xref: /linux/mm/filemap.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111 
112 static void page_cache_tree_delete(struct address_space *mapping,
113 				   struct page *page, void *shadow)
114 {
115 	struct radix_tree_node *node;
116 	unsigned long index;
117 	unsigned int offset;
118 	unsigned int tag;
119 	void **slot;
120 
121 	VM_BUG_ON(!PageLocked(page));
122 
123 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124 
125 	if (shadow) {
126 		mapping->nrshadows++;
127 		/*
128 		 * Make sure the nrshadows update is committed before
129 		 * the nrpages update so that final truncate racing
130 		 * with reclaim does not see both counters 0 at the
131 		 * same time and miss a shadow entry.
132 		 */
133 		smp_wmb();
134 	}
135 	mapping->nrpages--;
136 
137 	if (!node) {
138 		/* Clear direct pointer tags in root node */
139 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 		radix_tree_replace_slot(slot, shadow);
141 		return;
142 	}
143 
144 	/* Clear tree tags for the removed page */
145 	index = page->index;
146 	offset = index & RADIX_TREE_MAP_MASK;
147 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 		if (test_bit(offset, node->tags[tag]))
149 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 	}
151 
152 	/* Delete page, swap shadow entry */
153 	radix_tree_replace_slot(slot, shadow);
154 	workingset_node_pages_dec(node);
155 	if (shadow)
156 		workingset_node_shadows_inc(node);
157 	else
158 		if (__radix_tree_delete_node(&mapping->page_tree, node))
159 			return;
160 
161 	/*
162 	 * Track node that only contains shadow entries.
163 	 *
164 	 * Avoid acquiring the list_lru lock if already tracked.  The
165 	 * list_empty() test is safe as node->private_list is
166 	 * protected by mapping->tree_lock.
167 	 */
168 	if (!workingset_node_pages(node) &&
169 	    list_empty(&node->private_list)) {
170 		node->private_data = mapping;
171 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 	}
173 }
174 
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock.
179  */
180 void __delete_from_page_cache(struct page *page, void *shadow)
181 {
182 	struct address_space *mapping = page->mapping;
183 
184 	trace_mm_filemap_delete_from_page_cache(page);
185 	/*
186 	 * if we're uptodate, flush out into the cleancache, otherwise
187 	 * invalidate any existing cleancache entries.  We can't leave
188 	 * stale data around in the cleancache once our page is gone
189 	 */
190 	if (PageUptodate(page) && PageMappedToDisk(page))
191 		cleancache_put_page(page);
192 	else
193 		cleancache_invalidate_page(mapping, page);
194 
195 	page_cache_tree_delete(mapping, page, shadow);
196 
197 	page->mapping = NULL;
198 	/* Leave page->index set: truncation lookup relies upon it */
199 
200 	__dec_zone_page_state(page, NR_FILE_PAGES);
201 	if (PageSwapBacked(page))
202 		__dec_zone_page_state(page, NR_SHMEM);
203 	BUG_ON(page_mapped(page));
204 
205 	/*
206 	 * Some filesystems seem to re-dirty the page even after
207 	 * the VM has canceled the dirty bit (eg ext3 journaling).
208 	 *
209 	 * Fix it up by doing a final dirty accounting check after
210 	 * having removed the page entirely.
211 	 */
212 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213 		dec_zone_page_state(page, NR_FILE_DIRTY);
214 		dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE);
215 	}
216 }
217 
218 /**
219  * delete_from_page_cache - delete page from page cache
220  * @page: the page which the kernel is trying to remove from page cache
221  *
222  * This must be called only on pages that have been verified to be in the page
223  * cache and locked.  It will never put the page into the free list, the caller
224  * has a reference on the page.
225  */
226 void delete_from_page_cache(struct page *page)
227 {
228 	struct address_space *mapping = page->mapping;
229 	void (*freepage)(struct page *);
230 
231 	BUG_ON(!PageLocked(page));
232 
233 	freepage = mapping->a_ops->freepage;
234 	spin_lock_irq(&mapping->tree_lock);
235 	__delete_from_page_cache(page, NULL);
236 	spin_unlock_irq(&mapping->tree_lock);
237 
238 	if (freepage)
239 		freepage(page);
240 	page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243 
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 	int ret = 0;
247 	/* Check for outstanding write errors */
248 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 		ret = -ENOSPC;
251 	if (test_bit(AS_EIO, &mapping->flags) &&
252 	    test_and_clear_bit(AS_EIO, &mapping->flags))
253 		ret = -EIO;
254 	return ret;
255 }
256 
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:	address space structure to write
260  * @start:	offset in bytes where the range starts
261  * @end:	offset in bytes where the range ends (inclusive)
262  * @sync_mode:	enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 				loff_t end, int sync_mode)
274 {
275 	int ret;
276 	struct writeback_control wbc = {
277 		.sync_mode = sync_mode,
278 		.nr_to_write = LONG_MAX,
279 		.range_start = start,
280 		.range_end = end,
281 	};
282 
283 	if (!mapping_cap_writeback_dirty(mapping))
284 		return 0;
285 
286 	ret = do_writepages(mapping, &wbc);
287 	return ret;
288 }
289 
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 	int sync_mode)
292 {
293 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295 
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301 
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 				loff_t end)
304 {
305 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308 
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:	target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321 
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:		address space structure to wait for
325  * @start_byte:		offset in bytes where the range starts
326  * @end_byte:		offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 			    loff_t end_byte)
333 {
334 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 	struct pagevec pvec;
337 	int nr_pages;
338 	int ret2, ret = 0;
339 
340 	if (end_byte < start_byte)
341 		goto out;
342 
343 	pagevec_init(&pvec, 0);
344 	while ((index <= end) &&
345 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 			PAGECACHE_TAG_WRITEBACK,
347 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 		unsigned i;
349 
350 		for (i = 0; i < nr_pages; i++) {
351 			struct page *page = pvec.pages[i];
352 
353 			/* until radix tree lookup accepts end_index */
354 			if (page->index > end)
355 				continue;
356 
357 			wait_on_page_writeback(page);
358 			if (TestClearPageError(page))
359 				ret = -EIO;
360 		}
361 		pagevec_release(&pvec);
362 		cond_resched();
363 	}
364 out:
365 	ret2 = filemap_check_errors(mapping);
366 	if (!ret)
367 		ret = ret2;
368 
369 	return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390 
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 	int err = 0;
394 
395 	if (mapping->nrpages) {
396 		err = filemap_fdatawrite(mapping);
397 		/*
398 		 * Even if the above returned error, the pages may be
399 		 * written partially (e.g. -ENOSPC), so we wait for it.
400 		 * But the -EIO is special case, it may indicate the worst
401 		 * thing (e.g. bug) happened, so we avoid waiting for it.
402 		 */
403 		if (err != -EIO) {
404 			int err2 = filemap_fdatawait(mapping);
405 			if (!err)
406 				err = err2;
407 		}
408 	} else {
409 		err = filemap_check_errors(mapping);
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = filemap_fdatawait_range(mapping,
437 						lstart, lend);
438 			if (!err)
439 				err = err2;
440 		}
441 	} else {
442 		err = filemap_check_errors(mapping);
443 	}
444 	return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447 
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:	page to be replaced
451  * @new:	page to replace with
452  * @gfp_mask:	allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 	int error;
466 
467 	VM_BUG_ON_PAGE(!PageLocked(old), old);
468 	VM_BUG_ON_PAGE(!PageLocked(new), new);
469 	VM_BUG_ON_PAGE(new->mapping, new);
470 
471 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 	if (!error) {
473 		struct address_space *mapping = old->mapping;
474 		void (*freepage)(struct page *);
475 
476 		pgoff_t offset = old->index;
477 		freepage = mapping->a_ops->freepage;
478 
479 		page_cache_get(new);
480 		new->mapping = mapping;
481 		new->index = offset;
482 
483 		spin_lock_irq(&mapping->tree_lock);
484 		__delete_from_page_cache(old, NULL);
485 		error = radix_tree_insert(&mapping->page_tree, offset, new);
486 		BUG_ON(error);
487 		mapping->nrpages++;
488 		__inc_zone_page_state(new, NR_FILE_PAGES);
489 		if (PageSwapBacked(new))
490 			__inc_zone_page_state(new, NR_SHMEM);
491 		spin_unlock_irq(&mapping->tree_lock);
492 		mem_cgroup_migrate(old, new, true);
493 		radix_tree_preload_end();
494 		if (freepage)
495 			freepage(old);
496 		page_cache_release(old);
497 	}
498 
499 	return error;
500 }
501 EXPORT_SYMBOL_GPL(replace_page_cache_page);
502 
503 static int page_cache_tree_insert(struct address_space *mapping,
504 				  struct page *page, void **shadowp)
505 {
506 	struct radix_tree_node *node;
507 	void **slot;
508 	int error;
509 
510 	error = __radix_tree_create(&mapping->page_tree, page->index,
511 				    &node, &slot);
512 	if (error)
513 		return error;
514 	if (*slot) {
515 		void *p;
516 
517 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
518 		if (!radix_tree_exceptional_entry(p))
519 			return -EEXIST;
520 		if (shadowp)
521 			*shadowp = p;
522 		mapping->nrshadows--;
523 		if (node)
524 			workingset_node_shadows_dec(node);
525 	}
526 	radix_tree_replace_slot(slot, page);
527 	mapping->nrpages++;
528 	if (node) {
529 		workingset_node_pages_inc(node);
530 		/*
531 		 * Don't track node that contains actual pages.
532 		 *
533 		 * Avoid acquiring the list_lru lock if already
534 		 * untracked.  The list_empty() test is safe as
535 		 * node->private_list is protected by
536 		 * mapping->tree_lock.
537 		 */
538 		if (!list_empty(&node->private_list))
539 			list_lru_del(&workingset_shadow_nodes,
540 				     &node->private_list);
541 	}
542 	return 0;
543 }
544 
545 static int __add_to_page_cache_locked(struct page *page,
546 				      struct address_space *mapping,
547 				      pgoff_t offset, gfp_t gfp_mask,
548 				      void **shadowp)
549 {
550 	int huge = PageHuge(page);
551 	struct mem_cgroup *memcg;
552 	int error;
553 
554 	VM_BUG_ON_PAGE(!PageLocked(page), page);
555 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
556 
557 	if (!huge) {
558 		error = mem_cgroup_try_charge(page, current->mm,
559 					      gfp_mask, &memcg);
560 		if (error)
561 			return error;
562 	}
563 
564 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
565 	if (error) {
566 		if (!huge)
567 			mem_cgroup_cancel_charge(page, memcg);
568 		return error;
569 	}
570 
571 	page_cache_get(page);
572 	page->mapping = mapping;
573 	page->index = offset;
574 
575 	spin_lock_irq(&mapping->tree_lock);
576 	error = page_cache_tree_insert(mapping, page, shadowp);
577 	radix_tree_preload_end();
578 	if (unlikely(error))
579 		goto err_insert;
580 	__inc_zone_page_state(page, NR_FILE_PAGES);
581 	spin_unlock_irq(&mapping->tree_lock);
582 	if (!huge)
583 		mem_cgroup_commit_charge(page, memcg, false);
584 	trace_mm_filemap_add_to_page_cache(page);
585 	return 0;
586 err_insert:
587 	page->mapping = NULL;
588 	/* Leave page->index set: truncation relies upon it */
589 	spin_unlock_irq(&mapping->tree_lock);
590 	if (!huge)
591 		mem_cgroup_cancel_charge(page, memcg);
592 	page_cache_release(page);
593 	return error;
594 }
595 
596 /**
597  * add_to_page_cache_locked - add a locked page to the pagecache
598  * @page:	page to add
599  * @mapping:	the page's address_space
600  * @offset:	page index
601  * @gfp_mask:	page allocation mode
602  *
603  * This function is used to add a page to the pagecache. It must be locked.
604  * This function does not add the page to the LRU.  The caller must do that.
605  */
606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
607 		pgoff_t offset, gfp_t gfp_mask)
608 {
609 	return __add_to_page_cache_locked(page, mapping, offset,
610 					  gfp_mask, NULL);
611 }
612 EXPORT_SYMBOL(add_to_page_cache_locked);
613 
614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
615 				pgoff_t offset, gfp_t gfp_mask)
616 {
617 	void *shadow = NULL;
618 	int ret;
619 
620 	__set_page_locked(page);
621 	ret = __add_to_page_cache_locked(page, mapping, offset,
622 					 gfp_mask, &shadow);
623 	if (unlikely(ret))
624 		__clear_page_locked(page);
625 	else {
626 		/*
627 		 * The page might have been evicted from cache only
628 		 * recently, in which case it should be activated like
629 		 * any other repeatedly accessed page.
630 		 */
631 		if (shadow && workingset_refault(shadow)) {
632 			SetPageActive(page);
633 			workingset_activation(page);
634 		} else
635 			ClearPageActive(page);
636 		lru_cache_add(page);
637 	}
638 	return ret;
639 }
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
641 
642 #ifdef CONFIG_NUMA
643 struct page *__page_cache_alloc(gfp_t gfp)
644 {
645 	int n;
646 	struct page *page;
647 
648 	if (cpuset_do_page_mem_spread()) {
649 		unsigned int cpuset_mems_cookie;
650 		do {
651 			cpuset_mems_cookie = read_mems_allowed_begin();
652 			n = cpuset_mem_spread_node();
653 			page = alloc_pages_exact_node(n, gfp, 0);
654 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
655 
656 		return page;
657 	}
658 	return alloc_pages(gfp, 0);
659 }
660 EXPORT_SYMBOL(__page_cache_alloc);
661 #endif
662 
663 /*
664  * In order to wait for pages to become available there must be
665  * waitqueues associated with pages. By using a hash table of
666  * waitqueues where the bucket discipline is to maintain all
667  * waiters on the same queue and wake all when any of the pages
668  * become available, and for the woken contexts to check to be
669  * sure the appropriate page became available, this saves space
670  * at a cost of "thundering herd" phenomena during rare hash
671  * collisions.
672  */
673 wait_queue_head_t *page_waitqueue(struct page *page)
674 {
675 	const struct zone *zone = page_zone(page);
676 
677 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
678 }
679 EXPORT_SYMBOL(page_waitqueue);
680 
681 void wait_on_page_bit(struct page *page, int bit_nr)
682 {
683 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
684 
685 	if (test_bit(bit_nr, &page->flags))
686 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
687 							TASK_UNINTERRUPTIBLE);
688 }
689 EXPORT_SYMBOL(wait_on_page_bit);
690 
691 int wait_on_page_bit_killable(struct page *page, int bit_nr)
692 {
693 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
694 
695 	if (!test_bit(bit_nr, &page->flags))
696 		return 0;
697 
698 	return __wait_on_bit(page_waitqueue(page), &wait,
699 			     bit_wait_io, TASK_KILLABLE);
700 }
701 
702 int wait_on_page_bit_killable_timeout(struct page *page,
703 				       int bit_nr, unsigned long timeout)
704 {
705 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
706 
707 	wait.key.timeout = jiffies + timeout;
708 	if (!test_bit(bit_nr, &page->flags))
709 		return 0;
710 	return __wait_on_bit(page_waitqueue(page), &wait,
711 			     bit_wait_io_timeout, TASK_KILLABLE);
712 }
713 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
714 
715 /**
716  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
717  * @page: Page defining the wait queue of interest
718  * @waiter: Waiter to add to the queue
719  *
720  * Add an arbitrary @waiter to the wait queue for the nominated @page.
721  */
722 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
723 {
724 	wait_queue_head_t *q = page_waitqueue(page);
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&q->lock, flags);
728 	__add_wait_queue(q, waiter);
729 	spin_unlock_irqrestore(&q->lock, flags);
730 }
731 EXPORT_SYMBOL_GPL(add_page_wait_queue);
732 
733 /**
734  * unlock_page - unlock a locked page
735  * @page: the page
736  *
737  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
738  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
739  * mechanism between PageLocked pages and PageWriteback pages is shared.
740  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
741  *
742  * The mb is necessary to enforce ordering between the clear_bit and the read
743  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
744  */
745 void unlock_page(struct page *page)
746 {
747 	VM_BUG_ON_PAGE(!PageLocked(page), page);
748 	clear_bit_unlock(PG_locked, &page->flags);
749 	smp_mb__after_atomic();
750 	wake_up_page(page, PG_locked);
751 }
752 EXPORT_SYMBOL(unlock_page);
753 
754 /**
755  * end_page_writeback - end writeback against a page
756  * @page: the page
757  */
758 void end_page_writeback(struct page *page)
759 {
760 	/*
761 	 * TestClearPageReclaim could be used here but it is an atomic
762 	 * operation and overkill in this particular case. Failing to
763 	 * shuffle a page marked for immediate reclaim is too mild to
764 	 * justify taking an atomic operation penalty at the end of
765 	 * ever page writeback.
766 	 */
767 	if (PageReclaim(page)) {
768 		ClearPageReclaim(page);
769 		rotate_reclaimable_page(page);
770 	}
771 
772 	if (!test_clear_page_writeback(page))
773 		BUG();
774 
775 	smp_mb__after_atomic();
776 	wake_up_page(page, PG_writeback);
777 }
778 EXPORT_SYMBOL(end_page_writeback);
779 
780 /*
781  * After completing I/O on a page, call this routine to update the page
782  * flags appropriately
783  */
784 void page_endio(struct page *page, int rw, int err)
785 {
786 	if (rw == READ) {
787 		if (!err) {
788 			SetPageUptodate(page);
789 		} else {
790 			ClearPageUptodate(page);
791 			SetPageError(page);
792 		}
793 		unlock_page(page);
794 	} else { /* rw == WRITE */
795 		if (err) {
796 			SetPageError(page);
797 			if (page->mapping)
798 				mapping_set_error(page->mapping, err);
799 		}
800 		end_page_writeback(page);
801 	}
802 }
803 EXPORT_SYMBOL_GPL(page_endio);
804 
805 /**
806  * __lock_page - get a lock on the page, assuming we need to sleep to get it
807  * @page: the page to lock
808  */
809 void __lock_page(struct page *page)
810 {
811 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
812 
813 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
814 							TASK_UNINTERRUPTIBLE);
815 }
816 EXPORT_SYMBOL(__lock_page);
817 
818 int __lock_page_killable(struct page *page)
819 {
820 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
821 
822 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
823 					bit_wait_io, TASK_KILLABLE);
824 }
825 EXPORT_SYMBOL_GPL(__lock_page_killable);
826 
827 /*
828  * Return values:
829  * 1 - page is locked; mmap_sem is still held.
830  * 0 - page is not locked.
831  *     mmap_sem has been released (up_read()), unless flags had both
832  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
833  *     which case mmap_sem is still held.
834  *
835  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
836  * with the page locked and the mmap_sem unperturbed.
837  */
838 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
839 			 unsigned int flags)
840 {
841 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
842 		/*
843 		 * CAUTION! In this case, mmap_sem is not released
844 		 * even though return 0.
845 		 */
846 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
847 			return 0;
848 
849 		up_read(&mm->mmap_sem);
850 		if (flags & FAULT_FLAG_KILLABLE)
851 			wait_on_page_locked_killable(page);
852 		else
853 			wait_on_page_locked(page);
854 		return 0;
855 	} else {
856 		if (flags & FAULT_FLAG_KILLABLE) {
857 			int ret;
858 
859 			ret = __lock_page_killable(page);
860 			if (ret) {
861 				up_read(&mm->mmap_sem);
862 				return 0;
863 			}
864 		} else
865 			__lock_page(page);
866 		return 1;
867 	}
868 }
869 
870 /**
871  * page_cache_next_hole - find the next hole (not-present entry)
872  * @mapping: mapping
873  * @index: index
874  * @max_scan: maximum range to search
875  *
876  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
877  * lowest indexed hole.
878  *
879  * Returns: the index of the hole if found, otherwise returns an index
880  * outside of the set specified (in which case 'return - index >=
881  * max_scan' will be true). In rare cases of index wrap-around, 0 will
882  * be returned.
883  *
884  * page_cache_next_hole may be called under rcu_read_lock. However,
885  * like radix_tree_gang_lookup, this will not atomically search a
886  * snapshot of the tree at a single point in time. For example, if a
887  * hole is created at index 5, then subsequently a hole is created at
888  * index 10, page_cache_next_hole covering both indexes may return 10
889  * if called under rcu_read_lock.
890  */
891 pgoff_t page_cache_next_hole(struct address_space *mapping,
892 			     pgoff_t index, unsigned long max_scan)
893 {
894 	unsigned long i;
895 
896 	for (i = 0; i < max_scan; i++) {
897 		struct page *page;
898 
899 		page = radix_tree_lookup(&mapping->page_tree, index);
900 		if (!page || radix_tree_exceptional_entry(page))
901 			break;
902 		index++;
903 		if (index == 0)
904 			break;
905 	}
906 
907 	return index;
908 }
909 EXPORT_SYMBOL(page_cache_next_hole);
910 
911 /**
912  * page_cache_prev_hole - find the prev hole (not-present entry)
913  * @mapping: mapping
914  * @index: index
915  * @max_scan: maximum range to search
916  *
917  * Search backwards in the range [max(index-max_scan+1, 0), index] for
918  * the first hole.
919  *
920  * Returns: the index of the hole if found, otherwise returns an index
921  * outside of the set specified (in which case 'index - return >=
922  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
923  * will be returned.
924  *
925  * page_cache_prev_hole may be called under rcu_read_lock. However,
926  * like radix_tree_gang_lookup, this will not atomically search a
927  * snapshot of the tree at a single point in time. For example, if a
928  * hole is created at index 10, then subsequently a hole is created at
929  * index 5, page_cache_prev_hole covering both indexes may return 5 if
930  * called under rcu_read_lock.
931  */
932 pgoff_t page_cache_prev_hole(struct address_space *mapping,
933 			     pgoff_t index, unsigned long max_scan)
934 {
935 	unsigned long i;
936 
937 	for (i = 0; i < max_scan; i++) {
938 		struct page *page;
939 
940 		page = radix_tree_lookup(&mapping->page_tree, index);
941 		if (!page || radix_tree_exceptional_entry(page))
942 			break;
943 		index--;
944 		if (index == ULONG_MAX)
945 			break;
946 	}
947 
948 	return index;
949 }
950 EXPORT_SYMBOL(page_cache_prev_hole);
951 
952 /**
953  * find_get_entry - find and get a page cache entry
954  * @mapping: the address_space to search
955  * @offset: the page cache index
956  *
957  * Looks up the page cache slot at @mapping & @offset.  If there is a
958  * page cache page, it is returned with an increased refcount.
959  *
960  * If the slot holds a shadow entry of a previously evicted page, or a
961  * swap entry from shmem/tmpfs, it is returned.
962  *
963  * Otherwise, %NULL is returned.
964  */
965 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
966 {
967 	void **pagep;
968 	struct page *page;
969 
970 	rcu_read_lock();
971 repeat:
972 	page = NULL;
973 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
974 	if (pagep) {
975 		page = radix_tree_deref_slot(pagep);
976 		if (unlikely(!page))
977 			goto out;
978 		if (radix_tree_exception(page)) {
979 			if (radix_tree_deref_retry(page))
980 				goto repeat;
981 			/*
982 			 * A shadow entry of a recently evicted page,
983 			 * or a swap entry from shmem/tmpfs.  Return
984 			 * it without attempting to raise page count.
985 			 */
986 			goto out;
987 		}
988 		if (!page_cache_get_speculative(page))
989 			goto repeat;
990 
991 		/*
992 		 * Has the page moved?
993 		 * This is part of the lockless pagecache protocol. See
994 		 * include/linux/pagemap.h for details.
995 		 */
996 		if (unlikely(page != *pagep)) {
997 			page_cache_release(page);
998 			goto repeat;
999 		}
1000 	}
1001 out:
1002 	rcu_read_unlock();
1003 
1004 	return page;
1005 }
1006 EXPORT_SYMBOL(find_get_entry);
1007 
1008 /**
1009  * find_lock_entry - locate, pin and lock a page cache entry
1010  * @mapping: the address_space to search
1011  * @offset: the page cache index
1012  *
1013  * Looks up the page cache slot at @mapping & @offset.  If there is a
1014  * page cache page, it is returned locked and with an increased
1015  * refcount.
1016  *
1017  * If the slot holds a shadow entry of a previously evicted page, or a
1018  * swap entry from shmem/tmpfs, it is returned.
1019  *
1020  * Otherwise, %NULL is returned.
1021  *
1022  * find_lock_entry() may sleep.
1023  */
1024 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1025 {
1026 	struct page *page;
1027 
1028 repeat:
1029 	page = find_get_entry(mapping, offset);
1030 	if (page && !radix_tree_exception(page)) {
1031 		lock_page(page);
1032 		/* Has the page been truncated? */
1033 		if (unlikely(page->mapping != mapping)) {
1034 			unlock_page(page);
1035 			page_cache_release(page);
1036 			goto repeat;
1037 		}
1038 		VM_BUG_ON_PAGE(page->index != offset, page);
1039 	}
1040 	return page;
1041 }
1042 EXPORT_SYMBOL(find_lock_entry);
1043 
1044 /**
1045  * pagecache_get_page - find and get a page reference
1046  * @mapping: the address_space to search
1047  * @offset: the page index
1048  * @fgp_flags: PCG flags
1049  * @gfp_mask: gfp mask to use for the page cache data page allocation
1050  *
1051  * Looks up the page cache slot at @mapping & @offset.
1052  *
1053  * PCG flags modify how the page is returned.
1054  *
1055  * FGP_ACCESSED: the page will be marked accessed
1056  * FGP_LOCK: Page is return locked
1057  * FGP_CREAT: If page is not present then a new page is allocated using
1058  *		@gfp_mask and added to the page cache and the VM's LRU
1059  *		list. The page is returned locked and with an increased
1060  *		refcount. Otherwise, %NULL is returned.
1061  *
1062  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1063  * if the GFP flags specified for FGP_CREAT are atomic.
1064  *
1065  * If there is a page cache page, it is returned with an increased refcount.
1066  */
1067 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1068 	int fgp_flags, gfp_t gfp_mask)
1069 {
1070 	struct page *page;
1071 
1072 repeat:
1073 	page = find_get_entry(mapping, offset);
1074 	if (radix_tree_exceptional_entry(page))
1075 		page = NULL;
1076 	if (!page)
1077 		goto no_page;
1078 
1079 	if (fgp_flags & FGP_LOCK) {
1080 		if (fgp_flags & FGP_NOWAIT) {
1081 			if (!trylock_page(page)) {
1082 				page_cache_release(page);
1083 				return NULL;
1084 			}
1085 		} else {
1086 			lock_page(page);
1087 		}
1088 
1089 		/* Has the page been truncated? */
1090 		if (unlikely(page->mapping != mapping)) {
1091 			unlock_page(page);
1092 			page_cache_release(page);
1093 			goto repeat;
1094 		}
1095 		VM_BUG_ON_PAGE(page->index != offset, page);
1096 	}
1097 
1098 	if (page && (fgp_flags & FGP_ACCESSED))
1099 		mark_page_accessed(page);
1100 
1101 no_page:
1102 	if (!page && (fgp_flags & FGP_CREAT)) {
1103 		int err;
1104 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1105 			gfp_mask |= __GFP_WRITE;
1106 		if (fgp_flags & FGP_NOFS)
1107 			gfp_mask &= ~__GFP_FS;
1108 
1109 		page = __page_cache_alloc(gfp_mask);
1110 		if (!page)
1111 			return NULL;
1112 
1113 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1114 			fgp_flags |= FGP_LOCK;
1115 
1116 		/* Init accessed so avoid atomic mark_page_accessed later */
1117 		if (fgp_flags & FGP_ACCESSED)
1118 			__SetPageReferenced(page);
1119 
1120 		err = add_to_page_cache_lru(page, mapping, offset,
1121 				gfp_mask & GFP_RECLAIM_MASK);
1122 		if (unlikely(err)) {
1123 			page_cache_release(page);
1124 			page = NULL;
1125 			if (err == -EEXIST)
1126 				goto repeat;
1127 		}
1128 	}
1129 
1130 	return page;
1131 }
1132 EXPORT_SYMBOL(pagecache_get_page);
1133 
1134 /**
1135  * find_get_entries - gang pagecache lookup
1136  * @mapping:	The address_space to search
1137  * @start:	The starting page cache index
1138  * @nr_entries:	The maximum number of entries
1139  * @entries:	Where the resulting entries are placed
1140  * @indices:	The cache indices corresponding to the entries in @entries
1141  *
1142  * find_get_entries() will search for and return a group of up to
1143  * @nr_entries entries in the mapping.  The entries are placed at
1144  * @entries.  find_get_entries() takes a reference against any actual
1145  * pages it returns.
1146  *
1147  * The search returns a group of mapping-contiguous page cache entries
1148  * with ascending indexes.  There may be holes in the indices due to
1149  * not-present pages.
1150  *
1151  * Any shadow entries of evicted pages, or swap entries from
1152  * shmem/tmpfs, are included in the returned array.
1153  *
1154  * find_get_entries() returns the number of pages and shadow entries
1155  * which were found.
1156  */
1157 unsigned find_get_entries(struct address_space *mapping,
1158 			  pgoff_t start, unsigned int nr_entries,
1159 			  struct page **entries, pgoff_t *indices)
1160 {
1161 	void **slot;
1162 	unsigned int ret = 0;
1163 	struct radix_tree_iter iter;
1164 
1165 	if (!nr_entries)
1166 		return 0;
1167 
1168 	rcu_read_lock();
1169 restart:
1170 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1171 		struct page *page;
1172 repeat:
1173 		page = radix_tree_deref_slot(slot);
1174 		if (unlikely(!page))
1175 			continue;
1176 		if (radix_tree_exception(page)) {
1177 			if (radix_tree_deref_retry(page))
1178 				goto restart;
1179 			/*
1180 			 * A shadow entry of a recently evicted page,
1181 			 * or a swap entry from shmem/tmpfs.  Return
1182 			 * it without attempting to raise page count.
1183 			 */
1184 			goto export;
1185 		}
1186 		if (!page_cache_get_speculative(page))
1187 			goto repeat;
1188 
1189 		/* Has the page moved? */
1190 		if (unlikely(page != *slot)) {
1191 			page_cache_release(page);
1192 			goto repeat;
1193 		}
1194 export:
1195 		indices[ret] = iter.index;
1196 		entries[ret] = page;
1197 		if (++ret == nr_entries)
1198 			break;
1199 	}
1200 	rcu_read_unlock();
1201 	return ret;
1202 }
1203 
1204 /**
1205  * find_get_pages - gang pagecache lookup
1206  * @mapping:	The address_space to search
1207  * @start:	The starting page index
1208  * @nr_pages:	The maximum number of pages
1209  * @pages:	Where the resulting pages are placed
1210  *
1211  * find_get_pages() will search for and return a group of up to
1212  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1213  * find_get_pages() takes a reference against the returned pages.
1214  *
1215  * The search returns a group of mapping-contiguous pages with ascending
1216  * indexes.  There may be holes in the indices due to not-present pages.
1217  *
1218  * find_get_pages() returns the number of pages which were found.
1219  */
1220 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1221 			    unsigned int nr_pages, struct page **pages)
1222 {
1223 	struct radix_tree_iter iter;
1224 	void **slot;
1225 	unsigned ret = 0;
1226 
1227 	if (unlikely(!nr_pages))
1228 		return 0;
1229 
1230 	rcu_read_lock();
1231 restart:
1232 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1233 		struct page *page;
1234 repeat:
1235 		page = radix_tree_deref_slot(slot);
1236 		if (unlikely(!page))
1237 			continue;
1238 
1239 		if (radix_tree_exception(page)) {
1240 			if (radix_tree_deref_retry(page)) {
1241 				/*
1242 				 * Transient condition which can only trigger
1243 				 * when entry at index 0 moves out of or back
1244 				 * to root: none yet gotten, safe to restart.
1245 				 */
1246 				WARN_ON(iter.index);
1247 				goto restart;
1248 			}
1249 			/*
1250 			 * A shadow entry of a recently evicted page,
1251 			 * or a swap entry from shmem/tmpfs.  Skip
1252 			 * over it.
1253 			 */
1254 			continue;
1255 		}
1256 
1257 		if (!page_cache_get_speculative(page))
1258 			goto repeat;
1259 
1260 		/* Has the page moved? */
1261 		if (unlikely(page != *slot)) {
1262 			page_cache_release(page);
1263 			goto repeat;
1264 		}
1265 
1266 		pages[ret] = page;
1267 		if (++ret == nr_pages)
1268 			break;
1269 	}
1270 
1271 	rcu_read_unlock();
1272 	return ret;
1273 }
1274 
1275 /**
1276  * find_get_pages_contig - gang contiguous pagecache lookup
1277  * @mapping:	The address_space to search
1278  * @index:	The starting page index
1279  * @nr_pages:	The maximum number of pages
1280  * @pages:	Where the resulting pages are placed
1281  *
1282  * find_get_pages_contig() works exactly like find_get_pages(), except
1283  * that the returned number of pages are guaranteed to be contiguous.
1284  *
1285  * find_get_pages_contig() returns the number of pages which were found.
1286  */
1287 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1288 			       unsigned int nr_pages, struct page **pages)
1289 {
1290 	struct radix_tree_iter iter;
1291 	void **slot;
1292 	unsigned int ret = 0;
1293 
1294 	if (unlikely(!nr_pages))
1295 		return 0;
1296 
1297 	rcu_read_lock();
1298 restart:
1299 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1300 		struct page *page;
1301 repeat:
1302 		page = radix_tree_deref_slot(slot);
1303 		/* The hole, there no reason to continue */
1304 		if (unlikely(!page))
1305 			break;
1306 
1307 		if (radix_tree_exception(page)) {
1308 			if (radix_tree_deref_retry(page)) {
1309 				/*
1310 				 * Transient condition which can only trigger
1311 				 * when entry at index 0 moves out of or back
1312 				 * to root: none yet gotten, safe to restart.
1313 				 */
1314 				goto restart;
1315 			}
1316 			/*
1317 			 * A shadow entry of a recently evicted page,
1318 			 * or a swap entry from shmem/tmpfs.  Stop
1319 			 * looking for contiguous pages.
1320 			 */
1321 			break;
1322 		}
1323 
1324 		if (!page_cache_get_speculative(page))
1325 			goto repeat;
1326 
1327 		/* Has the page moved? */
1328 		if (unlikely(page != *slot)) {
1329 			page_cache_release(page);
1330 			goto repeat;
1331 		}
1332 
1333 		/*
1334 		 * must check mapping and index after taking the ref.
1335 		 * otherwise we can get both false positives and false
1336 		 * negatives, which is just confusing to the caller.
1337 		 */
1338 		if (page->mapping == NULL || page->index != iter.index) {
1339 			page_cache_release(page);
1340 			break;
1341 		}
1342 
1343 		pages[ret] = page;
1344 		if (++ret == nr_pages)
1345 			break;
1346 	}
1347 	rcu_read_unlock();
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(find_get_pages_contig);
1351 
1352 /**
1353  * find_get_pages_tag - find and return pages that match @tag
1354  * @mapping:	the address_space to search
1355  * @index:	the starting page index
1356  * @tag:	the tag index
1357  * @nr_pages:	the maximum number of pages
1358  * @pages:	where the resulting pages are placed
1359  *
1360  * Like find_get_pages, except we only return pages which are tagged with
1361  * @tag.   We update @index to index the next page for the traversal.
1362  */
1363 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1364 			int tag, unsigned int nr_pages, struct page **pages)
1365 {
1366 	struct radix_tree_iter iter;
1367 	void **slot;
1368 	unsigned ret = 0;
1369 
1370 	if (unlikely(!nr_pages))
1371 		return 0;
1372 
1373 	rcu_read_lock();
1374 restart:
1375 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1376 				   &iter, *index, tag) {
1377 		struct page *page;
1378 repeat:
1379 		page = radix_tree_deref_slot(slot);
1380 		if (unlikely(!page))
1381 			continue;
1382 
1383 		if (radix_tree_exception(page)) {
1384 			if (radix_tree_deref_retry(page)) {
1385 				/*
1386 				 * Transient condition which can only trigger
1387 				 * when entry at index 0 moves out of or back
1388 				 * to root: none yet gotten, safe to restart.
1389 				 */
1390 				goto restart;
1391 			}
1392 			/*
1393 			 * A shadow entry of a recently evicted page.
1394 			 *
1395 			 * Those entries should never be tagged, but
1396 			 * this tree walk is lockless and the tags are
1397 			 * looked up in bulk, one radix tree node at a
1398 			 * time, so there is a sizable window for page
1399 			 * reclaim to evict a page we saw tagged.
1400 			 *
1401 			 * Skip over it.
1402 			 */
1403 			continue;
1404 		}
1405 
1406 		if (!page_cache_get_speculative(page))
1407 			goto repeat;
1408 
1409 		/* Has the page moved? */
1410 		if (unlikely(page != *slot)) {
1411 			page_cache_release(page);
1412 			goto repeat;
1413 		}
1414 
1415 		pages[ret] = page;
1416 		if (++ret == nr_pages)
1417 			break;
1418 	}
1419 
1420 	rcu_read_unlock();
1421 
1422 	if (ret)
1423 		*index = pages[ret - 1]->index + 1;
1424 
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL(find_get_pages_tag);
1428 
1429 /*
1430  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1431  * a _large_ part of the i/o request. Imagine the worst scenario:
1432  *
1433  *      ---R__________________________________________B__________
1434  *         ^ reading here                             ^ bad block(assume 4k)
1435  *
1436  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1437  * => failing the whole request => read(R) => read(R+1) =>
1438  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1439  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1440  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1441  *
1442  * It is going insane. Fix it by quickly scaling down the readahead size.
1443  */
1444 static void shrink_readahead_size_eio(struct file *filp,
1445 					struct file_ra_state *ra)
1446 {
1447 	ra->ra_pages /= 4;
1448 }
1449 
1450 /**
1451  * do_generic_file_read - generic file read routine
1452  * @filp:	the file to read
1453  * @ppos:	current file position
1454  * @iter:	data destination
1455  * @written:	already copied
1456  *
1457  * This is a generic file read routine, and uses the
1458  * mapping->a_ops->readpage() function for the actual low-level stuff.
1459  *
1460  * This is really ugly. But the goto's actually try to clarify some
1461  * of the logic when it comes to error handling etc.
1462  */
1463 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1464 		struct iov_iter *iter, ssize_t written)
1465 {
1466 	struct address_space *mapping = filp->f_mapping;
1467 	struct inode *inode = mapping->host;
1468 	struct file_ra_state *ra = &filp->f_ra;
1469 	pgoff_t index;
1470 	pgoff_t last_index;
1471 	pgoff_t prev_index;
1472 	unsigned long offset;      /* offset into pagecache page */
1473 	unsigned int prev_offset;
1474 	int error = 0;
1475 
1476 	index = *ppos >> PAGE_CACHE_SHIFT;
1477 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1478 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1479 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1480 	offset = *ppos & ~PAGE_CACHE_MASK;
1481 
1482 	for (;;) {
1483 		struct page *page;
1484 		pgoff_t end_index;
1485 		loff_t isize;
1486 		unsigned long nr, ret;
1487 
1488 		cond_resched();
1489 find_page:
1490 		page = find_get_page(mapping, index);
1491 		if (!page) {
1492 			page_cache_sync_readahead(mapping,
1493 					ra, filp,
1494 					index, last_index - index);
1495 			page = find_get_page(mapping, index);
1496 			if (unlikely(page == NULL))
1497 				goto no_cached_page;
1498 		}
1499 		if (PageReadahead(page)) {
1500 			page_cache_async_readahead(mapping,
1501 					ra, filp, page,
1502 					index, last_index - index);
1503 		}
1504 		if (!PageUptodate(page)) {
1505 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1506 					!mapping->a_ops->is_partially_uptodate)
1507 				goto page_not_up_to_date;
1508 			if (!trylock_page(page))
1509 				goto page_not_up_to_date;
1510 			/* Did it get truncated before we got the lock? */
1511 			if (!page->mapping)
1512 				goto page_not_up_to_date_locked;
1513 			if (!mapping->a_ops->is_partially_uptodate(page,
1514 							offset, iter->count))
1515 				goto page_not_up_to_date_locked;
1516 			unlock_page(page);
1517 		}
1518 page_ok:
1519 		/*
1520 		 * i_size must be checked after we know the page is Uptodate.
1521 		 *
1522 		 * Checking i_size after the check allows us to calculate
1523 		 * the correct value for "nr", which means the zero-filled
1524 		 * part of the page is not copied back to userspace (unless
1525 		 * another truncate extends the file - this is desired though).
1526 		 */
1527 
1528 		isize = i_size_read(inode);
1529 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1530 		if (unlikely(!isize || index > end_index)) {
1531 			page_cache_release(page);
1532 			goto out;
1533 		}
1534 
1535 		/* nr is the maximum number of bytes to copy from this page */
1536 		nr = PAGE_CACHE_SIZE;
1537 		if (index == end_index) {
1538 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1539 			if (nr <= offset) {
1540 				page_cache_release(page);
1541 				goto out;
1542 			}
1543 		}
1544 		nr = nr - offset;
1545 
1546 		/* If users can be writing to this page using arbitrary
1547 		 * virtual addresses, take care about potential aliasing
1548 		 * before reading the page on the kernel side.
1549 		 */
1550 		if (mapping_writably_mapped(mapping))
1551 			flush_dcache_page(page);
1552 
1553 		/*
1554 		 * When a sequential read accesses a page several times,
1555 		 * only mark it as accessed the first time.
1556 		 */
1557 		if (prev_index != index || offset != prev_offset)
1558 			mark_page_accessed(page);
1559 		prev_index = index;
1560 
1561 		/*
1562 		 * Ok, we have the page, and it's up-to-date, so
1563 		 * now we can copy it to user space...
1564 		 */
1565 
1566 		ret = copy_page_to_iter(page, offset, nr, iter);
1567 		offset += ret;
1568 		index += offset >> PAGE_CACHE_SHIFT;
1569 		offset &= ~PAGE_CACHE_MASK;
1570 		prev_offset = offset;
1571 
1572 		page_cache_release(page);
1573 		written += ret;
1574 		if (!iov_iter_count(iter))
1575 			goto out;
1576 		if (ret < nr) {
1577 			error = -EFAULT;
1578 			goto out;
1579 		}
1580 		continue;
1581 
1582 page_not_up_to_date:
1583 		/* Get exclusive access to the page ... */
1584 		error = lock_page_killable(page);
1585 		if (unlikely(error))
1586 			goto readpage_error;
1587 
1588 page_not_up_to_date_locked:
1589 		/* Did it get truncated before we got the lock? */
1590 		if (!page->mapping) {
1591 			unlock_page(page);
1592 			page_cache_release(page);
1593 			continue;
1594 		}
1595 
1596 		/* Did somebody else fill it already? */
1597 		if (PageUptodate(page)) {
1598 			unlock_page(page);
1599 			goto page_ok;
1600 		}
1601 
1602 readpage:
1603 		/*
1604 		 * A previous I/O error may have been due to temporary
1605 		 * failures, eg. multipath errors.
1606 		 * PG_error will be set again if readpage fails.
1607 		 */
1608 		ClearPageError(page);
1609 		/* Start the actual read. The read will unlock the page. */
1610 		error = mapping->a_ops->readpage(filp, page);
1611 
1612 		if (unlikely(error)) {
1613 			if (error == AOP_TRUNCATED_PAGE) {
1614 				page_cache_release(page);
1615 				error = 0;
1616 				goto find_page;
1617 			}
1618 			goto readpage_error;
1619 		}
1620 
1621 		if (!PageUptodate(page)) {
1622 			error = lock_page_killable(page);
1623 			if (unlikely(error))
1624 				goto readpage_error;
1625 			if (!PageUptodate(page)) {
1626 				if (page->mapping == NULL) {
1627 					/*
1628 					 * invalidate_mapping_pages got it
1629 					 */
1630 					unlock_page(page);
1631 					page_cache_release(page);
1632 					goto find_page;
1633 				}
1634 				unlock_page(page);
1635 				shrink_readahead_size_eio(filp, ra);
1636 				error = -EIO;
1637 				goto readpage_error;
1638 			}
1639 			unlock_page(page);
1640 		}
1641 
1642 		goto page_ok;
1643 
1644 readpage_error:
1645 		/* UHHUH! A synchronous read error occurred. Report it */
1646 		page_cache_release(page);
1647 		goto out;
1648 
1649 no_cached_page:
1650 		/*
1651 		 * Ok, it wasn't cached, so we need to create a new
1652 		 * page..
1653 		 */
1654 		page = page_cache_alloc_cold(mapping);
1655 		if (!page) {
1656 			error = -ENOMEM;
1657 			goto out;
1658 		}
1659 		error = add_to_page_cache_lru(page, mapping,
1660 						index, GFP_KERNEL);
1661 		if (error) {
1662 			page_cache_release(page);
1663 			if (error == -EEXIST) {
1664 				error = 0;
1665 				goto find_page;
1666 			}
1667 			goto out;
1668 		}
1669 		goto readpage;
1670 	}
1671 
1672 out:
1673 	ra->prev_pos = prev_index;
1674 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1675 	ra->prev_pos |= prev_offset;
1676 
1677 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1678 	file_accessed(filp);
1679 	return written ? written : error;
1680 }
1681 
1682 /**
1683  * generic_file_read_iter - generic filesystem read routine
1684  * @iocb:	kernel I/O control block
1685  * @iter:	destination for the data read
1686  *
1687  * This is the "read_iter()" routine for all filesystems
1688  * that can use the page cache directly.
1689  */
1690 ssize_t
1691 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1692 {
1693 	struct file *file = iocb->ki_filp;
1694 	ssize_t retval = 0;
1695 	loff_t *ppos = &iocb->ki_pos;
1696 	loff_t pos = *ppos;
1697 
1698 	if (io_is_direct(file)) {
1699 		struct address_space *mapping = file->f_mapping;
1700 		struct inode *inode = mapping->host;
1701 		size_t count = iov_iter_count(iter);
1702 		loff_t size;
1703 
1704 		if (!count)
1705 			goto out; /* skip atime */
1706 		size = i_size_read(inode);
1707 		retval = filemap_write_and_wait_range(mapping, pos,
1708 					pos + count - 1);
1709 		if (!retval) {
1710 			struct iov_iter data = *iter;
1711 			retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1712 		}
1713 
1714 		if (retval > 0) {
1715 			*ppos = pos + retval;
1716 			iov_iter_advance(iter, retval);
1717 		}
1718 
1719 		/*
1720 		 * Btrfs can have a short DIO read if we encounter
1721 		 * compressed extents, so if there was an error, or if
1722 		 * we've already read everything we wanted to, or if
1723 		 * there was a short read because we hit EOF, go ahead
1724 		 * and return.  Otherwise fallthrough to buffered io for
1725 		 * the rest of the read.  Buffered reads will not work for
1726 		 * DAX files, so don't bother trying.
1727 		 */
1728 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1729 		    IS_DAX(inode)) {
1730 			file_accessed(file);
1731 			goto out;
1732 		}
1733 	}
1734 
1735 	retval = do_generic_file_read(file, ppos, iter, retval);
1736 out:
1737 	return retval;
1738 }
1739 EXPORT_SYMBOL(generic_file_read_iter);
1740 
1741 #ifdef CONFIG_MMU
1742 /**
1743  * page_cache_read - adds requested page to the page cache if not already there
1744  * @file:	file to read
1745  * @offset:	page index
1746  *
1747  * This adds the requested page to the page cache if it isn't already there,
1748  * and schedules an I/O to read in its contents from disk.
1749  */
1750 static int page_cache_read(struct file *file, pgoff_t offset)
1751 {
1752 	struct address_space *mapping = file->f_mapping;
1753 	struct page *page;
1754 	int ret;
1755 
1756 	do {
1757 		page = page_cache_alloc_cold(mapping);
1758 		if (!page)
1759 			return -ENOMEM;
1760 
1761 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1762 		if (ret == 0)
1763 			ret = mapping->a_ops->readpage(file, page);
1764 		else if (ret == -EEXIST)
1765 			ret = 0; /* losing race to add is OK */
1766 
1767 		page_cache_release(page);
1768 
1769 	} while (ret == AOP_TRUNCATED_PAGE);
1770 
1771 	return ret;
1772 }
1773 
1774 #define MMAP_LOTSAMISS  (100)
1775 
1776 /*
1777  * Synchronous readahead happens when we don't even find
1778  * a page in the page cache at all.
1779  */
1780 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1781 				   struct file_ra_state *ra,
1782 				   struct file *file,
1783 				   pgoff_t offset)
1784 {
1785 	unsigned long ra_pages;
1786 	struct address_space *mapping = file->f_mapping;
1787 
1788 	/* If we don't want any read-ahead, don't bother */
1789 	if (vma->vm_flags & VM_RAND_READ)
1790 		return;
1791 	if (!ra->ra_pages)
1792 		return;
1793 
1794 	if (vma->vm_flags & VM_SEQ_READ) {
1795 		page_cache_sync_readahead(mapping, ra, file, offset,
1796 					  ra->ra_pages);
1797 		return;
1798 	}
1799 
1800 	/* Avoid banging the cache line if not needed */
1801 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1802 		ra->mmap_miss++;
1803 
1804 	/*
1805 	 * Do we miss much more than hit in this file? If so,
1806 	 * stop bothering with read-ahead. It will only hurt.
1807 	 */
1808 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1809 		return;
1810 
1811 	/*
1812 	 * mmap read-around
1813 	 */
1814 	ra_pages = max_sane_readahead(ra->ra_pages);
1815 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1816 	ra->size = ra_pages;
1817 	ra->async_size = ra_pages / 4;
1818 	ra_submit(ra, mapping, file);
1819 }
1820 
1821 /*
1822  * Asynchronous readahead happens when we find the page and PG_readahead,
1823  * so we want to possibly extend the readahead further..
1824  */
1825 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1826 				    struct file_ra_state *ra,
1827 				    struct file *file,
1828 				    struct page *page,
1829 				    pgoff_t offset)
1830 {
1831 	struct address_space *mapping = file->f_mapping;
1832 
1833 	/* If we don't want any read-ahead, don't bother */
1834 	if (vma->vm_flags & VM_RAND_READ)
1835 		return;
1836 	if (ra->mmap_miss > 0)
1837 		ra->mmap_miss--;
1838 	if (PageReadahead(page))
1839 		page_cache_async_readahead(mapping, ra, file,
1840 					   page, offset, ra->ra_pages);
1841 }
1842 
1843 /**
1844  * filemap_fault - read in file data for page fault handling
1845  * @vma:	vma in which the fault was taken
1846  * @vmf:	struct vm_fault containing details of the fault
1847  *
1848  * filemap_fault() is invoked via the vma operations vector for a
1849  * mapped memory region to read in file data during a page fault.
1850  *
1851  * The goto's are kind of ugly, but this streamlines the normal case of having
1852  * it in the page cache, and handles the special cases reasonably without
1853  * having a lot of duplicated code.
1854  *
1855  * vma->vm_mm->mmap_sem must be held on entry.
1856  *
1857  * If our return value has VM_FAULT_RETRY set, it's because
1858  * lock_page_or_retry() returned 0.
1859  * The mmap_sem has usually been released in this case.
1860  * See __lock_page_or_retry() for the exception.
1861  *
1862  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1863  * has not been released.
1864  *
1865  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1866  */
1867 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1868 {
1869 	int error;
1870 	struct file *file = vma->vm_file;
1871 	struct address_space *mapping = file->f_mapping;
1872 	struct file_ra_state *ra = &file->f_ra;
1873 	struct inode *inode = mapping->host;
1874 	pgoff_t offset = vmf->pgoff;
1875 	struct page *page;
1876 	loff_t size;
1877 	int ret = 0;
1878 
1879 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1880 	if (offset >= size >> PAGE_CACHE_SHIFT)
1881 		return VM_FAULT_SIGBUS;
1882 
1883 	/*
1884 	 * Do we have something in the page cache already?
1885 	 */
1886 	page = find_get_page(mapping, offset);
1887 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1888 		/*
1889 		 * We found the page, so try async readahead before
1890 		 * waiting for the lock.
1891 		 */
1892 		do_async_mmap_readahead(vma, ra, file, page, offset);
1893 	} else if (!page) {
1894 		/* No page in the page cache at all */
1895 		do_sync_mmap_readahead(vma, ra, file, offset);
1896 		count_vm_event(PGMAJFAULT);
1897 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1898 		ret = VM_FAULT_MAJOR;
1899 retry_find:
1900 		page = find_get_page(mapping, offset);
1901 		if (!page)
1902 			goto no_cached_page;
1903 	}
1904 
1905 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1906 		page_cache_release(page);
1907 		return ret | VM_FAULT_RETRY;
1908 	}
1909 
1910 	/* Did it get truncated? */
1911 	if (unlikely(page->mapping != mapping)) {
1912 		unlock_page(page);
1913 		put_page(page);
1914 		goto retry_find;
1915 	}
1916 	VM_BUG_ON_PAGE(page->index != offset, page);
1917 
1918 	/*
1919 	 * We have a locked page in the page cache, now we need to check
1920 	 * that it's up-to-date. If not, it is going to be due to an error.
1921 	 */
1922 	if (unlikely(!PageUptodate(page)))
1923 		goto page_not_uptodate;
1924 
1925 	/*
1926 	 * Found the page and have a reference on it.
1927 	 * We must recheck i_size under page lock.
1928 	 */
1929 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1930 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1931 		unlock_page(page);
1932 		page_cache_release(page);
1933 		return VM_FAULT_SIGBUS;
1934 	}
1935 
1936 	vmf->page = page;
1937 	return ret | VM_FAULT_LOCKED;
1938 
1939 no_cached_page:
1940 	/*
1941 	 * We're only likely to ever get here if MADV_RANDOM is in
1942 	 * effect.
1943 	 */
1944 	error = page_cache_read(file, offset);
1945 
1946 	/*
1947 	 * The page we want has now been added to the page cache.
1948 	 * In the unlikely event that someone removed it in the
1949 	 * meantime, we'll just come back here and read it again.
1950 	 */
1951 	if (error >= 0)
1952 		goto retry_find;
1953 
1954 	/*
1955 	 * An error return from page_cache_read can result if the
1956 	 * system is low on memory, or a problem occurs while trying
1957 	 * to schedule I/O.
1958 	 */
1959 	if (error == -ENOMEM)
1960 		return VM_FAULT_OOM;
1961 	return VM_FAULT_SIGBUS;
1962 
1963 page_not_uptodate:
1964 	/*
1965 	 * Umm, take care of errors if the page isn't up-to-date.
1966 	 * Try to re-read it _once_. We do this synchronously,
1967 	 * because there really aren't any performance issues here
1968 	 * and we need to check for errors.
1969 	 */
1970 	ClearPageError(page);
1971 	error = mapping->a_ops->readpage(file, page);
1972 	if (!error) {
1973 		wait_on_page_locked(page);
1974 		if (!PageUptodate(page))
1975 			error = -EIO;
1976 	}
1977 	page_cache_release(page);
1978 
1979 	if (!error || error == AOP_TRUNCATED_PAGE)
1980 		goto retry_find;
1981 
1982 	/* Things didn't work out. Return zero to tell the mm layer so. */
1983 	shrink_readahead_size_eio(file, ra);
1984 	return VM_FAULT_SIGBUS;
1985 }
1986 EXPORT_SYMBOL(filemap_fault);
1987 
1988 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1989 {
1990 	struct radix_tree_iter iter;
1991 	void **slot;
1992 	struct file *file = vma->vm_file;
1993 	struct address_space *mapping = file->f_mapping;
1994 	loff_t size;
1995 	struct page *page;
1996 	unsigned long address = (unsigned long) vmf->virtual_address;
1997 	unsigned long addr;
1998 	pte_t *pte;
1999 
2000 	rcu_read_lock();
2001 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2002 		if (iter.index > vmf->max_pgoff)
2003 			break;
2004 repeat:
2005 		page = radix_tree_deref_slot(slot);
2006 		if (unlikely(!page))
2007 			goto next;
2008 		if (radix_tree_exception(page)) {
2009 			if (radix_tree_deref_retry(page))
2010 				break;
2011 			else
2012 				goto next;
2013 		}
2014 
2015 		if (!page_cache_get_speculative(page))
2016 			goto repeat;
2017 
2018 		/* Has the page moved? */
2019 		if (unlikely(page != *slot)) {
2020 			page_cache_release(page);
2021 			goto repeat;
2022 		}
2023 
2024 		if (!PageUptodate(page) ||
2025 				PageReadahead(page) ||
2026 				PageHWPoison(page))
2027 			goto skip;
2028 		if (!trylock_page(page))
2029 			goto skip;
2030 
2031 		if (page->mapping != mapping || !PageUptodate(page))
2032 			goto unlock;
2033 
2034 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2035 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2036 			goto unlock;
2037 
2038 		pte = vmf->pte + page->index - vmf->pgoff;
2039 		if (!pte_none(*pte))
2040 			goto unlock;
2041 
2042 		if (file->f_ra.mmap_miss > 0)
2043 			file->f_ra.mmap_miss--;
2044 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2045 		do_set_pte(vma, addr, page, pte, false, false);
2046 		unlock_page(page);
2047 		goto next;
2048 unlock:
2049 		unlock_page(page);
2050 skip:
2051 		page_cache_release(page);
2052 next:
2053 		if (iter.index == vmf->max_pgoff)
2054 			break;
2055 	}
2056 	rcu_read_unlock();
2057 }
2058 EXPORT_SYMBOL(filemap_map_pages);
2059 
2060 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2061 {
2062 	struct page *page = vmf->page;
2063 	struct inode *inode = file_inode(vma->vm_file);
2064 	int ret = VM_FAULT_LOCKED;
2065 
2066 	sb_start_pagefault(inode->i_sb);
2067 	file_update_time(vma->vm_file);
2068 	lock_page(page);
2069 	if (page->mapping != inode->i_mapping) {
2070 		unlock_page(page);
2071 		ret = VM_FAULT_NOPAGE;
2072 		goto out;
2073 	}
2074 	/*
2075 	 * We mark the page dirty already here so that when freeze is in
2076 	 * progress, we are guaranteed that writeback during freezing will
2077 	 * see the dirty page and writeprotect it again.
2078 	 */
2079 	set_page_dirty(page);
2080 	wait_for_stable_page(page);
2081 out:
2082 	sb_end_pagefault(inode->i_sb);
2083 	return ret;
2084 }
2085 EXPORT_SYMBOL(filemap_page_mkwrite);
2086 
2087 const struct vm_operations_struct generic_file_vm_ops = {
2088 	.fault		= filemap_fault,
2089 	.map_pages	= filemap_map_pages,
2090 	.page_mkwrite	= filemap_page_mkwrite,
2091 };
2092 
2093 /* This is used for a general mmap of a disk file */
2094 
2095 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2096 {
2097 	struct address_space *mapping = file->f_mapping;
2098 
2099 	if (!mapping->a_ops->readpage)
2100 		return -ENOEXEC;
2101 	file_accessed(file);
2102 	vma->vm_ops = &generic_file_vm_ops;
2103 	return 0;
2104 }
2105 
2106 /*
2107  * This is for filesystems which do not implement ->writepage.
2108  */
2109 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2110 {
2111 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2112 		return -EINVAL;
2113 	return generic_file_mmap(file, vma);
2114 }
2115 #else
2116 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2117 {
2118 	return -ENOSYS;
2119 }
2120 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2121 {
2122 	return -ENOSYS;
2123 }
2124 #endif /* CONFIG_MMU */
2125 
2126 EXPORT_SYMBOL(generic_file_mmap);
2127 EXPORT_SYMBOL(generic_file_readonly_mmap);
2128 
2129 static struct page *wait_on_page_read(struct page *page)
2130 {
2131 	if (!IS_ERR(page)) {
2132 		wait_on_page_locked(page);
2133 		if (!PageUptodate(page)) {
2134 			page_cache_release(page);
2135 			page = ERR_PTR(-EIO);
2136 		}
2137 	}
2138 	return page;
2139 }
2140 
2141 static struct page *__read_cache_page(struct address_space *mapping,
2142 				pgoff_t index,
2143 				int (*filler)(void *, struct page *),
2144 				void *data,
2145 				gfp_t gfp)
2146 {
2147 	struct page *page;
2148 	int err;
2149 repeat:
2150 	page = find_get_page(mapping, index);
2151 	if (!page) {
2152 		page = __page_cache_alloc(gfp | __GFP_COLD);
2153 		if (!page)
2154 			return ERR_PTR(-ENOMEM);
2155 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2156 		if (unlikely(err)) {
2157 			page_cache_release(page);
2158 			if (err == -EEXIST)
2159 				goto repeat;
2160 			/* Presumably ENOMEM for radix tree node */
2161 			return ERR_PTR(err);
2162 		}
2163 		err = filler(data, page);
2164 		if (err < 0) {
2165 			page_cache_release(page);
2166 			page = ERR_PTR(err);
2167 		} else {
2168 			page = wait_on_page_read(page);
2169 		}
2170 	}
2171 	return page;
2172 }
2173 
2174 static struct page *do_read_cache_page(struct address_space *mapping,
2175 				pgoff_t index,
2176 				int (*filler)(void *, struct page *),
2177 				void *data,
2178 				gfp_t gfp)
2179 
2180 {
2181 	struct page *page;
2182 	int err;
2183 
2184 retry:
2185 	page = __read_cache_page(mapping, index, filler, data, gfp);
2186 	if (IS_ERR(page))
2187 		return page;
2188 	if (PageUptodate(page))
2189 		goto out;
2190 
2191 	lock_page(page);
2192 	if (!page->mapping) {
2193 		unlock_page(page);
2194 		page_cache_release(page);
2195 		goto retry;
2196 	}
2197 	if (PageUptodate(page)) {
2198 		unlock_page(page);
2199 		goto out;
2200 	}
2201 	err = filler(data, page);
2202 	if (err < 0) {
2203 		page_cache_release(page);
2204 		return ERR_PTR(err);
2205 	} else {
2206 		page = wait_on_page_read(page);
2207 		if (IS_ERR(page))
2208 			return page;
2209 	}
2210 out:
2211 	mark_page_accessed(page);
2212 	return page;
2213 }
2214 
2215 /**
2216  * read_cache_page - read into page cache, fill it if needed
2217  * @mapping:	the page's address_space
2218  * @index:	the page index
2219  * @filler:	function to perform the read
2220  * @data:	first arg to filler(data, page) function, often left as NULL
2221  *
2222  * Read into the page cache. If a page already exists, and PageUptodate() is
2223  * not set, try to fill the page and wait for it to become unlocked.
2224  *
2225  * If the page does not get brought uptodate, return -EIO.
2226  */
2227 struct page *read_cache_page(struct address_space *mapping,
2228 				pgoff_t index,
2229 				int (*filler)(void *, struct page *),
2230 				void *data)
2231 {
2232 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2233 }
2234 EXPORT_SYMBOL(read_cache_page);
2235 
2236 /**
2237  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2238  * @mapping:	the page's address_space
2239  * @index:	the page index
2240  * @gfp:	the page allocator flags to use if allocating
2241  *
2242  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2243  * any new page allocations done using the specified allocation flags.
2244  *
2245  * If the page does not get brought uptodate, return -EIO.
2246  */
2247 struct page *read_cache_page_gfp(struct address_space *mapping,
2248 				pgoff_t index,
2249 				gfp_t gfp)
2250 {
2251 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2252 
2253 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2254 }
2255 EXPORT_SYMBOL(read_cache_page_gfp);
2256 
2257 /*
2258  * Performs necessary checks before doing a write
2259  *
2260  * Can adjust writing position or amount of bytes to write.
2261  * Returns appropriate error code that caller should return or
2262  * zero in case that write should be allowed.
2263  */
2264 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2265 {
2266 	struct inode *inode = file->f_mapping->host;
2267 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2268 
2269         if (unlikely(*pos < 0))
2270                 return -EINVAL;
2271 
2272 	if (!isblk) {
2273 		/* FIXME: this is for backwards compatibility with 2.4 */
2274 		if (file->f_flags & O_APPEND)
2275                         *pos = i_size_read(inode);
2276 
2277 		if (limit != RLIM_INFINITY) {
2278 			if (*pos >= limit) {
2279 				send_sig(SIGXFSZ, current, 0);
2280 				return -EFBIG;
2281 			}
2282 			if (*count > limit - (typeof(limit))*pos) {
2283 				*count = limit - (typeof(limit))*pos;
2284 			}
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * LFS rule
2290 	 */
2291 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2292 				!(file->f_flags & O_LARGEFILE))) {
2293 		if (*pos >= MAX_NON_LFS) {
2294 			return -EFBIG;
2295 		}
2296 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2297 			*count = MAX_NON_LFS - (unsigned long)*pos;
2298 		}
2299 	}
2300 
2301 	/*
2302 	 * Are we about to exceed the fs block limit ?
2303 	 *
2304 	 * If we have written data it becomes a short write.  If we have
2305 	 * exceeded without writing data we send a signal and return EFBIG.
2306 	 * Linus frestrict idea will clean these up nicely..
2307 	 */
2308 	if (likely(!isblk)) {
2309 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2310 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2311 				return -EFBIG;
2312 			}
2313 			/* zero-length writes at ->s_maxbytes are OK */
2314 		}
2315 
2316 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2317 			*count = inode->i_sb->s_maxbytes - *pos;
2318 	} else {
2319 #ifdef CONFIG_BLOCK
2320 		loff_t isize;
2321 		if (bdev_read_only(I_BDEV(inode)))
2322 			return -EPERM;
2323 		isize = i_size_read(inode);
2324 		if (*pos >= isize) {
2325 			if (*count || *pos > isize)
2326 				return -ENOSPC;
2327 		}
2328 
2329 		if (*pos + *count > isize)
2330 			*count = isize - *pos;
2331 #else
2332 		return -EPERM;
2333 #endif
2334 	}
2335 	return 0;
2336 }
2337 EXPORT_SYMBOL(generic_write_checks);
2338 
2339 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2340 				loff_t pos, unsigned len, unsigned flags,
2341 				struct page **pagep, void **fsdata)
2342 {
2343 	const struct address_space_operations *aops = mapping->a_ops;
2344 
2345 	return aops->write_begin(file, mapping, pos, len, flags,
2346 							pagep, fsdata);
2347 }
2348 EXPORT_SYMBOL(pagecache_write_begin);
2349 
2350 int pagecache_write_end(struct file *file, struct address_space *mapping,
2351 				loff_t pos, unsigned len, unsigned copied,
2352 				struct page *page, void *fsdata)
2353 {
2354 	const struct address_space_operations *aops = mapping->a_ops;
2355 
2356 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2357 }
2358 EXPORT_SYMBOL(pagecache_write_end);
2359 
2360 ssize_t
2361 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2362 {
2363 	struct file	*file = iocb->ki_filp;
2364 	struct address_space *mapping = file->f_mapping;
2365 	struct inode	*inode = mapping->host;
2366 	ssize_t		written;
2367 	size_t		write_len;
2368 	pgoff_t		end;
2369 	struct iov_iter data;
2370 
2371 	write_len = iov_iter_count(from);
2372 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2373 
2374 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2375 	if (written)
2376 		goto out;
2377 
2378 	/*
2379 	 * After a write we want buffered reads to be sure to go to disk to get
2380 	 * the new data.  We invalidate clean cached page from the region we're
2381 	 * about to write.  We do this *before* the write so that we can return
2382 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2383 	 */
2384 	if (mapping->nrpages) {
2385 		written = invalidate_inode_pages2_range(mapping,
2386 					pos >> PAGE_CACHE_SHIFT, end);
2387 		/*
2388 		 * If a page can not be invalidated, return 0 to fall back
2389 		 * to buffered write.
2390 		 */
2391 		if (written) {
2392 			if (written == -EBUSY)
2393 				return 0;
2394 			goto out;
2395 		}
2396 	}
2397 
2398 	data = *from;
2399 	written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2400 
2401 	/*
2402 	 * Finally, try again to invalidate clean pages which might have been
2403 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2404 	 * if the source of the write was an mmap'ed region of the file
2405 	 * we're writing.  Either one is a pretty crazy thing to do,
2406 	 * so we don't support it 100%.  If this invalidation
2407 	 * fails, tough, the write still worked...
2408 	 */
2409 	if (mapping->nrpages) {
2410 		invalidate_inode_pages2_range(mapping,
2411 					      pos >> PAGE_CACHE_SHIFT, end);
2412 	}
2413 
2414 	if (written > 0) {
2415 		pos += written;
2416 		iov_iter_advance(from, written);
2417 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2418 			i_size_write(inode, pos);
2419 			mark_inode_dirty(inode);
2420 		}
2421 		iocb->ki_pos = pos;
2422 	}
2423 out:
2424 	return written;
2425 }
2426 EXPORT_SYMBOL(generic_file_direct_write);
2427 
2428 /*
2429  * Find or create a page at the given pagecache position. Return the locked
2430  * page. This function is specifically for buffered writes.
2431  */
2432 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2433 					pgoff_t index, unsigned flags)
2434 {
2435 	struct page *page;
2436 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2437 
2438 	if (flags & AOP_FLAG_NOFS)
2439 		fgp_flags |= FGP_NOFS;
2440 
2441 	page = pagecache_get_page(mapping, index, fgp_flags,
2442 			mapping_gfp_mask(mapping));
2443 	if (page)
2444 		wait_for_stable_page(page);
2445 
2446 	return page;
2447 }
2448 EXPORT_SYMBOL(grab_cache_page_write_begin);
2449 
2450 ssize_t generic_perform_write(struct file *file,
2451 				struct iov_iter *i, loff_t pos)
2452 {
2453 	struct address_space *mapping = file->f_mapping;
2454 	const struct address_space_operations *a_ops = mapping->a_ops;
2455 	long status = 0;
2456 	ssize_t written = 0;
2457 	unsigned int flags = 0;
2458 
2459 	/*
2460 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2461 	 */
2462 	if (!iter_is_iovec(i))
2463 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2464 
2465 	do {
2466 		struct page *page;
2467 		unsigned long offset;	/* Offset into pagecache page */
2468 		unsigned long bytes;	/* Bytes to write to page */
2469 		size_t copied;		/* Bytes copied from user */
2470 		void *fsdata;
2471 
2472 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2473 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2474 						iov_iter_count(i));
2475 
2476 again:
2477 		/*
2478 		 * Bring in the user page that we will copy from _first_.
2479 		 * Otherwise there's a nasty deadlock on copying from the
2480 		 * same page as we're writing to, without it being marked
2481 		 * up-to-date.
2482 		 *
2483 		 * Not only is this an optimisation, but it is also required
2484 		 * to check that the address is actually valid, when atomic
2485 		 * usercopies are used, below.
2486 		 */
2487 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2488 			status = -EFAULT;
2489 			break;
2490 		}
2491 
2492 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2493 						&page, &fsdata);
2494 		if (unlikely(status < 0))
2495 			break;
2496 
2497 		if (mapping_writably_mapped(mapping))
2498 			flush_dcache_page(page);
2499 
2500 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2501 		flush_dcache_page(page);
2502 
2503 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2504 						page, fsdata);
2505 		if (unlikely(status < 0))
2506 			break;
2507 		copied = status;
2508 
2509 		cond_resched();
2510 
2511 		iov_iter_advance(i, copied);
2512 		if (unlikely(copied == 0)) {
2513 			/*
2514 			 * If we were unable to copy any data at all, we must
2515 			 * fall back to a single segment length write.
2516 			 *
2517 			 * If we didn't fallback here, we could livelock
2518 			 * because not all segments in the iov can be copied at
2519 			 * once without a pagefault.
2520 			 */
2521 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2522 						iov_iter_single_seg_count(i));
2523 			goto again;
2524 		}
2525 		pos += copied;
2526 		written += copied;
2527 
2528 		balance_dirty_pages_ratelimited(mapping);
2529 		if (fatal_signal_pending(current)) {
2530 			status = -EINTR;
2531 			break;
2532 		}
2533 	} while (iov_iter_count(i));
2534 
2535 	return written ? written : status;
2536 }
2537 EXPORT_SYMBOL(generic_perform_write);
2538 
2539 /**
2540  * __generic_file_write_iter - write data to a file
2541  * @iocb:	IO state structure (file, offset, etc.)
2542  * @from:	iov_iter with data to write
2543  *
2544  * This function does all the work needed for actually writing data to a
2545  * file. It does all basic checks, removes SUID from the file, updates
2546  * modification times and calls proper subroutines depending on whether we
2547  * do direct IO or a standard buffered write.
2548  *
2549  * It expects i_mutex to be grabbed unless we work on a block device or similar
2550  * object which does not need locking at all.
2551  *
2552  * This function does *not* take care of syncing data in case of O_SYNC write.
2553  * A caller has to handle it. This is mainly due to the fact that we want to
2554  * avoid syncing under i_mutex.
2555  */
2556 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2557 {
2558 	struct file *file = iocb->ki_filp;
2559 	struct address_space * mapping = file->f_mapping;
2560 	struct inode 	*inode = mapping->host;
2561 	loff_t		pos = iocb->ki_pos;
2562 	ssize_t		written = 0;
2563 	ssize_t		err;
2564 	ssize_t		status;
2565 	size_t		count = iov_iter_count(from);
2566 
2567 	/* We can write back this queue in page reclaim */
2568 	current->backing_dev_info = inode_to_bdi(inode);
2569 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2570 	if (err)
2571 		goto out;
2572 
2573 	if (count == 0)
2574 		goto out;
2575 
2576 	iov_iter_truncate(from, count);
2577 
2578 	err = file_remove_suid(file);
2579 	if (err)
2580 		goto out;
2581 
2582 	err = file_update_time(file);
2583 	if (err)
2584 		goto out;
2585 
2586 	if (io_is_direct(file)) {
2587 		loff_t endbyte;
2588 
2589 		written = generic_file_direct_write(iocb, from, pos);
2590 		/*
2591 		 * If the write stopped short of completing, fall back to
2592 		 * buffered writes.  Some filesystems do this for writes to
2593 		 * holes, for example.  For DAX files, a buffered write will
2594 		 * not succeed (even if it did, DAX does not handle dirty
2595 		 * page-cache pages correctly).
2596 		 */
2597 		if (written < 0 || written == count || IS_DAX(inode))
2598 			goto out;
2599 
2600 		pos += written;
2601 		count -= written;
2602 
2603 		status = generic_perform_write(file, from, pos);
2604 		/*
2605 		 * If generic_perform_write() returned a synchronous error
2606 		 * then we want to return the number of bytes which were
2607 		 * direct-written, or the error code if that was zero.  Note
2608 		 * that this differs from normal direct-io semantics, which
2609 		 * will return -EFOO even if some bytes were written.
2610 		 */
2611 		if (unlikely(status < 0)) {
2612 			err = status;
2613 			goto out;
2614 		}
2615 		iocb->ki_pos = pos + status;
2616 		/*
2617 		 * We need to ensure that the page cache pages are written to
2618 		 * disk and invalidated to preserve the expected O_DIRECT
2619 		 * semantics.
2620 		 */
2621 		endbyte = pos + status - 1;
2622 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2623 		if (err == 0) {
2624 			written += status;
2625 			invalidate_mapping_pages(mapping,
2626 						 pos >> PAGE_CACHE_SHIFT,
2627 						 endbyte >> PAGE_CACHE_SHIFT);
2628 		} else {
2629 			/*
2630 			 * We don't know how much we wrote, so just return
2631 			 * the number of bytes which were direct-written
2632 			 */
2633 		}
2634 	} else {
2635 		written = generic_perform_write(file, from, pos);
2636 		if (likely(written >= 0))
2637 			iocb->ki_pos = pos + written;
2638 	}
2639 out:
2640 	current->backing_dev_info = NULL;
2641 	return written ? written : err;
2642 }
2643 EXPORT_SYMBOL(__generic_file_write_iter);
2644 
2645 /**
2646  * generic_file_write_iter - write data to a file
2647  * @iocb:	IO state structure
2648  * @from:	iov_iter with data to write
2649  *
2650  * This is a wrapper around __generic_file_write_iter() to be used by most
2651  * filesystems. It takes care of syncing the file in case of O_SYNC file
2652  * and acquires i_mutex as needed.
2653  */
2654 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2655 {
2656 	struct file *file = iocb->ki_filp;
2657 	struct inode *inode = file->f_mapping->host;
2658 	ssize_t ret;
2659 
2660 	mutex_lock(&inode->i_mutex);
2661 	ret = __generic_file_write_iter(iocb, from);
2662 	mutex_unlock(&inode->i_mutex);
2663 
2664 	if (ret > 0) {
2665 		ssize_t err;
2666 
2667 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2668 		if (err < 0)
2669 			ret = err;
2670 	}
2671 	return ret;
2672 }
2673 EXPORT_SYMBOL(generic_file_write_iter);
2674 
2675 /**
2676  * try_to_release_page() - release old fs-specific metadata on a page
2677  *
2678  * @page: the page which the kernel is trying to free
2679  * @gfp_mask: memory allocation flags (and I/O mode)
2680  *
2681  * The address_space is to try to release any data against the page
2682  * (presumably at page->private).  If the release was successful, return `1'.
2683  * Otherwise return zero.
2684  *
2685  * This may also be called if PG_fscache is set on a page, indicating that the
2686  * page is known to the local caching routines.
2687  *
2688  * The @gfp_mask argument specifies whether I/O may be performed to release
2689  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2690  *
2691  */
2692 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2693 {
2694 	struct address_space * const mapping = page->mapping;
2695 
2696 	BUG_ON(!PageLocked(page));
2697 	if (PageWriteback(page))
2698 		return 0;
2699 
2700 	if (mapping && mapping->a_ops->releasepage)
2701 		return mapping->a_ops->releasepage(page, gfp_mask);
2702 	return try_to_free_buffers(page);
2703 }
2704 
2705 EXPORT_SYMBOL(try_to_release_page);
2706