGAIN; 2413 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2414 goto unlock_mapping; 2415 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2416 filemap_invalidate_unlock_shared(mapping); 2417 /* 2418 * This is where we usually end up waiting for a 2419 * previously submitted readahead to finish. 2420 */ 2421 folio_put_wait_locked(folio, TASK_KILLABLE); 2422 return AOP_TRUNCATED_PAGE; 2423 } 2424 error = __folio_lock_async(folio, iocb->ki_waitq); 2425 if (error) 2426 goto unlock_mapping; 2427 } 2428 2429 error = AOP_TRUNCATED_PAGE; 2430 if (!folio->mapping) 2431 goto unlock; 2432 2433 error = 0; 2434 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2435 need_uptodate)) 2436 goto unlock; 2437 2438 error = -EAGAIN; 2439 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2440 goto unlock; 2441 2442 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2443 folio); 2444 goto unlock_mapping; 2445 unlock: 2446 folio_unlock(folio); 2447 unlock_mapping: 2448 filemap_invalidate_unlock_shared(mapping); 2449 if (error == AOP_TRUNCATED_PAGE) 2450 folio_put(folio); 2451 return error; 2452 } 2453 2454 static int filemap_create_folio(struct file *file, 2455 struct address_space *mapping, loff_t pos, 2456 struct folio_batch *fbatch) 2457 { 2458 struct folio *folio; 2459 int error; 2460 unsigned int min_order = mapping_min_folio_order(mapping); 2461 pgoff_t index; 2462 2463 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2464 if (!folio) 2465 return -ENOMEM; 2466 2467 /* 2468 * Protect against truncate / hole punch. Grabbing invalidate_lock 2469 * here assures we cannot instantiate and bring uptodate new 2470 * pagecache folios after evicting page cache during truncate 2471 * and before actually freeing blocks. Note that we could 2472 * release invalidate_lock after inserting the folio into 2473 * the page cache as the locked folio would then be enough to 2474 * synchronize with hole punching. But there are code paths 2475 * such as filemap_update_page() filling in partially uptodate 2476 * pages or ->readahead() that need to hold invalidate_lock 2477 * while mapping blocks for IO so let's hold the lock here as 2478 * well to keep locking rules simple. 2479 */ 2480 filemap_invalidate_lock_shared(mapping); 2481 index = (pos >> (PAGE_SHIFT + min_order)) << min_order; 2482 error = filemap_add_folio(mapping, folio, index, 2483 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2484 if (error == -EEXIST) 2485 error = AOP_TRUNCATED_PAGE; 2486 if (error) 2487 goto error; 2488 2489 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2490 if (error) 2491 goto error; 2492 2493 filemap_invalidate_unlock_shared(mapping); 2494 folio_batch_add(fbatch, folio); 2495 return 0; 2496 error: 2497 filemap_invalidate_unlock_shared(mapping); 2498 folio_put(folio); 2499 return error; 2500 } 2501 2502 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2503 struct address_space *mapping, struct folio *folio, 2504 pgoff_t last_index) 2505 { 2506 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2507 2508 if (iocb->ki_flags & IOCB_NOIO) 2509 return -EAGAIN; 2510 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2511 return 0; 2512 } 2513 2514 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2515 struct folio_batch *fbatch, bool need_uptodate) 2516 { 2517 struct file *filp = iocb->ki_filp; 2518 struct address_space *mapping = filp->f_mapping; 2519 struct file_ra_state *ra = &filp->f_ra; 2520 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2521 pgoff_t last_index; 2522 struct folio *folio; 2523 unsigned int flags; 2524 int err = 0; 2525 2526 /* "last_index" is the index of the page beyond the end of the read */ 2527 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2528 retry: 2529 if (fatal_signal_pending(current)) 2530 return -EINTR; 2531 2532 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2533 if (!folio_batch_count(fbatch)) { 2534 if (iocb->ki_flags & IOCB_NOIO) 2535 return -EAGAIN; 2536 if (iocb->ki_flags & IOCB_NOWAIT) 2537 flags = memalloc_noio_save(); 2538 page_cache_sync_readahead(mapping, ra, filp, index, 2539 last_index - index); 2540 if (iocb->ki_flags & IOCB_NOWAIT) 2541 memalloc_noio_restore(flags); 2542 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2543 } 2544 if (!folio_batch_count(fbatch)) { 2545 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2546 return -EAGAIN; 2547 err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch); 2548 if (err == AOP_TRUNCATED_PAGE) 2549 goto retry; 2550 return err; 2551 } 2552 2553 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2554 if (folio_test_readahead(folio)) { 2555 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2556 if (err) 2557 goto err; 2558 } 2559 if (!folio_test_uptodate(folio)) { 2560 if ((iocb->ki_flags & IOCB_WAITQ) && 2561 folio_batch_count(fbatch) > 1) 2562 iocb->ki_flags |= IOCB_NOWAIT; 2563 err = filemap_update_page(iocb, mapping, count, folio, 2564 need_uptodate); 2565 if (err) 2566 goto err; 2567 } 2568 2569 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2570 return 0; 2571 err: 2572 if (err < 0) 2573 folio_put(folio); 2574 if (likely(--fbatch->nr)) 2575 return 0; 2576 if (err == AOP_TRUNCATED_PAGE) 2577 goto retry; 2578 return err; 2579 } 2580 2581 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2582 { 2583 unsigned int shift = folio_shift(folio); 2584 2585 return (pos1 >> shift == pos2 >> shift); 2586 } 2587 2588 /** 2589 * filemap_read - Read data from the page cache. 2590 * @iocb: The iocb to read. 2591 * @iter: Destination for the data. 2592 * @already_read: Number of bytes already read by the caller. 2593 * 2594 * Copies data from the page cache. If the data is not currently present, 2595 * uses the readahead and read_folio address_space operations to fetch it. 2596 * 2597 * Return: Total number of bytes copied, including those already read by 2598 * the caller. If an error happens before any bytes are copied, returns 2599 * a negative error number. 2600 */ 2601 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2602 ssize_t already_read) 2603 { 2604 struct file *filp = iocb->ki_filp; 2605 struct file_ra_state *ra = &filp->f_ra; 2606 struct address_space *mapping = filp->f_mapping; 2607 struct inode *inode = mapping->host; 2608 struct folio_batch fbatch; 2609 int i, error = 0; 2610 bool writably_mapped; 2611 loff_t isize, end_offset; 2612 loff_t last_pos = ra->prev_pos; 2613 2614 if (unlikely(iocb->ki_pos < 0)) 2615 return -EINVAL; 2616 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2617 return 0; 2618 if (unlikely(!iov_iter_count(iter))) 2619 return 0; 2620 2621 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2622 folio_batch_init(&fbatch); 2623 2624 do { 2625 cond_resched(); 2626 2627 /* 2628 * If we've already successfully copied some data, then we 2629 * can no longer safely return -EIOCBQUEUED. Hence mark 2630 * an async read NOWAIT at that point. 2631 */ 2632 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2633 iocb->ki_flags |= IOCB_NOWAIT; 2634 2635 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2636 break; 2637 2638 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2639 if (error < 0) 2640 break; 2641 2642 /* 2643 * i_size must be checked after we know the pages are Uptodate. 2644 * 2645 * Checking i_size after the check allows us to calculate 2646 * the correct value for "nr", which means the zero-filled 2647 * part of the page is not copied back to userspace (unless 2648 * another truncate extends the file - this is desired though). 2649 */ 2650 isize = i_size_read(inode); 2651 if (unlikely(iocb->ki_pos >= isize)) 2652 goto put_folios; 2653 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2654 2655 /* 2656 * Once we start copying data, we don't want to be touching any 2657 * cachelines that might be contended: 2658 */ 2659 writably_mapped = mapping_writably_mapped(mapping); 2660 2661 /* 2662 * When a read accesses the same folio several times, only 2663 * mark it as accessed the first time. 2664 */ 2665 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2666 fbatch.folios[0])) 2667 folio_mark_accessed(fbatch.folios[0]); 2668 2669 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2670 struct folio *folio = fbatch.folios[i]; 2671 size_t fsize = folio_size(folio); 2672 size_t offset = iocb->ki_pos & (fsize - 1); 2673 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2674 fsize - offset); 2675 size_t copied; 2676 2677 if (end_offset < folio_pos(folio)) 2678 break; 2679 if (i > 0) 2680 folio_mark_accessed(folio); 2681 /* 2682 * If users can be writing to this folio using arbitrary 2683 * virtual addresses, take care of potential aliasing 2684 * before reading the folio on the kernel side. 2685 */ 2686 if (writably_mapped) 2687 flush_dcache_folio(folio); 2688 2689 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2690 2691 already_read += copied; 2692 iocb->ki_pos += copied; 2693 last_pos = iocb->ki_pos; 2694 2695 if (copied < bytes) { 2696 error = -EFAULT; 2697 break; 2698 } 2699 } 2700 put_folios: 2701 for (i = 0; i < folio_batch_count(&fbatch); i++) 2702 folio_put(fbatch.folios[i]); 2703 folio_batch_init(&fbatch); 2704 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2705 2706 file_accessed(filp); 2707 ra->prev_pos = last_pos; 2708 return already_read ? already_read : error; 2709 } 2710 EXPORT_SYMBOL_GPL(filemap_read); 2711 2712 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2713 { 2714 struct address_space *mapping = iocb->ki_filp->f_mapping; 2715 loff_t pos = iocb->ki_pos; 2716 loff_t end = pos + count - 1; 2717 2718 if (iocb->ki_flags & IOCB_NOWAIT) { 2719 if (filemap_range_needs_writeback(mapping, pos, end)) 2720 return -EAGAIN; 2721 return 0; 2722 } 2723 2724 return filemap_write_and_wait_range(mapping, pos, end); 2725 } 2726 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2727 2728 int filemap_invalidate_pages(struct address_space *mapping, 2729 loff_t pos, loff_t end, bool nowait) 2730 { 2731 int ret; 2732 2733 if (nowait) { 2734 /* we could block if there are any pages in the range */ 2735 if (filemap_range_has_page(mapping, pos, end)) 2736 return -EAGAIN; 2737 } else { 2738 ret = filemap_write_and_wait_range(mapping, pos, end); 2739 if (ret) 2740 return ret; 2741 } 2742 2743 /* 2744 * After a write we want buffered reads to be sure to go to disk to get 2745 * the new data. We invalidate clean cached page from the region we're 2746 * about to write. We do this *before* the write so that we can return 2747 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2748 */ 2749 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2750 end >> PAGE_SHIFT); 2751 } 2752 2753 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2754 { 2755 struct address_space *mapping = iocb->ki_filp->f_mapping; 2756 2757 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2758 iocb->ki_pos + count - 1, 2759 iocb->ki_flags & IOCB_NOWAIT); 2760 } 2761 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2762 2763 /** 2764 * generic_file_read_iter - generic filesystem read routine 2765 * @iocb: kernel I/O control block 2766 * @iter: destination for the data read 2767 * 2768 * This is the "read_iter()" routine for all filesystems 2769 * that can use the page cache directly. 2770 * 2771 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2772 * be returned when no data can be read without waiting for I/O requests 2773 * to complete; it doesn't prevent readahead. 2774 * 2775 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2776 * requests shall be made for the read or for readahead. When no data 2777 * can be read, -EAGAIN shall be returned. When readahead would be 2778 * triggered, a partial, possibly empty read shall be returned. 2779 * 2780 * Return: 2781 * * number of bytes copied, even for partial reads 2782 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2783 */ 2784 ssize_t 2785 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2786 { 2787 size_t count = iov_iter_count(iter); 2788 ssize_t retval = 0; 2789 2790 if (!count) 2791 return 0; /* skip atime */ 2792 2793 if (iocb->ki_flags & IOCB_DIRECT) { 2794 struct file *file = iocb->ki_filp; 2795 struct address_space *mapping = file->f_mapping; 2796 struct inode *inode = mapping->host; 2797 2798 retval = kiocb_write_and_wait(iocb, count); 2799 if (retval < 0) 2800 return retval; 2801 file_accessed(file); 2802 2803 retval = mapping->a_ops->direct_IO(iocb, iter); 2804 if (retval >= 0) { 2805 iocb->ki_pos += retval; 2806 count -= retval; 2807 } 2808 if (retval != -EIOCBQUEUED) 2809 iov_iter_revert(iter, count - iov_iter_count(iter)); 2810 2811 /* 2812 * Btrfs can have a short DIO read if we encounter 2813 * compressed extents, so if there was an error, or if 2814 * we've already read everything we wanted to, or if 2815 * there was a short read because we hit EOF, go ahead 2816 * and return. Otherwise fallthrough to buffered io for 2817 * the rest of the read. Buffered reads will not work for 2818 * DAX files, so don't bother trying. 2819 */ 2820 if (retval < 0 || !count || IS_DAX(inode)) 2821 return retval; 2822 if (iocb->ki_pos >= i_size_read(inode)) 2823 return retval; 2824 } 2825 2826 return filemap_read(iocb, iter, retval); 2827 } 2828 EXPORT_SYMBOL(generic_file_read_iter); 2829 2830 /* 2831 * Splice subpages from a folio into a pipe. 2832 */ 2833 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2834 struct folio *folio, loff_t fpos, size_t size) 2835 { 2836 struct page *page; 2837 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2838 2839 page = folio_page(folio, offset / PAGE_SIZE); 2840 size = min(size, folio_size(folio) - offset); 2841 offset %= PAGE_SIZE; 2842 2843 while (spliced < size && 2844 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2845 struct pipe_buffer *buf = pipe_head_buf(pipe); 2846 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2847 2848 *buf = (struct pipe_buffer) { 2849 .ops = &page_cache_pipe_buf_ops, 2850 .page = page, 2851 .offset = offset, 2852 .len = part, 2853 }; 2854 folio_get(folio); 2855 pipe->head++; 2856 page++; 2857 spliced += part; 2858 offset = 0; 2859 } 2860 2861 return spliced; 2862 } 2863 2864 /** 2865 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2866 * @in: The file to read from 2867 * @ppos: Pointer to the file position to read from 2868 * @pipe: The pipe to splice into 2869 * @len: The amount to splice 2870 * @flags: The SPLICE_F_* flags 2871 * 2872 * This function gets folios from a file's pagecache and splices them into the 2873 * pipe. Readahead will be called as necessary to fill more folios. This may 2874 * be used for blockdevs also. 2875 * 2876 * Return: On success, the number of bytes read will be returned and *@ppos 2877 * will be updated if appropriate; 0 will be returned if there is no more data 2878 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2879 * other negative error code will be returned on error. A short read may occur 2880 * if the pipe has insufficient space, we reach the end of the data or we hit a 2881 * hole. 2882 */ 2883 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2884 struct pipe_inode_info *pipe, 2885 size_t len, unsigned int flags) 2886 { 2887 struct folio_batch fbatch; 2888 struct kiocb iocb; 2889 size_t total_spliced = 0, used, npages; 2890 loff_t isize, end_offset; 2891 bool writably_mapped; 2892 int i, error = 0; 2893 2894 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2895 return 0; 2896 2897 init_sync_kiocb(&iocb, in); 2898 iocb.ki_pos = *ppos; 2899 2900 /* Work out how much data we can actually add into the pipe */ 2901 used = pipe_occupancy(pipe->head, pipe->tail); 2902 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2903 len = min_t(size_t, len, npages * PAGE_SIZE); 2904 2905 folio_batch_init(&fbatch); 2906 2907 do { 2908 cond_resched(); 2909 2910 if (*ppos >= i_size_read(in->f_mapping->host)) 2911 break; 2912 2913 iocb.ki_pos = *ppos; 2914 error = filemap_get_pages(&iocb, len, &fbatch, true); 2915 if (error < 0) 2916 break; 2917 2918 /* 2919 * i_size must be checked after we know the pages are Uptodate. 2920 * 2921 * Checking i_size after the check allows us to calculate 2922 * the correct value for "nr", which means the zero-filled 2923 * part of the page is not copied back to userspace (unless 2924 * another truncate extends the file - this is desired though). 2925 */ 2926 isize = i_size_read(in->f_mapping->host); 2927 if (unlikely(*ppos >= isize)) 2928 break; 2929 end_offset = min_t(loff_t, isize, *ppos + len); 2930 2931 /* 2932 * Once we start copying data, we don't want to be touching any 2933 * cachelines that might be contended: 2934 */ 2935 writably_mapped = mapping_writably_mapped(in->f_mapping); 2936 2937 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2938 struct folio *folio = fbatch.folios[i]; 2939 size_t n; 2940 2941 if (folio_pos(folio) >= end_offset) 2942 goto out; 2943 folio_mark_accessed(folio); 2944 2945 /* 2946 * If users can be writing to this folio using arbitrary 2947 * virtual addresses, take care of potential aliasing 2948 * before reading the folio on the kernel side. 2949 */ 2950 if (writably_mapped) 2951 flush_dcache_folio(folio); 2952 2953 n = min_t(loff_t, len, isize - *ppos); 2954 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2955 if (!n) 2956 goto out; 2957 len -= n; 2958 total_spliced += n; 2959 *ppos += n; 2960 in->f_ra.prev_pos = *ppos; 2961 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2962 goto out; 2963 } 2964 2965 folio_batch_release(&fbatch); 2966 } while (len); 2967 2968 out: 2969 folio_batch_release(&fbatch); 2970 file_accessed(in); 2971 2972 return total_spliced ? total_spliced : error; 2973 } 2974 EXPORT_SYMBOL(filemap_splice_read); 2975 2976 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2977 struct address_space *mapping, struct folio *folio, 2978 loff_t start, loff_t end, bool seek_data) 2979 { 2980 const struct address_space_operations *ops = mapping->a_ops; 2981 size_t offset, bsz = i_blocksize(mapping->host); 2982 2983 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2984 return seek_data ? start : end; 2985 if (!ops->is_partially_uptodate) 2986 return seek_data ? end : start; 2987 2988 xas_pause(xas); 2989 rcu_read_unlock(); 2990 folio_lock(folio); 2991 if (unlikely(folio->mapping != mapping)) 2992 goto unlock; 2993 2994 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2995 2996 do { 2997 if (ops->is_partially_uptodate(folio, offset, bsz) == 2998 seek_data) 2999 break; 3000 start = (start + bsz) & ~((u64)bsz - 1); 3001 offset += bsz; 3002 } while (offset < folio_size(folio)); 3003 unlock: 3004 folio_unlock(folio); 3005 rcu_read_lock(); 3006 return start; 3007 } 3008 3009 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3010 { 3011 if (xa_is_value(folio)) 3012 return PAGE_SIZE << xas_get_order(xas); 3013 return folio_size(folio); 3014 } 3015 3016 /** 3017 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3018 * @mapping: Address space to search. 3019 * @start: First byte to consider. 3020 * @end: Limit of search (exclusive). 3021 * @whence: Either SEEK_HOLE or SEEK_DATA. 3022 * 3023 * If the page cache knows which blocks contain holes and which blocks 3024 * contain data, your filesystem can use this function to implement 3025 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3026 * entirely memory-based such as tmpfs, and filesystems which support 3027 * unwritten extents. 3028 * 3029 * Return: The requested offset on success, or -ENXIO if @whence specifies 3030 * SEEK_DATA and there is no data after @start. There is an implicit hole 3031 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3032 * and @end contain data. 3033 */ 3034 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3035 loff_t end, int whence) 3036 { 3037 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3038 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3039 bool seek_data = (whence == SEEK_DATA); 3040 struct folio *folio; 3041 3042 if (end <= start) 3043 return -ENXIO; 3044 3045 rcu_read_lock(); 3046 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3047 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3048 size_t seek_size; 3049 3050 if (start < pos) { 3051 if (!seek_data) 3052 goto unlock; 3053 start = pos; 3054 } 3055 3056 seek_size = seek_folio_size(&xas, folio); 3057 pos = round_up((u64)pos + 1, seek_size); 3058 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3059 seek_data); 3060 if (start < pos) 3061 goto unlock; 3062 if (start >= end) 3063 break; 3064 if (seek_size > PAGE_SIZE) 3065 xas_set(&xas, pos >> PAGE_SHIFT); 3066 if (!xa_is_value(folio)) 3067 folio_put(folio); 3068 } 3069 if (seek_data) 3070 start = -ENXIO; 3071 unlock: 3072 rcu_read_unlock(); 3073 if (folio && !xa_is_value(folio)) 3074 folio_put(folio); 3075 if (start > end) 3076 return end; 3077 return start; 3078 } 3079 3080 #ifdef CONFIG_MMU 3081 #define MMAP_LOTSAMISS (100) 3082 /* 3083 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3084 * @vmf - the vm_fault for this fault. 3085 * @folio - the folio to lock. 3086 * @fpin - the pointer to the file we may pin (or is already pinned). 3087 * 3088 * This works similar to lock_folio_or_retry in that it can drop the 3089 * mmap_lock. It differs in that it actually returns the folio locked 3090 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3091 * to drop the mmap_lock then fpin will point to the pinned file and 3092 * needs to be fput()'ed at a later point. 3093 */ 3094 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3095 struct file **fpin) 3096 { 3097 if (folio_trylock(folio)) 3098 return 1; 3099 3100 /* 3101 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3102 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3103 * is supposed to work. We have way too many special cases.. 3104 */ 3105 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3106 return 0; 3107 3108 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3109 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3110 if (__folio_lock_killable(folio)) { 3111 /* 3112 * We didn't have the right flags to drop the 3113 * fault lock, but all fault_handlers only check 3114 * for fatal signals if we return VM_FAULT_RETRY, 3115 * so we need to drop the fault lock here and 3116 * return 0 if we don't have a fpin. 3117 */ 3118 if (*fpin == NULL) 3119 release_fault_lock(vmf); 3120 return 0; 3121 } 3122 } else 3123 __folio_lock(folio); 3124 3125 return 1; 3126 } 3127 3128 /* 3129 * Synchronous readahead happens when we don't even find a page in the page 3130 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3131 * to drop the mmap sem we return the file that was pinned in order for us to do 3132 * that. If we didn't pin a file then we return NULL. The file that is 3133 * returned needs to be fput()'ed when we're done with it. 3134 */ 3135 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3136 { 3137 struct file *file = vmf->vma->vm_file; 3138 struct file_ra_state *ra = &file->f_ra; 3139 struct address_space *mapping = file->f_mapping; 3140 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3141 struct file *fpin = NULL; 3142 unsigned long vm_flags = vmf->vma->vm_flags; 3143 unsigned int mmap_miss; 3144 3145 /* 3146 * If we have pre-content watches we need to disable readahead to make 3147 * sure that we don't populate our mapping with 0 filled pages that we 3148 * never emitted an event for. 3149 */ 3150 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3151 return fpin; 3152 3153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3154 /* Use the readahead code, even if readahead is disabled */ 3155 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3156 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3157 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3158 ra->size = HPAGE_PMD_NR; 3159 /* 3160 * Fetch two PMD folios, so we get the chance to actually 3161 * readahead, unless we've been told not to. 3162 */ 3163 if (!(vm_flags & VM_RAND_READ)) 3164 ra->size *= 2; 3165 ra->async_size = HPAGE_PMD_NR; 3166 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3167 return fpin; 3168 } 3169 #endif 3170 3171 /* If we don't want any read-ahead, don't bother */ 3172 if (vm_flags & VM_RAND_READ) 3173 return fpin; 3174 if (!ra->ra_pages) 3175 return fpin; 3176 3177 if (vm_flags & VM_SEQ_READ) { 3178 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3179 page_cache_sync_ra(&ractl, ra->ra_pages); 3180 return fpin; 3181 } 3182 3183 /* Avoid banging the cache line if not needed */ 3184 mmap_miss = READ_ONCE(ra->mmap_miss); 3185 if (mmap_miss < MMAP_LOTSAMISS * 10) 3186 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3187 3188 /* 3189 * Do we miss much more than hit in this file? If so, 3190 * stop bothering with read-ahead. It will only hurt. 3191 */ 3192 if (mmap_miss > MMAP_LOTSAMISS) 3193 return fpin; 3194 3195 /* 3196 * mmap read-around 3197 */ 3198 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3199 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3200 ra->size = ra->ra_pages; 3201 ra->async_size = ra->ra_pages / 4; 3202 ractl._index = ra->start; 3203 page_cache_ra_order(&ractl, ra, 0); 3204 return fpin; 3205 } 3206 3207 /* 3208 * Asynchronous readahead happens when we find the page and PG_readahead, 3209 * so we want to possibly extend the readahead further. We return the file that 3210 * was pinned if we have to drop the mmap_lock in order to do IO. 3211 */ 3212 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3213 struct folio *folio) 3214 { 3215 struct file *file = vmf->vma->vm_file; 3216 struct file_ra_state *ra = &file->f_ra; 3217 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3218 struct file *fpin = NULL; 3219 unsigned int mmap_miss; 3220 3221 /* See comment in do_sync_mmap_readahead. */ 3222 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) 3223 return fpin; 3224 3225 /* If we don't want any read-ahead, don't bother */ 3226 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3227 return fpin; 3228 3229 mmap_miss = READ_ONCE(ra->mmap_miss); 3230 if (mmap_miss) 3231 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3232 3233 if (folio_test_readahead(folio)) { 3234 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3235 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3236 } 3237 return fpin; 3238 } 3239 3240 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3241 { 3242 struct vm_area_struct *vma = vmf->vma; 3243 vm_fault_t ret = 0; 3244 pte_t *ptep; 3245 3246 /* 3247 * We might have COW'ed a pagecache folio and might now have an mlocked 3248 * anon folio mapped. The original pagecache folio is not mlocked and 3249 * might have been evicted. During a read+clear/modify/write update of 3250 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3251 * temporarily clear the PTE under PT lock and might detect it here as 3252 * "none" when not holding the PT lock. 3253 * 3254 * Not rechecking the PTE under PT lock could result in an unexpected 3255 * major fault in an mlock'ed region. Recheck only for this special 3256 * scenario while holding the PT lock, to not degrade non-mlocked 3257 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3258 * the number of times we hold PT lock. 3259 */ 3260 if (!(vma->vm_flags & VM_LOCKED)) 3261 return 0; 3262 3263 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3264 return 0; 3265 3266 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3267 &vmf->ptl); 3268 if (unlikely(!ptep)) 3269 return VM_FAULT_NOPAGE; 3270 3271 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3272 ret = VM_FAULT_NOPAGE; 3273 } else { 3274 spin_lock(vmf->ptl); 3275 if (unlikely(!pte_none(ptep_get(ptep)))) 3276 ret = VM_FAULT_NOPAGE; 3277 spin_unlock(vmf->ptl); 3278 } 3279 pte_unmap(ptep); 3280 return ret; 3281 } 3282 3283 /** 3284 * filemap_fsnotify_fault - maybe emit a pre-content event. 3285 * @vmf: struct vm_fault containing details of the fault. 3286 * 3287 * If we have a pre-content watch on this file we will emit an event for this 3288 * range. If we return anything the fault caller should return immediately, we 3289 * will return VM_FAULT_RETRY if we had to emit an event, which will trigger the 3290 * fault again and then the fault handler will run the second time through. 3291 * 3292 * Return: a bitwise-OR of %VM_FAULT_ codes, 0 if nothing happened. 3293 */ 3294 vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf) 3295 { 3296 struct file *fpin = NULL; 3297 int mask = (vmf->flags & FAULT_FLAG_WRITE) ? MAY_WRITE : MAY_ACCESS; 3298 loff_t pos = vmf->pgoff >> PAGE_SHIFT; 3299 size_t count = PAGE_SIZE; 3300 int err; 3301 3302 /* 3303 * We already did this and now we're retrying with everything locked, 3304 * don't emit the event and continue. 3305 */ 3306 if (vmf->flags & FAULT_FLAG_TRIED) 3307 return 0; 3308 3309 /* No watches, we're done. */ 3310 if (likely(!FMODE_FSNOTIFY_HSM(vmf->vma->vm_file->f_mode))) 3311 return 0; 3312 3313 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3314 if (!fpin) 3315 return VM_FAULT_SIGBUS; 3316 3317 err = fsnotify_file_area_perm(fpin, mask, &pos, count); 3318 fput(fpin); 3319 if (err) 3320 return VM_FAULT_SIGBUS; 3321 return VM_FAULT_RETRY; 3322 } 3323 EXPORT_SYMBOL_GPL(filemap_fsnotify_fault); 3324 3325 /** 3326 * filemap_fault - read in file data for page fault handling 3327 * @vmf: struct vm_fault containing details of the fault 3328 * 3329 * filemap_fault() is invoked via the vma operations vector for a 3330 * mapped memory region to read in file data during a page fault. 3331 * 3332 * The goto's are kind of ugly, but this streamlines the normal case of having 3333 * it in the page cache, and handles the special cases reasonably without 3334 * having a lot of duplicated code. 3335 * 3336 * vma->vm_mm->mmap_lock must be held on entry. 3337 * 3338 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3339 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3340 * 3341 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3342 * has not been released. 3343 * 3344 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3345 * 3346 * Return: bitwise-OR of %VM_FAULT_ codes. 3347 */ 3348 vm_fault_t filemap_fault(struct vm_fault *vmf) 3349 { 3350 int error; 3351 struct file *file = vmf->vma->vm_file; 3352 struct file *fpin = NULL; 3353 struct address_space *mapping = file->f_mapping; 3354 struct inode *inode = mapping->host; 3355 pgoff_t max_idx, index = vmf->pgoff; 3356 struct folio *folio; 3357 vm_fault_t ret = 0; 3358 bool mapping_locked = false; 3359 3360 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3361 if (unlikely(index >= max_idx)) 3362 return VM_FAULT_SIGBUS; 3363 3364 trace_mm_filemap_fault(mapping, index); 3365 3366 /* 3367 * Do we have something in the page cache already? 3368 */ 3369 folio = filemap_get_folio(mapping, index); 3370 if (likely(!IS_ERR(folio))) { 3371 /* 3372 * We found the page, so try async readahead before waiting for 3373 * the lock. 3374 */ 3375 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3376 fpin = do_async_mmap_readahead(vmf, folio); 3377 if (unlikely(!folio_test_uptodate(folio))) { 3378 filemap_invalidate_lock_shared(mapping); 3379 mapping_locked = true; 3380 } 3381 } else { 3382 ret = filemap_fault_recheck_pte_none(vmf); 3383 if (unlikely(ret)) 3384 return ret; 3385 3386 /* No page in the page cache at all */ 3387 count_vm_event(PGMAJFAULT); 3388 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3389 ret = VM_FAULT_MAJOR; 3390 fpin = do_sync_mmap_readahead(vmf); 3391 retry_find: 3392 /* 3393 * See comment in filemap_create_folio() why we need 3394 * invalidate_lock 3395 */ 3396 if (!mapping_locked) { 3397 filemap_invalidate_lock_shared(mapping); 3398 mapping_locked = true; 3399 } 3400 folio = __filemap_get_folio(mapping, index, 3401 FGP_CREAT|FGP_FOR_MMAP, 3402 vmf->gfp_mask); 3403 if (IS_ERR(folio)) { 3404 if (fpin) 3405 goto out_retry; 3406 filemap_invalidate_unlock_shared(mapping); 3407 return VM_FAULT_OOM; 3408 } 3409 } 3410 3411 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3412 goto out_retry; 3413 3414 /* Did it get truncated? */ 3415 if (unlikely(folio->mapping != mapping)) { 3416 folio_unlock(folio); 3417 folio_put(folio); 3418 goto retry_find; 3419 } 3420 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3421 3422 /* 3423 * We have a locked folio in the page cache, now we need to check 3424 * that it's up-to-date. If not, it is going to be due to an error, 3425 * or because readahead was otherwise unable to retrieve it. 3426 */ 3427 if (unlikely(!folio_test_uptodate(folio))) { 3428 /* 3429 * If this is a precontent file we have can now emit an event to 3430 * try and populate the folio. 3431 */ 3432 if (!(vmf->flags & FAULT_FLAG_TRIED) && 3433 unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) { 3434 loff_t pos = folio_pos(folio); 3435 size_t count = folio_size(folio); 3436 3437 /* We're NOWAIT, we have to retry. */ 3438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) { 3439 folio_unlock(folio); 3440 goto out_retry; 3441 } 3442 3443 if (mapping_locked) 3444 filemap_invalidate_unlock_shared(mapping); 3445 mapping_locked = false; 3446 3447 folio_unlock(folio); 3448 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3449 if (!fpin) 3450 goto out_retry; 3451 3452 error = fsnotify_file_area_perm(fpin, MAY_ACCESS, &pos, 3453 count); 3454 if (error) 3455 ret = VM_FAULT_SIGBUS; 3456 goto out_retry; 3457 } 3458 3459 /* 3460 * If the invalidate lock is not held, the folio was in cache 3461 * and uptodate and now it is not. Strange but possible since we 3462 * didn't hold the page lock all the time. Let's drop 3463 * everything, get the invalidate lock and try again. 3464 */ 3465 if (!mapping_locked) { 3466 folio_unlock(folio); 3467 folio_put(folio); 3468 goto retry_find; 3469 } 3470 3471 /* 3472 * OK, the folio is really not uptodate. This can be because the 3473 * VMA has the VM_RAND_READ flag set, or because an error 3474 * arose. Let's read it in directly. 3475 */ 3476 goto page_not_uptodate; 3477 } 3478 3479 /* 3480 * We've made it this far and we had to drop our mmap_lock, now is the 3481 * time to return to the upper layer and have it re-find the vma and 3482 * redo the fault. 3483 */ 3484 if (fpin) { 3485 folio_unlock(folio); 3486 goto out_retry; 3487 } 3488 if (mapping_locked) 3489 filemap_invalidate_unlock_shared(mapping); 3490 3491 /* 3492 * Found the page and have a reference on it. 3493 * We must recheck i_size under page lock. 3494 */ 3495 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3496 if (unlikely(index >= max_idx)) { 3497 folio_unlock(folio); 3498 folio_put(folio); 3499 return VM_FAULT_SIGBUS; 3500 } 3501 3502 vmf->page = folio_file_page(folio, index); 3503 return ret | VM_FAULT_LOCKED; 3504 3505 page_not_uptodate: 3506 /* 3507 * Umm, take care of errors if the page isn't up-to-date. 3508 * Try to re-read it _once_. We do this synchronously, 3509 * because there really aren't any performance issues here 3510 * and we need to check for errors. 3511 */ 3512 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3513 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3514 if (fpin) 3515 goto out_retry; 3516 folio_put(folio); 3517 3518 if (!error || error == AOP_TRUNCATED_PAGE) 3519 goto retry_find; 3520 filemap_invalidate_unlock_shared(mapping); 3521 3522 return VM_FAULT_SIGBUS; 3523 3524 out_retry: 3525 /* 3526 * We dropped the mmap_lock, we need to return to the fault handler to 3527 * re-find the vma and come back and find our hopefully still populated 3528 * page. 3529 */ 3530 if (!IS_ERR(folio)) 3531 folio_put(folio); 3532 if (mapping_locked) 3533 filemap_invalidate_unlock_shared(mapping); 3534 if (fpin) 3535 fput(fpin); 3536 return ret | VM_FAULT_RETRY; 3537 } 3538 EXPORT_SYMBOL(filemap_fault); 3539 3540 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3541 pgoff_t start) 3542 { 3543 struct mm_struct *mm = vmf->vma->vm_mm; 3544 3545 /* Huge page is mapped? No need to proceed. */ 3546 if (pmd_trans_huge(*vmf->pmd)) { 3547 folio_unlock(folio); 3548 folio_put(folio); 3549 return true; 3550 } 3551 3552 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3553 struct page *page = folio_file_page(folio, start); 3554 vm_fault_t ret = do_set_pmd(vmf, page); 3555 if (!ret) { 3556 /* The page is mapped successfully, reference consumed. */ 3557 folio_unlock(folio); 3558 return true; 3559 } 3560 } 3561 3562 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3563 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3564 3565 return false; 3566 } 3567 3568 static struct folio *next_uptodate_folio(struct xa_state *xas, 3569 struct address_space *mapping, pgoff_t end_pgoff) 3570 { 3571 struct folio *folio = xas_next_entry(xas, end_pgoff); 3572 unsigned long max_idx; 3573 3574 do { 3575 if (!folio) 3576 return NULL; 3577 if (xas_retry(xas, folio)) 3578 continue; 3579 if (xa_is_value(folio)) 3580 continue; 3581 if (!folio_try_get(folio)) 3582 continue; 3583 if (folio_test_locked(folio)) 3584 goto skip; 3585 /* Has the page moved or been split? */ 3586 if (unlikely(folio != xas_reload(xas))) 3587 goto skip; 3588 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3589 goto skip; 3590 if (!folio_trylock(folio)) 3591 goto skip; 3592 if (folio->mapping != mapping) 3593 goto unlock; 3594 if (!folio_test_uptodate(folio)) 3595 goto unlock; 3596 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3597 if (xas->xa_index >= max_idx) 3598 goto unlock; 3599 return folio; 3600 unlock: 3601 folio_unlock(folio); 3602 skip: 3603 folio_put(folio); 3604 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3605 3606 return NULL; 3607 } 3608 3609 /* 3610 * Map page range [start_page, start_page + nr_pages) of folio. 3611 * start_page is gotten from start by folio_page(folio, start) 3612 */ 3613 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3614 struct folio *folio, unsigned long start, 3615 unsigned long addr, unsigned int nr_pages, 3616 unsigned long *rss, unsigned int *mmap_miss) 3617 { 3618 vm_fault_t ret = 0; 3619 struct page *page = folio_page(folio, start); 3620 unsigned int count = 0; 3621 pte_t *old_ptep = vmf->pte; 3622 3623 do { 3624 if (PageHWPoison(page + count)) 3625 goto skip; 3626 3627 /* 3628 * If there are too many folios that are recently evicted 3629 * in a file, they will probably continue to be evicted. 3630 * In such situation, read-ahead is only a waste of IO. 3631 * Don't decrease mmap_miss in this scenario to make sure 3632 * we can stop read-ahead. 3633 */ 3634 if (!folio_test_workingset(folio)) 3635 (*mmap_miss)++; 3636 3637 /* 3638 * NOTE: If there're PTE markers, we'll leave them to be 3639 * handled in the specific fault path, and it'll prohibit the 3640 * fault-around logic. 3641 */ 3642 if (!pte_none(ptep_get(&vmf->pte[count]))) 3643 goto skip; 3644 3645 count++; 3646 continue; 3647 skip: 3648 if (count) { 3649 set_pte_range(vmf, folio, page, count, addr); 3650 *rss += count; 3651 folio_ref_add(folio, count); 3652 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3653 ret = VM_FAULT_NOPAGE; 3654 } 3655 3656 count++; 3657 page += count; 3658 vmf->pte += count; 3659 addr += count * PAGE_SIZE; 3660 count = 0; 3661 } while (--nr_pages > 0); 3662 3663 if (count) { 3664 set_pte_range(vmf, folio, page, count, addr); 3665 *rss += count; 3666 folio_ref_add(folio, count); 3667 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3668 ret = VM_FAULT_NOPAGE; 3669 } 3670 3671 vmf->pte = old_ptep; 3672 3673 return ret; 3674 } 3675 3676 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3677 struct folio *folio, unsigned long addr, 3678 unsigned long *rss, unsigned int *mmap_miss) 3679 { 3680 vm_fault_t ret = 0; 3681 struct page *page = &folio->page; 3682 3683 if (PageHWPoison(page)) 3684 return ret; 3685 3686 /* See comment of filemap_map_folio_range() */ 3687 if (!folio_test_workingset(folio)) 3688 (*mmap_miss)++; 3689 3690 /* 3691 * NOTE: If there're PTE markers, we'll leave them to be 3692 * handled in the specific fault path, and it'll prohibit 3693 * the fault-around logic. 3694 */ 3695 if (!pte_none(ptep_get(vmf->pte))) 3696 return ret; 3697 3698 if (vmf->address == addr) 3699 ret = VM_FAULT_NOPAGE; 3700 3701 set_pte_range(vmf, folio, page, 1, addr); 3702 (*rss)++; 3703 folio_ref_inc(folio); 3704 3705 return ret; 3706 } 3707 3708 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3709 pgoff_t start_pgoff, pgoff_t end_pgoff) 3710 { 3711 struct vm_area_struct *vma = vmf->vma; 3712 struct file *file = vma->vm_file; 3713 struct address_space *mapping = file->f_mapping; 3714 pgoff_t file_end, last_pgoff = start_pgoff; 3715 unsigned long addr; 3716 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3717 struct folio *folio; 3718 vm_fault_t ret = 0; 3719 unsigned long rss = 0; 3720 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3721 3722 rcu_read_lock(); 3723 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3724 if (!folio) 3725 goto out; 3726 3727 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3728 ret = VM_FAULT_NOPAGE; 3729 goto out; 3730 } 3731 3732 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3733 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3734 if (!vmf->pte) { 3735 folio_unlock(folio); 3736 folio_put(folio); 3737 goto out; 3738 } 3739 3740 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3741 if (end_pgoff > file_end) 3742 end_pgoff = file_end; 3743 3744 folio_type = mm_counter_file(folio); 3745 do { 3746 unsigned long end; 3747 3748 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3749 vmf->pte += xas.xa_index - last_pgoff; 3750 last_pgoff = xas.xa_index; 3751 end = folio_next_index(folio) - 1; 3752 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3753 3754 if (!folio_test_large(folio)) 3755 ret |= filemap_map_order0_folio(vmf, 3756 folio, addr, &rss, &mmap_miss); 3757 else 3758 ret |= filemap_map_folio_range(vmf, folio, 3759 xas.xa_index - folio->index, addr, 3760 nr_pages, &rss, &mmap_miss); 3761 3762 folio_unlock(folio); 3763 folio_put(folio); 3764 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3765 add_mm_counter(vma->vm_mm, folio_type, rss); 3766 pte_unmap_unlock(vmf->pte, vmf->ptl); 3767 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3768 out: 3769 rcu_read_unlock(); 3770 3771 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3772 if (mmap_miss >= mmap_miss_saved) 3773 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3774 else 3775 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3776 3777 return ret; 3778 } 3779 EXPORT_SYMBOL(filemap_map_pages); 3780 3781 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3782 { 3783 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3784 struct folio *folio = page_folio(vmf->page); 3785 vm_fault_t ret = VM_FAULT_LOCKED; 3786 3787 sb_start_pagefault(mapping->host->i_sb); 3788 file_update_time(vmf->vma->vm_file); 3789 folio_lock(folio); 3790 if (folio->mapping != mapping) { 3791 folio_unlock(folio); 3792 ret = VM_FAULT_NOPAGE; 3793 goto out; 3794 } 3795 /* 3796 * We mark the folio dirty already here so that when freeze is in 3797 * progress, we are guaranteed that writeback during freezing will 3798 * see the dirty folio and writeprotect it again. 3799 */ 3800 folio_mark_dirty(folio); 3801 folio_wait_stable(folio); 3802 out: 3803 sb_end_pagefault(mapping->host->i_sb); 3804 return ret; 3805 } 3806 3807 const struct vm_operations_struct generic_file_vm_ops = { 3808 .fault = filemap_fault, 3809 .map_pages = filemap_map_pages, 3810 .page_mkwrite = filemap_page_mkwrite, 3811 }; 3812 3813 /* This is used for a general mmap of a disk file */ 3814 3815 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3816 { 3817 struct address_space *mapping = file->f_mapping; 3818 3819 if (!mapping->a_ops->read_folio) 3820 return -ENOEXEC; 3821 file_accessed(file); 3822 vma->vm_ops = &generic_file_vm_ops; 3823 return 0; 3824 } 3825 3826 /* 3827 * This is for filesystems which do not implement ->writepage. 3828 */ 3829 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3830 { 3831 if (vma_is_shared_maywrite(vma)) 3832 return -EINVAL; 3833 return generic_file_mmap(file, vma); 3834 } 3835 #else 3836 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3837 { 3838 return VM_FAULT_SIGBUS; 3839 } 3840 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3841 { 3842 return -ENOSYS; 3843 } 3844 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3845 { 3846 return -ENOSYS; 3847 } 3848 #endif /* CONFIG_MMU */ 3849 3850 EXPORT_SYMBOL(filemap_page_mkwrite); 3851 EXPORT_SYMBOL(generic_file_mmap); 3852 EXPORT_SYMBOL(generic_file_readonly_mmap); 3853 3854 static struct folio *do_read_cache_folio(struct address_space *mapping, 3855 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3856 { 3857 struct folio *folio; 3858 int err; 3859 3860 if (!filler) 3861 filler = mapping->a_ops->read_folio; 3862 repeat: 3863 folio = filemap_get_folio(mapping, index); 3864 if (IS_ERR(folio)) { 3865 folio = filemap_alloc_folio(gfp, 3866 mapping_min_folio_order(mapping)); 3867 if (!folio) 3868 return ERR_PTR(-ENOMEM); 3869 index = mapping_align_index(mapping, index); 3870 err = filemap_add_folio(mapping, folio, index, gfp); 3871 if (unlikely(err)) { 3872 folio_put(folio); 3873 if (err == -EEXIST) 3874 goto repeat; 3875 /* Presumably ENOMEM for xarray node */ 3876 return ERR_PTR(err); 3877 } 3878 3879 goto filler; 3880 } 3881 if (folio_test_uptodate(folio)) 3882 goto out; 3883 3884 if (!folio_trylock(folio)) { 3885 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3886 goto repeat; 3887 } 3888 3889 /* Folio was truncated from mapping */ 3890 if (!folio->mapping) { 3891 folio_unlock(folio); 3892 folio_put(folio); 3893 goto repeat; 3894 } 3895 3896 /* Someone else locked and filled the page in a very small window */ 3897 if (folio_test_uptodate(folio)) { 3898 folio_unlock(folio); 3899 goto out; 3900 } 3901 3902 filler: 3903 err = filemap_read_folio(file, filler, folio); 3904 if (err) { 3905 folio_put(folio); 3906 if (err == AOP_TRUNCATED_PAGE) 3907 goto repeat; 3908 return ERR_PTR(err); 3909 } 3910 3911 out: 3912 folio_mark_accessed(folio); 3913 return folio; 3914 } 3915 3916 /** 3917 * read_cache_folio - Read into page cache, fill it if needed. 3918 * @mapping: The address_space to read from. 3919 * @index: The index to read. 3920 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3921 * @file: Passed to filler function, may be NULL if not required. 3922 * 3923 * Read one page into the page cache. If it succeeds, the folio returned 3924 * will contain @index, but it may not be the first page of the folio. 3925 * 3926 * If the filler function returns an error, it will be returned to the 3927 * caller. 3928 * 3929 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3930 * Return: An uptodate folio on success, ERR_PTR() on failure. 3931 */ 3932 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3933 filler_t filler, struct file *file) 3934 { 3935 return do_read_cache_folio(mapping, index, filler, file, 3936 mapping_gfp_mask(mapping)); 3937 } 3938 EXPORT_SYMBOL(read_cache_folio); 3939 3940 /** 3941 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3942 * @mapping: The address_space for the folio. 3943 * @index: The index that the allocated folio will contain. 3944 * @gfp: The page allocator flags to use if allocating. 3945 * 3946 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3947 * any new memory allocations done using the specified allocation flags. 3948 * 3949 * The most likely error from this function is EIO, but ENOMEM is 3950 * possible and so is EINTR. If ->read_folio returns another error, 3951 * that will be returned to the caller. 3952 * 3953 * The function expects mapping->invalidate_lock to be already held. 3954 * 3955 * Return: Uptodate folio on success, ERR_PTR() on failure. 3956 */ 3957 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3958 pgoff_t index, gfp_t gfp) 3959 { 3960 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3961 } 3962 EXPORT_SYMBOL(mapping_read_folio_gfp); 3963 3964 static struct page *do_read_cache_page(struct address_space *mapping, 3965 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3966 { 3967 struct folio *folio; 3968 3969 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3970 if (IS_ERR(folio)) 3971 return &folio->page; 3972 return folio_file_page(folio, index); 3973 } 3974 3975 struct page *read_cache_page(struct address_space *mapping, 3976 pgoff_t index, filler_t *filler, struct file *file) 3977 { 3978 return do_read_cache_page(mapping, index, filler, file, 3979 mapping_gfp_mask(mapping)); 3980 } 3981 EXPORT_SYMBOL(read_cache_page); 3982 3983 /** 3984 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3985 * @mapping: the page's address_space 3986 * @index: the page index 3987 * @gfp: the page allocator flags to use if allocating 3988 * 3989 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3990 * any new page allocations done using the specified allocation flags. 3991 * 3992 * If the page does not get brought uptodate, return -EIO. 3993 * 3994 * The function expects mapping->invalidate_lock to be already held. 3995 * 3996 * Return: up to date page on success, ERR_PTR() on failure. 3997 */ 3998 struct page *read_cache_page_gfp(struct address_space *mapping, 3999 pgoff_t index, 4000 gfp_t gfp) 4001 { 4002 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4003 } 4004 EXPORT_SYMBOL(read_cache_page_gfp); 4005 4006 /* 4007 * Warn about a page cache invalidation failure during a direct I/O write. 4008 */ 4009 static void dio_warn_stale_pagecache(struct file *filp) 4010 { 4011 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4012 char pathname[128]; 4013 char *path; 4014 4015 errseq_set(&filp->f_mapping->wb_err, -EIO); 4016 if (__ratelimit(&_rs)) { 4017 path = file_path(filp, pathname, sizeof(pathname)); 4018 if (IS_ERR(path)) 4019 path = "(unknown)"; 4020 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4021 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4022 current->comm); 4023 } 4024 } 4025 4026 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4027 { 4028 struct address_space *mapping = iocb->ki_filp->f_mapping; 4029 4030 if (mapping->nrpages && 4031 invalidate_inode_pages2_range(mapping, 4032 iocb->ki_pos >> PAGE_SHIFT, 4033 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4034 dio_warn_stale_pagecache(iocb->ki_filp); 4035 } 4036 4037 ssize_t 4038 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4039 { 4040 struct address_space *mapping = iocb->ki_filp->f_mapping; 4041 size_t write_len = iov_iter_count(from); 4042 ssize_t written; 4043 4044 /* 4045 * If a page can not be invalidated, return 0 to fall back 4046 * to buffered write. 4047 */ 4048 written = kiocb_invalidate_pages(iocb, write_len); 4049 if (written) { 4050 if (written == -EBUSY) 4051 return 0; 4052 return written; 4053 } 4054 4055 written = mapping->a_ops->direct_IO(iocb, from); 4056 4057 /* 4058 * Finally, try again to invalidate clean pages which might have been 4059 * cached by non-direct readahead, or faulted in by get_user_pages() 4060 * if the source of the write was an mmap'ed region of the file 4061 * we're writing. Either one is a pretty crazy thing to do, 4062 * so we don't support it 100%. If this invalidation 4063 * fails, tough, the write still worked... 4064 * 4065 * Most of the time we do not need this since dio_complete() will do 4066 * the invalidation for us. However there are some file systems that 4067 * do not end up with dio_complete() being called, so let's not break 4068 * them by removing it completely. 4069 * 4070 * Noticeable example is a blkdev_direct_IO(). 4071 * 4072 * Skip invalidation for async writes or if mapping has no pages. 4073 */ 4074 if (written > 0) { 4075 struct inode *inode = mapping->host; 4076 loff_t pos = iocb->ki_pos; 4077 4078 kiocb_invalidate_post_direct_write(iocb, written); 4079 pos += written; 4080 write_len -= written; 4081 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4082 i_size_write(inode, pos); 4083 mark_inode_dirty(inode); 4084 } 4085 iocb->ki_pos = pos; 4086 } 4087 if (written != -EIOCBQUEUED) 4088 iov_iter_revert(from, write_len - iov_iter_count(from)); 4089 return written; 4090 } 4091 EXPORT_SYMBOL(generic_file_direct_write); 4092 4093 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4094 { 4095 struct file *file = iocb->ki_filp; 4096 loff_t pos = iocb->ki_pos; 4097 struct address_space *mapping = file->f_mapping; 4098 const struct address_space_operations *a_ops = mapping->a_ops; 4099 size_t chunk = mapping_max_folio_size(mapping); 4100 long status = 0; 4101 ssize_t written = 0; 4102 4103 do { 4104 struct folio *folio; 4105 size_t offset; /* Offset into folio */ 4106 size_t bytes; /* Bytes to write to folio */ 4107 size_t copied; /* Bytes copied from user */ 4108 void *fsdata = NULL; 4109 4110 bytes = iov_iter_count(i); 4111 retry: 4112 offset = pos & (chunk - 1); 4113 bytes = min(chunk - offset, bytes); 4114 balance_dirty_pages_ratelimited(mapping); 4115 4116 /* 4117 * Bring in the user page that we will copy from _first_. 4118 * Otherwise there's a nasty deadlock on copying from the 4119 * same page as we're writing to, without it being marked 4120 * up-to-date. 4121 */ 4122 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4123 status = -EFAULT; 4124 break; 4125 } 4126 4127 if (fatal_signal_pending(current)) { 4128 status = -EINTR; 4129 break; 4130 } 4131 4132 status = a_ops->write_begin(file, mapping, pos, bytes, 4133 &folio, &fsdata); 4134 if (unlikely(status < 0)) 4135 break; 4136 4137 offset = offset_in_folio(folio, pos); 4138 if (bytes > folio_size(folio) - offset) 4139 bytes = folio_size(folio) - offset; 4140 4141 if (mapping_writably_mapped(mapping)) 4142 flush_dcache_folio(folio); 4143 4144 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4145 flush_dcache_folio(folio); 4146 4147 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4148 folio, fsdata); 4149 if (unlikely(status != copied)) { 4150 iov_iter_revert(i, copied - max(status, 0L)); 4151 if (unlikely(status < 0)) 4152 break; 4153 } 4154 cond_resched(); 4155 4156 if (unlikely(status == 0)) { 4157 /* 4158 * A short copy made ->write_end() reject the 4159 * thing entirely. Might be memory poisoning 4160 * halfway through, might be a race with munmap, 4161 * might be severe memory pressure. 4162 */ 4163 if (chunk > PAGE_SIZE) 4164 chunk /= 2; 4165 if (copied) { 4166 bytes = copied; 4167 goto retry; 4168 } 4169 } else { 4170 pos += status; 4171 written += status; 4172 } 4173 } while (iov_iter_count(i)); 4174 4175 if (!written) 4176 return status; 4177 iocb->ki_pos += written; 4178 return written; 4179 } 4180 EXPORT_SYMBOL(generic_perform_write); 4181 4182 /** 4183 * __generic_file_write_iter - write data to a file 4184 * @iocb: IO state structure (file, offset, etc.) 4185 * @from: iov_iter with data to write 4186 * 4187 * This function does all the work needed for actually writing data to a 4188 * file. It does all basic checks, removes SUID from the file, updates 4189 * modification times and calls proper subroutines depending on whether we 4190 * do direct IO or a standard buffered write. 4191 * 4192 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4193 * object which does not need locking at all. 4194 * 4195 * This function does *not* take care of syncing data in case of O_SYNC write. 4196 * A caller has to handle it. This is mainly due to the fact that we want to 4197 * avoid syncing under i_rwsem. 4198 * 4199 * Return: 4200 * * number of bytes written, even for truncated writes 4201 * * negative error code if no data has been written at all 4202 */ 4203 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4204 { 4205 struct file *file = iocb->ki_filp; 4206 struct address_space *mapping = file->f_mapping; 4207 struct inode *inode = mapping->host; 4208 ssize_t ret; 4209 4210 ret = file_remove_privs(file); 4211 if (ret) 4212 return ret; 4213 4214 ret = file_update_time(file); 4215 if (ret) 4216 return ret; 4217 4218 if (iocb->ki_flags & IOCB_DIRECT) { 4219 ret = generic_file_direct_write(iocb, from); 4220 /* 4221 * If the write stopped short of completing, fall back to 4222 * buffered writes. Some filesystems do this for writes to 4223 * holes, for example. For DAX files, a buffered write will 4224 * not succeed (even if it did, DAX does not handle dirty 4225 * page-cache pages correctly). 4226 */ 4227 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4228 return ret; 4229 return direct_write_fallback(iocb, from, ret, 4230 generic_perform_write(iocb, from)); 4231 } 4232 4233 return generic_perform_write(iocb, from); 4234 } 4235 EXPORT_SYMBOL(__generic_file_write_iter); 4236 4237 /** 4238 * generic_file_write_iter - write data to a file 4239 * @iocb: IO state structure 4240 * @from: iov_iter with data to write 4241 * 4242 * This is a wrapper around __generic_file_write_iter() to be used by most 4243 * filesystems. It takes care of syncing the file in case of O_SYNC file 4244 * and acquires i_rwsem as needed. 4245 * Return: 4246 * * negative error code if no data has been written at all of 4247 * vfs_fsync_range() failed for a synchronous write 4248 * * number of bytes written, even for truncated writes 4249 */ 4250 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4251 { 4252 struct file *file = iocb->ki_filp; 4253 struct inode *inode = file->f_mapping->host; 4254 ssize_t ret; 4255 4256 inode_lock(inode); 4257 ret = generic_write_checks(iocb, from); 4258 if (ret > 0) 4259 ret = __generic_file_write_iter(iocb, from); 4260 inode_unlock(inode); 4261 4262 if (ret > 0) 4263 ret = generic_write_sync(iocb, ret); 4264 return ret; 4265 } 4266 EXPORT_SYMBOL(generic_file_write_iter); 4267 4268 /** 4269 * filemap_release_folio() - Release fs-specific metadata on a folio. 4270 * @folio: The folio which the kernel is trying to free. 4271 * @gfp: Memory allocation flags (and I/O mode). 4272 * 4273 * The address_space is trying to release any data attached to a folio 4274 * (presumably at folio->private). 4275 * 4276 * This will also be called if the private_2 flag is set on a page, 4277 * indicating that the folio has other metadata associated with it. 4278 * 4279 * The @gfp argument specifies whether I/O may be performed to release 4280 * this page (__GFP_IO), and whether the call may block 4281 * (__GFP_RECLAIM & __GFP_FS). 4282 * 4283 * Return: %true if the release was successful, otherwise %false. 4284 */ 4285 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4286 { 4287 struct address_space * const mapping = folio->mapping; 4288 4289 BUG_ON(!folio_test_locked(folio)); 4290 if (!folio_needs_release(folio)) 4291 return true; 4292 if (folio_test_writeback(folio)) 4293 return false; 4294 4295 if (mapping && mapping->a_ops->release_folio) 4296 return mapping->a_ops->release_folio(folio, gfp); 4297 return try_to_free_buffers(folio); 4298 } 4299 EXPORT_SYMBOL(filemap_release_folio); 4300 4301 /** 4302 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4303 * @inode: The inode to flush 4304 * @flush: Set to write back rather than simply invalidate. 4305 * @start: First byte to in range. 4306 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4307 * onwards. 4308 * 4309 * Invalidate all the folios on an inode that contribute to the specified 4310 * range, possibly writing them back first. Whilst the operation is 4311 * undertaken, the invalidate lock is held to prevent new folios from being 4312 * installed. 4313 */ 4314 int filemap_invalidate_inode(struct inode *inode, bool flush, 4315 loff_t start, loff_t end) 4316 { 4317 struct address_space *mapping = inode->i_mapping; 4318 pgoff_t first = start >> PAGE_SHIFT; 4319 pgoff_t last = end >> PAGE_SHIFT; 4320 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4321 4322 if (!mapping || !mapping->nrpages || end < start) 4323 goto out; 4324 4325 /* Prevent new folios from being added to the inode. */ 4326 filemap_invalidate_lock(mapping); 4327 4328 if (!mapping->nrpages) 4329 goto unlock; 4330 4331 unmap_mapping_pages(mapping, first, nr, false); 4332 4333 /* Write back the data if we're asked to. */ 4334 if (flush) { 4335 struct writeback_control wbc = { 4336 .sync_mode = WB_SYNC_ALL, 4337 .nr_to_write = LONG_MAX, 4338 .range_start = start, 4339 .range_end = end, 4340 }; 4341 4342 filemap_fdatawrite_wbc(mapping, &wbc); 4343 } 4344 4345 /* Wait for writeback to complete on all folios and discard. */ 4346 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4347 4348 unlock: 4349 filemap_invalidate_unlock(mapping); 4350 out: 4351 return filemap_check_errors(mapping); 4352 } 4353 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4354 4355 #ifdef CONFIG_CACHESTAT_SYSCALL 4356 /** 4357 * filemap_cachestat() - compute the page cache statistics of a mapping 4358 * @mapping: The mapping to compute the statistics for. 4359 * @first_index: The starting page cache index. 4360 * @last_index: The final page index (inclusive). 4361 * @cs: the cachestat struct to write the result to. 4362 * 4363 * This will query the page cache statistics of a mapping in the 4364 * page range of [first_index, last_index] (inclusive). The statistics 4365 * queried include: number of dirty pages, number of pages marked for 4366 * writeback, and the number of (recently) evicted pages. 4367 */ 4368 static void filemap_cachestat(struct address_space *mapping, 4369 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4370 { 4371 XA_STATE(xas, &mapping->i_pages, first_index); 4372 struct folio *folio; 4373 4374 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4375 mem_cgroup_flush_stats_ratelimited(NULL); 4376 4377 rcu_read_lock(); 4378 xas_for_each(&xas, folio, last_index) { 4379 int order; 4380 unsigned long nr_pages; 4381 pgoff_t folio_first_index, folio_last_index; 4382 4383 /* 4384 * Don't deref the folio. It is not pinned, and might 4385 * get freed (and reused) underneath us. 4386 * 4387 * We *could* pin it, but that would be expensive for 4388 * what should be a fast and lightweight syscall. 4389 * 4390 * Instead, derive all information of interest from 4391 * the rcu-protected xarray. 4392 */ 4393 4394 if (xas_retry(&xas, folio)) 4395 continue; 4396 4397 order = xas_get_order(&xas); 4398 nr_pages = 1 << order; 4399 folio_first_index = round_down(xas.xa_index, 1 << order); 4400 folio_last_index = folio_first_index + nr_pages - 1; 4401 4402 /* Folios might straddle the range boundaries, only count covered pages */ 4403 if (folio_first_index < first_index) 4404 nr_pages -= first_index - folio_first_index; 4405 4406 if (folio_last_index > last_index) 4407 nr_pages -= folio_last_index - last_index; 4408 4409 if (xa_is_value(folio)) { 4410 /* page is evicted */ 4411 void *shadow = (void *)folio; 4412 bool workingset; /* not used */ 4413 4414 cs->nr_evicted += nr_pages; 4415 4416 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4417 if (shmem_mapping(mapping)) { 4418 /* shmem file - in swap cache */ 4419 swp_entry_t swp = radix_to_swp_entry(folio); 4420 4421 /* swapin error results in poisoned entry */ 4422 if (non_swap_entry(swp)) 4423 goto resched; 4424 4425 /* 4426 * Getting a swap entry from the shmem 4427 * inode means we beat 4428 * shmem_unuse(). rcu_read_lock() 4429 * ensures swapoff waits for us before 4430 * freeing the swapper space. However, 4431 * we can race with swapping and 4432 * invalidation, so there might not be 4433 * a shadow in the swapcache (yet). 4434 */ 4435 shadow = get_shadow_from_swap_cache(swp); 4436 if (!shadow) 4437 goto resched; 4438 } 4439 #endif 4440 if (workingset_test_recent(shadow, true, &workingset, false)) 4441 cs->nr_recently_evicted += nr_pages; 4442 4443 goto resched; 4444 } 4445 4446 /* page is in cache */ 4447 cs->nr_cache += nr_pages; 4448 4449 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4450 cs->nr_dirty += nr_pages; 4451 4452 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4453 cs->nr_writeback += nr_pages; 4454 4455 resched: 4456 if (need_resched()) { 4457 xas_pause(&xas); 4458 cond_resched_rcu(); 4459 } 4460 } 4461 rcu_read_unlock(); 4462 } 4463 4464 /* 4465 * See mincore: reveal pagecache information only for files 4466 * that the calling process has write access to, or could (if 4467 * tried) open for writing. 4468 */ 4469 static inline bool can_do_cachestat(struct file *f) 4470 { 4471 if (f->f_mode & FMODE_WRITE) 4472 return true; 4473 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4474 return true; 4475 return file_permission(f, MAY_WRITE) == 0; 4476 } 4477 4478 /* 4479 * The cachestat(2) system call. 4480 * 4481 * cachestat() returns the page cache statistics of a file in the 4482 * bytes range specified by `off` and `len`: number of cached pages, 4483 * number of dirty pages, number of pages marked for writeback, 4484 * number of evicted pages, and number of recently evicted pages. 4485 * 4486 * An evicted page is a page that is previously in the page cache 4487 * but has been evicted since. A page is recently evicted if its last 4488 * eviction was recent enough that its reentry to the cache would 4489 * indicate that it is actively being used by the system, and that 4490 * there is memory pressure on the system. 4491 * 4492 * `off` and `len` must be non-negative integers. If `len` > 0, 4493 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4494 * we will query in the range from `off` to the end of the file. 4495 * 4496 * The `flags` argument is unused for now, but is included for future 4497 * extensibility. User should pass 0 (i.e no flag specified). 4498 * 4499 * Currently, hugetlbfs is not supported. 4500 * 4501 * Because the status of a page can change after cachestat() checks it 4502 * but before it returns to the application, the returned values may 4503 * contain stale information. 4504 * 4505 * return values: 4506 * zero - success 4507 * -EFAULT - cstat or cstat_range points to an illegal address 4508 * -EINVAL - invalid flags 4509 * -EBADF - invalid file descriptor 4510 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4511 */ 4512 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4513 struct cachestat_range __user *, cstat_range, 4514 struct cachestat __user *, cstat, unsigned int, flags) 4515 { 4516 CLASS(fd, f)(fd); 4517 struct address_space *mapping; 4518 struct cachestat_range csr; 4519 struct cachestat cs; 4520 pgoff_t first_index, last_index; 4521 4522 if (fd_empty(f)) 4523 return -EBADF; 4524 4525 if (copy_from_user(&csr, cstat_range, 4526 sizeof(struct cachestat_range))) 4527 return -EFAULT; 4528 4529 /* hugetlbfs is not supported */ 4530 if (is_file_hugepages(fd_file(f))) 4531 return -EOPNOTSUPP; 4532 4533 if (!can_do_cachestat(fd_file(f))) 4534 return -EPERM; 4535 4536 if (flags != 0) 4537 return -EINVAL; 4538 4539 first_index = csr.off >> PAGE_SHIFT; 4540 last_index = 4541 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4542 memset(&cs, 0, sizeof(struct cachestat)); 4543 mapping = fd_file(f)->f_mapping; 4544 filemap_cachestat(mapping, first_index, last_index, &cs); 4545 4546 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4547 return -EFAULT; 4548 4549 return 0; 4550 } 4551 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4552